IN ACTI(

Jacques Chester
Foreword by Ville Aikas

/l. MANNING

Service

Configuration _l
Revision
J
-
Deployment

e
< =3}

Pod

Knative in Action

Knative in Action

JACQUES CHESTER
FOREWORD BY VILLE AIKAS

MANNING
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964
Email: orders@manning.com

©2021 by Manning Publications Co. All rights reserved.

Photo credits: CloudEvents icons are a trademark of the Linux Foundation (CNCF)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Development editor: Jenny Stout
Technical development editor: John Guthrie

/I/I Manning Publications Co. Review editor: Mihaela Batinic
20 Baldwin Road Production editor: Deirdre S. Hiam
PO Box 761 Copy editor: Frances Buran
Shelter Island, NY 11964 Proofreader: Jason Everett

Technical proofreader: Kelvin Johnson
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

ISBN: 9781617296642
Printed in the United States of America

www.manning.com

Pour la petite maman.

© 00 N O O AN W N R

brief contents

Introduction 1

Introducing Knative Serving 24
Configurations and Revisions 39
Routes 80

Autoscaling 100

Introduction to Eventing 132
Sources and Sinks 159

Filtering and Flowing 171

From Conception to Production 204

contents

Joreword xiii
preface xiv
acknowledgements — xv
about this book xvii
about the author xx

about the cover illustration xxi

Introduction 1

1.1

1.2
1.3

1.4

1.5
1.6

What is Knative? 2

Deploying, upgrading, and routing 3 = Autoscaling 3
Eventing 3

So what? 3
Where Knative shines 4

Workloads with unpredictable, latency-insensitive demand 4
Stitching together events from multiple sources 6 = Decomposing
monoliths in small increments 7

It’sahit 7
Trouble in paradise 11
Changing things 12
What’s in the Knative box? 14
Serving 14 = Eventing 15 = Serving and Eventing 15

CONTENTS

1.7 Keeping things under control 16
Loops 17 = Loops within loops 19

1.8 Areyouready? 22

Introducing Knative Serving 24

2.1 A walkthrough 25

Your first deployment 25 = Your second deployment 26
Conditions 27 = What does Active mean? 28 = Changing
the image 29 = Splitting traffic 30

2.2 Serving components 32

The controller and reconcilers 32 = The Webhook 33
Networking controllers 34 = Autoscaler, Activator, and

Queue-Proxy 35

Configurations and Revisions 39

3.1 Those who cannot remember the past are condemned to
redeploy it 40

3.2 The bedtime story version of the history of deployment as
a concept 41
The Blue/Green deployment 42 = The Canary deployment 45
Progressive deployment 45 = Back to the future 47

3.3 The anatomy of Configurations 48
Configuration status 51 = Taking it all in with kubectl
describe 52

3.4 The anatomy of Revisions 54

Revision basics 55 = Container basics 57 = Container
images 58 = The command 61 = The environment,

dirvectly 63 = The environment, indirectly 65 = Configuration
via files 69 = Probes 71 = Setting consumption limits 73
Container concurrency 75 = Timeout seconds 77

Routes 80

4.1 Using kn to work with Routes 81
4.2 The anatomy of Routes 82
4.3 The anatomy of TrafficTargets 84

configurationName and revisionName 85 = latestRevision 87

tag 88

CONTENTS

Autoscaling 100
5.1 The autoscaling problem 101
5.2 Autoscaling when there are zero instances 103
The Autoscaler panics 106
5.3 Autoscaling when there are one or a few instances 106
5.4 Autoscaling when there are many instances 108
5.5 Alittle theory 109
Control 109 = Queueing 109
5.6 The actual calculation 112
To panic, or not to panic, that is the question 118
5.7 Configuring autoscaling 120

Houw settings get applied 121 = Setting scaling limits 123
Setting scaling rates 124 = Setting target values 125
Setting decision intervals 127 = Setting window size 127
Setting the panic threshold 128 = Setting the target burst
capacity 128 = Other autoscalers 129

5.8 A cautionary note 129

Introduction to Eventing 132

6.1 The road to CloudEvents 133
6.2 The anatomy of CloudEvents 136

Required attributes 137 = Optional attributes 138
Extension attributes 140

6.3 A word about event formats and protocol bindings 142

Structured content mode 142 = Binary content mode 143
Baiched content mode 144

6.4 A walkthrough 144
6.5 The basic architecture of Eventing 153

Messaging 153 = Eventing 154 = Sources 154
Fows 155 = Duck types 155

Sources and Sinks 159

7.1 Sources 159

The anatomy of Sources 160 = Using kn to work with
Sources 161

7.2 The Sink 165

CONTENTS

7.3 The mysterious SinkBinding (and its sidekick,
ContainerSource) 167

Provisioning and binding are not the same 168

7.4 Other Sources 169

Filtering and Flowing 171
8.1 The Broker 172
8.2 Filters 173

Filtering on custom attributes 176 = Nice things that Eventing
adds for you 181

8.3 Sequences 183
A walkthrough 183
8.4 The anatomy of Sequences 188

Step 188 = Reply 188 = ChannelTemplate and
Channels 189 = Mixing Sequences and filters 191

8.5 Parallels 192
A walkthrough 193
8.6 Dealing with failures 200
Retries and backoffs 201 = Dead letters 202
The bad news 203
From Conception to Production 204

9.1 Turning your software into something runnable 205

Always use digests 205 = Using Cloud Native Buildpacks (CNBs)
and the pack tool 208

9.2 Getting your software to somewhere it runs 212
9.3 Knowing how your software is running 222
Logs 224 = Metrics 225 = Traces 231

appendix Installing Knative for Development 235
index 241

Joreword

Over the last couple of years, Knative has seen rapid growth in adoption and matu-
rity, with a flourishing ecosystem that’s building around and on top of it. Knative in
Action by Jacques Chester is a long overdue book, giving the user a well-structured,
easy approach, and a clearly written grounds-up explanation on what Knative is,
what kinds of problems it helps the user tackle, and how to best utilize Knative to
solve those problems.

The examples in this book are super easy to follow, cleverly written (many lols
were had while reading the pre-release version of the book), and build up the mate-
rial in easy to approach piece-meal chunks. In particular, I liked the real-world exam-
ples and great illustrations. I also enjoyed following along, as it was easy to re-create
the examples and to gain an understanding of the various components, resources,
and trade-offs.

As Knative is still seeing rapid development, Jacques also provides a balanced view-
point for things that still need to be worked on (for example, a richer filtering
model). He also discusses ways to work around those limitations.

Jacques is one of the longest serving members of the Knative community. We're
lucky to have him in the community.

VILLE AIKAS
SOFTWARE ENGINEER & CO-CREATOR OF KNATIVE EVENTING

preface

I was working for Pivotal when I was approached to write this book. At the time, we
were in the early stages of our partnership with Google and the community. At Pivotal,
I had (through the Project riff team) been one of the early chosen to learn about it
before it became a public project.

My original plan for this book was, in retrospect, absurdly overambitious. Instead
of the medium-sized book you’re now holding, there would have been a slab of words
worthy of industrial use. Primarily, the evolution of the book has been from my urge
to talk about many different things, including Knative, to just talk about Knative. This
is an improvement all round. While I like to talk about related topics, these aren’t
what is needed right at the outset. This book is Knative in Action, not Grand Unified The-
ory of Knative.

That said, I like writing, and I am, perhaps, too proud of mine, so at times I take
the scenic routes. If English is not your first language, it might be slow going. One
thing I can offer is that any unfamiliar words can usually be skipped; it’s just me show-
ing off.

acknowledgements

I could thank a thousand people and still not scratch the surface. But here are some
of them.

Thanks to Eleonor Gardner for scouting some random person from the Internet, so
that Michael Stephens could greenlight the project. Thanks to Jennifer Stout, my end-
lessly cheerful editor and John Guthrie, my suitably grizzled tech editor. Frances Buran
tolerated my endless blizzard of commas. Thank you, all. You made the book better.

Thanks also to other Manning folks who have (so far!) been involved: Nicole
Butterfield, Kristen Watterson, Rebecca Rinehart, Rejhana Markanovic, Matko Hrvatin,
Sam Wood, Radmila Ercegovac, Cody Tankersley, Troy Dreier, Candace Gillhoolley,
Branko Latincic, Mehmed Pasic, Jennifer Houle, Stjepan Jurekovic, Deirdre Hiam,
Jason Everett, and Mihaela Batinic.

As well as the staff at Manning, I am grateful to the anonymous reviewers who
ploughed through earlier drafts—some of them three times! The book was greatly
improved by their honesty and attention to detail. I know I didn’t act on every sugges-
tion, but thank you, thank you, thank you.

I owe the subject matter to the Knative community. I have enjoyed talking to and
learning from Matt Moore, Ville Aikas, Evan Anderson, Joe Burnett, Scott Nichols,
Jason Hall, Markus Thommes, Nghia Tran, Julian Friedman, Carlos Santana, Nima
Kaviani, Michael Maximilien, Doug Davis, Ben Browning, Grant Rodgers, Paul Morie,
Brenda Chan, Donna Malayeri, Mark Kropf, and Mark Chmarny. Also in the commu-
nity are many folks I know from Pivotal or VMware, including the unflappable Dave
Protasowski, Mark Fisher, Scott Andrews, Glynn Normington, Sukhil Suresh, Tanzeeb

XV

xvi

ACKNOWLEDGEMENTS

Khalili (who I'will probably meet some day), David Turanski, Thomas Risberg, Dmitriy
Kalinin, Jurgen Leschner, and the tireless Shash Reddy.

Continuing with the Pivotal/VMware theme, there are the folks who made it possi-
ble for me to focus on writing this book. I already owed Mike Dalessio and Catherine
McGarvey for giving me an opportunity to work for Pivotal; they just doubled down on
helping me. Graham Siener listened to my venting, despite having actually important
things to do. Ian Andrews and Richard Seroter smoothed the path for marketing,
while Cyrus Wadia, Dave Schachner, and Heidi Hischmann made sure all the formali-
ties were formed correctly. I also owe my managers during the process, Edie Beer and
Ben Moss.

Plus all the folks at Pivotal NYC (and SF! and Toronto! and London! and Santa
Monica! and everywhere!), past and present. I have loved, sincerely loved, my time
with each and every one of you. The worst part of writing this book was that I spent all
my time working solo. The best part is knowing that I still belonged to a kind, smart,
and capable fellowship. Once a Pivot, always a Pivot.

I’'m grateful to the podcasters who spoke with me while I was writing the book.
W. Curtis Preston and Prasana from “Backup Central: Restore it All,” Tim Berglund of
“Streaming Audio: A Confluent Podcast” (with assistance by Victoria Yu), Jomiro
Eming of “OfferZen Podcast,” and Jonathan Baker and Justin Brodley of “The Cloud
Pod.” I thoroughly enjoyed every one of our discussions.

To all the reviewers: Alessandro Campeis, Alex Lucas, Andres Sacco, Bojan
Djurkovic, Clifford Thurber, Conor Redmond, Eddi Meléndez Gonzales, Ezra Simeloff,
Geert Van Laethem, George Haines, Guy Ndjeng, Jeffrey Chu, Jerome Meyer, Julien
Pohie, Karthikeyarajan Rajendran, Kelum Prabath Senanayake, Kelvin Johnson, Luke
Kupka, Matt Welke, Michael Bright, Miguel Cavaco Coquet, Pethuru Raj, Raffaella
Ventaglio, Richard Vaughan, Rob Pacheco, Satadru Roy, Taylor Dolezal, Tim Langford,
and Zorodzayi Mukuya—thank you for your hard work!

Everything I’ve done that’s ever impressed anyone is actually just my pale imitation
of my parents, Barry and Juliette. Whenever I begin to bore people, I just tell the story
of their lives. They have roamed so widely, done so much, overcome such obstacles;
this book is as substantial as a shadow next to them.

And, of course, Renée, who is the best stroke of luck I've ever had. I couldn’t have
made it to the end without you.

about this book

Who should read this book?

This book is intended for folks who want to learn the fundamental components and
capabilities of Knative Serving and Knative Eventing. I describe Kubernetes concepts
when I absolutely need to, but otherwise, I have aimed to talk exclusively about
Knative.

My goal while writing was that someone with no Kubernetes experience would be
able to make practical day-to-day use of Knative. I don’t know if I truly succeeded,
because I came to writing with a fair amount of background knowledge about contain-
ers, Cloud Native architecture, and Kubernetes. It’s hard to know what “obvious” facts
get left out. Not too many, I hope.

The book does not aim to teach you about the questions that will follow from
learning the basic mechanics. It is one thing for me to show you how to build a web of
interacting functions, but another thing to talk about the trade-offs of doing so. I hint
briefly at topics I think are related (such as queuing theory), but in the interests of
space and time, it wasn’t possible to go into any depth.

How this book is organized: A roadmap

Chapter 1 introduces Knative and positions it in the big wide world. Chapters 2
through 5 deal with Knative Serving. I begin with a survey of Serving in chapter 2. In
chapter 3, I perform a deep dive on Services and Configurations, followed by a discus-
sion of routing in chapter 4. Chapter 5, on Autoscaling, is a little bit of dessert.

xvii

xviii

ABOUT THIS BOOK

Then I turn to Knative Eventing. In chapter 6, I introduce Eventing and Cloud-
Events. Chapter 7 hits Sources and Sinks, the main concepts of Eventing. Chapter 8
builds on chapter 7, introducing Brokers, Filters, Sequences, and Parallels.

To wrap things up, in chapter 9, I focus on the basic questions of “How does my
software get to production?” and “Is my software producing?”

The book is not designed for reading out of order; it will be easiest to read
straight through. That said, you may be able to read Eventing before Serving and
still get some value.

Conspicuously absent is a running example. I did consider this and did draft some
code. I decided against it to mitigate risk. While writing this book, I was also learning
about parts of Knative that I had not yet used. Some of these were evolving quickly as I
went. I felt that building a full example would have run the risk that I'd need to throw
it out and redo it at least once. Instead, examples are created or described within the
context of individual chapters.

About the code

Most of the code in this book is a mix of CLI commands and YAML. Actual code code is
in Golang.

liveBook discussion forum

Purchase of Knative in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum, go
to https://livebook.manning.com/book/knative-in-action/discussion. You can also
learn more about Manning’s forums and the rules of conduct at https://livebook
.manning.com/#!/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

Other online resources

First, Knative’s own documentation (https://knative.dev/docs/) is improving all the
time. This book is written as an introduction for a general technical audience. But,
sometimes, you need a task-oriented reference material. The Knative docs are the
place to go.

https://knative.dev/docs/
https://livebook.manning.com/book/knative-in-action/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion

ABOUT THIS BOOK xix

The Knative community is open and welcoming to newcomers (https://knative
.dev/community/). The best place to start is joining the Knative Slack instance (https://
knative.slack.com/) and joining the knative-users (https://groups.google.com/g/
knative-users) group. Joining the group gives you more than a mailing list member-
ship—you also get access to a shared community calendar and working documents.

Meetings of working groups happen throughout the week on a variety of topics,
from the Serving API to Autoscaling to operations to documentation. Also each week,
the project’s Technical Oversight Committee receives an update from one working
group describing their previous few months of work. All meetings are noted and
recorded, so you can look up previous conversations easily.

https://knative.dev/community/
https://knative.dev/community/
https://knative.dev/community/
https://knative.slack.com/
https://knative.slack.com/
https://knative.slack.com/
https://groups.google.com/g/knative-users
https://groups.google.com/g/knative-users

about the author

JACQUES CHESTER is an engineer at VMware, via the Pivotal acquisition. He has worked
in R&D since 2015, contributing to several projects, including Knative. Before R&D,
Jacques worked for Pivotal Labs as a consulting software engineer.

about the cover illustration

The figure on the cover of Knative in Action is captioned “Francais,” or Frenchman.
The illustration is taken from a collection of dress costumes from various countries by
Jacques Grasset de Saint-Sauveur (1757-1810), titled Costumes de Différents Pays, pub-
lished in France in 1797. Each illustration is finely drawn and colored by hand. The
rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how cultur-
ally apart the world’s towns and regions were just 200 years ago. Isolated from each
other, people spoke different dialects and languages. In the streets or in the country-
side, it was easy to identify where they lived and what their trade or station in life was
just by their dress.

The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.

Introduction

This chapter covers
= What Knative is and why you should use it

The places where Knative shines (and doesn’t)
The basics of Serving and Eventing
Where to get started

One of my north stars is the Onsi Haiku Test:

Here is my source code.
Run it on the cloud for me.
I do not care how.

This is actually a radical notion of how software can best be developed, deployed,
upgraded, observed, managed, and improved. It must be, because so often it emerges
long after we’ve tried everything else first. The Onsi Haiku Test implies

That a fast, reliable path to production is a shared goal for everyone

That there is a crisp, contractual boundary between folks who provide plat-
forms and folks whose work will consume the platform

That building software that handles other software is, for most developers,
not the most urgent, most valuable work they could be doing

1.1

CHAPTER 1 Introduction

Kubernetes, by itself, does not pass the Onsi Haiku Test. The boundary between devel-
opment and operation is unclear. Developers can’t walk up to a vanilla Kubernetes
cluster, hand it raw source code, and get all the basic amenities of routing, logging,
service injection, and so on. Kubernetes gives you a rich toolbox for solving the Test in
your own particular way. But a toolbox is not a machine. It is a toolbox.

This book is not about Kubernetes, it’s about Knative. Knative builds on the tool-
box Kubernetes provides, but it also sets out to achieve a level of consistency, simplic-
ity, and ease of use that brings Kubernetes much closer to meeting the Test’s high
standard. Knative is a machine.

While it has something to offer many different professional specialties, Knative is
primarily focused on the needs and pains of developers, to elevate them to the heights
of “I do not care how.” Kubernetes is amazing, but it never strongly demarcated what
is meant to be changed or managed by whom. That’s a strength: you can do anything!
And a weakness: you could, and did, do anything! Knative provides crisp abstractions
that, by design, don’t refer to the grungy physical business of nodes and containers
and virtual machines (VMs). In this book, I’ll also focus on developers, referring to or
explaining Kubernetes only when necessary to understand Knative.

What is Knative?

There are several ways to answer this question. To begin with, the purpose of Knative is
to provide a simple, consistent layer over Kubernetes that solves common problems of
deploying software, connecting disparate systems together, upgrading software,
observing software, routing traffic, and scaling automatically. This layer creates a
firmer boundary between the developer and the platform, allowing the developer to
concentrate on the software they are directly responsible for.

The major subprojects of Knative are Serving and Eventing.! Serving is responsible
for deploying, upgrading, routing, and scaling. Eventing is responsible for connecting
disparate systems. Dividing responsibilities this way allows each to be developed more
independently and rapidly by the Knative community.

The software artifacts of Knative are a collection of software processes, packaged
into containers, that run on a Kubernetes cluster. In addition, Knative installs addi-
tional customizations into Kubernetes itself to achieve its ends. This is true of both
Serving and Eventing, each of which installs its own components and customizations.
While this might interest a platform engineer or platform operator, it shouldn’t mat-
ter to a developer. You should only care that it is installed, not where or how.

The API or surface area of Knative is primarily YAML documents that declaratively
convey your intention as a developer. These are CRDs (Custom Resource Definitions),

1

If you look at early talks and blog posts about Knative, you’ll see references to a third subproject, Build. Build

has since evolved and spun out into Tekton, an independent project. This decision moved Knative away from
the Onsi Haiku Test, butit also resolved a number of architectural tensions in Serving. Overall, it was the right
decision, but it leaves you with the responsibility of deciding how to convert source code into containers. Hap-
pily, there are many ways to do this, and I’ll be introducing some later in the book.

111

112

113

1.2

So what? 3

which are, essentially, plugins or extensions for Kubernetes that look and feel like
vanilla Kubernetes.

You can also work in a more imperative style using the Knative kn command-line
client, which is useful for tinkering and rapid iteration. I'll show both of these
approaches throughout the book. But first, let’s take a quick motivational tour of Kna-
tive’s capabilities.

Deploying, upgrading, and routing

Deployment has evolved. What used to be a process of manually promoting software
artifacts through environments (with scheduled downtime, 200 people on a bridge call
all weekend ...) becomes continuous delivery and Blue/Green deploys.

Should deployment be all or nothing? Knative enables progressive delivery: instead
of requests arriving at a production system that is entirely one version of the software,
these arrive at a system where multiple versions can be running together with traffic
split among these. This means that deployments can proceed at the granularity of
requests, rather than instances. “Send 10% of traffic to v2” is different from “10% of
instances are v2.” I'll talk more about this in chapter 9.

Autoscaling

Sometimes there s no traffic. Sometimes there is too much traffic. One of these is
wasteful; the other is stressful. Knative is ready with the Knative Pod Autoscaler (KPA),
a request-centric autoscaler that’s deeply integrated with Knative’s routing, buffering,
and metrics components. The autoscaler can’t solve all your problems, but it will solve
enough so that you can focus on more important problems. I’ll discuss autoscaling in
chapter 5.

Eventing

Easy management of HTTP requests will take you a long way, but not everything looks
like a POST. Sometimes we want to react to events instead of responding to requests.
Events might come from your software or external services, but these can arrive with-
out anyone requesting something. That’s where Knative Eventing for events comes into
play. It enables you to compose small pieces of software into flexible processing pipe-
lines, connected through events. You can even prepare to process things that don’t
exist yet (really). I'll discuss these topics in chapters 6, 7, and 8.

So what?

I know your secret. Somewhere in your repo is deploy.sh. It’s a grungy bash script that
does some grep-and-sed and calls kubect1 a bunch of times. It probably also has some
sleeps, and maybe you got ambitious and so there’s a wget floating around in it too.
You wrote it in a hurry and, of course, of course, of course, you’re going to do a better
job, but right now you’re busy working to get this thing done before Q3 and you need

1.3

13.1

CHAPTER 1 Introduction

to implement floozlebit support and refactor the twizzleflorp, and ... deploy.sh works
well enough.

But this is always true for everything: there’s never enough time. Why, really, didn’t
you make that change yet?* Easy—it’s too hard. It’s too much work when you already
have enough.

Kubernetes itselfis great, once you set it up. It absolutely shines at its core purpose
in life: reconcile the differences between the desired state of the system and the actual
state of the system on a continuous basis. If all you ever need is to deploy your system
once and let it run forever without changing it, then you're good to go and lucky you.
The rest of us, however, are on the hedonic treadmill. We have desired worlds that
change. We ship bugs that need to be fixed, our users think of new features they want,
and our competitors make us scramble to address new services.

And that’s how you wound up with the script. And doing a better job of deploy-
ment doesn’t seem urgent. After all, it works, right? Yes ... if and only if your goal is to
be afraid to upgrade anything or to have umpteen slightly different versions of
deploy.sh floating around company repos or to write your own CD system without
intending to. Why bother? Let Knative toil for you instead.

Actually, I know two of your secrets. Your code knows a lot about all your other
code. The Login Service knows about the User Service and the Are-You-A-Robot?
Service. It tells these what it wants and it waits for their answer. This is the imperative
style, and with it, we as a profession have built incredible monuments to human
genius. But we’ve also built some incredible bowls of spaghetti and warm droppings.

It would be nice to decouple your services a bit, so that software responds to
reports of stuff happening and, in turn, reports stuff that it did. This is not a novel
concept: the idea of software connected through pipes of events or data has sailed
under various flags and in various fleets for decades now. There are deep, important,
and profound differences between all of these historical schools of thought. I will, in
an act of mercy, spare you any meaningful discussion of these. Before you learn how to
chisel apart the monolith, you need a chisel and a hammer.

Where Knative shines

Knative’s focus on event-driven, progressively-delivered, autoscaling architectures
lends itself to some particular sweet spots. Let’s look at a few of these.

Workloads with unpredictable, latency-insensitive demand

Variability is a fact of life: nothing repeats perfectly. Nothing can be perfectly pre-
dicted or optimized. Many workloads face demand variability: it is not always clear from

2 Those of you in the class who are pointing at their Spinnaker instances can lower your hands.

Where Knative shines 5

moment to moment what demand to expect. The Law of Variability Buffering says
that you can deal with demand variability by buffering it in one of three ways:

With inventory—Something you produced earlier and have at hand (for exam-
ple, caching)

With capacity—Unused reserve capacity that can absorb more demand without
meaningful effect (for example, idle instances)

With time—Making the demand wait longer

These are all costly. Inventory costs money to hold (RAM and disk space aren’t free),
capacity costs money to reserve (an idle CPU still uses electricity), and famously, “time
is money” and nobody likes to wait.

NOTE Inventory, capacity, and time really are the only options for buffering
variability. It’s basic calculus. Inventory is an integral, a sum of previous capac-
ity utilization and demand. Capacity is a derivative, a rate of change of inven-
tory. And time is time. You can rearrange the terms, and you can change their
values, but you can’t escape the boundaries of mathematics. The only alterna-
tive is to reduce variability so that you need less buffering in the first place.

Knative’s default strategy for buffering is tzme. If demand shows up, but capacity is low
or even zero, Knative reacts by raising capacity and holding your request until it can
be served. That’s well and good, but it takes time to bring capacity online. This is the
famous “cold start” problem.

Does this matter? It depends on the nature of the demand. If the demand is
latency-sensitive, then maybe scaling to zero is not for you. You can tell Knative to
keep a minimum number of instances alive (no more pinging your function). On the
other hand, if it’s a batch job or background process that can wait a while to kick off,
buffering by time is sensible and efficient. Let that thing drop to zero. Spend the sav-
ings on ice cream.

Regardless of sensitivity to latency, the other
consideration is: how predictable is the demand?

Highly variable demands require larger buffers.

Either you hold more inventory, or more reserve > o Ve olde

capacity, or you make folks wait longer. There 3 mli(nr:amt:}/ri ‘g’g:le capacity

are no alternatives. If you don’t know how you @ planning

want to make trade-offs, the autoscaler can relieve s

you of dealing with common cases (figure 1.1). In §

cases of extreme latency sensitivity and highly pre- ® _ Knative Batch/bulk
R . . -1 with scale-to-0 processing

dictable demand (e.g., a Netflix or YouTube video

server), Knative might not actually be a good fit.
In those cases, you are probably already doing
some kind of capacity planning.) .)
. . , Figure 1.1 Knative’s sweetspots in
One thing Knative can’t do much to save you teyms of latency sensitivity and
from is supply variability. That is, it can’t make demand predictability

Demand predictability

1.3.2

CHAPTER 1 Introduction

variability due to your software vanish, or magic away variability due to upstream sys-
tems you rely on. But how long your software takes to become live and how responsive
it is is largely in your court.

Stitching together events from multiple sources

Sometimes you have a square peg, a round hole, and a deadline. Knative won’t
shave the peg or hammer it into the hole, but Knative Eventing lets you glue things
together so that you will be able to achieve your original purpose. By design, Event-
ing receives events from heterogenous sources and conveys these to heterogenous
consumers. Webhook from Github? Yes. Pub/Sub message from Google? Yes. File
uploaded? Yes.

Some combination of these? Also yes, which is the interesting part. Relatively
small, consistent, standards-based interfaces allow many combinations of elements. To
this, Knative adds some simple abstractions to enable you to go from dabs of glue to
relatively sophisticated event flows. So long as some event or message can be expressed
as a CloudEvent, which is pretty much anything ever, Knative Eventing can be used to
do something smart with it.

Of course, the flipside of generality is that it can’t be everything to everyone.
Should you use it for CI/CD? Maybe. For streaming data analysis? Perhaps. Business
workflow processing? Reply hazy, try again.

The key is that for all of these, there exist more specialized tools that may be a bet-
ter fit. For example, you can build a MapReduce pattern using Knative. But realisti-
cally, you won’t get anywhere near the kind of performance and scale of a dedicated
MapReduce system. You can build CI/CD with Knative, but now you have to do a lot
of homework to implement all the inflows and outflows.

Where Knative can shine is when you want
to connect a variety of tools and systems in sim-

ple ways, in small increments. We all do thisin > Knative
i i : 3] Eventing
our work, but typically, it gets jammed into £
whatever system that happens to have room for g o
boarders. And so our web apps sprout obscure £ workflow engines
. . K =
endpoints or our CI/CD accumulates increas- =
ingly hairy Bash scripts. Knative lets us pull g Batch/bulk
w processing

these out into the open so that these can be

more easily tested, monitored, and reused.
The trade-off here (figure 1.2) is between

the heterogeneity of event types to be pro- Figure 1.2 Knative's sweetspots in

cessed and how specialized the processing sys- terms of event heterogeneity and

tem will be. Knative is flexible and general, so ~ implementation specialization

that it can handle many kinds of events. At the

other end of the curve lie batch processing and bulk analytical systems that handle few

kinds of events, usually known in advance, in a uniform way. By giving up flexibility,

Implementation specialization

133

14

It’s a hit 7

these can focus on raw throughput. By no means is Knative incapable of doing that
work. In fact, you might prefer to use it first in most cases. But bear in mind that some-
times, specialization pays.

Decomposing monoliths in small increments

Microservices as a term describes a family of powerful architectural patterns. But getting
to a microservices architecture isn’t easy because most existing systems aren’t
designed for it. For better or worse, these are monoliths.

Easy, you say, use the strangler pattern. Add microservices incrementally, route
requests to these so that the original code path goes cold, then repeat until you're

done.?
Knative makes this easier in two ways. The
first is that it’s good at the routing thing. The Ball of Mud
concept of routing portions of traffic is key to
its design. This matters because the strangler Dﬁgﬂmﬁd

pattern tends to falter once you strangle the
less scary bits (look boss, we broke out the cat
gif subsystem!) and move on to the parts
where the big money lives. Suddenly, it’s a bit Knative
scarier because (1) a cutover is a cutover, (2)
a big-bang cutover is a bet-your-job event, and

Microservices

Temptation to
grow the monolith

Toil needed to
. . . . add a new service
(3) Knative makes it easier to stop believing

in (1) and (2). Figure 1.3 Knative's sweetspots in terms
The second way Knative makes strangula- of resisting temptation to grow a monolith

tion easier is that you can deploy small units

easily. Knative has a deep design assumption

that you’ll have a bunch of little functions that will come and go. A function takes less

to recreate than a Service. The smaller you can start, the easier it is to start.

It’s a hit

So far I have promised a lot: easier deployments, easier event systems, incremental
development, Martian unicorns—the usual stuff that everyone promises to develop-
ers. But I haven’t given you any concrete details. In order to support my pitch that we
can start in small increments, I’ll begin with one of the oldest, simplest examples of
the dynamic web and show how Knative makes it faster, smarter, and easier. Remem-
ber hit counters?*

® Of course, nothing is actually easy. One manuscript reviewer pointed out that success will rely on having a
comprehensive test suite to prevent regressions. The same reviewer noted that APIs that are relatively rarely
used (such as key rotations) are more difficult to safely strangle. My own corollary would be: infrequent exer-
cise breeds frailty. Quiet, rarely-used code is a risk that needs to be managed. Extensive testing is necessary,
but you should also consider changing your systems to use the infrequent code more frequently (e.g., setting
a policy of rotating keys every week, or perhaps rotating some fraction daily).

* Ifyou don’t remember hit counters, think of these as a likes or followers count.

8 CHAPTER 1 Introduction

Figure 1.4 The late 1990s were truly a golden era.

I'sure do. The first time I saw one, it blew my mind. It changed! By itself! Magic!

Not magic, of course, it was a CGI program, probably some Perl.> CGI is one of
the spiritual parents of Knative, so in its honor, we are going a make a hit counter for
MY AWESOME HOMEPAGE .°

Listing 1.1 The awesome home page HTML

<html>
<body>
<stylesbody { font-family: "awesomefont" }</styles>
<center>
MY AWESOME HOMEPAGE

</centers>
</body>
</html>

First, let’s talk about the basic flow of requests and responses. A visitor to the home
page will GET an HTML document from the web server. The document contains some
style and, most importantly, the hit counter.

o — |
MY AWESOME Homepage
HOMEPAGE | server

[0]o]0[1]3]3][6]

GET hits.png

o T

200 OK

Figure 1.5 The flow of requests
and responses

Specifically, as figure 1.5 shows

The browser issues a GET request for the home page.

1
2 The home page service returns the HTML of the home page.

2 The browser finds an img tag for hits.png and issues a GET for hits.png.
4

A file bucket returns hits.png.

® OK, using ImageMagick, but not magic magic.
® Two other spiritual parents are inetd and stored procedures.

It’s a hit 9

In the old world, all of the processing needed to generate the hit counter would block
the web server response. You’d submit your request, the web server would bestir the
elder gods of Camelbuk, and then /CGI-BIN/hitctr.pl would render the image. It
might take a second or two, but nobody could tell, unless they were using one of those
blazing 28.8 K modems.

But now, everyone is impatient: spending a few seconds to render an image that
could otherwise be served from a fast data path isn’t going to be acceptable. Instead,
we’ll break that responsibility out and do it asynchronously. That way, the web server
can immediately respond with HTML and leave the creation of hit counter images to
something else.

How will the web server signal that intention? Actually ... it won’t. Instead, it simply
signals that a hit occurred. Remember, the web server wants to serve web pages, not
orchestrate image rendering. So instead of blocking, it emits a new_hit CloudEvent.

Emits to where? To a Broker, a central meeting point for systems in Knative Event-
ing. The Broker has no particular interest in the new_hit event. It merely receives and
forwards events. The exact details of who gets what is defined with triggers. Each Trig-
ger represents an interest in some set of events and where to forward these. When
events arrive at the Broker, it applies each Trigger’s filter and, if it matches, forwards
the event to the subscriber (figure 1.6).

emitter ’
(O foo-sve

"type": "bar"

\ "type": "foo"

"type'": " foo"

NN LN/

]

Filters Subscribers

n type n. nphgr"

bar-sve

Figure 1.6 Broker applying triggers to CloudEvents.

10

CHAPTER 1 Introduction

Triggers enable the incremental composition of event flows. The web server doesn’t
know where new_hit will wind up and doesn’t care. Given our new_hit, we can start to
tally up the count of hits. Already, we’re ahead of the 1999 status quo. We can take our
original Perl script and have it react to the new_hit event instead of blocking the main
web response.

Butsince we’re here, let’s go a step further. After all, is rendering images the actual
proper concern of a tallying service? When I perform a SQL UPDATE, I don’t get back
JPEG files. Instead, I will have the tally service consume the new_hit and emit a new
count, which can then wing its way to other subscribers.

Hit
counter
"hits": 1337 "new hit"
Broker
(1] .
Homepage "new hit"
server
[o]ofo[1]3[3[7]
: (4]
X "hits": 1337
s
PUT hits.png_— | Image
renderer

Figure 1.7 The flow of events

Putting it together (figure 1.7)

The homepage service emits a new_hit event.

A Trigger matches new_hit, and the Broker forwards it to the hit counter.

The hit counter updates its internal counter, then emits a hits event with the
value of that counter.

Another Trigger matches for hits, so the Broker forwards it to the image
renderer.

The image renderer renders a new image and replaces hits.png in the file bucket.

And now, if the visitor reloads their browser, they will see that the hit counter has
incremented.

It’s a hit 11

1.4.1 Trouble in paradise
Except, maybe, they don’t. To see why, let’s put the diagrams together (figure 1.8).

GET /
MY AWESOME T Homepage Hit
HOMEPAGE @ __ | server counter
200 OK
[0]o]o]1]3[3[6] i o ®
"hits": 1337 "hew hit"
@ Broker
200 OK.
\ (1]
\
® [0]o]0[1]3]3]6] “— "new hit"

GET hits.png
_[oo]o[1]3]3]7] "hits": 1337

PUT hits.png rtlanr::g?er

Figure 1.8 Combining the flows in one diagram

Note that I'm showing two sets of numbers: one for a web request/response (on the
left side of the diagram) and another for the event flow (on the right side of the dia-
gram). This illuminates an important point—the web flow is synchronous and the event
flow is asynchronous. You knew that, but I handwaved away the consequences, and now
I need to slap my wrist. The distinction matters (figure 1.9).

Because the event flow is asynchronous, there’s no guarantee that hits.png will
have been updated before the next visitor arrives. I might see 0001336, reload, and
then see 0001336 again.” And that’s not all: where one visitor might see no change,
another visitor might observe that the hit counter jumps forward, because later ren-
derings can overwrite earlier renderings before they're served. And that’s not all! An
observer might see the count go backward, because the rendering that increased the
number to 0001338 might have finished before the rendering for 0001337. Or it
might be that the events arrived out of order. Or some events never even arrived!

I’'m not done. Remember how I said that a hit counter was keeping a tally of the
hits? I didn’t say where. If it’s just keeping a value in memory, then you have new prob-
lems. For example, if Knative’s autoscaler decides that things are too quiet lately, it
reduces that number of hit counters to zero, and pow, your tally is gone. Next time it
spins up, your hit count will be reset to zero. But on the other hand, if you have more

7 Assuming that [used cache-disabling headers to force the browser to refetch each time!

12 CHAPTER 1 Introduction
Blocks you Mocks you
N\
\
|
— |
GET /| | '
MY AWESOME Homepage ,) Hit
_| server counter
HOMEPAGE 200 OK ,
[oJoTo[1T3[3[6] |+ /
v
7 <) >
7 "hits": 1337 "new hit"
v
4 Broker
/
<))
—"new hit"

<)
__oJo]o]1[3]3[7] "hits": 1337

Image .

renderer

Figure 1.9 Synchronous flows can be inefficient. Asynchronous workloads can be inexplicable.

1.5

than one hit counter, those are keeping separate tallies. The exact hit count image at
any moment will depend on traffic, but not in the way you might expect.

I’'m describing stateless systems, of course. The answer is to keep state in a shared
location, separately from the logic that operates on it. For example, each hit counter
might be using Redis to increment a common value. Or you might get super fancy
and have each instance listen for hits events.® If the incoming event represents a hit
count higher than the hit counter’s own tally, it can change its own tally to the
incoming value. All that’s left is to hope that you’re not participating in an infinite
event loop.

Changing things
You’ve probably noticed that my focus has been on an already deployed system. That’s
the bad news. The good news is that you can fix a key bug I introduced in the previous
section. Can you guess what it is?

Correct. The font sucks.

You’ll quickly learn that Knative prizes immutability. This has a lot of implications.
For now, it means that we can’t just SSH into homepage, open vi, and do it live.? But it
does raise the question of how changes get moved from your workstation to the cloud.

8 Please don’t.
9 And certainly I do not, for the purposes of law, recall ever doing so myself.

Changing things

13

Knative encapsulates “run the thing” and “change the thing” into Services."” When
the Service is changed, Knative acts to bring the world into sync with the change.
You can see how this looks in figure 1.10:

A user who arrives before the update sees the existing HTML as served by the
homepage server v1.

The developer uses kn to update the Service.

Knative starts the homepage server v2.

The v2 server passes its readiness check.

Knative stops the v1 server.

A second user arrives after the update and sees a more professional font.

Users

N /4

Production environment

A

v1

MY AWESOME
HOMEPAGE

[0]oJo[1]3]3]6]

Homepage
server

I GET /—»

l«—200 OK—

GET /
HOMEPAGE 200 OK
[0]o]o]1]3]3]7]

Figure 1.10 Updating the home page

Developer
A

This Blue/Green deployment behavior is Knative’s default. When updating Services,
it ensures that no traffic is lost and that load is only switched when it’s safe to do so.

19 Not to be confused with Kubernetes Services. More on that later.

14

1.6

1.6.1

CHAPTER 1 Introduction

What’s in the Knative box?

Let’s break this down into subprojects: Serving and Eventing.

Serving

Serving is the first and most well-known part of Knative. It encompasses the logic
needed to run your software, manage request traffic, keep your software running
while you need it, and stop it running when you don’t need it. As a developer, Knative
gives you three basic types of document you can use to express your desires: Configu-
ration, Revision, and Route.

Configuration is your statement of what your running system should look like. You
provide details about the desired container image, environment variables, and the
like. Knative converts this information into lower-level Kubernetes concepts like
Deployments. In fact, those of you with some Kubernetes familiarity might be wonder-
ing what Knative is adding. After all, you can just create and submit a Deployment
yourself, no need to use another component for that.

Which takes us to Revisions. These are snapshots of a Configuration. Each time that
you change a Configuration, Knative first creates a Revision, and in fact, it is the Revi-
sion that is converted into lower-level primitives.

But this might still seem like overhead. Why bother with this versioning scheme in
Knative when you have Git? Because Blue/Green deployment is not the only option.
In fact, Knative allows you to create nuanced rules about traffic to multiple Revisions.

For example, when I deployed homepage v2, the deployment was all-or-nothing.
But suppose I was worried that changing fonts would affect how long people stay on
my page (an A/B test). If I perform an all-or-nothing update, I will get lots of data for
the before and after. But there may be a number of confounding factors, such as time-
of-day effects. Without running both versions side by side, I can’t control for those
variables.

Knative is able to divvy up traffic to Revisions by percentage. I might decide to send
10% of my traffic to v2 and 90% of my traffic to v1. If the new font turns out to be
worse for users, then I can roll it back easily without much fuss. If, instead, it was a tri-
umph, I can quickly roll forwards, directing 100% of traffic to v2.

It’s this ability to selectively target traffic that makes Revisions a necessity. In vanilla
Kubernetes, I can roll forward and I can roll back, but I can’t do so with traffic; I can
only do it with instances of the Service.

Perhaps you wondered what happened to the Services I was talking about in the
walkthrough. Well, these are essentially a one-stop shop for all things Serving. Each
Service combines a Configuration and a Route. This compounding makes common
cases easier because everything you will need to know is in one place.

But these concepts aren’t necessarily what get listed on the marketing flyer. Many
of you have come to hear about autoscaling, including scale-to-zero. For many folks,
it’s the ability for the platform to scale all the way to zero that captures their imagina-
tion: no more wasting money on instances that are mostly idle. And, similarly, the

16.2

1.6.3

What’s in the Knative box? 15

ability to scale up: no more getting paged at absurd o’clock in the morning in New
York because something huge happened in Sydney (or vice versa). Instead, you dele-
gate the business of balancing demand and supply to Knative. Because sometimes you
will want to understand what the heck it’s doing, I’ll spend some time delving into the
surprisingly difficult world of autoscaling in chapter 5.

Eventing

Eventing is the second, less well-known part of Knative. It provides ways to express
connections between different pieces of software through events. In practical terms,
“this is my software” is simpler to describe than “here is how all my software connects
together.” Eventing consequently has a larger surface area, with more document types,
than does Serving.

Earlier in the chapter, you learned that in the middle of the Eventing world is
where Triggers and Brokers live. The Trigger exists to map from an event filter to a
target. The Broker exists to manage the flow of events based on Triggers.

But that’s just the headline description. It’s light on detail. For example, how
does a CloudEvent actually get into the Broker? It turns out, there are multiple pos-
sibilities. The most powerful and idiomatic of these is a Source. This represents con-
figuration information about some kind of emitter of events and a Broker to which
these should be sent. A Source can be more or less anything: GitHub webhooks,
direct HTTP requests, you name it. So long as it emits CloudEvents to a Broker, it
can be a Source.

Great! You are probably already composing event-processing graphs in your head,
and it won’t be long before you get tired of writing Trigger upon Trigger. It would be
handy if you had a simple way to do things in order. This is what Sequences can
express for you—that A runs before B. Or, maybe, you want to do more than one
thing at a time. That’s what Parallel does, allowing you to express that A and B can run
independently.

Analogous to how Serving provides the convenience of Service, Sequence and Par-
allel are constructed from the same concepts that you can use directly. They’re a con-
venience, not a constraint. They’ll enable you to assemble event flows with much less
YAML than handwiring equivalent Triggers would.

Serving and Eventing

By design, you don’t need Serving to use Eventing, and you don’t need Eventing to
use Serving. But these do mesh pretty well together. For example, if you have long
processing pipelines, it’s nice if idle instances don’t sit around burning money waiting
on upstream work to finish. Or, if there’s a bottleneck, it’s helpful if that part of the
pipeline is scaled up. That’s Eventing gaining a superpower from Serving.

And it works the other way. Serving’s focus is on request/reply designs—the sim-
ple, robust, but sometimes slow-blocking approach. By itself, this favors adding func-
tionality to existing Services instead of creating new ones. Blocking is still blocking,

16

1.7

CHAPTER 1 Introduction

but blocking on threads is faster than blocking on HTTP. You can easily drift back
from microservices to monoliths in costume.

Eventing relieves some of that design pressure. You can now offload a lot of work
that doesn’t need to block, or that should react to events instead of following com-
mands. Encouraging smaller units of logic and behavior allows Serving to really shine:
autoscaling the GigantoServ™ is better than nothing. But it’s wasteful to burn 100 GB
of RAM on a system with 300 endpoints when only 2 of those are seeing any kind of
traffic surge.

= somnear
e ot | e || s

MY AWESOME Homepage Hit
HOMEPAGE server counter

[0]o]o[1]3]3[6]

Image
renderer

_ Serving Eventing

Figure 1.11 Serving runs the Services; Eventing wires those together.

In the hit counter system previously mentioned, I put both Serving and Eventing to
work. Serving handles the business of the home page, hit counter, and image ren-
derer. Eventing handles the Broker so that Services will receive and emit events with-
out direct coordination. In this book, I'll describe these individually so that I can go
into some depth. But these are intended to work well together. Ultimately, I want you
to be able to do that.

Keeping things under control

And now a digression into software philosophy. “Knative” is a clever name. First, every-
one gets to practice pronouncing it a few times (“KAY-nay-tiv”). From personal expe-
rience, I know that if folks are struggling to pronounce your name, they will really
concentrate on it.

Keeping things under control 17

Second, it encompasses some of the design vision. Knative is native to Kubernetes
both in spirit and implementation. In a kind of judo throw, it uses the extensibility of
Kubernetes to conceal the complexity of Kubernetes. But every throw needs a little
leverage to make it work. To give you that leverage, I need to step back a bit from Kna-
tive and give you a basic level of familiarity with a core organizing concept in Kuberne-
tes and Knative: the feedback control loop.

171 Loops

As a profession, we use terms like feedback loop pretty loosely. Strictly speaking, feed-
back loops are any circular causality that amplifies or dampens itself. (I use the word
“strictly” informally.)

For example, compound interest is a feedback loop. No humans are involved, just
computers multiplying numbers. But the amount of interest paid is a function of the
accumulated principal, which is itself a function of previous interest paid. After each
period, the effect is amplified. Each payment feeds back into the system.

Or consider an avalanche after heavy snow. A small amount of snow slips further
down, making the next spot down slightly heavier. More snow slips further down, mak-
ing the next spot even heavier again. Within seconds, what starts as a few grams of
attractive light fluff transforms into thousands of tons of mindless destruction.

The nature of pure feedback loops is that these require no intelligence or logic.
These can be composed of pure causality. This is why both compound interest and an
avalanche are of the same species. Whether the structure of the system was set by
humans or by nature is unimportant to how it will behave.

We often assume that intelligence is involved in feedback loops, because pure circu-
lar causality is rarely apprehended and understood: purely damping loops disappear
and purely amplifying loops fly apart. At a human level, the universe appears to be
composed of linear causality, but beneath most of it lies a seething world of loops,
shoving and pushing each other around an equilibrium.

Because purely causal circularity is rarely apprehended, we attribute intelligence
to those things that we do observe. In our experience, humans are necessary to create
a special case: control loops."!

Control loops are a special case because these add a controller to the loop. A con-
troller observes the actual world, compares it to some reference of the desired world,
then acts upon the actual world to make it look more like the desired world. This sim-
ple description disguises centuries of work and generations of engineering students
being unceremoniously doused with calculus. But, at its heart, the idea of control
loops is simple—make what we have look more like what we want.

I Attributing intelligence to causality is human. Lightning isn’t due to angry super-beings, but if you've ever
been near a lightning strike, you can understand why “static electricity” wasn’t the first thing people thought
of to explain such a phenomenon.

18 CHAPTER 1 Introduction

The desired world

A

Specification of
the desired world

Status of
the actual world

The actual world
l n \ Figure 1.12 The basic structure

of a control loop

Controller

Actions

Controllers vs. controllers

“Controller” in this context is not referring to the Model-View-Controller (MVC) pattern
you might recognize from software frameworks. Trygve Reenskaug is typically credited
with inventing the MVC pattern, initially using the name “Editor.” In a different uni-
verse, we’d be talking about the “MVE” pattern. The name MVC came about because:
“After long discussions, particularly with Adele Goldberg, we ended with the terms
Model-View-Controller.”

The Controller, or Editor, was meant to “... bridge the gap between the human user’s
mental model and the digital model that exists in the computer. The ideal MVC solu-
tion supports the user illusion of seeing and manipulating the domain information
directly.”

This is not what Kubernetes, and by extension Knative, mean by “controller.” Instead,
the meaning is taken by analogy from control theory, which deals with how dynamic
systems can be made to behave more predictably and reliably. It's widely applied by
engineers in fields like electrical and electronic systems, aerodynamics, chemical
plant design, manufacturing systems, mining, refineries, and many others. You will
avoid confusion by pretending you’ve never heard of MVC.

The key is that the loop runs repeatedly. The controller is regularly taking in informa-
tion about the desired and actual worlds, comparing these, then deciding whether to
take action in the actual world (figure 1.13). The repeated observations of the world
are “fed back” to the controller, which is why this is a feedback controller.'?

2 When you design systems without the loop, the controller is using “feed forward.” The designer usually takes
advantage of some property of the controlled system to make feedback unnecessary. For example, you don’t
see many feedback controllers governing the position of concrete slabs because these typically stay put on
their own. Feed forward control is a useful, legitimate design technique for many kinds of systems. For highly
dynamic systems like software, though, feedback control is well suited to maintaining some amount of stability
and reliability.

172

Keeping things under control 19

ﬁ Calculate difference between Decide actions
desired world and actual world based on difference
Desired | f-----------=-------—-—-—-—--4 oo — -

Actions
Difference(ln\ l n\) Difference Create(, \)
h = m Create(, (\)
o

Actual

Figure 1.13 The internal structure of a controller

From my description so far, it’s easy to form the impression that control loops are all
about counteracting unwanted changes in the actual world; that the desired world is
immutable, fixed, so that bursts of activity are only signalled by the controller when
the actual world shifts out of alignment with the desired world.

This isn’t really true. The controller does not “see” a change in the actual world, in
contrast to an immutable desired world. What it sees is a difference between one input
and another input.'”® On each pass around the loop, the controller sees the two inputs
afresh, as if for the first time."* It doesn’t need to know that the actual world changed
since “last time.” It doesn’t know that the desired world changed since “last time.” It
doesn’t care. It just knows that these aren’t the same.

This leads to a simple conclusion: the controller can act due to changes in either of
the actual world or the desired world because it’s reacting to the emergence of the dif-
ference, not to the worlds per se. Something or someone outside the control loop can
change the desired world in order to prompt activity.

Loops within loops

Who changes the desired world? Most of us assume that a human does it at first. Some-
thing like: push some YAML to update the desired world, knock off, and go home early.

This works, but it has at least one problem. The actual world is complex. Often,
obnoxiously so. As a profession, we’ve tackled this complexity using abstraction (name
things to banish their complexity) and composition (combine things to amplify their
power). If I could not use abstraction and composition, if I had to define every detail

13 That difference isn’t commutative, so the order of inputs still matters. What comes through the “desired” door
needs to be the desired state, and what comes through the “actual” door needs to be the actual state.

!4 This is not universally true of controllers in control theory. These can have many kinds of “memory” to carry
information forward in time. In the most common approach to control theory, what I am describing is a
purely proportional controller. Adding some averaging over previous states would add integral control.
Adjusting the forcefulness of actions based on how quickly the two worlds are diverging would add derivative
control.

20

CHAPTER 1 Introduction

for every part of my world, then I would (1) send a lot of worlds over the wire, and (2)
need a very complex controller indeed—about as complex as the world itself.!®

In the industrial world, this is dealt with by Aierarchical control. That is, the desired
world of one controller is modified by the actions of a supervising controller. For
example, an industrial kiln will have controllers for managing individual gas burners
to ensure that these burn the right amount of flammable gas. What’s the right
amount? That’s decided by a supervising controller that’s interested in controlling the
temperature of the kiln. Instead of a controller that runs all the way from “maintain
the right temperature” to “set the right gas flow for hundreds of burners,” we have two
feedback control loops that are nested (figure 1.14).

Kiln operator

Desired
kiln temperature

— Kiln temperature

—- controller —
Increase / decrease
desired rate of burn

Actual |—> Gas flow

kiln temperature

controller
Actual Increase / decrease
rate of burn gas flow
Kiln
Gas burners

Figure 1.14 A hierarchical kiln controller

This should be recognizable as architectural layering according to the Single Respon-
sibility Principle. Temperature control is a different concern from gas flow control.
And so it is with software systems: the business of shipping photons over fiber-optic

15 Ross Ashby, an early cyberneticist, called this the “Law of Requisite Variety”: any perfect controller of a system
must be as complex as the system. Of course, “perfect” is impossible in practice, and in fact, we don’t need it

(do you really think the kiln controller should include a weather forecaster and an ability to tell if the site

foreperson is angry today?). The tactic of breaking control problems into hierarchies makes each level much
more tractable to solve to a satisfactory standard.

Keeping things under control 21

cable is distinct from the business of forming frames, which is different from sending
packets, that don’t at all resemble a GET request. Developing optical control algorithms
is not a precondition for using JavaScript. Some might think that’s a pity, but that’s
besides my point.

Ultimately, this hierarchy of feedback control loops reaches up to you. You have a
desired world of “software that achieves such-and-such purpose.” Your desired world
changes, creating a cascade of other worlds that change. Soon a deployment is setting
new targets for lower-level controllers to react to. Most of the time, we are focused
solely on the actions we are taking, but we (hopefully) don’t act like pure noise. We
are purposeful.

Kubernetes explicitly models its architecture on feedback control loops and pro-
vides infrastructure to enable the easy development of a variety of controllers for dif-
ferent purposes. Kubernetes then uses hierarchical control to layer responsibilities:
Pods can be supervised by ReplicaSets that are supervised by Deployments.

Knative Serving builds on this infrastructure and adopts its norms (figure 1.15). It
presents the surface interface of Services, Configurations, Revisions, and Routes.
These are handled by first-level controllers, which break these into targets for other
controllers, and so on, until code lands on a VM you don’t care about and runs code

Configuration

Revision

Deployment

< ReplicaSet

P

Pod

\

Figure 1.15 Some of the hierarchy of Knative and Kubernetes controllers involved in running a
Service

22

18

CHAPTER 1 Introduction

that you care about very much. Your role is to be the highestlevel controller in the
hierarchy. Knative is meant to see to the rest.

Are you ready?

Before we dive in, let me tell you my assumptions about you. The first is that you’ve
done some programming and can get the gist of code examples in Go. The second is
that you are comfortable with installing and using CLI tools. Basically, I'm assuming
that you're in Knative’s primary audience: developers.

I don’t assume that you know anything about Kubernetes or service meshes. I
don’t assume that you have used a serverless platform before. When I need to intro-
duce necessary information I will, but my goal throughout is that Knative should live
up to its vision of enabling you to ignore Kubernetes altogether.

In the next chapter, I will need you to have set up some tools. Most importantly,
I'm guessing that you’ve installed Knative or someone is providing it for you. I'm also
assuming that you’ve installed the kn tool, which I will focus on throughout. See
appendix A for an installation guide for Knative and kn.

If you want to run the samples, you’ll need to have installed Go. Take a moment to
set up YAML support in your favorite editor. Some editor YAML extensions also
include specialized Kubernetes support, which is nice to have but not essential.

Most of all, I just want you to have fun. Grab a drink of your choice and let’s begin.

Summary

Knative makes it easier to deploy, update, autoscale, and compose event-driven
software.

Knative has two major components: Serving and Eventing. Serving focuses on
running software, scaling, and routing. Eventing focuses on event flows.

The world is filled with feedback loops. Some of these are controlled.

A controller compares a desired world and an actual world, then decides what is
necessary to make the actual world resemble the desired world. This process
occurs repeatedly, creating a feedback control loop.

Controllers can be nested, arranged into hierarchies. Higher controllers adjust
the desired world of lower controllers.

Control loops are a core architectural principle of Knative.

References

Jez Humble and David Farley, Continuous Delivery: Reliable Software Releases Through
Build, Test, and Deployment Automation (Pearson Education, 2010)

James Governor, “Towards Progressive Delivery,” James Governor’s Monkchips,
August 6, 2018, http://mng.bz/j4Px

Onsi Fakhouri, Keynote speech at CF Summit 2016, http://mng.bz/Wdz0

http://mng.bz/j4Px
http://mng.bz/Wdz0

References 23

Wallace J. Hopp and Mark L. Spearman, Factory Physics, 3rd ed., (Waveland Press,
2011), page 309

Martin Fowler, “StranglerFigApplication,” (MartinFowler.com, June 29, 2004),
http://mng.bz/8NrP

Trygve Reenskaug, “MVC Xerox Parc 1978-79,” http://mng.bz/E2Q)]

http://mng.bz/8NrP
http://mng.bz/E2QJ

Introducing
Knatwe Serving

This chapter covers

Deploying a new Service with Knative Serving
Updating the Service with Revisions
Splitting traffic between Revisions

The major components of Serving and what
they do

Serving is where I'm going to start you off in Knative, and the coming chapters will
take you into a deeper dive on the major concepts and mechanisms. To begin with,
I’ll spend this chapter getting you warmed up in two ways.

First, I'm going to actually use Knative. You’ll notice that I ducked and weaved
around this in chapter 1. I did walk you through an example and that example was
realistic. But it was also intended to whet your appetite for the whole book, and so
necessarily, it needed to touch on a lot of points. A hypothetical example with dia-
grams and narrative is a quick way to do so.

But now, I'm going to put your fingers on a keyboard. We will use the kn CLI
tool to deploy some software, change its settings, change its software, and finally,
configure traffic. Iwon’t be doing any YAMLeering. We’ll be trying a purely interac-
tive approach to Knative.

24

A walkthrough 25

In the second part of the chapter, I will take a whistlestop tour of Serving’s key soft-
ware components. I'm doing this now because I would like to introduce these in one
easy-to-find place. The following chapters are all structured around the concepts that
Knative exposes to developers. I could introduce components as I go, but it would
mean that you might need to hunt through the book to find component information.

This too will tie back to chapter 1. There I introduced you to the basic concept of
control loops. In this chapter, I will get to apply that basic concept to explain the high-
level architecture of Serving, which is one based on hierarchical control loops.

By the end of the chapter, my goal is that (1) you will be able to start poking
around kn with your own example apps, and (2) you will have a nodding acquaintance
with Knative Serving’s runtime components. These will set up our progress into the
following chapters, where we’ll go into greater depth on concepts like Configurations,
Routes, and the Knative Pod Autoscaler.

2.1 A walkthrough

In this section, I’ll use kn exclusively to demonstrate some Knative Serving capabili-
ties. I assume you’ve installed it, following the directions in appendix A.

kn is the “official” CLI for Knative, but it wasn’t the first. Before it came along there
were a number of alternatives, such as knctl. These tools helped to explore different
approaches to a CLI experience for Knative.

kn serves two purposes. The first is a CLI in itself, specifically intended for Knative
rather than requiring users to anxiously skitter around kubectl, pretending that
Kubernetes isn’t right there. The secondary purpose is to drive out Golang APIs for
Knative, which can be used by other tools to interact with Knative from within Go
programs.

2.1.1 Your first deployment

Let’s first use kn service list to ensure you're in a clean state. You should see No
Services Found as the response. Now we can create a Service using kn service create.
The listing shows the basics of how to use kn to create Services.

Listing 2.1 Using kn to create our first Service

Names the service References the container image.
In this case, we use a sample

> k: i te hello- 1 . . .
$ kn service create hello-example \ app image provided by Knative.

--image gcr.io/knative-samples/helloworld-go \

o —"F1 " H
env TARGET="First Injects an

environment
variable that’s

consumed by
0.084s The Route is still working to reflect the latest desired the sample app

specification.
0.260s Configuration "hello-example" is waiting for a Revision to
become ready.

—>
Creating service 'hello-example' in namespace 'default':

Monitors the deployment process and emits logs

26

212

CHAPTER 2 Introducing Knative Serving

4.356s
4.762s Ingress has not yet been reconciled.
6.104s Ready to serve.

Service 'hello-example' created with latest revision 'hello-example-pjyvr-1'

"> and URL: http://hello-example.example.com
Returns the URL for the

newly deployed software

The logs emitted by kn refer to concepts I discussed in chapter 1. The Service you pro-
vide is split into a Configuration and a Route. The Configuration creates a Revision.
The Revision needs to be ready before the Route can attach Ingress to it, and Ingress
needs to be ready before traffic can be served at the URL.

This dance illustrates how hierarchical control breaks your high-level intentions
into particular software to be configured and run. At the end of the process, Knative
has launched the container you nominated and configured, routing it so that it’s lis-
tening at the given URL.

What’s at the URL we were given in listing 1.2? Let’s see what the following listing
shows.

Listing 2.2 The first hello

$ curl http://hello-example.example.com
Hello First!

Very cheerful.

Your second deployment

Mind you, perhaps you don’t like First. Maybe you like Second better. Easily fixed, as
the following listing shows.

Listing 2.3 Updating hello-example

$ kn service update hello-example \
--env TARGET=Second

Updating Service 'hello-example' in namespace 'default':
3.418s Traffic is not yet migrated to the latest revision.
3.466s Ingress has not yet been reconciled.

4.823s Ready to serve.

Service 'hello-example' updated with latest revision 'hello-example-bgbbr-2'
"> and URL: http://hello-example.example.com

$ curl http://hello-example.example.com
Hello Second!

What happened is that I changed the TARGET environment variable that the example
application interpolates into a simple template. The next listing shows this.

213

A walkthrough 27

Listing 2.4 How a hello sausage gets made

func handler (w http.ResponseWriter, r *http.Request) ({
target := os.Getenv ("TARGET")
fmt.Fprintf (w, "Hello %s!\n", target)

}

You may have noticed that the revision name changed. First was hello-example-
pjyvr-1, and Second was hello-example-bgbbr-2. Yours will look slightly different
because part of the name is randomly generated: hello-example comes from the
name of the Service, and the 1 and 2 suffixes indicate the generation of the Service
(more on that in a second). But the bit in the middle is randomized to prevent acci-
dental name collisions.

Did Second replace First? The answer is—it depends who you ask. If you're an
end user sending HTTP requests to the URL, yes, it appears as though a total replace-
ment took place. But from the point of view of a developer, both Revisions still exist, as
shown in the following listing.

Listing 2.5 Both revisions still exist

$ kn revision list

NAME SERVICE GENERATION AGE CONDITIONS READY
hello-example-bgbbr-2 hello-example 2 2m3s 4 OK / 4 True
hello-example-pjyvr-1 hello-example 1 3ml5s 3 OK / 4 True

I can look more closely at each of these with kn revision describe. The following list-
ing shows this.

Listing 2.6 Looking at the first revision

$ kn revision describe hello-example-pjyvr-1

Name : hello-example-pjyvr-1
Namespace: default
Age: 5m15s
Image: gcr.io/knative-samples/helloworld-go (pinned to 5ea96b)
Env: TARGET=First
Service: hello-example
Conditions:

OK TYPE AGE REASON

++ Ready 3h

++ ContainerHealthy 3h

++ ResourcesAvailable 3h

I Active 3h NoTraffic

Conditions

It’s worth taking a slightly closer look at the Conditions table (listing 2.6). Software
can be in any number of states, and it can be useful to know what these are. A smoke
test or external monitoring service can detect that you have a problem, but it may not

28 CHAPTER 2 Introducing Knative Serving

be able to tell you why you have a problem. What this table gives you is four pieces of
information:
= OK gives the quick summary about whether the news is good or bad. The ++ signals that
everything is fine. The I signals an informational condition. It’s not bad, but it’s
not as unambiguously positive as ++. If things were going badly, you’d see ! !. If
things are bad but not, like, bad bad, kn signals a warning condition with W. And
if Knative just doesn’t know what’s happening, you’ll see ??.
= TYPE is the unique condition being described. In this table, we can see four types
reported. The Ready condition, for example, surfaces the result of an underly-
ing Kubernetes readiness probe. Of greater interest to us is the Active condi-
tion, which tells us whether there is an instance of the Revision running.
= AGE reports on when this condition was last observed to have changed. In the example,
these are all three hours, but they don’t have to be.
= REASON allows a condition to provide a clue as to deeper causes. For example, our
Active condition shows NoTraffic as its reason.

So this line

I Active 3h NoTraffic

Can be read as

“As of 3 hours ago, the Active condition has an Informational status due to NoTraffic.”
Suppose we get this line:

!'l Ready 1h AliensAttackedTooSoon

We could read it as

“As of an hour ago, the Ready condition became not OK because the AliensAttacked-
TooSoon.”
2.1.4 What does Active mean?

When the Active condition gives NoTraffic as a reason, that means there are no
active instances of the Revision running. Suppose we poke it with curl as in the follow-
ing listing.

Listing 2.7 Poking with curl

$ kn revision describe hello-example-bgbbr-2

Name : hello-example-bgbbr-2

Namespace: default

Age: 7d

Image: gcr.io/knative-samples/helloworld-go (pinned to 5ea96b)
Env: TARGET=Second

Service: hello-example

215

A walkthrough 29

Conditions:
OK TYPE AGE REASON
++ Ready 4h
++ ContainerHealthy 4h
++ ResourcesAvailable 4h
I Active 4h NoTraffic

$ curl http://hello-example.example.com
... a pause while the container launches
Hello Second!

$ kn revision describe hello-example-bgbbr-2

Name : hello-example-bgbbr-2
Namespace: default
Age: 7d
Image: gcr.io/knative-samples/helloworld-go (pinned to 5ea96b)
Env: TARGET=Second
Service: hello-example
Conditions:
OK TYPE AGE REASON
++ Ready 4h
++ ContainerHealthy 4h
++ ResourcesAvailable 4h
++ Active 2s

Note that we now see ++ Active without the NoTraffic reason. Knative is saying that a
running process was created and is active. If you leave it for a minute, the process will
shut down again and the Active Condition will return to complaining about a lack
of traffic.

Changing the image

The Go programming language, aka Golang to its friends and “erhrhfjahaahh” to its
enemies, is the Old Hotness. The New Hotness is Rust, which I have so far been able
to evade forming an opinion about. All I know is that it’s the New Hotness and that,
therefore, as a responsible engineer, I know that it is “Better.”

This means that helloworld-go no longer excites me. I would like to use
helloworld-rust, instead. The following listing shows how this is easily done.

Listing 2.8 Updating the container image

$ kn service update hello-example \
--image gcr.io/knative-samples/helloworld-rust
Updating Service 'hello-example' in namespace 'default':

49.523s Traffic is not yet migrated to the latest revision.
49.648s Ingress has not yet been reconciled.
49.725s Ready to serve.

Service 'hello-example' updated with latest revision 'hello-example-nfwgx-3'
and URL: http://hello-example.example.com

30

2.1.6

CHAPTER 2 Introducing Knative Serving

And then I poke it (as in the next listing).

Listing 2.9 The New Hotness says Hello

curl http://hello-example.example.com
Hello world: Second

Note that the message is slightly different: “Hello world: Second” instead of “Hello
Second!” Not being deeply familiar with Rust, I can only suppose that it forbids exces-
sive informality when greeting people it has never met. But it does at least prove that I
didn’t cheat and just change the TARGET environment variable.

There’s an important point to remember here: changing the environment variable
caused the second Revision to come into being. Changing the image caused a third
Revision to be created. But because I didn’t change the variable, the third Revision
also says “Hello world: Second.” In fact, almost any update I make to a Service causes a
new Revision to be stamped out.

Almost any? What’s the exception? It’s Routes. Updating these as part of a Service
won’t create a new Revision.

Splitting traffic

I’'m going to prove that Route updates don’t create new Revisions by splitting traffic
evenly between the last two Revisions. The next listing shows this split.

Listing 2.10 Splitting traffic 50/50

$ kn service update hello-example \
--traffic hello-example-bgbbr-2=50 \
--traffic hello-example-nfwgx-3=50

Updating Service 'hello-example' in namespace 'default':

0.057s The Route is still working to reflect the latest
"> desired specification.

0.072s Ingress has not yet been reconciled.

1.476s Ready to serve.

Service 'hello-example' updated with latest revision 'hello-example-nfwgx-3'
- (unchanged) and URL: http://hello-example.example.com

The --traffic parameter shown in listing 2.10 allows us to assign percentages to each
Revision. The key is that the percentages must all add up to 100. If I give 50 and 60,
I'm told that “given traffic percents sum to 110, want 100.” Likewise, if I try to cut
some corners by giving 50 and 40, I get “given traffic percents sum to 90, want 100.”
It’s my responsibility to ensure that the numbers add up correctly.

Does it work? Let’s see what the following listing does.

A walkthrough 31

Listing 2.11 Totally not a perfect made-up sequence of events

$ curl http://hello-example.example.com
Hello Second!

$ curl http://hello-example.example.com
Hello world: Second

It works! Half your traffic will now be allocated to each Revision.

50/50 is just one split; you can split the traffic however you please. Suppose you
had Revisions called un, deux, trois, and quatre. You might split it evenly, as the next
listing shows.

Listing 2.12 Even four-way split

$ kn service update french-flashbacks-example \
--traffic un=25 \
--traffic deux=25 \
--traffic trois=25 \
--traffic quatre=25

Or, you can split it so that quatre is getting a tiny sliver to prove itself, while the bulk
of the work lands on trois. Let’s look at the next listing to see this.

Listing 2.13 Production and next versions

$ kn service update french-flashbacks-example \
--traffic un=0 \
--traffic deux=0 \
--traffic trois=98 \
--traffic quatre=2

You don’t explicitly need to set traffic to 0%. You can achieve the same by leaving out
Revisions from the list as shown in this listing.

Listing 2.14 Implicit zero traffic level

$ kn service update french-flashbacks-example \
--traffic trois=98 \
--traffic quatre=2

Finally, if I am satisfied that quatre is ready, I can switch over all the traffic using
@latest as my target. The following listing shows this switch.

Listing 2.15 Targeting @latest

$ kn service update french-flashbacks-example \
--traffic @latest=100

32

2.2

221

CHAPTER 2 Introducing Knative Serving

Serving components

As promised, I'm going to spend some time looking at some Knative Serving internals.
In chapter 1, I explained that Knative and Kubernetes are built on the concept of con-
trol loops. A control loop involves a mechanism for comparing a desired world and an
actual world, then taking action to close the gap between these.

But that’s the boxes-and-lines explanation. The concept of a control loop needs to
be embodied as actual software processes. Knative Serving has several of these, falling
broadly into four groups:

Reconcilers—Act on both user-facing concepts like Services, Revisions, Configu-
rations, and Routes, as well as lower-level housekeeping

The Webhook—Validates and enriches the Services, Configurations, and Routes
that users provide

Networking controllers—Configure TLS certificates and HTTP Ingress routing
The Autoscaler/Activator/Queue-Proxy triad—Manages the business of comprehend-
ing and reacting to changes on traffic

The controller and reconcilers

Let’s talk about names for a second. Knative has a component named controller,
which is really a bundle of individual “reconcilers.” Reconcilers are controllers in the
sense that I discussed in chapter 1: a system that reacts to changes in the difference
between desired and actual worlds. So reconcilers are controllers, but the controller
isn’t really a controller. Got it?

No? You're wondering why the names are different? The simplest answer is: to
avoid confusion about what’s what. That may sound silly. Bear with me, I promise it
will make sense soon.

At the top, in terms of actual running processes managed directly by Kubernetes,
Knative Serving only has one controller. But in terms of logical processes, Knative
Serving has several controllers running in Goroutines inside the single physical con-
troller process (figure 2.1). Moreover, the Reconciler is a Golang interface that
implementations of the controller pattern are expected to implement.

So that we don’t wind up saying “the controller controller” and “the controllers
that run on the controller” or other less-than-illuminating naming schemes, there are
instead two names: controller and reconciler.

Each reconciler is responsible for some aspect of Knative Serving’s work, which
falls into two categories. The first category is simple to understand—it’s the reconcil-
ers responsible for managing the developer-facing resources. Hence, there are recon-
cilers called configuration, revision, route, and service.

For example, when you use kn service create, the first port of call will be for a
Service record to be picked up by the service controller. When you used kn service
update to create a traffic split, you actually get the route controller to do some work
for you. I'll touch on some of these controllers in coming chapters.

222

Serving components 33

Serving controller

service serverlessservice

Reconciler Reconciler

route labeler

Reconciler Reconciler

configuration gc

Reconciler Reconciler
revision

Reconciler Figure 2.1 The Serving controller

and its reconcilers

Reconcilers in the second category work behind the scenes to carry out essential
lower-level tasks. These are labeler, serverlessservice, and gc. The labeler is part
of how networking works; it essentially sets and maintains labels on Kubernetes
objects that networking systems can use to target those for traffic.

The serverlessservice (that is the name) reconciler is part of how the Activator
works. It reacts to and updates serverlessservice records (say that 5 times fast!). These
are also mostly about networking in Kubernetes-land.

Lastly, the gc reconciler performs garbage-collection duties. Hopefully, you will
never need to think about it again.

The Webhook

Things go wrong. A great deal of software engineering is centered on ensuring that
when things do go wrong, they at least choose to go wrong at the least painful and/or
least Tweetable moment. Type systems, static analysis, unit test harnesses, linters, fuzz-
ers, the list goes on and on. We submit to their nagging because solving the mysteries
of fatal errors in production is less fun than Agatha Christie made it out to be.

At runtime, Serving relies on the completeness and validity of information pro-
vided about things you want to manage (e.g., Services) and how you want Serving to
behave generally (e.g., Autoscaler configurations). This brings us to the Webhook,
which validates and augments your submissions. Like the controller, it’s actually a
group of logical processes that are collected together into a single physical process for
ease of deployment.

The name “Webhook” is a little deceptive because it’s describing the implementa-
tion rather than its actual purpose. If you're familiar with webhooks, you might have
thought that its purpose was to dial out to an endpoint that you provide. Not so. Or
perhaps it was an endpoint that you could ping yourself. Closer, but still incorrect.
Instead, the name comes from its role as a Kubernetes “admissions webhook.” When
processing API submissions, the Knative Webhook is registered as the delegated
authority to inspect and modify Knative Serving resources. A better name might be

34

223

CHAPTER 2 Introducing Knative Serving

“Validation and Annotation Clearing House” or perhaps the “Ditch-It or Fix-It Empo-
rium.” But “Webhook” is what we have.
The Webhook’s principal roles include

Setting default configurations, including values for timeouts, concurrency lim-
its, container resources limits, and garbage collection timing. This means that
you only need to set values you want to override. I’ll touch on these as needed.

Injecting routing and networking information into Kubernetes.

Validating that users didn’t ask for impossible configurations. For example, the
Webhook will reject negative concurrency limits. I'll refer to these when needed.

Resolving partial container image references to include the digest. For exam-
ple, example/example:latest would be resolved to include the digest, so it
looks like example/example@sha256:1a4bccf2... I'm going to revisit this topic a
few times, but generally, this is one of the best things Knative can do for you,
and the Webhook deserves the credit for it.

Networking controllers

Early versions of Knative relied directly on Istio, the widely known service mesh founded
by Google, Lyft, and IBM for core networking capabilities. That hasn’t entirely changed.
In the default installation provided by the Knative project, Istio is installed as a com-
ponent and Knative will make use of some of its capabilities.

However, as it has evolved, more of Knative’s networking logic has been abstracted
up from Istio. Doing so allows some swappability of components. Istio might make
sense for your case, but it’s featuresome and might be overkill. On the other hand,
you might have Istio provided as part of your standard Kubernetes environment. Kna-
tive extends to either approach.

Knative Serving requires that networking controllers answer for two basic record
types: Certificate and Ingress.

CERTIFICATES

TLS is essential to the safety and performance of the modern internet, but the busi-
ness of storing and shipping TLS certificates has always been inconvenient. The Kna-
tive certificate abstraction provides information about the TLS certificate that is
desired, without providing it directly.

For example, TLS certificates are scoped to particular domain names or IP addresses.
When creating a certificate, a list of DNSNames is used to indicate what domains the
certificate should be valid for. A conforming controller can then create or obtain cer-
tificates that fulfill that need.

I don’t go into TLS certificate material in this book, largely because it depends so
completely on how your Knative installation is configured and what helper systems are
installed. Most of the developer experience in this department is being picked up by
each vendor’s packaging of Knative.

224

Serving components 35

INGRESS

Routing traffic is always one of those turtles-all-the-way-down affairs. Something, some-

where, is meeting traffic at the boundary of your system. In Knative, that’s the Ingress.'
Ingress controllers act as a single entrance to the entire Knative installation. These

convert Knative’s abstract specification into particular configurations for their own

routing infrastructure. For example, the default networking-istio controller will

convert a Knative Ingress into an Istio gateway.

Autoscaler, Activator, and Queue-Proxy

Because these components work together quite closely, I've grouped all three under
the same heading (figure 2.2).

Pokes

Autoscaler

Adds/removes
Ingress

Positive

Metri
eirnes handoff

Queue-Proxy

Figure 2.2 The triad of Autoscaler,
Activator, and Queue-Proxy

The Autoscaler is the easiest to give an elevator pitch for: observe demand for a Ser-
vice, calculate the number of instances needed to serve that demand, then update the
Service’s scale to reflect the calculation (figure 2.3). You’ve probably recognized that
this is a supervisory control loop. Its desired world is “minimal mismatch between
demand and instances.” Its output is a scale number that becomes the desired world
of a Service control loop.

It’s worth noting that the Knative Pod Autoscaler operates solely through horizontal
scaling: it launches more copies of your software when demand rises. Vertical scaling
means launching it with additional computing resources. In general, vertical scaling is

! This is distinct from a Kubernetes Ingress.

36

CHAPTER 2 Introducing Knative Serving

Knative user

Desired ratio of
traffic : instances

Knative Pod
Autoscaler

Actual ratio of Increase/decrease
traffic : instances instances

< g

Knative serving

Figure 2.3 The Knative Pod
Autoscaler is a control loop.

simpler—you just pay more for a beefier machine. But the costs are highly nonlinear,
and there is always an upper limit to what can be achieved. Horizontal scaling typically
requires deliberate architectural decisions to make it possible, but once achieved will
be more able to face higher demands than any one machine can handle. The Knative
Pod Autoscaler assumes you’ve done the work to ensure that instances coming and
going at a rapid clip won’t be overly disruptive.

When there is no traffic, the desired number calculated by the Autoscaler is even-
tually set to zero. This is great, right until a new request shows up without anything
ready to serve it. We could plausibly bounce the request with an HTTP 503 Service
Unavailable status; perhaps even, in a fit of generosity, provide a Retry-After
header. The problem is that (1) humans hate this, and (2) vast amounts of upstream
software assumes that network requests are magical and perfect and can never fail.
They’ll either barf on their users or, more likely, ignore your Retry-After and just
hammer the endpoint into paste. Not to mention (3), which is that all of this will be
screencapped and mocked on Reddit.

So what to do when there are no instances running—the dreaded cold start? In
this case, the Activator is a traffic target of last resort. Ingress will be configured to
send traffic for routes with no active instances to the Activator.

Hence, in figure 2.4, we can see that

The Ingress receives a new request. It sends the request to its configured target,
which is the Activator.

The Activator places the new request into a buffer.

The Activator “pokes” the Autoscaler. The poke does two things: First, it carries
information about requests waiting in the buffer. Second, the arrival of a poke

Serving components 37

Knative

Pod Autoscaler |~~~ SCale up -~

(3}

Poke
! Poll
| /

o Activator f
1
— Ingress Buffer '
1
1

TQ Response — Figure 2.4 The Activator’s

role in managing cold starts

signal prompts the Autoscaler to make an immediate scaling decision instead of
waiting until the next scheduled decision time.

After considering that there is a request waiting to be served but that there are
zero instances available to serve it, the Autoscaler decides that there ought to be
one instance running. It sets a new scale target for Serving.

While waiting for the Autoscaler and Serving to do their work, the Activator
polls Serving to see if any instances are live.

Serving’s actions cause Kubernetes to launch an instance.

The Activator learns from its polling that an instance is now available and
moves the request from its buffer to a simple proxy service.

The proxy component sends the request to the instance, which responds
normally.

The proxy component sends the response back to the Ingress, which then sends
it back to the requester.

Does this mean all traffic flows through the Activator? No. The Activator remains on
the data path during the transition from “no instances” to “enough instances.” Once
the Autoscaler is satisfied that there is enough capacity to meet current demand, it
updates the Ingress, changing the traffic target from the Activator to the actual run-
ning instances. At this point, that Activator no longer has any role in the proceedings.

The exact timing of this update depends mostly on how much traffic has piled up
and how long it takes to launch instances to serve it. Imagine that 10,000 requests
arrive and the Activator then sprayed these at the first instance foolish enough to stick
its head above the trenches. Instead, the Activator throttles its proxy until capacity
catches up with demand. Once requests are flowing smoothly, the Autoscaler’s own
logic removes the Activator from the data path.

The final component of this triad is the Queue-Proxy. This is a small proxy process
that sits between your actual software and arriving traffic. Every instance of your Ser-
vice will have its own Queue-Proxy running as a sidecar. Knative does this for a few

38

CHAPTER 2 Introducing Knative Serving

reasons. One is to provide a small buffer for requests, allowing the Activator to have a
clear signal that a request has been accepted for processing (this is called “positive
handoff”). Another purpose is to add tracing and metrics to requests flowing in and
out of the Service.

Summary

kn is a CLI tool for interacting with Knative, including Serving.

kn service lets you view, create, update, and configure Knative Services, includ-
ing splitting traffic between Revisions.

Knative Serving has a controller process, which is actually a collection of com-
ponents called “reconcilers.” Reconcilers act as feedback controllers.

There are reconcilers for Serving’s core record types (Service, Route, Configu-
ration, and Revision), as well as housekeeping reconcilers.

Knative Serving has a webhook process, which intercepts new and updated
records you submit. It can then validate your submissions and inject additional
information.

The Knative Pod Autoscaler is a feedback control loop. It compares the ratio of
traffic to instances and raises or lowers the desired number of instances that the
Serving controller controls.

The Activator is assigned routes for which no instances are available. This
assignment is made by the Autoscaler.

The Activator is responsible for “poking” the Autoscaler when new requests
arrive to trigger a scale-up.

While instances are becoming available, the Activator remains on the data path
as a throttling, buffering proxy for traffic.

When the Autoscaler believes there is enough capacity to serve demand, it
removes the Activator from the data path by updating Ingress routes.

Knative Serving’s networking is highly pluggable. Core implementations are
provided for two functions: Certificates and Ingress.

Certificate controllers accept a definition of desired certificates and must provi-
sion new certificates or map existing certificates into your software.

Ingress controllers accept Routes and convert these into lower-level routing or
traffic management configurations.

Ingress controller implementations include Istio-Gateway, Gloo, Ambassador,
and Kourier.

References
knctl—https://github.com/cppforlife /knctl

https://github.com/cppforlife/knctl

Configurations
and Revisions

This chapter covers

= A brief history of deployments
= The anatomy of Configurations
= The anatomy of Revisions

My focus in this chapter is to provide a guided tour of Serving’s dynamic duo, Con-
figuration and Revision. This separation into two concepts isn’t for the mere joy of
complexity. To explain the motivation, I’ll first give a fictionalized account of the
history of software deployment, starting somewhere in the late Triassic period up to
the current, slightly more advanced era of Thought Leadership.

After the history lesson, I’ll start with Configurations. These are the main way
you describe your software and your intentions to Knative Serving. The coverage of
Configurations is necessarily brief because Configurations mostly exist to stamp out
Revisions.

My discussion of Revisions will be substantially longer, as there is a lot of ground
to cover. We will be looking at containers, container images, commands and envi-
ronments, volumes, consumption limits, ports and probes, concurrency, and time-
outs. The style is narrative, but you can skip things you don’t care about right now
and refer to these later when you need to.

39

40

3.1

CHAPTER 3 Configurations and Revisions

Before we begin, I want you to review a key concept: Revisions are created when a
Configuration is created or changed. Revisions don’t have an independent existence.
In the table of contents for this chapter, you might have formed the sweet illusion that
I can deal entirely with Configurations in one place and entirely with Revisions in a
different place. That isn’t so. The knobs and dials I describe as being part of a Revi-
sion get there through a Configuration. This means that while writing about Revisions
with my left hand, my right hand is running commands that refer to Configurations. If
you get lost or confused, just reorient yourself to this landmark: Revisions are created
only when Configurations are changed or crealed.

Those who cannot remember the past are condemned

to redeploy it

Maybe you remember what you had for breakfast. Maybe you don’t. But if by lunch
your stomach feels ill and you go to a doctor, what you ate for breakfast comes into
question. Saying, “well I am not hungry now, so I guess I ate something, but I'm not
sure what it was” is unlikely to spark much diagnostic insight. (You will still receive a
bill, however.)

Left to its own devices, Kubernetes will make the world appear changeless and
timeless—a permanent steady state. When the desired and actual worlds become mis-
aligned, it takes action to reconcile the difference. Afterward, it doesn’t care that the
disturbance ever occurred. It doesn’t remember. The ripple of the disturbance has
faded, leaving the placid pond of production.! So when an outside observer wishes to
reconstruct history, they may be out of luck.

Like the doctor, we might, for various reasons, want to know what led us to the cur-
rent situation, whether for diagnosis or treatment. When you operate without history,
you’re pretty much swinging across the YOLO ravine on a frayed rope. Eventually, it
will snap, sending you hurtling down into the metaphorical crocodiles at the bottom
of the ravine (which I have trained to mock you).

This has led to a small cottage industry of mechanisms for capturing history from,
or injecting history into, Kubernetes. For example

Various fields, annotations, and metadata such as kubernetes.io/change-
cause provide limited historical or causal information directly on a particular
Kubernetes record.

The inbuilt Deployment mechanism provided by vanilla Kubernetes maintains
deployment .kubernetes.io/revision annotations on ReplicaSets that it con-
trols, which provides a partial history of the Deployment.

The Kubernetes auditing system can be configured to emit an extremely detailed
log of changes, allowing later reconstruction of history as seen by the Kubernetes
API server.

1

It can be argued that I am wrong, that there are many ways to get a sense of history: logs, Kubernetes events,

and so forth. But these can be ephemeral, and besides, alliteration is always alluring to awful authors.

3.2

The bedtime story version of the history of deployment as a concept 41

Tools and practices for GitOps, which rely on capturing submitted changes in a
Git repository before applying these to a Kubernetes cluster.

Specialized history/visualization tools like Salesforce’s Sloop.

And, of course, a teeming multitude of observability and/or monitoring tools
offered by a similarly teeming multitude of vendors.

Broadly, these mechanisms fill two related but distinct purposes:

What is the history of the cluster? How did it get to its current condition? None of the
previous solutions fully cover these questions. Either these focus on changes to
the desired world (Sloop, GitOps), or these produce data that can hint at changes
to the actual world (metrics and logs), or some incomplete mix (Kubernetes
Audit). But not both.

Can I go back in time, please? The current version of the software is “Wrong,” a
previous version was “Not As Wrong,” so we need to switch back to the previous
version. The need for time travel is projected across the entire hierarchy of con-
trol, from within a cluster way back into developer-land, because rolling back to
a previous version can take many forms: git revert, Spinnaker canary analysis,
GitOps, and many others.

Knative Serving wants a more general version of the time travel capability. It’s not
enough to select a version to run. Instead, Knative Serving wants to run one or multi-
ple versions concurrently. If I have versions 1, 2, and 3 of my software, I want to be
able to run some mix of 1, 2, and 3 (1 only, 1 and 2, 1 and 3 ...). And, I want to be able
to change the mix whenever I want.

Multiple versions? At once? Am I crazy? Perhaps, but to decide for yourself, I will
need to tell you a story.

The bedtime story version of the history of deployment
as a concept

Another way to look at the two desires for causality is this:

Something has gone wrong. Why?
We changed something and stuff broke. Let’s undo the change.

The latter is really what I want to focus on because it’s an ancient problem. For as long
as there have been production systems, there too have been mandates that it cannot
be allowed to stop running during business hours. An obvious logic then unfolded in
the early years:

Axiom 0—If it breaks, you're fired.

Axiom 1—The system sometimes breaks when it is changed.

Axiom 2—The changes that cause breakage were due to human error in the
change, or in how the change was applied, or in how the change interacted with
other changes.

Theorem 1— Therefore, don’t change anything.

42

3.2.1

CHAPTER 3 Configurations and Revisions

QED. High fives and slide rules for everyone! But wait, here comes the boss’s boss’s
boss...

Axiom 3—We need to be able to integrate with Grot-O-Matic 7.36 because our
customer will be delivering us records in the form of blurry Klingon hiero-
glyphs via FTP-over-pigeon-droppings every 24 hours. Oh, and if you don’t
make this change, you're fired.

Theorem 2—Ahem. Well. I guess we need to change something or we’re fired.
But if it breaks, we’re fired.

Theorem 3— Therefore, be careful, extremely careful, about changes and slather
everything that moves with documentation to prove that “It Wasn’t Me, Boss.”

Fewer high fives this time.

And so, for example, many firms had Change Approval Boards and required
would-be mutators to account for their sins in a uniform way. Then the Change Win-
dow would open every quarter, and if you were lucky, your change would make it
through before the window slammed shut again. And god help you if your change got
in, but you realized it was wrong.

Then, later, we developed tools to make this much less painful. For example, ver-
sion control systems. Version control has been around in various forms for ages, but
when Git and GitHub came along, these just became standard, the way many folks
work. At the same time, folks began to evolve the concepts of continuous integration
and continuous deployment. Here there arose three new possibilities: the Blue/Green
deployment, the Canary deployment, and the progressive deployment.

The Blue/Green deployment

You have a version of your software already running and serving traffic. Let’s call this
“Blue” (figure 3.1).

' . Figure 3.1 Blue

You now want to deploy a new version of your software. Let’s call it “Green.”

A first approach might be to stop Blue, then deploy Green. The time between
“Stop Blue” and “Start Green” is scheduled downtime (figure 3.2). That was roughly
the state of the world for Theorem 2.

The bedtime story version of the history of deployment as a concept 43

hadh
User

|

(&)

Downtime

?2??
i
1

Figure 3.2 Scheduled downtime blues

Scheduled downtimes are still downtimes. It would be nice if we didn’t have to stop
Blue first. And, thanks to the magic of load balancers and proxies and gateways and
routers, we don’t have to. What we do instead (figure 3.3) is

Start Green
Switch traffic from Blue to Green
Stop Blue

From here, some tools will tick-tock between Green and Blue as the running version.
They take turns. This approach is popular because all the software needs to do is to
look at a name or label of some kind to see what’s in production (“I see we’re running
Green right now”) and pick the other value (“So I will call the next version Blue
during this process”). The system managing Blue/Green deployment won’t need to
maintain state about what’s what.

Other systems prefer to keep the meanings stable. The running system is always
Blue, the next version is always Green. That works fine, so long as something will keep
some records.

Upgrades without taking a scheduled downtime is the basic motivation for
Blue/Green deployments. But there are other benefits. One is that we can now ensure

CHAPTER 3 Configurations and Revisions

o (] BB
User

|

i|

- 1
Requests
routed <

to Blue

Route &
0 switched -

K-

S
i
|
|
|
|
|
|
|
|
|
|
i
|
|
|
|

“Be

Requests
routed
to Green

Figure 3.3 A Blue/Green deployment

Green is good before we switch to Blue. Or, alternatively, if Green is bad, we can more
easily roll the system back to Blue because our muscle for switching traffic is well-
developed. To ensure rollbacks are fast, we can keep Blue running for a little while
until Green has proved itself worthy of our trust.

A bad session

The big fly in the ointment for Blue/Green deployment and its successors is that
things get much harder if you pin user sessions to particular instances of your soft-
ware (also called session stickiness). If user #278 always goes to instance #4, then
the person who writes that software can just sorta-kinda assume that stuffing infor-
mation into a variable will be sufficient.

This is mostly not how software is written anymore. User session state is typically
delegated to some external data store, like a database or caching system. Some-
times, session state is squeezed into HTTP cookies with encrypted payloads. Either
way, it means that any request can go to any instance and get identical service.

But software relying on session stickiness still exists. In those cases, you need to
add additional steps to drain sessions, or to relocate sessions to another instance,
or any number of other clever things. If you are able to avoid tying sessions to
instances, | cannot strongly enough insist that you do so.

3.2.2

3.2.3

The bedtime story version of the history of deployment as a concept 45

The Canary deployment

Blue/Green deployments are the minimum you should accept from any system, tool,
crazy shell script written by the longest-serving engineer, and so on, that is being
passed off as “continuous deployment.” Done properly, Blue/Green deployment is a
safe way to deploy software.

But like many conservative, ultra-safe systems, it can be wasteful. Here’s an exam-
ple (assuming that my production system is always called Blue and my next version is
always called Green).

During the normal production steady state, I need enough capacity to run Blue.
But during the Blue/Green deployment, I need enough capacity for Blue and Green.
In fact, I may need additional capacity on top of that to deal with things like database
migrations, files being downloaded to new instances of Green, additional consump-
tion due to new Green features, and so on, as well as the overhead imposed on my
control plane by the business of rolling out and cutting over to Green. And, of course,
for safety, I want to keep Blue around until I am satisfied that Green won’t need to be
rolled back.

There are now two considerations that are at odds. The first is efficiency; the sec-
ond is safety. A Canary deployment helps with both of these problems.

In a Canary deployment, we actually roll out a reduced-size sample of Green to run
alongside Blue (figure 3.4). For example, it might be that in our normal situation, we
would deploy 100 copies of our software. Instead of having 100 Blue and 100 Green
during the Blue/Green process, we might start with 100 Blue and 1 Green. This single
copy is the “canary.”™

Instead of cutting all traffic over to Green, we instead send a fraction of requests to
it and see what happens. Then we might raise the number of Green copies to 10. If
we’re satisfied with how these run, we then proceed to fully deploy Green. We then
cut over and immediately remove Blue. After all, our canaries established that Green
was safe, so rollback speed is a less critical consideration.

Progressive deployment

Mind you, what we’re doing is still fairly wasteful, insofar as we reach a peak level of
capacity consumption that is roughly twice the steady state level. So now, we arrive at
the third evolution of our approach: progressive deployment.

2 Canary here is an analogical reference to the birds Victorian-era coal miners brought with them to deep pits
and also, one supposes, to their version of tech conventions. Carbon monoxide, somewhat like vaporware
announced during a keynote speech, is colorless, odorless, lethal, and it can build slowly. The canary, being
small, would die earlier than miners and so they would get an early warning of the danger.

46

CHAPTER 3 Configurations and Revisions

& Router I
User
H I
1
o

1
Requests
routed
to Blue

G

Ju—

Requests
split
between
Blue and
Canary

Requests d)

routed i

to Blue m

Requests
routed
to Green

I.___-_.__.| - - - =

o Lf

]-1

}-|

/
)--1- - [

}-4--
}----

- -]

©

A : !

Figure 3.4 A Canary deployment

In progressive deployment, we keep the consumption level much closer to steady state
(figure 3.5). Say we have 100 instances of Blue. We first perform a Blue/Green deploy-
ment of a single instance instead of our entire system. Afterward, we have 99 Blue and
1 Green. We run this 1 Green as a canary for a while. If we’re happy, we perform
another Blue/Green deployment, this time for 9 instances. Afterward, there are 90
Blue and 10 Green. Then, finally, we might complete the rollout of Green, retiring
Blue as we go.

There are a lot of permutations here. For example, to limit the peak surge, we
might roll out one instance at a time (or some fixed percentage at a time) rather than
perform a Blue/Green deployment for the entire pool. Progressive deployment is
essentially the logical endpoint that arises once you split traffic. It limits risk through
canaries, and it limits utilization through upgrading a fraction at a time.

3.24

The bedtime story version of the history of deployment as a concept 47

Blue/Green deployment

Instances

Time

Canary deployment

Instances

Time

Progressive deployment

Instances

Figure 3.5 Utilization of
Time deployments compared

Back to the future

So what does Knative Serving do? Blue/Green? Canary? Progressive? The answer is: all
of these. Sort of.

In my previous discussion, I talked about two major themes: cluster history and
safe, efficient deployments. Knative Serving sets out to answer these with two core
types: the Configuration and the Revision. The connection is that each Revision is a
snapshot of a Configuration, and a Configuration is the template for the most recent
Revision. An analogy often used is to Git: you can think of each Revision as a particu-
lar commit. Then, a Configuration is the HEAD of a branch of Revisions.

How does this design connect back to my discussion? Let’s review:

= History—Revisions represent snapshots of Configurations over time, giving a
partial history of your system.

= Time travel and deployments—Multiple Revisions can receive traffic for a single end-
point. This allows the Blue/Green, Canary, and progressive deployment patterns.

48

3.3

CHAPTER 3 Configurations and Revisions

But there’s something new here. Previously, the business of deployment was a process
with a binary outcome. You had version Nrunning, something occurs, after which you
are running version N + I. That process might include a period of both running, but
the end state was only one version is running.

Knative Serving makes this easy, but it isn’t limited to that. You can, if you want, run
any number of Revisions. That means that while the binary outcome is conventional, it
isn’t guaranteed. Deployment is now a fuzzy concept rather than a finite state machine.

The anatomy of Configurations

A Configuration is a definition of your software. Up until now, I've avoided showing one
in the flesh. I wanted to show you kn first and avoid being too Kubernetes-centric. But
now it’s time for us to accept our fates as enterprise YAML wranglers. It will be easiest
for me to explain Configurations by using the YAML form.

To ease the transition, the following listing shows the kn command we used in
chapter 2. Below it, listing 3.2 shows the equivalent Configuration YAML file.

Listing 3.1 The before

$ kn service create hello-example \
--image gcr.io/knative-samples/helloworld-go \
--env TARGET="First"

Listing 3.2 The after

apiVersion: serving.knative.dev/v1l
kind: Configuration
metadata:
name: helloworld-example
spec:
template:
spec:
containers:
- image: gcr.io/knative-samples/helloworld-go
env:
- name: TARGET
value: "First"

Everything from the kn CLI is present in the YAML version. We have a name, a con-
tainer, and an environment variable. We also have a fair amount more besides, includ-
ing a great deal of whitespace.

This document isn’t meant to be used by kn. Those of you who have already drunk
the Kule-aid recognize it as a Kubernetes record, which would typically be submitted
to Kubernetes using kubectl apply.® Consequently, it sports some elements that are
there to fit into Kubernetes conventions. For example, the apiVersion and kind

¥ Under the hood, kn is actually doing the same thing that kubect1 does. It takes a YAML document and ships
it off to the Kubernetes API server.

The anatomy of Configurations 49

elements are mostly there to identify the record type so that relevant controllers can
be alerted to creations and updates. The metadata section is, under the hood, actually
a Kubernetes type that can store many kinds of information. We provided a name here.
Lastly, there’s this curious little hop-skip-hop:

Listing 3.3 Yo dawg, | heard you like specs

spec:
template:
spec:

Listing 3.3 isn’t an accident. There are three “things” here:

= The outermost spec belongs to the Configuration itself. The name spec is another
Kubernetes convention meaning “desired world for this thing.”

= Thetemplate s actually a RevisionTemplateSpec. I'll discuss this in just a second.

= The innermost spec is a RevisionSpec. That is, it’s the spec of a Revision.

Hopefully, this tips you off to the fact that the template is the “thing” that is converted
into Revisions. But it goes further than that: changing the template is what causes the
creation of Revisions.

This is important, so I will repeat it: changing the template causes Revisions to be
created. And, in fact, this is true from the moment that I first submit a Configuration.
I can see this using kubectl directly, as this next listing demonstrates.

Listing 3.4 Using raw kubectl

$ kubectl apply -f example.yaml
configuration.serving.knative.dev/helloworld-example created

$ kubectl get configurations
NAME LATESTCREATED LATESTREADY READY
helloworld-example helloworld-example-8sw7z helloworld-example-8sw7z True

$ kubectl get revisions
NAME CONFIG NAME K8S SERVICE NAME READY
helloworld-example-8sw7z helloworld-example helloworld-example-8sw7z True

"GENERATION", "REASON" columns excluded from this listing
I can see that by submitting the Configuration, I prompted Serving to create a Revi-

sion as well. That Revision is not meaningfully different to one created by kn, as I can
see in the following listing with kn revision list.

Listing 3.5 kn revision list

$ kn revision list
NAME SERVICE AGE CONDITIONS READY
helloworld-example-8sw7z 2m24s 3 0K / 4 True

"GENERATION", "REASON" columns excluded from this listing

50

CHAPTER 3 Configurations and Revisions

Your eye might be drawn to CONDITIONS and its value, 3 OK / 4. Despite appearances,
this does not mean your Revision is one-quarter evil. It refers to something we’ve seen
before: Revisions scale to zero when there’s no traffic. The next listing shows how you
can see this with kn revision describe.

Listing 3.6 kn revision describe to the rescue

$ kn revision describe helloworld-example-8sw7z

Name : helloworld-example-8sw7z
... snipped ...
Conditions:
OK TYPE AGE REASON
++ Ready 2d
++ ContainerHealthy 2d
++ ResourcesAvailable 2d
I Active 2d NoTraffic

Remember that ++ means OK. Counting the conditions from top to bottom, three out
of four are ++. Hence 3 OK / 4.

As well as creating Revisions via the creation of Services or Configurations, I can
also create new Revisions by editing a Configuration or a Service. In chapter 2, I used
kn service update to amend things, as you can see in the following listing.

Listing 3.7 Updating using kn

$ kn service update hello-example --env TARGET=Second

Which amends a Service, which amends the Configuration, which causes a new Revi-
sion to pop into existence. The equivalent would be to edit my YAML to look like the
next listing.

Listing 3.8 The second YAML

apiVersion: serving.knative.dev/v1l
kind: Configuration
metadata:
name: helloworld-example
spec:
template:
spec:
containers:
- image: gcr.io/knative-samples/helloworld-go
env:
- name: TARGET
value: "Second"

And then submit this YAML with kubect1 again, along the lines of the next listing.

The anatomy of Configurations 51

Listing 3.9 Amending with kubectl apply

$ kubectl apply -f example.yaml
configuration.serving.knative.dev/helloworld-example configured

$ kubectl get configurations

NAME LATESTCREATED LATESTREADY READY
helloworld-example helloworld-example-j4gv5 helloworld-example-j4gv5 True
"REASON" column excluded from listing

$ kubectl get revisions

NAME CONFIG NAME GENERATION READY
helloworld-example-8sw7z helloworld-example 1 True
helloworld-example-j4gv5 helloworld-example 2 True

"K8S SERVICE NAME" and "REASON" excluded from listing

Now I can see {wo Revisions, but there is still only one Configuration with the name
helloworld-example. As a helpful hint, Revisions have a generation count that is set
at its creation time. Generations are monotonic numbers. Each Revision will be a
higher number than earlier Revisions, but there’s no firm guarantee that all numbers
will be sequential. For example, you might have deleted Revisions yourself.

3.3.1 Configuration status

Is that all that’s interesting about Configurations? Not quite. So far we’ve shown the
spec (a desired world in chapter 1 terms). But there is also a status that is set by the
configuration Reconciler (an actual world in chapter 1 terms). I can use kubectl and
the handy JSON utility jq to display my Configuration status as in the following listing.*

Listing 3.10 Looking at a status with kubectl and jq

$ kubectl get configuration helloworld-example -o json | jg '.status'

{

"conditions": [
{
"lastTransitionTime": "2019-12-03T01:25:342",
"status": "True",

"type": "Ready"
1
1,
"latestCreatedRevisionName": "helloworld-example-j4gv5",
"latestReadyRevisionName": "helloworld-example-j4gv5s",
"observedGeneration": 2

* This example of using jq to stitch up kubect1 output is something of a litmus test. On one side, you have the
“Unix pipes are the high watermark of software design” crowd, for whom hoarding one-liners like some kind
of CLI Smaug is right and worthy. Then, there are the “Human-Computer interface research did not end in
1970, which is now 50 bloody years ago” weirdoes like me, who harbour radical notions about just being
allowed to do some damn work without having to learn “Yet Another Minilanguage.” This divide is a poetic
illustration of why Knative is at all necessary. The developer experience for Kubernetes is not batteries
included. It’s “learn chemistry and try not to poison yourself with lead.”

52 CHAPTER 3 Configurations and Revisions

In listing 3.10, you can see two basic sets of information. The first is conditions,
which I will talk about more later (during my discussion of Revisions). The second set
of information is the trio of latestCreatedRevisionName, latestReadyRevision-
Name, and observedGeneration.

Let’s start with observedGeneration. Earlier you saw that each Revision is given a
generation number. It comes from observedGeneration. When you apply an update
to the Configuration, the observedGeneration gets incremented. When a new Revi-
sion is stamped out, it takes that number as its own.

latestCreatedRevisionName and latestReadyRevisionName are the same here,
but need not be. Simply creating the Revision record doesn’t guarantee that some
actual software is up and running. These two fields make the distinction. In practice, it
allows you to spot the process of a Revision being acted on by lower-level controllers.

These fields are useful for debugging. If you submit an updated Configuration but
don’t otherwise see expected behavior, compare these. For example, suppose I update
my Configuration from foo-1 to foo-2, but I don’t see any change in behavior when
sending HTTP requests. If I check and see that latestCreatedRevisionName is foo-2
and that latestReadyRevision is foo-1, then I know something is wrong with foo-2,
which merits further investigation.

3.3.2 Taking it all in with kubectl describe

The observant among you have noticed that kn has talked about Services, but I have
been talking about Configurations. This is basically because kn does not treat Configu-
rations as a standalone concept; it instead sweeps these into Services as the unit of
interaction. Given Knative’s goals of simplifying and smoothing out the developer
experience, that’s quite reasonable.

It does make it a bit trickier to get a nice readout on a Configuration by itself
though. For that purpose, I need to drop down from kn to kubectl. The helpful
kubectl describe subcommand allows me to take a closer look at the Configuration
as Kubernetes sees it, which the following listing illustrates.

Listing 3.11 Inspecting a Configuration with kubectl describe

$ kubectl describe configuration helloworld-example

Annotations are key-value metadata

Name : helloworld-example
Namespace : default attached to tI]e recor.ds. !-Iere you can
see that Knative Serving identified me
Labels: <none>
.) . as the user who created and last
Annotations: serving.knative.dev/creator:

jacqueseexample . com modified the Configuration.

serving.knative.dev/lastModifier: jacques@example.com
API Version: serving.knative.dev/v1l

Kind: Configuration

Metadata:
Creation Timestamp: 2019-12-03T01:17:28% The generation is visible
Generation: 2 here under Metadata.

Resource Version: 8778016

The anatomy of Configurations 53

Self Link:
/apis/serving.knative.dev/vl/namespaces/default/configurations/
helloworld-example

UID: acl92f54-156a-1lea-ae60-42010a800£fc4
Spec:
Template:
Metadata: Our good friend
Creation Timestamp: <nils> spec.template.spec.
Sspec: shows up here again.
Container Concurrency: 0
Containers:
Env:
Name : TARGET
Value: Second
Image: gcr.io/knative-samples/helloworld-go
Name : user-container

Readiness Probe:
Success Threshold: 1

Tcp Socket:
Port: 0
Resources: oerthergOQd
Timeout Seconds: 300 frlend. s.tatus Is
Status: also visible too.
Conditions:
Last Transition Time: 2019-12-03T01:25:34%Z
Status: True
Type: Ready Events is a log of
Latest Created Revision Name: helloworld-example-j4gv5s occurred changes,
Latest Ready Revision Name: helloworld-example-j4gv5s as reported to
Observed Generation: 2 Kubernetes.
Events:
Type Reason Age From Message
Normal Created 14m configuration-controller
Created Revision "helloworld-example-8sw7z"
Normal ConfigurationReady 14m configuration-controller
Configuration becomes ready
Normal LatestReadyUpdate 14m configuration-controller
LatestReadyRevisionName updated to "helloworld-example-8sw7z"
Normal Created 6m28s configuration-controller

Created Revision "helloworld-example-j4gv5"
Normal LatestReadyUpdate 6m24s configuration-controller
LatestReadyRevisionName updated to "helloworld-example-3j4gv5"

There is quite a lot of information in listing 3.11, loosely approximating the shape of
the underlying record. The code annotations include some highlights. The last one
deserves a bit of commentary. The Events list here is a mechanism that Kubernetes
provides to applications and extensions. It stores events in a nice, somewhat struc-
tured way.

54

3.4

CHAPTER 3 Configurations and Revisions

What is the sound of one container flapping?

The Kubernetes Events system has two caveats you should be mindful of. One is that
it’'s an opt-in mechanism. Software running on Kubernetes, or which extends Kuber-
netes, is under no obligation to emit events to Kubernetes. For a lot of software, this
Events section is just blank. Knative Serving is a good citizen in this regard and
sends meaningful events for Kubernetes to record and display.

But that leads to the second problem. Even if you are dealing with well-behaved soft-
ware that plays nicely with Kubernetes Events, there’s no guarantee that all events
will be captured, stored, or retained for long periods, or even protected from deletion.
The client API that software calls to pass on an event doesn’t return errors, so well-
behaved software can be yelling into the void. Once the event reaches the API server,
it's about as safe as any other Kubernetes record. It can be deleted by another con-
troller, on purpose or accidentally. And, because events typically share resources
with all other records, Kubernetes performs rolling truncations of events. The com-
mand today that reports a bunch of events can be ominously silent tomorrow.

The upshot is that the presence of an event is meaningful: it means that the
described occurrence did actually occur. But the absence of an event should not be
relied on when forming theories or diagnoses of behavior. It might be absent because
the occurrence hasn’t happened, or it might be absent because Kubernetes, for what-
ever reason, never received or stored the event, or because Kubernetes received it
but has since deleted it. Absence of evidence isn’t evidence of absence.

The anatomy of Revisions

I was deliberately brief in my discussion of Configurations because their primary mis-
sion is to stamp out Revisions. Keep in mind the parent/child, template/rendered
relationship between a Configuration and its Revisions. In what follows, I will spend a
lot of time pointing out the various kinds of settings and fields that can be placed onto
a Revision. But you won’t set these directly. You will instead be applying updates to a Con-
figuration or to a Service, which ultimately leads to a new Revision being stamped out.

In practical terms, this means some of the YAML you see will be from Revisions.
But a lot of it will be from Configurations.

Is it a Pod or not?

Those of you with some Kubernetes background will begin to ask: why does a Revi-
sion look so much like a Kubernetes Pod?

One reason is that Knative Serving’s mission is to improve the developer experience
of Kubernetes. That doesn’t mean that the whole of Kubernetes is exposed, and it
doesn’t mean the whole of Kubernetes is hidden. It's case-by-case.

When a feature is provided that’s identical to the underlying system, it doesn’t nec-
essarily hurt to provide it with an identical name. For example, the serviceAccount -
Name field serves the same basic purpose in Knative and Kubernetes, so why not just
call it the same thing?

34.1

The anatomy of Revisions 55

As of this writing, Knative achieves this by internally storing some configuration in a
Kubernetes PodSpec. But it doesn’t expose the whole of a PodSpec, only a selected
allowlist of fields. To this allowlisted set of fields, it adds two of its own: Container-
Concurrency and TimeoutSeconds, which I'll discuss in this chapter.

Note that | said “as of this writing.” So far, Knative has only allowlisted a handful of
PodSpec fields, and it only uses PodSpecs internally as an implementation conve-
nience. But this is an implementation detail. It’s not guaranteed to remain stable.

PodSpecs include lots of knobs and dials that, it might be cogently argued, don’t
belong there for any reason other than implementation considerations. It’s possible
in the future that Knative will expose other fields in a different way, or at a different
level in its control hierarchy, or introduce new concepts altogether. It’s best, there-
fore, to ignore the implementation detail. Consider Revisions to be their own thing.

Revision basics

As you saw in chapter 2, kn gives us the basic information about a Revision. The follow-
ing listing recaps what we can see.

Listing 3.12 What kn tells you

$ kn revision describe helloworld-example-8sw7z

Name : helloworld-example-8sw7z
Namespace: default
Age: 1d
Image: gcr.io/knative-samples/helloworld-go (at 5ea96b)
Env: TARGET=First
Service:
Conditions:

OK TYPE AGE REASON

++ Ready 1d

++ ContainerHealthy 1d

++ ResourcesAvailable 1d

I Active 1d NoTraffic

The key items in listing 3.12 are the Name and the Namespace. By default, the Name is
automatically generated when the Revision is created. It doesn’t need to be. I can use
kn to create a revision with a name of my own choosing, as the following listing shows.

Listing 3.13 A Revision by any other name would smell as sweet

$ kn service update hello-example --revision-name this-is-a-name
... updates

$ kn revision list

NAME SERVICE GENERATION AGE CONDITIONS READY
hello-example-this-is-a-name hello-example 6 10s 4 OK / 4 True
hello-example-jnspg-7 hello-example 5 24h 3 OK / 4 True

"REASON" excluded from listing

56

CHAPTER 3 Configurations and Revisions

The Service name here has been baked into the Revision name by Knative Serving as
an anti-collision measure. Of course, I could achieve the same in YAML. First, I need
to edit my Configuration YAML to look like this listing.

Listing 3.14 Naming the next Revision in the YAML Configuration

apiVersion: serving.knative.dev/v1l
kind: Configuration

metadata:
name: helloworld-example
spec:
template: Addsthenamgtﬂ
the Configuration’s
metadata:
. . metadata.
name: this-too-is-a-name
spec:
containers:
- image: gcr.io/knative-samples/helloworld-go
env:

- name: TARGET
value: "It has a name!"

You can see that I've added the name in a new metadata section. This section can also
accept any other standard Kubernetes metadata. What does that include? Quite a lot,
including metadata added automatically by Knative. To see more, we need to peek with
our kubectl + jg waltz again. Let’s start with the metadata in the following listing.

Listing 3.15 Revision

$ kubectl get revision helloworld-example-8sw7z -o json | jqg '.metadata'

{

) annotations, taken
"annotations": { QJ together with ...
"serving.knative.dev/creator": "jacques@example.com"
1
"creationTimestamp": "2019-12-03T01:17:282", .nlabeh,capuweafah
"generateName": "helloworld-example-", amount of useful information
"generation": 1, (outlined later).
"labels": {
"serving.knative.dev/configuration": "helloworld-example",
"serving.knative.dev/configurationGeneration": "1",

"serving.knative.dev/service": ""

b

"name": "helloworld-example-8sw7z", name and namespace tell you
::ziziiiz(f::;;n;iffﬂ[t " the name of your Revision and
: where it lives in Kubernetes-
{ land. These are the same
"apiVersion": "serving.knative.dev/v1l", values that kn shows as
"blockOwnerDeletion": true, Name and Namespace.
"controller": true,
"kind": "Configuration",
"name": "helloworld-example",

"uid": "acl92f54-156a-1lea-ae60-42010a800fc4"

3.4.2

The anatomy of Revisions 57

1,

"resourceVersion": "8776259",

"selfLink": "/apis/serving.knative.dev/vl/namespaces/default
/revisions/helloworld-example-8sw7z",

"uid": "acla8358-156a-1lea-ae60-42010a800fc4"

What about ownerReferences? It’s interesting at one level, but strictly speaking, it’s
an implementation detail. Try not to fixate on it too closely. The same information
is more easily found in the annotations and labels, some of which I describe in
table 3.1.

Table 3.1 Important labels and annotations on Revisions

[\ 1 Y Type Description
serving.knative.dev/ label Which Configuration is responsible for this Revision?
configuration
serving.knative.dev/ label When the Revision was created, what was the current
configurationGeneration value of generation in the Configuration metadata?
serving.knative.dev/ label The name of the Route that currently sends traffic to
route this Revision. If this value is unset, no traffic is sent.
serving.knative.dev/ label The name of the Service that, through a Configuration,
service is responsible for this Revision. When this is blank,

there’s no Service above the Configuration.

serving.knative.dev/ annotation The username responsible for the Revision being cre-
creator ated. kn and kubectl both submit this information
as part of their requests to the Kubernetes API server.
Typically, it's an email address.

serving.knative.dev/ annotation This is used for garbage collection.

lastPinned

client.knative.dev/ annotation This is the value of the - -image parameter used with
user-image kn service.

The names of labels and annotations follow a pattern: <subject area>.knative.dev/
<subject>. This allows each of the subprojects to namespace their own annotations
without trampling each other.

Container basics

Alot of the “meat” of what you’ll provide to a Revision lives in the containers section.
The following listing is a first glimpse.

Listing 3.16 The containers array

apiVersion: service.knative.dev/vl
kind: Revision

#

58

3.4.3

CHAPTER 3 Configurations and Revisions

spec:
containers:
- name: first-and-only-container
image: example.com/first-and-only-container-image

The name in listing 3.16 reveals a secret: you can, if you really want to, ask for more
than one container to be run for each instance of a Revision. This wasn’t always so.

In its original design, Knative only permitted one container image to be set and
would reject attempts to set more than one. This assumption then flowed through other
parts of the design. For example, if there is only one image that’s turned into a running
process, then there is only one possible process where traffic needs to be sent.

So why support multiple containers? Mostly because of sidecars: containers run
alongside your own processes to add extra functionality. This pattern is widely used for
tools intended to be run across some or all of a cluster, such as service meshes like
Istio, antivirus tools, monitoring system agents, and so on.

Because this capability was added later in Knative’s history, it’s slightly inelegant.
It’s also quite new. At the time of writing, I can’t refer you to official documentation.
For simplicity, I'll ignore multi-container support.

In my example, I give the container a name. Technically, this isn’t necessary. But
names are a good idea, even simple ones. Lots of monitoring and debugging tools
now slurp data out of the Kubernetes API. In the future, others may be more Knative-
centric or Knative-aware. Either way, giving the container a name makes it easier to
understand, identify, and correlate with other systems.

Container images

The container image is the software that ultimately runs on something, somewhere.”

What is a container image?

Container images (originally called Docker images, now better referred to as OCI
images) are primarily about the shipment of bits that wind up looking like a disk to
your software. But container images can also carry a bunch of additional settings and
instructions: environment variables, startup commands, user names, and so on.

Container images are interpreted and executed by container runtimes. The Docker
daemon is the best known, along with its offspring runc and containerd. There are
now others such as CRI-O, gVisor, Kata, Firecracker, and Project Pacific. These are
independent implementations that can create identical runtime behavior, often with
other desirable features.

5 TItirks me that while the motivational analogy for Docker containers was shipping containers, the word “con-
tainer” refers to the running process rather than the bag of bits. Instead, we say “container image.” Reflecting the
analogy back into logistics would mean calling container ships “containers” and calling containers “container
rectangular prisms.”

The anatomy of Revisions 59

In specifying a container, you must provide an image value. This will be a reference
that allows a container runtime, such as containerd, to fetch the image from an image
registry. I showed this earlier in my examples of Configurations and Revisions.

There are, however, two other relevant keys to know about: imagePullPolicy
and imagePullSecrets. Both of these are intended for consumption by a container
runtime.

The imagePullPolicy setting is an instruction about when to pull an image to a
Kubernetes node. It is one of those annoying details that surfaces at the wrong level of
abstraction, but which is nevertheless important to know about. You can give it three
values: Always, Never, and IfNotPresent.

The Always policy ignores any local cache that a container runtime maintains and
instead forces a complete re-pull anytime the Revision is launched on a Kubernetes
node. The Never policy prevents any attempt to pull, so that success relies on that rel-
evant image being pre-populated into a local cache. IfNotPresent basically says “use a
cached copy if you have one; otherwise, pull it.”

As a rule, you don’t need to set imagePullPolicy. If you do set it for Configura-
tions, IfNotPresent is a safe and efficient choice. If you are setting it for a raw Kuber-
netes record, like a PodSpec, then you are in a world of hurt. I'll return to this topic
when we reach chapter 9.

The imagePullSecrets setting is another Kubernetism poking up through the
dirt. You might be used to slinging docker pull commands about willy-nilly to get
public images. This is fine and well, but not all container images are public. And, fur-
ther, not all container registries are prepared to talk to unidentified strangers. That
means that some kind of authentication is required.

Kubernetes has a Secret record type which, among other things, can be used for
image registry credentials. Like all Kubernetes records, a Secret must have a name
that can be used to identify it and refer to it. It is this name to which the imagePull-
Secrets will refer.

Suppose I have an image that lives in a private repo at registry.example.com. I
might have put credentials for registry.example.com into a Secret called registry-
credentials-for-example-dot-com. Then, I wind up with something like that shown in
the following listing.

Listing 3.17 Can you keep a secret?

apiVersion: service.knative.dev/v1l
kind: Configuration
#
spec:
template:
spec:

imagePullSecrets:
- name: registry-credentials-for-example-dot-com

60

CHAPTER 3 Configurations and Revisions

After applying the YAML in listing 3.17, the container runtime uses the credentials
provided by the Secret any time that it pulls a container image from registry.exam-
ple.com. And as with the containers section, imagePullSecrets is an array. In a raw
Kubernetes PodSpec, this makes sense because it allows multiple containers to be
defined. And because each container can potentially come from a different registry,
it’s necessary to allow multiple sets of credentials.

The nameless dread of container image names

Image names are, incidentally, also a mess. At the time of writing, all of these are
legal image names:

ubuntu

ubuntu:latest

ubuntu:bionic

library/ubuntu

docker.io/library/ubuntu

docker.io/library/ubuntu:latest
docker.io/library/ubuntu@sha256:bcfod02754f659706...e 782e2eb5d5bbd716
8388b89

More to the point, these are all identical. Each name refers to the same pile of bits,
because if you don’t specify docker.io, it is assumed on your behalf.

“Very convenient,” you might be thinking. Well, maybe. Suppose | instead ask for example
.com/ubuntu/1804@sha256:bcf9d02754f659706...e782e2eb5d5bbd7168388b8
9. And further suppose that it is bit-for-bit identical to the others. Is this the same
image? The answer is no. Not from the point of view of the way images are named
and addressed.

“But that makes sense,” you say. “They’re different URLs, so they should be treated
as different.” But what happens when you want to pull from a private repository behind
your firewall? Suddenly, everything is hard because you (1) can’t reach docker.io and
(2) can’t simply rename the images because that would make these “different.”

The problem is that there is no distinction made between identity and location. Kna-
tive cannot fully resolve this mess.

Knative Serving’s webhook component resolves partial container image names into full
names with a digest included. For example, if you told Knative that your container is
ubuntu, it dials out to Docker Hub to work out the full name including the digest (e.g.,
docker.io/library/ubuntu@sha256:bcf9d02754f659706...e782¢2eb5d5bbd 7168388b89).

This resolution happens just before the Revision gets created because the webhook
component gets to act on an incoming Configuration or Service record before the
rest of Serving sees these.

You can see the resolved digest in two different ways. Let’s first look at it with
kubectl and jg in the following listing.

3.4.4

The anatomy of Revisions 61

Listing 3.18 What kubectl sees

$ kubectl get revision helloworld-example-8sw7z -o json |
“» jgq '.status.imageDigest'

"ger.io/knative-samples/helloworld-go
“» @sha256:bcf9d02754f659706...e782e2eb5d5bbd7168388b89"

The gcr.io/knative-samples/helloworld-go is recognizable from earlier. The rest
ofit, the @sha256:... stuff, is what Knative resolved and recorded. It’s actually guidance
to the container runtime that it should ask for an exact version of the container image,
rather than whatever container image happens to be identified by gcr.io/knative-
samples/helloworld-go at the next pull.

The sha256: bit is telling it to verify the exact identity by using the SHA-256 hash-
ing algorithm. If the registry doesn’t have an entry that hashes to that digest value, it
throws a 404 error. But kn does something slightly different in the next listing.

Listing 3.19 Seeing the digest with kn

$ kn revision describe helloworld-example-69cbl

Name : helloworld-example-69cbl

Namespace: default

Age: 4h

Image: gcr.io/knative-samples/helloworld-go (at 5ea96b)
... other stuff I'm ignoring right now

You can see (at 5ea96b) in the Image field. It’s the first 6 hexadecimal digits of the
full SHA-256 digest value.

What about collisions? Is it possible that two images will have the same first 6 hex
digits? At one level, yes, absolutely. In terms of uniquely identifying a given image
from the universe of all images, 6 hex digits is not enough. It can express only millions
of permutations, instead of quintillions for the full digest. But you're not comparing
the universe of all images, just the universe of images for that base URL. The odds of
collision there pretty much become noise unless you're doing something Very Inter-
esting (please email me to tell me what it is). Six hex digits is easier to compare with
the Mark I eyeball and doesn’t cause terminal wrapping. You accept it for Git, after all.

The command

So far, I have thrown container images at Knative and magic has happened: these got
converted into running containers with little fuss. But that hasn’t wholly been due to
Knative’s efforts. Let me demonstrate with some kn action in the next listing.

Listing 3.20 The Knative doesn’t know where to begin

$ kn service update hello-example --image ubuntu

Updating Service 'hello-example' in namespace 'default':

62 CHAPTER 3 Configurations and Revisions

RevisionFailed: Revision "hello-example-flkrv-9" failed with message:
Container failed with:

Listing 3.20 reveals that kn doesn’t show us the most helpful message. Let’s look more
closely at the Revision with the next listing.

Listing 3.21 What’s going down?

$ kn revision describe hello-example-flkrv-9

Name : hello-example-flkrv-9
Namespace: default
Age: 2m
Image: ubuntu (pinned to 134c7f)
Env: TARGET=Second
Service: hello-example
Conditions:
OK TYPE AGE REASON
!'l Ready 20s ExitCode0
!'l ContainerHealthy 20s ExitCodeO
?? ResourcesAvailable 2m Deploying
I Active 11ls TimedOut

The output in listing 3.21 is slightly more helpful. I can at least see that Ready and
ContainerHealthy are !!. That’s the Knative symbolism for “bad.”

! | Ready means that the container won’t come up because Kubernetes just doesn’t
know how to run it. Or, rather, Kubernetes can’t guess at what I want to actually run.
Here I used ubuntu, which out of the box has hundreds of executables. Which one did
I want to bring to life? It has no idea.

Meanwhile, ResourcesUnavailable is ?? (unknown) because, if the container
can’t come up, it doesn’t hit resource limits. What actually happened, though? There
are two parts to the answer:

= The container image I nominated doesn’t have a defined ENTRYPOINT.® That
means that when the container runtime picks it up, it can’t find out which com-
mand to run by inspecting the container image itself.

= Neither did I set a command field on my Configuration. If I had, it would have been
passed into the container runtime as a parameter.

Because it’s set by someone closer to production, a command setting will override an
ENTRYPOINT. Hence, you get this basic set of combinations:

= ENTRYPOINT with command = command
= ENTRYPOINT without command = ENTRYPOINT

5 In addition to ENTRYPOINT, images can also have a CMD. These sorta kinda do the same thing, and for the
purposes of our discussion it won’t matter, so I'm going to keep pretending that only ENTRYPOINT is relevant.

3.4.5

The anatomy of Revisions 63

= command without ENTRYPOINT = command
= Neither command nor ENTRYPOINT = it goes kerflooie

Your first instinct might be to try for a sneaky command: bash -c echo Hello, World! asa
cost-cutting measure. It was certainly my first thought. But it won’t do what you want
either. Knative observes that the process exits, which violates its expectations.

Most of the time, you shouldn’t use command; you should rely on the ENTRYPOINT
set by the container image you nominate. This is for a number of reasons. The most
important is: it’s easier. Whoever builds the container image (whether that’s you or
someone else) probably intends for it to be used as is. Especially if it’s going to be used
by Knative.

If you do use command, there’s one more thing to know: args. As you might imag-
ine, this is an array of arguments that are passed to whichever command you define.

But to reiterate: you probably shouldn’t use command. The assumption that you
won’t is baked into kn, which does not expose a way to set command.

The environment, directly

You've already seen the easy way to add or change environment variables: use kn with
--env. I used it in chapter 2 to advance “Hello world” to state-of-the-art. A lot of sys-
tems use or at least support setting environment variables as a configuration mecha-
nism. Often, this is an alternative to command-line arguments or configuration files.
Whether I want to add new environment variables or update existing variables (and
thereby create a new Revision), I use --env, as the following listing demonstrates.

Listing 3.22 Adding another environment variable

$ kn service update hello-example --env AGAINPLS="OK"
... Output from updating the service ...

$ kn revision describe hello-example-gddlw-4

Name : hello-example-gddlw-4

Namespace: default

Age: 16s

Image: gcr.io/knative-samples/helloworld-go (pinned to 5ea96b)
Env: AGAINPLS=0K, TARGET=Second

Service: hello-example

... Conditions

If this seems too easy, you can use YAML again by setting env. As the name suggests,
env sets environment variables. In Configuration YAML, the env parameter is set on
the lonely occupant of containers, which this listing shows.

Listing 3.23 Some YAML again

apiVersion: service.knative.dev/vl
kind: Configuration

64

CHAPTER 3 Configurations and Revisions

#
spec:
template:
spec:

containers:

- name: first-and-only-container
image: example.com/first-and-only-container-image
env:

- name: NAME OF VARIABLE
value: value_ of variable

- name: NAME OF ANOTHER VARIABLE
value: yes, this is valuable too.

As listing 3.23 illustrates, you can set as many name and value pairs as you like because
the env section is an array. It’s not required to use SHOUTY_SNAKE_CASE for names,
but it’s idiomatic.

Remember that Knative Serving spits out a new Revision every time you touch the
template. That includes environment variables, which can be used to change system
behavior. Knative’s dogma is that a Revision should be a faithful snapshot. If configu-
ration can be changed out-of-band, then it will not be possible to later know how a sys-
tem was configured at a particular time. Yes; it’s the problem of history that I spent so
much time talking about earlier in this chapter.

Knative’s approach is not without drawbacks. First, updating configuration now
costs you a redeployment. If your software starts fast, that might well be fine. If, for
whatever reason, your software takes a long time to deploy or become ready, then
tweaking configuration values can become prohibitively expensive. There is a school
of thought (championed by Netflix among others) that configuration ought to be dis-
tributed independently from the code that obeys it. This doctrine intends for the
deployment of configuration changes to be decoupled from the deployment of soft-
ware. This enables configuration changes to be made much more quickly.

On the downside, history is now sprinkled into different places again, meaning
that reconstruction is back to correlation of independent timelines. If you build pow-
erful automation and consistent tooling, this is less of a problem, but that ¢fcan be a
mighty big if. Knative’s decision emphasizes simplicity and safety by pushing all
changes through the same mechanism.

Apart from environment variables that you set yourself, Knative Serving injects
four additional variables. These are

PORT—The HTTP port your process should listen on. You can configure this value
with the ports setting (I'll get to it before long). If you don’t, Knative typically
picks one for you. Now, it might be something predictable, like 8080, but that is not
guaranteed. For your own sanity, only listen in on the port you find in PORT.
K_REVISION—The name of the Revision. This can be useful for logging, met-
rics, and other observability tasks. Also fun for party tricks.
K_CONFIGURATION—The name of the Configuration from which the Revision
was created.

3.4.6

The anatomy of Revisions 65

= K_SERVICE—The name of the Service owning the Configuration. If you are cre-
ating the Configuration directly, there will be no Service. In that case, the
K_SERVICE environment variable will be unset.

The environment, indirectly

Of course, when I said environment variables get snapshotted, I wasn’t telling the
whole story (in the degenerate argot of today’s youth, this is called “lying”). It is true
that directly setting variables with name and value under env will be snapshot into a
Revision. Once this snapshot is taken, the value is frozen for all time, or until the next
cosmic whoopsie in your cluster, whichever comes first (never bet against heat death).

But there are actually two alternative ways of injecting environment variables:
--env-from/envFrom and valueFrom. What these have in common is that you don’t
provide the values of variables directly; envFrom goes further and even does away
with providing a name. In both cases, the values come from either a ConfigMap or
a Secret.

Which means, to start with, you need ConfigMaps and Secrets from which to draw
values. These are Kubernetes records and kn doesn’t support either. So to begin, I
need to create a ConfigMap and a Secret (listing 3.24), and ship these off with kubect1
(listing 3.25).

Listing 3.24 The ConfigMap and Secret

apivVersion: vl
kind: ConfigMap
metadata:
name: example-configmap
data:
foo: "bar"
apiVersion: vl
kind: Secret
metadata:
name: example-secret
type: Opaque
data:
password: <...redacted but it's definitely certainly not 'passwordl23'...>

Listing 3.25 Applying the YAMLs

$ kubectl apply -f example-configmap.yaml example-secret.yaml
configmap/example-configmap created
secret/example-secret created

The first and easiest way to use these is with --env-from. This essentially says, “I want
you to look up this record, then create variables from what you find under data.” In
listing 3.24, the ConfigMap has foo: bar and the Secret has password: <redacteds.

66

CHAPTER 3 Configurations and Revisions

Listing 3.26 Setting variables with kn and - -env- from

$ kn service update hello-example \
--env-from config-map:example-configmap \
--env-from secret:example-secret

... Output from update

When I use --env-£from (listing 3.26), then inside the container, there are two addi-
tional environment variables: foo=bar and password=<redacted>. Now I can vali-
date that the injection has occurred, but I can’t see what was injected, as the next
listing reveals.

Listing 3.27 Partial information only

$ kn revision describe hello-example-gkfmx-7

Name : hello-example-gkfmx-7

Namespace: default

Age: 12s

Image: gcr.io/knative-samples/helloworld-go (pinned to 5ea96b)
Env: AGAINPLS=0K, TARGET=Second

EnvFrom: cm:example-configmap, secret:example-secret

Service: hello-example

I can use kubectl describe for a more verbose look at the same information as the
following listing shows. Note that in the listing, there is a distinction being drawn as
evidenced by the annotations.

Listing 3.28 Did it work or not?

kubectl describe pod/hello-example-gkfmx-7-deployment-6cb9fbbd58-8mm7b

Name : hello-example-gkfmx-7-deployment-6cb9fbbd58-8mm7b
Namespace: default

... snip

Containers:

user-container:
Environment Variables from:
... snip validates that the ConfigMap
and the Secret are used.
Environment Variables from:
example-configmap ConfigMap Optional: false
example-secret Secret Optional: false

Environment: Environment: shows stuff

AGAINPLS: oK that’s injected explicitly
TARGET: First and directly through env.
PORT: 8080

K_REVISION: hello-example-gkfmx-7
K_CONFIGURATION: hello-example

K _SERVICE: hello-example

... snip

The anatomy of Revisions 67

If you are so inclined and don’t want to use kn’s --env-from, then it’s possible to do
this in YAML with envFrom, as in the following listing.

Listing 3.29 Using envFrom to stamp out environment variables

apiVersion: serving.knative.dev/v1l
kind: Configuration
metadata:
name: values-from-example
spec:
template:
spec:
containers:
- image: example.com/an/image
envFrom:
- configMapRef:
name: example-configmap
- secretRef:
name: example-secret

This mechanism is relatively convenient because it takes everything in the ConfigMaps
and Secrets you provide and stamps out the environment variables. If you have soft-
ware that expects a bunch of environment variables to be set, then it’s easier to do it
through ConfigMaps than to laboriously concatenate all of the settings into a long kn
command.

But the --env/envFrom mechanism is not always convenient. Sometimes you have
a big bag of values in a ConfigMap or Secret that were not originally intended to be
environment variables. In this situation, you want to be able to pick and choose which
values will be imported from the available selection.

This brings us to the mysterious contender, valueFrom. It looks a lot like envFrom,
but with some subtle and important differences. For one thing, it’s not exposed
through kn, so it’s all YAML from here. It also has a slightly different structure because
of the need to be able to select specific values. The selections are achieved by config-
MapKeyRef and secretKeyRef. Unfortunately, these are a little bit on the chatty side,
as the next listing proves.

Listing 3.30 Using valueFrom to pull in values

apiVersion: serving.knative.dev/v1l
kind: Configuration
metadata:
name: values-from-example
spec:
template:
spec:
containers:
- image: example.com/an/image
env:
- name: FIRST VARIABLE

68

CHAPTER 3 Configurations and Revisions

valueFrom:
configMapKeyRef:
name: example-configmap
key: firstvalue
- name: PASSWORD
valueFrom:
secretKeyRef:
name: example-secret
key: password

Listing 3.31 Applying the YAMLs

$ kubectl apply -f example.yaml
configuration.serving.knative.dev/values-from-example created

After applying the new version (listing 3.31), how can I see if this worked? As with
--env-from, I can’t see it through kn. At least, not directly. The following listing
demonstrates the veil of mystery.

Listing 3.32 kn does not show the resolved value

$ kn revision describe values-from-example-626da

Name : values-from-example-626da
Namespace: default
Age: 48m
Image: example.com/an/image (at la2bc3)
Env: FIRST_VARIABLE:[ref]
PASSWORD= [ref]

Service:
Conditions:

OK TYPE AGE REASON

++ Ready 48m

++ ContainerHealthy 48m

++ ResourcesAvailable 48m

I Active 38m NoTraffic

You can see in listing 3.32 that there are references, but not what value these resolve
to. This is one advantage of the env.valueFrom approach over the envFrom approach.
In this case, kn at least points to the fact that a variable exists.

Now to the lying bit—I didn’t lie. What I said was completely accurate: a Revision is
a snapshot of a Configuration. This snapshot does not contain the value of an environ-
ment variable, but rather the exact configuration, which might happen to include the
value of environment variables. When I use valueFrom, I am snapshotting the reference
to a variable, not the value that could have been found on the other side of the refer-
ence at the moment of the snapshot.

This opens the door back to the independent updating of configurations without
the updating of Configuration. Put another way: if you want to, if it makes sense, you
can change environment variables by modifying the ConfigMap or Secret that a Revi-
sion’s valueFrom points to.

3.4.7

The anatomy of Revisions 69

There’s a caveat here. The change won’t be effective until the Revision is relaunched.
These references to values are resolved to actual values at container creation time.
These are not updated dynamically. If you update the ConfigMap or Secret that you
referred to, that update won’t be reflected in the running Revision.

To pick up the change, the Revision needs to be scaled to zero and then relaunched.
This is not in your direct control, and so in practice, you should not rely on this mecha-
nism for fast configuration changes. In particular, you should not rely on it to rotate
credentials quickly. Your choices are

To edit the Configuration to force the creation of a new Revision that takes over
from the previous Configuration, accepting the cost thereof

To use an alternative mechanism for configuration key/values (such as Netflix
Eureka), which is more proactive in managing TTLs or pushing new values to
consumers, and to use out-of-band secrets management systems like Vault or
CredHub.

Which should you choose? That’s partly a matter of taste. My advice is that you should
prefer to edit the Configuration whenever possible for data you would put into a Con-
figMap. For a Secret, you should strongly consider using a credential manager
because keeping secret material in environment variables leads to a fascinating kind
of security hell.

If you absolutely must have some kind of secret or sensitive material in your envi-
ronment, then for pity’s sake, use a Secret and valueFrom and also do a new Revision
whenever you rotate it. Yes, I know, it’s a schlep. But you want to make key material as
inconvenient to reach as possible.

Configuration via files

Passing configuration via the command line is easy: use args. Via the environment is
also easy: use env or envFrom. But these options have two problems.

First, some software requires parameter files, or you might prefer parameter files
over other possibilities. For these cases the command line and environment variables
won’t do.

Second, command lines and environment variables aren’t a safe place for secrets
to hang out. Too many tools and systems have some way of laying eyes on a com-
mand line or an environment variable. Exfiltration opportunities abound. Can you
SSH into the running container? Run ps on the container or on the Node underly-
ing it? Do you have monitoring system agents that extract environment variables? Or
that can be configured to do so? Are you checking secrets into Git? The list goes on
and on (and can be sung as a hymn to the tune of “We’re So Boned, Time To
Update My LinkedIn Profile”).

One way out of this is to take your Secrets and ConfigMaps and expose these as
files in a filesystem. This first of all enables grumpy old software the luxury of not
changing. Secondly, it behaves like a filesystem, adding another permissions hoop

70

CHAPTER 3 Configurations and Revisions

attackers will need to hop through. Finally, these get mounted as tmpfs volumes. Your
sensitive keys and values never touch a disk and become inaccessible once the con-
tainer goes away.

Let’s start with the kn-centric view of things by mounting a Secret into our con-
tainer. The following listing demonstrates this.

Listing 3.33 Volumes of secrets

$ kn service update hello-example --mount /sikkrits=secret:example-secret

Updating Service 'hello-example' in namespace 'default':

++

The key in listing 3.33 is the --mount parameter, which maps from example-secret
into /sikkrits. The secret: prefix tells kn what kind of record it will ask Knative to
map; the alternative option is configmap: for ConfigMaps.

Having added a secrets mount, my first instinct is to see if it worked using kn revision
describe. The next listing shows how that’s done.

Listing 3.34 The secret Secret

$ kn revision describe hello-example-yffhm-12

Name : hello-example-yffhm-12

Namespace: default

Age: 3m

Image: gcr.io/knative-samples/helloworld-go (pinned to 5ea96b)
Env: TARGET=Second

Service: hello-example

... Conditions table

Listing 3.34 gives no sign of the Secret being mounted. It won’t show ConfigMaps
either. If I want to see what happened, I need to pop the bonnet (“crack the hood” for
my American friends) and cop a squizz (“take a look”) at the raw YAML with kubect1
and jq, per the following listing.

Listing 3.35 Volumes and mounts

$ kubectl get -o yaml revision hello-example-yffhm-12

apiVersion: serving.knative.dev/v1
kind: Revision
metadata:
... lots of YAML
spec:
containers:
name: example-container
... more YAML
volumeMounts:
- mountPath: /sikkrits

3.4.8

The anatomy of Revisions 71

name: exsec-9034cf59
readOnly: true

volumes:
- name: sikkrits-9034cf59
secret:
secretName: example-secret
... still more YAML

You can see in listing 3.35 that the configuration is in two places: volumeMounts
(under the lonely member of containers) and volumes (which hangs directly off
spec). These different levels reflect YAML’s meaningful whitespace. These also reflect
another Kubernetism bubbling up into Knative. I will take a second to explain.

Raw Kubernetes allows more than one container in a PodSpec. Containers might
want to share one or more filesystems. That means there needs to be (1) a way to list
all the volumes that might exist and (2) a way to decide which containers can see
which volumes. Dumping everything into a single pile might be convenient at first,
but down the road, it leads to bugs and security hassles.

Incidentally, the business of volumes shows up in kn in a confusing way. As well as
- -mount, you’ll find there’s a --volume option. The help text for both is close to iden-
tical. So which should you use? You should stick to --mount. It does more or less what
one might expect in terms of creating a directory, putting ConfigMaps and Secrets
onto a volume, and then mounting it for you.

Probes

Broadly speaking, software is dead or alive. When it’s alive, it’s ready or it’s not ready.
This is, at least, one of the ways Kubernetes (and therefore Knative) sees your soft-
ware: as having the properties of liveness and readiness. In raw Kubernetes, you are
given the ability to set 1ivenessProbes and readinessProbes on your containers. Kna-
tive exposes this functionality, but with caveats.

First, what are probes? A probe is a simple mechanism that Kubernetes can use to
determine the liveness or readiness of the software. Typical liveness probes include
stuff like “is it listening on port 3030?” or “if I run this shell command inside the con-
tainer, does it exit with code 0?” Typical readiness probes are mostly centered on mak-
ing HTTP requests to known endpoints and expecting a 200 OK response.

Superficially, these might look the same. For example, both liveness and readi-
ness probes might check for an HTTP response or sniff a TCP port. But there is a
distinction.

Software that’s otherwise alive might not be ready for traffic. For example, during
a long startup, the software is alive, but it’s not ready. This leads to different treatment
for each kind of probe. When liveness checks fail, Kubernetes eventually kills the con-
tainer and relaunches it someplace else. When readiness checks fail, Kubernetes pre-
vents network traffic from reaching the container. The following listing shows the
configuration for liveness and readiness probes.

72

CHAPTER 3 Configurations and Revisions

Listing 3.36 Knative probes

apiVersion: service.knative.dev/vl
kind: Configuration
#
spec:
template:
spec:

containers:

- name: first-and-only-container
image: example.com/first-and-only-container-image
livenessProbe:

httpGet:
path: /deadoralive
readinessProbe:
tcpSocket:

The first thing to note is that you can pick between httpGet and tcpSocket for your
probes. Table 3.2 shows the key fields for these two types.

Table 3.2 Fields for probes

Type Field Description Required?
httpGet and tcpSocket host A hostname or IP address No
httpGet path An HTTP path Yes
httpGet scheme Can only be one of "http" or "https"; No

defaults to "http"

httpGet httpHeaders If you really need these, see the Kuber- | No
netes docs

You can also set configurations that can be applied to either of the probe types. For
example, you can make a livenessProbe wait for 5 seconds by using initialDelay-
Seconds: 5. Or, you can require three successful probings in a row with success-
Threshold: 3.

If you came from Kubernetes, these features of probes are familiar to you. You also
may be wondering, what happened to port? The answer is that Knative takes control
of this value to satisfy its “Runtime Contract.” It modifies any probes so that their port
value is the same as the port value of the container itself, which will be the same as the
PORT environment variable that’s injected.

A slight quirk of this behavior is that tcpSocket : can just hang out by itself with-
out needing anything underneath it. I think that looks a little weird, but it’s allowed
in this case.

If you don’t provide one or both probes, Knative Serving creates tcpSocket probes
with initialDelaySeconds set to zero. By setting these to zero, Knative is telling
Kubernetes to immediately begin checking for liveness and readiness in order to min-
imize the time it takes for an instance to begin serving traffic.

3.4.9

The anatomy of Revisions 73

If I may be frank: probes are not likely to be the most pressing thing to think
about. Unless you have a proven need to adjust the defaults, you might as well save
yourself some YAML. kn sees things this way, and consequently, it doesn’t provide a
means for setting or updating probes.

Setting consumption limits

Knative lets you set minimum and maximum levels for CPU share and bytes of RAM.
This is another case of directly exposing the underlying Kubernetes feature, which is
called resources.

In practice, you are most likely going to find yourself using this to set minimum
levels, which is known to Kubernetes as requests. The following listing shows how to
update limits with kn.

Listing 3.37 Requesting CPU and RAM

$ kn service update hello-example \
--requests-cpu 500m \
--requests-memory 256Mi

The 500m format refers to “milliCPUs,” or thousandths of a CPU. In this case, it’s for 500
milliCPUs, which is half a CPU. However, what “half a CPU” means depends on where
you’re running Knative. You’ll need to consult your vendor or provider documentation.

The memory format for 256Mi is referring to mebibytes (not megabytes), which
is the value we’d typically think of as 256 megabytes (not mebibytes). It confuses me
too, but mostly you can substitute Mi for MB in your head and get it right. The same
goes for Gi (gibibyte) and GB (gigabyte) and, lucky you, Ti (tebibyte) and TB (tera-
byte) as well.

The upper ceiling is known as limits and follows the same format as requests.
The following kn listing illustrates setting limits.

Listing 3.38 Limiting CPU and RAM

$ kn service update hello-example \
--limits-cpu 800m \
--limits-memory 512Mi

And, of course, there’s a YAML equivalent too. As well, the next listing reveals this.

Listing 3.39 Requesting and limiting in YAML

apiVersion: service.knative.dev/vl
kind: Configuration
...
spec:
template:
spec:
containers:

74

CHAPTER 3 Configurations and Revisions

- name: first-and-only-container
image: example.com/first-and-only-container-image

resources:
requests:
cpu: 500m
memory: 256Mi
limits:
cpu: 800m

memory: 512Mi

Many folks leave off limits entirely, because most of the time what they want is
“burstable” behavior. That means that the container process is guaranteed to get its
requests allocations and will burst to consume any spare capacity that the operating
system is willing to allocate to it. This is a useful property for helping containers
launch as quickly as possible, because it is typical for launching processes to do a
whole bunch of preliminary bookkeeping and preparation that isn’t yet about directly
serving traffic.

This advice isn’t perfect though. Where possible and manageable, I think it’s bet-
ter to set a high set of limits; for example, setting a limit of 3500 Mi on 4-core worker
nodes. That’s high enough that you get most of the benefits of burstiness, but not so
high that a single container process can inadvertently starve all of its neighbors. How-
ever, doing so involves a lot more work than sticking to bursty behavior. In particular,
you will need to know the CPU and RAM capacity of worker nodes in advance and
update your Service definitions when the nodes are upgraded. That might not be very
practical or desirable.

Serverlessless
And now for a rant: Serverless isn’t. | wish it was. Episode eleventy jillion.

What happens if you don’t set 1imit and request? Nothing special, really. Left to
its own devices, Kubernetes places a completely undefined workload any old where
and then leaves it to fend for itself against other workloads landing on the same
machine. Unless you set 1imit and request records, Knative accepts whatever
Kubernetes dishes up as default values.

Default values are configurable by the platform engineers who set up and operate the
Kubernetes cluster using LimitRange records. On GKE, for example, this is config-
ured so that requests.cpu is 100m, setting a floor CPU allocation of 10%.

| would prefer not to go down a rabbit hole here, because | happen to know it is a
quite deep and elaborate rabbit hole. Somewhat efficient packing of workloads is,
after all, part of the superhero origin story for Kubernetes, so it should come as no
surprise that there are many knobs and levers to be twisted or pulled by relevant per-
sons. But this necessity has led to a complicated set of rules and ideas that no devel-
oper should be required to care about. As an exercise, look up the Kubernetes
documentation for Quality of Service levels, then try to reassure yourself that you can
reliably predict what Kubernetes will do in times of trial and tribulation.

The anatomy of Revisions 75

To be sure, autoscalers solve some of this problem, but, as | will repetitively repeat
in the upcoming chapter on autoscaling, autoscalers aren’t magical. And neither is
the Kubernetes scheduler. Both must work in a world where raw compute resources
like CPU and RAM are not completely fungible. There are boundaries to what can be
done, set by the capacity of the nodes that Kubernetes is managing. A container has
to sit somewhere, and its activities consume something. The mechanisms of
request and limit are there so that you can provide hints to the Kubernetes sched-
uler about what that will look like. The reality that there are discrete machines leaks
up through the nice abstraction of Revisions.

It turns out that Kubernetes, the closed-loop-feedback champion, has a giant gaping
open loop at its heart: container placement. Once placed, the container is placed for
good. The Kubernetes scheduler doesn’t perform rebalancing of workloads. Rebal-
ancing that does occur is a side-effect of other causes, such as container crashes or
autoscaling.

Is there any hope for the future? Maybe. One line of attack is VM-based runtimes like
Firecracker or Spherelets. Because these are VMs, each can be more easily and
robustly relocated between physical nodes without appearing to be restarted, mean-
ing that transparent rebalancing can occur without needing to modify the Kubernetes
scheduler. Another more science-fiction-y line of attack is to unbundle the resources
offered by compute nodes and have directly network-connected chunks of RAM,
CPUs, and so forth.

3.4.10 Container concurrency

Speaking in broad terms, the purpose of the Autoscaler is to ensure that you have
enough instances of a Revision running to serve demand. One meaning of enough is to
ask, “How many requests are being handled concurrently per instance?”

Which is where containerConcurrency comes in. It’s your way of telling Knative
how many concurrent requests your code can handle. If you set it to 1, then the Auto-
scaler will try to have approximately one copy serving each request. If you set it to 10,
it will wait until there are 10 concurrent requests in flight before spinning up the next
instance of a Revision. That is at least approximately what happens, because the Auto-
scaler has quite a few knobs and dials that affect what it does, not to mention a moder-
ate amount of internal subtlety that I’ll need to explain carefully.

You can set a concurrency limit with kn, as the following listing shows.

Listing 3.40 Using kn to set container concurrency limits

$ kn service update hello-example --concurrency-limit 1
... Output from the update ...
$ kn revision describe hello-example-pyhcm-6

Name : hello-example-pyhcm-6
Namespace: default

76

CHAPTER 3 Configurations and Revisions

Age: 2m
Image: gcr.io/knative-samples/helloworld-go (pinned to 5ea96b)
Env: AGAINPLS=0K, TARGET=Second
Concurrency:
Limit: 1
Service: hello-example

Note the new section under Concurrency, which in turn gives a Limit. The concur-
rency limit is a hard threshold for scaling. If average concurrent requests rise above
this number, the Autoscaler creates more instances. There is also another setting,
- -concurrency-target, but this works differently. Instead of setting a maximum level of
concurrency, it sets a desired level of concurrency. Right now you can use - -concurrency-
limit, and Knative sets --concurrency-target to the same level. In chapter 5, I will
break this down further. Naturally, you can set this value in the YAML too, as this list-
ing shows.

Listing 3.41 But is it YAML scale?

apiVersion: service.knative.dev/vl
kind: Configuration
#
spec:
template:
spec:
containerConcurrency: 1

The YAML in listing 3.41 does the same as - -concurrency-1limit, setting a maximum
on concurrent requests being served per instance. There isn’t an equivalent in the
YAML for --concurrency-target.

If you don’t use --concurrency-limit or set containerConcurrency in YAML, the
value defaults to 0. In turn, this sets up a whole bunch of other default settings that I'll
ignore for now and discuss in chapter 5. What should you set it to? That’s really up to
your own judgment. Leaving it unset (i.e., leaving it at 0) is basically OK. Autoscaling
up from zero instances and back down to zero instances will occur.

Of course, if you have a closer insight into what level of concurrency makes sense
for your software, you should take advantage of that. For example, you might have a
system that is strongly threadbound, so that a pool of 4 threads can handle 4 requests
simultaneously. In this case, it probably makes sense to set the value to 4, or perhaps 5
to account for other kinds of buffering.

But remember, because we find it easier to build complex systems than to build
simple ones, performance tuning will always be a mostly empirical affair. You need to
apply load and observe performance, then adjust your settings accordingly.

NOTE Wouldn’t this be easier if it were expressed as Requests Per Second
(RPS) instead of concurrent requests? Yes, it would, and the Autoscaler can
be configured to use RPS targets instead. In chapter 5, I’ll explain how to do
that. But here’s a teaser: concurrent requests and RPS are actually closely

The anatomy of Revisions 77

related. If you have one, you can typically derive the other. I'll explain why
when we get to chapter 5.

3.4.11 Timeout seconds

Knative Serving is based on a synchronous requestreply model, so as a matter of
necessity, it needs timeouts. The timeoutSeconds setting lets you define how long
Knative Serving will wait until your software begins to respond to a request.

The default value is generous: 5 minutes. More specifically, 300. Note that this is
not a duration value, it’s an integer value. You don’t set it to “300s” or “56m”. If you
want 5 minutes, you set it to “300”.

On the upside, the default value is pretty much guaranteed to avoid flakiness due
to slow responses. On the downside, if you have a bug that causes stalled responses,
you’re going to see the Autoscaler busily stamping out copies as unattended requests
pile up.

This setting is not directly surfaced through kn and, instead, has to be set using
kubectl apply. Out of the box, you can set values up to 600 (10 minutes). If you
attempt to set a higher value, Knative will complain. Suppose that I want the visually
distinct 9999 as my value. First, I'd tinker with the Configuration record to look like
the following listing.

Listing 3.42 Putting up big numbers

apiVersion: service.knative.dev/vl
kind: Configuration
#
spec:
template:
spec:
timeoutSeconds: 9999

Then in the next listing, when I use kubect1l to apply the change, the computer says no.

Listing 3.43 Nein nein nein nein!

$ kubectl -f example.yaml

error: configurations.serving.knative.dev "hello-example" could not be
“» patched: Internal error occurred: admission webhook "webhook.serving
“» _knative.dev" denied the request: validation failed: Saw the following
“» changes without a name change (-old +new): spec.template.metadata.name
*{*v1l.RevisionTemplateSpec}.Spec.TimeoutSeconds:

-: "300"

+: "9999"
expected 0 <= 9999 <= 600: spec.template.spec.timeoutSeconds

This error message is relatively helpful, in that it identifies what the offending change
was (300 to 9999), what the inoffensive expectations were (to be between 0 and 600),
and which component took offense (the webhook).

78

CHAPTER 3 Configurations and Revisions

The downside to this sanity check is that maybe you have a good reason for letting
something run for more than 5 or 10 minutes. Batch or batch-like scenarios, in partic-
ular, typically want to run for as long as it takes.

Knative Serving’s timeout limit can be raised by tinkering with the installation con-
figuration. But it’s unlikely that you, as a developer, will have the authority to set such
values, because these can impact everything that runs on Knative. In these cases, you
will need to undertake the mature engineering step of engaging in a jello fight over
whether the value should be raised (or, if it comes to that, lowered).

Summary

Deployment processes have improved over the years from scheduled downtimes
to Blue/Green deployment, to Canary deployment, and finally to progressive
deployment.

Blue/Green deployment works by launching the next version of software
(Blue) alongside the existing version (Green), then switching over traffic when
the new version is ready.

Canary deployment works by first rolling out one or a few copies of the next ver-
sion of the software and seeing if these are stable. If these are, further deploy-
ment (usually Blue/Green) occurs.

Progressive deployment combines elements of both Blue/Green and Canary
deployments, focusing on progressively moving traffic from existing software to
new software.

Knative Serving supports all these patterns of deployment.

Additionally, Serving is able to run multiple versions of software at the same
time. This is made possible using Revisions.

Configurations are a definition of the software you want to run on Knative
Serving.

Revisions are created when Configurations are created or changed.
Specifically, changes to the spec.template.spec settings in a Configuration
trigger the creation of new Revisions.

Configuration status provides information about what Revision is currently
running.

Revisions have a container, which must include an image. You should also pro-
vide a name for easier debugging.

You can set imagePullSecrets if you are using private image repositories.

You can set imagePullPolicy, but you probably won’t need to.

Knative will try to run the image you give it, first by looking for an ENTRYPOINT
on the image itself, then by looking for a command on the Revision. If these are
both missing, the Revision will not work.

While you can configure command and args, you probably shouldn’t. Instead,
build and use images that have ENTRYPOINTS.

References 79

You can set environment variables directly using the env setting. You can also
set environment variables indirectly using envFrom. These values can be pulled
from Kubernetes ConfigMaps and Secrets.

Variables that you set using env are directly copied into the Revision. Variables
you set via envFrom are not, meaning that these might change between Revision
launches.

You can mount configuration files easily with kn. Less easily by using kubectl
with volumeMounts and volumes.

You can define liveness and readiness probes for your software.

If you don’t define probes, Knative assumes that it can probe for an HTTP
server at a known port. If doesn’t get a 200 OK, Knative assumes something is
broken.

You can set upper and lower bounds on CPU and RAM allocations for your
Revision instances. You can use kn or kubectl with requests and limits.

You can tell the Autoscaler how many simultaneous requests your software can
handle by setting the container concurrency.

If you don’t set container concurrency, Knative will set reasonable defaults for
its Autoscaler behavior.

You can tell Knative how long it should wait for your software to respond to
requests. The default is 5 minutes, but you can set values up to 10 minutes.

References

k8saudit—https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
sloop—https://github.com/salesforce/sloop

Alexis Richardson, “What is GitOps, Really?” (August 21, 2018), https://www
.weave.works/blog/what-is-gitops-really

Evan Anderson and Dan Gerdesmeir, “Knative Serving API Specification: Con-
tainer,” v. 1.0.1, (2019), http://mng.bz/ZPVR
k8s-probe-docs—http://mng.bz/RXNZ

The Knative Authors, Knative Runtime Contract, “Meta Requests,” https://github
.com/knative/serving/blob/master/docs/runtime-contract. md (Accessed Thurs-
day, Jan 23, 2020)

Yizhou Shan, et. al., “LegoOS: A Disseminated, Distributed OS for Hardware
Resource Disaggregation,” Proceedings of the 13th USENIX Symposium on Operating
Systems Design and Implementation, http://mng.bz/XdV6
hey—nhttps://github.com/rakyll/hey

max-timeout—http://mng.bz/2egg (Accessed Wednesday, Jan 22, 2020)

https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://github.com/salesforce/sloop
https://www.weave.works/blog/what-is-gitops-really
https://www.weave.works/blog/what-is-gitops-really
https://www.weave.works/blog/what-is-gitops-really
http://mng.bz/ZPVR
http://mng.bz/RXNZ
https://github.com/knative/serving/blob/master/docs/runtime-contract.md
https://github.com/knative/serving/blob/master/docs/runtime-contract.md
https://github.com/knative/serving/blob/master/docs/runtime-contract.md
http://mng.bz/XdV6
https://github.com/rakyll/hey
http://mng.bz/2egg

Routes

This chapter covers

Using kn to inspect Routes
Using kn to update Routes by updating Services

= The anatomy of Routes

It seems like only pages ago that I was extolling the virtues of history and of Kna-
tive’s ability to juggle it a bit with Revisions. And I wasn’t wrong. But by itself, this is
just an exercise in decorative bookkeeping. I need my Revisions to do something.

In Knative Serving, this brings us to Routes. These are the way you can describe
to Knative how to map from an incoming HTTP request to a specific Revision. In
this chapter, my focus is going to be on the business of what you can ask Knative to
do. I'll pay much less attention to how Knative does the network magic.

So what is a Route? Briefly, a Route is where you answer three questions:

At what public address or URL will traffic arrive from?
What targets can I send traffic ¢o?
What percentage of traffic goes to which targets?

The first two points (from and to) are pretty typical of generations of proxies, rout-
ers, traffic doodads, and thingamajiggers. The third, traffic splitting or weighting,

80

4.1

Using kn to work with Routes 81

isn’t universal, but it’s common. Everything you can do with a Route can be done
some other way. You might, for example, already have some elaborate tooling built
around using a Kubernetes Ingress controller. Or, you might just run Nginx by hand
with a bit of spit and elbow polish.

So at one level, you don’t need Routes. But you don’t need Routes in the same way
that, if you already have a collection of bicycles you built yourself, you don’t need a
Honda Civic. Both will get you from place to place, but one of these will be easier
to maintain.

This leads me to a second point about Routes. Whether you’ve used Perl and
Apache VirtualHosts, or Rails, or Spring Boot, you put your rules about the “traffic
from”/“traffic to” mapping somewhere. The question is who owns the somewhere? Is it
defined by the application developers? Or is it owned and managed in a centralized
system? In practice, there will be some mix of these, but even for a single app, you
need to answer this question.

Knative provides Routes because if you are signed up for the Configurations and
Revisions world, you want something that’s closely adapted to that world. While I can
use a central routing tool or API gateway, these don’t know out of the box what a Con-
figuration or Revision is. If you roll your own routing, then you will rely on implicit
relationships. Whereas with Routes, the connection between the Route and its targets
is explicit.

Using kn to work with Routes

If T used kn to create a Knative Service, then a Route was created automatically. This
was (hopefully!) obvious in the previous chapter, where I gleefully poked and prod-
ded Revisions without giving much thought to routing. I was typically finding a poke-
able address by looking at service list or service describe.

Am I stuck with these? No. The route list and route describe commands give
me information specific to Routes as shown in the following listing.

Listing 4.1 Using kn route list

$ kn route list

NAME URL READY
hello-example http://working-example.default.example.com True
broken-example http://broken-example.default.example.com False

From route list (listing 4.1), I can see the basic information of name, URL, and
readiness. If I want to look more closely, I'd use route describe.

The output in the following listing should look familiar; it follows the basic struc-
ture that you would see from kn service describe. The key differences to note are
explained in the code annotations.

82

4.2

CHAPTER 4 Routes

Listing 4.2 Using kn route describe

$ kn route describe hello-example

Name : hello-example
Namespace: default
Age: 2d
URL: http://hello-example.default.example.com
Service: hello-example
A new Traffic Targets section of kn
Traffic Targets: route describe doesn’t need to show
100% @latest (hello-example-zcttz-8) information about Revisions in the
way that kn service describe does,
Conditions: so it’s more compact.
OK TYPE AGE REASON
++ Ready 3h The Conditions have different names
++ AllTrafficAssigned 4h from what you’d see in kn service
++ IngressReady 3h describe or kn revision describe.

The easiest way to create a Route is to let a Service do it for you, and this is what shapes
the approach kn takes. When you use kn service create, kn creates a Service, and the
Service (in turn) causes the creation of a Route. Similarly, when you use kn service
update, the Route is updated to point to the new Revision that got stamped out. And,
unsurprisingly, using kn service delete ultimately causes the Route to be deleted.

Well, that was a short chapter! Thanks for tuning in. Next time on Wait! Is
that all?

The anatomy of Routes

No. There is more to Routes that, by design, kn does not let you directly control. You
can look with route list and route describe, but there’s no such thing as a route
update or route create.

NOTE I'll be following a “break-and-fix” approach to examples in this chap-
ter, rather than a “happy-path-then-sad-path” approach.

Mostly, that’s fine. But I'd like you to understand what it is you're looking at, meaning
that I will again need to go into the YAML forest. Let’s first see what I've cooked up in
my trusty example.yaml file, shown in the next listing.

Listing 4.3 The Route as YAML

apiVersion: serving.knative.dev/v1
kind: Route
metadata:
name: route-example
spec:
traffic:
- configurationName: hello-example
latestRevision: true
percent: 100

The anatomy of Routes 83

Hopefully metadata.name is familiar, as well as the apiVersion and kind keys. The
core of Route’s work lives in spec.traffic. And, in fact, traffic is the only key in a
Route’s spec.

The traffic key is an array of traffic targets. And it is traffic targets that are the
meat of a Route. More on those in a second, but first I will send my YAML off to
Kubernetes (listing 4.4) and ask kn to read it back to me (listing 4.5).

Listing 4.4 Creating the Route with kubectl

S kubectl apply -f example.yaml

route.serving.knative.dev/route-example created

Listing 4.5 Reading back my Route

$ kn route describe route-example

Name : route-example

Namespace: default

Age: lm

URL: http://route-example.default.example.com

Traffic Targets:
100% @latest (hello-example-zcttz-8)

Conditions:
OK TYPE AGE REASON
++ Ready im
++ AllTrafficAssigned im
++ IngressReady lm

In listing 4.5, Route conditions are summarized with the tidy ++/!!/?? style that kn pro-
vided for other describe commands. There are three main conditions to watch for:

= AllTrafficAssigned—This means that Knative found all of the targets that were
given in traffic. If this is false, you might have mistyped the target name.

= IngressReady—This says that the Ingress, the software responsible for the
first bit of traffic management in Knative, is ready to manage the Route. If it is
false, then you need to go and investigate whether your Ingress system is up
and running.

= CertificateProvisioned—This means that an automated system that sets up a
TLS certificate was able to do so (e.g., by using LetsEncrypt).!

! In my examples, you're not going to see this, because setting up certificates in Knative Serving largely rests with
the platform operators. It’s operators who will be either manually attaching certificates to the underlying infra-
structure or who will alternatively set up automated certificate systems that set the CertificateProvisioned
condition. And so I am skipping jauntily past this essential bedrock of modern security, pausing only to warn you
against doing the same. While going without TLS makes for convenient development, it’s frankly irresponsible
by production time. And slower, too, because HTTP/2 sets a hard dependency on TLS as its transport layer. The
Knative project website has guidelines on adding TLS certificates either manually (https://knative.dev/docs/
serving/using-a-tls-cert/) or automatically (https://knative.dev/docs/serving/using-auto-tls/).

https://knative.dev/docs/serving/using-a-tls-cert/
https://knative.dev/docs/serving/using-a-tls-cert/
https://knative.dev/docs/serving/using-a-tls-cert/
https://knative.dev/docs/serving/using-auto-tls/

CHAPTER 4 Routes

The Ready condition is relevant, but by itself, it doesn’t tell you much. That’s because
it rolls up the other two conditions. If any of the other conditions are bad (!!), then
so is Ready.

WARNING Knative Services and Kubernetes Services are not the same. In fact,
these are deeply unalike. Refer to the sidebar for more.

Service vs. Service

A Kubernetes Service is approximately half of a Route. It defines a name where traffic
can be sent and where that traffic will wind up being sent. This is needed because
copies of software can come and go, appearing with new unique names each time.
A downstream client shouldn’t have to keep track of the exact location of its upstream
server. If you define a Kubernetes Service, you can send traffic there and let Kuber-
netes find the running software for you.

But a Kubernetes Service is at its best in dealing with traffic inside a cluster. Traffic
that comes from outside the cluster can, in theory, be sent through a Kubernetes Ser-
vice, but it isn’t pretty. You wind up needing a specialized kind of Service (a Load-
Balancer) that lashes you to the particular infrastructure you're running on. Meaning
that if you ask the Kubernetes Service to be the outside world face of your software,
you will need to get AWS or Azure or vSphere or what-have-you to set up a load bal-
ancer that will shuffle traffic between the underlying platform’s network and your
Kubernetes cluster’s internal network.

The more idiomatic way in Kubernetes is to have the Service as an internal thing and
to provide a Kubernetes Ingress that knows how to listen for outside world traffic and
send it to the Kubernetes Service. If you look carefully, you might have realized that
Routes roll up both of these problems. It deals with the business of wiring Ingresses
and Kubernetes Services on your behalf. Easy peasy.

But a Knative Service, as we’ve seen before, is not purely about networking stuff.
Instead, it rolls up Configurations and Routes; it’s a high-level statement of all the
things you want Knative to do for a particular piece of software.

I know the name collision here is less than ideal. It’s passable for folks who are new
to both Knative and Kubernetes, for whom we can say “just ignore the Kubernetes
stuff as much as possible.” For seasoned Kubernetes pros, it's a bit annoying. As it
happens, “seasoned pros” is a decent description for some of the folks who
designed Knative. The name “Service” was not chosen by accident and, | promise
you, there were naming discussions that took bikeshedding to new and exciting lev-
els. “Service” came out as the least worst.

The anatomy of TrafficTargets

I said earlier that traffic is the meat of Routes. Then, while that thought sizzled, I
dropped it. Now it’s time to look more closely at targets because these are used for
both spec and status.

4.3.1

The anatomy of TrafficTargets 85

configurationName and revisionName

In listing 4.3, I started with a configurationName. By the time Knative Serving finished,
my Route pointed at a revisionName. And then I neglected to ask any hard questions.

Such as: can you set revisionName on the spec? Yes, you can, and in the same way
as a configurationName. Let’s update our YAML (listing 4.6), renaming the Route to
avoid fuss, then apply it (listing 4.7).

Listing 4.6 Configuring a revisionName

apiVersion: serving.knative.dev/v1l
kind: Route
metadata:
name: route-revname-example
spec:
traffic:
- revisionName: hello-example
latestRevision: true
percent: 100

Listing 4.7 Angriness about 1latestRevision
$ kubectl apply -f example.yaml

Error from server (InternalError): error when creating "example.yaml":
“»Internal error occurred: admission webhook "webhook.serving.knative.dev"
“>denied the request: validation failed: may not set

“»revisionName "hello-example" when latestRevision is true:
“»spec.traffic[0].latestRevision

The first thing I learn in listing 4.7 is that I can’t set a revisionName while latest-
Revision is true. To avoid learning what the heck that means, I just mark it as false
and continue on my merry way through the following listing.

Listing 4.8 This time for sure

S kubectl apply -f example.yaml
route.serving.knative.dev/route-revname-example created
hooray!

$ curl -I http://route-revname-example.default.example.com
HTTP/1.1 404 Not Found

date: Thu, 06 Feb 2020 21:33:28 GMT

server: istio-envoy

transfer-encoding: chunked

booo!
Listing 4.8 looked promising at first and then, it wasn’t promising at all. What hap-

pened? The following listing reveals the answer, which is that three different things
are wrong. The code annotations explain why.

86

CHAPTER 4 Routes

Listing 4.9 Unhappiness abounds

$ kn route describe route-revname-example

Name : route-revname-example

Namespace: default

Age: 4d

URL: http://route-revname-example.example.com

Unsurprisingly, the

Traffic Targets:
* J combination of the other

Conditions: two conditions means that
OK TYPE AGE REASON the tpP-IeyeI Ready
!'! Ready 4d RevisionMissing < condition is I1.
!l AllTrafficAssigned 4d RevisionMissing <+ AllTrafficAssigned is !! (bad)
?? IngressReady 44

because of RevisonMissing. It
makes sense: if the Revision is
missing, then it’s impossible
to assign traffic.

IngressReady is 22, meaning unknown. Again, this
makes sense. Without a place to send traffic, Knative
can’t even begin to work out the Ingress situation.

Before I leave, I'm going to first point out that if you’d relied on kubectl apply to sig-
nal that things had gone wrong, you would be out of luck. It helps to remember that
kubectl is responsible for submitting the spec, but it is not necessarily in charge of
reporting the status of that particular submission. If you want to know how the story
ends, you need to come back and ask. This is one spot where kn has a nicer experi-
ence as an interactive CLI tool if you’re working through Services—it will wait for a
Route to look good before it declares success.

Let’s assume for a second that I know what I'm doing and use the name of a Revi-
sion that actually exists (shown in the next listing). And then, we’ll see if it works (list-
ing 4.11).

Listing 4.10 Configuring a revisionName, take 2

apiVersion: serving.knative.dev/v1l
kind: Route
metadata:
name: route-revname-that-works-example
spec:
traffic:
- revisionName: hello-example-zcttz-8
latestRevision: false
percent: 100

Listing 4.11 Hooray!

$ kubectl apply -f example.yaml
route.serving.knative.dev/route-revname-that-works-example created
$ curl http://route-revname-that-works-example.default.example.com

Hello world: First

4.3.2

The anatomy of TrafficTargets 87

What happens if you set both configurationName and revisionName? The answer, as
the folowing listing shows, is that you make Knative mad. You can only set one of these
at a time.

Listing 4.12 Just one name, please

expected exactly one, got both:

spec.traffic[0] .configurationName, spec.traffic[0].revisionName

latestRevision

The latestRevision key is provided as a courtesy for those who also provide a
configurationName. By setting this to true, you ask Knative Serving to update the
Route to point at the newest Revision at any given time. If this wasn’t the case, you'd
wind up having to (1) update the Configuration, (2) find the latest Revision, and then
(8) update the Route yourself.

This connection to Configurations is why I had trouble earlier when I just switched
from configurationName to revisionName. A Revision, by itself, does not know if it is
the latest. The concept of “latest-ness” belongs to a Configuration.

When you set latestRevision to false, or omit it entirely (which gets counted as
false), you will need to provide a revisionName. This is referred to as a “pinned”
Route. This means that when the Configuration changes, the Route will not change
automatically to point to a new Revision. It will keep pointing where it’s already point-
ing. Taken together, table 4.1 shows what you get.

Table 4.1 How latestRevision and names interact

revisionName is set configurationName is set

latestRevision is true

latestRevision is
false or missing

Nope. You asked for both pinned
and floating behavior. Pick one!

OK. The Route is pinned to the
Revision. Changes to the Configu-
ration will be ignored.

OK. The Route updates to point at
the latest Revision of a Configura-
tion.

Nope. You said you wanted to pin
the Route to a particular Revision,
but you didn’t provide a name.

When you use kn service create or submit a Service record using kubectl, latest-
Revision defaults to true. This is a sensible default because it requires the least effort

from a developer.

But if you are using a tool to more deliberately control traffic allocations, then
what you don’t want is for Configurations to shuffle the world beneath you. In that sit-
uation, latestRevision: false tells Knative that you will keep your own routing books.

88

4.3.3

CHAPTER 4 Routes

tag

Way, waaaay back in chapter 2, I performed the cool party trick shown in the following
listing.

Listing 4.13 Splitting traffic 50/50

$ kn service update hello-example \
--traffic hello-example-bgbbr-2=50 \
--traffic hello-example-nfwgx-3=50

Updating Service 'hello-example' in namespace 'default':

0.057s The Route is still working to reflect the latest
"> desired specification.

0.072s Ingress has not yet been reconciled.

1.476s Ready to serve.

Service 'hello-example' updated with latest revision 'hello-example-nfwgx-3'
"(unchanged) and URL: http://hello-example.example.com

$ curl http://hello-example.example.com
Hello Second!

$ curl http://hello-example.example.com
Hello world: Second

The gist was that using --traffic enabled me to set routing percentages on particu-
lar Revisions. Sometimes, though, I don’t want percentages—I want certainties. Sup-
pose I have two Revisions, rev-1 and rev-2. If I want to be sure to hit rev-1, I can set
its percentage to 100%.

This might not be what I want, however. While it guarantees that my requests all go
to rev-1, it also guarantees that everyone’s requests will as well. If my purpose was to
debug a flaky function, this is going to cause some problems. What’s needed is to sep-
arate two different problems:

= How do I divvy up traffic between Revisions using a shared name?
= How can I refer to Revisions directly?

Setting a tag is what gives us the ability to directly target a particular Revision. Let’s
assume I've created a Service with two Revisions. I want to tag these satu (“one”) and
dua (“two”), respectively.? It looks like the next listing.

Listing 4.14 Setting a tag

$ kn service create satu-dua-example \
--image gcr.io/knative-samples/helloworld-go \
--env TARGET=Satu

2 Proof, if any was required, that three years of studying Bahasa Indonesia in middle school achieved approxi-
mately nol, because Saya tidak bisa bahasa Indonesia.

satu-dua-
example-
brvhy-1 has
the tag satu
attached to
it. Likewise,
satu-dua-
example-
snznt-2 has
dua attached.

The anatomy of TrafficTargets 89

... creation of Service and a Revision, "satu-dua-example-brvhy-1"

$ kn service update satu-dua-example \
--env TARGET=Dua

... another Revision, "satu-dua-example-snznt-2"

$ kn service update satu-dua-example \
--tag satu-dua-example-brvhy-l=satu \
--tag satu-dua-example-snznt-2=dua

Updating Service 'satu-dua-example' in namespace 'default':

0.052s The Route is still working to reflect the latest
"> desired specification.

0.246s Ingress has not yet been reconciled.

1.568s Ready to serve.

Service 'satu-dua-example' with latest revision 'satu-dua-example-snznt-2'
“» (unchanged) is available at URL:
= http://satu-dua-example.default.example.com

Note that adding a tag doesn’t cause a new Revision to be stamped out. That’s because
tag is part of a Route, not part of a Configuration. And besides, if tagging Revisions
created new Revisions, you’d never catch up.

What does the world look like now? I check the following listing for revelations.

Listing 4.15 Three targets

$ kn route describe satu-dua-example

Name : satu-dua-example The main URL is still available. Anything
Namespace: default sent to this URL flows according to the
Age: led configuration of the Traffic Targets.
URL: http://satu-dua-example.default

- le.
exampre. com 100% of traffic is flowing to @latest

service: satu-dua-example because | didn’t update any --traffic
) settings while updating --tag. The @Iatest
Traffic Targets: tag is a floating pointer to the latest
100% elatest (satu-dua-example-snznt-2) Revision. This is the same Revision that will
be pointed to when latestRevision is true.
> 0% satu-dua-example-brvhy-1 #satu

URL: http://satu-satu-dua-example.default

= _example.com
P Now the fun bit: in addition

to the normal URL, | now

i 0% satu-dua-example-snznt-2 #dua have special URLs that on
URL: http://dua-satu-dua-example.default p . Y
- route to particular tags.
.example.com
Conditions:
... snip

I’ll test the theory with the following listing.

90

CHAPTER 4 Routes

Listing 4.16 One, two

$ curl http://satu-satu-dua-example.default.example.com
Hello Satu!

$ curl http://dua-satu-dua-example.default.example.com
Hello Dual!

Note that these URLs follow a predictable pattern. The main URL, where traffic flows
according to the Traffic Target rules, includes the service name only (http://<service-
name>.default.example.com). But each tagged Revision now has a URL of the form
http://<tag><servicename>.default.example.com. In these, the main URL is prepended
with the tag. Hence, satu-satu-dua-example points to #satu, which points to satu-
dua-example-brvhy-1.

Now that I have tags, I can use those to split up traffic, as the next listing demon-
strates. This is exactly the same as splitting traffic using a Revision name.

Listing 4.17 Splitting traffic between tags

$ kn service update satu-dua-example \
--traffic satu=50 \
--traffic dua=50

... updates

$ kn route describe satu-dua-example

Name: satu-dua-example

Namespace: default

Age: 3h

URL: http://satu-dua-example.default.example.com
Service: satu-dua-example

Traffic Targets:
50% satu-dua-example-brvhy-1 #satu
URL: http://satu-satu-dua-example.default.example.com
50% satu-dua-example-snznt-2 #dua
URL: http://dua-satu-dua-example.default.example.com

In listing 4.17, T can see that traffic will be split 50/50 between satu and dua. What I
no longer see is @latest as one of the targets. By setting the traffic totals explicitly,
I told Knative Serving that I know what I'm doing. Under the hood, this shows up as
latestRevision: false.

What happens if I create another Revision? Something you might not have expected:
the Revision exists but can’t receive traffic. The following listing shows how it will look
in kn.

The anatomy of TrafficTargets 91

Listing 4.18 No love for Tiga

$ kn service update satu-dua-example --env TARGET=Tiga
... creates new Revision

$ kn service describe satu-dua-example

Name : satu-dua-example

Namespace: default

Age: 3h

URL: http://satu-dua-example.default.example.com

Revisions: QJ Instead of seeing 0%,
+ satu-dua-example-rbbxk-5 I'see a + symbol.

= (current @latest) [3] (36s)
Image: gcr.io/knative-samples/helloworld-go (pinned to 5ea96b)
50% satu-dua-example-snznt-2 #dua [2] (3h)
Image: gcr.io/knative-samples/helloworld-go (pinned to 5ea96b)
50% satu-dua-example-brvhy-1 #satu [1] (3h)
Image: gcr.io/knative-samples/helloworld-go (pinned to 5ea96b)

... conditions
The arrow points to the new thing in listing 4.18. Right now, this Revision isn’t excluded
because of how routing arithmetic works when given zeroes—it’s excluded from the

routing arithmetic altogether. You can figure this out from the next listing, because if
you look at the Route instead of the Service, the third Revision isn’t there at all.

Listing 4.19 No Tiga

$ kn route describe satu-dua-example

Name : satu-dua-example

Namespace: default

Age: 3h

URL: http://satu-dua-example.example.com
Service: satu-dua-example

Traffic Targets:
50% satu-dua-example-brvhy-1 #satu
URL: http://satu-satu-dua-example.default.example.com
50% satu-dua-example-snznt-2 #dua
URL: http://dua-satu-dua-example.default.example.com

Maybe you’re still confused. I think a diagram is in order (figure 4.1).

At face value, this whole dance may seem a bit silly. Why create a Revision if you're
not going to feed it any traffic’ Shouldn’t the latest and greatest always be in the spot-
light? Often, yes. In development environments, definitely. That’s why the default
Knative Serving behavior sets latestRevision: true and then updates a floating
@latest tag automatically.

But when you manually assign traffic percentages, this automatic behavior is dis-
abled and you are given full control. This is a reasonable thing to do because, otherwise,

92

CHAPTER 4 Routes

satu-dua-example Service

satu-dua-
example satu-dua-example Configuration
Route
) 50% satu-dua-example-brvhy-1
Traffic target 1 Revision
Internet
0,
Traffic target 2 50%
satu-dua-example-snznt-2

Revision

No satu-dua-example-rbbxk-5
tag Revision

Figure 4.1 The relationship of Services, Routes, Configurations, Revisions, and Tags

you’ll be constantly stuck in weird slapfights with Serving’s controllers. Setting traffic
manually is a useful escape hatch.

Mind you, escaping is sometimes a mistake. Happily, you can undo it pretty easily
because @latest is always available as a tag. Take a peek at the following listing.

Listing 4.20 Switching the autopilot back on

$ kn service update satu-dua-example \
--traffic satu=33 \
--traffic dua=33 \
--traffic @latest=34

... updates

S kn service describe satu-dua-example

Name : satu-dua-example

Namespace: default

Age: 3h

URL: http://satu-dua-example.example.com
Revisions:

34% @latest (satu-dua-example-rbbxk-5) [3] (20m)

Image: gcr.io/knative-samples/helloworld-go (pinned to 5ea96b)
33% satu-dua-example-snznt-2 #dua [2] (3h)

Image: gcr.io/knative-samples/helloworld-go (pinned to 5ea96b)
33% satu-dua-example-brvhy-1 #satu [1] (3h)

Image: gcr.io/knative-samples/helloworld-go (pinned to 5ea96b)

The anatomy of TrafficTargets

... conditions

$ kn route describe satu-dua-example

Name : satu-dua-example

Namespace: default

Age: 3h

URL: http://satu-dua-example.example.com
Service: satu-dua-example

Traffic Targets:

33% satu-dua-example-brvhy-1 #satu

URL: http://satu-satu-dua-example.example.com
33% satu-dua-example-snznt-2 #dua

URL: http://dua-satu-dua-example.example.com
34% @latest (satu-dua-example-rbbxk-5)

... conditions

93

In listing 4.20, I can now see that my third Revision is visible in both the Service and the
Route. And, in figure 4.2, I can see what it looks like.

satu-dua-
example
Route

satu-dua-example Service

satu-dua-example Configuration

) 33% satu-dua-example-brvhy-1
Traffic target 1 Revision
0,
Traffic target 2 33%
Internet > satu-dua-example-snznt-2
Revision
49
Traffic target 3 34%

satu-dua-example-rbbxk-5

Revision

Figure 4.2 After @latest is set as a target

But let’s keep rolling. I've re-enabled @latest and, under the hood, the latest-
Revision: true setting has been placed on satu-dua-example-rbbxk-5. If I add a
fourth Revision, what will happen to the third Revision? Will it still get traffic? Will the
others shuffle down, or something? Saunter to the next listing for an answer.

CHAPTER 4 Routes

Listing 4.21 Adding a fourth Revision and looking at the Service afterward

$ kn service update satu-dua-example --env TARGET=Empat
... creates new Revision

$ kn service describe satu-dua-example

Name : satu-dua-example

Namespace: default

Age: 3h

URL: http://satu-dua-example.example.com
Revisions:

34% @latest (satu-dua-example-lglgj-7) [4] (38s)

Image: gcr.io/knative-samples/helloworld-go (pinned to 5ea96b)
33% satu-dua-example-snznt-2 #dua [2] (3h)

Image: gcr.io/knative-samples/helloworld-go (pinned to 5ea96b)
33% satu-dua-example-brvhy-1 #satu [1] (3h)

Image: gcr.io/knative-samples/helloworld-go (pinned to 5ea96b)

... conditions

$ kn route describe satu-dua-example

Name : satu-dua-example

Namespace: default

Age: 3h

URL: http://satu-dua-example.example.com
Service: satu-dua-example

Traffic Targets:
33% satu-dua-example-brvhy-1 #satu
URL: http://satu-satu-dua-example.example.com
33% satu-dua-example-snznt-2 #dua
URL: http://dua-satu-dua-example.example.com
34% @latest (satu-dua-example-1qglgj-7)
... conditions

Something unfortunate has happened in listing 4.21, which is that my third Revision
has vanished entirely. The fourth Revision, satu-dua-example-1lglgj-7, has taken
over as @latest. But neither route describe nor service describe shows any other
signs of its predecessor.

The good news is that the Revision has not vanished forever. I can see this quickly
enough with kn revision list, as the next listing reveals.

Listing 4.22 Peekaboo

S kn revision list

NAME TRAFFIC TAGS GENERATION CONDITIONS READY
satu-dua-example-1lglgj-7 34% 4 3 0K / 4 True
satu-dua-example-rbbxk-5 3 3 OK / 4 True
satu-dua-example-snznt-2 33% dua 2 3 OK / 4 True
satu-dua-example-brvhy-1 33% satu 1 3 0K / 4 True

"SERVICE", "AGE" and "REASON" excluded from listing

The anatomy of TrafficTargets 95

Listing 4.22 shows the whole gang, complete with traffic percentages and tags. Fig-
ure 4.3 shows the whole gang in diagrammatic form.

satu-dua-example Service

satu-dua-
example satu-dua-example Configuration
Route
33% satu-dua-example-brvhy-1
Traffic target 1 @ Revision
0,
Traffic target 2 33%
Internet - satu-dua-example-snznt-2
Revision
49
Traffic target 3 34%
No satu-dua-example-rbbxk-5
tag Revision

satu-dua-example-1lqglgj-7
Revision

Figure 4.3 After adding a fourth Revision, the third Revision no longer receives traffic.

Did I lie earlier when I said you could re-engage autopilot using @latest? The answer
is, as usual, “sort of.” You could re-engage the way that @latest acts as a floating target
based on the creation of Revisions, but this doesn’t unpin anything else that you’ve
manually configured. Only the fraction that was assigned to @latest will float. Every-
thing else is fixed in place until you change it.

And if you stop to think about it, this means that the fully automatic setting is actually
a special case of the partly automatic setting. If 100% of traffic flows to @latest, which is
the default rule, then everything looks fully automated. For development, that’s an excel-
lent experience, but in production, you may want to exert a more precise control.

The trade-off is that the illusion of magic and automation is shattered once we
begin to pin things down. And because we’ve shattered the illusion, let’s just keep
going and grind it into dust by moving tags across Revisions.

My first instinct is to just use --tag again, but with a different target. This turns out
not to work, which the following listing illustrates.

96

CHAPTER 4 Routes

Listing 4.23 Tags can’t be overwritten in-place

$ kn service update satu-dua-example --tag satu-dua-example-1lglgj-7=satu

refusing to overwrite existing tag in service,
"> add flag '--untag satu' in command to untag it

But luckily, I get a hint from kn about what to do. I need to --untag the target to free
up the tag itself. I can see how that goes in the next listing.

Listing 4.24 Untagging satu

S kn service update satu-dua-example --untag satu
... Route gets updated

And now that I've untagged it, what happens to satu’s 33% share of traffic? The fol-
lowing listing shows us.

Listing 4.25 The Route after untagging satu

$ kn route describe satu-dua-example

Name : satu-dua-example

Namespace: default

Age: 4h

URL: http://satu-dua-example.example.com
Service: satu-dua-example

Traffic Targets:
33% satu-dua-example-brvhy-1
33% satu-dua-example-snznt-2 #dua
URL: http://dua-satu-dua-example.example.com
34% @latest (satu-dua-example-1glgj-7)

+*

conditions

Knative Serving opts for safety. This means that as it removes the satu tag as the Traf-
fic Target, it substitutes the Revision that was pointed at by the tag. Meaning that the
33% previously assigned to satu is now assigned to satu-dua-example-brvhy-1
instead (figure 4.4)

For users coming through the front door, via the main URL, there will not be a
perceptible change. The traffic is still being split three ways among the same three
Revisions.

For users who were directly hitting the <tag>-<servicename> URLs, there is a per-
ceptible change. That URL stops working and begins to return 404s.

But now, at least, the tag is free to be reassigned. I perform that reassignment in
listing 4.26.

The anatomy of TrafficTargets 97

satu-dua-example Service

satu-dua-
example satu-dua-example Configuration
Route
33% [No satu-dua-example-brvhy-1
Traffic target 1 ta
\ g9 Revision

Traffic target 2 33%
Internet - L_’> satu-dua-example-snznt-2
Revision
34%

Traffic target 3
No satu-dua-example-rbbxk-5
tag Revision

satu-dua-example-1lqglgj-7
Revision

Figure 4.4 The first Revision still receives 33% of the traffic after the #satu tag is removed.

Listing 4.26 Assigning satu to a different Revision

$ kn service update satu-dua-example --tag satu-dua-example-lglgj-7=satu

... updates the Route

But when I inspect the Route, I am again caught out by an unexpected behavior. The
next listing sheds some light.

Listing 4.27 Hmmm

$ kn route describe satu-dua-example

Name : satu-dua-example

Namespace: default

Age: 4h

URL: http://satu-dua-example.default.example.com
Service: satu-dua-example

Traffic Targets:
33% satu-dua-example-brvhy-1
33% satu-dua-example-snznt-2 #dua
URL: http://dua-satu-dua-example.default.example.com

98

CHAPTER 4 Routes

34% @latest (satu-dua-example-1glgj-7)
0% satu-dua-example-1glgj-7 #satu
URL: http://satu-satu-dua-example.default.example.com

What I expected to see in listing 4.27 was that the 33% of traffic currently going to the
untagged Revision satu-dua-example-brvhy-1 would snap over to the newly tagged
satu-dua-example-1glqgj-7 once it took over the satu tag. But this didn’t happen.

On reflection, it should be clear why. When I untagged the first time, Knative’s
knowledge of satu was destroyed, and it subbed in the Revision to ensure that the
Route would continue to function largely as before. When I reintroduce satu, Knative
has forgotten its previous existence. It gets the same treatment that any other tag
would get: a direct URL is created, the tag is added to the Route, but 0% traffic is
assigned. Afterward, it looks like figure 4.5.

satu-dua-example Service

satu-dua-
example satu-dua-example Configuration
Route
) 33% (No satu-dua-example-brvhy-1
Traffic target 1 ta
\ g9 Revision
0,
Traffic target 2 33%
Internet satu-dua-example-snznt-2
Revision
0,
Traffic target 3 34%
. satu-dua-example-rbbxk-5
Traffic target 4 0% Revision
satu-dua-example-1qglgj-7
Revision

Figure 4.5 Adding the #satu tag doesn’t shift traffic allocations.

If you’re not confused, it’s only because you got bored. The purpose of --tag and
--traffic is to allow you to precisely control how deployment occurs. For right now,
if you are just kicking tires, the default @latest behavior is fine. It will behave like a

Summary 99

Blue/Green deployment, traffic won’t get dropped, all will be well. I’ll sketch how to
use the more advanced capabilities in chapter 9.

Summary
Routes are how you describe to Knative where you want traffic to come from
and go to.
Routes are included as part of Services.
You can use kn routes subcommands to 1ist and describe Routes.
Routes can have various conditions; the main ones include Al11TrafficAssigned,
IngressReady, and CertificateProvisioned.
The heart of a Route is its list of traffic targets. These are visible in kn as Traffic
Targets and visible in YAML under spec.traffic and status.traffic.
Traffic Targets can have a configurationName, revisionName, or a tag.
Traffic Targets can be “automated” by using latestRevision: true or by using
the special @latest tag.
Tags are names that you can attach to particular Revisions and then use as
names for targeting. You can add and remove tags at will.
The rules for how tags and @latest behave are not completely obvious. You can
skip using tags until you need precise control of your deployment process.

Autoscaling

This chapter covers

Problems that autoscalers set out to solve

How Knative Serving's autoscaling works under
various scenarios

A walkthrough of the core autoscaling algorithm

Configuration options and how these affect
autoscaling

Autoscaling awakens the engineering imagination in a way that few topics do. Most
of the systems we build seem lifeless or mindless. But to build a system that appears
to breathe is somehow uniquely fascinating. Depressingly, though, autoscaling turns
out to be easy to spell, yet hard to achieve. The system that breathes peacefully
today is yelling obscenities tomorrow.

My goal in this chapter is to explain the basic structure and functioning of the
components responsible for the management of scaling in Knative Serving: the
Autoscaler, the Activator, and the Queue-Proxy. Most of the time, you will not need
to think of these because these embody the accumulated observations and insights
of the Knative authors. But, these are dynamic systems and exhibit dynamic com-
plexity, which means that you will occasionally be surprised. A grasp of the compo-
nents will help you to moderate your surprise.

100

5.1

The autoscaling problem 101

I refer to the Autoscaler, Activator, and Queue-Proxy as the “Autoscaling Triad.”
This name is meant to convey that these are jointly responsible for the behavior of
autoscaling; it’s not so much about whether each of these is autoscaled in themselves
(answer: they are, sort of, but it doesn’t matter for us). Their respective roles and
responsibilities have evolved throughout the life of the Knative project to their cur-
rent allocations.

The autoscaling problem

As a problem, autoscaling is easy to describe. I have demand. I want to serve that
demand. I obtain some amount of capacity to serve the demand. I would like the
business of calculating and obtaining capacity to be automated.

Sometimes, I would like the calculations and capacity provisioning steps to be
done ahead of anticipated demand (usually called predictive autoscaling), and some-
times I want the decisions to be made on short notice according to current condi-
tions (reactive autoscaling). Knative’s Pod Autoscaler (KPA) is classified as a reactive
autoscaler.

If you stare for a bit, predictive and reactive autoscalers turn out to have the same
basic structure: a control loop. What distinguishes these is different windows of obser-
vation and frequency of decisions.

This control loop, whether slow-moving or fast-moving, is intended to reduce mis-
match between demand and capacity (figure 5.1). But even that definition hides vol-
umes of complexity. For example, how is demand measured? How is capacity
measured? The Horizontal Pod Autoscaler (HPA) that’s included in Kubernetes
defaults to using CPU consumption as its measurement for both demand and capac-
ity. This certainly makes its calculations easy, but CPU is often a poor proxy for
demand as an end user might perceive it. If I order a pizza, I am not interested in the
temperature of the pizza oven. I am interested in timely delivery.

Demand
Desired l
Desired ratio of instances Pool of
s Autoscaler .
demand : instances instances
Observed demand Figure 5.1 The Autoscaler
observed instances viewed as a control loop.

But this is not the hardest thing that the KPA has to solve. The tricky problem is scal-
ing down to zero and scaling up from zero. The transition from 1 copy to 10 copies to
100 copies of your software is mostly a quantitative difference. It is a difference in
count. But the transition between zero and one is qualitative. It is a difference in kind.

102

CHAPTER 5 Autoscaling

Paradoxically, this qualitative difference arises because we want to conceal that there
is a qualitative difference. End users are meant to be blissfully ignorant that software has
scaled down to zero or up to a thousand. They just want to see a timely response.

To achieve this, the software must be able to buffer traffic when there are no
instances. It must be able to observe demand—traffic—in order to make sensible scal-
ing decisions. Once it has made such decisions, it must ensure that buffered traffic
doesn’t overwhelm instances. The problem for Knative is to deal with the autoscaling
problem sensibly, subject to these basic constraints:

= End users should not see an error just because there are no running copies of
software.

= Software should not be overwhelmed by demand.
= The platform shouldn’t waste resources unnecessarily.

The triad behaves differently along two axes: number of requests arriving and number
of instances available to serve requests. I can loosely divide each into three categories:

= Requests
— Zero requests
— One request
— Many requests
= Instances
— Zero instances
— One instance

— Many instances

Together this gives roughly nine different operating regimes (figure 5.2) in which the
Autoscaler is variously scaling up, down, or simply staying put. You can refer to figure 5.2
each time you need to quickly predict (roughly) what the KPA will do. One instance,
many requests? That’s a panic. Zero requests, zero instances? Time for snoozing.

Scale up

Many requests

Scale
down

Scale to 1 No change

One request

Stay at 0

Zero requests

Zero instances One instance Many instances Figure 5.2 The Grid of Fortune

5.2

Autoscaling when there are zero instances 103

In this chapter, I’ll organize my discussion by instances first and requests second on
the theory that instances coming and going magically is what you came to read about.
Requests coming and going is more or less like the tides, background radiation, or
pizza delivery: very important, but largely beyond your control.

Autoscaling when there are zero instances

When there are no instances, the Activator (which you first met in chapter 2) is the
undisputed star of the show. Or, perhaps more accurately, it’s the unsung hero. This is
because when a Revision is scaled down to zero, the Activator becomes the target for
any traffic that will arrive.

Perhaps this is a surprise, given all the pretty diagrams in the previous chapter.
Traffic appeared to flow magically from traffic targets in the Route directly to individ-
ual Revisions, perhaps using tags as targets. Further inspection reveals that I drew
direct arrows. Arrows! Where was the Activator when there were arrows at large?

We can begin to understand what’s going on by zooming in a bit on the magical
arrows in figure 5.3. To make room in the diagram, let’s assume there’s only one Revi-
sion. I'm also going to ditch all of the fluff about Service, Configuration, and Route.
Let’s just focus on traffic and Revisions (figure 5.4).

In the last chapter, the explanation I gave was that the Route sends 100% of traffic
to the @latest tag, which happens to be hanging off the sole Revision, autoscaler-
example-gstha-1. What is new in figure 5.4 is the dotted box saying “No instances.”
And now for the big reveal (figure 5.5).

satu-dua-example Service

satu-dua-
example satu-dua-example Configuration
Route
) 33% satu-dua-example-brvhy-1
Traffic target 1 Revision
0,
Traffic target 2 33%
1 satu-dua-example-snznt-2
Revision
49
Traffic target 3 34%

satu-dua-example-rbbxk-5
Revision

Figure 5.3 Lies!!

104 CHAPTER 5 Autoscaling

autoscaler-example-gstha-1
Revision

100% .
No instances

Figure 5.4 Just the Revision

autoscaler-example-gstha-1
Revision

100% . .
0 Activator --------- L No instances

Figure 5.5 Enter the Activator

Figure 5.5 shows the world when you have configured Routes and Revisions, but have
no running instances. The Activator becomes the actual target of traffic management.
The fancy dashed line indicates that, in actual fact, no traffic is actually flowing right
now. No traffic, no instances. Just the Activator, listening.

Under the hood, this is accomplished with some fairly fancy footwork. Several
kinds of footwork, actually, depending on whether you are using Istio as a fully-
fledged service mesh that takes over all networking functionality. But to an outside
requester, or to someone using kn, it makes no difference. You can, and I believe you
ought to, ignore the details. Let’s look at what happens when a request arrives for a
Revision that has no running instances (figure 5.6).

Breaking down the sequence diagram in figure 5.6, we get this:

A user sends a GET request. It first reaches the gateway, which is currently send-
ing traffic to the Activator.

The Activator buffers the request, then pokes the Autoscaler.

The Autoscaler makes a scaling decision to scale up to 1. The Autoscaler
updates the Knative Service to the desired state of one instance.

Ultimately, this leads to the launch of a new Revision instance.

The Autoscaler notes that instances have climbed to one.

The Activator notices that a Revision instance is now live.

The Activator now forwards the request it buffered to the Revision instance.
The Revision sends its response.

The response then flows from the Activator, through the gateway, to the user.

Autoscaling when there are zero instances 105

.]) Revision
P\ Gateway Activator Autoscaler KService Instance
Us_;er
M cET (1)
GET
] Poke 2 Scale
Scale up o
[Scale up
Scaled up
Scaled Up
GET _i_
© | 200 ox |20 ox 9
200 OK i

Figure 5.6 The First Request waltz

After this process is concluded, a single instance is now running (figure 5.7). Note,
however, that in figure 5.7, traffic is still flowing through the Activator. This is a safety
measure called burst capacity. The Activator performs a kind of mirror calculation to
the Autoscaler. It’s not deciding how many instances should be running based on the
number of requests. Instead, it decides whether to remain on the data path based on
how many requests it thinks available instances can actually service.

autoscaler-example-gstha-1
Revision

#1

100% . 100%
0 Activator ———»

Figure 5.7 A single instance

This is most noticeable when scaling from zero. When there are no instances running,
the available capacity is necessarily zero. But it’s true up until several instances are
running.

106

5.21

5.3

CHAPTER 5 Autoscaling

The Autoscaler panics

You might be wondering what happens if many requests show up at once. In the previ-
ous example, I discussed going from zero to one instance, triggered by going from
zero to one requests. It was all very polite and calm. But if many requests show up in a
short time, the Autoscaler does something different: it panics.

That’s the real name: panic mode. I think it’s a good name, giving some sense of the
degree to which behavior shifts. In panic mode, the Autoscaler does two main things
differently from its normal mode.

First, it becomes more sensitive to current request counts. The Autoscaler typically
makes its decisions based on a trailing average of the past 60 seconds. In panic mode,
this drops to 6 seconds. This makes the Autoscaler more sensitive to bursty traffic. You
might wonder why panic mode is needed at all in that case. Couldn’t we just use a
short window and always remain sensitive? Don’t I want the Autoscaler to act quickly?

You might now, but you won’t. Relying on a short window makes the Autoscaler
vulnerable to noise in the signal. There is a certain amount of randomness in the
arrival of requests; periods of tightly-packed activity or deafening silence that appear
in the space of a few seconds can be smoothed out over one minute. An Autoscaler
that’s always highly sensitive would end up “seeking.” That is, it would keep fiddling
with its desired count of instances. Imagine you managed a car factory and ran around
hiring and firing workers based on sales figures reported in the last hour. You would
pretty soon be fired yourself.

So that explains why panic mode is a special mode. But won’t it still exhibit seeking
behavior?

Which leads to the second thing that’s different about panic mode: it does not
scale down. The Autoscaler still performs its calculations and, given the increased sen-
sitivity, the calculated value from a 6-second window is going to jump around like fleas
in a bouncy castle. But in the interests of safety, the Autoscaler simply ignores any
decision to scale down until the panic is over. This prevents seeking behavior because
the system can only move one way—up.

Autoscaling when there are one or a few instances

This is a distinct regime from the scaled-to-zero and scaled-to-many cases. Typically,
you wind up here if you are in a steady state, where traffic is relatively constant over a
minute with slow changes in demand.

This is common when you’re dealing with humans because demand generated by
humans follows fairly regular cycles in their usage. Over the course of a day, a week or
a year, you can find repeating patterns.

Statisticians refer to this property as seasonality. Adjusting for seasonality is a big
deal in order to distinguish “something unusual is going on” from “yeah this happens
every Monday.” If we were building a predictive autoscaler, then this is useful (Net-
flix’s proprietary Scryer does this).

Autoscaling when there are one or a few instances 107

Seasonality is a problem for predictive autoscalers, but not so much for reactive
autoscalers like Knative’s. Whether an increase is due to seasonality or due to some
irregular surge in demand doesn’t matter to Knative. It will try to match capacity to
demand either way.

Depending on its exact configuration, the Activator will remove itself from the
data path at this level of activity. Instead, the responsibility for buffering requests now
falls on the Queue-Proxy.

The Queue-Proxy is a sidecar container. When you submit a Service or Configura-
tion, Knative adds the Queue-Proxy to the Pod specification that it ultimately sends to
Kubernetes on your behalf. The Queue-Proxy runs in a separate container from your
code, butitis given control of HTTP networking (figure 5.8). Every instance of a Revi-
sion will have its own Queue-Proxy running.

autoscaler-example-gstha-1
Revision

Queue- Your #1
Proxy code

100%) 100%
w Activator ———»

Figure 5.8 The Activator and the Queue-Proxy

This is for two reasons. The first is that the Queue-Proxy is a small, shallow buffer in
front of your app to smooth out the flow of requests and responses. The second,
related purpose is to gather request statistics for the Autoscaler.

But wait, doesn’t this mean there are two buffers now—Activator and Queue-Proxy?
It does, yes. But for good reasons.

First, once a request is sent to a Revision instance, it cannot be sent to a different
instance. If the Queue-Proxy buffer was deep, you would see increased response-time
variance and error rates. Requests served by warm, healthy instances are served
quickly, so the buffer doesn’t fill up much. Requests served by slow, sickly instances
can pile up fast. Overall, a larger fraction of total time spent by requests will be from
requests that got stuck on unhealthy instances than would otherwise be the case. Shal-
lowness at the Queue-Proxy buffer means that instances struggling to keep up quickly
drop out of the pool of instances where traffic is sent.

Second, there aren’t always two buffers. When enough instances are live and healthy,
the Activator removes itself from the data path. This means that the Queue-Proxy is
the only buffer, though still shallow. The Queue-Proxy is still needed, in this case, to
collect statistics and to perform limited smoothing.

108

5.4

CHAPTER 5 Autoscaling

autoscaler-example-gstha-1
Revision

100% Queue- Your
Queue- Your

#2
Queue- Your

Queue- Your

Figure 5.9 Queue-Proxy works by itself when there are several instances.

Autoscaling when there are many instances

By the time your traffic is running at a high level, Knative will have launched many
instances for you to serve the demand. As noted previously, this means that traffic
flows directly to the Queue-Proxy sidecar sitting next to your code, without Activator
involvement (figure 5.9).

The many instances situation has an interesting property, which is that you need
proportionally smaller increases in capacity as demand rises. An economy of scale,
called the square-root staffing rule, is in play. The name comes from call centers.

Call centers face a problem much like an autoscaler. Demand has seasonality but
is somewhat random from moment to moment. Customers hate waiting, but call
center companies hate paying for idle agents (“hate” being a word that comes up
often in the context of call centers). How many call center employees should be
assigned to each shift?

You might think that ten times as many calls means ten times as many agents are
needed. But that’s actually not so. The arrival of demand and the time it takes for a
call to be completed are variable. As staff increases, the odds that at least one agent is
available to answer a call right now increases too. After these facts endure some tense
interrogation by queueing theorists, it transpires that increasing staff proportional to
the square root of demand is a decent rule for approximately dealing with demand.

The Autoscaler doesn’t directly apply this rule, but because it tries to target a par-
ticular level of load per instance, it behaves more or less as if it does. At low traffic lev-
els, you will see instances increasing in proportional leaps. At high traffic levels, the
changes will be relatively gentler. Going from one instance to two instances is a 100%
increase. Going from 100 to 101 instances is a 1% increase.

5.5

5.5.1

5.5.2

A little theory 109

A little theory

I’'ve so far described how the Autoscaling Triad of Autoscaler, Activator, and Queue-
Proxy work together in a somewhat narrative fashion. Hopefully, this gave you a taste
of the ebb and flow these three components have when they work in combination. But
now, I want to look more closely at the Autoscaler in itself, partly so that I can point
out various knobs and levers you can adjust.

Sike! You don’t get to do that yet. Let’s first take a second to discuss some basic the-
ory; specifically, that the Autoscaler is a control loop and a queueing system. Along
the way, I will endeavor to personally enrage every control engineer and queueing the-
orist who happens to read my drastically oversimplified descriptions of these abso-
lutely vast topics.

Control

First, control. One form of a control system is a “PID controller.” While the Autoscaler
is not designed as a PID controller, PID control is still a useful framework for thinking
about how the Autoscaler works. (A good introductory book is Feedback Control for Com-
puter Systems by Philipp K. Janert. After that, Feedback and Control for Everyone by Pedro
Albertos and Iven Mareels is a deeper introduction.)

The Pin PID stands for “Proportional.” Proportional control means that the control-
ler’s decisions are related to the size of the difference between desired worlds and actual
worlds. If there is a large difference, the controller makes large moves to correct it. The
Autoscaler makes decisions about desired instances that are based on its calculation of
the gap between demand and capacity. In that sense, it is a proportional controller.

The 7in PID stands for “Integral.” Integral controllers don’t just look at the most
immediate state of the world, they smooth it out over some amount of time. This
means integral controllers are less likely to lurch around. A common way to use inte-
gral control is taking a weighted average of differences between desired and actual.
The Autoscaler calculates desired instances from statistics gathered in two sliding win-
dows (normal and panic), meaning that its reactions have an integral aspect.

The D in PID stands for “Differential.” Differential control adjusts its response based
on how fast the difference between desired and actual is changing. At first glance, that
might look like what proportional control does, but it’s not. “I'm going too fast” is pro-
portional control. “I'm accelerating too hard” is differential control. The Autoscaler
doesn’t calculate the rate of change, so it does not have a differential aspect.

Queueing

Now let’s touch on queueing systems. I mean this in the sense of queueing theory, not
in the sense of particular software systems like RabbitMQ. A queueing system has a few
different terms and variables.'

! Naturally, there are multiple terms for all of these, so it can be difficult to compare discussions between
sources. Even more naturally, there are a bunch of mathematical notations in which A, p, and p battle for
supremacy against L, W, R, and U.

110

CHAPTER 5 Autoscaling

Arrival rate—Represents how demand shows up over time. HTTP requests are
arrivals in this sense.

Server—Represents the thing that does work. Your software is a server in that
sense so, happily, words mean the same thing in two different fields.

Queue length—Constitutes the number of arrivals waiting in a queue to be
processed.

Service time—Represents the time it takes for a server to process the work neces-
sary for one arrival. Service time does not count time spent queueing. For your
software, that’s typically the time between an HTTP request arriving at your
software and the response coming from your software.

Service rate—Represents the amount of work done per time unit. It’s the inverse
of service time. In our field, this is usually called “throughput.”

Wait time—Represents the average amount of time spent queueing for a server.
Residence time—Sums up wait time and service time. You probably call this latency,
depending on how you measure the start and end of a request/response.
Utilization—Indicates the fraction of time the server is busy doing something.
Concurrency—Constitutes the total number of arrivals either waiting in a queue
or being processed.

Easy introductions are hard to come by; this topic is often considered a branch of
probability mathematics. I found Performance Modeling and Design of Computer Systems by
Mor Harchol-Balter to be slow going, but it has the advantage of being specifically
focused on computing systems.

One of the most interesting simple rules that comes out of queueing theory is Lit-
tle’s Law. Using the previous terms, it looks like this (assuming that the Arrival Rate is
less than or equal to the Service Rate):

Average Concurrency = Average Arrival Rate x Average Service Time

Concurrency

A
- Y

Queue length Busy

Arrival rate + Service rate

H_/

Wait time Service time

N
Residence time

Figure 5.10 Some queueing theory terms

A little theory 111

The “average” is important because from moment to moment, the rule might not be
true. But it holds true over the long term, on average, no matter what. You might not
be immediately impressed by this, but it’s actually amazing, because the pattern of
arrivals can take so many different forms. Reliable, square waves? Little’s Law applies.
Sinusoidal waves? Little’s Law. All over the place? Little’s Law. Beta, poisson, logit-nor-
mal, uniform? Little’s Law applies for all of these.

The practical upshot here is twofold. First, you have a fairly useful tool for sanity
checking your understanding of a system. You can use it for back-of-the-envelope esti-
mates of steady-state systems. You can use it to see if the numbers you look at in pro-
duction add up over the long run or whether deeper investigation is required.

Second, you can rearrange the terms. Given any two of the figures, you can work
out what the third must be. This is relevant to the Autoscaler because it gives you two
different ways of configuring it. One is based on concurrent requests, the other on
requests per second. In the previous terms, these are concurrency and arrival rate.
These are related through service time (how quickly your software can process a given
request). But otherwise, in the long run, these are interchangeable. Pick the one you
prefer. Because I'm most used to concurrency, that’s what I'll focus on.

Another useful little finding from queueing theorists is that service time and utili-
zation are also related. You already knew that, of course. I knew it. We all knew it. But
could we predict it, even approximately? Ah ... in the simplest case—a single server
that can process one request at a time—you get this relationship:

Arrival Rate

Utilization = ——————
Service Rate

Seems obvious so far. But now I can do this:

Utilization

Residence time o< Service time x ————r—
1— Utilization

The punchline is that slowdown is exponential with increased utilization (figure 5.11).
The difference between operating at 80% utilization and 90% utilization isn’t 10%.
It’s more like twice as long. And between 98% and 99% isn’t 1% longer. It’s more like
50 times longer. Like the square-root staffing rule, this is an example of where a linear
intuition of how things behave is painfully wrong (table 5.1).

Table 5.1 Exponential hell

Utilization Slowdown Factor

70% 2.33x
80.00% 4 x
90.00% 9 x
95.00% 19 x
98.00% 49 x

112 CHAPTER 5 Autoscaling

Table 5.1 Exponential hell (continued)

Utilization Slowdown Factor
99.00% 99 x
99.50% 199 x
99.90% 999 x
100.00
75.00
S 5000
H
H
®
2500
0.00
50.00% 60.00% 70.00% 80.00% 90.00%

Utilization

Figure 5.11 Utilization slowdowns can get bad in a hurry.

5.6 The actual calculation

OK, enough stalling: I will explain how the Autoscaler algorithm works. I'm going to
use four flowcharts to walk you through it. I'd be flattering myself if I said this was
because I wanted to break the algorithm up into logical units. The main reason is that
each flowchart has to fit on a single page. But for partial self-flattery credits, I've at
least tried to break it up into logical units.

The Autoscaler typically runs on a schedule, waiting 2 seconds between decisions.
This gives a little time for data to accumulate and means that data is collected in
“buckets” of 1-second duration. The exception to the 2-second rule is poking. The Acti-
vator, being a rude sort of thing, can directly signal the Autoscaler to make an immedi-
ate decision, without needing to wait for the current 2-second interval to elapse.

The actual calculation 113

First, the algorithm does some basic sanity work (figure 5.12).

The Autoscaler retrieves a count of “ready” instances. Readiness is defined
using the readiness healthcheck (see chapter 3).

If the count of ready instances is 0, the count is directly changed to 1. More on
that momentarily.

The Autoscaler checks to see whether it has any accumulated metrics available.
If there are, it proceeds to the next stage (figure 5.13).

If there are no metrics, the Autoscaler signals that it could not make a decision,
which includes setting the desired scale to 0.

Count of
ready instances

Set count to 1

Are there
metrics?

9 There are metrics 0 No metrics

2 Return
i scale =0 ; . 3
Figure 5.12 Algorithm flowchart, part 1

Why force the number of ready instances to 1? The answer has two parts. The first is
that it prevents awkward divide-by-zero errors. The second, more important reason
is that the 1 here stands for the Activator.

The clue leading to the Aha! moment here is that the Activator reports metrics to
the Autoscaler, enabling the Autoscaler to treat the Activator as being another Revi-
sion instance. This makes sense when there are zero running instances: the Autoscaler
still needs information about the state of demand, even when capacity is non-existent.
The Activator has that information.

Figure 5.13 is where I've buried the most detail. The boxes are symmetrical (and
hence, I only number one side of the diagram) because the Autoscaler calculates

114 CHAPTER 5 Autoscaling

Stable window 0 Panic window
metrics metrics
e Calculate average number Calculate average number
of concurrent requests over of concurrent requests over
stable window panic window
o Calculate Calculate
stable desired Pod count panic desired Pod count

L

Figure 5.13 Algorithm flowchart, part 2

numbers for both the stable and panic cases. The logic is identical; all that differs is
the data.

The Autoscaler uses metrics gathered over a window as input data.

The Autoscaler averages concurrent requests over the window.

Using the average concurrent requests, the Autoscaler calculates desired pod
counts.

The metrics in use here are retrieved in one of several ways. When there are only a few
instances running, Knative collects metrics from every instance. As the number grows,
this becomes impractically slow. Instead, the Autoscaler begins to sample a statistical sub-
set of instances.? On one hand, this means that the Autoscaler’s decisions are less accu-
rate. But on the other hand, if you recall the square root staffing rule, it matters less.

Scraping is run on the same 2-second schedule as scaling decisions. Thus the data
gathered is “bucketed” into 60 buckets for each minute. Each bucket contains an esti-
mated average number of requests, divided up per Revision.

2 A difference arises here between how this sampling works in the service mesh case and non-mesh case. When
there is no service mesh, Knative is able to obtain the direct IP address of each instance it manages. Sampling
is then fairly simple; it selects a random subset and then scrapes the data from the instances found on those
IPs. But, by design, a service mesh interposes itself between each instance in the cluster. That means Knative
can’t pick which instance will be scraped when it sends a scraping request. Instead, Knative keeps track of
which instances have responded to a given scrape request. It then keeps retrying scraping until it has seen
“enough” unique instances to satisfy its statistical requirements. The practical upshot is that scraping is slower
in the service mesh case.

The actual calculation

The last sentence deserves a place in
hell next to all other word problems, such
as “if Fred speeds at 20 kms/h for 6 hours
and exceeds the limit by 10 kms/h for 2
hours, how many celery sticks does he owe
in interest?” And, thus, we are swept back
to a diagram, this one breaking the flow of
flowcharts.

Suppose I am popular and now have
nine—nine!—running instances of my Revi-
sion. Roughly speaking, it would look like
figure 5.14.

Traffic flows through the usual plumb-
ing until it lands at each instance’s Queue-
Proxy. But how much; to which? You might
think you could just count how requests
were sent to each Queue-Proxy. But differ-
ent requests take different amounts of
time to process. And, because of the expo-
nential slowdown, overloaded instances are
slower than unloaded instances. Just count-
ing the arrivals does not show the number
of queued requests.

Instead, the scraping process directly
pulls the count of currently enqueued and
currently processing requests from Queue-
Proxy instances. If I show both of these val-
ues (queued and processing), it looks
something like figure 5.15.

115

autoscaler-example-gstha-1

Revision

@latest

Prox code

Queue- Your
Prox #2

Queue- Your
Prox #3

Queue- Your
Prox #a

Queue- Your
Prox #5

Queue- Your
Prox #6

Queue- Your
Prox #r

Queue- Your
Prox #8

Queue- Your
Prox #9

Figure 5.14 Nine instances are running for

one Revision.

The key to note is that some requests are in the Queue-Proxy, some are currently
in your software, but all are counted towards the total used to calculate an average.
After some crunching, it transpires that there are approximately 5.67 concurrent
requests per instance (table 5.2).

Table 5.2 Crunching the numbers

Instance Queued

Processing

116

CHAPTER 5 Autoscaling

Table 5.2 Crunching the numbers (continued)

Instance Queued
5 2
6 2
7 3
8 0
9 2
9 instances 18 queued requests

3
4
5
2

4

33 processing requests

Processing

5

6
8
2
6

Total

51 requests

51 requests + 9 instances = 5.67 requests per instance

Figure 5.15 and table 5.2 show a snapshot
of the data. It’s roughly true in that the fig-
ures over the past 2 seconds are reported
as if these are an instantaneous value. Here
is where true control theorists, rapelling
down from the ceiling while dual-wielding
integral symbols, might decide to disagree
on the finer details. But for our purposes,
the distinction is unimportant. These are
what the numbers look like from the point
of view of the Autoscaler.

Now that we have gathered metrics over
a window, we can average the averages over
the windows. This gives the average num-
ber of concurrent requests, per instance,
per time bucket.

I hope this makes your is-this-on-the-
exam? sense tingle, because we’ve stum-
bled onto something that fits into Little’s
Law. The average concurrent requests over
your instances is going to be a function of
arrivals (aka, how many requests are being
made per time unit) and processing time.
If you double the arrivals, you have to dou-
ble the requests sitting somewhere. You can
either wear the exponential slowdown or
you can increase capacity.

Which brings me to my next point: the
Autoscaler calculates the desired number

ooooo

Your code

Your code 43
[[W oooon

Your code

ooooom| #°

ooooo| #8

ooooo| #7
| | | | | Your code 48

oOoooao

ooooo| #°

Figure 5.15 Queued and processing

requests across instances

The actual calculation 117

of instances by trying to maintain a utilization ratio. Given a maximum level of concur-
rent requests (say, 100) and a desired utilization (say, 70%), the Autoscaler’s goal is to
provide enough instances so that the average number of concurrent requests is 70 per
instance.

That 70% ratio is basically sound. You might want a higher utilization. As tempting
as this is, I'd hold off. When you picked Knative, you probably had it in mind to deal
with variable demand, but if your goal is to be close to optimal, you better hope that
your demand isn’t very variable. Alas, these wishes are largely in conflict.

Now I can convert the previous description into some formulae. First, there’s a for-
mula applied each time metrics are collected:

Sum of Concurrent Requests Per Instance

A C t Requests Per Sample =
verage Concurrent Requests Fer Sampte Number of Instances Sampled

“Number Sampled” is one of the Count of Ready Instances, or a sampled subset, or
the number 1. These figures are collected each cycle and stored in l-second buckets.
Then, when making decisions, the Autoscaler averages the buckets:

Sum of Average Concurrent Requests Per Instance
Number of Buckets

Average Concurrent Requests Over Window =

This formula is applied over the stable window (default 60 seconds, 60 buckets) and
over the panic window (default 6 seconds, 6 buckets). The next step is to calculate the
target value of concurrent requests:

Target Concurrent Requests Per Instance = Maximum Concurrent Requests x Target Utilization

Now, at last, we can calculate the number of desired instances:

Average Concurrent Requests Over Window

Desired Instances =
Target Concurrent Requests Per Instance

Let’s try crunching some numbers. In table 5.2, I showed how the Average Concurrent
Requests Per Sample was calculated over 9 instances. Suppose I do that every 2 sec-
onds for 20 seconds, giving 10 buckets (table 5.3).

Table 5.3 Bucketed request statistics

Bucket # Sum of Req / Instance Avg Req / Instance
1 51 =5.6
2 53 ~5.8
3 40 =4.4
4 47 =52
5 49 =54

118

5.6.1

CHAPTER 5 Autoscaling

Table 5.3 Bucketed request statistics (continued)

Bucket # Sum of Req / Instance Avg Req / Instance
6 55 =6.1
7 56 = 6.2
8 61 ~6.7
9 59 ~6.5
10 58 ~6.4
Sum 529 58.3
Average =58 =~ 5.83

To get Average Concurrent Requests Per Instance Over Window, I sum the averages in
table 5.3 and divide by the number of buckets to get the Average Concurrent Requests
Per Instance Over Window: 58.7 + 10 = 5.87. Now suppose I set my Maximum Concur-
rent Requests at 10 and my Target Utilization at 0.8. Then I will have a Target Concur-
rent Requests Per Instance of 10 x 0.8 = 8.

Now I can calculate Desired Instances: it’s the recorded figure divided by the target
figure. In my case, it’s 58.7 + 8 = 7.35. Unless the Autoscaler is in panic mode, it will
now try to scale down the number of instances from 9 to 7.

This is the heart of the algorithm that picks a number of instances. You might rea-
sonably have felt that we’re done here. But not just yet, because we calculated two val-
ues: one for stable mode, one for panic mode.

To panic, or not to panic, that is the question

Having dealt with the raw calculation in figure 5.13, we can return to a discussion of
panics. I can at last dispell the gloomy, misty mystery surrounding the ominous-sound-
ing “Panic Threshold.” It’s actually simple, but to explain it, I will introduce another
quick formula:

Absolute Instance Error = Desired Instances — Actual Instances

This is a formula borrowed from control theory, for what it’s worth, which is why I've
used the term “error” here. It reflects the size of the mismatch (the error) between
what is desired and what is actual.

Note that this formula does not measure concurrent requests or utilization. This
one focuses on the absolute number of instances. But that number isn’t always super
meaningful. Saying “the Absolute Instance Error is 1” doesn’t make a clear distinction
between “2 desired, 1 actual” and “100 desired, 99 actual.” So we need a relative error:

Relative Instance Error Absolute Instance Error

Actual Instances

The actual calculation 119

In the case of “2 desired, 1 actual”, Relative Instance Erroris (2 -1) + 1 = 1.0. The 1.0
here represents an error of 100%. Meanwhile, in the “100 desired, 99 actual” case, I find
that (100 —1) + 99 = 0.01. That’s an error of approximately 1%. Much less worrying.

The panic threshold is the point at which Relative Instance Error becomes “too
high.” It’s expressed as a percentage in Configuration, the default is 200% or a Rela-
tive Instance Error of 2.0.

Because it relies on a relative value, the likelihood of the panic threshold being
exceeded falls as the number of instances increases. That’s more or less the behavior
we want anyway: freaking out over a shortage of 10 instances isn’t sensible when the
current pool has 500.

This means you needn’t panic over panics. When scaling from zero instances, or
from a few instances, panics will be common. That is to be expected and should not be a
cause for alarm on your part. In fact, if you crunch the numbers, you’ll find that when
scaling from zero, only three requests are needed to cause a panic.

Does exceeding the panic threshold put the Autoscaler into panic mode? Here
enters figure 5.16. This diagram sketches out the logic devoted to switching between

Currently stable

or panicking

Panic threshold

Stable but above panic
threshold?

Currently in panic mode

Panicking for
long enough and
below panic threshold?

0 In stable mode, but o Haven'’t panicked 9 Panicked long enough
above panic threshold long enough and below threshold
Start panicking Continue panicking Stop panicking

[4]
N

Figure 5.16 Algorithm flowchart, part 3

120

5.7

CHAPTER 5 Autoscaling

stable and panic modes. Coming into this stage, the Autoscaler starts with two pieces
of information. First, is it currently stable or panicking? Second, has the panic thresh-
old been exceeded?

The Autoscaler first considers the case of being in a stable mode but exceeding
the panic threshold. In this case ...

... the Autoscaler flips the mode to panic.

If the Autoscaler is already panicking, it needs to decide if it should stop panick-
ing. It does this by looking at how long the panic has been going on and
whether the panic threshold is currently unmet. More in a second.

If the panic is so far too short, or if the panic threshold is still exceeded, the
panic continues.

If the panic window has elapsed and the panic threshold isn’t exceeded, the
panic ends and the Autoscaler returns to stable mode.

Starting a panic is the simple case. Fiddlier is the decision between continuing a panic
or ending a panic. To end a panic, the Autoscaler needs for the current calculation to
be below the panic threshold, and it needs for the panic duration to have elapsed.

NOTE The panic duration is set to the value of the stable window. By default,
this means it’s 60 seconds long. The duration is not the same as the panic win-
dow, which defaults to 6 seconds.

Now for the final step, which is deciding what value to return (figure 5.17). This is
where the distinction between stable and panic modes becomes a deciding factor.

If the current mode is stable, the Autoscaler returns the Stable Desired Instance
Count it has already calculated.

If the Autoscaler is panicking, and the calculated Panic Desired Instance Count
has increased, the Autoscaler returns that calculated value.

If the calculated Desired Instance Count is equal to or lower than the current
actual number of instances, the Autoscaler returns the current number of
instances instead.

Put another way, in stable mode, the Desired Instance Count can rise and fall with traf-
fic. But during a panic, it can only go up. The name is again appropriate—a panicking
Autoscaler is inclined to hoard resources until it feels safety is restored. In stable
mode, the Autoscaler breathes; during a panic, it holds its breath.

Configuring autoscaling

So far, in this chapter, I've gone over the Autoscaler’s behavior in some basic scenar-
ios, then followed with a tour of the inner workings. I've given you two passes at
understanding it. But there are gaps in these accounts. A survey of the Autoscaler’s
knobs allows me to fill in gaps without having to add even more digressions to the nar-
rative discussions.

5.7.1

Configuring autoscaling 121

Return
Stable stable desired

Stable or panicking?

Panicking

Has desired panic
instances increased or
decreased?

Increased Same or decreased

Return Return
panic desired current instances

Figure 5.17 Algorithm flowchart, part 4

Most of the configuration settings I'll discuss can either be set globally by an operator
or set at a Configuration or Service by a developer. It’s best not to set things globally
because everything under a given Knative Serving installation will be affected. And
besides, the defaults are fairly sensible for most cases.

Put another way: My goal is to improve your understanding, not to encourage
unnecessary changes. Naming and explaining a setting isn’t an endorsement of tin-
kering with it.

How settings get applied

The Autoscaler can receive settings via a number of means. One such means is to cre-
ate a Kubernetes ConfigMap record in the knative-serving namespace, named con-
fig-autoscaler. It would look something like the following listing.

Listing 5.1 Config mapping in example.yaml

apiVersion: vl

kind: ConfigMap

metadata:
name: config-autoscaler
namespace: knative-serving

122

CHAPTER 5 Autoscaling

data:
enable-scale-to-zero: 'true'

The YAML in listing 5.1 can then be submitted with kubect1, as the next listing shows.

Listing 5.2 Setting the ConfigMap with kubectl

$ kubectl apply -f example.yaml

Warning: kubectl apply should be used on resource created by either
> kubectl create --save-config or kubectl apply

configmap/config-autoscaler configured

The warning here occurs because, in fact, the config-autoscaler ConfigMap is already
present, but without any active settings on it.

A second means for setting configurations is annotations. These are the little key-
value pairs that you can set on anything in Kubernetes, which means you can set these
on a Configuration. Annotations are a mixed bag, by the way. On the upside, these
provide a kind of dynamically-typed escape hatch from the schema of any Kubernetes
record. On the downside, they ... well ... refer to the upside. One way to create and
change annotations is with the kubectl annotate command, shown in the follow-
ing listing.

Listing 5.3 Setting a /minScale with kubectl annotate

$ kubectl annotate revisions \
hello-example-fvpbc-1 \
autoscaling.knative.dev/minScale=1

revision.serving.knative.dev/hello-example-fvpbc-1 annotated

Actually, I don’t need kubectl for this, if I don’t want it. I can use kn instead, as in the
following listing.

Listing 5.4 Using kn to set /minScale

$ kn service update \
hello-example \
--annotation autoscaling.knative.dev/minScale=1

Updating Service 'hello-example' in namespace 'default':
4.294s Traffic is not yet migrated to the latest revision.
4.500s Ingress has not yet been reconciled.

5.884s Ready to serve.

Service 'hello-example' updated with latest revision 'hello-example-bvxyn-2'
“» and URL: http://hello-example.default.example.com

Note that autoscaling annotations have the form autoscaling.knative.dev/<name>.
For convenience, I'll just refer to this with the shorthand /<name>.

5.7.2

Configuring autoscaling 123

Setting scaling limits

Autoscaling is always enabled, but you needn’t always scale to zero. You can disable
that in two ways. The first is to use enable-scale-to-zero on the ConfigMap. This is a
fairly consequential decision, of course, because you’d be disabling it for everyone.

The alternative is setting a /minScale annotation on a Service or a Revision. In the
previous section, I set it on the Revision by using kubectl and then kn.

The minimum and maximum scale options are sufficiently likely to be used that kn
allows you to set these at creation time or when updating a Service with --min-scale
and --max-scale. The following listing gives an example.

Listing 5.5 Using kn to set scaling limits

$ kn service update \
hello-example \
--min-scale 1 \
--max-scale 5

Updating Service 'hello-example' in namespace 'default':
3.327s Traffic is not yet migrated to the latest revision.
3.574s Ingress has not yet been reconciled.

5.046s Ready to serve.

Service 'hello-example' updated with latest revision 'hello-example-cxsgv-3'
“» and URL: http://hello-example.default.example.com

Doing so creates a new Revision. You can use kn to see the scaling limits on a Revision
as part of revision describe, as this listing shows.

Listing 5.6 Looking at scaling limits with kn revision describe

$ kn revision describe hello-example-jpgbl-2

Name : hello-example-jpgbl-2

Namespace: default

Annotations: autoscaling.knative.dev/maxScale=5,
"> autoscaling.knative.dev/minScale=1

Age: 23s

Image: gcr.io/knative-samples/helloworld-go (pinned to 5ea96b)
Env: TARGET=First

Scale: 1...5

Service: hello-example

... conditions

Note the Scale: 1 .. 5 line in listing 5.6, showing the inclusive scaling range. You
might also notice that the same information appears in Annotations as well.

I think it’s worth forming the view that these settings are really about economics
rather than engineering. Setting /minScale is a statement of how much delay you can

124

5.73

CHAPTER 5 Autoscaling

afford to tolerate, whereas /maxScale is a statement of how much capacity you can
afford to carry.

You should consider using /minScale if you are sure that you can never allow a
slow response due to a cold start. Otherwise, don’t. Using /maxScale is worth doing as
a general policy, even if you set the value to an “impossible” level, such as 100 or 500
or 1,000—a level high enough to give you heartburn without seeming like something
you will plausibly reach.

As they come around the bend ...

“But what about limitless scaling?” you ask, grimly clutching dim memories of Google
blog posts. It's true that given enough money and given enough cluster capacity, you
might be well served in a sudden surge by allowing scaling to an unlimited level.

As an answer, | draw your eye to the odds board of those notoriously merciless book-
ies, Murphy & Sons, posted down at the Production Is Broken Racing Ground. For
“sudden wave of interest and success,” Murphy & Sons have posted long odds of
200:1. This doesn’t happen often in practice and, when it does, you’ll probably hear
about it.

For “bad person hates your guts,” our flint-eyed bookmakers have posted shorter
odds of 50:1. And this situation favors using /maxScale, because it constrains the
blast radius of a DDOS attack.

Finally, Murphy & Sons know the form and have posted short odds for the most likely
case: “bug caused by mistake obvious only in hindsight” of just 3:1. If asked, they’ll
explain that they’ve seen far more DDOSes caused by an infinite loop, suddenly enor-
mous error log, suddenly large response size, escalating mutual deadlocks, and so
on, than from any other action of Lady Fortune. “No need to worry about zebras,” they
politely explain, “when a startled horse can trample you to death just as well.”

Here too, /maxScale can help. You reach a limit but you don’t exceed it. This gives
you a sporting chance to at least rollback a version or two until things clear up, and
it stops a single piece of software from choking something—your network, your clus-
ter, your wallet perhaps—to death.

So whaddya reckon, punter? Feel like taking a flutter? Placeyerbets, place yer beeeets!

Setting scaling rates

There’s a limit to how fast a cluster can respond to autoscaler desires, whether scaling
up or down. When calculating the desired instance values, the Autoscaler actually
clips these so that they don’t exceed a ratio of the current actual instances.

Scaling up is governed by max-scale-up-rate, which defaults to 1,000. It allows
the Autoscaler to jump in multiples of up to 1,000 times at each decision point, but
only from the actual currently running instances. So for example, if there are two
instances, this limit allows the Autoscaler to jump by 2,000. This hefty limit doesn’t
show up in stable mode and, in fact, only rarely in a panic mode. But because each

5.74

Configuring autoscaling 125

decision to scale up is partly based on multiplication, you'll typically see a double
jump during panics.

The scaling down is governed by max-scale-down-rate, for which the default is 2.
This might seem like weak tea compared to max-scale-up-rate and, in some sense,
that is true. But halving at each step is still an exponential function. In terms of panics
coming to an end, you will see a characteristic curve of exponential delay, with desired
instances first falling quickly and then tapering off.

The max-scale-down-rate limit is meaningless during a panic, mind you, because
in the midst of panicking, no downscaling occurs. This limit acts as a constraint in sta-
ble mode only.

Another setting affecting scale-down behavior is scale-to-zero-grace-period,
which defaults to 30 seconds (more literally, it’s a string that gets converted into a
number: 30s). When Knative decides to scale to zero, this grace period is how long
Knative is prepared to wait for networking systems to unplug the instance from a net-
work before Knative asks Kubernetes to kill it. After the grace period, Knative just con-
siders the instance as killed. This setting is most useful to bump up if you are finding
that networking updates are so slow that traffic is being misrouted. But otherwise, it is
dark magic and should be left undisturbed.

As these three settings can only be set on the ConfigMap, these apply to the entire
installation. The demand patterns of a system that receives dribs and drabs, and a sys-
tem that receives steady load with occasional bursts, demand different treatment from
a grace period. In general, without good reason, and without understanding how your
traffic looks, you ought to leave these alone.

Setting target values

Two magic numbers have an outsized influence on the Autoscaler: container-
concurrency-target-default (default value 100, the annotation is /target) and
container-concurrency-target-percentage (default value 70, the annotation is
/targetUtilizationPercentage). These are the values that determine the ratio of
requests to instances that the Autoscaler tries to maintain. The basic logic is that
-default ultimately gets treated as the maximum possible value for concurrent requests
for any one instance, while -percentage is used to calculate the actually desired value
for concurrent requests for each instance on average.

The practical upshot is that, out of the box, the Autoscaler targets 100 * 0.7 con-
current requests per instance: 70, in other words. You might at this point be slightly
confused as to why 100 is the default value. It might seem a little on the high side. The
explanation requires a callback to chapter 3, specifically the discussion of container
concurrency in section 3.4.10. In that discussion I said, slightly vaguely, that this value
defaults to zero and that zero is the signal to set a bunch of other default values.

And this is what -target-default is about. You can set containerConcurrency for
your Service or Configuration, and it will show up on a Revision. But if you don’t do
that, then Knative Serving needs to pick something as an upper limit. The splashy label

126

CHAPTER 5 Autoscaling

on the cereal box might say “Unlimited Requests Per Instance!”, but the small print
says “* not applicable in finite universes.” 100 is a nice round number that many systems
will not reach in practice, and 70% is a reasonable utilization figure to avoid the expo-
nential slowdown.

Mind you ... it’s not super likely that this value will be what you want. It’s conserva-
tive on the upper bound for concurrency, not on the lower bound. This is where a lit-
tle bit of load testing is a worthy investment (and also a deep rabbit hole, for which,
see The Art of Computer Systems Analysis by Raj Jain and Systems Performance: Enterprise and
the Cloud by Brendan Gregg). Even doing this on your local development system can
give you an order-of-magnitude approximation for what figure to pick. Once you
have a figure, you can set the container concurrency on your Service or Configura-
tion using --concurrency-target for a direct target figure, or --concurrency-limit
as the upper limit from which the target is then derived.

A special case to keep in mind is setting concurrency to 1. This means that each
request gets its own instance to work with. This is useful if, for whatever reason, your
software has some kind of zany thread-safety or shared-state issue. Hopefully, this isn’t
the case.

What about utilization? Should you fiddle with that? Briefly, no. The default is typ-
ically fine, assuming that your selection of container concurrency is roughly accurate.
Fiddling with both concurrency and utilization settings just ensures that you will
increase confusion about what’s what. Don’t do it.

Now, one last thing before I move on. You can configure the Autoscaler to use
requests per second (RPS) as the scaling metric (which, as I previously noted, is likely
to behave similarly because of Little’s Law). This can be done in one of two ways.

First, if you want to set it globally, you can configure requests-per-second-
target-default in the ConfigMap, implicitly switching the autoscaler to use RPS as its
scaling metric. You can’t use the container-concurrency-target-default key as
well, though, because these options are mutually exclusive.

Second, if instead you want to switch to RPS-based scaling on a particular Service
or Revision, you need to attach two annotations: /metric and /target. The /metric
annotation explicitly sets the scaling metric. You can set it to concurrency, which gives
you the normal behavior, or to rps for RPS-based scaling. The /target annotation is a
number of requests, interpreted differently according to the /metric that you set. For
concurrency, /target means the number of concurrent requests, and for rps, it
means the number of requests per second.

These /target values are not 1:1. If you flip from concurrency to rps, behavior
changes. How much does it change? By rearranging Little’s Law, the RPS for a given
level of concurrency is approximated by

Concurrency

Arrival Rate = - -
Service Time

Say my requests take an average of 400 milliseconds. For a default calculated concur-
rency target of 70 requests, I get 70 + 0.4 = 175 RPS.

5.7.5

5.7.6

Configuring autoscaling 127

Setting decision intervals

The Autoscaler surveys the world and renders judgement on a regular 2-second inter-
val. This is configurable in the ConfigMap by setting the tick-interval key. Lowering
this interval means that the Autoscaler makes more frequent, perhaps more timely,
decisions at the expense of greater thrashing and operational overhead. Increasing
the interval spares resources, but makes the system more sluggish when responding.
Indirectly, the effect of the tick-interval is to contribute to the integral control
facet of the Autoscaler’s behavior. It creates regular pauses in which data about the
actual world has time to accumulate into meaningful signals. No guesses for my advice
here: leave tick-interval alone, unless you have a demonstrated need to tinker.

Setting window size

And speaking of accumulating data, it’s possible to adjust the all-important window
sizes. First is the stable window, defaulting to 60 seconds. Shortening this window
makes the Autoscaler more jittery; it reacts more to what might be random fluctua-
tions in demand. Making it longer smooths reactions, but means that sustained
increases or decreases in demand might not be heeded as quickly.

Unlike tick-interval, which is a global setting that is hard to tune for everyone,
it’s possible to set the stable window either globally (using stable-window on Config-
Map) or on your own Service or Configuration. To do this, you set a /window annota-
tion. The format here is Golang’s shorthand for units of time. For example, 60s and
1m will be considered the same, but you need to identify the unit of time (s = second,
m = minute, etc.) in order to provide a valid value.

You should absolutely be open to tuning this value using the annotation if it makes
sense for your workload. The balance here is between jitteryness and smoothness. On
the surface, it might seem as though a jittery autoscaler would be OK—wouldn’t I
want the system to quickly react? The problem is that those reactions are not free;
these place pressure on the Kubernetes cluster itself. This is part of why panic mode
exists: it divides the skittery-jittery cases at the edge of scaling from zero from the
smoother cases when traffic is high and instances already numerous.

The panic window is not defined directly. Instead, it’s defined as a percentage of
the stable window. You can set this percentage globally with panic-window-percent-
age or use the /panicWindowPercentage annotation on a Service or Configuration.
The default is 10%, which is how the panic window comes out to being 6 seconds by
default.

I would be wary of tinkering with the panic window percentage foo much. It needs
to be substantially shorter than the stable window; otherwise, it won’t be able to catch
sudden shifts in demand. That argues for a small percentage. But the final resolved
time can’t be too short, or you will run into the problem of having insufficient data on
which to base decisions. The Autoscaler will make decisions, of course, but as you
zoom in towards 1 second, it becomes less like a sensible control loop and more like a
noise amplifier.

128

5.7.7

5.7.8

CHAPTER 5 Autoscaling

You should basically only tinker with the panic window percentage if you set the
stable window to unusually high or low values. If your stable window is an hour, for
example, then you might set your panic window at 1% so that the Autoscaler can
panic in 36 seconds instead of 6 minutes. At the other end, if you lowered your stable
window to 20 seconds, then raise the panic a bit, perhaps to 25%, because 2 seconds of
data is getting close to jumping at radio static.

Setting the panic threshold

The other major knob to twist for panic behavior is the panic threshold. You can set
this globally with panic-threshold-percentage, but you probably shouldn’t. But
there can be a case for adjusting it for individual Services or Configurations, for which
you can use the /panicThresholdPercentage annotation.

In some ways you don’t need this option, as you can recreate some amount of its
behavior by adjusting the panic window percentage. But adjusting the threshold has
the advantage that it’s easier to connect back to the economic problem of deciding
what to scale and how much to scale.

For workloads that are valuable, you might choose to lower this threshold so that
panics continue to occur even though you have more than a few running instances.
You’d accept, in this case, heavier churn in your instances, but that may well be accept-
able (but do consider /minScale as a more stable option). For other workloads with
predictable demands that can be made to wait, you might instead choose to raise the
threshold to a high value so that panics are unlikely to occur.

Setting the target burst capacity

The target burst capacity (TBC) subsystem is mostly about the ratios at which the Acti-
vator stays in the data path or steps out of it. The name comes from the idea that the
Activator needs to understand how much capacity the current instances will be able to
safely absorb in a “burst” so that it can decide whether it should stay in the data path
as a buffer.

This can be set globally with target-burst-capacity, or on a Service or Configu-
ration with /targetBurstCapacity. The calculation is fiddlier to describe than I
would like, but there are a few key values:

0 means “only use the Activator when my software scales to zero.”
-1 means “always use the Activator, regardless of scale.”
Other positive values represent a fixed target of “burst capacity.”

The default is 200. The Activator will only begin to back out of the data path if it calcu-
lates that there is a “spare” 200 request capacity available. In general, this will be truer
of larger pools of instances, so the Activator in this respect more or less works in line
with the square root staffing rule.

The trade-off here is that placing the Activator in the data path creates an addi-
tional hop. That’s more latency, more contention, more variability. For cases with

5.7.9

A cautionary note 129

demanding performance requirements, you should consider whether to disable the
TBC and rely on /minScale and /targetUtilizationPercentage instead. On the other
hand, if you have workloads that are bursty but that can wait, setting the TBC to a
higher value gives you a free buffer proxy to allow your software to get started.

Other autoscalers

The Knative Pod Autoscaler isn’t the only autoscaler you can use with Knative Serving,
it’s just the one you get by default. Out of the box, you can also use the Horizontal
Pod Autoscaler (HPA), which is a subproject of the Kubernetes project. The HPA was
originally built around using CPU load as its scaling target but has lately grown to be
more featuresome. If you have already built tooling and know-how around the HPA,
don’t be shy about using it.

But, at the time of writing, that’s your major alternative. The HPA’s stablemate—
the Vertical Pod Autoscaler (VPA)—is not directly supported and doesn’t really fit the
way Knative thinks anyhow. The Kubernetes Event-Driven Autoscaler, aka KEDA, works
on what is arguably a sounder principle, but integration with Knative is currently only
at an experimental stage.

A cautionary note

The Autoscaler is not magical. It’s not psychic. It can’t repeal the laws of physics or call
on the aid of mystical forces.

What it can do is to reduce some categories of risk and some forms of wasteful toil.
You get some protection against unpredictable variability, but not infinitely so.
You’ll still need to do work to understand how your system behaves at different
scales and under different inputs. The Autoscaler can’t scale its way out of problems
like database contention or a recursive regex explosion attack. These still require
human intervention.

There is one thing you can do to help the Autoscaler to do a better job, however—
software that starts quicker. This means a combination of smaller images and faster-
launching processes. If you can shave time from 30 seconds down to 15 seconds, then
for bursty workloads, you really should take that option.

Don’t turn this into a fetish, mind you. I have a particular pet peeve with the obses-
sion over running everything on Alpine: it uses a weird libc, nobody is paid to patch
CVEs in a timely fashion, and the performance gains are negligible once image layers
are cached. Just use Ubuntu or Red Hat/Fedora. And don’t over obsess over the dif-
ference between your-choice-of-language and not-your-choice-of-language, unless you
have a provable need. What I'm saying is, take the free wins. The free wins, not the
twenty-days-of-fiddling wins.

Oh, and one more thing: the Autoscaler is not magical.

130 CHAPTER 5 Autoscaling

Summary

Autoscaling is easy to say, but difficult to do. Scaling from zero makes the prob-
lem substantially more difficult.

When there are zero instances, traffic is handled by the Activator.

When traffic arrives and there are zero instances, the Activator pokes the auto-
scaler, which scales up instances above zero. Traffic is held by the Activator until
instances are ready.

The Autoscaler can “panic,” during which it scales up aggressively but does not
scale down.

As the number of instances rises, the Activator removes itself from the data path.

The autoscaling problem and autoscalers are better understood with a small
amount of control theory and queueing theory.

The Autoscaler algorithm can be loosely divided into four phases: a basic met-
rics phase, a phase to calculate desired stable and panic instances, a phase to
decide whether to be in stable mode or panic mode, and a final phase that
selects the scale value to return.

The calculation is based on the average number of concurrent requests col-
lected into 2-second buckets, then averaged over stable (60 s) and panic (6 s)
windows.

Desired instances are calculated based on the ratio between average concurrent
requests per instance and target concurrent requests per instance.

Panicking is determined by the panic threshold, which is a ratio of panic
desired instances to stable desired instances.

The Autoscaler’s configuration parameters can be configured in multiple ways.
Parameters set via ConfigMap are global to the installation and not recom-
mended. Parameters can be applied to specific Services or Configurations with
Kubernetes annotations.

You can use the Kubernetes Horizontal Pod Autoscaler (HPA) as an alternative
to the Knative Pod Autoscaler (KPA).

Autoscalers are not magical.

References

Philipp K. Janert, Feedback Control for Computer Systems (O’Reilly Media, 2013)
Pedro Albertos and Iven Mareels, Feedback and Control for Fveryone (Springer,
2010)

Mor Harchol-Balter, Performance Modeling and Design of Computer Systems: Queue-
ing Theory in Action (Cambridge University Press, 2013)

Daniel Jacobson, Danny Yuan, Neeraj Joshi, “Scryer: Netflix’s Predictive Auto-
scaling Engine,” The Netflix Tech Blog, November 5, 2013, http://mng.bz/nMgg
Daniel Jacobson, Danny Yuan, et.al., “Scryer: Netflix’s Predictive Autoscaling
Engine—Part 2,” The Netflix Tech Blog, December 4, 2013, http://mng.bz/vz8]

http://mng.bz/nMgg
http://mng.bz/vz8J

References 131

Raj Jain, The Art of Computer Systems Analysis: Techniques for Experimental Design,
Measurement, Simulation, and Modeling (John Wiley & Sons, 1991)

Brendan Gregg, Systems Performance: Enterprise and the Cloud (Prentice Hall, 2013)
hpa—http://mng.bz/47Z]a

vpa—http://mng.bz/QmZw

keda—https://keda.sh/

http://mng.bz/4ZJa
http://mng.bz/QmZw
https://keda.sh/

Introduction to Eventing

This chapter covers

= The nature, purpose, and anatomy of
CloudEvents

= A basic walkthrough of creating CloudEvents
and using triggers

= The major subcomponents of Eventing

Here comes the next big section. I approach it with some trepidation.

In some sense, Serving is simple: do a thing. Eventing is: say a thing, heara thing.
In Serving, the intention to do and thing done have a relatively predictable tempo-
ral coupling. But in Eventing, I can be saying things long before these are heard. I
can listen for things that will never be heard. I can hear things long since said. The
shoe store point-of-sale system can emit events for sales before the sales forecasting
system exists to process events. The inventory system can listen for stock shrinkage
alerts that might not occur. And so on.

The underlying model of Eventing is this: things happen in the world. Some of
these happenings are observed. Some of these observations are transmitted from
place to place. Receivers of the transmission read the observation, deduce some
state of the world, then perhaps take actions. These actions perhaps cause still
other observations to arise.

132

6.1

The road to CloudEvents 133

Eventing is for the bit in the middle. It doesn’t do the happenings. It doesn’t
observe the happenings. But it does take observations and transmit those. The format
used for this purpose is CloudEvents, the mechanisms are Channels and Filters, Bro-
kers and Triggers, Sources and Sinks, Sequences and Parallels. I will spend the next
few chapters explaining these to you.

The road to CloudEvents

Because CloudEvents are the coin of the realm, let’s take a closer look at these first.

NOTE As I did in my introduction to Serving, I'm going to start with a fic-
tional scenario to show why and how CloudEvents can be useful. If that’s not
to your taste, feel free to skip ahead.

Suppose I have raised twenty umptillion dollars for my new startup, Exampleomatics.
Our first product is revolutionary and will reshape the entire world. In short, we have
developed an Al-enabled, blockchain-compatible device for intercepting, observing,
and controlling connections in a non-wireless connectivity energy distribution sys-
tem—the world’s first and only Electron Proxy. (Later, when cynics suggest that we’ve
reinvented $200 “light switches,” I will post the kind of tweets that my PR team will
sprint to delete within seconds.)

The Exampleomatic Electron Proxy can be “on” or “off.” This information is going
to be necessary for our full-VR home-management system, so we need for the Proxy to
emit events describing what’s happening. The following listing shows my first attempt.

Listing 6.1 Simple

case status {
when status.ON -> http.POST('https://example.com/vl/proxy/on')
when status.OFF -> http.POST('https://example.com/vl/proxy/off')

}

So far, so good. We’ve made sure to assume that the internet is never down and that
only one endpoint will ever receive this information. There are a few problems,
though.

For one thing, I can’t tell which of our Electron Proxies is on or off. This scheme
just counts the on and off events. At first this doesn’t matter, because I can just use the
totals to create impressive “up-and-to-the-right” plots for my venture capitalist (VC).
All is well in the land of synergistic disruptivity.

But one day, I get a phone call from an early, important customer: the VC’s son-in-
law. He bought a PhriendlyPhoton electro-lumen (TechCrunch described it as a total
revolution, introducing for the first time in history the ability to transform electrical
energy into lighting) from our bitter rivals, the PhriendlyPhactoryCompany. When he
sets the Electron Proxy to “on,” he expects that electricity will flow through it to the
PhriendlyPhoton, which will then convert electrons to photons. But it didn’t work. He
called Phriendly, and they said to call Exampleomatic.

134

CHAPTER 6 Introduction to Eventing

Now I need to identify which Electron Proxy is emitting which on/oft event. One
way to do that is to bake it into the requested URL, which the next listing illuminates.

Listing 6.2 Slightly less simple

case status {
when status.ON ->
http.POST ('https://example.com/v2/proxy/on?id=$id', id)
when status.OFF ->
http.POST('https://example.com/v2/proxy/off?id=%$id', id)

The change adds an identity to the request so I know which Electron Proxy has turned
on or off. I call back the VC’s son-in-law, whose business card identifies him as “Special
Chief Analyst (Without Portfolio),” and tell him to try turning it on and off again.
Relief washes over me when it turns out that the Electron Proxy is working fine. It’s
Phriendly’s problem now.

Or so I thought. Phriendly also has a basic event telemetry system in their devices
(which was #3 on BusinessInsider’s “b reasons Phriendly is disrupting the electromag-
netic force market and nothing will ever be the same”). Their telemetry shows that no
received_electrons event is ever sent. So either our events are faulty or theirs are.
But how are we supposed to tell?

Our handsome overlord (Yale School of Management '19) doesn’t care. “Just fix
it,” he says. My CTO cautiously meets their CTO. After establishing rapport by trash-
talking any technology that’s older than 30 minutes, they come up with a plan. We’ll
put our logs next to their logs and work out what happened that way.

After a day locked in a room, the result comes back: it’s the wire. The wire is faulty.
Time for some Visionary Leadership! I pull sixteen engineers off three projects and
tell them to Fix It Now. Fifteen sit with me in a meeting, while the sixteenth slinks off
to a hardware store to buy wire and some tools. Nobody dares to ask how many engi-
neers will be required to replace the lightbulb itself.

A few days later, my CTO asks the rhetorical question: why was this so hard? If we
had all the events from our Electron Proxies and events from PhriendlyPhotons going
to the same place, we could have used $550,000 of machine learning model-training
to determine that the wire was faulty.

But there’s a problem: in no universe will I send our sensitive, proprietary data to
Phriendly! And, in an act of pure selfishness, they refuse to send any of their data
to us.

There the matter rests for a few days. Then our joint customer, the VC’s son-in-
law—]James Richard Thomas III, two-time Tea & Crumpets secret society coxswain
(8rd alternate)—calls us both to a conference at his father-in-law’s office. He has been
installing more devices from both of us and wants to be able to answer questions such
as “Should I send my kid to military school for messing with the effing light switches?”

The road to CloudEvents 135

I begin explaining that “light switch” is reductionistic and that, actually, our Electron
Prox- ...

“I'don’t care,” he says, cutting me off. “Work out something that I can do.”

My CTO and Phriendly’s CTO lock themselves in a room again. They come out with
a radical idea: we make it so that customers can collect the data. In fact, they can decide
where it goes. We return to our codebase and before long, this listing come to light.

Listing 6.3 Configurability arrives!

baseURL = configuration.baseURL

case status {
when status.ON -> http.POST ('$baseURL/proxy/on?id=$id', id)
when status.OFF -> http.POST ('$baseURL/proxy/off?id=$id', id)

Now our users can send their data anywhere. We lose the ability to sell them abercis-
ers, old Chuck Norris films, or denture glue based on the advanced user profiles we
assembled with on/off data, the undocumented microphone that listens for clapping
sounds (and also everything else), and some judicious TensorFlow. But, we’re moving
away from the consumer market anyhow. The enterprise electron-management mar-
ket is much more profitable.

This goes well, but soon there is another complaint from JRT 3.0 (a name my engi-
neers use on Slack to describe the VC’s son-in-law and which I have threatened to
make into a firing offense for uttering). Our data goes to different endpoints and is in
different formats. We’re using the industry standard—XDR—but those morons at
Phriendly are using ASN.1 DER instead. We’re sending it to /v3/proxy, but they are
using /phriendly/v3. In order to use this data, JRT 3.0’s team of crack Excel-wielders
(Assistant Underassociate Analysts) have to write a whole pile of hideous VBA. While
it will soon be replaced by hideous Python written by the crack data science team
(Associate Underassistant Analysts (Junior Intern)), the overhead of massaging differ-
ent endpoints and packaging is obnoxious.

My CTO and Phriendly’s CTO lock themselves in a room again for what will, one
way or another, be the last time. They first of all define their problems:

= We have different endpoints.
= We have different data encoding formats.
= We have different metadata.

Meaning, we need something that’s indifferent to HTTP endpoint URIs, which can
support multiple encoding formats, but that has consistent metadata.

During a lunch break, they discover CloudEvents and decide to build a quick spike.
Before long, our codebase looks a bit like that in the following enlightened listing.

136

A unique ID,
or at least
unique to
that source

The
timestamp
given by the
Electron
Proxy

6.2

CHAPTER 6 Introduction to Eventing

Listing 6.4 JSON, like cockroaches, will survive the nuclear apocalypse

eventId = uuid.v4 () Defines the version of the
time = time.now() CloudEvent spec in use
event = { Iden,tiﬁes the kind of event in play.
"specversion® "o, (We re supposed to use reversed-
"type" : "com.example.proxy.v3", domain style namespacing, a la Java.)
' source " i "/proxy/sid", Says where the event came from.
— "lc,i" : "$ever,1t1d" ! (We include our Electron Proxy
> 'timer . UStime!, ID in the source field.)
"datacontenttype" : "application/json",
"data" : { Tells a CloudEvent-aware
"status" : "Sstatus" ... there is a system that it’s dealing with
} . data field that a single, self-contained JSON
} Defines the version contains our object. That means that ...
of the CloudEvent own data.
spec in use

My CTO sits down and explains what all those notations in the code listing mean. All
good and well, I point out, but how does the data actually gef to us? And, if it gets to us,
how do we combine it with CloudEvents created by Phriendly? The CTO points to an
empty space on the whiteboard titled “Knative Eventing” and says: “Actually, I was
hoping you would fill this in for me.”

The anatomy of CloudEvents

While I enjoyed flexing my bad fiction skills, there’s more to be said about Cloud-
Events. First, let’s talk about layering. In networking, there’s a well-known model for
layering—the OSI model (figure 6.1). It defines seven layers, ranging from “what
are the electrons doing?” through “what is the user doing?” Different layers have
rhyming solutions to rhyming problems, but the layers are logically distinct and the
distinction is quite useful.

These days it’'s common to see routing and load balancing systems classified
according to the layer at which each does its work. In the context of HTTP, which is
where we’re doing most of our stuff in Knative-land, routers and load balancers are
typically divided into two classes: Level 4 (I.4) and Level 7 (L7).

S Officially where
7 Application .
HTTP sits What HTTP
6 covers ... -ish
5 TCP is mostly
; b
2| Datalink } Ethernet, Wi-Fi Figure 6.1 An 0Sl layer

1 } C tical cable. pi diagram seen here for the
Y OPper; optical cable, pigeons thousandth time in print!

6.2.1

The anatomy of CloudEvents 137

Level 4 is the Transport layer. For us that means TCP, as this is the level 4 protocol that
HTTP builds on. TCP works to present the illusion that bits stream into and out of
ports without being interrupted or jumbled. Importantly, TCP has no idea what the
bits represent. Its entire job is to get the bits from A to B.

Level 7 is the Application layer. In our context, this is HTTP. In HTTP, the system
stops caring about bits. It has developed loftier interests in concepts such as paths,
headers, status codes, and the like.!

This distinction matters because the deeper your semantic insight into the thing
being routed, the more intelligently you can route it. A TCP-based load balancer can
uphold policies such as “assign connections equally between these two hosts.” But if
one connection is basically quiet and the other is noisy, load is notably unbalanced.
An HTTP-based router can, by contrast, enforce policies such as “assign requests
equally between these two hosts.” The unit of management is much closer to the unit
of work, and better outcomes result.

This leads to an analogy: CloudEvents provide a “layer 7” for Eventing systems,
roughly analogous to what HTTP provides for request-response systems. It defines a
basic data model and maps these into particular formats and particular protocols.

CloudEvents have a two-part structure with data and attributes. Data is what you
probably guessed: the part that systems squirt their payloads into. What is of more
interest to us now is the attributes. These are roughly analogous to HTTP headers. Like
HTTP headers, there is potentially an unlimited number, because anyone can add
their own. But only a handful are standardized, which makes my job a bit easier.

Required attributes

To begin, there are four required attributes. These are found on every CloudEvent,
without exception. If any of these attributes is missing, you don’t have a CloudEvent.

specversion—This signals the version of the CloudEvents spec that should be
referred to for a given CloudEvent. At the time of writing, there’s only one
allowed value: 1.0.

source—This is where the event occurs. The “where” here is a logical concept,
not a physical one. For example, you might provide a Source that is something
like abc-123.xht2kld.cdn.example.com. But most of the time, you’ll want
something more abstracted from the actual layout of machines and networks. It
makes more sense for cdn.example.com to be the source, with particular
machines identified in data as necessary.

type—This is the kind of thing. For example, you might have com.example
.cdn/flush as a type of CloudEvent for a caching service.

! These categorizations are strictly false, mind you. Modern HTTP squishes together concerns from the Appli-
cation, Presentation, and Session layers, so it’s really layer 7-6-5. And TCP has some things that are session
concerns, which I guess makes it layer 4.5. This wasn’t deliberate; the internet protocols mostly grew in splen-
did isolation from the work done by OSI architects. And OSI itself was a good example of the perils of stan-
dards politicking as it tries to smoosh together packet-based and connection-based networking concepts.

138 CHAPTER 6 Introduction to Eventing

It’s common practice to use reverse domain notation to scope this to your
particular service. Slightly annoyingly, reverse domain notation (com.example)
tends to be different from the normal-order domain notation (example.com)
that’s likely to show up in source, especially when those Source names happen
to follow a Kubernetes convention.

id—This is meant to be unique per source. Remember that Sources are meant
to be logically, not physically, distinct. It’s not enough to pick something that is
unique per machine, per network, and so forth. This is a surprisingly tricky
requirement but necessary to enable reliable downstream management of
CloudEvents.

Use UUIDs

Use UUIDs for your id field; specifically, “version 4” UUIDs. UUID is a well-known for-
mat for conveying identities that are meant to be unique across the universe for all
time. There are multiple variants. Of these, “version 4” is the one that involves ran-
domly generating values. By and large, you can grab a standard library to create
these, and then a whole bunch of tools will natively understand these: log parsers
have matchers, databases have specialized types, and all that jazz.

It also helps you to avoid the temptation to rely on incrementing identifiers to estab-
lish event ordering by simply removing the incremental aspect. An identifier's only
entire suitable role is to uniquely identify something. Anything else it does, any other
meaning that can be derived or extracted, is a giant legacy and integration tar pit.
Just say no to magic numbers and mystic strings.

6.2.2 Optional attributes

While mandatory, specversion, source, type, and id are not the only fields you can
expect to find. There are also optional attributes in the core standard.

datacontenttype—This is a Content Type/Media Type/MIME Type/slashy-
namey-thingy type that you provide, identifying what kind of format data is in.

The simplest, most likely case is application/json. In fact, it’s considered
so likely that a CloudEvent without a datacontenttype is assumed to be
application/json. Butit needn’t be so. In theory, any valid Media Type can go
here; there are hundreds of registered types, including the tragically underuti-
lized example/* and */example types. But for now, you’re unlikely to see any-
thing exotic.
dataschema—This lets you point to a schema against which the CloudEvent’s
data can be validated. What goes in this field is up to implementers; let’s all
hope that everyone accepts that URIs are the best idea.

This field is most helpful for basic future-proofing, because a CloudEvent
can wind up being stored somewhere for a long time or being shuttled between

The anatomy of CloudEvents 139

software with widely out-of-sync versions. When you are responsible for creating
CloudEvents, you should show courtesy to consumers by using this field.

At a higher level, this field is where folks building standards and APIs on top
of CloudEvents will need to reach an agreement. For example, if Phriendly and
Exampleomatic develop the “Common Automation Network Taskforce: Electri-
cal Vendor Extension Nodes” standard (CANT:EVEN), they might need to
upgrade it when one of them introduces a new device category. They might
have begun with dataschema: "https://example.org/cant-even/v1", but
after Phriendly introduces a new line of devices for talking to houseplants, it
becomes necessary to introduce /v2 as well. Software that consumes the
CANT:EVEN standard will then be able to know whether it will need to import
org.example.greenthumb.

subject—Subject is meant to be the “thing” that the event is about. You might
wonder how this differs from source. After all, I can make the source value as
specific as I like.

The difference—at least, the intended difference—is that subject can iden-
tify particular instances or individuals in the population of the source. Loosely,
source is like a programming language class or interface, but subject is the
unique object. If my source is hitgub.example.com, my subject might be
/repos/123.
time—When the observed event occurred, according to whatever software cre-
ated the CloudEvent, encoded in RFC 3339 format.

That sounds great, but bear in mind: There are no timecops who go around
ensuring that timestamps are in any way consistent. To start with, there are the
classic problems like clock drift and misconfiguration to deal with (January 1,
1970 gets busier every day!). Then, there’s the problem of people just putting
the wrong format here. Or leaving out timezones. Or the problem of long
delays during processing, meaning that the instantaneous point-in-time implied
by a timestamp actually stands for an operation that took 45 minutes.

But aside from these, you can also run into subtle policy differences. One
Source might define the time as being “the time when I generated the Cloud-
Event J[SON.” If the CloudEvent is coming straight from the original observer,
that might be OK.

But CloudEvents don’t need to be created by the original observer. Most
won’t, just as a matter of practicality, because the volume of existing software
that won’t be rewritten to directly emit CloudEvents is vast.? The designers of
the CloudEvent standard explicitly assume that a lot of CloudEvents will be gen-
erated by agents, proxies, or other secondary observers. Which means that the

? CLOUDEVENT-DIVISION. might show up in time for COBOL’s hundredth birthday, I guess, and be in wide-
spread use by the bicentenniary. Butlet’s not hold our breath for MOVE payment TO EVENT payment-event
to be a common sight before then.

140

6.2.3

CHAPTER 6 Introduction to Eventing

meaning of “time” is a matter of policy: does it represent a timestamp from the
original occurrence, a first observer, or the CloudEvent-creating service?

Suppose, for example, that I built a system that converts log lines into
CloudEvents. What should its time be? The timestamp in the log line? Or the
timestamp of when the conversion occurred? The CloudEvents standard does
not mandate which. You will need to check if you make time-aware or time-sen-
sitive calculations.

Extension attributes

The attributes I've listed so far are part of the core specification. But there’s also a
variety of “Documented Extensions” that are available in secondary specifications.
You're likely to see some mix of these in the wild, because these deal with common
but not universal concerns.

dataref—It won’t be rare that you'd like to send big chunky things over a
CloudEvent. Suppose, for example, that you decide to start wrapping newly
baked binaries as CloudEvents. You could try squeezing a long binary into the
data section as one of the fields, but that’s a bit chancy and likely to be slow.
And it might also be the case that while I am comfortable with having Cloud-
Event attributes being visible as each one gets sent, I have security or privacy rea-
sons for not carrying the data along with it.

dataref lets you point to someplace else for the data field. For example, I
might emit a NewCustomer event, which includes various personally identifi-
able information (PII). I'd like not to accidentally leak that, so instead of
sending a data section, I push the PII into a trusted service and add a URL
to dataref.

Note that data and dataref are not mutually exclusive. You can have both, if
you want. In fact, anyone handling a CloudEvent is able to perform a swap. You
can turn a data into a dataref or convert from a dataref into data. If you have
both, you can choose to drop one.

traceparent and tracestate—Distributed tracing is useful and nifty and awe-
some, but it requires audience participation in order to be useful and nifty and
awesome. These two keys are intended to carry tracing information according
to the W3C Trace Context standard.

We’ll discuss tracing more in chapter 9, but I can preview the discussion
here: You should support these in your own software. What “support” means is a
sliding scale. Some libraries and SDKs can transparently inject basic trace data
(“entered service Foo”), and you should take advantage of these whenever pos-
sible. Some libraries require you to do manual work to add traces. Sometimes,
there is no relevant library and you’ll need to add trace headers directly. But
regardless of what you need to do, take the time to add these. You’ll thank me
later (no need to name your kids after me, though).

The anatomy of CloudEvents 141

partitionkey—Managing demand in large systems often relies on some way to
divvy up the workload. The source and subject keys provide two such fields,
for instance. I could send all of my source: com.example.ping events to one
server and all the source: com.example.bang events to a different server. But
what if my problem is actually that North Americans are so energetically ping-
ing and banging that I need to subdivide their traffic?

I could use subject, but that might not have the information I need to make
sensible bucketing decisions—how do I bucket things like subject: Lincoln? Is
it about the car, the person, the town, the company? This is where I use parti-
tionkey. I could settle on values for various states, provinces, and territories
and divvy up work that way. Or, I might split along timezones. Whatever makes
the most sense.

One word of warning: partition keys are how you learn that you don’t really
know your data. Abstractly, you want something that is uniformly distributed. But
few things of interest are uniformly distributed. Don’t be afraid to ask a data sci-
entist to help you find efficient ways to cut up your data; it’s pretty much what
they do for breakfast.

rate—A typical feature of metrics systems is the ability to sample. This is a fancy
way of saying drop randomly chosen data points when there are too many to
forward in a timely fashion.

The rate attribute allows a CloudEvent to carry a signal of what the sampling
rate was when it was created. It’s meant to be interpreted as a ratio of all observa-
tions to the CloudEvent itself, including the CloudEvent. Putting that another
way, if I make 10 observations and send 1 CloudEvent, its rate should be 10.

This field is close to essential if your metrics system is using sampling to
economize on traffic. Knowing the sampling rate makes it possible to estimate
how uncertain a given measurement might be. Combined with the total num-
ber of measurements, it becomes possible to provide “good enough” approxi-
mations quickly.
sequencetype and sequence—Sometimes, you just need a sequential number-
ing scheme to make sense of things. These two fields let you do that, but the
definition is a bit scanty.

The only defined sequencetype value is Integer. Once set, this means that
sequence should be a signed, 32-bit integer, starting at 1, incrementing by 1 for
each CloudEvent.

Already I can hear some of you rejoicing—a way to evade my grumpy rule
that you should use UUIDs for identity and nothing else. Bad news, I'm afraid:
my ruling still stands. Resist the temptation to use sequence as a kind of pseudo-
id. In fact, just resist the temptation to use it.

142 CHAPTER 6 Introduction to Eventing

6.3 A word about event formats and protocol bindings

Something I’ve obscured so far is that, in theory, nothing about the CloudEvents spec
requires it to be emitted as a JSON object. And nothing requires a CloudEvent to travel
over HTTP. Instead, CloudEvents are meant to be mapped into something like JSON
+ HTTP in two ways: format and protocol.

JSON is an example of format mapping. The CloudEvents standard defines a specific
JSON format, of the sort you're going to see a lot of in the coming chapters. There is
also a format mapping for Apache Avro records as well, though, and more are likely
to emerge.”

HTTP is an example of a protocol mapping. There are more of these currently
defined: Katka, AMQP, MQTT, and NATS. All of these are somewhat related to queue-
ing systems or distributed log systems or whatever you prefer to use in diagrams. Yes,
there are differences. For the purposes of CloudEvents, the differences are irrelevant.
The point here is that if you have Kafka or RabbitM(Q) as your existing infrastructure
for shipping events, then you can add CloudEvents to that mix smoothly. If you use
NATS or MQTT, ditto.

Lots of protocols already have some kind of header/body or metadata/data sepa-
ration. HTTP is again a useful example. The set of permissible HTTP headers is open
by design, only a handful are predefined by IETF specs. A lot of tooling understands
how to read and interpret headers, including previously unknown headers. You can
imagine various proxies and routers acting on specialist headers. Consequently, add-
ing and reading headers is trivial with any HTTP library worth its salt.

You needn’t sit for the shocking news: you can use HTTP headers to carry Cloud-
Event attributes. And this sets me up for an additional wrinkle in the CloudEvents
protocol-mapping universe: modes. There are three of these: structured, binary, and
batched.

6.3.1 Structured content mode

In the structured mode, your CloudEvent is completely self-contained. You map the
event into one of the formats you chose, with its attributes included. By and large, this
is what I’'ve been showing you so far and is what you can see in the following listing.

Listing 6.5 JSON format: Structured content mode

{

"specversion" : "1.0",
"type" : "com.example.type",
"source" : "/example/source",
"id" : "82C32673-0C78",

% T am a heretic on the matter of JSON. Blasting innocent electrons to smithereens in order to needlessly
decode and re-encode text no human will ever look at is absurdly wasteful. By now, JSON probably merits its
own line item in the global accounts of carbon dioxide emissions. Perhaps you are in the camp that “meh;”
in which case, the engineering effort to use Avro instead of JSON may not seem necessary. But I urge you,
think of the electrons.

6.3.2

A word about event formats and protocol bindings 143

"time" : "2020-04-10T01:00:05+00:00",
"datacontenttype" : "application/json",
"data" : {

"foo": "and likewise bar"
1

Because this is wholly self-contained, I can squirt it over any old means of communica-
tion. To you and me, for example, FTP is dead, an historical concept that HTTP sup-
planted. But to most of the biggest financial institutions on earth, FTP is beyond
death, beyond time and space and meaning and existence. Suffice it to say that struc-
tured content mode lends itself to adapting to existing modes of transmission that
don’t have the faintest understanding of, or interest in, CloudEvents as CloudEvents.

Binary content mode

But many protocols have some kind of separation between headers and bodies,
between a control channel and a data channel. Sometimes, this is a physical separa-
tion (as in the phone system), but most often you’re multiplexing together control
signals and data somehow.

HTTP uses the simple approach: for each request or reply, the headers are sent
before the body, with a blank line between the headers and the body. The set of head-
ers is not limited to those in the relevant RFCs; it’s open-ended by design to enable
extensions. Sending a CloudEvent to a remote server in binary content mode via
HTTP might look something like the following listing.

Listing 6.6 JSON format: Binary content mode

POST /example/event HTTP/1.1

Host: example.com

Content-Type: application/cloudevents+json
ce-specversion: 1.0

ce-source: /example/source

ce-id: 82C32673-0C78

ce-time: 2020-04-10T01:00:05+00:00

{
}

"foo": "and likewise bar"

In this case, I rely on setting ce- headers to carry the CloudEvent attributes. What pre-
viously lived under the data key is promoted to a top-level JSON object.

The pros here are that CloudEvents are now a bit easier to cleanly assemble. I can
actually take any old JSON, smack it into the body, and smear CloudEvent headers
over the top without modifying the original data (useful if you've signed it, for
instance). And receivers of these HTTP exchanges can do Smart Things™ by reading
the headers, without needing to delve deeply into the CloudEvent data itself. In the-
ory, they can rewrite the headers if they wish.

144

6.3.3

6.4

CHAPTER 6 Introduction to Eventing

Ah, but, now you're at the mercy of anything between you and the server. Maybe
your proxies and firewalls will pass through CloudEvent headers unharmed. Maybe they
won’t. For largely internal systems, this should be fixable, but keep it in mind for
future mystery bug hunts.

Batched content mode

Batching is an old and noble way to economize on resource usage. Every HT'TP request,
Kafka entry, MQTT message, etc., has some fixed overhead. By batching together mul-
tiple logical CloudEvents into one physical interaction with a protocol, you can amor-
tize the overhead over all of the CloudEvents in the batch.

I include this mode mostly for completeness. If you need to improve efficiency at
the cost of end-to-end latency, you can try different batching schemes to see what
helps. But otherwise, I'm going to leave it here.

A walkthrough

In chapter 2, it didn’t take me long to get to the hallowed “Hello world” moment. Get-
ting there with Eventing will be a slightly longer way around. I’ll start by turning to my
trusty companion, kn, to tell me the current state of play, as the following listing
demonstrates.

Listing 6.7 Whaddya know?

$ kn trigger list && kn source list && kn broker list
No triggers found.

No sources found in default namespace.

No brokers found.

Under the hood, these commands are groping around for Trigger, Source, and Broker
records in Kubernetes. I haven’t done anything yet, so there are none.

So far, not very enlightening. Especially because it’s been a few chapters since I last
committed these Triggers and Sources onto a page. Let’s refresh: a Trigger combines
information about an event filter and an event subscriber together; a Source is a
description of something that can create events. Diagrammatically, it’s something like
that shown in figure 6.2.

Trigger

Source —C,G\)—>] l |::> —CEJ)—*|Subscriber

Figure 6.2 A Source, a Trigger, and a Subscriber

That’s at least how the configuration looks. In reality, Triggers don’t really do anything
in themselves. They’re records that get acted on by a Broker, with potentially many

A walkthrough 145

Triggers per Broker. You won’t see Triggers running as standalone processes. So really,
it’s more like figure 6.3.

Broker

Source |[—CC& CEJ)—™|Subscriber

Figure 6.3 Now with added brokerage!

A Subscriber here is anything that Knative Eventing knows how to send stuff to. “Any-
thing Knative Eventing knows how to send stuff to” is a sufficiently broad and nuanced
category that I will simply forestall further discussion. Instead, I'm just going to bash
my way through to that “Hello world” moment.

Let’s work backwards, starting with a Subscriber. The simplest thing to put here is a
basic web app that can receive CloudEvents and perhaps help us to inspect those.
Luckily, helpful folks have already done so for us. Just as luckily, kn makes it easy to
enjoy their work. I'm going to start by setting up a Broker and then adding the
cloudevent-player as in the following listing.

Listing 6.8 Adding a Broker and installing cloudevent-player with kn

$ kn broker create default
Broker 'default' successfully created in namespace 'default'.

$ kn service create cloudevents-player \
--image ruromero/cloudevents-player:latest \
--env BROKER URL=http://default

... log of service creation

Service 'cloudevents-player' created to latest revision
'cloudevents-player-skgwy-1' is available at URL:
http://cloudevents-player.default.example.com

This is a handy little web app I can use to send and receive CloudEvents. If you open
the URL, you should see a form and then some blank space. I'm going to go ahead
and enter an event for you, send it, and then discuss a screenshot.

Figure 6.4 shows the CloudEvents player interface, which has a number of useful
landmarks:

1 Here’s the event ID. There’s a handy autogenerator, just click the Loop icon
Q.

2 Here’s an event type.

3 And the event source.

146

CHAPTER 6 Introduction to Eventing

CloudEvents player

Create event

Event ID *

bf1778f7-92cb-4abe-b7c3-150fec4bef74 0 Q

Activity 0 e

D Type Source Status Time Message

Event Type *
com.example

Event Source *

/foo

bf1778f7-92cb-4abe- > 2020-04-

exampl 0 >
e b7c3-150fecdbef74 CIREERD A 28T00:41:18.434+02:00[Europe/Madrid] =

Specversion

1.0

Message *

{

"message": "Hello CloudEvents!"

}
SEND EVENT e

W CLEAR EVENTS

Figure 6.4 The CloudEvents player app

The Specversion can be altered, but shouldn’t be. This made sense when

CloudEvents was an evolving specification, but that’s no longer the case.

The Message here is actually the data section of the message.

Clicking Send Event creates an event, which is sent to a broker (more in a

second).

The Activity table shows events that have been sent or received.

The Status column gives a hint as to whether an event was sent or received. The

arrow means Sent. An envelope, which we’ll see in a second, indicates Received.

The residual question here is whether “Sent” actually has any meaning here. Sent to
where? Right now, to nowhere. Like the tree falling in the unwatched forest or the
right swipe on the dating app, it has been swallowed whole into the silent void, never
to be heard from again.

I am, of course, being fast and loose with the truth here. The app has sent the event
to the Broker. Specifically, to the BROKER URL that I defined as part of the service.*

And that’s as far as it got, because we hadn’t defined a Trigger. Easily fixed as the
next listing shows.

4 Assuming that one is available, of course. There are a number of sorts of Brokers and ways to wire those, which
I'll cover in upcoming chapters.

A walkthrough

147

Listing 6.9 Creating a Trigger with kn

$ kn trigger create cloudevents-player --sink cloudevents-player

Trigger 'cloudevents-player'

successfully created in namespace

'default'.

Now head back to the CloudEvents player and try sending another event. You'll see
that the event is both sent and received (figure 6.5).

CloudEvents player

Create event Activity
Event ID* D Type Source Status Time Message
d5270bd2-69¢6-4888-bbc6-73c0914be8c8 [F] O
- d5270bd2
vent Type *
69c6-4888- 2020-04-
Y v |
com.example bbcé- Com 2Pl fee 28T23:55:35.082+02:00[Europe/Madrid] =
73c0914be8c8
Event Source *
/foo d5270bd2-
6906-4888- 2020-04-
g =
pecversion bbc6- com.example /foo > 28T23:55:35.036+02:00[Europe/Madrid]]
1.0 T 73c0914besc8
Message *

"message": "Hello CloudEvents!"

SEND EVENT

Figure 6.5 ECHO! Echo! echo!

The simple fact here is that I've cheated by making the CloudEvents player both the
Source and Sink for events. Figure 6.6 shows the basic logic of how a CloudEvent cre-
ated in the web UI flows back to the web UL In part, this demonstrates that any soft-
ware process can fill either the Source or Sink role. In this case, the CloudEvents player
can do both.

Broker

’—(G 1€

clole] als|zglels] o

] et | | s

CloudEvents
player

Figure 6.6 CloudEvents player is both Source and Sink.

148

CHAPTER 6 Introduction to Eventing

The nomenclature of “sinks” and “sources” here is already widespread outside of Kna-
tive in lots of contexts, and its exact origin might be contested by armchair etymolo-
gists. But briefly: Sources are where events come from; Sinks are where events go.

I didn’t explicitly define a Source, though. I only defined a Sink in the Trigger.
This already hints at how flexible Eventing actually is, but also at the fiendish difficulty
of smoothly introducing you to systems that can be assembled in just about any order.

Self pity aside, it’s worth inspecting the gizzards more closely. Similar to Service
and Route, kn provides kn trigger describe for such a purpose, as the following list-
ing reveals.

Listing 6.10 Describing Triggers

$ kn trigger describe cloudevents-player

Name: cloudevents-player
Namespace: default
Labels: eventing.knative.dev/broker=default
Annotations: eventing.knative.dev/creator=jchesterepivotal.io,
eventing.knative.dev/lastModifier ...
Age: 1h
Broker: default
The Trigger sets cloudevents-player
Sink: <;J as its Sink. So far so good.
Eame' . cloudevents-player Many things can act as a Sink
amespace: default . ..
Resource: Service (serving.knative.dev/vl) <— WIthou.t knOWI.ng it. Here, | create.d
a Knative Service and then made it
into a Sink. Does that mean that
Conditions: only Knative Services can be Sinks?
OK TYPE AGE REASON Not at all. This is the magic of duck
++ Ready 1h typing, which I'll discuss towards
++ BrokerReady 1h the end of the chapter.
++ DependencyReady 1h
++ SubscriberResolved ih Some of our lovely friends:
++ SubscriptionReady 1h Conditions.

Right now the conditions are all ++, indicating a state of swellness and general good
humor. As with other Knative conditions, Ready is the logical AND of all the others. If
any other condition isn’t OK, then Ready will not be ++. Looking a little closer at the
other conditions

= BrokerReady—This signals that the Broker is ready to act on the Trigger. When
this is false, it means that the Broker can’t receive, filter, or send events.

= DependencyReady—DBecause I cheated and defined the CloudEvents player ser-

vice as both Source and Sink, this doesn’t have a deep meaning. This is really
meant to tell you how a standalone source, such as PingSource, is doing.

In non-cheaty-author situations, this is a handy field. It gives you a fighting

chance of guessing whether stuff broke because you broke it or whether some

external service broke it instead. If it’s true, then you can eliminate outside

A walkthrough 149

forces of evil as a cause. If it’s false, start limbering up whichever finger you use
for pointing.®

SubscriberReady—This is where the naming of things in Eventing starts to get
squiggly. The practical point here is that SubscriberReady is about whether the
Sinkis OK. It’s not a reference to the Subscriber field of a Trigger.
SubscriberResolved—TI’ve left this for last because it’s the odd one out. Broker-
Ready, DependencyReady, and SubscriberReady are all about the status of soft-
ware that’s running someplace else. That means it can change from time to
time, due to the passage of Mars into the House of Jupiter under a blood moon
or whatever else your postmortem picks as root cause for an outage.

But SubscriberResolved is a once off. It refers to the business of resolving
the subscriber (turning the Sink into an actual URL that can actually be
reached). That happens right after you submit a Trigger. Eventing picks up the
Sink and shakes it to see what’s inside. It might be a directly hard-coded URL
that you gave. It might be a Knative service. But it can also be a number of dif-
ferent things, such as a Kubernetes Deployment. All of these have some differ-
ences in how you get a fully resolved URL, but a fully resolved URL is what the
Broker needs to do its job of squirting CloudEvents over HTTP.

When it’s OK, SubscriberResolved can be ignored. But if it’s false, then
your Trigger is wedged. You won't fix it directly by tinkering with the Broker,
Source (aka dependency), or Sink (aka subscriber). To be sure, if those are
misbehaving, fix these first. But you will still need to update the Trigger in
order to get another go at URL resolving.

The conditions you see do go beyond a game of true-or-false, though. Each of these
conditions has evil parallel universe relatives.

BrokerDoesNotExist—This appears when there is no Broker. I have more than
once forgotten to add a Broker to a namespace, and also more than once for-
gotten to check for this condition. It’s possible for platform operators to config-
ure Brokers to be injected automatically, but it’s not the default behavior. In any
case, if you see this, it means you need to use kn broker create.
BrokerNotConfigured, DependencyNotConfigured, and SubscriberNot-
Configured—These appear when you first create a Trigger. These represent
that control loops take time to swirl: upon submitting records, it takes time to
reconcile the desired world with the actual world.

Alot of the time these will be the kind of thing you can miss if you blink. But
if these hang around, something is wrong.

® Bear in mind that it might be wrong, and further, that tact can be as important as fact. In my consulting days,
we used to run “Frenemy Tests” against external APIs as part of our overall testing and monitoring. It saved a
great deal of panic, but it also created a great deal of drama. Few things are more insulting than historical
data.

150

CHAPTER 6 Introduction to Eventing

BrokerUnknown, DependencyUnknown, and SubscriberUnknown—These are the
Joker cards of conditions. By convention, an -Unknown condition literally means
that Knative has no idea what’s happening. The sister condition (e.g., Broker-
Ready) isn’t true, it isn’t false, it isn’t in the middle of being configured. It’s just
... unknown.

On the downside, if you see this, something weird is going on. On the
upside, Knative at least has the manners to capture some details and log those.
We’ll see more when we get to chapter 9.

And speaking of stuff going wrong, what happens if I delete the Trigger? Let’s look at
the following listing to find an answer.

Listing 6.11 Deleting the Trigger with kn

kn trigger delete cloudevents-player
Trigger 'cloudevents-player' deleted in namespace 'default'.

So far, listing 6.11 looks innocuous. You don’t get any warnings about the fact that
your events now won’t get delivered to cloudevents-player. Knative doesn’t maintain
an internal model of your system that can easily serve such a purpose. There are no
foreign key constraints in the world of Kubernetes records. If the Trigger is gone, then
it’s gone. It’s up to you to know if that’s a desirable situation.

You can prove that we've broken the link. Generate new event IDs in the Cloud-
Events player and mash the SEND EVENT button each time. All you’ll see in Status is
the Sent arrows. The events flow out, but do not flow back.

Going, going, gone

The practical upshot is that every event is on its own in the big, bad world because
the Broker applies the Triggers it knows about, one event at a time, as these arrive.
If an event arrives and there’s a matching Trigger, loud hooray! If there isn’t, silent
horror!

This isn’t unique to Knative Eventing, mind you. It's a common case. Distributed sys-
tems utilizing any kind of static analysis are few and far between. So much so that
while I'm sure | could find one with some digging, | cannot think of any offhand.

Does it matter? No. In fact, this laxity facilitates loose coupling. You can add and sub-
tract parts of your Eventing setup at will, which means that components added on day
one probably don’t need to know or care about components added on day two, insofar
as both at least agree on CloudEvents as a common envelope format.

Does it matter? Yes. Agreeing on an envelope format is just the beginning. You will
probably need to think about schema evolution as well.

But there’s another reason why “looseness” matters. Suppose | have a source of
events that’s been nicknamed Old Faithful. One day it falls silent. Now, is that silence
because Old Faithful has decided to retire? Or is it a network glitch? Or is the broker

A walkthrough

151

down? Or did someone inadvertently delete a Trigger? Inability to distinguish between
failures of networking and failures of anything else is the Byzantine Generals problem

and therein lies many species of hell.

There are a number of ways to deal with it at a lower level. By and large your infra-
structure will handle these for you. But at a higher level, you need to remember that
“a Trigger was deleted” is a potential cause for unnoticed degradation. It’s easy to
notice metrics when those blow up and easy to forget to check for boring old zeroes.

To prove my point, I can add the Trigger back.® The following listing demonstrates this.

Listing 6.12 Returning the Trigger

$ kn trigger create cloudevents-player --sink cloudevents-player

Trigger 'cloudevents-player'

successfully created in namespace

'default"'.

And when I return to cloudevents-player and send an event, I can see that it was
both sent and returned (figure 6.7).

Activity

ID

56235553-2dfb-4dd6-823f-
4ecbe2432427

56235553-2dfb-4dd6-823f-
4ecbe2432427

4c9f8629-d3ea-4b01-b57e-
6ec5614e68b0

Type

com.example

com.example

com.example

Source

/foo

/foo

/bar

Status

v

Time

2020-04-
29T23:54:14.028+02:00[Europe/Madrid]

2020-04-
29T23:54:13.991+02:00[Europe/Madrid]

2020-04-
29T23:53:33.94+02:00[Europe/Madrid]

Figure 6.7 After restoring the Trigger and sending a new CloudEvent

Message

I can perform a similar magic trick by deleting the CloudEvents player and then add-

ing it back. Deleting the Service also gives us a chance for some sightseeing of some

Conditions that have turned false, as in this listing.

6 “Add back” is a slight misnomer. It’s the same name, but this is a new Trigger record.

152

CHAPTER 6 Introduction to Eventing

Listing 6.13 Nothing up my sleeves

$ kn service delete cloudevents-player
Service 'cloudevents-player' successfully deleted in namespace 'default'.

$ kn trigger describe cloudevents-player

Name : cloudevents-player
Namespace: default
Labels: eventing.knative.dev/broker=default

Annotations: eventing.knative.dev/creator=jchester@epivotal.io,
"> eventing.knative.dev/lastModifier

Age: 5m
Broker: default
Sink:
Name : cloudevents-player
Namespace: default
Resource: Service (serving.knative.dev/vl)
Conditions:
OK TYPE AGE REASON
!'l Ready 2s Unable to get the Subscriber's URI
++ BrokerReady 5m
++ DependencyReady 5m
!'l SubscriberResolved 2s Unable to get the Subscriber's URI
++ SubscriptionReady 5m

You can see in listing 6.13 that SubscriberResolved is now false (!!). Consequently,
the Trigger isn’t Ready. This makes sense and is more or less what I would have
expected. Now, let’s reverse the procedure in the next listing.

Listing 6.14 Something up my sleeves

$ kn service create cloudevents-player \
--image ruromero/cloudevents-player:latest \
--env BROKER URL=http://default

... log of service creation

$ kn trigger describe cloudevents-player

Name : cloudevents-player
Namespace: default
Labels: eventing.knative.dev/broker=default

Annotations: eventing.knative.dev/creator=jchesterepivotal.io,
"> eventing.knative.dev/lastModifier

Age: 9m
Broker: default
Sink:
Name: cloudevents-player

Namespace: default
Resource: Service (serving.knative.dev/v1l)

6.5

6.5.1

The basic architecture of Eventing 153

Conditions:
OK TYPE AGE REASON
++ Ready 3s
++ BrokerReady om
++ DependencyReady 9m
++ SubscriberResolved 3s
++ SubscriptionReady 9m

Huzzah! Everything has returned to the status quo.

NOTE One thing I should point out again is that these relationships aren’t in
any sense normalized. If I submit two Triggers with identical definitions, I will
wind up with two copies of a CloudEvent being delivered. The Broker doesn’t
have any sort of de-duping logic to sniff these cases out. It’s up to you to check
for duplicate Triggers when you see duplicate events.

The basic architecture of Eventing

Before I wrap up the current chapter, I'm going to spend some time priming your
mental cache of components. In chapter 2, I showed that in Serving I can nominate
four kinds of records: Revision, Configuration, Route, and Service. The chapters
about Serving were structured around these four with a special guest appearance by
autoscaling. That made my job easy.

In Eventing, there are more kinds of records, subdivided into four major groups:
Messaging, Eventing, Sources, and Flows. Added to these is a small but growing collec-
tion of duck types, which you can think of as shared interfaces that show up in multiple
categories.

Messaging

This is about raw plumbing: the business of moving CloudEvents from one place to
another. The primary record kinds are Channels and Subscriptions.

Channels are used to describe and configure systems like RabbitMQ, Kafka, and
the like. You provide a Channel record to tell Knative about the availability of such sys-
tems, and hopefully, the Channel authors have provided additional tooling that knows
how to fulfill the promise being made to Eventing.

For development convenience, Eventing bundles an “In-Memory Channel” (IMC)
implementation. We used it earlier during our walkthrough, without needing to con-
figure or install anything. That’s a situation I like so much that I'll use the IMC for
almost everything I demonstrate.

But your environment might be differently configured. Already, there are commu-
nity Channel implementations for Katka, GCP PubSub, and NATS Streaming. I'm
sure more will show up over time. I'll discuss a selection of available Channel imple-
mentations in section 7.4.

Subscriptions are a less happy story. We saw something called subscriber previ-
ously. Not the same beast, it turns out. On a Trigger, the field named subscriber is

154

6.5.2

6.5.3

CHAPTER 6 Introduction to Eventing

not of the subscription kind. Much as a Knative Service melds together Configura-
tions and Routes, the Subscription melds together Channels and Subscribers into a
single unit.

I found this naming to be quite confusing; I am sure you did too. You might think
of subscriber as being “a process or address that can receive a CloudEvent” and sub-
scription as “a bundle of channels within a subscriber.” We’ll no doubt stub our toes on
this naming scheme again.

Eventing

It would be boring if all Eventing ever gave you was a way to define a substrate for ship-
ping messages. That’s why the examples mostly leaned on Brokers and Triggers. These
belong in the “Eventing” subcategory of Eventing, or as I will now refer to it out of lazi-
ness, “Eventing.”

The name here emphasizes that Brokers and Triggers are most of what you will
interact with and think about as a developer. That you can talk about “Eventing Event-
ing” is just a bonus.

A third kind of record lurking under this category is the Event Type. These are the
literal representation of CloudEvent attributes—the type, source, and so on. Most of
the time, these will be invisible.

Sources

You'll recall that I described Sources as places where events flow from. In some sense,
these belong in the “Eventing” category above. But in practice, these are broken out
for two reasons.

The first is SinkBinding, which is also a mostly internal type. Its existence is
entirely related to how Sources get wired into the wider world of Brokers, Triggers,
Sinks, and so forth. It therefore lives in Sources with code that rely on it.

What code is that? Sources, of course. While a Source is a general interface that
can be widely implemented, it’s difficult to do anything or get a sense of the possi-
ble unless you have concrete examples out of the box. Knative Eventing provides
three reference Sources: the PingSource, the ApiServerSource, and the Contain-
ersource.

PingSource has one purpose: it produces CloudEvents on a schedule you provide.
It used to be called CronJobSource, a name which tended to cause confusion with the
CronJob records available in vanilla Kubernetes. Unlike a CronJob, PingSource
doesn’t actually run any jobs. It just produces a CloudEvent. After roughing up a dictio-
nary for naming ideas, the Knative Eventing team settled on “PingSource.” It is a
source of pings.

The ApiServerSource is a much more sophisticated example. It can observe changes
made to raw Kubernetes records and convert these into CloudEvents. In a philosophical
sense, this isn’t really necessary. You can already use audit events or various tools and APIs
to directly watch Kubernetes records. The point here is that ApiServerSource provides

6.54

6.5.5

The basic architecture of Eventing 155

a fairly complete example of how you can wrap an existing eventdish system into a
CloudEvents form, so that these can join the fun.

ContainerSource takes a bit more explanation. It’s essentially a specialized adap-
tor. You provide a PodSpec to ContainerSource, and in exchange, it injects informa-
tion about a Sink to which anything running in the Pod should send its information.
Put another way, it’s a simple wrapper for existing systems that can run on raw Kuber-
netes and learn how to send events to a URL provided externally.

Which leaves yours truly in the odd position of telling you to pay attention to
Kubernetes so that you can take advantage of Knative, which was meant to excuse you
from the burden of paying attention to Kubernetes. I get out of this corner by saying
that while ContainerSource is useful as a reference implementation and for quickly
adapting existing software, it should never be seen as the only option or the best
option. Where you have a more specific source, you should use it.

Which leads me to another point: while Knative Eventing bundles these three
Sources, there’s no limitation on using third-party sources. There are several of these
in various states of maturity, activity, and supportedness.

Flows

This is a little bit of icing on the Eventing cake. You can build arbitrary graphs of com-
putation using Brokers and Triggers. But it can be tedious. More to the point, such a
hand-assembled graph encodes the structure of computation, but not its meaning.

Flows comes with two types, Sequence and Parallel, to make this problem a little
easier. The names are fairly descriptive of the types. Sequence provides a way to bun-
dle sequential steps connected via CloudEvents sent over Channels. And Parallel
provides a way to encapsulate basic fan-out and fan-in scenarios.

Duck types

These are odd ducks. I almost left this discussion out, but I've kept it for three rea-
sons. First, a lot of the magic in Knative is achieved with duck typing. Second, the con-
cept is spreading out of Knative into other projects and I expect you'll see more of it.
Third, with due credit to its inventors (Matt Moore and Ville Aikas), it’s a brilliant
hack on the Go type system. It deserves a little bit of admiration.

In statically-typed languages like Java, the type of a variable is set once, when the
variable is created. Anything inside that variable must be of the same type, or a sub-
type, as the name above the door. This nominal typing is good at detecting certain
kinds of bugs at compile time. But it does rather lean on you, the programmer, to
have defined all the relevant types before compilation time.

Static, nominal typing is not the only option for language designers. In a language
like Ruby, there are variables holding objects, and objects have types. But what that
type is can change from moment to moment as various merciless waves of metapro-
gramming sweep terrified victims ahead of them. You can define a type in Ruby without

156

CHAPTER 6 Introduction to Eventing

fuss. It has a shiny class keyword and so on. But until you call a method on an object,
you don’t know what will happen.

This leads to the term duck typing: if the object walks like a duck and quacks like a
duck, then it’s a duck. This is a tremendously useful capability for languages of this
genre. It is also a tremendously agony-inducing capability for languages of this genre. I
grew up with ducks and let me tell you, yes, they walk, and yes, they quack, but their
truly distinguishing characteristic is an irrational urge to poop on verandas. As with
ducks, so with Ruby: a watchful eye and judicious fencing are required to stop finding
duck manure all over.

Golang is, basically, statically and nominally typed, but with a clever twist on nomi-
nal typing. In a language like Java, I can create a named interface and implement it
with concrete classes. In Golang, I can also define an interface, but there’s no concept
of “implements.” Instead, you can collect methods together onto structs. Any such col-
lection with the same methods as an interface is considered to be that type.

This neatly solves most of the problems with the two abbreviated descriptions I
gave of Java and Ruby types. Unlike Java, Golang does not require explicit statements
of interfaces, so an interface can be added after a concrete type and still be picked up.
Unlike Ruby, nominal type checking happens at compile time, so the terrible sensa-
tion of standing in something squishy first thing in the morning is less likely to occur.

But not is all well in Paradise, because the Golang type system distinguishes sharply
between interfaces, which are entirely about methods, and structs, which are about
data, with the ability to attach methods. At this point, code can define types that are
either of a named interface or a particular struct. If you define the type by interface,
you can put any conforming implementation into that variable. If you define the type
as a particular struct, tough luck. You are stuck with it forever; you can’t put any other
type there, even if an interface existed that the struct would have satisfied.

A sample from my upcoming book, Things Jacques Hates About Golang

Fun fact: the Golang standard library is an inconsistent mix of interface-typed mod-
ules and struct-typed modules. Meaning, sometimes you can replace library calls with
a test fake. And sometimes you can’t.

Linguists sometimes debate whether language completely constrains our apprehen-
sion and comprehension of external reality, a long-running debate that can be found
under the “Sapir-Whorf Hypothesis” in The Encyclopaedia of Tedious Freshman Stoner
Philosophy. | am at last able to settle this debate once and for all: it is wrong. | speak
only English and, after thoroughly ransacking the entire language, | am unable to pro-
cure any word which fully encompasses the depth and breadth of my spiteful rage
about this design decision.

Why on earth would anyone ever choose to create a struct-typed variable when inter-
face-typed variables are always possible to build? If I leave aside mere hatred of fellow

Summary 157

programmers, there is one situation where this arises: subtypes where the primary
extension or change is in the data model, not in the methods.

To be sure, you can embed structs into other structs. But then you’re stuck with
struct typing again, and may you prevail against all the forces of darkness, O Weary
Traveler.

Knative’s duck typing concept manages to break the evil spell and give you both
the ability to have interface-typed variables and to have subtyping for data. The practi-
cal upshot is that Knative can define types like Addressable, which both have guaran-
teed data fields like a struct and guaranteed methods like an interface. Under the
hood, this is achieved with a clever little trick involving casting types of static variables,
so that the compiler will barf if you don’t respect a desired duck type.

Suppose, for example, I am making an Icecream interface, where I can give a list
of flavors and how many scoops I want. In the following listing, I show how this looks
when serialized into YAML.

Listing 6.15 Icecream

icecream:
- flavor: vanilla
scoops: 1

So far so good, but suppose I now develop a new type called Sundae, which includes,
but is not the same, as Icecream. Duck typing allows me to cleanly embed the Ice-
cream type into the Sundae type. When serialized it looks like the following listing.

Listing 6.16 Sundae

sundae:
sprinkles: oreos
topping: chocolate
icecream:
- flavor: vanilla
scoops: 2

The punchline is this: I can write software that implements just Icecream, but it will be

able to handle Sundaes as well, without needing to worry about sprinkles or toppings.
There’s some useful documentation about duck typing, which is worth at least

skimming. I also recommend the KubeCon talk that Matt and Ville gave on the topic.

Summary
= CloudEvents are a standard structure for events. These can be represented with
multiple formats over multiple protocols.
= CloudEvents have attributes and data.
= Some attributes are required: specversion, source, type, and id, for example.
= There are also optional and extension attributes.

158

CHAPTER 6 Introduction to Eventing

The CloudEvents player is a useful debugging and development tool for work-
ing with Knative Eventing.

You can use kn to list, describe, create, and update Sources and Triggers.
Conditions on Triggers can show whether Brokers, Subscribers, or Sources are
live and healthy.

Eventing contains four major groups of components: Messaging, Eventing,
Sources, and Flows.

Much of the magic in Knative Eventing is due to the “duck typing” capability
supported by Knative’s implementation.

References

Internet Assigned Numbers Authority, Media Types, http://mng.bz/Xd1G

T. Taylor, “Example Media Types for Use in Documentation,” Requests for Com-
ments: 4735 (IETF, October 2006), https://tools.ietf.org/html/rfc4735

G. Klyne and C. Newman, “Date and Time on the Internet: Timestamps,” Requests
Jor Comments: 3339 (IETF, July 2002), https://tools.ietf.org/html/rfc3339
Sergey Kanzhelev, Morgan McLean, et al., “Trace Context” (W3C Editor’s Draft,
April 3, 2020), https://w3c.github.io/trace-context/

The Avro Authors, “Apache Avro” (Apache Software Foundation), https://avro
.apache.org/

Gregor Hohpe and Bobby Woolf, Enterprise Integration Patterns (Addison-Wesley
Professional, 2003)

Matt Moore, Ville Aikas, and Eric Anderson (ed)., “Knative Duck Typing,”
(GitHub, April 7, 2020), http://mng.bz/yY8G

Matt Moore and Ville Aikas, “Extending Knative for Fun and Profit” (KubeCon
EU 2019), http://mng.bz/MXZ7

https://tools.ietf.org/html/rfc4735
https://tools.ietf.org/html/rfc3339
https://w3c.github.io/trace-context/
https://avro.apache.org/
https://avro.apache.org/
https://avro.apache.org/
http://mng.bz/yY8G
http://mng.bz/MXZ7
http://mng.bz/Xd1G

7.1

Sources and Sinks

This chapter covers

Sources, where CloudEvents come from and
where to send them

Sinks, a key field of Sources

How to create, update, and inspect a Source
What SinkBinding is and how it works

Inbuilt and third-party Sources for Eventing

Sources and their slightly less visible companion, Sinks, are the bread-and-butter
concepts you use most often in Knative Eventing. Quickly revisiting: a Source describes
a thing that can emit CloudEvents and a place (the Sink) where those events should
be sent. Sources are the canonical way of describing how CloudEvents will move
between points in a Knative Eventing design. Luckily, these are not super-complicated,
so this chapter will be relatively brief.

Sources

In this section, I'm going to briefly look at the anatomy of Sources, then we’ll poke
one to see how it works. It’s worth remembering that while / am putting “Source”
and “Sink” on the same conceptual level, Knative’s structure is that Sources are the
top-level concept and that Sinks are a component of Sources.

159

160 CHAPTER 7 Sources and Sinks

7.1.1 The anatomy of Sources

Figure 7.1 is a representation of a Source, as seen by an
X-ray machine. In figure 7.1, I've represented a Source
as having two parts, but confusingly, only one is actually @ Source
labeled ‘Source’. That box contains Sink and CloudEvent- cink _’O
Overrides. Then underneath is the very helpful ??? box.
We’ll profit from ??? in a second, but first, what’s the CloudEvent ~v
duck inside the octagon all about? Overrides
It’s the “Ducktagon,” a little icon for Knative duck
types. My purpose here is to visually annotate the Source 277
box as being a duck type; specifically, a Source. Knative’s
design is that any Kubernetes record having those two

fields can be treated as a Source by Knative. More con- Figyre 7.1 What's in the box?
cretely, we can point our X-ray machine at PingSource
(figure 7.2).

PingSource
Fields from i |sink a@ i
Source :
duck type ! | CloudEvent ~y
i Overrides :
) . Schedule
Fields specific
to pingSource
JsonData
Figure 7.2 PingSource under the scope

My point here is that because PingSource contains Sink and CloudEventOverrides, it
is a Source. Those two fields are used by Knative Eventing itself. The additional
Schedule and JsonData fields are specific to PingSource.

Let me drive this home some more. Anything with those two fields is a Source, so far as
Knative is concerned. The ContainerSource has these fields, so it is a Source. Api-
ServerSource has these fields; it too is a Source (figure 7.3).

This “is-a” relationship is not achieved through some sort of class inheritance
mechanism; it’s based purely on the fields present in the record. This makes it possi-
ble to extend Eventing without ever needing to modify the Eventing codebase or even
to pull any Eventing code as a dependency.

7.1.2

Sources 161

ContainerSource ApiServerSource

@ @
Sink 4’@ Sink A’O

CloudEvent a4 CloudEvent 4
Overrides fS Overrides fﬁ

fmmmm— e ———————

Template Resources

ResourceOwner

EventMode

ServiceAccountName

Figure 7.3 The other
inbuilt Sources

Using kn to work with Sources

All good and well, but Sources are meant to be used, not dissected. Our trustworthy
friend kn is standing by to help. Let’s first prove that I am not lying about the Sources
that are installed by default. I present in my defense the following listing.

Listing 7.1 Using kn source list-types

$ kn source list-types

TYPE NAME DESCRIPTION
ApiServerSource apiserversources.sources.knative.dev

Watch and send Kubernetes API events to a sink
ContainerSource containersources.sources.knative.dev

Generate events by Container image and send to a sink

PingSource pingsources.sources.knative.dev
Send periodically ping events to a sink
SinkBinding sinkbindings.sources.knative.dev

Binding for connecting a PodSpecable to a sink

Here are the three amigos of ApiServerSource, ContainerSource, and PingSource.
As areminder (or foreshadowing, if you're reading the book out of order), these rep-
resent a Source for Kubernetes API events, an adapter for existing software in a
Kubernetes Pod, and a Source for sending CloudEvents on a regular schedule. Plus
there’s an interloper, SinkBinding, which I'll return to later.

You might have found list-types to be an odd subcommand name. My own first
instinct is that 1ist makes more sense. Is it aliased? Missing? Living in Panama under
a false identity?

162

CHAPTER 7 Sources and Sinks

Listing 7.2 What does kn source list do?

$ kn source list
No sources found in default namespace.

Listing 7.2 reveals that none of my theories were correct (and I was so sure about the
Panama thing). In fact, kn source list shows Source records that have been created
and submitted, while kn source list-types shows what Source definitions have been
installed. By a loose analogy to programming language concepts, 1ist shows the objects,
list-types shows the classes.

For working with ApiServerSource and PingSource, kn provides some convenient
subcommands. I’ll show off ping using the CloudEvents player that I installed in the
previous chapter. The describe subcommand in the next listing follows conventions
you should find familiar by now.

Listing 7.3 Creating and describing ping-player

$ kn source ping create ping-player
" _-_-sink http://cloudevents-player.default.example.com
Ping source 'ping-player' created in namespace 'default'.

$ kn source list
NAME TYPE RESOURCE SINK READY
ping-player PingSource pingsources.sources.knative.dev

"> http://cloudevents-player.default.example.com True

$ kn source ping describe ping-player

Name: ping-player
Namespace: default
Annotations: sources.knative.dev/creator=jchester@example.com,
- sources.knative.dev/lastModifier=j
Age: 2s
Generates a CloudEvent. It uses the charming Cron
Sehedule: e e minilanguage, famous for being only slightly less murder-

inducing than the Job Control Language of the mainframe
era. The rule * * * * * is satisfied every minute.

Data:
Data is the actual JSON sent onwards
Sink: to the Sink. More in a second.

URI: http://cloudevents-player.default.example.com As you would expect

this is the HTTP(S) URI

Conditions: There are, as to which PingSource is
OK TYPE AGE REASON always, some meant to send the Data.
++ Ready 2s Conditions.
++ Deployed 2s
++ SinkProvided 2s
++ ValidSchedule 2s

++ ResourcesCorrect 2s

Sources 163

If you open the CloudEvents player, you’ll see that ping events have begun to pile up

(figure 7.4).
Activity

D Type Source Status Time Message
3f2f1bed-
10d3-4d67- . . /apis/v1/namespaces/default/pingsources/ping- 2020-05-

dev.knative. ! v s
8a32- CVKNAUVE.SOUrCespIng 1 aver 20T01:43:00.005+02:00[Europe/Madrid] =
0e37329932f3
094cab12-
c68b-4090- . . /apis/v1/namespaces/default/pingsources/ping- 2020-05-

dev.knative. ! v =
9e2d- ev-Knative.Sources.ping 1 ver 20T01:42:00.004+02:00[Europe/Madrid] =

9186267f31e2

Figure 7.4 CloudEvents piling up each minute

This gives me a chance to reiterate that every CloudEvent must have a unique ID (in
this case, UUIDs), a type, and a source. PingSource follows the common idiom of
using reverse-domain notation for the type and path notation for the source.

The /api/v1 prefix in the Source field is another Kubernetism poking through.
namespaces/default tells you which namespace to look in for the actual PingSource
record. The name that I provided to kn hangs off pingsources/ping-player.

As an aside: these are idioms, not standards, nor requirements. Don’t rely on
string-splitting on . or / to suss out the internals of type and source. You'll just guaran-
tee a future mystery.

It’s all well and good that CloudEvents are arriving, but what are these carrying?
Right now, nothing. Click the Message icon ([§@) to look more closely at what I mean
(figure 7.5).

The root here is not part of CloudEvents: it’s how the CloudEvents player presents
the CloudEvent J[SON object. However attributes and data are definitely part of a
CloudEvent, as are the attribute fields for datacontenttype, id, source, specversion,
time, and type.

The data section is worth some comment. It’s present, but its presence isn’t neces-
sary to make this a conformant CloudEvent. PingSource includes one anyway. I don’t
have strong feelings about whether that’s better or worse than an implicitly “unde-
fined” value; it really comes down to the idioms of how your preferred programming
languages and libraries expose JSON to you.

Before I get to extensions, I am going to add some crunchy JSON to my pings
using kn. Then I’ll verify it was configured with both kn and the CloudEvents player as
listing 7.4 shows.

164

CHAPTER 7 Sources and Sinks

Event

Y "root" : { 3 items @-

Y "attributes" : { 7 items @-
"datacontenttype" : string "application/json"
"id" : string "£74d739d-8241-407e-80a5-eb8ccleb56e6"
"mediaType" : string "application/json"
"source" : string "/apis/vl/namespaces/default/pingsources/ping-player"
"specversion" : string "1.0"
"time" : string "2020-05-20T00:00:00.0004268662"
"type" : string "dev.knative.sources.ping" E§

}

Y "data" : { 1 item

"body" : string

}
Y "extensions" : { I item
Y "data" : { 1 item
"body" : string ""
}
}

CLOSE

Figure 7.5 Looking more closely at a CloudEvent

Listing 7.4 Adding data and verifying using kn

$ kn source ping update ping-player --data '{"foo":"and likewise bar"}'
Ping source 'ping-player' updated in namespace 'default'.

$ kn source ping describe ping-player

Name : ping-player

Namespace: default

Annotations: sources.knative.dev/creator=jchester@example.com,
sources.knative.dev/lastModifier=j

Age: 2h
Schedule: Kok ok ok ok
Data: {"foo":"and likewise bar"}

... snip of Sink and Conditions

7.2

The Sink 165

Y "data" : { I item

"foo" : string "and likewise bar"
}
Y "extensions" : { 1 item

Y "data" : { 1 item

"foo" : string "and likewise bar"

} . . .

} Figure 7.6 How it looks in
CloudEvents player

You can see from both the kn source ping describe (listing 7.4) and the screenshot
(figure 7.6) that my PingSource now includes {"foo": "and likewise bar"} in its
CloudEvents data object. It is not put into a field called data.body. It’s a direct child
object of data. The data.body key you saw earlier is used by PingSource as a place-
holder only.

So what about extensions? This is the serialized name for CloudEventOverrides,
which you’ll remember are part of any Source. These are more or less what they
sound like. If you set an override, then Triggers will treat the overridden value as the
actual value.

This is most useful for editing values to add context (for example, in a tracing
framework). The presentation in figure 7.6 has a net effect of doing nothing. But if
extensions.data.foo was no actually, quux, then a Trigger would treat that field as
having that value.

Truthfully, I don’t think you should use extensions. It’s the vestiges of a previous
scheme for adding flexibility in design, which has been largely superseded by duck
types. I will leave it off from here on in.

The Sink

In my examples so far I've positioned the Sink as being a URI. It turns out that this is
only one way to express “send my CloudEvents here.” The other is to use a “Ref’—a
reference to another Kubernetes record. Take the next listing, for example.

Listing 7.5 Updating my PingSource to use a Ref instead of a URI

$ kn source ping update ping-player --sink ksvc:cloudevents-player
Ping source 'ping-player' updated in namespace 'default'.

$ kn source ping describe ping-player

Name : ping-player

Namespace: default

Annotations: sources.knative.dev/creator=jchester@example.com,
sources.knative.dev/lastModifier=j

Age: 1d

Schedule: e

Data: {"foo":"and likewise bar"}

166

CHAPTER 7 Sources and Sinks

Sink:
Name : cloudevents-player
Namespace: default
Resource: Service (serving.knative.dev/v1l)

Snip of Conditions

If you compare listing 7.5 to a previous describe, you'll see that the Sink readout has
changed. The subfield used to be URI, but now you have Name, Namespace, and Resource.

There’s no --sink-ref or --ref argument to signal to kn that you’re using a Ref
instead of a URI. Your intention is derived from the syntax of what you pass in. If your
argument starts with http:// or https://, the assumption is that you want a URL If
instead it starts with ksvc:, the assumption is that you want a Ref.

What kn is showing you in the describe output is that it knows I've pointed it
towards a Knative Service, because I asked for ksvc:cloudevents-player. I could also
have used service:cloudevents-player as a more explicit alternative. Whichever you
pick, just remember that a Knative Service is not the same as a Kubernetes Service.

Which is better? URIs are simpler to start with and allow you to target endpoints
that live outside the cluster Knative is running on. But consider using Refs instead. A
URI is just an address, what lies on the other side is (for good or ill) a blackbox. But a
Ref is a Knative construct referring to a Knative Service. Knative knows how to open
the box to peek at what’s inside.

This is most useful when things go awry. Let’s demonstrate by creating some unex-
pected havoc as uncovered in this listing.

Listing 7.6 No more service

$ kn service delete cloudevents-player
Service 'cloudevents-player' successfully deleted in namespace 'default'.

$ kn source ping describe ping-player

... Snip so we can get to Conditions

Conditions: .
OK TYPE AGE REASON Thltle Rea;iy (;Iond(l:tlo:_ls. a top-level
11 Ready 5s NotFound rollup of other Conditions.
++ Deployed 1d
” Sln}FPrOVlded 58 NotFound The more diagnostic Condition is
++ ValidSchedule 1d that SinkProvided is !! (not OK). The
++ ResourcesCorrect 1d

NotFound reason explains why.

This information is surfaced because Knative Eventing can go and see if the nomi-
nated Ref actually exists. That’s not something it can do with URI. Think of Ref as
being more like a phone number than an address. If I want to visit you, I can either
just show up and hope you’re at home (URI), or I can ring ahead before making that
trip (Ref). Where possible, you are better served with Ref.

7.3

The mysterious SinkBinding (and its sidekick, ContainerSource) 167

The mysterious SinkBinding (and its sidekick,
ContainerSource)

PingSource is helpful for introducing the basics of working with Sources, but other-
wise, there’s not much to talk about. ApiServerSource does a lof more, but you might
recall that I am trying to keep Kubernetes itself at arm’s length from this book.

Or so I hoped, as it’s now time to introduce SinkBinding, which is a kind of
adapter plug for more or less “anything” that uses vanilla Kubernetes to run.! And
time also to briefly point out why ContainerSource is sorta-kinda a special case of
SinkBinding.

The basic problem is this: other software already exists in a state of genteel barba-
rism, unaware that Knative Eventing exists, providing no proper Sources that can be
easily put to good use. It’s true that Eventing comes most of the way to meeting in the
middle, because it speaks HTTP and thinks in HTTP terms. But Eventing still requires
some configuration to achieve that connection. It does not have autodiscovery or
autoconfiguration of arbitrary HTTP endpoints as a capability or goal.

The SinkBinding provides a non-specialized recipe for configuring Eventing to
interact with existing systems. It has two parts. First, it has a Sink. Second, it has a Sub-
ject. The Sink we already know reasonably well: it can be a URI or a reference (Ref)
to a Knative Service, or even to a vanilla Kubernetes record such as a Pod or Deploy-
ment. The Subject is also a reference to a record, such as a Knative Service, Pod, or
Deployment, using the Namespace, Name, etc., fields.

Note that Sinks and Subjects are distinct types. In particular, a Sink points to a
single thing identified either by URI or by Ref. A Subject can only be identified by ref-
erence and can, in theory, refer to any number of matching records. Now, while this
presents the possibility of performing fan-outs using SinkBinding, I'd like to shoo you
away from it. The Broker is a better place for that sort of work to be done, while Paral-
lels are explicitly designed to support fan-outs.

What does setting a Subject do that a Sink does not? After all, Knative Eventing
can’t read your code and do anything fancy to it. But what it can do is provide enough
information for your code to do the right thing. In the case of SinkBinding, nominat-
ing something as a Subject causes Knative Eventing to inject a K_SINK environment
variable into the software’s container environment. The K_SINK variable is set to the
URI of the Subject. By providing the K_SINK variable, Eventing enables the software
inside the blackbox to target the Sink and send information directly to it.

For example, you might have a catalog microservice that typically POSTs updates to a
shopping cart microservice. If you wanted to have Knative Serving take over this interac-
tion, the first step would be to set your Subject to the existing shopping cart Service
URL. Then you’d have the catalog POST to the address found in K_SINK. Later, you
could change K_SINK to anywhere that makes sense—a Broker, for example.

' Other analogies that wound up on the cutting room floor: it’s a Swiss Army knife; an escape hatch from Knative;
a break-glass option for going around Knative; duct tape (not duck type!) for Knative Eventing to Kubernetes.

168

7.3.1

CHAPTER 7 Sources and Sinks

Bear in mind that SinkBinding is not meant to be the best solution for all Sources.
It’s mostly there to give you some help if you can’t find a fully built Source to suit your
needs. It might be that you need a gateway between a vendor API and your Eventing
system. You want the integration, but the vendor hasn’t bothered. This is where you
bust out SinkBinding.

On the other hand, if the vendor comes to the table with a Source that does what
you need, use it. First, because it’s usually better to let someone else worry about bugs.
Second, because SinkBindings are a bit like strings. A dozen SinkBindings could be
about a dozen different things. Without inspecting these each manually, you won’t
know what kind of thing is being bound. But when I see PingSource and ApiServer-
Source and so on, I know exactly what these are.

ContainerSource closely resembles a SinkBinding, but it is technically a distinct
kind of thing. As its name suggests, ContainerSource is limited to dealing with one
kind of thing: containers. More accurately, it lets you set the container for a given Pod.

I think that while ContainerSource is easy to first grasp, you should prefer Sink-
Binding when you need to perform a quick adaptation of existing software without
needing to write a full-blown Source. A SinkBinding is more general, for one thing.
And it is more likely to stick around if ContainerSource is ever retired.

Provisioning and binding are not the same

The abstractness of SinkBinding gives me a useful jumping-off point to discuss a
perennial source of confusion about Sources. When you create a Source, you are cre-
ating a record, stored somewhere in the bowels of Kubernetes. You are not necessarily
creating anything else. In particular, how that Source record is interpreted is up to the
implementation of the Source. It’s one thing for me to turn up at a house with a piece of
paper saying that I own it. It’s another thing entirely as to whether anyone inside will
believe me.

The underlying point is that provisioning a service and binding to the service are
separate things that are often mixed up. When I provision a service, I am asking for
some resource or service to be created from scratch, allocated from a pool, and so
forth. Essentially, provisioning means “reserve some capacity for my exclusive use.”
That can mean a lot of different things. For example, “provision a database” might
mean that I log into an existing MySQL system and type CREATE DATABASE. Or I might
use Terraform to drive an Amazon RDS API, which will create an entire virtual
machine on my behalf. Or perhaps I submit a ticket to a central I'T services group. Or
maybe I just sneakily install MySQL on the machine next to my desk.

In each case, I wanted to ensure that a service was available. And it’s not just data-
bases: I could be provisioning queues from RabbitMQ or topics from Kafka, buckets in
blob stores like S3 or GCS, OAuth tokens for webhook callbacks, API gateway servers,
accounts on a logging service provider ... it goes on and on. That request might or
might not include some reserved amount of underlying resources as well—in provi-
sioning a database, I might also be requesting the exclusive use of a virtual machine.

Other Sources 169

When I bind to a service, I close the circuit between my software and something that
has already been provisioned.? This is a nigh-universal requirement and it continues to
be a fertile spring for reinvention. PHP files with hardcoded database credentials, JNDI,
Open Service Broker API, Kubernetes ConfigMaps ... the names under which this con-
cept has traded are as numerous as the folks who haven’t heard of the previous names.

Taken together, provisioning and binding are like renting a car. You pick the type
of car you want and book it, probably through a website. That’s provisioning: A car is
going to be reserved for your use. Then when you arrive to collect it, they give you car
keys, a slab of fine print that would be challenging for ants to read, and a hand wave in
the general direction of where to find it. You walk to the bay, get into the car, insert
the keys, and drive off. That’s the completed binding.

The distinction is important because Knative does not enforce any policy or life-
cycle about provisioning or binding. You can normally expect that defining a Source
will cause some sort of binding to occur; otherwise, these are not much use. But provi-
sioning is the Wild West. Maybe your Source will provision something; maybe it won’t.
It will depend on the implementation.

PingSource, for example, is all-in-one. It both provisions a service (a little process
that will run indefinitely to generate CloudEvents) and creates a binding (to the sink).
But by contrast, ApiServerSource doesn’t provision a Kubernetes API Server. It only
does binding. For each Source you use, keep in mind that sometimes it will only do
bindings, and sometimes both provisioning and binding.

7.4 Other Sources

By themselves, PingSource, ApiServerSource, and ContainerSource don’t give you
much to work with. Mostly, as first-party Sources, these enable you to kick the Event-
ing tires immediately after installation. But that’s about it. You’ll need more for your
day job.

There are a few places to look for more Sources, which T’ll describe in brief. The
place to look up a more centralized, more complete list is in the Knative Eventing
documentation “Knative Eventing Sources” page (https://knative.dev/docs/eventing/
sources/).

First is Knative’s own eventing-contrib repository (https://github.com/kna-
tive/eventing-contrib). This is a relatively loose directory of third-party Sources pro-
vided by a number of contributors. Looking at it now, while I write, I can see Sources
covering a variety of integrations. For example: CephFS, CouchDB, Github and Git-
Lab, Kafka and NATS Streaming, plus a few others. As this is a designated sandbox for
Eventing Sources, you can expect that list to grow over time.

For AWS-centric situations, TriggerMesh provides a growing collection of Sources
(https://github.com/triggermesh /aws-event-sources). TriggerMesh supports some other
Sources as well. Make sure to poke around their Github org to see what’s being worked on.

2 It might not have been provisioned because I asked for it, by the way. I might be sharing a database between
two apps, for example.

https://knative.dev/docs/eventing/sources/
https://knative.dev/docs/eventing/sources/
https://knative.dev/docs/eventing/sources/
https://github.com/knative/eventing-contrib
https://github.com/knative/eventing-contrib
https://github.com/triggermesh/aws-event-sources

170 CHAPTER 7 Sources and Sinks

Whereas AWS is represented by TriggerMesh’s third-party Sources, Google has been
working on providing first-party Sources (https://github.com/google/knative-gcp), as
well as other integration points (e.g., Channels) which I've yet to discuss.

Azure is, at writing, unrepresented among Eventing Sources. I expect that to
change rapidly—Azure was the first of the hyperscalers to announce first-class
CloudEvents support (http://mng.bz/6g05). It seems like a short hop from there to
providing broad support for Eventing Sources as well.

Other large vendors are starting to dip their toe into this space. VMware has
an experimental Source for vSphere (https://github.com/vmware-tanzu/sources-for-
knative).?

This informal list isn’t fully exhaustive, and it won’t remain accurate for long. I
expect more first-party and third-party Sources will emerge over time. You’ll need to
keep an eye out for things you want or need. Right now the best ways to do that are
(1) periodically revisiting eventing-contrib and (2) reviewing the documentation
after each release.

Summary
All Sources contain Sinks and CloudEventOverrides. Any record with these
fields is recognized as a Source by Knative Eventing.
Each Source adds fields relevant to its use. For example, PingSource adds fields
for Schedule and JsonData.
kn can be used to create, update, and list Sources.
Out of the box, Eventing installs four Source types: PingSource, ApiServer-
Source, ContainerSource, and SinkBinding.
Other Sources are available for installation, including Sources for Github and
Gitlab, Kafka, Google Cloud Platform, and others.
Sinks can be targeted with either a direct URI or by providing fields that iden-
tify a Kubernetes record (name, namespace, and so forth).
SinkBinding and ContainerSource are general-purpose adapters, enabling you
to integrate with existing systems for which there is no Source provided.

References

Matthew Dixon, Karen Freeman, and Nicholas Toman, “Stop Trying to Delight
Your Customers” (Harvard Business Review, July-August 2010), http://mng.bz/
1raX

The CloudEvents Primer Authors, “JSON Extensions,” CloudEvents Primer, V1.0,
http://mng.bz/PPNw

¥ An earlier vSphere Source was developed by TriggerMesh, but their focus has apparently moved towards AWS.

http://mng.bz/1raX
http://mng.bz/1raX
http://mng.bz/1raX
http://mng.bz/PPNw
https://github.com/google/knative-gcp
http://mng.bz/6g05
https://github.com/vmware-tanzu/sources-for-knative
https://github.com/vmware-tanzu/sources-for-knative

Fltering and Flowing

This chapter covers

The Broker
Triggers and filters
Sequences
Parallels

In the last chapter, I focused on the hard-wiring approach to Eventing. Now I want
to look at some of the luxury features. These basically fall into two basic categories.

The first is brokering and filtering, creating a middleman to make the shipment of
CloudEvents from one place to another simpler and more reliable. I've already
spent a fair amount of time on the basics in previous chapters, but there are a
bunch of additional capabilities around error-handling that I can at last reveal to
you. I’ll also make a small detour into the lower-level guts of Eventing: Channels.

The second category of luxury features is flows, higher-level abstractions over
the wiring of Sources, sinks, and so forth. These go last because these build on
many of the topics we’ve discussed so far in chapter 7. I suspect that in time these
will grow to be a larger and larger part of your systems.

Together, these luxury features can save you a fair amount of boilerplate. The goal
is to express your intent at a higher level, after all, and to do so somewhat efficiently.

171

172 CHAPTER 8 Filtering and Flowing

Brokers, Triggers, Sequences, and Parallels provide higher abstractions that you can use
to move CloudEvents to where these are needed with a minimum of hassle.

8.1 The Broker

But first, the Broker. Sources and Sinks are all very well, but have an essential diffi-
culty: brittleness. If a Source or Sink disappear or isn’t available, your lovely event-
driven architecture becomes uneventful rubble. As required by law and custom, Kna-
tive solves this problem by introducing indirection via the Broker.

About the name

“The Broker” is a slightly misleading title. For starters, Knative Eventing ships with
an inbuilt broker, the “multi-tenant broker,” more often called the “MT Broker.” Why
specify it as “multi-tenant”? As befits all confusing names, the answer is “History.”
In the early days, there was just “the” Broker. You needed a copy running for every
namespace where you used Eventing. The practical upshot is that Eventing could be
fairly wasteful on large clusters with many apps running side-by-side, separated by
Kubernetes namespaces.

Then came the multi-tenant Broker, which was forked from the original Broker and
modified so that it could deal with Eventing workloads spread across multiple Kuber-
netes namespaces. The overhead of running a Broker instance could then be amor-
tized over many Triggers. Eventually, the original Broker code was removed and the
MT Broker became “the” Broker.

But it's not “the” Broker either. It’s “a” Broker, the one that ships by default with
Knative Eventing. But it's permissible to write third-party brokers that follow a spec.
These too are brokers, on a level footing with the inbuilt Broker. You might note that
we first saw this pattern with Sources: there are a few built in, but nothing prevents
you from using others, if that suits your purposes.

Perhaps this sounds a little like a “Who’s The Architect-iest?” duel fought out in front
of a whiteboard. But at least one third-party broker implementation exists: for GCP,
optimized to run in that environment. | expect others will follow in time. For now, | use
the MT Broker, because that’s what Knative installs for you. And for convenience, |
will just refer to it as “the Broker.”

A Broker in Knative land serves two major purposes:

It’s a sink, a place where CloudEvents can be reliably sent by Sources.'
It gives life to Triggers. It applies their filters to incoming CloudEvents and for-
wards these to subscribers when filters match.

! The quacker fans among you will be pleased to learn that there’s a duck type involved: Addressable. A con-
forming Broker is Addressable, meaning that it can be used as a sink or subscriber by other components.
But this point of trivia won’t come up much, except for implementers of Brokers. That’s why, instead of dis-
cussing this in the main text, you and I needed to duck outside for a quack chat.

8.2

Filters 173

As a developer, you ideally don’t need to set up a Broker yourself. Knative will install
one for you with some basic default settings, intended for development. Once installed,
a Broker listens for Triggers that are submitted or modified.

How can you verify this? By creating a Trigger and then looking more closely. The
next listing shows how.

Listing 8.1 Looking for the Broker
$ kn trigger create example-trigger \
--filter type=dev.knative.example.com \

--sink http://example.com/

Trigger 'example-trigger' successfully created in namespace 'default'.

$ kn trigger describe example-trigger The eventing.knative.dev/
broker=default label that
Name : example-trigger Eventing adds to help it
Namespace: default identify Whid_‘ triggers
Labels: eventing.knative.dev/broker=default belong to which brokers

Annotations: eventing.knative.dev/creator=jchester@example.com,
eventing.knative.dev/lastModifier

Age: lm
Broker: default The Broker: default field is a
) friendlier presentation of
Filter: the same information.
type: dev.knative.example.com
Sink: The filter itself, where the Broker
URI: http://example.com/ gets its instructions on picking
and sorting CloudEvents
Conditions:
OK TYPE AGE REASON
++ Ready 1m
++ BrokerReady 1m
++ DependencyReady im
++ SubscriberResolved 1m
++ SubscriptionReady lm
Filters

Triggers include filters. When I created example-trigger earlier, I stapled a simple fil-
ter to it: type=dev.knative.example.com. This says “let through any CloudEvent with
type of dev.knative.example.com.”

Eventing’s filtering rules are strict: exact matches only.” There are no partial
matches, no startsWith or endsWith, no regular expressions. You can filter on multi-
ple CloudEvent attributes, but this too is quite strict: @/l the fields must match. These
are ANDed, not ORed.

2 This was true as of writing. There are discussions afoot to allow for some sort of general expression language,
but these were preliminary.

174

CHAPTER 8 Filtering and Flowing

Suppose I decided to do all my triggering based on the type and source attributes
of CloudEvents. The following listing shows how I can set up a series of triggers and

their filters with kn. Then figure 8.1 illustrates how these Eventing filters look.

Listing 8.2 Filtering alt some of the things

$ kn trigger create trigger-1 \
--filter type=com.example.type \
--sink example-sink
Trigger 'trigger-1' successfully created in

$ kn trigger create trigger-2 \
--filter type=com.example.type \
--filter source=/example/source/123 \
--sink example-sink

Trigger 'trigger-2' successfully created in

$ kn trigger create trigger-3 \
--filter type=com.example.type \
--filter source=/example/source/456 \
--sink example-sink

Trigger 'trigger-3' successfully created in

$ kn trigger create trigger-4 \
--filter type=net.example.another \
--sink example-sink

Trigger 'trigger-4' successfully created in

$ kn trigger create trigger-5 \
--filter type=net.example.another \
--filter source=a-different-source \
--sink example-sink

Trigger 'trigger-5' successfully created in

namespace 'default'.

namespace 'default'.

namespace 'default'.

namespace 'default'.

namespace 'default'.

fB —>| type com.example.type
specversion type com.example.type
|
type com.example.type source /example/source/123
source /example/source/123
id
. type com.example.type
time . "
source /example/source/456
datacontenttype
data . ——>|type net.example.another
type net.example.another
L
source a-different-source

Figure 8.1 Examples of filters for a CloudEvent

Filters 175

Now, suppose I have a CloudEvent with type: com.example.type and source:
/example/source/123. What happens? The answer is that only exact matches will pass
through the filter defined by a Trigger. Anything that doesn’t completely and entirely
match gets ignored for that Trigger. And that’s what you can see in figure 8.1:

Matches because the CloudEvent’s type is com.example. type.

Matches because the CloudEvent’s type is com.example.type and the source is
/example/source/123.

Fails because even though the CloudEvent’s type is com.example.type, its
source is not /example/source/456.

Fails because the CloudEvent’s type is not net .example.another.

Fails because the CloudEvent’s type is not net.example.another and/or its
source is not a-different-source.

This strictness is a mixed blessing. On the upside, it’s strict. In distributed systems,
folks all too frequently allow today’s convenience be borrowed at high interest rates
from tomorrow’s bugs and security holes. And, if you have highly specific filters, down-
stream systems are less likely to be accidentally overloaded by traffic with unexpected
new fields or changes in demand.

The downside is that it’s inexpressive. If you like, you can try stringing multiple
triggers together using De Morgan’s Law or Karnaugh maps and other things flung at
inattentive Computer Science students, mostly in vain. And yes, you can combine fil-
ters using multiple ANDs to behave like ORs, but I recommend against it. First, for mere
sanity. The odds of creating infinite loops is quite high when all the pieces of one are
widely spread out. Second, for performance. Knative Eventing very much treats Trig-
gers as black boxes. It won’t sense that you intend to combine multiple filters into a
single predicate in the way that, for example, a database query planner can. Each filter
will be applied and then a message sent or not sent to a subscriber. Each such hop
imposes delay and adds variability to the overall system you are working on.

You have three choices. One is to wait for Eventing to acquire a more expressive fil-
tering system. Another is to perform some amount of filtering at the receiving end,
meaning that some fraction of incoming CloudEvents is basically wasted. The third
option is to inject additional information at the origin, against which simple filters can
be applied.

You can filter on broadly “anything” in a CloudEvent. As I've already shown, you
can add filters for source and type attributes. You can add filters for the other
required attributes (specversion and id). You can also add filters for optional attri-
butes (datacontenttype, dataschema, subject, and time). And you can add these for
extension attributes (like dataref, partitionkey, and so on).

Note what’s missing from this list: filtering on the body of the CloudEvent. Only
altributes are watched by a filter. For folks coming from previous generations of event-y
systems, this won’t be a shock. Routing on metadata, headers, whatever you like to call
those, is the norm. “Content-based routing” is less common.

176

821

CHAPTER 8 Filtering and Flowing

You might be quite determined to do something like this anyway. For example, you
might have a customer ID that you use to shard requests into different regions (Euro-
pean traffic goes to Europe, US traffic to the US, etc.). There’s no standard Cloud-
Event attribute for customerID. What do you do?

WARNING When working with CloudEvent attributes, keep in mind that
embedding any kind of personally identifiable information (PII) into attri-
butes is risky. Earlier I used customerID as a possible field to transmit, possi-
bly via subject. That’s usually going to be OK. Much /ess likely to be OK is
someone’s name, email address, phone number, national or public identifica-
tion number, etc. You don’t know in advance where CloudEvents will wind up
or what systems are traversed. That makes “right to forget” difficult to imple-
ment unless you use opaque identifiers instead of PII in your CloudEvents.

The first option is to DIY. Add some service, function, or gateway somewhere into the
flow of CloudEvents and perform content-based filtering there. It is my suspicion that
many readers will at this point fling the book over their shoulder in the rush to get to
their keyboard, but please, reconsider. Do-it-yourself is also maintain-it-yourself-forever.

The second option, which is often the best option, is to find the most similarly
defined attribute and use that. For example, it seems reasonable to use subject or
partitionkey for distinguishing between customers. That is assuming, however,
you're not using those attributes already.

The third option is to add an attribute. This is a special case of DIY, for which my
previous warning about book-flinging applies, but less strongly. Using a CloudEvent
attribute instead of something embedded into the CloudEvent body has the advan-
tage that future CloudEvent-aware systems will play more nicely with it, and code ded-
icated to attributes will probably see more optimization than the code that handles
the body.

Filtering on custom attributes

A quick example is in order, but all I have time for is a fiddly example. The tools I've
used so far (kn and the CloudEvents Player) don’t let me show what I'd like to show, so
I will need to drop down to a lower level of abstracton. I’ll create CloudEvents manu-
ally and directly, POSTing these to the default broker.?

To do this, I must first create a forwarded port. I'll use the magic spell in the fol-
lowing listing.

¥ Originally, I wrote the examples using curl, but switched to using HTTPie (at the command line, http).
While it’s true that curl is close to omnipresent, it’s not close at all to being omnibenevolent. HTTPie is a
nicer all-around experience.

Filters 177

Listing 8.3 Forwarding a port

In the first terminal

$ kubectl port-forward \
service/broker-ingress 8888:80 \
--namespace knative-eventing

Forwarding from 127.0.0.1:8888 -> 8080
Forwarding from [::1]:8888 -> 8080

Essentially, kubectl now maps my localhost port 8888 to port 8080 of the Broker’s
ingress component.* Slightly confusingly, I asked for port 80 and got 8080 instead.
This has to do with how Kubernetes handles networking, and happily, it doesn’t mat-
ter to the discussion. But now you know.

Having now established a forwarded port in one terminal, I can directly send
HTTP requests to the Broker from another terminal. The following listing shows this
transmission.

Listing 8.4 Sending a CloudEvent with http

Indicates the magic port-forwarded URL for the broker. First, localhost:8888
sends traffic to the kubectl port-forward we ran earlier, which then forwards it to
the Broker ingress component running inside the cluster. The /default/default path
tells that Broker ingress which Broker it’s dealing with: the default Broker, in the

default namespace. (You needn’t memorize this, it won’t be on the final exam.)

In a second terminal
$ http post http://localhost:8888/default/default \

Ce-Id:$(uuidgen) \ Every CloudEvent is meant to have a

Ce-Specversion:1.0 \ <7 | unique ID. For convenience, | use

Ce-Type:com.example.type \ uuidgen to cook one up; you might

Ce-Source:/example/source \ need to install it on your OS.

message="This is an example." \ <7 | The Ce-Specversion, Ce-Type, and Ce-

--verbose Source HTTP headers map to specversion,

type, and source attributes, respectively.

POST /default/default HTTP/1.1 See the discussion on binary content
Accept: application/json, */*;g=0.5 mode in chapter 6 for more on how the
Accept-Encoding: gzip, deflate headers are used.

Ce-Id: 4F4912F1-6F92-42A6-8FB5-35DA62D2520A
Ce-Source: /example/source

Ce-Specversion: 1.0

Ce-Type: com.example.type

Connection: keep-alive

Content-Length: 34

Content-Type: application/json

Host: localhost:8888

User-Agent: HTTPie/2.1.0

Here | use HTTPie’s key=value
syntax for setting JSON keys.

* Not to be mistaken for a Kubernetes Ingress component.

178

CHAPTER 8 Filtering and Flowing

{ o The key=value syntax is
"message": "This is an example." automatically transformed into
1 {"key": "value"} for me by HTTPie.

HTTP/1.1 202 hccepted If sending a CloudEvent is successful, the broker

Content-Length: 0 responds with a 202 Accepted status. This indicates

Date: Wed, 24 Jun 2020 23:00:55 GMT that it processed our CloudEvent. It’s not a 200 0K
because, by default, the Broker won’t itself be
generating any kind of response. It’s just
accepting the CloudEvent on your behalf.

Most of this response is recognizably what we provided in our command. So far, not
super interesting. For one thing, how will I know if things go wrong? And how will I
know things go right?

Port forwarding woes

One thing to note here is that the port-forwarding command isn’t meant to be a robust
connection. If | close the terminal, or put my computer to sleep, or log out, etc., then
the port-forwarding connection is dropped. When that happens, you'll see hairy and
unhelpful messages like this one:

http: error: ConnectionError:

HTTPConnectionPool (host="'localhost', port=8888):

Max retries exceeded with url: /default/default

(Caused by NewConnectionError (
'<urllib3.connection.HTTPConnection object at 0x10£1411c0>:
Failed to establish a new connection:
[Errno 61] Connection refused'))

while doing a POST request to URL:

http://localhost:8888/default/default

It's easily fixed. Run the port-forward command again (listing 8.3), and the connec-
tion is reopened.

The main mistake that the Broker can alert you to is malformed CloudEvents. Suppose
I left out the Ce-Source header that would be mapped to the required source attri-
bute as in this listing.

Listing 8.5 What happens when Ce-Source is missing?

$ http post http://localhost:8888/default/default \
Ce-Id:$ (uuidgen) \
Ce-Specversion:1.0 \
Ce-Type:com.example.type \
Ce-Source is missing!
message="This is an example."

HTTP/1.1 400 Bad Request
Content-Length: 28

Filters 179

Content-Type: text/plain; charset=utf-8
Date: Wed, 24 Jun 2020 23:15:00 GMT

{
}

"error": "source: REQUIRED"

The 400 Bad Request status means that I messed something up. Helpfully, the body of
the response tells me what went wrong: "error": "source: REQUIRED". Note, how-
ever, that you don’t get an error key per mistake. Multiple errors are instead concate-
nated into a single string. For example, if I knock out both the source and type, I get
"error": "source: REQUIRED\ntype: MUST be a non-empty string". I'm not precisely
sure why these error messages have inconsistent style, but I do know these are not
well-suited to robust, automatic interpretation by monitoring systems. Watch for the
400s. You’ll need to dig a bit when these surface.

Now, how do I know things went right? Well, at a surface level, the 202 Accepted sta-
tus is sufficient. It tells you “Yes, I have the CloudEvent, and it was well-formed, and 1
am now going to do something with it.”

But that’s only one hop of the journey. I am, after all, trying to show you how to fil-
ter on an attribute of your own creation, which means finding some way to see
CloudEvents emerging on the other side of the Broker. I hope that by now you expect
that I will use a Trigger, pointed to the CloudEvents player. Almost. I will instead point
to a different “show me stuff” system called Sockeye, which reveals a slightly lower-level
view than the CloudEvents player does.”

Let’s install Sockeye and add a Trigger to send events there in the next listing.

Listing 8.6 Setting up and wiring Sockeye

$ kn service create sockeye --image docker.io/n3wscott/sockeye:v0.5.0
... usual output

$ kn service describe sockeye

Name : sockeye

Namespace: default

Age: 10s The URL for
URL: http://sockeye.default.example.com Sockeye
Revisions:

100% @latest (sockeye-rnjhs-1) [1] (10s)
Image: docker.io/n3wscott/sockeye:v0.5.0 (pinned to 64c22f)

® “But Jacques,” you exclaim, “aren’t you a software-making kind of person yourself? Why not write your own
thing for the book?” I considered this, but decided against it. I wanted to try and use the tools that already
existed when I wrote this book because I knew that I would absolutely dive down any rabbit holes I found. I
have ADHD. I'm treated for it, but even so, writing the book, the whole book, and nothing but the book, is
really hard.

180 CHAPTER 8 Filtering and Flowing

Conditions:
OK TYPE AGE REASON
++ Ready 10s
++ ConfigurationsReady 10s
++ RoutesReady 10s

Creates a filter,
requiring source to equal

$ kn trigger create sockeye-source \
com.example.sockeye

--filter type=com.example.sockeye \
--sink sockeye
Trigger 'sockeye-source' successfully created in namespace 'default'.

There, we’ve set up everything. Next, I navigate to the URL for Sockeye and take a
look-see. As you can see in figure 8.2, it’s fairly spartan to begin with.

CloudEvents Stream Viewer

Figure 8.2 Nothing to see here

So, in the following listing, I’ll send Sockeye a CloudEvent (making sure to be one
that matches my Trigger filter).

Listing 8.7 Sending a CloudEvent that will appear in Sockeye

$ http post http://localhost:8888/default/default \
Ce-Id:sS (uuidgen) \
Ce-Specversion:1.0 \
Ce-Type:com.example.sockeye \
Ce-Source:cli-source \
message="This is an example."

822

Filters 181

HTTP/1.1 202 Accepted
Content-Length: 0
Date: Thu, 25 Jun 2020 21:48:39 GMT

And now, when I look at Sockeye, I can see my message. It did indeed get filtered and
forwarded based on the type attribute.

But I could already show that with the CloudEvents player. How can I filter on a
custom attribute? Easy! Watch this:

Listing 8.8 Filtering on a custom attribute

--filter example=fooandbarandbaz \ example with a value

$ kn trigger create sockeye-example-attr \ Sets the attribute to
--sink sockeye of fooandbarandbaz

Trigger 'sockeye-example-attr' successfully created in namespace 'default'.

$ http post http://localhost:8888/default/default \
Ce-Id:$ (uuidgen) \
Ce-Specversion:1.0 \
Ce-Type:com.example.type \
Ce-Source: /example/somethingelse \
Ce-Example: fooandbarandbaz \
message="El zilcho"

HTTP header for the attribute
to be sent over Binary content
mode, prefixed with Ce-

HTTP/1.1 202 Accepted
Content-Length: 0
Date: Thu, 25 Jun 2020 21:54:37 GMT

The key is that when creating a Trigger, I can use --filter for anything. Having done
that, I can prove that it worked by returning to Sockeye (figure 8.3).

Nice things that Eventing adds for you

Look again at figure 8.3 and you’ll notice that I was not the only one adding attri-
butes to the CloudEvent. Knative Eventing also adds attributes to CloudEvents that
it processes:

= traceparent—A defined CloudEvents Extension attribute that I discussed in
chapter 6. Adding it here ensures that downstream systems will have tracing
information to hang their hat on.

= time and knativearrivaltime—In the default Broker, knativearrivaltime
is set when the CloudEvent first arrives at one of its two components: the Bro-
ker ingress. It’s “the moment that Eventing first saw the CloudEvent.” The
time attribute is added in a lower layer: the CloudEvents SDK that Eventing

182 CHAPTER 8 Filtering and Flowing

CloudEvents Stream Viewer

Attributes

application/json {

"message": "El zilcho"

example
P }

fooandbarandbaz

id
7D24DEF3-576E-4CEF-A4A5-9B5F6E2C¢
knativearrivaltime
2020-07-13T18:51:50.179366653Z
knativehistory
default-kne-trigger-kn-channel.default.svc.

source

/example/somethingelse

time

2020-07-13T18:51:50.179456251Z
traceparent
00-1a7766866e1aaf074ca539dc47tb1716-
type

com.example.type

Figure 8.3 Something to see here

relies on. It’s set when the CloudEvent is sent from the Broker to the Sub-
scriber. And it’s only there as a stopgap. If I provide my own value for time, it
will be left alone.

You may be tempted to subtract knativearrivaltime from time to deduce
some measure of processing time. Please don’t. For one thing, the processes
involved might be running on different machines with clocks that disagree,
meaning any such timing will be suspect. For another thing, Eventing records
metrics for this exact purpose, as I'll show in the next chapter.

8.3

83.1

Sequences 183

Sequences

Given enough time, you can use Sources (and Sinks) to wire everything together. But
that’s inconvenient, so you can use Brokers and Triggers to do it more simply. But at
some point, that too becomes a hassle: remembering to provide the right collection of
Triggers and being careful to set these up in the correct order. And further, Brokers
can become a choke point in your architecture. The answer to this problem is to more
directly move traffic from place to place without passing through the central hub.
Sequences are the annointed way to fulfill this goal.

Why not just skip the Broker? Well, for one thing, it is a simple and flexible way to get
started. Then, as time goes on, you will start to see “desire paths” in your architecture.

You may have seen desire paths in real life, possibly without knowing the name. A
beautiful paved path cuts a straight, geometrically pleasing line across a lawn. But
around it are the curving naked dirt tracks created by pedestrians walking where they
want to walk, not where the landscape architects thought they ought to work. Wiser
institutions wait for the desire path to emerge and then pave it.

I raise this analogy because distributed systems are not totally dissimilar. There is
the path you thought demand would take through your systems, and there is the path
that actually emerged in usage. Using the Broker and Triggers is a good way to find
the desire path; once found, it can be swapped for a Sequence.

Another reason to use the Broker/Trigger approach first is that, as of this writing,
kn doesn’t support Sequences (or Parallels). While I can use it for some of what fol-
lows, for the actual Sequences, I will use kubectl.

A walkthrough

I’'m going to build a simple Sequence to demonstrate three main points: how Cloud-
Events get into a Sequence, how these move through a Sequence, and how these leave
the Sequence. I'll be building something like that shown in figure 8.4.

PingSource<0

first — — second — sockeye

Sequence 0
-

2 slo|z(2(8] o)

aand

Figure 8.4 Our goal

184

CHAPTER 8 Filtering and Flowing

I assume that you still have Sockeye running, but that you don’t have a PingSource
right now. I'll show why in a second. But first, let’s drop to some shiny, pretty YAML
and look at the Sequence itself, which the following listing shows.

Listing 8.9 Your first Sequence

kind: Sequence tells Kubernetes what
apiVersion: flows.knative.dev/vlbetal weTet?khgabqn.hthendehgﬁmsﬂmt
kind: Sequence to Knative Eventing for further work.
metadata:
name: example-sequence

Everything, even a
Sequence, needs a name.

spec:
steps: The spec.steps block is the only compulsory part of a Sequence definition.
It’s the truly sequential bit of Sequences, representing a list of destinations
to which Eventing will send CloudEvents, using YAML’s array syntax. Order
is meaningful: Eventing will read it from top to bottom.

- ref: , . , The ref here is not accidental. This is the
a1.>1Ver51onf serving.knative.dev/v1 same type of record used for sinks (a Ref).
kind: Service . You can either put a URI here or manually
name: first-sequence-service fill out the identifying Kubernetes fields

- ref: (apiVersion, kind, and name). The latter is
apiVersion: serving.knative.dev/vl one thing that kn does for you in other
kind: Service contexts.
name: second- sequence- service

reiiﬁf” The spec.reply section is also a Ref, but

only one Ref is allowed here. Unlike
spec.steps, this is not an array. You can

apiVersion: serving.knative.dev/vl again choose between a URI or Ref.
name: sockeye

kind: Service

What does this get us? Let’s ask, in our next listing.

Listing 8.10 Unreadiness revealed

$ kubectl get sequence example-sequence
NAME READY REASON URL AGE
example-sequence False SubscriptionsNotReady http://example.com 8s

What I can see in listing 8.10 is that the Sequence is not ready, because Subscriptions-
NotReady. You might fairly and (spoiler!) accurately guess that the Subscriptions in
this case are my two Services: first-sequence-service and second-sequence-
service. I have quite rudely defined a Sequence for things that don’t yet exist. I will
create these now, using a simple example system provided by Knative Eventing for
examples like this one (shown in the next listing).

Sequences 185

Listing 8.11 Creating the sequential services

$ kn service create first-sequence-service \
--image gcr.io/knative-releases/knative.dev/eventing-contrib/cmd/appender \
--env MESSAGE='Passed through FIRST'

... usual output

$ kn service create second-sequence-service \
--image gcr.io/knative-releases/knative.dev/eventing-contrib/cmd/appender \
--env MESSAGE='Passed through SECOND'

... usual output

$ kubectl get sequence example-sequence

NAME READY REASON URL AGE
example-sequence True http://example.com 8s
Sequence
first — &—> second —é—c’éb—> sockeye
E Figure 8.5 The Sequence
i so far

Figure 8.5 shows where we are so far. What’s left is to add PingSource as in the follow-
ing listing.®

Listing 8.12 PingSource for Sequence

kn source ping create ping-sequence \
--data '{"message": "Where have I been?"}' \
--sink http://example-sequence-kn-sequence-0-kn-channel.
"> default.svc.cluster.local

Ping source 'ping-sequence' created in namespace 'default'.

Now, if I go to Sockeye, I can see the CloudEvents as those arrive after passing through
the Sequence (figure 8.6).

% You may notice that the --sink argument has a whopping great URI passed into it, but my kubectl get
sequence output from earlier said the URL was http://example.com. This was because fitting the
kubectl output onto the page seemed more important than perfect accuracy.

186 CHAPTER 8 Filtering and Flowing

Attributes Data
application/json {
"id": 0,
id "message": "Where have I been?
29a1608c-b4d4-4c13-b533-eda1bf3ac362 Passed through FIRSTPassed throu
knativehistory gh SECOND"
example-sequence-kn-sequence-0-kn-cha }

source
/apis/v1/namespaces/default/pingsources/|
time

2020-06-30T22:20:00.000373072Z

type

dev.knative.sources.ping

Figure 8.6 How the CloudEvent looks after passing through the Sequence

Note the appending of Passed through FIRSTPassed through SECOND, which I've left
in its original buggy form to lend a righteous aura of truly production-grade software
to the example. This is the evidence that Knative Eventing shipped the CloudEvent via
the two steps defined in the Sequence.

One last point before I move on to a rigorous dissection of Sequences: you don’t
need Sources to drive a Sequence. The Sequence satisfies the Addressable duck type
in Knative Eventing. In short, anything that can squirt CloudEvents at the Sequence
will work. Such as, for example, the Broker in the following listing.

Listing 8.13 Brokers and Sequences

$ kn source ping delete ping-sequence # a bit of tidying up

$ kn trigger create sequence-example \
--filter type=com.example.type
--sink http://example-sequence-kn-sequence-0-kn-channel.
default.svc.cluster.local

Trigger 'sequence-example' successfully created in namespace 'default'.

$ http post http://localhost:8888/default/default \
Ce-Id:$ (uuidgen) \
Ce-Specversion:1.0 \
Ce-Type:com.example.type \
Ce-Source: /example/pewpew \
message="PEW PEW!!! "

Sequences 187

Figure 8.7 presents the evidence. We asked the Broker to filter on type: com.example
.type and send it the URI for our Sequence. Then it popped out on the other side of

our Sequence and into Sockeye. Figure 8.8 shows what happened diagrammatically.

Attributes Data
applicatic on {
"id": 0,
id "message": "PEW PEW!!! Passed through FIRSTPa
1880FA6D-171B-4A23-B790-59F131841B ssed through SECOND"
knativearrivaltime }

2020-06-30T22:37:42.486896971Z
knativehistory
default-kne-trigger-kn-channel.default.svc.
source

/example/pewpew

time

2020-06-30T22:37:42.4869714227Z
traceparent
00-41d31¢167d8b640d5a6566b0a01dd50!1
type

com.example.type

Figure 8.7 Fishing out our directly created event
type: com.example.type E

Sequence

first — — second — —| sockeye

Figure 8.8 The Broker can send CloudEvents to Sequences.

188

8.4

84.1

84.2

CHAPTER 8 Filtering and Flowing

The point here is that you don’t need a Source to use Sequences. Anything that can
send a CloudEvent over HTTP to a URI can be used to kick off Sequences.

The anatomy of Sequences

And now to pick the bones. The Sequence has three main, top-level components. These
include the steps and reply, which you’ve already seen, plus channelTemplate, which
you haven’t.

Step

What I showed you in the walkthrough was that steps contain destinations. These are the
same stuff as a Sink on a Source. You can either provide a URI, or you can provide
some lower-level Kubernetes fields (the Ref) to identify what it is you're addressing.

Suppose I have a Knative Service called example-svc-1, which answers to the URL
https://svec-1.example.com, plus another example-svc-2. Then I can define steps
for each using either a URI or a Ref, as this listing shows.

Listing 8.14 URL take the low road and I'll take the high road

apiVersion: flows.knative.dev/vlbetal
kind: Sequence

metadata:
name: example-with-uri-and-ref
spec:
steps:
- uri: https://svc-1l.example.com
- ref:

apiVersion: serving.knative.dev/v1
kind: Service
name: example-svc-2

Note that I can mix and match the URI and Ref formats in the same Sequence. My
general advice from previous encounters still holds: prefer the Ref to the URI for rea-
sons of flexibility.

And now for a little foreshadowing: the URI or Ref are not the whole of a step. You
can also attach error-handling configurations in a delivery section, a topic I'll return
to later in this chapter.

Reply

I have mixed feelings about the reply field.” On the one hand, it’s something you
should explicitly signal your intentions about. Either your Sequence is intended to

7 The concept of the reply is inspired by the Reply pattern in Gregor Hohpe’s and Bobby Woolf’s encyclopaedic
Enterprise Integration Patterns (EIP) (Addison-Wesley, 2003). In the 1990s, there was an algal bloom of patterns cat-
alogs in the wake of the “Gang of Four.” As with most algal blooms, the net result was that oxygen ran low and a
lot of it stank. But there are gems in the patterns literature worth mining for, and EIP is a rich orebody indeed.

84.3

The anatomy of Sequences 189

swallow everything, or it’s intended to return an output of some kind to some destina-
tion. The presence or absence of reply can signal this intention fairly well.

But that’s part of my concern: it’s only a signal, only a hint. Nothing here is really
enforceable, so it’s still going to rely on you and your peers being mindful about
when it gets used. I expect linters will make this more visible in the future; for now,
keep it in mind.

Should you even use reply? Yes and no. The case for “yes” is that you should con-
sider it good practice to emit something from every Sequence. Even if all that gets emit-
ted is a CloudEvent that says “yep, I'm done here.” It’s far easier to diagnose silent
failures when failures cause silence. And if you have in fact adopted that rule, then
there needs to be a final place to send that CloudEvent. A reply makes that intention
explicit, and you can, for example, develop policies like “all Sequences reply to the
same place,” or “all Sequences that handle Foometreonics without producing any-
thing new must reply with a status to the Foometreonics metrics controller.”

Of course, there are many flows in which a reply is what you wanted in the first
place. This comes about when you are creating Sequences programmatically, instead
of manually laying out everything in advance. While a fixed architecture of Sequences
can all reply to the same destination, a Sequence generated by process X should prob-
ably reply back to process X.

There is one small downside to the reply versus its step sibling. You can’t set any
delivery configuration on it. Put another way: reply doesn’t provide fallback mecha-
nisms in the way that steps can.

ChannelTemplate and Channels

I’'ve largely avoided any in-depth discussion of Channels in the book, because I have
wanted to focus your attention on higher-level, everyday concerns of developing, wir-
ing, and updating functions or apps. There is a level at which the Channel is an irrele-
vancy. It’s just “a way” that your CloudEvents move from place to place.

A nice argument, as far as it goes. Details matter and, in the evil, backwards,
upside-down, topsy-turvy, reversi-blinky, dunky-dorey-flibby-fizzy-bang-y world of dis-
tributed systems, details matter even more. In a single-machine system, you didn’t
need to worry about function calls failing about 1% of the time or just not returning,
or returning gibberish, or returning an incompatible type. By and large, things Just
Worked, thanks to decades of investment in CPUs, RAM, operating systems, filesys-
tems, compilers, linkers, and on and on. But add a network and a whole bunch of
independent machines, and suddenly, it all goes to hell, or at least somewhere adja-
cent to hell (real estate agents will be here any second to rename it “Distributed Dam-
nation Heights”).

So Channels matter. You will need to think about these at least once or twice when
designing systems based on Knative Eventing. In particular, you’ll need to pay atten-
tion to the exact guarantees that your Channel implementation offers and decide
whether these matter to your users (not you: your users).

190

CHAPTER 8 Filtering and Flowing

So what does the ChannelTemplate actually look like? An awkward question for me
to answer, because “it depends.” Eventing imposes little structure on a ChannelTem-
plate as the following listing shows.

Listing 8.15 The simplest channelTemplate | can remember

apiVersion: flows.knative.dev/vlbetal
kind: Sequence
metadata:
name: example-segquence-in-memory
spec:
channelTemplate:
apiVersion: messaging.knative.dev/vlbetal
kind: InMemoryChannel

spec:
... anything goes!
steps:
... steps, etc

A ChannelTemplate, embodied here as a channelTemplate field on the Sequence,
only requires that two subfields be set: apiVersion and kind. These are the ordinary
Kubernetes fields of the same name. In the example YAML in listing 8.15, you can see
that these sit directly under spec.channelTemplate.

But spec.channelTemplate.spec can be anything, so far as Eventing is concerned.
The reason is that all Eventing does is to scoop out the ChannelTemplate and turn it
into a Channel record. Which is what, I suppose, one would expect from a template. The
apiVersion and kind fields tell it what kind of the record the template needs to be sub-
mitted as. The channelTemplate.spec is not validated by Eventing. Instead, spec valida-
tion is delegated to whatever Channel implementation is installed for that kind.

And so, in the example, the kind: InMemoryChannel means that Eventing dele-
gates the Channel here to the in-memory Channel that I've used throughout this
chapter. But it needn’t be so. For example, I might decide to use the Kafka Channel
adapter as in this listing.

Listing 8.16 The metamorphosis into KafkaChannel

apiVersion: flows.knative.dev/vlbetal
kind: Sequence
metadata:
name: example-sequence-with-kafka
spec:
channelTemplate:
apiVersion: messaging.knative.dev/vlalphal
kind: KafkaChannel
spec:
numPartitions: 1
replicationFactor: 1
steps:
... steps, etc.

8.4.4

The anatomy of Sequences 191

Unlike InMemoryChannel, the KafkaChannel does need a spec. Here it carries configu-
ration information about the connection to a Kafka broker, which you’d not see on an
InMemoryChannel. And the same is true for other kinds of Channel implementa-
tions—their specs are going to be specialized for that particular Channel implemen-
tation. I'm sorry. You will need to read some docs.

The more cunning sort of developer is now wondering: If I edit my services to use
a KafkaChannel, will I get a Kafka broker and so on? The answer is “no,” or at least,
“no, unless your platform engineers installed it for you.” This goes back to my discus-
sion in the previous chapter about provisioning versus binding.

Setting a channelTemplate field tells Eventing to perform the binding dance for
you, but it won’t necessarily provision a Kafka broker. Someone needs to have (1)
installed Kafka and (2) installed some kind of software that knows how to read and act
on KafkaChannel records (much as Knative controllers know how to read and act on
Service, Route, Source, Trigger, etc., etc.). The YAML in listing 8.16 will do neither;
it’s purely a declaration of the binding you want to exist.

So the cunning developer is out of luck, but what about the lazy developer? Is the
ChannelTemplate compulsory on my Sequences? Happily, the answer is “no.” If you
choose not to provide a ChannelTemplate, one is provided on your behalf. Out of the
box, Knative Eventing appoints InMemoryChannel for you, but platform engineers can
override that default for either a namespace or for an entire cluster.

My expectation is that in general, as a developer, you won’t be setting channel-
Template often. Consider that you might want to use different Channel implementa-
tions and/or different Channel settings in different situations. It might be fine to use
InMemoryChannel for a development environment, but less acceptable in production.
If you manually set a channelTemplate, you’d need to either maintain two versions of
the record or add some kind of ChannelTemplate ... template ... to your CI/CD infra-
structure. Leaving out channelTemplate entirely rescues you from this fate.

Mixing Sequences and filters

You can mix and match Sequences with Broker/Trigger setups in basically any combina-
tion you please. This is again due to the magic of duck typing: a Broker can be a destina-
tion for a Sequence step or reply, and a Sequence can be a destination for a Trigger.

Your mix between these two should reflect the degree to which you have special-
ized your Sequences. Put another way: Put your stable, well-worn pathways into
Sequences. Put Brokers and Triggers either in front of your Sequences (on the princi-
ple that filtering sooner is more efficient) or directly after your Sequences (on the
principle that a Sequence need not care where its results wind up, but you do). In the-
ory, you can have the Broker as a step inside a Sequence, but down this path lies confu-
sion and madness; any bugs in your filter definitions will cause half-baked Sequence
executions to pile up and place pressure on the overall system.

Effectively, I'm arguing that Brokers still wind up as a switchboard for your archi-
tecture, but that the switching is now between Sequences, not individual Services. As a

192

8.5

CHAPTER 8 Filtering and Flowing

particular Sequence—Broker—Sequence pathway becomes heavily used, you can con-
sider whether to update it to become Sequence—Sequence, or even whether to com-
bine the two Sequences into a single Sequence.

Parallels

Parallels resemble Sequences, but there are some ergonomic differences. Let’s look at

the next listing.

Listing 8.17 Seems familiar

apiVersion: flows.knative.dev/vlbetal
kind: Sequence
metadata:
name: example-segquence
spec:
steps:
- uri: https://step.example.com

<!

apiVersion: flows.knative.dev/vlbetal
kind: Parallel
metadata:
name: example-parallel
spec:
branches:
- subscriber:

In Sequence, each entry in the
spec.steps array is a destination—
a URI or Ref, as desired.

In Parallel, the top-level array is
spec.branches. It’s not an array of
destinations. It’s an array of branches.

Each branch has one required field: a
subscriber, which is a destination. Again,

you can use a URI or Ref here.

uri: https://subscriber.example.com

So why the extra level of indirection via subscriber, between spec.branches and uri or

ref? It exists because a branch can actually carry quite a bit of optional configuration:

= filter—A specialized destination that can pass or reject a CloudEvent. Much
to my chargrin, it’s not the same as filters in a Trigger.

= reply—It’s our old friend, Reply, but you can set one for each and every branch

if you like.

» delivery—I'm still holding this over until later, but it’s the same type as the

one found in a step.

The two meanings of “filter”

The filter in Parallel is not the same as a filter on a Trigger. It’s just a completely dif-
ferent, completely unrelated thing. It’s an unfortunate naming choice.

Instead of being a rule that’'s applied by a Broker or Broker-like system, a Branch’s
filter is a destination. It’s a URI or Ref to which a CloudEvent is sent by Eventing and
then whatever lives at that destination has to give a thumbs up or thumbs down.

If you squint a bit, the combination of filter and subscriber is a lot like a two-step
Sequence. The CloudEvent flows to the filter, then from the filter onto the subscriber.

8.5.1

Parallels 193

But realistically, the filter and the subscriber are both fully-fledged processes; any-
thing the filter can do, the subscriber can, and vice versa. In terms of expressing
developer intention, it's a nice separation and resembles guarded clauses. But the
overhead of routing through a process to get a pass/fail decision can prove to be
fairly hefty.

When should you use a filter on Parallel branches? My view is that you shouldn’t, with
one exception. If your subscriber is an expensive or limited resource, you will want to
shed as much unwanted demand before you reach it. For example, | might be running
a system where | want to send some small fraction of CloudEvents to an in-memory
analytics store for further analysis. Rather than inserting everything coming off the
wire, | would prefer to shed load before reaching the database. In this scenario, the
filter is a useful ally.

A walkthrough

The simplest thing you can do with a Parallel is to pretend it’s a Sequence. I'm going
to demonstrate by recreating a single-step Sequence in the following listing. Note
carefully that indentation is meaningful and also annoyingly finicky.

Listing 8.18 The contents of parallel-example.yaml

apiVersion: flows.knative.dev/vlbetal
kind: Parallel

metadata:
name: example-parallel
spec: The subscriber is in
branches : the same branch
_ subscriber: definition as ...
ref:

apiVersion: serving.knative.dev/vl

kind: Service

name: first-branch-service

reply:
rof. 4_\ ... the reply.

kind: Service

apiVersion: serving.knative.dev/vl

name: sockeye

I hate to belabor this point, but the indentation is important. The reply is not part of
the subscriber—it’s a peer to it.

Now I can create a trio of Service (for subscriber), a Trigger (to manage the flow
of CloudEvents into the Parallel), and the Parallel itself as does the following listing.

Listing 8.19 Setting up a Service and a Trigger

$ kn service create first-branch-service \
--image gcr.io/knative-releases/knative.dev/eventing-contrib/cmd/appender \
--env MESSAGE='FIRST BRANCH'

194

CHAPTER 8 Filtering and Flowing

... service creation output

r

kn trigger create parallel-example \

--filter type=com.example.parallel \

--sink

"> http://example-parallel-kn-parallel-0-kn-channel.

> default.svc.cluster.local

Trigger 'parallel-example' successfully created in namespace 'default'.

$ kubectl apply -f parallel-example.yaml

parallel.flows.knative.dev/example-parallel created

Note that I used kn where I could, resorting to kubectl where I must. What do I
expect to happen next?

Recapping: I have a Trigger to send matching CloudEvents to the Parallel’s URI.
The Parallel sends that CloudEvent on to the Service I created, which appends FIRST
BRANCH to whatever CloudEvent message passes it by. Then the CloudEvent should
pop up in Sockeye.

Let’s poke things in the following listing. Then we can see what comes out in Sock-
eye (figure 8.9).

Listing 8.20 Poking the Parallel

http post http://localhost:8888/default/default \
Ce-Id:S$ (uuidgen) \
Ce-Specversion:1.0 \
Ce-Type:com.example.parallel \
Ce-Source: /example/parallel \
message="Here is the Parallel: "

Figure 8.9 shows that I got a Sequence-like outcome. But doing what Sequence
already does is not what Parallels were built for. I want to fan-out identical copies of
the CloudEvent to multiple subscribers. It’s not hard, as this listing shows.

Listing 8.21 Sending to multiple branches

apiVersion: flows.knative.dev/vlbetal
kind: Parallel
metadata:
name: example-parallel
spec:
branches:
- subscriber:
ref:
apiVersion: serving.knative.dev/v1l
kind: Service
name: first-branch-service
reply:
ref:

Parallels 195

kind: Service
apiVersion: serving.knative.dev/v1l
name: sockeye
- subscriber:

ref:
apiVersion: serving.knative.dev/vl
kind: Service
name: second-branch-service

reply:

ref:
kind: Service
apiVersion: serving.knative.dev/vl
name: sockeye

Attributes Data
application/json {
) "id": 0,
id "message": "Here is the Parallel: FIRST BRANCH"
B3DA86B3-793F-4E62-ABB6-B3A95F4E8 }

knativearrivaltime
2020-07-07T20:51:28.921034252Z
knativehistory
default-kne-trigger-kn-channel.default.svc.:
source

/example/parallel

time

2020-07-07T20:51:28.921103454Z
traceparent
00-7d26f439a872164a4b48a67a8b9d39fb
type

com.example.parallel

Figure 8.9 Receiving the CloudEvent in Sockeye

In listing 8.22, I've decided to add a new second-branch-service as a subscriber.
But both branches still reply to the sample place—Sockeye. Conceptually, it looks like
that shown in figure 8.10.

Listing 8.22 Updating my example

$ kn service create second-branch-service \
--image gcr.io/knative-releases/knative.dev/eventing-contrib/cmd/appender \
--env MESSAGE='SECOND BRANCH'

196

CHAPTER 8 Filtering and Flowing

... service creation output
$ kubectl apply -f parallel-example.yaml
parallel.flows.knative.dev/example-parallel configured

$ http post http://localhost:8888/default/default \
Ce-Id:sS (uuidgen) \
Ce-Specversion:1.0 \
Ce-Type:com.example.parallel \
Ce-Source: /example/parallel \
message="Here is the Parallel: "

Parallel

r*’first B
)
sockeye
— G
(<)
second | ——cEH— i%ﬁg%%%ﬁﬁngn
| | et | motweny) S |

} g‘ | Figure 8.10 The conceptual

model of Parallels

Figure 8.11 shows the outcome: two copies. In this case, the Parallel made two copies
of the CloudEvent and sent those to each of the branches (fan-out). Then those
branches sent their reply to the same instance of Sockeye (fan-in).

You might be unconvinced that this is what actually happened. To prove it, I will cre-
ate a second Sockeye service and have one of the branches reply to it. I'll use some fancy
kubectl trickery to avoid boring you with almost identical YAML (see the next listing).

Listing 8.23 Adding a second Sockeye and updating the Parallel

$ kn service create sockeye-the-second \
--image docker.io/n3wscott/sockeye:v0.5.0

... service creation output
$ kubectl patch parallel example-parallel \
--type='json' \
-p='[{"op":"replace", "path":"/spec/branches/1l/reply/ref/name",

= wyalue":"sockeye-the-second"}] "'

parallel.flows.knative.dev/example-parallel patched

Parallels 197

$ http post http://localhost:8888/default/default \
Ce-Id:$ (uuidgen) \
Ce-Specversion:1.0 \
Ce-Type:com.example.parallel \
Ce-Source:/example/parallel \
message="Here is the Parallel with parallel replies: "

Attributes Data
application/json {
} "id": 0,
id "message": "Here is the Parallel: SECOND BRANCH"
6585B2BB-6E39-4F9C-A573-E157CE50D }

knativearrivaltime
2020-07-07T22:31:58.717077617Z
knativehistory
default-kne-trigger-kn-channel.default.svc.:
source

/example/parallel

time

2020-07-07T22:31:58.717160277Z
traceparent
00-a3352c1c6fce2a7ac76ad61334f32893-
type

com.example.parallel

application/json {
"id": 0,
id "message": "Here is the Parallel: FIRST BRANCH"
6585B2BB-6E39-4F9C-A573-E157CE50D }
knativearrivaltime
2020-07-07T22:31:563.717077617Z
knativehistory
default-kne-trigger-kn-channel.default.svc.i
source
/example/parallel
time
2020-07-07T22:31:53.717160277Z
traceparent
00-a3352c1c6fce2a7ac76ad61334f32893-
lype
com.example.parallel

Figure 8.11 Parallel CloudEvents in parallel

198 CHAPTER 8 Filtering and Flowing

I've opened both sockeye and sockeye-the-second in two browser windows (fig-
ure 8.12), I can see that the Parallel did in fact send the CloudEvent to two different
reply destinations.

Attributes Data
application/json {
"id": o0,
id "message”: "Here is the Parallel with parallel replies: FIRST BRANCH"
F8EBEFF8-F594-4E26-986E-4B98125E6F }

knativearrivaltime
2020-07-08T17:14:35.95538558Z
knativehistory
default-kne-trigger-kn-channel.default.svc.
source

lexample/parallel

time

2020-07-08T17:14:35.955456652Z

trace pa rent
00-5d30f04edf80aa5c8732be2fab7aee74-
type

com.example.parallel

Attributes Data
application/json {
"id": 0,
id "message"”: "Here is the Parallel with parallel replies: SECOND BRANCH"
F8EBEFF8-F594-4E26-986E-4B98125E6F }

knativearrivaltime

2020-07-08T17:14:35.95538558Z

knativehistory

default-kne-trigger-kn-channel.default.svc.:

source

lexample/parallel

time

2020-07-08T17:14:35.955456652Z
traceparent
00-5d30f04edf80aa5c8732be2fab7aee74-
lyp e

com.example.parallel

Figure 8.12 Receiving the CloudEvent in two Sockeyes

I hope that you notice that these two CloudEvents (figure 8.12) are close to being
identical.

But I should apologize, because my example here is not very well behaved. I now
have two CloudEvents with identical id, source, and type fields; any conforming

Parallels 199

implementation is within its rights to treat these as the same logical CloudEvent,
even though these are physically distinct. When working with Parallels, you need to
take this into consideration when you have a fan-in. For example, if one branch
does some kind of conversion to a different CloudEvent, you are largely in the clear.
But if you are merely adding to a CloudEvent, as I did in listing 8.23, you need some-
thing stronger. Either you should be filtering so thatlogical duplicates don’t arise,
or you should be changing one of id, type, or source according to what makes the
most sense.

You might now be wondering whether you will need to laboriously provide a
reply for every branch. The answer is “no,” for two reasons. First, you just might not
care about the fate of a CloudEvent sent to a branch’s subscriber. You can leave
reply out entirely; CloudEvents are delivered as HTTP requests, but no HTTP reply
is expected or dealt with. Second, you can provide a single top-level reply for the
whole Parallel. This acts as a default for every branch. You can override on any branch
by providing a reply specific to that branch, but otherwise, anything coming out is
sent on to the top-level reply. That means I can rewrite my YAML to be slightly shorter,
as in this listing.

Listing 8.24 A simpler fan-in

apiVersion: flows.knative.dev/vlbetal
kind: Parallel
metadata:
name: example-parallel
spec:
reply:
ref:
kind: Service
apiVersion: serving.knative.dev/v1l
name: sockeye
branches:
- subscriber:
ref:
apiVersion: serving.knative.dev/v1l
kind: Service
name: first-branch-service
- subscriber:
ref:
apivVersion: serving.knative.dev/v1l
kind: Service
name: second-branch-service

You may note that in listing 8.24, I have placed reply above branches. To be clear: it
doesn’t make any difference to Knative Eventing. I'm doing that because it’s less
likely to cause failures due to confusing indentation. If you put spec.reply below
spec.branches in a YAML file, the visual difference between “this reply belongs to

200

8.6

CHAPTER 8 Filtering and Flowing

this branch” and “this reply belongs to this Parallel overall” is slight. It can be easily
missed in an editor or during a code review.

As with Sequence, it’s possible to set the channelTemplate field on a Parallel at the
top level. And like Sequence, it’s possible to place delivery settings, in this case, on
each branch. Which means I must at long last reveal what the hell I'm talking about.

Dealing with failures

A popular bumper sticker states that phenomena can and will spontaneously occur.
(The bumper sticker uses a slightly shorter phrase.)

—Timothy Budd

Marcus Aurelius was a fairly calm and collected person, as far as Roman Emperors go,
and he took the time to explain his reasons for remaining calm. But he only had to
deal with powerful and warlike enemies, crushing economic difficulties, and a psycho-
pathic son. He never had to deal with distributed systems. Or even the un-distributed
kind, come to that. Had this been the case, his famous Reflections might have been
Rants instead.

Yes, things fail. They fail so much. So often. It’s maddening. And it has been so for
decades (some of my favorite laments are A Critique of the Remote Procedure Call Paradigm
and A note on distributed computing). Eventing provides allowances for failure by imple-
menting some common patterns: retries, retry backoffs, and dead-letter destinations.

What I'm going to describe now is the delivery type. It can be found in either a
Sequence step or in a Parallel branch. The following listing demonstrates this.

Listing 8.25 Sequence steps and Parallel branches with delivery settings

apiVersion: flows.knative.dev/vlbetal
kind: Sequence
metadata:

name: example-sequence-delivery

spec:
steps:
- uri: http://foo.example.com
delivery:

... TBD!
apiVersion: flows.knative.dev/vlbetal
kind: Parallel
metadata:
name: example-parallel-delivery
spec:
branches:
- subscriber:
uri: http://bar.example.com
delivery:
... also TBD!

8.6.1

Dealing with failures 201

So what’s in a delivery field? Basically, it covers two things: retries plus backoffs, and
dead letters. I'll use a Sequence as my running example because it’s slightly less busy,
but the discussion applies just as well to Parallels.

NOTE All the delivery configurations I will discuss are optional. You can, in
theory, have an empty delivery block. It will parse and pass validation, but it
will look silly.

Retries and backoffs

Failure is inevitable and, in a distributed system, failure becomes close to normal.
Retries are a simple coping tactic for failed operations. You typically don’t want to do
it forever, so a first stop in retry logic is to cap the number of times an operation is
retried as this listing indicates.

Listing 8.26 Delivery retries

apivVersion: flows.knative.dev/vlbetal
kind: Sequence
metadata:
name: example-sequence-delivery
spec:
steps:
- uri: http://foo.example.com
delivery:
retry: 10

A delivery.retry field is a simple integer. It’s defined as the minimum number of
retries attempted, in addition to a first failed attempt to deliver a CloudEvent. In the
YAML example in listing 8.26, I have retry: 10. If everything goes wrong, there will
be at least 11 requests made, not 10.

It can be more than 11, because Channel implementations are allowed to deliver a
CloudEvent more than once. This may come as a surprise. It’s common for various
queue or message systems to have “at-least-once” guarantees. It’s much less common
for these to provide “at-most-once” guarantees. “Once-and-only-once” guarantees, which
is the intersection of the two, is arguably impossible, depending on how one defines
the problem. This is partly why CloudEvents encourage you to provide unique id,
source, and type fields—to help downstream systems to sanely ignore re-deliveries.
Especially since retry might be causing deliveries which are successful, but where the
delivery result is incorrectly considered to be failed. In that scenario, retries cause
the same CloudEvent to be sent multiple times.

Speaking of problems with retries, you probably don’t want to try again instantly.
Done poorly, these lead to “retry storms,” where hapless upstream systems get mashed
into paste by rampaging mobs of impatient downstream systems. Systems that are
buckling under load are notoriously bad at having spare non-buckled capacity to

202

8.6.2

CHAPTER 8 Filtering and Flowing

communicate their general state of buckled-ness. When a system is merely teetering
on the edge of overload, overly aggressive retries will just push it over.

Hence the need for backoffs, configured with backoffDelay and backoffPolicy.
The backoffDelay is a duration expressed in a simple format (e.g., “10s” for 10 sec-
onds). The backoffPolicy describes how that duration will be used.

If I set backoffPolicy: linear, retries are made after fixed delays. If I have back-
offDelay: 10s, retries are attempted at 10 seconds, 20 seconds, 30 seconds, and so on.}

If T set backoffPolicy: exponential, retries take twice as long between each
attempt. With the same backoffDelay: 10s, attempts are made at 10 seconds, 20 sec-
onds, 40 seconds, and so on. The backoffDelay provides a base value that is raised by
a power of 2 on each attempt—I1x, 2x, 4x, 8%, ..., etc.

Dead letters

All the retries may be for naught, however. One option might be to just give up
entirely and let the CloudEvent evaporate into thin air. For some use cases that is per-
fectly fine. Losing a metric point now and then is OK, if your use case is to summarize
single points into statistics, because the presence or absence of one data point won’t
affect results enough to be worth worrying about. But if you’re losing a lot of Cloud-
Events, or if you're using CloudEvents to encode information where the individual
event has a high independent value (“the server has crashed with a stack overflow,”
“the customer added a hat to their shopping cart”), then accepting silent lossiness is
not ideal.

More likely than either of those, to be honest, is just plain old bugs. You made
changes that work in testing but somehow glitch in production. Two versions of the
software are running during deploy, and versions from vl — v2 are working fine, but
from v2 — vl (which you don’t test because oops) are silently failing. You spin up an
ancient log and replay it to recover an old record, but the schema changed and
there’s a weird bug in version 22.7 of the DangNabbit.io proxy, and you forgot to sac-
rifice the right goat, and now every 121st message vanishes, but you don’t notice it
because your software rolls up in multiples of 120 ... you get the idea.

The deadLetterSink is an additional guardrail against unforeseen problems like
these. You nominate a place where, if all regular delivery attempts fail, a CloudEvent
will wind up. And then, I hope, you have monitoring turned on to annoy you the first
time that ever happens, because dead letters are a Big Bad Red Flag that you need to
investigate. And you should also, periodically, inject a known bad CloudEvent to see if
it does, in fact, wind up in the dead letter sink.

The dead letter pattern isn’t perfect. The sink can be down, or it can be the victim
of sudden hammering when some high-demand service vanishes and it begins to
receive everything. But it’s invaluable as a safety net. When it’s there and when it’s

8 If you're using linear, consider picking a prime number duration—11 seconds instead of 10, 997 millisec-
onds instead of 1 second, etc. Prime numbers are less likely to be coincidentally synchronized across many
backoffs than are non-prime numbers.

8.6.3

References 203

working, you get the real CloudEvent that failed to get somewhere, which gives you
more clues as to why.

The bad news

There’s a small fly in the delivery ointment: it’'s meant to be interpreted and acted
on by Channel implementations, but it’s optional for these to do so. As of this writing,
only the InMemoryChannel actually does so. Not my favorite state of affairs, but I
expect it will change rapidly as Eventing becomes more widely used and supported.

Summary
Brokers are responsible for two things: acting as a sink for CloudEvents and for
acting on Triggers.
Channels are responsible for transporting CloudEvents between Knative Eventing
components such as Sources, Brokers, and Sequence steps or Parallel branches.
Triggers have filters that are exact matches on particular attributes.
Sequences can wire multiple linear steps without needing to route everything
through the Broker.
Sequences have steps, replies, and ChannelTemplates.
You can use Triggers to enter a Sequence.
Parallels can fan-out and fan-in a CloudEvent to multiple services without need-
ing to route through the Broker.
Parallels have branches, channelTemplates, and replies.
Branches have filters. These are not the same as Trigger filters.
Branches can have a subscriber and a reply.
Failure policies can be described on Parallel branches and Sequence steps
using delivery.
Delivery can have retries, backoff delays, backoff policies, and a dead letter sink.
Delivery does not, however, have to be implemented by a channel. Only the
InMemoryChannel implements delivery configuration at time of writing.

References

Matt Moore, Grant Rodgers, et al., “Knative Broker Specification,” http://mng
.bz/yYoq

Andrew S. Tanenhaum and Robbert van Renesse, “A Critique of the Remote
Procedure Call Paradigm” (Department of Mathematics and Computer Sci-
ence, Vrije University, 1987)

Jim Waldo, Geoff Wyant, et al., “A note on distributed computing” in Interna-
tional Workshop on Mobile Object Systems (Springer, Berlin, 1996). Originally pub-
lished as SMLI TR-94-29, “A Note on Distributed Computing” (Sun Microsystems
Labs, Inc. Tech Reports, 1994). Available online: http://mng.bz/MX1n

http://mng.bz/yYoq
http://mng.bz/yYoq
http://mng.bz/yYoq
http://mng.bz/MX1n

From Conception
to Production

This chapter covers

Building containers with Cloud Native Buildpacks
Progressive rollout using general Cl/CD tools
Logging, metrics, and traces

What I've spoken about so far is Knative-as-Knative. But software doesn’t exist in a
vacuum—it has to be made and run. To wrap up the book, I’d like to touch lightly
on the basics of what comes next in the real, day-to-day work we have to do. Pivotal
Tracker calls these “Chores”: things you need to do to make things tidier around
the place, so that you can move faster in the future.

We tend to neglect these as a profession. In the kitchens of Michelin-starred
restaurants, perfectionist chefs are taught to obsess over mise en place—“Everything
in its place.” Before cooking a dish, they want every knife, every herb, every surface,
every ingredient, every utensil, every pan, every gas burner, everything, to be clean
and sharp and fresh and in the same place as it always is.

Right now you have your software, on to which I imagine you have lavished all
the attention and love that you can muster. And you’ve now learned about Knative,
which is a system that can launch, run, scale, and wire together your software.

Now it’s time to talk a little bit about the connective tissue. The first is getting
your software into Knative. The second is observing its behavior. I've talked about

204

9.1

9.1.1

Turning your software into something runnable 205

how you are the controller that sits above Knative and your software (figure 9.1). Well,
here’s the part where I describe two arrows: getting your software into production
(actuation) and seeing how it behaves in production (sensing).

Build Assembly Images and

results | service definitions

Logs, metrics, traces

Figure 9.1 You are in the loop too.

Turning your software into something runnable

Let’s first look at the business of converting source code into a container image. A
common practice is to use a Dockerfile and hang everything off the latest tag. I am
not a fan. My views are that you can’t trust registry tagging, and you should at least
consider alternatives to Dockerfiles.

What alternatives? There are many. But before I arbitrarily pick the one that by
pure coincidence I have previously worked on, I will take a moment to insist that you
always use digests.

Always use digests

This is important and will take some time to explain. Stay with me.

Deep down, a container image is a bag of tarballs, sticky-taped together with some
JSON. When you hand over a Service to Knative to run, it delegates down to Kuberne-
tes to run. Kubernetes, in turn, delegates down to its “kubelet” agents to run. The
kubelet agents will, in turn, turn to an actual container runtime, such as containerd,
to actually truly run the software.

The most important input given by the container runtime is a reference to the
container image that it should run. As I've noted before, a single image can be
referred to in many ways. But ultimately, the runtime needs to convert the reference
into a URL, fetch metadata about the image, then fetch the blobs that contain the
image’s actual contents.

So far so good, but fetching blobs isn’t free. So container runtimes will typically
maintain a local cache of images and layers. If a runtime has fetched example/foo

206

CHAPTER 9 From Conception to Production

before, it won’t bother dialing out when asked again to run a container using the
example/foo image. It picks up what it has on disk and uses that.

Here is the problem: example/foo is a name that doesn’t have an exact, stable
meaning. From moment to moment, it can refer to different images, depending on
which system you ask. Each container runtime in your cluster can completely disagree
about which image is example/foo:latest. And these can all disagree with the regis-
try that you just pushed to.

But there’s more! Different names can refer to the same image (as in identical,
byte-for-byte), but still be considered to be different by container runtimes. So when
the container runtime checks to see if it has example/foo in its cache, there is no
guarantee whatsoever that the example/foo in its local cache is the same as the one in
the registry it is configured to fetch things from. In fact, you have no guarantees
about what it means whatsoever. All you’ve had to enforce consistency, up until now,
is lucky timing.

Kubernetes tried to make this less painful by introducing the imagePullPolicy
configuration item, which Knative allows you to set. In particular, it lets you set this to
Never (uninteresting for our purposes), to IfNotPresent, or to Always. At face value,
these should be enough. But they are not.

Setting IfNotPresent collides with the problem of names being mutable. It ensures
that, over time, a cluster will wind up with multiple versions of an image in circulation,
because different Nodes will fetch from the registry at different points in time.

Im{age Runtime #1 Runtime #2 Runtime #3
registry
b o Pull —
e R
Push —== o
= X Pull
- be -
- ..u -
- x -
Push 0: -
B -
&
Pull
e = .
° -
be ki
Push ° - L
o'd =
be -
i ¢ -

Figure 9.2 Without digests, this nightmare will eventually be yours.

So how about Always? It still doesn’t solve the inconsistency problem, because it’s only
applied when containers are being launched from the image. If a copy of your soft-
ware runs for a long time on node #1, then later a second copy is launched on node

Turning your software into something runnable 207

#2, you can still wind up with inconsistent versions. And, of course, Always means you
enjoy no gains from caching.

Figure 9.2 lays out a scenario where, at the end, there are five different versions of an
image in circulation. It’s easy for the developer’s mental model to be far out of sync
with the actual state of the cluster. This scenario can occur whether you use Always or
IfNotPresent policies, depending on the exact order of events.

The only way out of this mess is to use fully-qualified (also called “digested”) image
references, which means image references that include a digest (e.g., @sha256:abc-
def123..). Unlike any other form of reference, an image reference with digest refers
to one, and only one, container image. That reference is immutable and exact. What
it refers to today, it will refer to tomorrow, next week, next year. That’s because it’s
based on the image iself, the actual and exact bytes. It doesn’t rely on a registry defini-
tion. It can be computed from the image. Change one bit and the digest becomes rad-
ically different.

NOTE “What about tags?” you ask. “What’s wrong with example/foo:v1.2.3
if my CI system is generating trustworthy image tags?” The problem is that
tags are mutable. There’s no guarantee that v1.2.3 will be the same image
tomorrow. In fact, tags can be deleted. Basically, relying on tags is begging for
bitrot.

For folks using raw Kubernetes, fully-qualified image references plus IfNotPresent
are both safe and efficient. But that requires you to exercise discipline in how you use
Kubernetes resources like Pods or Deployments. Kubernetes itself enforces no policy
about the image references you provide; it basically pipes those directly to the con-
tainer runtime and leaves any dire consequences to rest upon your immortal soul.

Knative takes an important step towards sanity on your behalf: If you submit a fully-
qualified image reference, it will use it. If you don’t, Knative will create one for you.
That is, it will resolve a loose reference like example/foo into a fully-qualified one like
docker.io/example/foo@sha256:2ad3.. whenever a Revision is created.

This is critical to ensure that Revisions are consistent and stable. It ensures that every
running copy of a Revision uses an identical container image. And it ensures that if you
use that Revision again in the future, you will still get the same container image.

However, I think you can and should go further. Anywhere that you create an
image, or define a record with an image reference, you should always use the fully-
qualified version. That’s because the gap between “an image was created” and “the
image is used” can be quite wide. Knative can’t see backward into your CI/CD pipe-
line. When it resolves an image reference, it can only see what is in a registry at that
instant. That might or might not be what you think it is. But if you use the fully-quali-
fied reference, you are guaranteed to get the exact image you expect.

208

9.1.2

CHAPTER 9 From Conception to Production

Using Cloud Native Buildpacks (CNBs) and the pack tool

Maybe you have built a container image before, and maybe you haven’t. If you have,
you probably used a Dockerfile. My views on Dockerfiles are unflattering. I recognize
that these are easy to start with and almost universal in their usage. But these are also
arguments for Bash, that plucky platoon of hacks masquerading as a programming
language. Dockerfiles are like the first stage of a Saturn V rocket. They got things off
the ground, but they aren’t the destination. I want to stretch you a little.

There are numerous alternatives in circulation. My favorite is Cloud Native Build-
packs. I opened this book with the Onsi Haiku Test:

Here is my source code.
Run it on the cloud for me.
I do not care how.

To me, buildpacks were always the bedrock of this promise, because these meet you at
the code. Deployment artifacts come and go, but there will always be code. Learning to
write a Dockerfile requires a short tutorial to begin with, and then a fair few longer
tutorials to create safe, efficient, secure images.

But to use buildpacks, historically, you just typed git push heroku or cf push and
that was it In fact, that is sl it. All the clever optimizations and security mechanisms
are done for you.

So I like buildpacks. And the easiest way to use Cloud Native Buildpacks (CNBs) is
the pack CLI.

Listing 9.1 helloworld.go

package main

import (
n fmt n
"net/http"

const page =
<!DOCTYPE htmls>
<html>
<head>
<title>Hello, Knative!</title>
</head>
<body>
<hl>Hello, Knative!</hl>
<p>See? We made it!</p>
</body>
</html>

func main() {
fmt.Println("OK, here goes...")

Turning your software into something runnable 209

http.HandleFunc ("/", func(w http.ResponseWriter, r *http.Request) ({
fmt .Fprintf (w, page)

)

http.ListenAndServe (":8080", nil)

Suppose I have a simple, single-file Go program, like the one in listing 9.1. All it does
is write a fixed chunk of HTML into the response of any HTTP request. And I must
begrudgingly accept that Go makes it easy to write quick-n-dirty programs like this
one. No frameworks and no needing to select an HTTP library. Just import from the
standard library and you’re off to the races.

Each buildpack can understand how a given language ecosystem looks. In the case
of Go, a buildpack can rely on the convention that the main() function in the main
package will be what needs to be run at launch. And then it does the rest for you in
terms of turning that into an efficient, reproducible container. Listing 9.2 shows how a
pack build looks.

Listing 9.2 Tightly packed

$ pack build eg --path ./

tiny: Pulling from paketo-buildpacks/builder < Here pack uses Docker to run
f83c9afdabef: Already exists a builder image that contains
b839abbdécba: Already exists buildpacks and all the machinery
969l4eecdef?: Already exists needed to run those. Docker then
14b23dd2b80a: Already exists fetches paketo-buildpacks/builder
4e4e7blcelSe: Pull complete to use for the rest of its work.
849c3a63fdbf: Pull complete Docker’s output is piped
4c2d02b49fab: Pull complete through pack.

001fccc4ad38: Pull complete
ea92060al49b: Pull complete
1d8713b8430e: Pull complete

0c33a3ac2707: Pull complete The first step in running buildpacks is
7c29e2eef350: Pull complete detection to identify which buildpack to
5e64e68d5e00: Pull complete run. Each buildpack looks at the source
7bec636aa549: Pull complete code and says whether it can do
£3452e1989b0: Pull complete something with it. In this case, the
3e71995b619f: Pull complete paketo-buildpacks/go-dist and paketo-

buildpacks/go-build buildpacks have

07cdcccbOc6e: Pull complete ; .
raised their hands.

7£c970a75c69: Pull complete

89732bc75041: Pull complete

Digest: sha256:da8da3bcce3919534ef46ac75704a9dc
618a05bfc624874558£719706ab7abbl

Status: Downloaded newer image for gcr.io/paketo-buildpacks/builder:tiny

tiny-cnb: Pulling from paketobuildpacks/run

Digest: sha256:53262af8c65ac823aecc0200894d37£0
©3d84df07168fdb8389f6aefbc33asd’

Status: Image is up to date for paketobuildpacks/run:tiny-cnb

===> DETECTING <
paketo-buildpacks/go-dist 0.0.193
paketo-buildpacks/go-build 0.0.15

210

CHAPTER 9 From Conception to Production

Checks to see if there are any previous build outputs that can
be reused. I've used pack on this machine before, so common
layers created by /go-dist and /go-build are already present.
===> ANALYZING
Previous image with name "index.docker.io/library/eg:latest" not found
Restoring metadata for "paketo-buildpacks/go-dist:go" from cache
Restoring metadata for "paketo-buildpacks/go-build:gocache" from cache

If the analyze step identifies that there are previously built
layers that don’t need to be rebuilt, the restore step picks

these up for use in the rest of the build.
===> RESTORING

Restoring data for "paketo-buildpacks/go-dist:go" from cache
Restoring data for "paketo-buildpacks/go-build:gocache" from cache

The build step is closest to what you’d do yourself, either by hand or in a
Dockerfile. It picks a language or compiler version, runs a build command, and
calculates what command is needed to run the executable it creates. This output
varies according to language ecosystem. If you provide a Java project with Maven,
for example, there’s often quite a lot of output around fetching dependencies and
running the build. It also needs to create a fairly detailed command to effectively

———> BUILDING configure the JVM for efficient use of a container environment.

Go Distribution Buildpack 0.0.193
Resolving Go version
Candidate version sources (in priority order) :
<unknowns> -> ""

Selected Go version (using <unknowns): 1.14.6
Reusing cached layer /layers/paketo-buildpacks go-dist/go

Go Build Buildpack 0.0.15
Executing build process
Running 'go build -o
/layers/paketo-buildpacks go-build/targets/bin -buildmode pie .'
Completed in 1.18s

Assigning launch processes
web: /layers/paketo-buildpacks go-build/targets/bin/workspace

===> EXPORTING

. Once building is complete, the
Adding layer 'launcher'

export step gathers together all

Adding layer 'paketo-buildpacks/go-build:targets' the layers that were restored
| ’
Add}ng 1/1 app 1aY§r (s) along with any new or updated
Adding layer 'config' layers that were built, and
*%% Images (9d6e49easclb): assembles those into the final
index.docker.io/library/eg:latest container image.

Reusing cache layer 'paketo-buildpacks/go-dist:go'
Adding cache layer 'paketo-buildpacks/go-build:gocache'
Successfully built image eg

Turning your software into something runnable 211

By default, pack gives you a fairly chatty account of its activities. When run using a
Docker daemon, it also passes through any output given by Docker.! Its chattiness lets
me point out a few landmarks in listing 9.2.

The result of the command I gave in listing 9.2 is a container image I can run with
a local Docker daemon using docker run -p 8080:8080 eg. That’s because at the end
of the process, the image has been added to Docker’s local cache of images. But that’s
no good for Knative, which lives somewhere else and relies on registries to store and
serve up container images.

That’s solvable, though, using the --publish option. As the name suggests, it
causes pack to publish a built container image to a registry. Having done that, it becomes
possible to use kn to run it as the following listing proves.

Listing 9.3 Build it, run it, see it

$ docker login --username <your username>
Password: <your passwords>
Login Succeeded

$ pack build <your usernames>/knative-example -path ./ --publish
... build output
Successfully built image <username usernames>/knative-example

$ kn service create knative-buildpacked \
--image <your usernames/knative-example
Creating service 'knative-buildpacked' in namespace 'default':

... Service creation output

Service 'knative-buildpacked' created to
latest revision 'knative-buildpacked-rfplb-1' is available at URL:
http://knative-buildpacked.default.example.com

Upon clicking the URL, you’ll see our jaunty greeting. As proof I didn’t fool you, try edit-
ing it (may I suggest some knock-knock jokes?) and running through this cycle again.

Some more dev-friendly tools

There are developer-oriented tools that can reduce this cycle to a single command.
Some of the ones | know of are

= ko (https://github.com/google/ko), which can take a Kubernetes YAML tem-
plate and a Golang project and handle all the steps of rendering the YAML, build-
ing an image, putting the image into a repository, and applying the YAML. One of

! Tt may seem odd that I am describing Cloud Native Buildpacks, for which “it isn’t Docker!” is a prime marketing
point, while saying that the reference CLI tool is using a Docker daemon to do its thing. The point here is that
the daemon isn’t strictly necessary to run buildpacks, butit’s handy for local development when available (some
companies forbid Docker on their workstations). When building on clusters, however, buildpacks can run with-
out needing access to a Docker daemon, or to other container runtimes. This is a huge security win.

https://github.com/google/ko

212

9.2

CHAPTER 9 From Conception to Production

(continued)
ko's nicest features is that the YAML it writes contains fully digested image
references.
kbld (https://get-kbld.io/) is similar to ko, but is not specialized for Golang.
Instead, it can use either Dockerfiles or Cloud Native Buildpacks to perform
its build steps. Like ko, kbld renders fully digested image references.
Tilt (https://tilt.dev/) and Skaffold (https://skaffold.dev/) are two tools that
aim to provide a complete environment for developing container-based appli-
cations. These each do what ko or kb1ld do, but more as well. For example,
both support live update functionality so that you don’t have to run any com-
mands while you iterate on your code. Skaffold supports Cloud Native Build-
packs as a first-class feature.

The real beauty of CNBs is less about this first run experience and more about the
long term gains. Some of it is due to security—having a standard means of assembling
images makes it easier to audit what’s running inside the box.

But it also improves performance for building and running. For building, it’s possi-
ble for CNBs to replace only layers of an image that need replacing, without needing
to rebuild everything else. Dockerfiles don’t have this property. Changing any layer
invalidates all the layers that follow. This shows up most strikingly when upstream
images are updated. Have 100 images that start with FROM nodejs? Then you live in
fear of each new version of that image, because it will force 100 rebuilds ... if indeed
you even have a way to fell that you need to run 100 rebuilds. But a Cloud Native Build-
pack can simply “rebase” the container image you already have onto the new base lay-
ers. No rebuilds required. The update can be done in seconds.

And it’s faster at runtime too. Different images can have identical layers that are
shared, and container runtimes are smart enough to take advantage of that to cache
more efficiently. Using buildpacks means that images are more alike than not. These
have more layers that are exactly identical. Rather than having 50 different variants of
Ubuntu floating around, you only have one. Caches are more likely to be warm, net-
work traffic is reduced, and disk space less bloated.

Getting your software to somewhere it runs

I'm going to assume now that you have built the image and pushed it. How does it get
into a running Revision? One way is to use kn. That works well for development, but less
so for production. What I want now is a means to go from “I have a shiny new container
image” to “it’s rolling out progressively.” I'll work through a simple example here.

I’ll use Concourse (the self-described “Continuous Thing-Doer”) for the simple
reason that it’s awesome and I like it better than alternatives. Some folks prefer Spin-
naker, Tekton, the thousand or so projects that have some kind of joint custody over
the name “Argo,” or self-flagellation with Jenkins. What I outline should be broadly
adaptable to each of these.

https://tilt.dev/
https://skaffold.dev/
https://get-kbld.io/

Getting your software to somewhere it runs 213

I could do all of this with kn and the various commands I covered in chapter 4.
However, I'm going to demonstrate doing most of the CI/CD shuffle with YAML,
because otherwise, I won’t be invited to give conference talks.

Which now brings me to a fork in the road. My aim in this book has been to use kn
as much as possible. The interactivity is a boon for learning and playing, but not with-
out cost. Each change you make through kn is in some sense lost. You run the com-
mand, but without your own working memory or discipline to check before every
action, drift can emerge between your desired world and the desired world as Knative
understands it. For example, other teammates may be using kn on the same Service as
you. Or, more prosaically, you used it yesterday and forgot about a change that you
made. And today, you plough ahead with a faulty mental model.

The way around the sins of interactivity is to separate the business of defining the
desired world from the act of expressing it to the system. That’s where YAML comes
back in force. While you can and should use kn for development work, or to quickly and
easily inspect a Knative system, for production work, you should instead be using tools
that directly submit chunks of YAML. For example, instead of kn update service, you
would edit your service-whatever.yaml as required and then use kubectl apply. For a
developer iterating at a terminal, this is pure overhead. But for a team working together
to modify production systems, it becomes essential for general sanity.

I’'m going to do the simplest, dumbest progressive deployment scheme that I can
manage.” I will have a Service that has two traffic tags: current and latest. Each time
the Service’s image changes, I will pull it down and edit the Service to use the new
image. That will trigger the creation of a new Revision. I'll modify the Service again to
redirect 5% of the traffic to it. I'll wait a short while and then check for reachability. If
that succeeds, I'll edit the Service a third time to make the new Revision into the cur-
rent Revision. See figure 9.3 for a sequence diagram.

Figure 9.3 has a lot of arrows, but that’s just because I'm showing the bits where I
meticulously push everything through a Git repository. In the figure

A new version of an image is uploaded to a registry.

The deployment system detects the new image version’s availability.

The deployment system fetches the existing YAML of the Service from a Git
repository. It changes the image key to point to the newest version of the image.
The modified YAML is pushed back into the Git repository.

The push back into the repo is a new commit, so another deployment system
job lights up to handle it.

It’s a simple job: apply the YAML to the cluster (here called “Knative”).

Knative sees that the Configuration has changed. That means it needs to create
a new Revision.

It also sees that the YAML includes updated traffic, directing 5% to the
latest Revision.

2 Pray for me, because my natural urge is to Do It Right in a thousand-page thunderclap of minutiae.

214

CHAPTER 9 From Conception to Production

Image Git Deployment Knative
o registry repo system
1 1 1 1
New I I I
image 1 | 2] Trigger: | |
version | i new image ' !
4»[] l version - !
; N GetYAML Update YAML E
! |: with new 1
| image ref X
! 1 !
1 1
- o Put YAML : i
L 1
Trigger: , |
new YAML i !
@ Aopl Create new
PRl] revision

Route 5% 6

e
1
' to new
! 9 Trigger: revision
M new revision

@ Check H

reachability
@ Update YAML
to route 100%

to newest

@ Put YAML :

@ Trigger: T
new YAML @ Route 100%
Apply to newest

om

Figure 9.3 Sequence of deployment

The deployment system wakes up again when Knative finishes stamping out the
new Revision.

It checks the direct reachability of the new Revision.

If the new Revision is reachable, the YAML gets updated again. This time the
newest Revision is tagged as current and set to receive 100% of traffic. The
latest tag is set to 0% traffic. The previous Revision is just dropped from the
traffic block altogether.

The newest revision of the YAML gets pushed back into the repo, and ...

That triggers ...

Another apply operation.

Knative updates its Routes from the new YAML and now the whole waltz is
complete.

Getting your software to somewhere it runs 215

Be aware that this is a toy example

Some caveats are in order: | left out a lot of things you’d need for a Serious, Grown-
Up Deployment System. For one thing, | didn’t define any kind of rollback here,
although you can imagine one at the reachability check. For another thing, | skipped
directly to routing 5% traffic to the newest Revision without checking reachability first.
Nowhere does the system pause to let the newest Revision warm up, | don’t check
for errors, and so on and so forth.

But these are the humdrum problems. The exciting problem is that this approach
leads to “race conditions.” If two images are pushed in rapid succession, you could
have two different pipelines churning. But the actual Knative Service is a shared
resource. If you scribble on this diagram places where the later image goes ahead of
the earlier image, your toe hairs will turn gray and ominous tones will tone ominously.
You can deal with this by having some lock on the Service, so that only one image
version at a time can proceed through the flow.

For reasons of space, I won’t go into a full example of this flow with Concourse, or Tek-
ton, or Argo, or Jenkins, or whathaveyou, but I can at least provide you with an example
repo (https://github.com/jchesterpivotal/chapter-9-example). The thrust is to provide
short scripts for the two main transformations that are needed. First, I need something
to render a YAML template. Second, I need something that can check reachability.

If you don’t have at least three tools that somehow process YAML, hand in your
Cloud Native Architecture merit badge at the next meetup. The most common
approach is text templating, which is easy to start with, but which typically leads to
utter and entire madness, because YAML has significant whitespace. You could just ren-
der JSON in a single line, which is technically valid YAML, minus whitespace issues.
But that would be uncool.

Less common, but more protective of sanity, are higher-order tools that treat
YAML as a kind of compilation target. There are many of these as well. People I trust
have sung to me the virtues of Dhall (https://dhall-lang.org/), Pulumi (https://www
.pulumi.com/), and CUE (https://cuelang.org/), but I haven’t used any of those.
Myself, I use ytt (https://getytt.io/), because it’s relatively simple and so am 1.%

NOTE By way of disclosure, I work (as of this writing) for the same com-
pany—VMware, via the Pivotal acquisition—that sponsors the development of
ytt, kapp, and kbld. Did I choose these out of corporate loyalty? Not really,
no. I picked ytt because I like it better than Helm or Kustomize. I picked
kapp because it recreates and reimagines many of the things I liked about
BOSH, a powerful tool that remained obscure. But it is fair to say that I was
aware of these tools because these were first developed by people I have some
connection to.

% Strictly ytt refers to the actual command-line tool; the embedded language is a restricted Python dialect
called Starlark (https://github.com/bazelbuild/starlark). Informally, it’s probably not an important distinc-
tion for you or me, unless you're already using Starlark for another purpose as well.

https://github.com/jchesterpivotal/chapter-9-example
https://dhall-lang.org/
https://www.pulumi.com/
https://www.pulumi.com/
https://www.pulumi.com/
https://cuelang.org/
https://get-ytt.io/
https://github.com/bazelbuild/starlark

216 CHAPTER 9 From Conception to Production

The following listing shows the template I will use to generate my Service.

Listing 9.4 A ytt template for a Knative Service

Loads ytt’s data library. In turn, that searches for various
kinds of inputs (command-line flags, environment variables,

#@ load ("eytt:data", "data") or files) to snapshot at the start of execution. A key gotcha
is that in order to refer to a variable through data, it needs
. . to first be loaded from a file. | give an example of such a
s #@ load("@ytt:json", "json") it
This line vEEH J file in listing 9.5.
loads
the jSON #@ resource = json.decode (data.read("resource.json")) <4
library. o . .
apiVersion: serving.knative.dev/v1l Loads a file (here resource.json), representing
kind: Service my existing Service. In my Concourse pipeline,
metadata: this file is created by a Kubernetes resource
name: knative-example-svc performing a get on my behalf. But you could
spec: achieve largely the same with kubectl get ksvc
template: kna.tive-example-svc -0 json > resource..json.
spec: The json.decode() converts the JSON file into a
. key-value structure (aka dictionary or hash).
containers:
- name: user-container
.1mage: #@ data.values.digested image < Updates the image itself. As |
traffic:

showed in chapter 3, this is a
change that leads Knative Serving
to spit out a new Revision. The key
is that | provide the fully digested
image reference myself. By putting

- tag: current
—> revisionName: #@ resourcel['status']
=» ['latestReadyRevisionName']

percent: #@ data.values.current percent it here, | guarantee that the exact
- tag: latest image intended is the exact image
latestRevision: true that will be deployed.

percent: #@ data.values.latest percent

I have a percentage target

Pulls out the latestReadyRevision value from the for current and ...

existing Service. At the first pass, this will be the last
version of the Service that was sent to Serving for
processing. More to the point, it’s the most recent ... a percentage target
Revision that’s actually working. | tag it as current. for latest.

In listing 9.5, I provide variables that ytt will inject into my template. The factis that I
want to set all of these at the command line. But to do so, I need to define their exis-
tence in a file. To me it seems like a silly gotcha, but I haven’t dug deeply into why it’s
this way. It, at least, provides a kind of requirement to provide a declarative form of
the variables somewhere in a repo.

Listing 9.5 values.yaml for the template

Tells ytt that what follows is usable for data. This little incantation
#@dat 1 . u non LN Ty
o _a a/values is actually detected by the load("@ytt:data", "data") in listing 9.4.
digested image: '[ERROR! Image missing!]' <

Sets broken defaults to force me to override these variables. If | didn’t, it would be too easy to create a
system that appears to do what | want, but which subtly ignores some configuration | thought | was
setting. I've had too many multi-day bugs that came to some helpful default being set somewhere in a
codebase. Never again. Obnoxious failures are a better option than silent deceptions.

Getting your software to somewhere it runs 217

current_percent: -111 A variation on theme. The percentage

variables are numerical, so using an
latest percent: -999 ERROR! message here is not ideal.
revision name: ' [ERROR! Revision name missing!]' Instead, | set impossible values that |
know Knative Serving will reject. | use
111 and 999 because these are visually
distinct and obviously out of place.

So now I have my template.yaml and my values.yaml. I can use ytt to render this into
a final output provided by the following listing.

Listing 9.6 Using ytt is easy as 1-2-3

--file template.yaml \ template file, the values file, and a resource file (representing
--file values.yaml \ the JSON representation of my existing Service).
--file resource.json \
--data-value-yaml
“» digested_image='registry.example.com/foo/bar
“»@sha256:ee5659123e3110d4036d40e7c0fe43766a8£071 into ytt. One for the image
“68710ae£35785665£80788c3b9" \ reference and one each for
--data-value-yaml current_ percent=90 \ traffic percentages.
--data-value-yaml latest_percent=10

$ yte \ Uses the --file flag to pass in the files that will be needed: the

Here | use --data-value-yaml
to pass individual values

apiVersion: serving.knative.dev/vl By default, ytt spits out the rendered

kind: Service YAML into STDOUT. | did that here so
metadata: you can see the results, but for the next
name: knative-example-svc step, you would need to pipe the output
spec: into a file. Something like ytt ... >
template: service.yaml.
spec:
containers:

- name: user-container
image: registry.example.com/foo/bar
"> @sha256:ee5659123e31104036d40e7c0fe43766a8£071
“»68710aef35785665£80788c3b9

traffic:
- tag: current
revisionName: knative-example-svc-gécté
percent: 90
- tag: latest
latestRevision: true
percent: 10

In listing 9.6, a design principle of ytt is that you need to give it everything it will need
before it does anything. There’s no file access, no network access, no clocks. Nothing is
added which might make the template non-deterministic. Of course, this might seem
boilerplate-y, especially if you start working with directories with many files. In that
case, you can flip over to passing directory paths instead of file paths as I did with the
--file flag.

In a proper CI/CD situation, the next step is to commit the change to a repository.
This establishes a log of intentions over time, as I discussed early in chapter 3. If

218 CHAPTER 9 From Conception to Production

you're following a multi-repo approach, then put these into a separate, special-pur-
pose repository.

Listing 9.7 shows the commands I've settled on for use in commit-as-part-of-CI
tasks. It’s more involved and verbose than what I do at a local workstation. Like a trial
lawyer, I am asking git to state information “for the record”—in this case, gathering
logs that can help me with bug fixing or historical understanding in the future.

Listing 9.7 Committing changes in a chatty fashion

Assuming $ git add service.yaml Here | ask for a verbose status. By itself git status only shows me
Iranytt ... $ git status --verbose the first part of this information (which branch | am on, whether |
> service am up to date, and which files are going to be part of a commit).
yamlina On branch master
previous Your branch is up to date with 'origin/master'.
step.
Changes to be committed:
(use "git restore --staged <file>..." to unstage)
modified: service.yaml
diif --git é/services/rendere?/service.yaml <+ By using --verbose, | also get a diff of
. b/services/rendered/service.yaml the changes that are staged. | could
index 040a075..co4aeed 100755 achieve something similar by using git
--- a/services/rendered/service.yaml diff --cached, but to future devs it
+++ b/services/rendered/service.yaml probably looks too magical. git status
@@ -9,10 +9,10 @@ spec: --verbose gives me everthing | want
spec: here, especially the before-and-afters
containers: as it was seen at the time.

- name: user-container
- image: registry.example.com/foo/bar
"> @sha256:ee5659123e3110d036d40e7c0fe43766a8£0716871
"> 0aef35785665£80788c3b9
+ image: registry.example.com/foo/bar
"> @sha256:43e8511d2435ed04e4334137822030a909f5cd1d37
“»044c07ef30d7efl7af4e76
traffic:
- tag: current
- revisionName: knative-example-svc-24151
- percent: 100
+ revisionName: knative-example-svc-n9rfd
percent: 90
- tag: latest
latestRevision: true
- percent: 0 Using multiple -m flags
n percent: 10 removes any need to
understand heredoc
$ git commit -m "Update rendered service YAML." \ sorcery.
-m "This commit is made automatically."

This command spits out the commit
as | would see it in a log, without
getting stuck in less. CI/CD systems
vary on how terminal-y their runtime
environments are, so it’s useful to
force the issue with --no-pager.

[master 606a816] Update rendered service YAML.
1 file changed, 2 insertions(+), 2 deletions(-)

$ git --no-pager log -1

Getting your software to somewhere it runs 219

commit 606a8168e12356789ee016843dbcabcf24c79127 (HEAD -> master)
Author: Jacques Chester <jchestere@example.com>
Date: Thu Aug 20 18:57:32 2020 +0000

Update rendered service YAML.

This commit is made automatically.

When using git status --verbose, the information printed duplicates the Git reposi-
tory itself, doesn’t it? Yes, it does, but only if the git push to the repo is successful. It
could fail or error out and I’d have no independent way to know what was meant to hap-
pen. And, of course, nobody has ever made a force push that they later regretted, right?

At the end of listing 9.7, T have a commit that can be pushed into a repo. In the
example Concourse pipeline, I use git-resource to do this, but you can use a script
or whatever other system makes sense to you. My goal is to record my intent, which in
this case is twofold:

Change the current exact container image to a different exact container image
Split traffic so that only 10% of traffic flows to the latest

Having pushed my YAML into a Git repository, the next step is to do something with
it. Opinions vary on what comes next. Some vendors sell tools that perform a git pull
inside of each cluster, then turn to the API Server to apply whatever was pulled. Other
vendors instead sell tools that perform a git pull outside of clusters, which then turn
to the API Server to apply whatever was pulled.

A surprising amount of light and heat attends to this distinction, probably because
“push-based GitOps vs. pull-based GitOps” is, for folks involved, connected to their
meal ticket. I myself like the external push approach. It allows me to use a single tool
like Concourse, Tekton, Jenkins, or whatever for all my “things-happen-in-some-kind-
of-order” needs. More importantly, it does not depend on the stability of the target
cluster. GitOps from within a cluster cannot dig you out of a misbehaving cluster—
you’ll need to do that from the outside if things go bad. But if you’re going to do so,
why not smooth the road you will wind up on anyhow?

The main counterarguments are about scale and security. For scale, the idea is that
many clusters pulling from Git are more scalable than a single system pushing to many
clusters. I don’t fully disagree, actually, but I note that you can quickly reach thresh-
olds at which GitHub or GitLab become unwilling to cooperate. It’s also the case that
you can scale the pushing apparatus pretty easily. And again, you’ll need that capabil-
ity if you roll out a change that wedges all your clusters, so why not prepare it now?

Which leaves security—that your central system will need too many privileges for
too many things. Again, I partially agree, but at a per-cluster level it’s a wash. Kubernetes
does allow some fine-grained slicing and dicing with its RBAC stuff, but in practice,
many folks become impatient and slather cluster-admin everywhere (a tip: don’t).
You need to treat secrets as special anyhow, you need to manage your portfolio of sen-
sitive key material anyhow, so ... why not prepare it now?

220 CHAPTER 9 From Conception to Production

In any case, I will demonstrate the “push” approach. Broadly, this just means that
I'm going to use kubectl apply. If you were wondering whether I would use kn, the
answer is no. Or, more precisely, not for applying the change. First, slinging YAML
explicitly is the province of kubectl; kn is meant for interactive use. Second, kn likes
to take a little extra control of your Services. In particular, it takes control of Revision
names itself, rather than letting Knative Serving pick one automatically. This turns out
to play poorly with a YAML-based approach. You can’t cross the streams.

This is finein CI/CD land. You’re not doing anything interactive. Precision control
of settings is a good tradeoff against convenience if your changes are automated and
repeatable. In theory, I could have my CI/CD pipeline take charge of Revision names
for me. A lot of places have naming schemes that make that capability necessary. I
won’t demonstrate it here though.

Now I'll apply the YAML and then look at what I have in listing 9.8. The interest-
ing part of that listing is that Ive split traffic between two Revisions, distinguished by
their digest.

Listing 9.8 Applied YAML

$ kubectl apply -f service.yaml
service.serving.knative.dev/knative-example-svc configured

$ kn service describe knative-example-svc

Name : knative-example-svc

Namespace: default

Annotations: example.com/container-image=registry.example.com/foo/bar

Age: 1d

URL: http://knative-example-svc.default.example.com The current tag now receives
90% of traffic. It’s the

Revisions: previous Revision, the one

90% knative-example-svc-8tn52 #current [7] (4m) that | already know works.

Image: registry.example.com/foo/bar
Here’s the full image

definition for current.

@sha256:elbee530d8d8cf196bdb8064773324b2
435c46598cd21d043c96£15b77b1l6cb3 (at elbees)

10% @latest (knative-example-svc-vlswé) Sets @latest to

#latest [8] (4m) 10%. That’s traffic
Image: registry.example.com/foo/bar flowing to ...

@sha256:c9951f62a5£f8480b727aa66815ddb572

34c6£077613a6f01cad3c775238893b0 (at c9951f) .
.. the newest Revision.

Conditions:
OK TYPE AGE REASON
++ Ready 2m
++ ConfigurationsReady 4m
++ RoutesReady 2m

In a Canary rollout or progressive rollout, you would now be monitoring the rate of
errors being returned to end users. No point releasing something new if it’s not working

Getting your software to somewhere it runs 221

for your customers. And you might get fancy and monitor performance as well, to see
if there are any unwanted regressions.

But, in the interests of space, I will just tap on the front door to see if anyone is
home (the fancy name is “reachability test”). At my own workstation I like to use
HTTPie’s http command, but for CI/CD purposes, curl is more traditional and so
widely available that I use it in the following listing.

Listing 9.9 Knock knock!

$ curl \
--verbose \
--fail \
http://latest-knative-example-svc.default.example.com

Begin

* Rebuilt URL to: http://latest-knative-example-svc.default.example.com/

* Trying 198.51.100.99...

* Connected to latest-knative-example-svc.default.example.com
(198.51.100.99) port 80 (#0)

GET / HTTP/1.1

Host: latest-knative-example-svc.default.example.com
User-Agent: curl/7.47.0

Accept: */*

HTTP/1.1 200 OK

content-length: 159

content-type: text/html; charset=utf-8
date: Fri, 21 Aug 2020 21:54:46 GMT
X-envoy-upstream-service-time: 3291
server: envoy

N NN NN N NV V V V V

<!DOCTYPE htmls>
<html>
<heads>
<titles>Hello, Knative!</title>
</heads>
<body>
<hl>Hello, Knative!</hls>
<p>See? We made it to the end!</p>
</body>
</html>
* Connection #0 to host latest-knative-example-svc.default.example.com
left intact

How did I know the URL? Through the magic of convention. In chapter 4, I discussed
that Knative Serving creates routable names for tags. I know that whatever lives at
@latest will be reachable at latest-whatever-whatever.

The curl command is fairly taciturn, so using - -verbose shows me the full exchange.
As with git status --verbose, this leaves some historical clues in my logs that can be

222

9.3

CHAPTER 9 From Conception to Production

vital later on. The --fail flag tells curl that if it gets an HTTP 4xx or 5xx error code,
it should exit with a non-zero exit code. Not using --fail is an easy gotcha in a CI/CD
scenario. You expect the task to blow up if the target is unreachable, but curl takes
the view that it won’t pass judgement on HTTP error codes unless you tell it to.

In a CI/CD system I'd go through the same cycle of editYAML, commit-YAML,
push-YAML, pull-YAML, apply-YAML. If I use the same commands as previously, the
logic automatically promotes latest to current. I can set the traffic percentage to
100%. Tada, I've completed my rollout!

Deployment by traffic percentage is different from deployment by instances
I will bring up again that Revisions and Services provide a toolkit for rolling out
changes that are divided by traffic, not by instances. Nowhere in my description is any-
thing like “20 instances current, 2 instances latest.” Instead, | tell Knative to
send percentages of traffic, after which the Autoscaler is responsible for providing the
right number of instances. Any given request has a set probability of being routed
to one or the other. If instead rollouts are based on instances, the probabilities
depend on at least two factors: the ratio of instances and the relative performance
of instances.

This is one of those “the-hairsplitters-aren’t-crazy” moments. Splitting traffic by per-
centage has two big benefits. The first is granularity. If | have three instances
behind the current tag and two instances behind latest, then in a purely random
selection, | have a 60% chance of one and 40% of the other. But what if | want to
try out the new Revision without risking so much of my traffic on it? In this scenario,
it will be difficult to get below 33% going to latest, all things being equal. If | have
100 instances, this wouldn’t be a problem, but a lot of the time, you won’t have 100
instances lying around.

Which leads to the second advantage of traffic splitting by percentages: it controls
the variable of changed performance between Revisions. If | had a 3:2 split of cur-
rent t0 latest, and latest is struggling to keep up with demand, there isn’t much
| can do. But if the split is by traffic, then | can at least hope that horizontal scaling
by the Autoscaler will get me out of a tight spot.

An idea | would like you to think about is that the combination of these key features—
autoscaling and percentage routing—acts like a pump for variability. If instances are
fixed, then variability in your software’s performance is seen by end users. If the auto-
scaler is allowed to work, then it will pump variability away from users back into the
Kubernetes cluster, which is better suited for absorbing it.

Knowing how your software is running

Now I have a thing that’s running. But is the thing doing the thing I think it does?

This is the problem of monitoring, or observability, or whatever your vendor has
taught you to call it. Yes, there are differences and nuances that folks on Twitter go to
the mats over. I will use all these terms interchangeably in order to most fairly share
out causes of annoyance. First, what s monitoring?

Knowing how your software is running 223

Monitoring is like a fire department. You don’t need it. Until, one day, you need it
very much indeed.

At this point, one learns that (1) you don’t have what you need to fight fires, and
(2) itis difficult to get what you need to fight fires when everything is on fire. It only took
hundreds and hundreds of years for various civilizations and nations to sort out the
whole firefighting business; with any luck, we brave developers should be able to
knock that down to around 50 years, plus or minus a century for flamewars.

Put another way: make inspectability, probeability, monitorability, instrumentabil-
ity, observability, what-the-hell-ability a part of your design. Nag product managers and
tech leads. Be merciless. And read! There are dozens of excellent books on this topic;
I enjoyed Practical Monitoring and Site Reliability Engineering.

It is the current fashion to say that there are “three pillars of observability”: logs,
metrics, and traces. I feel that this is a post-facto rationalization invented by vendor
marketing rather than some inevitable structure arising from fundamental physical
laws. But it’s also how most tools fit themselves into the market and how most folks
have learned to think of things. Logs and metrics are the oldest; traces have only really
emerged out of necessity.

The story of logs, metrics, and traces in Knative is really just the story of logs, met-
rics, and traces for Kubernetes. Knative doesn’t guarantee to provide any particular
mechanism for these, but it does try to provide standards-ready facilities. For example,
Knative’s own components create logs, gather metrics, and plumb through traces. But
those logs and metrics and traces won’t be kept anywhere centrally accessible by Kna-
tive. Someone else needs to set up the infrastructure.

This problem is largely delegated to vendors who rebundle Knative into some sort
of commercial offering. That’s because vendors tend to include some sort of monitor-
ing tool into their offerings, so they add the adaptors to pipe stuff into their tools.
Hopefully, your platform engineers have installed and configured some sort of moni-
toring tool. Likely, they have for their own needs, but do check to see if they offer
observability tools to you as well.

It’s worth noting something here: Knative’s own components are good citizens,
publishing all kinds of information that can be slurped into various tools and systems.
But Knative can’t magically fit those onto your software. For deep insight, you still
need to write logs, emit metrics, and add spans to traces. In particular, you may need
to add instruments that show what the wuseris experiencing in terms of their own goals.
Sure, the front page loads fast, but how long does it take for an insurance application
to trigger a confirmatory email? How long between a stockout at the retail store and a
warehouse order?

Nevertheless, the information that Knative collects automatically is still helpful, so
I'm going to spend some time doing an introductory tour. I'll be using some widely
used tools (Kibana, Grafana, and Zipkin) because these were the easiest for me to set
up. Any resemblance to a tool endorsement, living or dead, is purely accidental.

224

9.3.1

‘ kibana
@ Discover
Vieustae
p—

Timelion

Machine Learning.

Graph

Dev Tools

Management

CHAPTER 9 From Conception to Production

Logs

First, I'm going to look at Kibana for logs (figure 9.4). This is Kibana’s most general,
simplest view, Discover.

1 Here you can enter search queries. The syntax is relatively simple for basic
variable: value sorts of searches. A blank search means “I want to see
everything.”

2 This histogram shows how many log entries were received in each time bucket.
It’s mostly helpful for showing patterns once you begin to narrow your search.

2 Here’s the detail view for each log entry. Knative takes great care to log things
out in a common JSON format, which makes it easy for logging systems to parse
and extract fields. You can see the result here, which is that Kibana marks field
names in bold.

4 What field names, you might ask? Here’s where you can see every field name
that has so far been encountered by Kibana.

[Search.. e satus200 AND extensionPHP) “ uses ucene auery yniax JRID

(e o Auust 26 2020, 14:22:04240 - AUgust 26th 2020, 143704240~ Aut v
o
Selected Fields
Y 100
R . — ‘
t id ° @timestamp per 30 seconds
¢t Index Time _source
-
t _type econciler caller: controller/controller.go:520 msg: Reconcile succeeded. Time taken: 11.005314ms commit: 3372dS8 knmative.dev/controller: kpa-class-podau
¢ aler toscaler-controller knative. Ave. dev/k log: {"level":"inf

¢ commit
aller”:"controller/controller.go:520", “msg": "Reconcile succeeded. Time taken: 11.0053l4ns","commit":"3372d58" "knative. dev/controller" : "kpa-class-podautosca
© desiredAPVersion

» August Z6th 2020, 14:32:25.060 lavels info ts: August Z6th 2020, 14:32:25.060 logger: autoscaler.kpa-class-podautoscaler-controller.knative. dev-serving-pkg-reconciler-autoscaling-kpa.R
¢ docker containerid

econciler caller: kpa/scaler.go:226 msg: Probing activator = true, err = <nil> commit: 3372458 te
© error - log: {"level”: i
e 1:32:25.0602","Logger” :"autoscaler. _knative. dev-serv Reconciler”

0:226", "msg":"Probing activator = true, err = <nils","comit":"3372d58","knative. ter", "knative. dev/tracet
¢ inpurype
¢ knative.devicontroller » August 26th 2020, 14:32:25.060 level: info ts: August 26th 2020, 14:32:25.060 legger: autoscaler. knative. dev-sery ter K
econciler caller: kpa/kpa.goi154 megs PA scale gots0, want=d, desiredPodseO ebce-200 commits 3372458 ~con
¢ knatve devikey
troller ebar1 logi {"level":"info","ts":"2020-08

Figure 9.4 The default Kibana “discovery” screen

This is not even skimming the surface, of course. By clicking into fields or particular
log entries, I can perform all manner of drilling down. Many tools will show an inter-
face like this one, butI don’t think a parade of fast decaying screenshots is the best use
of your time.

What I will do is talk about what Knative logs on your behalf. As I noted before,
Knative keeps solid logs of its own activity. It also emits logs for stuff flowing to and
from your Revisions. Most importantly, every log entry is liberally slathered with addi-
tional data and context. For example, it adds a commit field that identifies the exact
version of Knative being used.

Knowing how your software is running 225

Table 9.1 is a list of some Knative-provided fields you can use to narrow your
search. Not all fields are available in all logs.

Table 9.1 Some available logging fields

Field name What it’s for

knative.dev/key The namespace and name of the Service or Revision. For example, if
my foo-example-svc Service is in the bar-example-ns hame-
space, the knative.dev/key will be bar-example-ns/foo-
example-svc. You'll probably use this more than anything else
when debugging.

knative.dev/name and These seem like they cause confusing overlap with knative.dev/
knative.dev/namespace key. The main difference is that these are fields set by Knative’s
components when emitting their logs. When it’s about something
you provided (a Service, a Revision, etc.), you'll see the /key
instead.

knative.dev/traceid As the name suggests, this is where Knative propagates traces. It's
mostly used by tracing systems like Zipkin. But for quickly narrowing to
“just this one request, please,” it can quickly narrow logs as well.

knative.dev/kind and The sort of thing that’s being talked about—a Service, a Revision, and
knative.dev/resource so on. Truthfully, these carry similar information. | prefer /kind but
/resource seems more widely used.

knative.dev/operation This comes from the webhook component, acting in its admission
control role. The permissible values are CREATE, UPDATE, DELETE,
and CONNECT. This is useful for diagnosing permissions errors. Also
a possible filter for stuff you'd like to copy into independent auditing
logs.

knative.dev/controller | Where individual Reconcilers identify themselves in logs. | know
the name is confusing, but remember what | said in chapter 2:
controller is a process, Reconcilers are logical processes
(e.g., route-controller or kpa-class-podautoscaler-
controller).

If you or your platform engineering team have enabled request logging, you will get
additional fields you can look at under the httpRequest.* keys. Out of the box, you
get latency, protocol, referer, remotelIp, requestMethod, requestSize, request-
Url, responseSize, serverIp, status, and userAgent. It also prints any X-B3-Traceid
headers it sees on incoming requests.

9.3.2 Metrics

Knative instruments quite a few things for metrics collection, so if you have a place
where the metrics drain to, there’s a lot to work with. As before, the data falls into two
broad categories: metrics about Knative itself and metrics about things running on

226 CHAPTER 9 From Conception to Production

Knative. Both are useful to suss out whether bottlenecks are in Knative or in what
you’re running on it.

Lots of folks use Grafana to plot metric values over time. Figure 9.5 shows metrics
gathered for the HTTP requests of a Revision under load. Figure 9.6 shows how
Reconcilers are behaving during the same load test.

88 Knative Serving - Revision HTTP Requests - O Last 15 minutes v

Namespace | default~ Configuration = knative-example-svc > = Revision All ~
v Overview (average over the selected time range)

Request Volume Success Rate (non-5xx responses)

v Request Volume

Request Volume by Revision Request Volume by Response Code Class'
27Kops
2.6Kops
2.5Kops
24Kops
23Kops
22Kops
21Kops
2.0Kops
19Kops
1316
= z0gsk1
v Response Time

Response Time by Revision Response Time by Response Code Class

0 me HEEE 1
1316 13:18 1320 1322 1324 1326 1328 . 13:16 1318 1320

= 2008H1 (p50) Avg:4ms == zogsH1 (p90) Avg:18ms == zogsi1 (p95) Avg:31ms = 20gsH1 (p99) Avg:68ms. = 20X (p50) Avg:3.85ms == 2xx (p95) Avg:31.27ms.

Figure 9.5 A Grafana dashboard of HTTP request behavior

As with logging, metrics are collected with additional labels to identify what they’re
about. When we talk about “100 requests per second,” the question is 100 requests to
what? Is that to the whole cluster, to one Revision, to one instance of one Revision?
The labels added to metrics make it possible to drill down or roll up your data as
needed.

Knowing how your software is running 227

88 Knative - Reconciler -

Reconciler | knative.dev-serving-pkg-reconciler-configuration.Reconciler ~ | Key | None ~

v Aggregate

Reconcile Count (per min)

0
1316 1318 1320 1322 13:24 1326 1328

= knative.dev-serving-pkg-reconcler-configuration Reconciler. == knative.dev-serving:pkg-reconcller-ge.reconciler
= knative. dev-serving-pkg-reconcllerlabelec Reconciler == knative.dev-serving-pkgeconcler-evision Reconcller

= knative.dev-serving-pkg-reconciler-route.Reconciler = knative.dev-serving-pkg-reconcller-serverlessservice reconciler
== knative.dev-serving-pkg-reconciler-service.Reconcller

v Per Reconciler

knative.dev-serving-pkg-reconciler-configuration.Reconciler Reconcile Count (per min) knative. dev-serving-pkg-reconciler-configuration.Reconciler Reconcile Latency Percentiles

0
13:16 13:18

v Per Reconciler & Key

knative.dev-serving-pkg-reconciler-configuration. Reconciler/None Reconcile Count (per min) knative. dev-serving-pkg-reconciler-configuration. Reconciler/None Reconcile Latency Percentiles

Figure 9.6 A Grafana dashboard that shows Knative Serving Reconciler behavior
Table 9.2 describes metrics labels that can be used to group metrics values. Tables 9.3,
9.4, and 9.5 describe various metrics that are collected by default.
Table 9.2 Labels you can see from metrics

Label name What it’s for

project_id,location, | Identifiers pulled from the underlying cloud provider. On GCP, for example,

and cluster name project_id is your project ID (amazing, | know). Similarly, location is
used for things like availability zone. The cluster name is the provider
used for the cluster that Knative is running on top of.

Right now these are best supported on GKE; hopefully, other providers will
catch up.

228 CHAPTER 9 From Conception to Production

Table 9.2 Labels you can see from metrics (continued)

Label name What it’s for

namespace_name

container name

pod_name

service name,
configuration name
and revision name

response_code

response_code class

response_error

response_ timeout

trigger name and
broker_name

event type and
event_source

The namespace where the subject lives. If you're using namespaces to
divvy up clusters, this will be an essential key.

Knative Serving typically names your container user-container, and
Queue-Proxy is under queue-proxy. This is useful when trying to distin-
guish between metrics provided by each.

The underlying Kubernetes Pod that represents a Revision instance. These
change because of autoscaling. Pods spun up for Revision instances will
come and go. This can be useful for live investigations but not as useful for
reviewing historical data.

Set by Knative Serving, these are the most useful all-round keys to parti-
tion your metrics, because (ideally!) your collection of Services and Revi-
sions is related to some kind of underlying user problem.

Serving sets this—literally the HTTP response code. Useful to drill on a
particular status code.

Serving sets this as one of 1xx (informational), 2xx (successful), 3xx
(redirects), 4xx (client errors), or 5xx (server errors). Grouping like this is
helpful to get the “big picture” of whether things are OK or not. A user sud-
denly faced with 501 or 503 isn’t very interested in the distinction. In
terms of detecting errors quickly, neither should you.

An error label, rather than a status code. Mostly nice for quick eyeballing. It
won’t show up for non-error situations (such as a 200).

This boolean indicates whether the request timed out.

Eventing sets these to help you group metrics for different Triggers
and Brokers. They’re useful for seeing how particular components are
behaving.

Eventing sets these as well. They're useful for seeing the effects of an
event type or source over your whole system. You can also combine these
with broker name or trigger_ name to understand how an event type
or source is affecting particular processes.

Table 9.3 Request metrics

Metric name What it’s for

request_count

app_request_count

request latencies

app request latencies

The number of requests as seen by the Queue-Proxy.

The number of requests as seen by your process. This figure typically
lags behind request count because of queueing.

Request-response latency distribution as seen by the Queue-Proxy.

Request-response latency distribution as seen by your process. This
has the same distribution buckets as request latencies.

Knowing how your software is running 229

Table 9.3 Request metrics (continued)

Metric name What it’s for

queue_depth How many requests are waiting in the Queue-Proxy to be processed.
This is the connecting number between request count and
app_request_count. See chapter 5 for a discussion of how
these bits fit together.

Table 9.4 Knative Serving metrics

Metric name What it’s for

request concurrency The number of concurrent requests as seen by the Activator.
This number is useful in live investigations, but don’t try to
base trend alerts on it. If you remember chapter 5, the Acti-
vator is sometimes on the data path and sometimes off the
data path, so this metric can swing a lot without reflecting a
shift in arriving demand.

request_count The count of requests as seen by the Activator. The caveat
about the Activator coming and going applies.

request latencies A distribution of request latencies as seen by the Activator. Not
to be confused with the metric collected on Revisions of the
same name—you can distinguish by checking whether the
metric has labels for a Revision or not. The distribution has the
same buckets as request latencies and app request
_latencies gathered for Queue-Proxy and your software. But
bear in mind, the caveat about the Activator coming and going
applies.

panic_mode Whether the Autoscaler is panicking: 0 is stable, 1 is panic.

stable request_ concurrency Of The Autoscaler’s count of concurrent requests or requests-
stable request per second per-second over the stable window. The former is the default
metric used for decisions, but the latter can be used as well
(see chapter 5).

panic_request concurrency Or The Autoscaler’s count of concurrent requests or requests-
panic requests per second per-second over the panic window.

target concurrency per pod of The target concurrency or RPS level that the Autoscaler

target_requests_per_ second aims for.

excess_burst_ capacity The current calculated value for Excess Burst Capacity (see
chapter 5).

desired pods The current calculated number of Revision instances that

Autoscaler thinks should be running, based on its configura-
tion and metrics. You can compare this to metrics gathered
about request latencies, concurrency, and so on to see if the
Autoscaler behaves the way you want it to.

230 CHAPTER 9 From Conception to Production

Table 9.4 Knative Serving metrics (continued)

Metric name What it’s for
requested pods, actual pods, The figures gathered by the Autoscaler from Kubernetes as
not ready pods, pending pods, part of its decision-making process. These are useful for
and terminating pods diagnosing bottlenecks in the Kubernetes cluster itself. For

example, if you see pending pods rising fast, or
terminating pods isn’t falling, something ugly is happen-
ing and you should investigate further.

Table 9.5 Knative Eventing metrics

Metric name What it’s for

event count This shows up for Triggers and Brokers. It’s a count of events
handled. Be wary about overreliance on this, because it resets
to zero if the Trigger or Broker are restarted or recreated.

event dispatch latencies Also shows up for Triggers and Brokers. On a Trigger it mea-
sures the time spent dispatching an event to a sink. If it
begins to rise, investigate the sink. On a Broker, it measures
time spent dispatching to a channel. If it rises, investigate your
Channel implementation.

event processing latencies Broker only. This reflects the time spent in processing by the
Broker itself. If it rises, you may be under heavy load.

Serverless or memoryless?

Knative, especially Knative Serving, is quite ephemeral. Revisions instances live and
die by the whim of autoscaling, with ever present gravity tugging the count to zero.

This means that if you don’t set up some kind of logging, metrics, or tracing infra-
structure, you will have close to zero idea what the hell is going on when everything
is going to hell.

A “gotcha” that easily arises is that the Prometheus metrics system, probably the
most used such system in Kubernetes clusters, works by periodically scraping the
systems it monitors. Like a lot of things that were designed before scale-to-zero, this
betrays the invisible assumption that all processes are long-running and that exiting
is abnormal. Out of the box, Prometheus scrapes every 20 seconds. Revision
instances can be shut down within 60 seconds or so, meaning that you won’t get
many metrics out of your instances before they vanish.

The argument for this scraping design is that the load on central metrics systems is
too high otherwise. My own view here is that the problem is one of the economics of
externalities. If developers can vomit up logs and metrics without paying any cost,
they absolutely will do so. A better fix, in my view, would have been to turn logging
and metrics into blocking operations. The polling approach, instead, creates a lowest
denominator outcome. Badly behaved systems are still badly behaved, but systems
that really need high frequency are punished.

9.3.3

Knowing how your software is running 231

The practical upshot is that you have two options. One is to increase scraping fre-
quency. The other is to install and configure the Prometheus pushgateway (https://
prometheus.io/docs/practices/pushing/). | don’t feel ready to say which you should
choose.

Traces

Traces are criminally underutilized. Logs inform, but are often wasteful and ill-struc-
tured. Metrics indicate, but show aggregates instead of single stories.

Traces can fill both roles. Anything you can put into a log or a metric can be put
into a trace, and you get a strongly sequential history, and you get timing breakdowns.

So what’s the problem? The problem is that traces need cooperation to really
shine. Each trace needs to be plumbed through systems that understand what they are
used for and how to propagate one. A trace is only as good as the participants.

Out of the box, Knative produces traces for HTTP requests passing through Serv-
ing and for CloudEvents flowing around Eventing. This is useful for diagnosing where
the work is getting stuck, especially if you cross-reference with metrics that measure
queue lengths or concurrency.

What is a trace, exactly? Basically, it’s a tree structure that represents how a given
request moves through a distributed system. The root of this tree is “the trace.” Within
traces are spans. Spans can contain other spans. For example, if you have a web server
talking to a database, then you might see a trace with two spans: one representing
time inside the web server, which contains a span representing time spent sending a
query to the database and then receiving a result back.

In figure 9.7 I use the Zipkin tool to examine the history of my browser trying to
retrieve a /favicon.ico from my toy server. Note that Jaeger is a popular alternative.

In the figure, along the top I get headline statistics: how long the entire trace
took, how many services were identified, how many levels deep the trace gets
to, and how many spans were there overall. Most of the time, you’ll be most
interested in duration, but do note that depth can be very enlightening. Or
very depressing.

Here Zipkin shows me the components that were identified, along with the
number of appearances in the trace. The activator-service we know; the long
name next to it includes information about the Service (knative-example-svc)
and the Revision (-zcgsl-1).

The time line is automatically scaled to the total trace time.

The top four spans all occur inside the Activator. This reveals an important
point: no law requires you to only create spans when crossing a network bound-
ary. You can absolutely create these inside your own code.

Because Knative Serving has a Queue-Proxy, I can see spans for a request being
sent to the Revision, being received by the Queue-Proxy, and then handled by

https://prometheus.io/docs/practices/pushing/
https://prometheus.io/docs/practices/pushing/
https://prometheus.io/docs/practices/pushing/

232 CHAPTER 9 From Conception to Production

my process. I didn’t add anything to the trace in my code, but if I did, it would
show up below this span.

o Duration: Services: B Depth: @ Total Spans:
[1.951ms

Expand All Collapse All

knative-example-svc-zcgsl-1-deployment-57876856b7-n65wd x3

Services 390us 780us 1171ms 1.561ms 1.951ms
1.951ms : /favicon.ico 0.

O ooy
- 1.884ms : activator_proxy
. 1.836ms : /favicon.ico -

0 I - oy

Figure 9.7 The trace for /favicon.ico

This is all very well, but I did claim you could use traces to capture information nor-
mally given to logs and metrics. Zipkin doesn’t show these at its top-level trace view,
but you can click any of the spans to see a detail view (figure 9.8).

The detail view reveals that more or less arbitrary data can be attached to spans.
Here, for example, I can see the exact timestamps of when the span began and
ended and how many bytes it was. Also attached are values for HTTP host, path,
method, and so on.

For Serving, Knative adds spans you’ve already seen, showing the flow of HTTP
requests. For Eventing, spans are added for movements across Channels. By default,
you will get attributes attached for CloudEvent ID, type, and source. This is tremen-
dously helpful for debugging event flows in your system.

Summary 233

activator-service./favicon.ico: 1.951ms x

Services: activator-service

Date Time Relative Time Annotation Address
8/28/2020,12:56:47 PM Server Start 10.60.1.10 (activator-service)
8/28/2020,12:56:47 PM 1.922ms Sent 159 bytes 10.60.1.10 (activator-service)
8/28/2020,12:56:47 PM 1.951ms Server Finish 10.60.1.10 (activator-service)
Key Value

http.host knative-example-svc.default.35.226.147.171.nip.io

http.method GET

http.path /favicon.ico

http.status_code 200

http.url /favicon.ico

http.user_agent Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHT

ML, like Gecko) Chrome/84.0.4147.135 Safari/537.36

opencensus.status_description OK

Figure 9.8 A span detail view

Summary
You can use pack and Paketo Buildpacks to build efficient images without need-
ing to maintain a Dockerfile.
You can automate the rollout of Services by using tools that edit and commit
YAML to a repository.
Always use image digests in your Service YAML! Automation makes this easy.
ytt is a simple and powerful tool for safely templating YAML.
Knative is monitoring-friendly: it provides rich logs, metrics, and traces out of
the box. However, it does not install or manage infrastructure for collecting logs,
metrics, or traces. You will need to install or bind to such systems.
You can use log field names to narrow logs to individual Services or Serving
Reconcilers.

234 CHAPTER 9 From Conception to Production

You can use metrics labels to narrow metrics in many ways: namespace, Service
name, revision name, etc.

Serving metrics cover HTTP request-response data, as well as Autoscaler data
and decisions.

Eventing metrics can show the timing and flow of CloudEvents through Eventing.
Traces can show the order, causality, and details of individual flows through a
system.

Knative collects basic traces for HTTP requests and CloudEvent flows.

References
Mike Julian, Practical Monitoring (O’Reilly Media, 2017)
Betsy Beyer, Chris Jones, et. al. (eds). Site Reliability Engineering (O’Reilly Media,
2016). Available online: https://landing.google.com/sre/sre-book/toc/index
.html

https://landing.google.com/sre/sre-book/toc/index.html
https://landing.google.com/sre/sre-book/toc/index.html
https://landing.google.com/sre/sre-book/toc/index.html

appendix
Installing Knatwe
Jor Development

Installing kubectl and kn

I use kubectl in a few places to peek behind the Knative curtain. There are many
ways of installing it (https://kubernetes.io/docs/tasks/tools/install-kubectl/) on
different operating systems. My daily driver is MacOS, so I used brew install
kubectl.

Installing kn is slightly less convenient at this time of writing. You need to head
to Github and download the binaries that are compiled for MacOS, Windows, or
Linux, then install these yourself.

My installation process looks like the following listing.

Listing A.1 Installing kn

| use pushd to switch
$ pushd $HOME/Downloads to my Downloads

directory. This URL varies according to the

$ curl \ version of the client and the 0S
https://github.com/knative/client/releases you’re downloading for. You can
=» /download/v0.17.0/kn-darwin-amdé64 \ always visit the kn releases page

(https://github.com/ knative/
client/releases) to see what’s

> --location available (look for “Assets”).
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 641 100 641 0 0 1950 0 --:t--:-- --:1--:-- --:--:-- 1954
100 46.4M 100 46.4M 0 0 14.6M 0 0:00:03 0:00:03 --:--:-- 19.7M

GitHub downloads include an HTTP redirection. The --location
parameter tells curl that | want to follow redirects.

235

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://github.com/knative/client/releases
https://github.com/knative/client/releases

236

A2

APPENDIX Installing Knative for Development

$ install kn-darwin-amdé4 /usr/local/bin/kn The install command is a

handy little utility. It both

$ kn version moves files and marks those
Version: v0.17.0 as executable.
Build Date: 2020-08-26 11:08:52
Git Revision: 8fcd25c3
Supported APIs:
* Serving

- serving.knative.dev/vl (knative-serving v0.17.0)
* Eventing

- sources.knative.dev/vlalpha2 (knative-eventing v0.17.0)

- eventing.knative.dev/vlbetal (knative-eventing v0.17.0)

a popd takes me back to the
% pop directory I originally came

from via pushd.

Installing Knative

What I’'m about to discuss is @ way to install Knative. It is not necessarily the only way.
The installation instructions on the Knative website are more general and cover more
alternative options than I do. Your mileage may vary.

During writing I used plain GKE (but neither of the two Knative-based Cloud Run
offerings). This isn’t an endorsement as such. In its early life, Knative was not comfort-
able running in a local environment like Minikube, and I just happened to have
access to a corporate account on GCP already.

Other folks have reported using Minikube (https://minikube.sigs.k8s.io/docs/)
and KinD (“Kubernetes in Docker”: https://kind.sigs.k8s.io/) for local development.
If you have a somewhat beefy system, then using Minikube or KinD will be snappier
for development than a remote cluster option like GKE. It also means you can per-
form development in a disconnected environment, like a laptop.

For KinD, at this time of writing, these comprehensive instructions (https://github
.com/retgits/springonelabs2020) from a SpringOne conference workshop were
effective. For Minikube, Carlos Santana’s knative-minikube (https://github.com/
csantanapr/knative-minikube) is helpful and frequently updated.

A challenge while writing has been that Knative moves pretty quickly. By an agreed
release policy (http://mng.bz/NYaN), official numbered releases of Serving and
Eventing are cut every 6 weeks, with occasional shifts to allow for holidays. Releases of
kn trail Serving and Eventing by one week. When I started writing, Serving was on
v0.2.1. As T'write, it’s at v0.17.1. By the time the book is printed, it will be at least v0.20.

Knative sets a minimum version of Kubernetes as its target. At writing, it requires
v1.16 versus the current Kubernetes release version at writing, which is v1.19. If your
vendor is struggling to remain three versions behind current releases, have a sharp
word with them.

The biggest change in Knative’s installation process since the early days is that Istio
is no longer a hard dependency. Knative still leans towards Istio; it just doesn’t lean on

https://github.com/retgits/springonelabs2020
https://github.com/retgits/springonelabs2020
https://github.com/retgits/springonelabs2020
https://github.com/csantanapr/knative-minikube
https://github.com/csantanapr/knative-minikube
https://minikube.sigs.k8s.io/docs/
https://kind.sigs.k8s.io/
http://mng.bz/NYaN

Installing Knative 237

it. This is advantageous for small installations for development purposes, because Istio
carries a lot of functionality that Knative does not use. In particular, Knative only really
needs some kind of Ingress capabilty. Other service mesh capabilities like fault injec-
tion or automatic retries are not required by Knative. Istio also used to be much more
resource hungry, which is how I originally wound up using GKE instead of Minikube
or KinD.

As you might have guessed, while I was writing the book, I switched from Istio to
another option: Kourier. Kourier is developed exclusively for Knative. There are other
built and tested alternatives (Contour, Ambassador, Kong, and Gloo). I’d tried Kou-
rier first, it worked, and so that’s as far as I got in weighing the alternatives. That said,
the folks behind the Contour, Ambassador, Kong, and Gloo alternatives have been
fairly active and approachable. If you have an existing relationship with one of those,
then by all means I encourage you to use their offerings. And, of course, if your clus-
ters already have Istio set up, that’s what you should use.

Throughout my writing, I've used the kapp (https://get-kapp.io/) tool to install,
configure, and update Kourier and Knative. I am a huge fan of kapp. First, it avoids a
lot of the pain I'd encountered with Helm 2 around the treatment of CRDs (I've no
idea if Helm v3 works better for it). Second, I like the interface and pattern of use.

Listing A.2 shows the script I used to install each version of Knative as it was
released. In my script, I rely on the fact that each release of Kourier, Knative Serv-
ing, and Kourier comes with YAML suitable for consumption by Kubernetes. Early
on I was using raw kubectl, but kapp gives a much nicer experience overall, because
it figures out the ideal order of operations, waits for components to completely
load, and so forth.

Listing A.2 install-knative.sh

#!/usr/bin/env bash I always set these three options in my Bash scripts: nounset tells

Bash to bomb out if | refer to a variable with no value; pipefail causes

set -o nounset failures in any piped commands to bubble up and fail the script
set -o pipefail (a truly evil hiding place for bugs). Most of all, errexit causes fast
set -o errexit failures in my scripts, rather than letting them run until the end.

1 1 =" ' . . . 0
serving version='v0.17.1 Sets versions of Serving, Eventing, and Kourier

i i =1 ' 03 . . .
eventing version='v0.17.1 as variables. Sometimes these are in precise

kourier version='v0.17.0' . sync, but not always. Defining these variables
app_name="knative-$serving version" isconvenhntforﬂeﬁbﬂkr

Deploy

Part of kapp’s functionality is to treat multiple Kubernetes
kapp deploy \

resources as a single app. The YAML you provide during a
--app $app_name \ kapp deploy is treated as part of the single app. The --app
argument tells kapp which app you’re referring to.

-myes \ Skips interactive steps. You should only use --yes in a
script like this one. At the CLI, it’s worth inspecting the
nice diffs that kapp calculates before applying.

https://get-kapp.io/

238

APPENDIX Installing Knative for Development

--file "https://github.com/knative/serving/releases/download
/$serving version/serving-crds.yaml" \ <

--file "https://github.com/knative/serving/releases/download
/$serving version/serving-core.yaml" \

--file "https://github.com/knative/net-kourier/releases/download
/$kourier version/kourier.yaml" \

--file "https://github.com/knative/eventing/releases/download

/$eventing version/eventing.yaml" The various YAML files,

) fetched directly from

Update domain GitHub. It should be
kapp deploy \ In my second kapp deploy, I use the obvious that in a real
--app $app_name \ --patch op?lon. It te.lls.kapp that you are production environment,
--yes \ only patching an existing dep[oyment, you wor’t do this. But for
~_patch \ rather than overwriting it entirely. me, it was convenient.

--file <(ytt --file code/domain-config-map.yaml

--file code/values.yaml ytt bakes up
--data-value-yaml ip address=(kubectl some extra
--namespace kourier-system configuration
get service kourier -o that Kourier
jsonpath="'{.status.loadBalancer.ingress[0] .ip}"' needs to work.

))

In the listing, note that Serving is split into two files: serving-crds.yaml and serving-
core.yaml. This is a slight hangover from doing things with kubect1, where the order of
YAML could cause errors that required applying YAML multiple times. It worked, but was
hacky. The split here would improve the chances of things working first time around.

For kapp, I don’t need to use the split versions, because it calculates the safe order
in which things should be applied. But I like the distinction, so I kept it.

Let’s dig into the ytt/Kourier question a bit more. For Knative to use Kourier as
its Ingress controller, I need to do three things. The first is to install Kourier, which I
did as part of listing A.2. Then I need to tell Knative to use Kourier as its Ingress con-
troller. Finally, I need to tell Knative what addresses it should receive traffic for. Per-
haps zooming in on the ytt command will help. Take a peek at the next listing.

Listing A.3 The ytt subshell command, prettified

ytt \ values.yaml declares
-_file values.yaml \ the variables. A template file

. . . for rendering
--file domain-config-map.yaml \
--data-value-yaml ip address=$ (kubectl --namespace kourier-system
get service kourier -o
jsonpath="'{.status.loadBalancer.ingress[0] .ip}")

The IP address where Kourier lives. | then set a variable that’s used in
the template. There’s a modest amount of kubectl magic here.

In listing A.3, the -o jsonPath argument is a way of plucking individual fields out of
Kubernetes resources without needing to parse any YAML or J[SON yourself. My only
complaint is that terse embedded mini-languages are like a lightning rod for code
golfers.

Installing Knative 239

Listing A.4 and Listing A.5 show the stuff that ytt will convert into a real YAML
file. Listing A.4 isn’t super interesting, so we’ll focus on listing A.5.

Listing A.4 values.yaml

#e@edata/values

ip_address: '[ERROR! Kourier IP address not provided!]'

#@ load("eytt:data", "data")

#e

#@ kourier data = { QAAJ nip.io performs

#e data.values.ip_address + ".nip.io": "", some DNS magic.

#e "nip.io": ""

#e } The top-level nip.io domain

[added to my little list as

apiVersion: v1 part of the DNS dance.

kind: ConfigMap

metadata:
name: config-domain Here’s where | insert
namespace: knative-serving my data structure. In a

data: #@ kourier_data Production setting, you

--- can have many domains

apiVersion: vl set here. Sets an ingress.class

kind: ConfigMap label on knative-serving/

metadata: config-network. Knative
name: config-network Serving interprets the
namespace: knative-serving label to mean “use

data: Kourier for Ingress

ingress.class: kourier.ingress.networking.knative.dev stuff, thanks.”
In listing A.5, I use nip.io to perform some DNS magic for me. It’s a service that
reflects back IP addresses that you’ve submitted as domain names. For example, if I
make a DNS lookup request for 198.51.100.123.nip. io, the resolved IP address sent
back will be 198.51.100.123. You can use this to send traffic to endpoints for which
you haven’t configured a domain name. Just promise me that you won’t do something
silly like rely on this in production.

The IP address I use is injected at the command line. That was the magical part of
listing A.3: looking up the IP address of Kourier.

Numerics

mdex

202 Accepted status 179
400 Bad Request status 179

A

Activator 32, 35-38
Active condition 28-29
Addressable duck type 172, 186
Addressable type 157
AllTrafficAssigned condition 83
Always policy 59, 206-207
annotations 57, 123
ApiServerSource 154, 160-162, 167-169
apiVersion key 48, 83, 190
args 63, 69
arrival rate 110
asynchronous web flow 11-12
attributes 163, 175
autoscaling and Autoscaler 3, 35-38
alternatives to Autoscaler 129
calculation 112-120
cautions 129
configuring 120-129
applying settings 121-122
decision intervals 127
panic threshold 128
scaling limits 123-124
scaling rates 124-125
target burst capacity 128-129
target values 125-126
window size 127-128
problem description 101-103
theory 109-112
control 109
queueing 109-112

241

backoffs 201-202

backoffDelay 202

backoffPolicy 202

batched content mode 144

binary content mode 143-144

binding, compared to provisioning
168-169

Blue/Green deployment 42-44

Broker 144, 149, 172-173

BrokerDoesNotExist condition 149

BrokerNotConfigured condition 149

BrokerReady condition 148-150

BrokerUnknown condition 150

BROKER_URL 146

burst capacity 105

Cc

Canary deployment 45
ce- header 143
CertificateProvisioned condition 83
Ce-Source header 178
Channels 189-191
ChannelTemplate 189-191
CloudEvent modes 18
CloudEventOverrides field 160
CloudEvents 133-136
extension attributes 140-141
optional attributes 138-140
required attributes 137-138
cloudevents-player 145, 150-151
Cloud Native Buildpacks (CNBs) 208-212
command setting 61-63
commit field 224
concurrency 76, 110, 126

242

- -concurrency-limit 76, 126
- -concurrency-target 76, 126
conditions 27-29
config-autoscaler 121-122
configurationName 85, 87
Configurations
anatomy of 48-54
kubectl describe command 52-54
status of 51-52
consumption limits, setting 73-75
containerConcurrency 55, 75-77, 125
container-concurrency-target-default 125
container-concurrency-target-percentage 125
containerd 58-59, 205
ContainerHealthy 62
container images 58-61
containers 57-58, 63, 71
ContainerSource 154-155, 160-161, 167-169
CRDs (Custom Resource Definitions) 2
CronJobSource 154
current tag 214, 222
current traffic tag 213
custom attribute 181
Custom Resource Definitions (CRDs) 2

D

data.body key 165
datacontenttype attribute 138, 163, 175
data key 143
dataref attribute 140, 175
dataschema attribute 138, 175
data section 140, 146, 163
deadLetterSink 202-203
decision intervals 127
delivery configuration 188-189, 201
delivery.retry field 201
DependencyNotConfigured condition
149
DependencyReady condition 148-149
DependencyUnknown condition 150
deployment 3, 41-48
Blue/Green deployment 42-44
Canary deployment 45
progressive deployment 45-46
Serving subproject 25-26
digests 205-207
DNSNames 34
duck types 153, 155-157

E

ENTRYPOINT 62-63
--env 63
env 63-65, 69

INDEX

envFrom 65-69
environment variables
injecting directly 63-65
injecting indirectly 65-69
env parameter 63
env section 64
event formats 142-144
Eventing 3, 15
architecture of 153-157
duck types 155-157
Eventing 154
Flows 155
Messaging 153-154
Sources 154-155
CloudEvents 133-141
event formats 142-144
Filters and 181-182
modes
batched content mode 144
binary content mode 143-144
structured content mode 142-143
protocol bindings 142-144
Serving and 15-16
eventing-contrib 169-170
Events section 54
Event Type 154
extensions 163, 165

F

- fail flag 222
failures 200-203
deadLetterSink 202-203
retries and backoffs 201-202
feedback control loops 16-22
control loops 17-19
hierarchy of 19-22
- file flag 217
files, passing configuration via 69-71
- -filter 181
Filters 173-182
Eventing and 181-182
filtering on custom attributes 176-181
mixing Sequences and 191-192
Flows 155
format mapping 142

G

git status - -verbose 219, 221
H

hierarchical control 20
horizontal scaling 36

HPA (Horizontal Pod Autoscaler) 101,

129
httpRequest 225

id attribute 138, 163, 175, 198, 201
IfNotPresent 59, 206-207

image key 59, 61, 213
imagePullPolicy 59, 206
imagePullSecrets 59-60

INDEX

kn service delete 82

kn service describe 81

kn service list 25

kn service update 32, 50, 82
kn source list 162

kn source list-types 162

kn source ping describe 165
kn trigger describe 148

kn update service 213
using with Routes 81-82
using with Sources 161-165

243

IMC (In-Memory Channel) 153 knctl 25

immutability 12-13 ko tool 211

Ingress controllers 35 KPA (Knative Pod Autoscaler) 3, 101
IngressReady condition 83 kubectl 3, 25, 48-52, 60, 65, 70, 77, 86-87,
initialDelaySeconds 72 122-123, 177, 183, 185, 194, 196, 220,

InMemoryChannel 190-191, 203 237-238
apply command 48, 77, 86, 213, 220
J describe subcommand 52-54, 66

. litv 51. 60. 70 installing 235-236
Jq uulity , s
JsonData field 160 L

K labels 57

latency field 225
latestCreatedRevisionName 52
latestReadyRevision 52
latestReadyRevisionName 52
latestRevision 85, 87

KafkaChannel 191

kapp tool 215, 237-238
kbld tool 212, 215

kind keys 48-49, 83, 190

Knative 2-3 latestRevision: false 87
installing 236-239 latestRevision: true 91, 93
pros of 4-7 @latest tag 31, 90-91, 93, 95, 98, 103, 205,
decomposing monoliths in small 213-214, 221
increments 7 LimitRange 74
stitching together events from multiple limits 73
sources 6-7 list 161-162
workloads with unpredictable, list-types 162

Little’s Law 110
livenessProbe 71-72
LoadBalancer 84

latency-insensitive demand 4-6
reasons to consider 3-4
subprojects 14-16

Eventing 15 logs 224-225
Serving 14-15
Serving and Eventing together 15-16 M

knativearrivaltime attribute 181-182
knative-minikube 236
Knative Pod Autoscaler (KPA) 3, 101
knative-serving namespace 121
kn tool 86, 90, 96, 104, 122-123, 144-145,
148, 166, 174, 176, 194, 211-212, 220
installing 235-236
kn broker create 149
kn command 48, 67
kn revision describe 27, 50, 70
kn revision list 49, 94
kn service create 25, 32, 82, 87

/maxScale 124
--max-scale 123
max-scale-down-rate 125
max-scale-up-rate 124
Messaging 153-154
metadata.name 83
metadata section 49, 56
/metric annotation 126
metrics 225-231
--min-scale 123
/minScale annotation 123, 128-129

244

modes
batched content mode 144
binary content mode 143-144
structured content mode 142-143

--mount 70-71

MVC (Model-View-Controller) 18

N

INDEX

Q

queue length 110
Queue-Proxy 32, 35-38

R

rate attribute 141

Name 55, 166-167
name 49, 58, 64-65
Namespace 55, 166-167
namespaces/default 163
networking controllers 32, 34-35
certificates 34
Ingress controllers 35
networking-istio controller 35
Never policy 59
new_hit event 10
NoTraffic 28-29

o

reactive autoscaling 101

readinessProbe 71

Ready condition 28, 62, 84, 148, 152
reconcilers 32-33

referer field 225

remotelp field 225

ReplicaSets 40

reply 188-189, 191-193, 195, 199
requestMethod field 225

requests 73-74

requests.cpu 74

requestSize field 225

Requests Per Second (RPS) 76, 126
requestUrl field 225

observedGeneration 52
-0 jsonPath argument 238

P

residence time 110

ResourcesUnavailable 62
responseSize field 225
retries 201-202
Retry-After header 36

pack 208, 211

pack build 209

panic threshold

configuring 128
overview 118-120

/panicThresholdPercentage annotation 128

/panicWindowPercentage annotation 127

Parallel 155, 192-200

partitionkey attribute 141, 175-176

PII (personally identifiable information) 140,
176

PingSource 148, 154, 160-163, 165, 167-169,
184-185

PodSpec 155

PORT environment variable 72

predictive autoscaling 101

probes 71-73

progressive deployment 45-46

progressive rollout 212-222

protocol bindings 142-144

protocol field 225

protocol mapping 142

provisioning, compared to binding
168-169

- -publish option 211

revision describe 123

revisionName 85, 87
Revisions 14

anatomy of 54-78

command setting 61-63
containerConcurrency setting 75-77
container images 58-61

containers 57-58

injecting environment variables 63-69
overview 55-57

passing configuration via files 69-71
probes 71-73

setting consumption limits 73-75
timeoutSeconds setting 77-78

splitting traffic between 30-31

RevisionSpec 49
RevisionTemplateSpec 49
Routes

anatomy of 82-84
TrafficTargets 84-99

configurationName and revisionName 85-87
latestRevision 87
tags 88-99

using kn with 81-82

RPS (Requests Per Second) 76, 126
runc 58

S

scaling limits 123-124
scaling rates 124-125
Schedule field 160
Secret 59-60, 65, 67-71
secretKeyRef 67
sequence attribute 141
Sequences 183-188
anatomy of 188-192
ChannelTemplate and Channels
189-191
reply 188-189
steps 188
mixing Filters and 191-192
sequencetype attribute 141
server 110
serverlp field 225
service list 81
service rate 110
service time 110-111
Serving 14-15, 25-31
components of 32-38
Activator 35-38
Autoscaler 35-38
controllers 32-33
networking controllers 34-35
Queue-Proxy 35-38
reconcilers 32-33
Webhook 33-34
conditions 27-29
deployment 25-26
Eventing subproject and 15-16
splitting traffic between Revisions 30-31
updating container image 29-30
Sink 148-149, 155, 160, 165, 167
- -sink argument 185
SinkBinding 154, 161, 167-169
Skaffold tool 212
Source 144, 148-149, 154
source attribute 137-138, 141, 154, 163,
174-175, 178, 198, 201
Sources 154-155, 159-165
anatomy of 160
third-party 169-170
using kn with 161-165
specversion atttribute 137-138, 163, 175
stable-window 127
status field 225
steps 188
structured content mode 142-143
subject attribute 139, 141, 175-176
subscriber field 9, 153, 192-195, 199
SubscriberNotConfigured condition 149
SubscriberReady condition 149

INDEX

SubscriberResolved condition 149, 152
SubscriberUnknown condition 150
SubscriptionsNotReady 184
successThreshold 72

T

245

--tag 95, 98
tags 88-99
/target annotation 125-126
/targetBurstCapacity 128
target burst capacity 128-129
/targetUtilizationPercentage annotation
125, 129
target values 125-126
TBC (target burst capacity) 128
tcpSocket 72
template 49, 64
tick-interval key 127
Tilt tool 212
time attribute 139, 163, 175, 181
TimeoutSeconds 55
timeoutSeconds setting 77-78
tmpfs volumes 70
traceparent attribute 140, 181
traces 231-232
tracestate attribute 140
- -traffic 88, 98
traffic 84, 213
TrafficTargets 84-99
configurationName and revisionName
85-87
latestRevision 87
tag 88-99
Trigger 144, 151
type attribute 137-138, 154, 163, 173-175,
179, 181, 187

u

ubuntu 62

-Unknown condition 150
--untag 96

updating container image 29-30
upgrading 3

userAgent field 225

utilization 110

v

value 64-65
valueFrom 65, 67-68
- -verbose 221
vertical scaling 35
volumeMounts 71

246 INDEX

- -volume option 71 /window annotation 127
volumes 71 window size 127-128

w Y

wait time 110 ytt 215-217, 238

webhook component 32-34, 60, 77

RELATED MANNING TITLES

Kubernetes in Action, Second Edition
by Marko Luksa

ISBN 9781617297618
775 pages, $59.99
Summer 2021

SECOND EDITION

Marko Luksa

| | YT

Amazon Web Services in Action, Second

Edition
by Michael Wittig and Andreas Wittig
Foreword by Ben Whaley
- 4 ISBN 9781617295119
W Vi 528 pages, $54.99

S f September 2018

Serverless Architectures on AWS, Second
Edition
by Peter Sbarski, Yan Cui, Ajay Nair

ISBN 9781617295423
500 pages, $49.99
April 2021

For ordering information go to www.manning.com

Parallel

™ first —{—c'éb—
> E
1

! sockeye

—& :
1
1
1
P !

i Lo second | G~
: |
1 1
| |
1 1
| |
1 1

PingSource(O
(<)
Sequence

first }‘(@5—> second ——ce)—™| sockeye

CLOUD/SOFTWARE DEVELOPMENT

Knative

Jacques Chester

ith Knative, managing a serverless application’s full
W lifecycle is a snap. Knative builds on Kubernetes

orchestration features, making it easy to deploy and
run serverless apps. It handles low-level chores—such as

starting and stopping instances—so you can concentrate
on features and behavior.

Knative in Action teaches you to build complex and efficient
serverless applications. You'll dive into Knative’s unique
design principles and grasp cloud native concepts like
handling latency-sensitive workloads. You'll deliver updates
with Knative Serving and interlink apps, services, and
systems with Knative Eventing. To keep you moving
forward, every example includes deployment advice and

tips for debugging,.

What's Inside

¢ Deploy a service with Knative Serving
* Connect systems with Knative Eventing
e Autoscale responses for different traffic surges

* Develop, ship, and operate software

For software developers comfortable with CLI tools and an

OO language like Java or Go.

Jacques Chester has worked in Pivotal and VM Ware R&D
since 2014, contributing to Knative and other projects.

Register this print book to get free access to all ebook formats.
Visit https://www.manning.com/freebook

$59.99 / Can $79.99 [INCLUDING eBOOK]

¢C A must-have book for
serverless computing experts
and enthusiasts.??

—Pethuru Raj
Reliance Jio Platforms Ltd.

¢CThe definitive reference
to Knative.??
—Julien Pohie, Thoughtworks

¢CIf you are thinking about
getting your feet wet with
distributed software
architecture and Kubernetes,
I would strongly suggest
reading this book.??

—Raffaella Ventaglio
CELI - Language Technology

¢CRequired reading for folks
looking to take their
Kubernetes-backed
development to the next
level. Fresh and fun.??

—Conor Redmond
InComm Product Control

gee €
See first p&

ISBN: 978-1-61729-664-2

781617 7 296642 | |

	Knative in Action
	brief contents
	contents
	foreword
	preface
	acknowledgements
	about this book
	Who should read this book?
	How this book is organized: A roadmap
	About the code
	liveBook discussion forum
	Other online resources

	about the author
	about the cover illustration
	1 Introduction
	1.1 What is Knative?
	1.1.1 Deploying, upgrading, and routing
	1.1.2 Autoscaling
	1.1.3 Eventing

	1.2 So what?
	1.3 Where Knative shines
	1.3.1 Workloads with unpredictable, latency-insensitive demand
	1.3.2 Stitching together events from multiple sources
	1.3.3 Decomposing monoliths in small increments

	1.4 It’s a hit
	1.4.1 Trouble in paradise

	1.5 Changing things
	1.6 What’s in the Knative box?
	1.6.1 Serving
	1.6.2 Eventing
	1.6.3 Serving and Eventing

	1.7 Keeping things under control
	1.7.1 Loops
	1.7.2 Loops within loops

	1.8 Are you ready?
	Summary
	References

	2 Introducing Knative Serving
	2.1 A walkthrough
	2.1.1 Your first deployment
	2.1.2 Your second deployment
	2.1.3 Conditions
	2.1.4 What does Active mean?
	2.1.5 Changing the image
	2.1.6 Splitting traffic

	2.2 Serving components
	2.2.1 The controller and reconcilers
	2.2.2 The Webhook
	2.2.3 Networking controllers
	2.2.4 Autoscaler, Activator, and Queue-Proxy

	Summary
	References

	3 Configurations and Revisions
	3.1 Those who cannot remember the past are condemned to redeploy it
	3.2 The bedtime story version of the history of deployment as a concept
	3.2.1 The Blue/Green deployment
	3.2.2 The Canary deployment
	3.2.3 Progressive deployment
	3.2.4 Back to the future

	3.3 The anatomy of Configurations
	3.3.1 Configuration status
	3.3.2 Taking it all in with kubectl describe

	3.4 The anatomy of Revisions
	3.4.1 Revision basics
	3.4.2 Container basics
	3.4.3 Container images
	3.4.4 The command
	3.4.5 The environment, directly
	3.4.6 The environment, indirectly
	3.4.7 Configuration via files
	3.4.8 Probes
	3.4.9 Setting consumption limits
	3.4.10 Container concurrency
	3.4.11 Timeout seconds

	Summary
	References

	4 Routes
	4.1 Using kn to work with Routes
	4.2 The anatomy of Routes
	4.3 The anatomy of TrafficTargets
	4.3.1 configurationName and revisionName
	4.3.2 latestRevision
	4.3.3 tag

	Summary

	5 Autoscaling
	5.1 The autoscaling problem
	5.2 Autoscaling when there are zero instances
	5.2.1 The Autoscaler panics

	5.3 Autoscaling when there are one or a few instances
	5.4 Autoscaling when there are many instances
	5.5 A little theory
	5.5.1 Control
	5.5.2 Queueing

	5.6 The actual calculation
	5.6.1 To panic, or not to panic, that is the question

	5.7 Configuring autoscaling
	5.7.1 How settings get applied
	5.7.2 Setting scaling limits
	5.7.3 Setting scaling rates
	5.7.4 Setting target values
	5.7.5 Setting decision intervals
	5.7.6 Setting window size
	5.7.7 Setting the panic threshold
	5.7.8 Setting the target burst capacity
	5.7.9 Other autoscalers

	5.8 A cautionary note
	Summary
	References

	6 Introduction to Eventing
	6.1 The road to CloudEvents
	6.2 The anatomy of CloudEvents
	6.2.1 Required attributes
	6.2.2 Optional attributes
	6.2.3 Extension attributes

	6.3 A word about event formats and protocol bindings
	6.3.1 Structured content mode
	6.3.2 Binary content mode
	6.3.3 Batched content mode

	6.4 A walkthrough
	6.5 The basic architecture of Eventing
	6.5.1 Messaging
	6.5.2 Eventing
	6.5.3 Sources
	6.5.4 Flows
	6.5.5 Duck types

	Summary
	References

	7 Sources and Sinks
	7.1 Sources
	7.1.1 The anatomy of Sources
	7.1.2 Using kn to work with Sources

	7.2 The Sink
	7.3 The mysterious SinkBinding (and its sidekick, ContainerSource)
	7.3.1 Provisioning and binding are not the same

	7.4 Other Sources
	Summary
	References

	8 Filtering and Flowing
	8.1 The Broker
	8.2 Filters
	8.2.1 Filtering on custom attributes
	8.2.2 Nice things that Eventing adds for you

	8.3 Sequences
	8.3.1 A walkthrough

	8.4 The anatomy of Sequences
	8.4.1 Step
	8.4.2 Reply
	8.4.3 ChannelTemplate and Channels
	8.4.4 Mixing Sequences and filters

	8.5 Parallels
	8.5.1 A walkthrough

	8.6 Dealing with failures
	8.6.1 Retries and backoffs
	8.6.2 Dead letters
	8.6.3 The bad news

	Summary
	References

	9 From Conception to Production
	9.1 Turning your software into something runnable
	9.1.1 Always use digests
	9.1.2 Using Cloud Native Buildpacks (CNBs) and the pack tool

	9.2 Getting your software to somewhere it runs
	9.3 Knowing how your software is running
	9.3.1 Logs
	9.3.2 Metrics
	9.3.3 Traces

	Summary
	References

	Appendix—Installing Knative for Development
	A.1 Installing kubectl and kn
	A.2 Installing Knative

	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Adobe Gray - 20% Dot Gain)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /RUS <FEFF005B041D04300020043E0441043D043E043204350020044104420438043B044F00200027005000720069006E00650072006700790020005000610067006500730027005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

