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foreword
A service mesh can maximize the development speed of your whole organization by
enabling thousands of independent microservices that are automatically compliant
with a wide range of evolving policies. This book discusses many other benefits of
Istio, but they largely follow from this premise.

 This brings us to the central question, “What is a service mesh, and why do I need
one?” I’m asked this question frequently, and the answer is not trivial. It is not about
security or telemetry or most of the benefits some people claim. Nor is it automatically
the case that you need a service mesh for your application, especially if it is a monolith.

 The real answer has to do with decoupling applications from infrastructure. Istio is
the third major step in that direction. First, Docker provided a way to package an
application (and its library choices) separately from the machine on which it runs.
Next, Kubernetes made it easy to create a service with automation to help with auto-
scaling and management. Together, Docker and Kubernetes enabled the practical
movement to fine-grain services, often called microservices. This book guides you
through implementing a service mesh with Istio to achieve this third step: application
decoupling.

 Microservices allow greater overall velocity by enabling teams to be more autono-
mous. Ideally, your team can update its microservice(s) without deep interactions with
other teams. The top-level goal for Istio is to enable this at scale—to make it easy to
have thousands of microservices (Google has more than a million!).

 But enabling velocity for a service is not just about decoupling it from the
machine; the service must also be decoupled from shared policies. Every enterprise
has policies that apply to all services, and we must be able to change those policies
quickly if needed. Traditionally, such policies are embedded inside services as part of
xvii



FOREWORDxviii
the code or as libraries that services are expected to use. Either way, such policies are
hard to update and enforce.

 Istio moves a wide range of such policies (primarily those involving an API) out of
the service and into the service mesh, which is essentially a proxy that sits in front of
the service and implements the policies. When this is done correctly, all services meet
the policies with no work—and, conversely, policy changes do not require updating
the services. This is the decoupling we are after.

 In Istio in Action, Christian and Rinor present a clear-headed vision of how to
achieve the goal of decoupling applications from infrastructure. I hope you’ll enjoy
this book as much as I have.

— ERIC BREWER

VP INFRASTRUCTURE AND GOOGLE FELLOW



preface
Building software is hard. Connecting different services across a network is harder.
Any time you put a packet, message, or request on the network, there are no guaran-
tees about its outcome. Will the request make it? How long will it take? Will anyone
know if the communication fails? 

 Docker and Kubernetes have done a lot to support distributed services architec-
tures like microservices, but they exacerbate the existing communication problems.
One misbehaving service might take down everything.

 While working with organizations worldwide that are trying to adopt microservices,
I find that getting teams to consistently think about and solve these communication
problems is very difficult. There are many questions: How will they do service discovery?
Timeouts? Retries? Circuit breaking? Tracing? Authentication? Large cloud companies
like Netflix, Twitter, and Google pioneered some of the early, successful microservices
architectures. These companies had to build a lot of their own developer tooling and
infrastructure to solve these problems, and fortunately, they open sourced much of it.
Could other organizations use the NetflixOSS stack or Twitter Finagle? They could, and
some did, but doing so created a new operational nightmare.

 For example, the NetflixOSS stack was primarily written for Java developers. What
about NodeJS, Golang, and Python teams? Teams had to either build libraries them-
selves or hack together the functionality with various bits they found on the internet.
They also had to intermingle this “networking” code into their business logic. This
approach added transitive dependencies, cluttered the code, and made revisions
more difficult. Operating a service architecture with these application networking
libraries, upgrading, patching, and doing this consistently across many different lan-
guages was extremely complex and error prone.
xix



PREFACExx
 A service mesh is a cleaner solution to this application-networking problem. With a
service mesh, we abstract away the application-networking logic into a dedicated piece
of infrastructure and apply it to all services regardless of what languages they are writ-
ten in. 

 Istio is a scalable, mature, powerful service-mesh implementation that originally
came out of a project from IBM and Google. I was introduced to the Istio team in Jan-
uary 2017 and began working on the project very early. At the end of 2018, I went to
work as global field CTO at a startup, Solo.io, to focus full-time on service mesh tech-
nology and advancing the state of application networking.

 Building a startup from the ground up, pushing the boundaries on this technol-
ogy, and writing an in-depth book on this topic is not an easy combination. I needed
someone with dedication and passion to help me move the book forward; so, when I
was halfway through, the Manning team and I invited Rinor Maloku to join the effort.
Thanks to the time we both spend in the community and working with our customers
at Solo.io, some of which are the largest deployments of Istio in the world, Rinor and I
have been able to compile an excellent resource for Istio based on real-world experi-
ence. We hope this book will show you the value and power of Istio and make you
comfortable adopting this technology into production, as many others have.
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about this book
Who should read this book

This book is meant for developers, architects, and or service operators who operate or
are planning to operate distributed services such as user-facing web applications, APIs,
and backend services and want to provide highly available services to their end users.
If you are a member of a platform engineering team and provide infrastructure and
other supporting components such as log management, monitoring, container
orchestration, and so on to many development teams within your organization, this
book will show you how to give your users the tools to make their apps resilient,
secure, and observable as well as reduce the risk of shipping new features. 

 If you are already using Istio in a testing or staging environment but many of its
workings are a mystery to you, this book will demystify Istio’s components. The latter
chapters, in particular, will show you how to scale the service mesh in your organiza-
tion, troubleshoot it when its behavior doesn’t match your expectations, and custom-
ize it to meet your enterprise’s needs. 

 If you are already an Istio expert, you may still find this book useful, as we took
great care to ingrain into this book what we’ve learned from working in the field over
the last three years. 

 If building a container is new to you, or you are unsure what a Kubernetes deploy-
ment, pod, or service is, this book may not be for you—yet. There are a lot of
resources to get you started. We highly recommend Kubernetes in Action by Marko
Lukša (Manning, 2017); in addition to being a thorough introduction to this topic,
the book is a real page-turner. Once you understand the foundation of Kubernetes
and its resources and how Kubernetes controllers work, you can return here and dive
into the Istio service mesh. 
xxiii
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 You should also have a basic understanding of networking, and we do mean basic.
If you are familiar with the network layer (layer 3), the transport layer (layer 4), and
how they differ from the application (layer 7) according to the Open Systems Inter-
connection model, you are ready for this book.

How this book is organized: A roadmap

This book has four parts and 14 chapters. Part 1 of the book introduces the concept of
a service mesh and explains how Istio implements it. These three chapters cover the
architecture of Istio, how Envoy fits into it, and how it can benefit your organization:

 Chapter 1 introduces the benefits of Istio and the value that adopting service
meshes can bring to an organization.

 Chapter 2 is a hands-on tutorial for installing Istio in a Kubernetes cluster. You
deploy and integrate your first application into the mesh and configure it with
Istio’s custom resources. Using the demo application, this chapter provides an
overview of what you get out of the box with Istio and covers traffic manage-
ment, observability, and security.

 Chapter 3 is all about Envoy: how it came to be, what problems it solves, and
how it fits within the service mesh architecture.

Part 2 is a deep dive into Istio. The focus switches to practical examples, and we
answer key operational questions: how to secure traffic coming into your cluster, make
services more resilient, and make your system observable using the telemetry gener-
ated by the service proxies. This part contains six chapters:

 Chapter 4 teaches you how to use and configure the Istio ingress gateway to route
traffic securely from the public network to your services (what we call north-
south traffic).

 Chapter 5 proceeds after traffic is admitted into the cluster. It shows how Vir-
tualServices and DestinationRules are used to route traffic in a fine-grained
manner, enabling complex deployment patterns to reduce risk when you
release new software.

 Chapter 6 explores how Istio benefits application teams. We discuss making ser-
vices robust by implementing retries, circuit-breaking, load balancing across
regions, and locality-aware load balancing right in the service mesh.

 Chapter 7 teaches you how Istio makes services observable by generating met-
rics, traces, and logs. Here we dive deeper into the metrics generated by service
proxies, what information the metrics record, and how the recorded informa-
tion can be customized.

 Chapter 8 shows you how to use telemetry visualization tools to make sense of
the collected data. You use Prometheus to collect metrics and Grafana to visual-
ize them. You use Jaeger to stitch together the traces of a request traveling
through your services. And we show how Kiali intertwines this information to
make troubleshooting services in the mesh a breeze.
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 Chapter 9 elaborates on how Istio secures service-to-service traffic, how services
receive their identity, and how the identity is used to implement access control
and reduce the potential attack scope. 

Part 3 is all about day-2 operations. It shows you how to troubleshoot issues in the data
plane and maintain the control plane’s stability and performance. By the end of this
part, you will have a firm understanding of Istio’s internals, and you will be able to dis-
cover and fix issues on your own:

 Chapter 10 shows you how to troubleshoot issues in the data plane using tools
such as Istioctl, Kiali, and telemetry that is collected and visualized.

 Chapter 11 discusses Istio’s performance factors. It shows how Istio can be con-
figured to make the control plane more performant—the foundation of a
robust service mesh.

The fourth and final part of the book shows you how to make Istio yours. Enterprises
have services running across boundaries, such as different clusters, different networks,
or a mixture of cloud-native and legacy workloads. By the end of part 4, you will know
how to join your workloads into a single mesh and customize the mesh’s behavior
using WebAssembly to meet your unique requirements:

 Chapter 12 shows you how to connect workloads in different Kubernetes clus-
ters wherever they are running, such as different cloud providers, on premises,
or in a hybrid cloud.

 Chapter 13 shows how to integrate legacy workloads running in virtual
machines into the mesh and extend to those workloads the mesh’s capabilities
of resiliency and high availability.

 Chapter 14 teaches you how to extend and customize Istio’s capabilities with
existing Envoy functionality or your code using Lua scripting and WebAssembly.

About the code 

This book contains many examples of source code in numbered listings and in line
with normal text. In both cases, source code is formatted in a fixed-width font like
this to separate it from ordinary text. Sometimes code is also in bold to highlight
code that has changed from previous steps in the chapter, such as when a new feature
adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/istio-in-action. The complete code for
the examples in the book is available for download from the Manning website at

https://livebook.manning.com/book/istio-in-action
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www.manning.com, and from GitHub at https://github.com/istioinaction/book
-source-code.

liveBook discussion forum

Purchase of Istio in Action includes free access to liveBook, Manning’s online reading
platform. Using liveBook’s exclusive discussion features, you can attach comments to
the book globally or to specific sections or paragraphs. It’s a snap to make notes for
yourself, ask and answer technical questions, and receive help from the authors and
other users. To access the forum, go to https://livebook.manning.com/book/istio-in
-action/discussion. You can also learn more about Manning’s forums and the rules of
conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
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Part 1

Understanding Istio

What programming language do you use to implement your microser-
vices or applications? Java? NodeJS? Golang? Whichever language or framework
you use will eventually have to communicate with services over the network. The
network is a perilous place for applications. What do you do for service discov-
ery? timeouts? retries? circuit-breaking? security?

 Istio is an open source service mesh that helps solve service-to-service connec-
tivity challenges in your cloud and microservices environment regardless of what
language or framework you use. In chapters 1-3, we explain why a service mesh is
critical infrastructure for a microservices and cloud-native application architec-
ture, how Istio helps, and what you can expect from the rest of the book. Istio is
built on an open source proxy named Envoy, which we cover in detail to set the
foundations for the rest of the Istio functionality covered in future chapters.



2 CHAPTER 



Introducing
the Istio service mesh
Software is the lifeblood of today’s companies. As we move to a more digital world,
consumers will expect convenience, service, and quality when interacting with busi-
nesses, and software will be used to deliver these experiences. Customers don’t con-
form nicely to structure, processes, or predefined boxes. Customers’ demands and
needs are fluid, dynamic, and unpredictable, and our companies and software sys-
tems will need to have these same characteristics. For some companies (such as
startups), building software systems that are agile and able to respond to unpredict-
ability will be the difference between surviving or failing. For others (such as exist-
ing companies), the inability to use software as a differentiator will mean slower
growth, decay, and eventual collapse.

This chapter covers
 Addressing the challenges of service-oriented 

architectures with service meshes

 Introducing Istio and how it helps solve 
microservice issues

 Comparing service meshes to earlier 
technologies
3
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 As we explore how to go faster and take advantage of newer technology like cloud
platforms and containers, we’ll encounter an amplification of some past problems.
For example, the network is not reliable and when we start to build larger, more dis-
tributed systems, the network must become a central design consideration in our
applications. Should applications implement network resilience like retries, timeouts,
and circuit breakers? What about consistent network observability? Application-layer
security?

 Resilience, security, and metrics collection are cross-cutting concerns and not
application-specific. Moreover, they are not processes that differentiate your business.
Developers are critical resources in large IT systems, and their time is best spent writ-
ing capabilities that deliver business value in a differentiating way. Application net-
working, security, and metrics collection are necessary practices, but they aren’t
differentiating. What we’d like is a way to implement these capabilities in a language-
and framework-agnostic way and apply them as policy.

 Service mesh is a relatively recent term used to describe a decentralized application-
networking infrastructure that allows applications to be secure, resilient, observable,
and controllable. It describes an architecture made up of a data plane that uses appli-
cation-layer proxies to manage networking traffic on behalf of an application and a
control plane to manage proxies. This architecture lets us build important applica-
tion-networking capabilities outside of the application without relying on a particular
programming language or framework.

 Istio is an open source implementation of a service mesh. It was created initially by
folks at Lyft, Google, and IBM, but now it has a vibrant, open, diverse community that
includes individuals from Lyft, Red Hat, VMWare, Solo.io, Aspen Mesh, Salesforce,
and many others. Istio allows us to build reliable, secure, cloud-native systems and
solve difficult problems like security, policy management, and observability in most
cases with no application code changes. Istio’s data plane is made up of service prox-
ies, based on the Envoy proxy, that live alongside the applications. Those act as inter-
mediaries between the applications and affect networking behavior according to the
configuration sent by the control plane.

 Istio is intended for microservices or service-oriented architecture (SOA)-style
architectures, but it is not limited to those. The reality is, most organizations have a lot
of investment in existing applications and platforms. They’ll most likely build services
architectures around their existing applications, and this is where Istio really shines.
With Istio, we can implement these application-networking concerns without forcing
changes in existing systems. Since the service proxies live outside of the application,
any application for any architecture is a welcome first-class citizen in the service mesh.
We’ll explore more of this in a hybrid brownfield application landscape.

 This book introduces you to Istio, helps you understand how all this is possible,
and teaches you how to use Istio to build more resilient applications that you can
monitor and operate in a cloud environment. Along the way, we explore Istio’s design
principles, explain why it’s different from past attempts to solve these problems, and
discuss when Istio is not the solution for your problem.
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 But we certainly don’t want to start using new technology just because it’s “new,”
“hip,” or “cool.” As technologists, we find ourselves easily getting excited about tech-
nology; however, we’d be doing ourselves and our organizations a disservice by not
fully understanding when and when not to use a technology. Let’s spend a few
moments understanding why you would use Istio, what problems it solves, what prob-
lems to avoid, and why this technology is exciting going forward.

1.1 Challenges of going faster
The technology teams at ACME Inc. have bought into microservices, automated test-
ing, containers, and continuous integration and delivery (CI/CD). They decided to
split out module A and B from ACMEmono, their core revenue-generation system,
into their own standalone services. They also needed some new capabilities that they
decided to build as service C, resulting in the services shown in figure 1.1.

Figure 1.1 ACMEMono modernization with complementary services

They packaged their new services in containers and used a Kubernetes-based platform
into which to deploy. As they began to implement these approaches, they quickly
experienced some challenges.

 The first thing ACME noticed was that sometimes services in the architecture were
very inconsistent in how long they took to process requests. During peak customer
usage, some services experienced intermittent issues and were unable to serve any
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traffic. Furthermore, ACME identified that if service B experienced trouble process-
ing requests, service A also did, but only for certain requests.

 The second thing ACME noticed was that when they practiced automated deploy-
ments, at times they introduced bugs into the system that weren’t caught by auto-
mated testing. They practiced a deployment approach called blue-green deployment,
which means they brought up the new deployment (the green deployment) in its own
cluster and then at some point cut over the traffic from the old cluster (the blue
deployment) to the new cluster. They had hoped the blue-green approach would
lower the risk of doing deployments, but instead they experienced more of a “big
bang” release, which is what they wanted to avoid.

 Finally, ACME found that the teams implementing services A and B were handling
security completely differently. Team A favored secure connections with certificates and
private keys, while team B created their own custom framework built on passing tokens
and verifying signatures. The team operating service C decided they didn’t need any
additional security since these were “internal” services behind the company firewall.

 These challenges are not unique to ACME, nor is the extent of the challenges lim-
ited to what they encountered. The following things must be addressed when moving
to a services-oriented architecture:

 Keeping faults from jumping isolation boundaries
 Building applications/services capable of responding to changes in their envi-

ronment
 Building systems capable of running in partially failed conditions
 Understanding what’s happening to the overall system as it constantly changes

and evolves
 Inability to control the runtime behaviors of the system
 Implementing strong security as the attack surface grows
 Lowering the risk of making changes to the system
 Enforcing policies about who or what can use system components, and when

As we dig into Istio, we’ll explore these in more detail and explain how to deal with
them. These are core challenges to building services-based architectures on any cloud
infrastructure. In the past, non-cloud architectures did have to contend with some of
these problems; but in today’s cloud environments, they are highly amplified and can
take down your entire system if not taken into account correctly. Let’s look a little bit
closer at the problems encountered with unreliable infrastructure.

1.1.1 Our cloud infrastructure is not reliable

Even though, as consumers of cloud infrastructure, we don’t see the actual hardware,
clouds are made up of millions of pieces of hardware and software. These components
form the compute, storage, and networking virtualized infrastructure that we can pro-
vision via self-service APIs. Any of these components can, and do, fail. In the past, we did
everything we could to make infrastructure highly available, and we built our applica-
tions on top of it with assumptions of availability and reliability. In the cloud, we have
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to build our apps assuming the infrastructure is ephemeral and will be unavailable at
times. This ephemerality must be considered upfront in our architectures.

 Let’s take a very simple example. Let’s say a Preference service is in charge of
managing customer preferences and ends up making calls to a Customer service. In
figure 1.2, the Preference service calls the Customer service to update some customer
data and experiences severe slowdowns when it sends a message. What does it do? A
slow downstream dependency can wreak havoc on the Preference service, including
causing it to fail (thus initiating a cascading failure). This scenario can happen for any
number of reasons, such as these:

 The Customer service is overloaded and running slowly.
 The Customer service has a bug.
 The network has firewalls that are slowing the traffic.
 The network is congested and is slowing traffic.
 The network experienced some failed hardware and is rerouting traffic.
 The network card on the Customer service hardware is experiencing failures.

The problem is, the Preference service cannot distinguish whether this is a failure of
the Customer service. Again, in a cloud environment with millions of hardware and
software components, these types of scenarios happen all the time. 

1.1.2 Making service interactions resilient

The Preference service can try a few things. It can retry the request, although in a sce-
nario where things are overloaded, that might just add to the downstream issues. If it
does retry the request, it cannot be sure that previous attempts didn’t succeed. It can
time out the request after some threshold and throw an error. It can also retry to a dif-
ferent instance of the Customer service, maybe in a different availability zone. If the
Customer service experiences these or similar issues for an extended period of time, the
Preference service may opt to stop calling the Customer service altogether for a cool-off
period  (a form of circuit breaking, which we’ll cover in more depth in later chapters).

 Some patterns have evolved to help mitigate these types of scenarios and help
make applications more resilient to unplanned, unexpected failures:

 Client-side load balancing—Give the client the list of possible endpoints, and let it
decide which one to call.

 Service discovery—A mechanism for finding the periodically updated list of
healthy endpoints for a particular logical service.

Preference Customer?

Uncertainty in the network

Figure 1.2 Simple service 
communication over an 
unreliable network
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 Circuit breaking—Shed load for a period of time to a service that appears to be
misbehaving.

 Bulkheading—Limit client resource usage with explicit thresholds (connections,
threads, sessions, and so on) when making calls to a service.

 Timeouts—Enforce time limitations on requests, sockets, liveness, and so on
when making calls to a service.

 Retries—Retry a failed request.
 Retry budgets—Apply constraints to retries: that is, limit the number of retries in

a given period (for example, only retry 50% of the calls in a 10-second window).
 Deadlines—Give requests context about how long a response may still be useful;

if outside the deadline, disregard processing the request.

Collectively, these types of patterns can be thought of as application networking. They
have a lot of overlap with similar constructs at lower layers of the networking stack,
except that they operate at the layer of messages instead of packets. 

1.1.3 Understanding what’s happening in real time

A very important aspect of going faster is making sure we’re going in the right direc-
tion. We try to get deployments out quickly, so we can test how customers react to
them, but they will not have an opportunity to react (or will avoid our service) if it’s
slow or not available. As we make changes to our services, do we understand what
impact (positive or negative) they will have? Do we know how things are running
before we make changes?

 It is critical to know things about our services architecture like which services are
talking to each other, what typical service load looks like, how many failures we expect
to see, what happens when services fail, service health, and so on. Each time we make
a change by deploying new code or configuration, we introduce the possibility of neg-
atively impacting our key metrics. When network and infrastructure unreliability rear
their ugly heads, or if we deploy new code with bugs in it, can we be confident we have
enough of a pulse on what’s really happening to trust that the system isn’t on verge of
collapse? Observing the system with metrics, logs, and traces is a crucial part of run-
ning a services architecture. 

1.2 Solving these challenges with application libraries
The first organizations to figure out how to run their applications and services in a
cloud environment were the large internet companies, many of which pioneered
cloud infrastructure as we know it today. These companies invested massive amounts
of time and resources into building libraries and frameworks for a select set of lan-
guages that everyone had to use, which helped solve the challenges of running ser-
vices in a cloud-native architecture. Google built frameworks like Stubby, Twitter built
Finagle, and, in 2012, Netflix open sourced its microservices libraries to the open
source community. For example, with NetflixOSS, libraries targeted for Java develop-
ers handle cloud-native concerns:
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 Hystrix—Circuit breaking and bulkheading
 Ribbon—Client-side load balancing
 Eureka—Service registration and discovery
 Zuul—Dynamic edge proxy

Since these libraries were targeted for Java runtimes, they could only be used in Java
projects. To use them, we’d have to create an application dependency on them, pull
them into our classpath, and then use them in our application code. The following
example of using NetflixOSS Hystrix pulls a dependency on Hystrix into your depen-
dency control system:

<dependency>
<groupId>com.netflix.hystrix</groupId>
<artifactId>hystrix-core</artifactId>
<version>x.y.z</version>

</dependency>

To use Hystrix, we wrap our commands with a base Hystrix class, HystrixCommand.

public class CommandHelloWorld extends HystrixCommand<String> {

private final String name;

public CommandHelloWorld(String name) {
super(HystrixCommandGroupKey.Factory.asKey("ExampleGroup"));
this.name = name;

}

@Override
protected String run() {

// a real example would do work like a network call here
return "Hello " + name + "!";

}
}

If each application is responsible for building resilience into its code, we can distrib-
ute the handling of these concerns and eliminate central bottlenecks. In large-scale
deployments on unreliable cloud infrastructure, this is a desirable system trait.

1.2.1 Drawbacks to application-specific libraries

Although we’ve mitigated a concern about large-scale services architectures when we
decentralize and distribute the implementation of application resiliency into the
applications themselves, we’ve introduced some new challenges. The first challenge is
around the expected assumptions of any application. If we wish to introduce a new
service into our architecture, it will be constrained to implementation decisions made
by other people and other teams. For example, to use NetflixOSS Hystrix, you must
use Java or a JVM-based technology. Typically, circuit breaking and load balancing go
together, so you’d need to use both of those resilience libraries. To use Netflix Ribbon
for load balancing, you’d need some kind of registry to discover service endpoints,
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which might mean using Eureka. Going down this path of using libraries introduces
implicit constraints around a very undefined protocol for interacting with the rest of
the system.

 The second issue is around introducing a new language or framework to imple-
ment a service. You may find that NodeJS is a better fit for implementing user-facing
APIs but the rest of your architecture uses Java and NetflixOSS. You may opt to find a
different set of libraries to implement resilience patterns. Or you may try to find anal-
ogous packages like resilient (www.npmjs.com/package/resilient) or hystrixjs
(www.npmjs.com/package/hystrixjs). And you’ll need to search for each language
you wish to introduce (microservices enable a polyglot development environment,
although standardizing on a handful of languages is usually best), certify it, and intro-
duce it to your development stack. Each of these libraries will have a different imple-
mentation making different assumptions. In some cases you may not be able to find
analogous replacements for each framework/language combination. You end up with
a partial implementation for some languages and overall inconsistency in the imple-
mentation that is very difficult to reason about in failure scenarios and possibly con-
tributes to obscuring/propagating failures. Figure 1.3 shows how services end up
implementing the same set of libraries to manage application networking.

Figure 1.3 Application networking libraries commingled with an application

Finally, maintaining a handful of libraries across a bunch of programming languages
and frameworks requires a lot of discipline and is very hard to get right. The key is
ensuring that all of the implementations are consistent and correct. One deviation, and
you’ve introduced more unpredictability into your system. Pushing out updates and
changes across a fleet of services all at the same time can be a daunting task as well.
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 Although the decentralization of application networking is better for cloud archi-
tectures, the operational burden and constraints this approach puts on a system in
exchange will be difficult for most organizations to swallow. Even if they take on that
challenge, getting it right is even harder. What if there was a way to get the benefits of
decentralization without paying the price of massive overhead in maintaining and
operating these applications with embedded libraries?

1.3 Pushing these concerns to the infrastructure
These basic application-networking concerns are not specific to any particular appli-
cation, language, or framework. Retries, timeouts, client-side load balancing, circuit
breaking, and so on are also not differentiating application features. They are critical
concerns to have as part of your service, but investing massive time and resources into
language-specific implementations for each language you intend to use (including
the other drawbacks from the previous section) is a waste of time. What we really want
is a technology-agnostic way to implement these concerns and relieve applications
from having to do so themselves.

1.3.1 The application-aware service proxy

Using a proxy is a way to move these horizontal concerns into the infrastructure. A
proxy is an intermediate infrastructure component that can handle connections and
redirect them to appropriate backends. We use proxies all the time (whether we know
it or not) to handle network traffic, enforce security, and load balance work to back-
end servers. For example, HAProxy is a simple but powerful reverse proxy for distrib-
uting connections across many backend servers. mod_proxy is a module for the
Apache HTTP server that also acts as a reverse proxy. In our corporate IT systems, all
outgoing internet traffic is typically routed through forwarding proxies in a firewall.
These proxies monitor traffic and block certain types of activities.

 What we want for this problem, however, is a proxy that’s application aware and able
to perform application networking on behalf of our services (see figure 1.4). To do so,
this service proxy will need to understand application constructs like messages and
requests, unlike more traditional infrastructure proxies, which understand connec-
tions and packets. In other words, we need a layer 7 proxy. 

Figure 1.4 Using a proxy to push horizontal concerns such as resilience,
traffic control, and security out of the application implementation

Service Outbound
network traffic

Implement 
concerns here.

Proxy
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1.3.2 Meet the Envoy proxy

Envoy (http://envoyproxy.io) is a service proxy that has emerged in the open source
community as a versatile, performant, and capable application-layer proxy. Envoy was
developed at Lyft as part of the company’s SOA infrastructure and is capable of imple-
menting networking concerns like retries, timeouts, circuit breaking, client-side load
balancing, service discovery, security, and metrics collection without any explicit lan-
guage or framework dependencies. Envoy implements all of that out-of-process from
the application, as shown in figure 1.5.

The power of Envoy is not limited to these application-layer resilience aspects. Envoy
also captures many application-networking metrics like requests per second, number
of failures, circuit-breaking events, and more. By using Envoy, we can automatically
get visibility into what’s happening between our services, which is where we start to see
a lot of unanticipated complexity. The Envoy proxy forms the foundation for solving
cross-cutting, horizontal reliability and observability concerns for a services architec-
ture and allows us to push these concerns outside of the applications and into the
infrastructure. We’ll cover more of Envoy in ensuing sections and chapters.

 We can deploy service proxies alongside our applications to get these features
(resilience and observability) out-of-process from the application, but at a fidelity that
is very application specific. Figure 1.6 shows how in this model, applications that wish
to communicate with the rest of the system do so by passing their requests to Envoy
first, which then handles the communication upstream.

 Service proxies can also do things like collect distributed tracing spans so we can
stitch together all the steps taken by a particular request. We can see how long each
step took and look for potential bottlenecks or bugs in our system. If all applications
talk through their own proxy to the outside world, and all incoming traffic to an appli-
cation goes through our proxy, we gain some important capabilities for our applica-
tion without changing any application code. This proxy + application combination
forms the foundation of a communication bus known as a service mesh.

 We can deploy a service proxy like Envoy along with every instance of our applica-
tion as a single atomic unit. For example, in Kubernetes, we can co-deploy a service
proxy with our application in a single Pod. Figure 1.7 visualizes the sidecar deployment
pattern in which the service proxy is deployed to complement the main application
instance. 

Service Outbound
network traffic

That’s Envoy!

Proxy Figure 1.5 The Envoy proxy is 
an out-of-process participant in 
application networking.

http://envoyproxy.io
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Figure 1.6 The Envoy proxy out-of-process from the application

1.4 What’s a service mesh?
Service proxies like Envoy help add important capabilities to our services architecture
running in a cloud environment. Each application can have its own requirements or
configurations for how a proxy should behave, given its workload goals. With an
increasing number of applications and services, it can be difficult to configure and
manage a large fleet of proxies. Moreover, having these proxies in place at each appli-
cation instance opens opportunities for building interesting higher-order capabilities
that we would otherwise have to do in the applications themselves.

 A service mesh is a distributed application infrastructure that is responsible for han-
dling network traffic on behalf of the application in a transparent, out-of-process man-
ner. Figure 1.8 shows how service proxies form the data plane through which all traffic
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Figure 1.7 A sidecar deployment is an additional 
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is handled and observed. The data plane is responsible for establishing, securing, and
controlling the traffic through the mesh. The data plane behavior is configured by the
control plane. The control plane is the brains of the mesh and exposes an API for oper-
ators to manipulate network behaviors. Together, the data plane and the control
plane provide important capabilities necessary in any cloud-native architecture:

 Service resilience
 Observability signals
 Traffic control capabilities
 Security
 Policy enforcement

Figure 1.8 A service mesh architecture with co-located application-layer 
proxies (data plane) and management components (control plane)

The service mesh takes on the responsibility of making service communication resil-
ient to failures by implementing capabilities like retries, timeouts, and circuit break-
ers. It’s also capable of handling evolving infrastructure topologies by handling things
like service discovery, adaptive and zone-aware load balancing, and health checking.
Since all the traffic flows through the mesh, operators can control and direct traffic
explicitly. For example, if we want to deploy a new version of our application, we may
want to expose it to only a small fraction, say 1%, of live traffic. With the service mesh
in place, we have the power to do that. Of course, the converse of control in the ser-
vice mesh is understanding its current behavior. Since traffic flows through the mesh,
we’re able to capture detailed signals about the behavior of the network by tracking
metrics like request spikes, latency, throughput, failures, and so on. We can use this
telemetry to paint a picture of what’s happening in our system. Finally, since the ser-
vice mesh controls both ends of the network communication between applications, it
can enforce strong security like transport-layer encryption with mutual authentica-
tion: specifically, using the mutual Transport Layer Security (mTLS) protocol.
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 The service mesh provides all of these capabilities to service operators with very
few or no application code changes, dependencies, or intrusions. Some capabilities
require minor cooperation with the application code, but we can avoid large, compli-
cated library dependencies. With a service mesh, it doesn’t matter what application
framework or programming language you’ve used to build your application; these
capabilities are implemented consistently and correctly and allow service teams to
move quickly, safely, and confidently when implementing and delivering changes to
systems to test their hypotheses and deliver value. 

1.5 Introducing the Istio service mesh
Istio is an open source implementation of a service mesh founded by Google, IBM,
and Lyft. It helps you add resilience and observability to your services architecture in a
transparent way. With Istio, applications don’t have to know that they’re part of the
service mesh: whenever they interact with the outside world, Istio handles the net-
working on their behalf. It doesn’t matter if you’re using microservices, monoliths, or
anything in between—Istio can bring many benefits. Istio’s data plane uses the Envoy
proxy and helps you configure your application to have an instance of the service
proxy (Envoy) deployed alongside it. Istio’s control plane is made up of a few compo-
nents that provide APIs for end users/operators, configuration APIs for the proxies,
security settings, policy declarations, and more. We’ll cover these control-plane com-
ponents in future sections of this book.

 Istio was originally built to run on Kubernetes but was written from the perspective
of being deployment-platform agnostic. This means you can use an Istio-based service
mesh across deployment platforms like Kubernetes, OpenShift, and even traditional
deployment environments like virtual machines (VMs). In later chapters, we’ll take a
look at how powerful this can be for hybrid deployments across combinations of
clouds, including private data centers.

NOTE Istio is Greek for “sail,” which goes along nicely with the rest of the
Kubernetes nautical words.

With a service proxy next to each application instance, applications no longer need
language-specific resilience libraries for circuit breaking, timeouts, retries, service dis-
covery, load balancing, and so on. Moreover, the service proxy also handles metrics
collection, distributed tracing, and access control.

 Since traffic in the service mesh flows through the Istio service proxy, Istio has con-
trol points at each application to influence and direct its networking behavior. This
allows a service operator to control traffic flow and implement fine-grained releases
with canary releases, dark launches, graduated roll outs, and A/B style testing. We’ll
explore these capabilities in later chapters.

 Figure 1.9 shows the following:

1 Traffic comes into the cluster from a client outside the mesh through the Istio
ingress gateway.
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2 Traffic goes to the Shopping Cart service. The traffic first passes through its ser-
vice proxy. The service proxy can apply timeouts, metric collection, security
enforcement, and so on, for the service.

3 As the request makes its way through various services, Istio’s service proxy can
intercept the request at various steps and make routing decisions (for example,
to route some requests intended for the Tax service to v1.1 of the Tax service,
which may have a fix for certain tax calculations).

4 Istio’s control plane (istiod) is used to configure the Istio proxies, which han-
dle routing, security, telemetry collection, and resilience.

5 Request metrics are periodically sent back to various collection services. Distrib-
uted tracing spans (like Jaeger or Zipkin) are sent back to a tracing store, which
can be used later to track the path and latency of a request through the system.

Figure 1.9 Istio is an implementation of a service mesh with a data plane based on Envoy 
and a control plane.

An important requirement for any services-based architecture is security. Istio has
security enabled by default. Since Istio controls each end of the application’s network-
ing path, it can transparently encrypt the traffic by default. In fact, to take it a step fur-
ther, Istio can manage key and certificate issuance, installation, and rotation so that
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services get mutual TLS out of the box. If you’ve ever experienced the pain of install-
ing and configuring certificates for mutual TLS, you’ll appreciate both the simplicity
of operation and how powerful this capability is. Istio can assign a workload identity
and embed that into the certificates. Istio can also use the identities of different work-
loads to further implement powerful access-control policies.

 Finally, but no less important than the previous capabilities, with Istio you can
implement quotas, rate limiting, and organizational policies. Using Istio’s policy
enforcement, you can create very fine-grained rules about what services are allowed to
interact with each other, and which are not. This becomes especially important when
deploying services across clouds (public and on premises).

 Istio is a powerful implementation of a service mesh. Its capabilities allow you
to simplify running and operating a cloud-native services architecture, potentially
across a hybrid environment. Throughout the rest of this book, we’ll show you how to
take advantage of Istio’s functionality to operate your microservices in a cloud-native
world.

1.5.1 How a service mesh relates to an enterprise service bus

An enterprise service bus (ESB) from SOA days has some similarities to a service
mesh, at least in spirit. If we take a look at how the ESB was originally described in the
early days of SOA, we even see some similar language:

The enterprise service bus (ESB) is a silent partner in the SOA logical architecture. Its
presence in the architecture is transparent to the services of your SOA application.
However, the presence of an ESB is fundamental to simplifying the task of invoking
services—making the use of services wherever they are needed, independent of the details
of locating those services and transporting service requests across the network to invoke
those services wherever they reside within your enterprise. (http://mng.bz/5K7D)

In this description of an ESB, we see that it’s supposed to be a silent partner, which
means applications should not know about it. With a service mesh, we expect similar
behavior. The service mesh should be transparent to the application. An ESB also is
“fundamental to simplifying the task of invoking services.” For an ESB, this included
things like protocol mediation, message transformation, and content-based routing. A
service mesh is not responsible for all the things an ESB does, but it does provide
request resilience through retries, timeouts, and circuit breaking, and it does provide
services like service discovery and load balancing.

 Overall, there are a few significant differences between a service mesh and an ESB:

 The ESB introduced a new silo in organizations that was the gatekeeper for ser-
vice integrations within the enterprise.

 It was a very centralized deployment/implementation.
 It mixed application networking and service mediation concerns.
 It was often based on complicated proprietary vendor software.

http://mng.bz/5K7D
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Figure 1.10 shows how ESB integrated applications by placing itself in the center and
then comingled application business logic with application routing, transformation,
and mediation.

Figure 1.10 An ESB as a centralized system that integrates applications

A service mesh’s role is only in application networking concerns. Complex business
transformations (such as X12, EDI, and HL7), business process orchestration, process
exceptions, service orchestration, and so on do not belong in a service mesh. Addi-
tionally, the service mesh data plane is highly distributed, with its proxies collocated
with applications. This eliminates single points of failure or bottlenecks that often
appear with an ESB architecture. Finally, both operator and service teams are respon-
sible for establishing service-level objectives (SLOs) and configuring the service mesh
to support them. The responsibility for integration with other systems is no longer the
purview of a centralized team; all service developers share that duty. 

1.5.2 How a service mesh relates to an API gateway

Istio and service-mesh technology also have some similarities to and differences from
API gateways. API gateway infrastructure (not the microservices pattern from http://
microservices.io/patterns/apigateway.html) is used in API management suites to pro-
vide a public-facing endpoint for an organization’s public APIs. Its role is to provide
security, rate limiting, quota management, and metrics collection for these public
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APIs and tie into an overall API management solution that includes API plan specifi-
cation, user registration, billing, and other operational concerns. API gateway archi-
tectures vary wildly but have been used mostly at the edge of architectures to expose
public APIs. They have also been used for internal APIs to centralize security, policy,
and metrics collection. However, this creates a centralized system through which traf-
fic travels, which can become a source of bottlenecks, as described for the ESB and
messaging bus.

 Figure 1.11 shows how all internal traffic between services traverses the API gate-
way when used for internal APIs. This means for each service in the graph, we’re tak-
ing two hops: one to get to the gateway and one to get to the actual service. This has
implications not just for network overhead and latency but also for security. With this
multi-hop architecture, the API gateway cannot secure the transport mechanism with
the application unless the application participates in the security configuration. And
in many cases, an API gateway doesn’t implement resilience capabilities like circuit
breakers or bulkheading.

In a service mesh, proxies are collocated with the services and do not take on additional
hops. They’re also decentralized so each application can configure its proxy for its par-
ticular workloads and not be affected by noisy neighbor scenarios.1 Since each proxy
lives with its corresponding application instance, it can secure the transport mechanism
from end to end without the application knowing or actively participating.

1 The term noisy neighbor describes the scenario where a service is degraded due to the activity of another ser-
vice. Learn more at http://mng.bz/mxvM.
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 Figure 1.12 shows how the service proxies are becoming a place to enforce and
implement API gateway functionality. As service mesh technologies like Istio continue
to mature, we’ll see API management built on top of the service mesh and not need
specialized API gateway proxies. 

Figure 1.12 The service proxies implement ESB and API gateway 
functionalities.

1.5.3 Can I use Istio for non-microservices deployments?

Istio’s power shines as you move to architectures that experience large numbers of ser-
vices, interconnections, and networks over unreliable cloud infrastructure, potentially
spanning clusters, clouds, and data centers. Furthermore, since Istio runs out-of-pro-
cess from the application, it can be deployed to existing legacy or brownfield environ-
ments as well, thus incorporating those into the mesh.

 For example, if you have existing monolith deployments, the Istio service proxy
can be deployed alongside each monolith instance and will transparently handle net-
work traffic for it. At a minimum, this can add request metrics that become very useful
for understanding the application’s usage, latency, throughput, and failure character-
istics. Istio can also participate in higher-level features like policy enforcement about
what services are allowed to talk to it. This capability becomes highly important in a
hybrid-cloud deployment with monoliths running on premises and cloud services
potentially running in a public cloud. With Istio, we can enforce policies such as
“cloud services cannot talk to and use data from on-premises applications.”

 You may also have an older vintage of microservices implemented with resilience
libraries like NetflixOSS. Istio brings powerful capabilities to these deployments as
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well. Even if both Istio and the application implement functionality like a circuit
breaker, you can feel secure, knowing that the more restrictive policies will kick in and
everything should work fine. Scenarios with timeouts and retries may conflict, but
using Istio, you can test your service and find these conflicts before you ever make it to
production. 

1.5.4 Where Istio fits in distributed architectures

You should pick the technology you
use in your implementations based
on the problems you have and the
capabilities you need. Technologies
like Istio, and service meshes in gen-
eral, are powerful infrastructure
capabilities and touch a lot of areas
of a distributed architecture—but
they are not right for and should not
be considered for every problem you
may have. Figure 1.13 shows how an
ideal cloud architecture would sepa-
rate different concerns from each
layer in the implementation.

 At the lower level of your architec-
ture is your deployment automation
infrastructure. This is responsible for
getting code deployed onto your
platform (containers, Kubernetes, public cloud, VMs, and so on). Istio does not
encroach on or prescribe what deployment automation tools you should use.

 At a higher level, you have application business logic: the differentiating code that
a business must write to stay competitive. This code includes the business domain as
well as knowing which services to call and in what order, what to do with service inter-
action responses (such as how to aggregate them together), and what to do when
there are process failures. Istio does not implement or replace any business logic. It
does not do service orchestration, business payload transformation, payload enrich-
ment, splitting/aggregating, or rules computation. These capabilities are best left to
libraries and frameworks inside your applications.

 Istio plays the role of connective tissue between the deployment platform and the
application code. Its role is to facilitate taking complicated networking code out of the
application. It can do content-based routing based on external metadata that is part of
the request (HTTP headers, and so on). It can do fine-grained traffic control and
routing based on service and request metadata matching. It can also secure the trans-
port and offload security token verification and enforce quota and usage policies
defined by service operators.

Application
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 Now that we have a basic understanding of what Istio is, the best way to get further
acquainted with its power is to use it. In chapter 2, we’ll look at using Istio to achieve
basic metrics collection, reliability, and traffic control. 

1.5.5 What are the drawbacks to using a service mesh?

We’ve talked a lot about the problems of building a distributed architecture and how a
service mesh can help, but we don’t want to give the impression that a service mesh is
the one and only way to solve these problems or that a service mesh doesn’t have draw-
backs. Using a service mesh does have a few drawbacks you must be aware of.

 First, using a service mesh puts another piece of middleware, specifically a proxy,
in the request path. This proxy can deliver a lot of value; but for those unfamiliar with
the proxy, it can end up being a black box and make it harder to debug an applica-
tion’s behavior. The Envoy proxy is specifically built to be very debuggable by expos-
ing a lot about what’s happening on the network—more so than if it wasn’t there—but
for someone unfamiliar with operating Envoy, it could look very complex and inhibit
existing debugging practices.

 Another drawback of using a service mesh is in terms of tenancy. A mesh is as valu-
able as the services running in the mesh. That is, the more services in the mesh, the
more valuable the mesh becomes for operating those services. However, without
proper policy, automation, and forethought going into the tenancy and isolation
models of the physical mesh deployment, you could end up in a situation where mis-
configuring the mesh impacts many services.

 Finally, a service mesh becomes a fundamentally important piece of your services
and application architecture since it’s on the request path. A service mesh can expose
a lot of opportunities to improve security, observability, and routing control posture.
The downside is that a mesh introduces another layer and another opportunity for
complexity. It can be difficult to understand how to configure, operate, and, most
importantly, integrate it within your existing organizational processes and governance
and between existing teams.

 In general, a service mesh brings a lot of value—but not without trade-offs. Just as
with any tool or platform, you should evaluate these trade-offs based on your context
and constraints, determine whether a service mesh makes sense for your scenarios,
and, if so, make a plan to successfully adopt a mesh.

 Overall, we love service meshes; and now that Istio is mature, it is already improv-
ing the operations of many businesses. With the continuous stream of contributions to
both Istio and Envoy, it is exciting to see where it’s going next. Hopefully, this chapter
has passed some of the excitement on to you and given you ideas about how Istio can
improve the security and reliability of your services. 

Summary
 Operating microservices in the cloud involves many challenges: network unreli-

ability, service availability, traffic flow that is hard to understand, traffic encryp-
tion, application health, and performance, to name a few.
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 Those difficulties are alleviated by patterns (such as service discovery, client-side
load balancing, and retries) that are implemented using libraries within every
application.

 Additional libraries and services are required to create and distribute metrics
and traces to gain observability over the services.

 A service mesh is an infrastructure that implements those cross-cutting con-
cerns on behalf of applications in a transparent, out-of-process manner.

 Istio is an implementation of a service mesh composed of the following:

– The data plane, which is composed of service proxies that are deployed
alongside applications and complement them by implementing policies,
managing traffic, generating metrics and traces, and much more.

– The control plane, which exposes an API for operators to manipulate the
data plane’s network behavior.

 Istio uses Envoy as its service proxy due to its versatility and because it can be
dynamically configured.



First steps with Istio
Istio solves some of the difficult challenges of service communication in cloud envi-
ronments and provides a lot of capabilities to both developers and operators. We’ll
cover these capabilities and how it all works in subsequent chapters; but to help you
get a feel for some of the features of Istio, in this chapter we do a basic installation
(more advanced installation options can be found in appendix A) and deploy a few
services. The services and examples come from the book’s source code, which you
can find at https://github.com/istioinaction/book-source-code. From there, we

This chapter covers
 Installing Istio on Kubernetes

 Understanding the Istio control-plane 
components

 Deploying an application with the Istio proxy

 Controlling traffic with the Istio VirtualService 
resource

 Exploring complementary components for tracing, 
metrics, and visualization
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explore the components that make up Istio and what functionality we can provide to
our example services. Finally, we look at how to do basic traffic routing, metrics collec-
tion, and resilience. Further chapters will dive deeper into the functionality.

2.1 Deploying Istio on Kubernetes
We’re going to deploy Istio and our example applications using containers, and we’ll
use the Kubernetes container platform to do that. Kubernetes is a very powerful con-
tainer platform capable of scheduling and orchestrating containers over a fleet of host
machines known as Kubernetes nodes. These nodes are host machines capable of run-
ning containers, but Kubernetes handles those mechanisms. As we’ll see, Kubernetes
is a great place to initially kick the tires with Istio—although we should be clear that
Istio is intended to support multiple types of workloads, including those running on
virtual machines (VMs). 

2.1.1 Using Docker Desktop for the examples

To get started, we need access to a Kubernetes distribution. For this book, we use
Docker Desktop (www.docker.com/products/docker-desktop), which provides a slim
VM on your host computer that’s capable of running Docker and Kubernetes.

Docker Desktop also has nice integration between the host machine and the VM.
You’re not constrained to using Docker Desktop to run these examples and follow
along in this book: these examples should run well on any variant of Kubernetes,
including Google Kubernetes Engine (GKE), OpenShift, or your own self-
bootstrapped Kubernetes distribution. To set up Kubernetes, see the Docker Desktop
documentation (www.docker.com/products/docker-desktop) for your machine. After
successfully setting up Docker Desktop and enabling Kubernetes, you should be able to
connect to your Kubernetes clusters as shown next:

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
docker-desktop Ready master 15h v1.21.1

NOTE Istio 1.13.0, used in this book, requires a minimum of Kubernetes ver-
sion 1.19.x. 

Allocating the recommended resources to Docker Desktop
Although Istio won’t require many resources on your local machine for Docker Desk-
top, we install many other supporting components in some chapters. It may be worth
giving Docker 8 GB of memory and four CPUs. You can do that under the advanced
settings in Docker Desktop’s preferences.

www.docker.com/products/docker-desktop
www.docker.com/products/docker-desktop
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2.1.2 Getting the Istio distribution

Next, we want to install Istio into our Kubernetes distribution. We use the istioctl
command-line tool to install Istio. To do that, download the Istio 1.13.0 distribution
from the Istio release page at https://github.com/istio/istio/releases and download
the distribution for your operating system. You can choose Windows, macOS/Darwin,
or Linux. Alternatively, you can run this handy script:

curl -L https://istio.io/downloadIstio | ISTIO_VERSION=1.13.0 sh -

After downloading the distribution for your operating system, extract the compressed
file to a directory. If you use the downloadIstio script, the archive is extracted auto-
matically. From there, you can explore the contents of the distribution, including
examples, installation resources, and a binary command-line interface for your OS.
This example explores the Istio distribution for macOS:

$ cd istio-1.13.0
$ ls -l
total 48
-rw-r--r-- 1 ceposta staff 11348 Mar 19 15:33 LICENSE
-rw-r--r-- 1 ceposta staff 5866 Mar 19 15:33 README.md
drwxr-x--- 3 ceposta staff 96 Mar 19 15:33 bin
-rw-r----- 1 ceposta staff 853 Mar 19 15:33 manifest.yaml
drwxr-xr-x 5 ceposta staff 160 Mar 19 15:33 manifests
drwxr-xr-x 20 ceposta staff 640 Mar 19 15:33 samples
drwxr-x--- 6 ceposta staff 192 Mar 19 15:33 tools

Browse the distribution directories to get an idea of what comes with Istio. For exam-
ple, in the samples directory, you’ll see a handful of tutorials and applications to help
you get your feet wet with Istio. Going through each of these will give you a good ini-
tial idea of what Istio can do and how to interact with its components. We take a
deeper look in the next section. The tools directory contains a few tools for trouble-
shooting Istio deployments, as well as bash-completion for istioctl. And the mani-
fests directory contains Helm charts and istioctl profiles for customizing the
installation of Istio for your specific platform. You likely won’t need to use these
directly (as we’ll see), but they’re there for customization purposes.

 Of particular interest is the bin directory, where you’ll find a simple command-line
interface (CLI) istioctl tool for interacting with Istio. This binary is similar to
kubectl for interacting with the Kubernetes API, but it includes a handful of com-
mands to enhance the user experience of using Istio. Run the istioctl binary to ver-
ify that everything works as expected:

$ ./bin/istioctl version
no running Istio pods in "istio-system"
1.13.0

At this point, you can add the istioctl CLI to your path, so it’s available wherever you
navigate on the command line. This is platform specific and up to you to figure out.

https://github.com/istio/istio/releases
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 Finally, let’s verify that any prerequisites have been met in our Kubernetes cluster
(such as the version) and identify any issues we may have before we begin the installa-
tion. We can run the following command to do that:

$ istioctl x precheck

✔ No issues found when checking the cluster.

➥Istio is safe to install or upgrade!
To get started, check out

➥https://istio.io/latest/docs/setup/getting-started/

At this point, we’ve downloaded the distribution files and verified that the istioctl
CLI tools are a fit for our operating system and Kubernetes cluster. Next, let’s do a
basic installation of Istio to get hands-on with its concepts. 

2.1.3 Installing the Istio components into Kubernetes

In the distribution you just downloaded and unpacked, the manifests directory con-
tains a collection of charts and resource files for installing Istio into the platform of
your choice. The official method for any real installation of Istio is to use istioctl,
istio-operator, or Helm. Appendix A guides you through installing and customizing
Istio using istioctl and istio-operator.

 For this book, we use istioctl and various pre-curated profiles to take a step-by-
step, incremental approach to adopting Istio. To perform the demo install, use the
istioctl CLI tool as shown next:

$ istioctl install --set profile=demo -y

✔ Istio core installed
✔ Istiod installed
✔ Ingress gateways installed
✔ Egress gateways installed
✔ Installation complete

After running this command, you may have to wait a few moments for the Docker
images to properly download and the deployments to succeed. Once things have set-
tled in, you can run the kubectl command to list all of the Pods in the istio-system
namespace. You may also see a notification that your cluster doesn’t support third-
party JSON Web Token (JWT) authentication. This is fine for local development, but
not for production. If the error appears during the installation in a production clus-
ter, follow the Istio documentation on how to configure third-party service account
tokens (http://mng.bz/Vl7G), which is the default with most cloud providers and
shouldn’t be necessary.

 The istio-system namespace is special in that the control plane is deployed into
it and can act as a cluster-wide control plane for Istio. Let’s see what components are
installed into the istio-system namespace:

http://mng.bz/Vl7G


28 CHAPTER 2 First steps with Istio
$ kubectl get pod -n istio-system
NAME READY STATUS RESTARTS AGE
istio-egressgateway-55d547456b-q2ldq 1/1 Running 0 92s
istio-ingressgateway-7654895f97-2pb62 1/1 Running 0 93s
istiod-5b9d44c58b-vvrpb 1/1 Running 0 99s

What exactly did we install? In chapter 1, we introduced the concept of a service mesh
and said that Istio is an open source implementation of a service mesh. We also said
that a service mesh comprises data-plane (that is, service proxies) and control-plane
components. After installing Istio into a cluster, you should see the control plane and
the ingress and egress gateways. As soon as we install applications and inject the ser-
vice proxies into them, we will have a data plane as well.

 The astute reader may notice that for each component of the Istio control plane,
there is only a single replica or instance. You may also be thinking, “This appears to be
a single point of failure. What happens if these components fail or go down?” That’s a
great question and one we’ll cover throughout the book. For now, know that the Istio
control plane is intended to be deployed in a highly available architecture (with multi-
ple replicas of each component). In the event of failures of the control-plane compo-
nents or even the entire control plane, the data plane is resilient enough to continue
for periods of disconnection from the control plane. Istio is implemented to be highly
resilient to the myriad of failures that can occur in a distributed system.

 The last thing we want to do is verify the installation. We can run the verify-
install command post-install to verify that it has completed successfully:

$ istioctl verify-install

This command compares the install manifest with what is actually installed and alerts
us to any deviations. We should see a listing of the output ending with

✔ Istio is installed and verified successfully

Finally, we need to install the control-plane supporting components. These compo-
nents are not strictly required but should be installed for any real deployment of Istio.
The versions of the supporting components we install here are recommended for
demo purposes only, not production usage. From the root of the Istio distribution you
downloaded, run the following to install the example supporting components:

$ kubectl apply -f ./samples/addons

Now, if we check the istio-system namespace, we see the supporting components
installed:

$ kubectl get pod -n istio-system

NAME READY STATUS
grafana-784c89f4cf-8w8f4 1/1 Running
istio-egressgateway-96cf6b468-9n65h 1/1 Running
istio-ingressgateway-57b94d999-48vmn 1/1 Running
istiod-58c5fdd87b-lr4jf 1/1 Running
jaeger-7f78b6fb65-rvfr7 1/1 Running

Visualizes metrics 
generated by the 
proxies and collected 
by Prometheus

Distributed tracing system 
to visualize request flow 
through the mesh
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kiali-dc84967d9-vb9b4 1/1 Running
prometheus-7bfddb8dbf-rxs4m 2/2 Running

2.2 Getting to know the Istio control plane
In the previous section, we did a demo installation of Istio that deployed all of the
control-plane components and supporting components to Kubernetes. The control
plane provides a way for users of the service mesh to control, observe, manage, and
configure the mesh. For Istio, the control plane provides the following functions:

 APIs for operators to specify desired routing/resilience behavior
 APIs for the data plane to consume their configuration
 A service discovery abstraction for the data plane
 APIs for specifying usage policies
 Certificate issuance and rotation
 Workload identity assignment
 Unified telemetry collection
 Service-proxy sidecar injection
 Specification of network boundaries and how to access them

The bulk of these responsibilities is implemented in a single control-plane compo-
nent called istiod. Figure 2.1 shows istiod along with gateways responsible for
ingress traffic and egress traffic. We also see supporting components that are typically
integrated with a service mesh to support observability or security use cases. We’ll take
a closer look at all of these components in the forthcoming chapters. Now, let’s exam-
ine the control-plane components.

Figure 2.1 Istio control plane and supporting components
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2.2.1 Istiod

Istio’s control-plane responsibilities are implemented in the istiod component.
istiod, sometimes referred to as Istio Pilot, is responsible for taking higher-level Istio
configurations specified by the user/operator and turning them into proxy-specific
configurations for each data-plane service proxy (see figure 2.2).

Figure 2.2 Istio control plane: understanding how istiod takes configuration from 
operators and exposes it to the data plane (Istio proxies)

NOTE We will learn more about the xDS API in chapter 3. For now, it suffices
to know that it enables the control plane to dynamically configure the service
proxies.

For example, through configuration resources, we can specify how traffic is allowed
into the cluster, how it is routed to specific versions of services, how to shift traffic
when doing a new deployment, and how callers of a service should treat resiliency
aspects like timeouts, retries, and circuit breaking. istiod takes these configurations,
interprets them, and exposes them as service-proxy-specific configurations. Istio uses
Envoy as its service proxy, so these configurations are translated to Envoy configura-
tions. For example, for a service trying to talk to a catalog service, we may wish to
send traffic to v2 of the service if it has the header x-dark-launch in its request. We
can express that for Istio with the following configuration:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:

name: catalog-service
spec:

hosts:
- catalog.prod.svc.cluster.local
http:
- match:
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- headers:
x-dark-launch:
exact: "v2"

route:
- destination:

host: catalog.prod.svc.cluster.local
subset: v2

- route:
- destination:

host: catalog.prod.svc.cluster.local
subset: v1

For the moment, don’t worry about the specifics, as this example is just to illustrate
that this YAML configuration is translated to the data plane as a proxy-specific config-
uration. The configuration specifies that, based on header matching, we would like to
route a request to the v2 deployment of the catalog service when there is a header
x-dark-launch that equals v2; and that for all other requests, we will route to v1 of
the catalog service. As an operator of Istio running on Kubernetes, we would create
this configuration using a tool like kubectl. For example, if this configuration is
stored in a file named catalog-service.yaml, we can create it as follows:

kubectl apply -f catalog-service.yaml

We’ll dig deeper into what this configuration does later in the chapter. For now, just
know that configuring Istio traffic routing rules will use a similar pattern: describe
intent in Istio resource files (YAML) and pass it to the Kubernetes API.

Istio reads Istio-specific configuration objects, like VirtualService in the previous
configuration, and translates them into Envoy’s native configuration. istiod exposes
this configuration intent to the service proxies as Envoy configuration through its
data-plane API:

"domains": [
"catalog.prod.svc.cluster.local"

],
"name": "catalog.prod.svc.cluster.local:80",
"routes": [

{

Istio uses Kubernetes custom resources when deployed on Kubernetes
Istio’s configuration resources are implemented as Kubernetes custom resource
definitions (CRDs). CRDs are used to extend the native Kubernetes API to add new
functionality to a Kubernetes cluster without having to modify any Kubernetes code.
In the case of Istio, we can use Istio’s custom resources (CRs) to add Istio function-
ality to a Kubernetes cluster and use native Kubernetes tools to apply, create, and
delete the resources. Istio implements a controller that watches for these new CRs
to be added and reacts to them accordingly. 

Exact match 
of header

Where to route 
on match

Where to route 
all other traffic
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"match": {
"headers": [

{
"name": "x-dark-launch",
"value": "v2"

}
],
"prefix": "/"

},
"route": {

"cluster":
"outbound|80|v2|catalog.prod.svc.cluster.local",
"use_websocket": false

}
},
{

"match": {
"prefix": "/"

},
"route": {

"cluster":
"outbound|80|v1|catalog.prod.svc.cluster.local",
"use_websocket": false

}
}

]

This data-plane API exposed by istiod implements Envoy’s discovery APIs. These dis-
covery APIs, like those for service discovery (listener discovery service [LDS]), end-
points (endpoint discovery service [EDS]), and routing rules (route discovery service
[RDS]) are known as the xDS APIs. These APIs allow the data plane to separate how it
is configured and dynamically adapt its behavior without having to stop and reload.
We’ll cover these xDS APIs from the perspective of the Envoy proxy in chapter 3.

IDENTITY MANAGEMENT

With the Istio service mesh, service proxies run alongside each application instance,
and all application traffic goes through these proxies. When an application wishes to
issue a request to another service, the proxies on the sender and receiver talk to each
other directly.

 One of Istio’s core features is the ability to assign an identity to each workload
instance and encrypt the transport for calls between services since it sits at both ends
(origination and termination) of the request path. To do this, Istio uses X.509 certifi-
cates to encrypt the traffic. Workload identity is embedded in these certificates follow-
ing the SPIFFE (Secure Production Identity Framework For Everyone; https://
spiffe.io) specification. This gives Istio the ability to provide strong mutual authentica-
tion (mTLS) without the applications being aware of certificates, public/private keys,
and so on. istiod handles attestation, signing, and delivery of the certificates and
rotation of the certificates used to enable this form of security (see figure 2.3). We’ll
cover security in chapter 9. 

https://spiffe.io
https://spiffe.io
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2.2.2 Ingress and egress gateway

For our applications and services to provide anything meaningful, they need to inter-
act with applications that live outside of our cluster. Those could be existing monolith
applications, off-the-shelf software, messaging queues, databases, and third-party part-
ner systems. To do this, operators need to configure Istio to allow traffic into the clus-
ter and be very specific about what traffic is allowed to leave the cluster. Modeling and
understanding what traffic is allowed into and out of the cluster is good practice and
improves our security posture.

 Figure 2.4 shows the Istio components that provide this functionality: istio-
ingressgateway and istio-egressgateway. We saw those when we printed out the
control plane components.

Figure 2.4 Incoming and outgoing traffic flow through Istio gateways
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These components are really Envoy proxies that can understand Istio configurations.
Although they are not technically part of the control plane, they are instrumental in
any real-world usage of a service mesh. These components reside in the data plane
and are configured very similarly to Istio service proxies that live with the applications.
The only actual difference is that they’re independent of any application workload
and are just to let traffic into and out of the cluster. In future chapters, we’ll see how
these components play a role in combining clusters and even clouds. 

2.3 Deploying your first application in the service mesh
The ACME company is redoing its website and the systems that power inventory and
checkout. The company has decided to use Kubernetes as the core of its deployment
platform and to build its applications to the Kubernetes API and not a specific cloud
vendor. ACME is looking to solve some of the challenges of service communication in
a cloud environment, so when its head architect found out about Istio, the company
decided to use it. ACME’s application is an online web store that consists of typical
enterprise application services (see figure 2.5). We’ll walk through the components
that make up the store, but for this first look at Istio’s functionality, we focus on a
smaller subset of the components.

To get the source code for this example, download it from http://istioinaction.io or
clone it from https://github.com/istioinaction/book-source-code. In the services
directory, you should see the Kubernetes resource files that describe the deployment
of our components. The first thing to do is create a namespace in Kubernetes in
which we’ll deploy our services:

$ kubectl create namespace istioinaction
$ kubectl config set-context $(kubectl config current-context) \
--namespace=istioinaction

Now that we’re in the istioinaction namespace, let’s take a look at what we’re going
to deploy. The Kubernetes resource files for catalog-service can be found in the
$SRC_BASE/services/catalog/kubernetes/catalog.yaml file and looks similar to this:

apiVersion: v1
kind: Service
metadata:

labels:
app: catalog

name: catalog

Web app
service

Catalog
service

Figure 2.5 Example application consisting 
of web app and catalog services

http://istioinaction.io
https://github.com/istioinaction/book-source-code
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spec:
ports:
- name: http

port: 80
protocol: TCP
targetPort: 3000

selector:
app: catalog

---
apiVersion: apps/v1
kind: Deployment
metadata:

labels:
app: catalog
version: v1

name: catalog
spec:

replicas: 1
selector:

matchLabels:
app: catalog
version: v1

template:
metadata:

labels:
app: catalog
version: v1

spec:
containers:
- env:

- name: KUBERNETES_NAMESPACE
valueFrom:

fieldRef:
fieldPath: metadata.namespace

image: istioinaction/catalog:latest
imagePullPolicy: IfNotPresent
name: catalog
ports:
- containerPort: 3000
name: http
protocol: TCP

securityContext:
privileged: false

Before we deploy this, however, we want to inject the Istio service proxy so that this
service can participate in the service mesh. From the root of the source code, run the
istioctl command we introduced earlier:

$ istioctl kube-inject -f services/catalog/kubernetes/catalog.yaml

The istioctl kube-inject command takes a Kubernetes resource file and enriches
it with the sidecar deployment of the Istio service proxy and a few additional compo-
nents (elaborated on in appendix B). Recall from chapter 1 that a sidecar deployment
packages a complementing container alongside the main application container: they
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work together to deliver some functionality. In the case of Istio, the sidecar is the ser-
vice proxy, and the main application container is your application code. If you look
through the previous command’s output, the YAML now includes a few extra contain-
ers as part of the deployment. Most notably, you should see the following:

      - args:
- proxy
- sidecar
- --domain
- $(POD_NAMESPACE).svc.cluster.local
- --serviceCluster
- catalog.$(POD_NAMESPACE)
- --proxyLogLevel=warning
- --proxyComponentLogLevel=misc:error
- --trust-domain=cluster.local
- --concurrency
- "2"
env:
- name: JWT_POLICY
value: first-party-jwt

- name: PILOT_CERT_PROVIDER
value: istiod

- name: CA_ADDR
value: istiod.istio-system.svc:15012

- name: POD_NAME
valueFrom:

fieldRef:
fieldPath: metadata.name

...
image: docker.io/istio/proxyv2:{1.13.0}
imagePullPolicy: Always
name: istio-proxy

In Kubernetes, the smallest unit of deployment is called a Pod. A Pod can be one or
more containers deployed atomically together. When we run kube-inject, we add
another container named istio-proxy to the Pod template in the Deployment object,
although we haven’t actually deployed anything yet. We could deploy the YAML file
created by the kube-inject command directly; however, we are going to take advan-
tage of Istio’s ability to automatically inject the sidecar proxy.

 To enable automatic injection, we label the istioinaction namespace with
istio-injection=enabled:

$ kubectl label namespace istioinaction istio-injection=enabled

Now let’s create the catalog deployment:

$ kubectl apply -f services/catalog/kubernetes/catalog.yaml

serviceaccount/catalog created
service/catalog created
deployment.apps/catalog created

If we ask Kubernetes what Pods are deployed, we see something like this:
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$ kubectl get pod
NAME READY STATUS RESTARTS AGE
catalog-7c96f7cc66-flm8g 2/2 Running 0 1m

If the Pods are not ready, it may take a few moments to download the Docker images.
After things come to a steady state, you should see the Pod with Running in the Status
column, as in the previous snippet. Also note the 2/2 in the Ready column: this means
there are two containers in the Pod, and two of them are in the Ready state. One of
those containers is the application container, catalog in this case. The other con-
tainer is the istio-proxy sidecar.

 At this point, we can query the catalog service from within the Kubernetes cluster
with the hostname catalog.istioinaction. Run the following command to verify
everything is up and running properly. If you see the following JSON output, the ser-
vice is up and running correctly:

$ kubectl run -i -n default --rm --restart=Never dummy \
--image=curlimages/curl --command -- \
sh -c 'curl -s http://catalog.istioinaction/items/1'

{
"id": 1,
"color": "amber",
"department": "Eyewear",
"name": "Elinor Glasses",
"price": "282.00"

}

Next we deploy the webapp service, which aggregates the data from the other services
and displays it visually in the browser. This service also exposes an API that ends up
calling the catalog service, which we just deployed and verified. This means webapp is
like a facade of the other backend services:

$ kubectl apply -f services/webapp/kubernetes/webapp.yaml

serviceaccount/webapp created
service/webapp created
deployment.apps/webapp created

If we list the Pods in our Kubernetes cluster, we see our new webapp deployment with
2/2 containers running:

$ kubectl get pod

NAME READY STATUS RESTARTS AGE
catalog-759767f98b-mcqcm 2/2 Running 0 3m59s
webapp-8454b8bbf6-b8g7j 2/2 Running 0 50s

Finally, let’s call the new webapp service and verify that it works:

$ kubectl run -i -n default --rm --restart=Never dummy \
--image=curlimages/curl --command -- \
sh -c 'curl -s http://webapp.istioinaction/api/catalog/items/1'
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If this command completes correctly, you should see the same JSON response as when
we called the catalog service directly. Additionally, we can visualize the content of all
the services behind the webapp service by accessing it through the browser. To do so,
port-forward the application to your localhost:

$ kubectl port-forward deploy/webapp 8080:8080

You can open the web application UI on your browser at http://localhost:8080, as
shown in figure 2.6.

Figure 2.6 The web app user interface presents the data queried from the other services.

So far, all we’ve done is deploy the catalog and webapp services with the Istio service
proxies. Each service has its own sidecar proxy, and all traffic to or from the individual
services goes through the respective sidecar proxy (see figure 2.7). 

Colors indicate the
availability of the
services.

The forum service is
not available.

The data received
from the catalog
service
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2.4 Exploring the power of Istio with resilience, 
observability, and traffic control
In the previous example, we had to port-forward the webapp service locally because, so
far, we have no way of getting traffic into the cluster. With Kubernetes, we typically use
an ingress controller like Nginx or a dedicated API gateway like Solo.io’s Gloo Edge to
do that. With Istio, we can use an Istio ingress gateway to get traffic into the cluster, so
we can call our web application. In chapter 4, we’ll look at why the out-of-the-box
Kubernetes ingress resource is not sufficient for typical enterprise workloads and how
Istio has the concepts of Gateway and VirtualService resources to solve those chal-
lenges. For now, we’ll use the Istio ingress gateway to expose our webapp service:

$ kubectl apply -f ch2/ingress-gateway.yaml

gateway.networking.istio.io/coolstore-gateway created
virtualservice.networking.istio.io/webapp-virtualservice created

At this point, we’ve made Istio aware of the webapp service at the edge of the Kuberne-
tes cluster, and we can call into it. Let’s see whether we can reach our service. First we
need to get the endpoint on which the Istio gateway is listening. On Docker Desktop,
it defaults to http://localhost:80:

$ curl http:/./localhost:80/api/catalog/items/1

If you’re running on your own Kubernetes cluster—for example, on a public cloud—
you can find the public cloud’s external endpoint by listing the Kubernetes services in
the istio-system namespace :

$ URL=$(kubectl -n istio-system get svc istio-ingressgateway \
-o jsonpath='{.status.loadBalancer.ingress[0].ip}')

$ curl $URL/api/catalog/items/1

If you cannot use a load balancer, an alternative approach is to port-forward to your
local machine using kubectl, as follows (updating the URL to localhost:8080):

$ kubectl port-forward deploy/istio-ingressgateway \
-n istio-system 8080:8080

After hitting the endpoint with curl as we did here, you should see the same output as
in the previous steps where we hit the services individually.

webapp
service

Istio
proxy

catalog
service

Istio
proxy

Figure 2.7 The webapp service 
calling the catalog service both 
with istio-proxy injected
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 If you have encountered any errors up to this point, go back and make sure you
successfully complete all of the steps. If you still encounter errors, ensure that the Istio
ingress gateway has a route to our webapp service set up properly. To do that, you can
use Istio’s debugging tools to check the configuration of the ingress gateway proxy.
You can use the same technique to check any Istio proxy deployed with any applica-
tion, but we’ll come back to that. For now, check whether your gateway has a route:

$ istioctl proxy-config routes \
deploy/istio-ingressgateway.istio-system

You should see something similar to this:

NOTE: This output only contains routes loaded via RDS.
NAME DOMAINS MATCH VIRTUAL SERVICE
http.80 * /* webapp-virtualservice.istioinaction

* /healthz/ready*
* /stats/prometheus*

If you don’t, your best bet is to double-check that the gateway and virtual service
resources were installed:

$ kubectl get gateway
$ kubectl get virtualservice

Additionally, make sure they are applied in the istioinaction namespace: in the vir-
tual service definition, we use the abbreviated hostname (webapp), which lacks the
namespace and defaults to the namespace the virtual service is applied to. You can
also add the namespace by updating the virtual service to route traffic to the host
webapp.istioinaction.

2.4.1 Istio observability

Since the Istio service proxy sits in the call path on both sides of the connection (each
service has its own service proxy), Istio can collect a lot of telemetry and insight into
what’s happening between applications. Istio’s service proxy is deployed as a sidecar
alongside each application, so the insight it collects is from “out of process” of the
application. For the most part, this means applications do not need library- or frame-
work-specific implementations to accomplish this level of observability. The applica-
tion is a black box to the proxy, and telemetry is focused on the application’s behavior
as observed through the network.

 Istio creates telemetry for two major categories of observability. The first is top-line
metrics or things like requests per second, number of failures, and tail-latency percen-
tiles. Knowing these values can provide great insight into where problems are starting
to arise in a system. Second, Istio can facilitate distributed tracing like OpenTrac-
ing.io. Istio can send spans to distributed-tracing backends without applications hav-
ing to worry about it. This way, we can dig into what happened during a particular
service interaction, see where latency occurred, and get information about overall call
latency. Let’s explore these capabilities hands-on with our example application.
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TOP-LEVEL METRICS

We’ll first look at some Istio observability features we can get out of the box. In the
previous section, we added two Kubernetes deployments and injected them with the
Istio sidecar proxies. Then we added an Istio ingress gateway, so we could reach our
service from outside the cluster. To get metrics, we will use Prometheus and Grafana.

 Istio by default comes with some sample add-ons or supporting components that
we installed earlier. As noted in the previous sections, these components from the
Istio installation are intended for demo purposes only. For a production setup, you
should install each supporting component following its respective documentation.
Referring again to the diagram of the control plane (figure 2.8), we can see how these
components fit in.

Figure 2.8 Istio control plane and supporting components

Let’s use istioctl to port-forward Grafana to our local machine, so we can see the
dashboards:

$ istioctl dashboard grafana
http:/./localhost:3000

This should automatically open your default browser; if it doesn’t, open a browser and
go to http://localhost:3000. You should arrive at the Grafana home screen, as shown
in figure 2.9. In the upper-left corner, select the Home dashboard to expose a drop-
down list of other dashboards we can switch to.

 Istio has a set of out-of-the-box dashboards that give some basic details about the
services running in Istio (see figure 2.10). With these dashboards, we can see the ser-
vices we have installed and running in the mesh and some of the Istio control-plane
components. In the list of dashboards, click Istio Service Dashboard. (If you don’t see
it in Recents, click to expand the Istio section under Recents.)

Namespace: istio-system

Ingress
gateway

Egress
gateway

Controller

istiod

Supporting components

Jaeger

Traffic in/out of mesh

Kiali GrafanaPrometheus
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Figure 2.9 Grafana home screen
 

Figure 2.10 List of installed Grafana dashboards, including the Istio out-of-the-box dashboards
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The dashboard should show some top-level metrics of the particular service selected.
In the Service drop-down box toward the top of the dashboard, make sure the
webapp.istioinaction.svc.cluster.local service is selected. It should look similar
to figure 2.11.

Figure 2.11 Dashboard for the webapp service

We see metrics like Client Request Volume and Client Success Rate, but the values are
mostly empty or “N/A”. In your command-line shell, let’s send some traffic to the ser-
vices and watch what happens:

$ while true; do curl http:/./localhost/api/catalog; sleep .5; done

Press Ctrl-C to exit this while loop. Now, if you look at the Grafana dashboard, you
should see some interesting traffic, as shown in figure 2.12 (you may have to refresh
the dashboard).

 Our service received some traffic, we had a 100% success rate, and we experienced
P50, P90, and P99 tail latencies. Scroll down the dashboard, and you can see other
interesting metrics about what services and clients are calling the webapp service and
what that behavior looks like.
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Figure 2.12 Top-level metrics for our web app as seen in Grafana

You will notice we have not added any instrumentation to our application code.
Although we should always heavily instrument our applications, what we see here is
what the application actually did over the network regardless of what the application
thinks happened. From a black-box perspective, we can observe how the applications
and their collaborators are behaving in the mesh—and all we did was add the Istio
sidecar proxies. To get a more holistic view of individual calls through the cluster, we
can look at things like distributed tracing to follow a single request as it hits multiple
services. 

DISTRIBUTED TRACING WITH OPEN TRACING

We can use Istio to take care of most of the heavy lifting to get distributed tracing out
of the box. One of the add-ons that comes with Istio’s installation is the Jaeger tracing
dashboard, which we can open like this:

$ istioctl dashboard jaeger

http:/./localhost:16686

Now, let’s use our web browser to navigate to http://localhost:16686, which should take
us to the Jaeger web console (see figure 2.13). The service in the Service drop-down in
the upper-left pane should be istio-ingressgateway.istio-system. If it isn’t, click
the drop-down and select istio-ingressgateway.istio-system. Then click Find
Traces at the lower left in the side pane. You should see some distributed tracing entries.
If you don’t, re-run the traffic-generation client from your command line:

$ while true; do curl http:/./localhost/api/catalog; sleep .5; done

Press Ctrl-C to exit the while loop.
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Figure 2.13 Jaeger distributed-tracing engine web console home page

You should see the most recent calls that came into the cluster and the distributed
tracing spans they generated (see figure 2.14). Clicking one of the span entries dis-
plays the details of a particular call. Figure 2.15 shows that from istio-ingressgate-
way, the call went to the webapp service and then the catalog service.

 In subsequent chapters, we’ll explore how all this works. For now, you should
understand that the Istio service proxy propagated the tracing IDs and metadata
between services and also sent tracing span information to a tracing engine (like Zip-
kin or Jaeger). However, we don’t want to gloss over the fact that the application plays
a small part in this overall capability.
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Figure 2.14 A collection of distributed traces gathered using Istio

Figure 2.15 Detailed spans for a specific call
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Although Istio can propagate the traces between services and to the tracing engine, the
applications are responsible for propagating the tracing metadata inside themselves.
The tracing metadata usually consists of a set of HTTP headers (for HTTP and
HTTPS traffic), and it’s up to the application to correlate the incoming headers with
any outgoing requests. Said another way, Istio cannot know what happens inside a par-
ticular service or application, so it cannot know that a specific request that comes in
should be associated with a specific outgoing request (causation). It relies on the
application to know that and to properly inject the headers into any outgoing request.
From there, Istio can capture those spans and send them to the tracing engine. 

2.4.2 Istio for resiliency

As we’ve discussed, applications that communicate over the network to help complete
their business logic must be aware of and account for the fallacies of distributed com-
puting: they need to deal with network unpredictability. In the past, we tried to
include a lot of this networking workaround code in our applications by doing things
like retries, timeouts, circuit-breaking, and so on. Istio can save us from having to
write this networking code directly into our applications and provide a consistent,
default expectation of resilience for all the applications in the service mesh.

 One such resiliency aspect is retrying requests amid intermittent/transient net-
work errors. For example, if the network experiences failures, our application may see
these errors and continue by just retrying the request. In our example architectures,
we’ll simulate this by driving the behavior from our catalog service.

 If we make a call to our webapp service endpoint, as we did in the previous section,
the call returns successfully. However, if we want all calls to fail, we can use a script that
injects bad behavior into the appli-
cation (see figure 2.16). Running
the following command from the
root of our source code causes all
calls to fail with an HTTP 500 error
response 100% of the time:

$ ./bin/chaos.sh 500 100

If you query the catalog items now,
HTTP 500 is returned:

$ curl -v http:/./localhost/api/catalog

* Trying 192.168.64.67...
* TCP_NODELAY set
* Connected to 192.168.64.67 (192.168.64.67) port 31380 (#0)
> GET /api/catalog HTTP/1.1
> Host: 192.168.64.67:31380
> User-Agent: curl/7.54.0
> Accept: */*
>
< HTTP/1.1 500 Internal Server Error
< content-type: text/plain; charset=utf-8

webapp
service

Istio
proxy

catalog
service

Istio
proxy

Figure 2.16 The catalog service can be provoked 
to fail by injecting bad behavior.
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< x-content-type-options: nosniff
< date: Wed, 17 Apr 2019 00:13:16 GMT
< content-length: 30
< x-envoy-upstream-service-time: 4
< server: istio-envoy
<
error calling Catalog service
* Connection #0 to host 192.168.64.67 left intact

To demonstrate Istio’s ability to automatically perform a retry for an application, let’s
configure the catalog service to generate errors 50% of the time when we call our
webapp service endpoint:

$ ./bin/chaos.sh 500 50

Now we can test the service responses:

$ while true; do curl http:/./localhost/api/catalog ; \
sleep .5; done

Press Ctrl-C to exit this while loop.
 The output from this command should be intermittent successes and failures from

the webapp service. Actually, the failures are caused when webapp talks with catalog
service (the catalog service is misbehaving). Let’s see how we can use Istio to make
the network more resilient between webapp and catalog.

 Using an Istio VirtualService, we can specify rules about interacting with services
in the mesh. The following is an example of the catalogVirtualService definition:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:

name: catalog
spec:

hosts:
- catalog
http:
- route:

- destination:
host: catalog

retries:
attempts: 3
perTryTimeout: 2s

With this definition, we specify that requests to the catalog service are eligible for
retry up to three times, with each try having a timeout of two seconds. If we put this
rule into place, we can use Istio to automatically retry when we experience failures (as
we did in the previous step). Let’s create this rule and re-run our test client script:

$ kubectl apply -f ch2/catalog-virtualservice.yaml

virtualservice.networking.istio.io/catalog created
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Now try running the client script again:

$ while true; do curl http:/./localhost/api/catalog ; \
sleep .5; done

Press Ctrl-C to exit this while loop.
 You should see fewer exceptions bubbling up to the client. Using Istio, and without

touching any application code, we can add a level of resilience when communicating
over the network.

 Let’s disable the failures in the catalog service:

$ ./bin/chaos.sh 500 delete

This should stop any misbehaving responses from catalog. 

2.4.3 Istio for traffic routing

The last Istio capability we’ll look at in this chapter is the ability to have very fine-
grained control over requests in the service mesh no matter how deep they are in a
call graph. So far, we’ve looked at a simple architecture consisting of the webapp ser-
vice providing a facade over any of the services it communicates with in the backend.
The one service it talks to at the moment is catalog. Let’s say we want to add some
new functionality to the catalog service. For this example, we’ll add a flag to the pay-
load to indicate whether an image is available for a particular item in the catalog. We
want to expose this information to end callers (like a user interface capable of under-
standing this flag, or a service that can then use the flag to decide whether to enrich
an item with more image information, and so on) that can handle this change.

 V1 of the catalog service has the following properties in its response:

  {
"id": 1,
"color": "amber",
"department": "Eyewear",
"name": "Elinor Glasses",
"price": "282.00"

}

For v2 of catalog, we have added a new property named imageUrl:

  {
"id": 1,
"color": "amber",
"department": "Eyewear",
"name": "Elinor Glasses",
"price": "282.00"
"imageUrl": "http://lorempixel.com/640/480"

}

When we make requests to the catalog service, for version v2, we’ll expect this new
imageUrl field in the response.
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 In principle, we want to deploy the new version of catalog, but we also want to
finely control to whom it is exposed (released). It’s important to be able to separate
deployment from release in such a way as to reduce the chances of breaking things in pro-
duction and having paying customers be at the forefront of our risky behavior. Specif-
ically, a deployment is when we bring new code to production. When it’s in production,
we can run tests against it and evaluate whether it’s fit for production usage. When we
release code, we bring live traffic to it. We can exercise a phased approach to a release
wherein we route only certain classes of users to the new deployment. One such strat-
egy could be to only route internal employees to new deployments and watch how the
deployment and overall system behave. We could then graduate the traffic up to non-
paying customers, silver-level customers, and so on. We’ll cover more of this principle
in chapter 5 when we look deeper at Istio’s request-routing functionality.

 Using Istio, we can finely control which traffic goes to v1 of our service and which
requests go to v2. We use a concept from Istio called a DestinationRule to split up
our services by version, as follows:

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:

name: catalog
spec:

host: catalog
subsets:
- name: version-v1

labels:
version: v1

- name: version-v2
labels:

version: v2

With this DestinationRule, we denote two different versions of the catalog service.
We specify the group based on the labels of the deployments in Kubernetes. Any
Kubernetes Pods labeled with version: v2 belong to the v2 group of the catalog ser-
vice that Istio knows about. Before we create the DestinationRule, let’s deploy a sec-
ond version of catalog:

$ kubectl apply \
-f services/catalog/kubernetes/catalog-deployment-v2.yaml

deployment.extensions/catalog-v2 created

When the new deployment is ready, we see a second catalog Pod:

$ kubectl get pod

NAME READY STATUS RESTARTS AGE
webapp-bd97b9bb9-q9g46 2/2 Running 0 17m
catalog-5dc749fd84-fwcl8 2/2 Running 0 10m
catalog-v2-64d758d964-rldc7 2/2 Running 0 38s
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If we call our service a handful of times, some of the responses have our new imageUrl
field in the response, and some do not. By default, Kubernetes can do a limited form
of load balancing between the two versions:

$ while true; do curl http:/./localhost/api/catalog; sleep .5; done

Press Ctrl-C to exit this while loop.
 However, we want to safely deploy software to production without impacting end

users, and we also have the option to test it in production before releasing it. So we
will restrict traffic to the v1 version of catalog for now.

 The first thing we do is let Istio know how to identify different versions of our
catalog service. We use the DestinationRule to do that:

$ kubectl apply -f ch2/catalog-destinationrule.yaml
destinationrule.networking.istio.io/catalog created

Next, we create a rule in the catalog VirtualService that says to route all traffic to
v1 of catalog:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:

name: catalog
spec:

hosts:
- catalog
http:
- route:

- destination:
host: catalog
subset: version-v1

Let’s update the catalogVirtualService with our new traffic routing rule:

$ kubectl apply -f ch2/catalog-virtualservice-all-v1.yaml

virtualservice.networking.istio.io/catalog created

Now, if we send traffic to our webapp endpoint, we see only v1 responses:

$ while true; do curl http:/./localhost/api/catalog; sleep .5; done

Press Ctrl-C to exit this while loop.
 Let’s say that for certain users, we want to expose the functionality of v2 of the

catalog service. Istio gives us the power to control the routing for individual requests
and match on things like request path, headers, cookies, and so on. If users pass in a
specific header, we will allow them to hit the new catalog v2 service. Using a revised
VirtualService definition for catalog, let’s match on a header called x-dark-
launch. We’ll send any requests with that header to catalog v2:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
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metadata:
name: catalog

spec:
hosts:
- catalog
http:
- match:

- headers:
x-dark-launch:
exact: "v2"

route:
- destination:

host: catalog
subset: version-v2

- route:
- destination:

host: catalog
subset: version-v1

Let’s create this new routing rule in our VirtualService:

$ kubectl apply -f ch2/catalog-virtualservice-dark-v2.yaml
virtualservice.networking.istio.io/catalog configured

Try calling the webapp endpoint again. You should see only v1 responses from the
catalog service in the response:

$ while true; do curl http:/./localhost/api/catalog; sleep .5; done

Now, let’s call the endpoint with our special header x-dark-launch:

$ curl http:/./localhost/api/catalog -H "x-dark-launch: v2"
[

{
"id": 0,
"color": "teal",
"department": "Clothing",
"name": "Small Metal Shoes",
"price": "232.00",
"imageUrl": "http://lorempixel.com/640/480"

}
]

When we include the x-dark-launch: v2 header in our call, we see the response from
the catalog-v2 service; all other traffic goes to catalog-v1. Here we’ve used Istio to
finely control the traffic to our services based on individual requests.

 Before we move on, delete the example applications. We’ll reinstall the individual
components as we go:

$ kubectl delete deployment,svc,gateway,\
virtualservice,destinationrule --all -n istioinaction

In the next chapter, we take a deeper look at the Envoy proxy, Istio’s default data-
plane proxy, to understand it as a standalone component. Then we show how Istio
uses Envoy to achieve the functionality desired by a service mesh. 

A match 
clause

A route to v2 that is 
activated when matched

Default 
route
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Summary
 We can use istioctl to install Istio and istioctl x precheck to verify that Istio

can be installed in a cluster.
 Istio’s configuration is implemented as Kubernetes custom resources.
 To configure proxies, we describe the intent in YAML (according to the Istio

custom resources) and apply it to the cluster.
 The control plane watches for Istio resources, converts them to Envoy configu-

ration, and uses the xDS API to dynamically update Envoy proxies.
 Inbound and outbound traffic to and from the mesh is managed by ingress and

egress gateways.
 The sidecar proxy can be injected manually into YAML using istioctl kube-

inject.
 In namespaces labeled with istio-injection=enabled, the proxies are auto-

matically injected into newly created Pods.
 We can use the VirtualService API to manipulate application network traffic,

such as implementing retries on failed requests.



Istio’s data plane:
The Envoy proxy
When we introduced the idea of a service mesh in chapter 1, we established the
concept of a service proxy and how this proxy understands application-level con-
structs (for example, application protocols like HTTP and gRPC) and enhances an
application’s business logic with non-differentiating application-networking logic.
A service proxy runs collocated and out of process with the application, and the
application talks through the service proxy whenever it wants to communicate with
other services.

 With Istio, the Envoy proxies are deployed collocated with all application
instances participating in the service mesh, thus forming the service-mesh data
plane. Since Envoy is such a critical component in the data plane and in the overall

This chapter covers
 Understanding the standalone Envoy proxy and 

how it contributes to Istio

 Exploring how Envoy’s capabilities are core to a 
service mesh like Istio

 Configuring Envoy with static configuration

 Using Envoy’s Admin API to introspect and debug it
54
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service-mesh architecture, we spend this chapter getting familiar with it. This should
give you a better understanding of Istio and how to debug or troubleshoot your
deployments.

3.1 What is the Envoy proxy?
Envoy was developed at Lyft to solve some of the difficult application networking
problems that crop up when building distributed systems. It was contributed as an
open source project in September 2016, and a year later (September 2017) it joined
the Cloud Native Computing Foundation (CNCF). Envoy is written in C++ in an effort
to increase performance and, more importantly, to make it more stable and determin-
istic at higher load echelons.

 Envoy was created following two critical principles:

The network should be transparent to applications. When network and application
problems do occur it should be easy to determine the source of the problem.

—Envoy announcement

Envoy is a proxy, so before we go any further, we should make very clear what a proxy
is. We already mentioned that a proxy is an intermediary component in a network
architecture that is positioned in the middle of the communication between a client
and a server (see figure 3.1). Being in the middle enables it to provide additional fea-
tures like security, privacy, and policy.

Proxies can simplify what a client needs to know when talking to a service. For exam-
ple, a service may be implemented as a set of identical instances (a cluster), each of
which can handle a certain amount of load. How should the client know which
instance or IP address to use when making requests to that service? A proxy can stand
in the middle with a single identifier or IP address, and clients can use that to talk to
the instances of the service. Figure 3.2 shows how the proxy handles load balancing
across the instances of the service without the client knowing any details of how things
are actually deployed. Another common function of this type of reverse proxy is
checking the health of instances in the cluster and routing traffic around failing or
misbehaving backend instances. This way, the proxy can protect the client from hav-
ing to know and understand which backends are overloaded or failing.

 

ServerClient Proxy Figure 3.1 A proxy is an 
intermediary that adds 
functionality to the flow of traffic.
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Figure 3.2 A proxy can hide backend topology from clients and 
implement algorithms to fairly distribute traffic (load balancing).

The Envoy proxy is specifically an application-level proxy that we can insert into the
request path of our applications to provide things like service discovery, load balanc-
ing, and health checking, but Envoy can do more than that. We’ve hinted at some of
these enhanced capabilities in earlier chapters, and we’ll cover them more in this
chapter. Envoy can understand layer 7 protocols that an application may speak when
communicating with other services. For example, out of the box, Envoy understands
HTTP 1.1, HTTP 2, gRPC, and other protocols and can add behavior like request-
level timeouts, retries, per-retry timeouts, circuit breaking, and other resilience fea-
tures. Something like this cannot be accomplished with basic connection-level (L3/
L4) proxies that only understand connections.

 Envoy can be extended to understand protocols in addition to the out-of-the-box
defaults. Filters have been written for databases like MongoDB, DynamoDB, and even
asynchronous protocols like Advanced Message Queuing Protocol (AMQP). Reliability
and the goal of network transparency for applications are worthwhile endeavors, but
just as important is the ability to quickly understand what’s happening in a distributed
architecture, especially when things are not working as expected. Since Envoy under-
stands application-level protocols and application traffic flows through Envoy, the
proxy can collect lots of telemetry about the requests flowing through the system, such
as how long they’re taking, how many requests certain services are seeing (through-
put), and what error rates the services are experiencing. We will cover Envoy’s teleme-
try-collection capabilities in chapter 7 and its extensibility in chapter 14.

Service A

IP: 8.8.8.8

Client Proxy

IP: 2.2.2.2

Service A

IP: 7.7.7.7

Service A

IP: 9.9.9.9
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 As a proxy, Envoy is designed to shield developers from networking concerns by
running out-of-process from applications. This means any application written in any
programming language or with any framework can take advantage of these features.
Moreover, although services architectures (SOA, microservices, and so on) are the
architecture de jour, Envoy doesn’t care if you’re doing microservices or if you have
monoliths and legacy applications written in any language. As long as they speak pro-
tocols that Envoy can understand (like HTTP), Envoy can provide benefits.

 Envoy is a very versatile proxy and can be used in different roles: as a proxy at the
edge of your cluster (as an ingress point), as a shared proxy for a single host or group
of services, and even as a per-service proxy as we see with Istio. With Istio, a single
Envoy proxy is deployed per service instance to achieve the most flexibility, perfor-
mance, and control. Just because you use one type of deployment pattern (a sidecar
service proxy) doesn’t mean you cannot also have the edge served with Envoy. In fact,
having the proxy be the same implementation at the edge as well as located within the
application traffic can make your infrastructure easier to operate and reason about.
As we’ll see in chapter 4, Envoy can be used at the edge for ingress and to tie into the
service mesh to give full control and observe traffic from the point it enters the cluster
all the way to the individual services in a call graph for a particular request. 

3.1.1 Envoy’s core features

Envoy has many features useful for inter-service communication. To help understand
these features and capabilities, you should be familiar with the following Envoy con-
cepts at a high level:

 Listeners—Expose a port to the outside world to which applications can con-
nect. For example, a listener on port 80 accepts traffic and applies any config-
ured behavior to that traffic.

 Routes—Routing rules for how to handle traffic that comes in on listeners. For
example, if a request comes in and matches /catalog, direct that traffic to the
catalog cluster.

 Clusters—Specific upstream services to which Envoy can route traffic. For exam-
ple, catalog-v1 and catalog-v2 can be separate clusters, and routes can spec-
ify rules about how to direct traffic to either v1 or v2 of the catalog service.

This is a conceptual understanding of what Envoy does for L7 traffic. We will go into
more detail in chapter 14.

 Envoy uses terminology similar to that of other proxies when conveying traffic
directionality. For example, traffic comes into a listener from a downstream system. This
traffic is routed to one of Envoy’s clusters, which is responsible for sending that traffic
to an upstream system (as shown in figure 3.3). Traffic flows through Envoy from down-
stream to upstream. Now, let’s move on to some of Envoy’s features.
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Figure 3.3 A request comes in from a downstream system through the listeners, goes through 
the routing rules, and ends up going to a cluster that sends it to an upstream service.

SERVICE DISCOVERY

Instead of using runtime-specific libraries for client-side service discovery, Envoy can
do this automatically for an application. By configuring Envoy to look for service end-
points from a simple discovery API, applications can be agnostic to how service end-
points are found. The discovery API is a simple REST API that can be used to wrap
other common service-discovery APIs (like HashiCorp Consul, Apache ZooKeeper,
Netflix Eureka, and so on). Istio’s control plane implements this API out of the box.

 Envoy is specifically built to rely on eventually consistent updates to the service-discov-
ery catalog. This means in a distributed system we cannot expect to know the exact status
of all services with which we can communicate and whether they’re available. The best
we can do is use the knowledge at hand, employ active and passive health checking, and
expect that those results may not be the most up to date (nor could they be).

 Istio abstracts away a lot of this detail by providing a higher-level set of resources
that drives the configuration of Envoy’s service-discovery mechanisms. We’ll look
more closely at this throughout the book. 

LOAD BALANCING

Envoy implements a few advanced load-balancing algorithms that applications can
take advantage of. One of the more interesting capabilities of Envoy’s load-balancing
algorithms is the locality-aware load balancing. In this situation, Envoy is smart enough
to keep traffic from crossing any locality boundaries unless it meets certain criteria
and will provide a better balance of traffic. For example, Envoy makes sure that ser-
vice-to-service traffic is routed to instances in the same locality unless doing so would
create a failure situation. Envoy provides out-of-the-box load-balancing algorithms for
the following strategies:

 Random
 Round robin
 Weighted, least request
 Consistent hashing (sticky) 
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TRAFFIC AND REQUEST ROUTING

Because Envoy can understand application protocols like HTTP 1.1 and HTTP 2, it
can use sophisticated routing rules to direct traffic to specific backend clusters. Envoy
can do basic reverse-proxy routing like mapping virtual hosts and context-path rout-
ing; it can also do header- and priority-based routing, retries and timeouts for routing,
and fault injection. 

TRAFFIC SHIFTING AND SHADOWING CAPABILITIES

Envoy supports percentage-based (that is, weighted) traffic splitting/shifting. This
enables agile teams to use continuous delivery techniques that mitigate risk such as
canary releases. Although they mitigate risk to a smaller user pool, canary releases still
deal with live user traffic.

 Envoy can also make copies of the traffic and shadow that traffic in a fire and forget
mode to an Envoy cluster. You can think of this shadowing capability as something like
traffic splitting, but the requests that the upstream cluster sees are a copy of the live
traffic; thus we can route shadowed traffic to a new version of a service without really
acting on live production traffic. This is a very powerful capability for testing service
changes with production traffic without impacting customers. We’ll see more of this in
chapter 5. 

NETWORK RESILIENCE

Envoy can be used to offload certain classes of resilience problems, but note that it’s
the application’s responsibility to fine-tune and configure these parameters. Envoy
can automatically do request timeouts as well as request-level retries (with per-retry
timeouts). This type of retry behavior is very useful when a request experiences inter-
mittent network instability. On the other hand, retry amplification can lead to cascad-
ing failures; Envoy allows you to limit retry behavior. Also note that application-level
retries may still be needed and cannot be completely offloaded to Envoy. Additionally,
when Envoy calls upstream clusters, it can be configured with bulkheading character-
istics like limiting the number of connections or outstanding requests in flight and to
fast-fail any that exceed those thresholds (with some jitter on those thresholds).
Finally, Envoy can perform outlier detection, which behaves like a circuit breaker, and
eject endpoints from the load-balancing pool when they misbehave. 

HTTP/2 AND GRPC
HTTP/2 is a significant improvement to the HTTP protocol that allows multiplexing
requests over a single connection, server-push interactions, streaming interactions,
and request backpressure. Envoy was built from the beginning to be an HTTP/1.1
and HTTP/2 proxy with proxying capabilities for each protocol both downstream and
upstream. This means, for example, that Envoy can accept HTTP/1.1 connections
and proxy to HTTP/2—or vice versa—or proxy incoming HTTP/2 to upstream
HTTP/2 clusters. gRPC is an RPC protocol using Google Protocol Buffers (Protobuf)
that lives on top of HTTP/2 and is also natively supported by Envoy. These are power-
ful features (and difficult to get correct in an implementation) and differentiate
Envoy from other service proxies. 
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OBSERVABILITY WITH METRICS COLLECTION

As we saw in the Envoy announcement from Lyft back in September 2016, one of the
goals of Envoy is to help make the network understandable. Envoy collects a large set
of metrics to help achieve this goal. It tracks many dimensions around the down-
stream systems that call it, the server itself, and the upstream clusters to which it sends
requests. Envoy’s stats are tracked as counters, gauges, or histograms. Table 3.1 lists
some examples of the types of statistics tracked for an upstream cluster.

Envoy can emit stats using configurable adapters and formats. Out of the box, Envoy
supports the following:

 StatsD
 Datadog; DogStatsD
 Hystrix formatting
 Generic metrics service 

OBSERVABILITY WITH DISTRIBUTED TRACING

Envoy can report trace spans to OpenTracing (http://opentracing.io) engines to visu-
alize traffic flow, hops, and latency in a call graph. This means you don’t have to install
special OpenTracing libraries. On the other hand, the application is responsible for
propagating the necessary Zipkin headers, which can be done with thin wrapper
libraries. 

 Envoy generates a x-request-id header to correlate calls across services and can
also generate the initial x-b3* headers when tracing is triggered. The headers that the
application is responsible for propagating are as follows:

 x-b3-traceid

 x-b3-spanid

 x-b3-parentspanid

 x-b3-sampled

 x-b3-flags 

Table 3.1 Some of the stats that the Envoy proxy collects

Statistic Description

downstream_cx_total Total connections

downstream_cx_http1_active Total active HTTP/1.1 connections

downstream_rq_http2_total Total HTTP/2 requests

cluster.<name>.upstream_cx_overflow Total number of times that the cluster’s connection 
circuit breaker overflowed

cluster.<name>.upstream_rq_retry Total number of request retries

cluster.<name>.ejections_detected_c
onsecutive_5xx

Number of detected consecutive 5xx ejections (even 
if unenforced)

http://opentracing.io
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AUTOMATIC TLS TERMINATION AND ORIGINATION

Envoy can terminate Transport Level Security (TLS) traffic destined for a specific ser-
vice both at the edge of a cluster and deep within a mesh of service proxies. A more
interesting capability is that Envoy can be used to originate TLS traffic to an upstream
cluster on behalf of an application. For enterprise developers and operators, this means
we don’t have to muck with language-specific settings and keystores or truststores. By
having Envoy in our request path, we can automatically get TLS and even mutual TLS. 

RATE LIMITING

An important aspect of resiliency is the ability to restrict or limit access to resources
that are protected. Resources like databases or caches or shared services may be pro-
tected for various reasons:

 Expensive to call (per-invocation cost)
 Slow or unpredictable latency
 Fairness algorithms needed to protect against starvation

Especially as services are configured for retries, we don’t want to magnify the effect of
certain failures in the system. To help throttle requests in these scenarios, we can use a
global rate-limiting service. Envoy can integrate with a rate-limiting service at both the
network (per connection) and HTTP (per request) levels. We’ll show how to do that
in chapter 14. 

EXTENDING ENVOY

At its core, Envoy is a byte-processing engine on which protocol (layer 7) codecs
(called filters) can be built. Envoy makes building additional filters a first-class use case
and an exciting way to extend Envoy for specific use cases. Envoy filters are written in
C++ and compiled into the Envoy binary. Additionally, Envoy supports Lua
(www.lua.org) scripting and WebAssembly (Wasm) for a less invasive approach to
extending Envoy functionality. Extending Envoy is covered in chapter 14. 

3.1.2 Comparing Envoy to other proxies

Envoy’s sweet spot is playing the role of application or service proxy, where Envoy
facilitates applications talking to each other through the proxy and solves the prob-
lems of reliability and observability. Other proxies have evolved from load balancers
and web servers into more capable and performant proxies. Some of these communi-
ties don’t move all that fast or are closed source and have taken a while to evolve to
the point that they can be used in application-to-application scenarios. In particular,
Envoy shines with respect to other proxies in these areas:

 Extensibility with WebAssembly
 Open community
 Modular codebase built for maintenance and extension
 HTTP/2 support (upstream and downstream)
 Deep protocol metrics collection
 C++ / non-garbage-collected
 Dynamic configuration, no need for hot restarts
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For a more specific and detailed comparison, see the following:

 Envoy documentation and comparison: http://bit.ly/2U2g7zb
 Turbine Labs’ switch from Nginx to Envoy: http://bit.ly/2nn4tPr
 Cindy Sridharan’s initial take on Envoy: http://bit.ly/2OqbMkR
 Why Ambassador chose Envoy over HAProxy and Nginx: http://bit.ly/2OVbsvz

3.2 Configuring Envoy
Envoy is driven by a configuration file in either JSON or YAML format. The configura-
tion file specifies listeners, routes, and clusters as well as server-specific settings like
whether to enable the Admin API, where access logs should go, tracing engine config-
uration, and so on. If you are already familiar with Envoy or Envoy configuration, you
may know that there are different versions of the Envoy config. The initial versions, v1
and v2, have been deprecated in favor of v3. We look only at v3 configuration in this
book, as that’s the go-forward version and is what Istio uses.

 Envoy’s v3 configuration API is built on gRPC. Envoy and implementers of the v3
API can take advantage of streaming capabilities when calling the API and reduce the
time required for Envoy proxies to converge on the correct configuration. In practice,
this eliminates the need to poll the API and allows the server to push updates to the
Envoys instead of the proxies polling at periodic intervals.

3.2.1 Static configuration

We can specify listeners, route rules, and clusters using Envoy’s configuration file. The
following is a very simple Envoy configuration:

static_resources:
listeners:
- name: httpbin-demo

address:
socket_address: {

address: 0.0.0.0, port_value: 15001 }
filter_chains:
- filters:

- name: envoy.http_connection_manager
config:
stat_prefix: egress_http
route_config:

name: httpbin_local_route
virtual_hosts:
- name: httpbin_local_service

domains: ["*"]
routes:
- match: { prefix: "/" }

route:
auto_host_rewrite: true
cluster: httpbin_service

http_filters:
- name: envoy.router

Listener definitions

HTTP filter

Route rules

Wildcard virtual hosts

Route to a cluster

http://bit.ly/2U2g7zb
http://bit.ly/2nn4tPr
http://bit.ly/2OqbMkR
http://bit.ly/2OVbsvz
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clusters:
- name: httpbin_service

connect_timeout: 5s
type: LOGICAL_DNS
# Comment out the following line to test on v6 networks
dns_lookup_family: V4_ONLY
lb_policy: ROUND_ROBIN
hosts: [{ socket_address: {

address: httpbin, port_value: 8000 }}]

This simple Envoy configuration file declares a listener that opens a socket on port
15001 and attaches a chain of filters to it. The filters configure the http_connection
_manager in Envoy with routing directives. The simple routing directive in this example
is to match on the wildcard * for all virtual hosts and route all traffic to the httpbin
_service cluster. The last section of the configuration defines the connection proper-
ties to the httpbin_service cluster. This example specifies LOGICAL_DNS for endpoint
service discovery and ROUND_ROBIN for load balancing when talking to the upstream
httpbin service. See Envoy’s documentation (http://mng.bz/xvJY) for more.

 This configuration file creates a listener to which incoming traffic can connect and
routes all traffic to the httpbin cluster. It also specifies what load-balancing settings to
use and what kind of connect timeout to use. If we call this proxy, we expect our
request to be routed to an httpbin service.

 Notice that much of the configuration is specified explicitly (what listeners there
are, what the routing rules are, what clusters we can route to, and so on). This is an
example of a fully static configuration file. In previous sections, we pointed out that
Envoy can dynamically configure its various settings. For the hands-on section of
Envoy, we’ll use the static configurations, but we’ll first cover the dynamic services and
how Envoy uses its xDS APIs for dynamic configuration. 

3.2.2 Dynamic configuration

Envoy can use a set of APIs to do inline configuration updates without any downtime
or restarts. It just needs a simple bootstrap configuration file that points the configu-
ration to the correct discovery service APIs; the rest is configured dynamically. Envoy
uses the following APIs for dynamic configuration:

 Listener discovery service (LDS)—An API that allows Envoy to query what listeners
should be exposed on this proxy.

 Route discovery service (RDS)—Part of the configuration for listeners that specifies
which routes to use. This is a subset of LDS for when static and dynamic config-
uration should be used.

 Cluster discovery service (CDS)—An API that allows Envoy to discover what clusters
and respective configuration for each cluster this proxy should have.

 Endpoint discovery service (EDS)—Part of the configuration for clusters that speci-
fies which endpoints to use for a specific cluster. This is a subset of CDS.

 Secret discovery service (SDS)—An API used to distribute certificates.

Upstream cluster

http://mng.bz/xvJY
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 Aggregate discovery service (ADS)—A serialized stream of all the changes to the
rest of the APIs. You can use this single API to get all of the changes in order.

Collectively, these APIs are referred to as the xDS services. A configuration can use
one or some combination of them; you don’t have to use them all. Note that Envoy’s
xDS APIs are built on a premise of eventual consistency and that correct configura-
tions eventually converge. For instance, Envoy could get an update to RDS with a new
route that routes traffic to a cluster foo that has not yet been updated in CDS yet. The
route could introduce routing errors until the CDS is updated. Envoy introduced ADS
to account for this ordering race condition. Istio implements ADS for proxy configu-
ration changes.

 For example, to dynamically discover the listeners for an Envoy proxy, we can use a
configuration like the following:

dynamic_resources:
lds_config:

api_config_source:
api_type: GRPC
grpc_services:

- envoy_grpc:
cluster_name: xds_cluster

clusters:
- name: xds_cluster

connect_timeout: 0.25s
type: STATIC
lb_policy: ROUND_ROBIN
http2_protocol_options: {}
hosts: [{ socket_address: {

address: 127.0.0.3, port_value: 5678 }}]

With this configuration, we don’t need to explicitly configure each listener in the con-
figuration file. We’re telling Envoy to use the LDS API to discover the correct listener
configuration values at run time. We do, however, configure one cluster explicitly: the
cluster where the LDS API lives (named xds_cluster in this example).

 For a more concrete example, Istio uses a bootstrap configuration for its service
proxies, similar to the following:

bootstrap:
dynamicResources:

ldsConfig:
ads: {}            

cdsConfig:
ads: {}

adsConfig:
apiType: GRPC
grpcServices:
- envoyGrpc:

clusterName: xds-grpc
refreshDelay: 1.000s

staticResources:

Configuration for 
listeners (LDS)

Go to this cluster for 
the listener API.

gRPC cluster that 
implements LDS

ADS for listeners

ADS for clusters

Uses a cluster 
named xds-grpc
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clusters:
- name: xds-grpc

type: STRICT_DNS
connectTimeout: 10.000s
hosts:
- socketAddress:

address: istio-pilot.istio-system
portValue: 15010

circuitBreakers:
thresholds:
- maxConnections: 100000
maxPendingRequests: 100000
maxRequests: 100000

- priority: HIGH
maxConnections: 100000
maxPendingRequests: 100000
maxRequests: 100000

http2ProtocolOptions: {}

Let’s tinker with a simple static Envoy configuration file to see Envoy in action. 

3.3 Envoy in action
Envoy is written in C++ and compiled to a native/specific platform. The best way to
get started with Envoy is to use Docker and run a Docker container with it. We’ve been
using Docker Desktop for this book, but access to any Docker daemon can be used for
this section. For example, on a Linux machine, you can directly install Docker.

 Start by pulling in three Docker images that we’ll use to explore Envoy’s functionality:

$ docker pull envoyproxy/envoy:v1.19.0
$ docker pull curlimages/curl
$ docker pull citizenstig/httpbin

To begin, we’ll create a simple httpbin service. If you’re not familiar with httpbin,
you can go to http://httpbin.org and explore the different endpoints available. It basi-
cally implements a service that can return headers that were used to call it, delay an
HTTP request, or throw an error, depending on which endpoint we call. For example,
navigate to http://httpbin.org/headers. Once we start the httpbin service, we’ll start
up Envoy and configure it to proxy all traffic to the httpbin service. Then we’ll start
up a client app and call the proxy. The simplified architecture of this example is
shown in figure 3.4.

Figure 3.4 The example applications we’ll use to exercise 
some of Envoy’s functionality

Defines the xds-
grpc cluster

Reliability and circuit-
breaking settings

httpbin 
service

curl
client

Envoy 
proxy

http://httpbin.org
http://httpbin.org/headers
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Run the following command to set up the httpbin service running in Docker:

$ docker run -d --name httpbin citizenstig/httpbin
787b7ec9365ff01841f2525cdd4e74e154e9d345f633a4004027f7ff1926e317

Let’s test that our new httpbin service was correctly deployed by querying the /head-
ers endpoint:

$ docker run -it --rm --link httpbin curlimages/curl \
curl -X GET http://httpbin:8000/headers

{
"headers": {

"Accept": "*/*",
"Host": "httpbin:8000",
"User-Agent": "curl/7.80.0"

}
}

You should see similar output; the response returns with the headers we used to call
the /headers endpoint.

 Now let’s run our Envoy proxy, pass --help to the command, and explore some of
its flags and command-line parameters:

$ docker run -it --rm envoyproxy/envoy:v1.19.0 envoy --help

Some of the interesting flags are -c for passing in a configuration file, --service-zone
for specifying the availability zone into which the proxy is deployed, and --service-
node for giving the proxy a unique name. You may also be interested in the --log-
level flag, which controls how verbose the logging is from the proxy.

 Let’s try to run Envoy:

$ docker run -it --rm envoyproxy/envoy:v1.19.0 envoy

[2021-11-21 21:28:37.347][1][info][main]

➥[source/server/server.cc:855] exiting
At least one of --config-path or --config-yaml or

➥Options::configProto() should be non-empty

What happened? We tried to run the proxy, but we did not pass in a valid configura-
tion file. Let’s fix that and pass in a simple configuration file based on the sample con-
figuration we saw earlier. It has this structure:

static_resources:
listeners:
- name: httpbin-demo

address:
socket_address:

address: 0.0.0.0
port_value: 15001

filter_chains:
- filters:

- name: envoy.filters.network.http_connection_manager

A listener on 
port 15001
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typed_config:
"@type": type.googleapis.com/envoy.extensions.filters.

➥network.http_connection_manager.v3.HttpConnectionManager
stat_prefix: ingress_http
http_filters:
- name: envoy.filters.http.router
route_config:

name: httpbin_local_route
virtual_hosts:
- name: httpbin_local_service

domains: ["*"]
routes:
- match: { prefix: "/" }

route:
auto_host_rewrite: true
cluster: httpbin_service

clusters:
- name: httpbin_service

connect_timeout: 5s
type: LOGICAL_DNS
dns_lookup_family: V4_ONLY
lb_policy: ROUND_ROBIN
load_assignment:

cluster_name: httpbin
endpoints:
- lb_endpoints:
- endpoint:

address:
socket_address:

address: httpbin
port_value: 8000

Basically, we’re exposing a single listener on port 15001, and we route all traffic to our
httpbin cluster. Let’s start up Envoy with this configuration file (ch3/simple.yaml)
located at the root of the source code:

$ docker run --name proxy --link httpbin envoyproxy/envoy:v1.19.0 \
--config-yaml "$(cat ch3/simple.yaml)"

5d32538c078a6e14ba0d4072d6ff10592a8a439714e7c9ac9c69e1ff71aa54f2

$ docker logs proxy
[2018-08-09 22:57:50.769][5][info][config]

➥all dependencies initialized. starting workers
[2018-08-09 22:57:50.769][5][info][main]

➥starting main dispatch loop

The proxy starts successfully and is listening on port 15001. Let’s use a simple com-
mand-line client, curl, to call the proxy:

$ docker run -it --rm --link proxy curlimages/curl \
curl -X GET http://proxy:15001/headers

{
"headers": {

A simple 
route rule

A cluster 
for httpbin
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"Accept": "*/*",
"Content-Length": "0",
"Host": "httpbin",
"User-Agent": "curl/7.80.0",
"X-Envoy-Expected-Rq-Timeout-Ms": "15000",
"X-Request-Id": "45f74d49-7933-4077-b315-c15183d1da90"

}
}

The traffic was correctly sent to the httpbin service even though we called the proxy.
We also have some new headers:

 X-Envoy-Expected-Rq-Timeout-Ms

 X-Request-Id

It may seem insignificant, but Envoy is already doing a lot for us. It generated a new
X-Request-Id, which can be used to correlate requests across a cluster and potentially
multiple hops across services to fulfill the request. The second header, X-Envoy-
Expected-Rq-Timeout-Ms, is a hint to upstream services that the request is expected
to time out after 15,000 ms. Upstream systems, and any other hops the request takes,
can use this hint to implement a deadline. A deadline allows us to communicate time-
out intentions to upstream systems and lets them cease processing if the deadline has
passed. This frees up resources after a timeout has been executed.

 Now, let’s alter this configuration a little and try to set the expected request time-
out to one second. In our configuration file, we update the route rule:

- match: { prefix: "/" }
route:

auto_host_rewrite: true
cluster: httpbin_service
timeout: 1s

For this example, we’ve already updated the configuration file, and it’s available in the
Docker image: simple_change_timeout.yaml. We can pass it as an argument to Envoy.
Let’s stop our existing proxy and restart it with this new configuration file:

$ docker rm -f proxy
proxy

$ docker run --name proxy --link httpbin envoyproxy/envoy:v1.19.0 \
--config-yaml "$(cat ch3/simple_change_timeout.yaml)"

26fb84558165ae9f9d9afb67e9dd7f553c4d412989904542795a82cc721f1ce5

Now, let’s call the proxy again:

$ docker run -it --rm --link proxy curlimages/curl \
curl -X GET http://proxy:15001/headers

{
"headers": {

"Accept": "*/*",
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"Content-Length": "0",
"Host": "httpbin",
"User-Agent": "curl/7.80.0",
"X-Envoy-Expected-Rq-Timeout-Ms": "1000",
"X-Request-Id": "c7e9212a-81e0-4ac2-9788-2639b9898772"

}
}

The expected request timeout value has changed to 1000. Next, let’s do something a
little more exciting than changing the deadline hint headers.

3.3.1 Envoy’s Admin API

To explore more of Envoy’s functionality, let’s first get familiar with Envoy’s Admin API.
The Admin API gives us insight into how the proxy is behaving, access to its metrics, and
access to its configuration. Let’s start by running curl against http://proxy:15000/stats:

$ docker run -it --rm --link proxy curlimages/curl \
curl -X GET http://proxy:15000/stats

The response is a long list of statistics and metrics for the listeners, clusters, and
server. We can trim the output using grep and only show those statistics that include
the word retry:

$ docker run -it --rm --link proxy curlimages/curl \
curl -X GET http://proxy:15000/stats | grep retry

cluster.httpbin_service.retry_or_shadow_abandoned: 0
cluster.httpbin_service.upstream_rq_retry: 0
cluster.httpbin_service.upstream_rq_retry_overflow: 0
cluster.httpbin_service.upstream_rq_retry_success: 0

If you call the Admin API directly, without the /stats context path, you should see a
list of other endpoints you can call. Some endpoints to explore include the following:

 /certs—Certificates on the machine
 /clusters—Clusters Envoy is configured with
 /config_dump—A dump of the Envoy configuration
 /listeners—Listeners Envoy is configured with
 /logging—Lets you view and change logging settings
 /stats—Envoy statistics
 /stats/prometheus—Envoy statistics formatted as Prometheus records 

3.3.2 Envoy request retries

Let’s cause some failures in our request to httpbin and watch how Envoy can automat-
ically retry a request for us. First we update the configuration file to use a retry_policy:

- match: { prefix: "/" }
route:

auto_host_rewrite: true

http://proxy:15000/stats
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cluster: httpbin_service
retry_policy:

retry_on: 5xx
num_retries: 3

Just as in the previous example, you don’t have to update the configuration file: an
updated version named simple_retry.yaml is available on the Docker image. Let’s pass
in the configuration file this time when we start Envoy:

$ docker rm -f proxy
proxy

$ docker run --name proxy --link httpbin envoyproxy/envoy:v1.19.0 \
--config-yaml "$(cat ch3/simple_retry.yaml)"

4f99c5e3f7b1eb0ab3e6a97c16d76827c15c2020c143205c1dc2afb7b22553b4

Now we call our proxy with the /status/500 context path. Calling httpbin (which the
proxy does) with that context path forces an error:

$ docker run -it --rm --link proxy curlimages/curl \
curl -v http://proxy:15001/status/500

When the call completes, we shouldn’t see any response. What happened? Let’s ask
Envoy’s Admin API:

$ docker run -it --rm --link proxy curlimages/curl \
curl -X GET http://proxy:15000/stats | grep retry

cluster.httpbin_service.retry.upstream_rq_500: 3
cluster.httpbin_service.retry.upstream_rq_5xx: 3
cluster.httpbin_service.retry_or_shadow_abandoned: 0
cluster.httpbin_service.upstream_rq_retry: 3
cluster.httpbin_service.upstream_rq_retry_overflow: 0
cluster.httpbin_service.upstream_rq_retry_success: 0

Envoy encountered an HTTP 500 response when talking to the upstream cluster
httpbin. This is as we expected. Envoy also automatically retried the request for us, as
indicated by the stat cluster.httpbin_service.upstream_rq_retry: 3.

 We just demonstrated some very basic capabilities of Envoy that automatically give
us reliability in our application networking. We used static configuration files to rea-
son about and demonstrate these capabilities; but as we saw in the previous section,
Istio uses dynamic configuration capabilities. Doing so allows Istio to manage a large
fleet of Envoy proxies, each with its own potentially complex configuration. Refer to
the Envoy documentation (www.envoyproxy.io) or the “Microservices Patterns with
Envoy Sidecar Proxy” series of blog posts (http://bit.ly/2M6Yld3) for more detail
about Envoy’s capabilities. 

Retry on 5xx

Number 
of times

http://bit.ly/2M6Yld3
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3.4 How Envoy fits with Istio
Envoy provides the bulk of the heavy lifting for most of the Istio features we covered in
chapter 2 and throughout this book. As a proxy, Envoy is a great fit for the service-
mesh use case; however, to get the most value out of Envoy, it needs supporting infra-
structure or components. The supporting components that allow for user configura-
tion, security policies, and runtime settings, which Istio provides, create the control
plane. Envoy also does not do all the work in the data plane and needs support. To
learn more about that, see appendix B.

 Let’s illustrate the need for supporting components with a few examples. We saw
that due to Envoy’s capabilities, we can configure a fleet of service proxies using static
configuration files or a set of xDS discovery services for discovering listeners, endpoints,
and clusters at run time. Istio implements these xDS APIs in the istiod control-plane
component.

 Figure 3.5 illustrates how istiod uses the Kubernetes API to read Istio configura-
tions, such as virtual services, and then dynamically configures the service proxies.

Figure 3.5 Istio abstracts away the service registry and provides an implementation of 
Envoy’s xDS API.

A related example is Envoy’s service discovery, which relies on a service registry of
some sort to discover endpoints. istiod implements this API but also abstracts Envoy
away from any particular service-registry implementation. When Istio is deployed on
Kubernetes, Istio uses Kubernetes’ service registry for service discovery. The Envoy
proxy is completely shielded from those implementation details.

 Here’s another example: Envoy can emit a lot of metrics and telemetry. This telem-
etry needs to go somewhere, and Envoy must be configured to send it. Istio configures
the data plane to integrate with time-series systems like Prometheus. We also saw how
Envoy can send distributed-tracing spans to an OpenTracing engine—and Istio can
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configure Envoy to send its spans to that location (see figure 3.6). For example, Istio
integrates with the Jaeger tracing engine (www.jaegertracing.io); Zipkin can be used
as well (https://zipkin.io).

Finally, Envoy can terminate and originate TLS traffic to services in our mesh. To do
this, we need supporting infrastructure to create, sign, and rotate certificates. Istio
provides this with the istiod component (see figure 3.7).

Together, Istio’s components and the Envoy proxies make for a compelling service-
mesh implementation. Both have thriving, vibrant communities and are geared
toward next-generation services architectures. The rest of the book assumes Envoy as
a data plane, so all of your learning from this chapter is transferable to the remaining
chapters. From here on, we refer to Envoy as the Istio service proxy, and its capabilities

Tracing
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(TSDB)

Istio
proxy

App

Figure 3.6 Istio helps configure 
and integrate with metrics-
collection and distributed-tracing 
infrastructure.
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Figure 3.7 istiod delivers 
application-specific certificates that can 
be used to establish mutual TLS to 
secure traffic between services.
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are seen through Istio’s APIs—but understand that many actually come from and are
implemented by Envoy.

 In the next chapter, we look at how we can begin to get traffic into our service-
mesh cluster by going through an edge gateway/proxy that controls traffic. When cli-
ent applications outside of our cluster wish to communicate with services running
inside our cluster, we need to be very clear and explicit about what traffic is and is not
allowed in. We’ll look at Istio’s gateway and how it provides the functionality we need
to establish a controlled ingress point. All the knowledge from this chapter will apply:
Istio’s default gateway is built on the Envoy proxy. 

Summary
 Envoy is a proxy that applications can use for application-level behavior.
 Envoy is Istio’s data plane.
 Envoy can help solve cloud reliability challenges (network failures, topology

changes, elasticity) consistently and correctly.
 Envoy uses a dynamic API for runtime control (which Istio uses).
 Envoy exposes many powerful metrics and information about application usage

and proxy internals.
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Part 2

Securing, observing,
and controlling your

service’s network traffic

A  single misbehaving service has the potential to take down your entire
system. We’ve seen it time and time again: maybe a thread pool fills up, a data-
base slows down, or a rare bug triggers and causes a service to spin out of con-
trol. How do we build resilience into our services to expect and correctly deal
with these scenarios? How do we consistently monitor golden signals to detect
failure situations? How do we secure the communication between services?

 Istio helps solve these challenges. Chapters 4-9 look at handling traffic from
ingress to deep within a call graph. How do load-balancing algorithms coupled
with resilience strategies help the overall system stay available even in the face of
service failures? How do you observe throughput, latency, saturation, and error
rates for all of the services consistently in your architecture? Can you trace spe-
cific service calls to help pinpoint issues in the network? Can you write policies
about which services can communicate and, when they do, verify that peers on
both side of the connection are certain they are communicating with whom they
think they are? All of these topics are covered in this part of the book.
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Istio gateways: Getting
traffic into a cluster
We usually run interesting services and applications inside our cluster. And as we’ll
see throughout the book, Istio allows us to solve some difficult challenges in ser-
vice-to-service communication. It is this intra-service communication where Istio
shines (within a cluster or across clusters).

 Before services communicate with each other, something must trigger the inter-
actions. For example, an end user purchasing an item, a client querying our API,
and so on. What each of these triggers have in common is that they originate out-
side of the cluster. This raises the question: how do we get traffic from the outside
of the cluster and into it (see figure 4.1)? In this chapter, we will answer the ques-
tion by opening an entry point for clients that live outside the cluster to connect
securely to services running inside the cluster.

This chapter covers
 Defining entry points into a cluster

 Routing ingress traffic to deployments in your 
cluster

 Securing ingress traffic

 Routing non HTTP/S traffic
77
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4.1 Traffic ingress concepts
The networking community has a term for connecting networks via well-established
entry points: ingress points. Ingress refers to traffic that originates outside the network
and is intended for an endpoint within the network. The traffic is first routed to an
ingress point that acts as a gatekeeper for traffic coming into the network. The ingress
point enforces rules and policies about what traffic is allowed into the local network. If
the ingress point allows the traffic, it proxies the traffic to the correct endpoint in the
local network. If the traffic is not allowed, the ingress point rejects the traffic.

4.1.1 Virtual IPs: Simplifying service access

At this point, it’s useful to dig a little further into how traffic is routed to a network’s
ingress points—at least, how it relates to the type of clusters we look at in this book.
Let’s say we have a service that we wish to expose at api.istioinaction.io/v1/products
for external systems to get a list of products in our catalog. When our client tries to
query that endpoint, the client’s networking stack first tries to resolve the api.istioinac-
tion.io domain name to an IP address. This is done with DNS servers. The networking
stack queries the DNS servers for the IP addresses for a particular hostname. So the
first step in getting traffic into our network is to map our service’s IP to a hostname in
DNS. For a public address, we could use a service like Amazon Route 53 or Google
Cloud DNS and map a domain name to an IP address. In our own datacenters, we’d
use internal DNS servers to do the same thing. But to what IP address should we map
the name?

 Figure 4.2 visualizes why we should not map the name directly to a single instance
or endpoint of our service (single IP), as that approach can be very fragile. What would
happen if that one specific service instance went down? Clients would see many errors
until we changed the DNS mapping to a new IP address with a working endpoint. But
doing this any time a service goes down is slow, error-prone, and low availability.

Cluster

Service Service Service Service

How does traffic get
into the cluster?

Client

Outside world

?

Figure 4.1 We want to connect 
networks by connecting clients 
running outside of our cluster 
to services running inside 
our cluster.
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Figure 4.3 shows how mapping the
domain name to a virtual IP address
that represents our service and forwards
traffic to our actual service instances,
provides us with higher-availability and
flexibility. The virtual IP is bound to a
type of ingress point known as a reverse
proxy. The reverse proxy is an interme-
diary component that’s responsible for
distributing requests to backend ser-
vices and does not correspond to any
specific service. The reverse proxy can
also provide capabilities like load bal-
ancing so requests don’t overwhelm
any one backend. 

4.1.2 Virtual hosting: Multiple services 
from a single access point

In the previous section, we saw how a
single virtual IP can be used to address
a service that may consist of many service instances with their own IPs; however, the
client only uses the virtual IP. We can also represent multiple different hostnames
using a single virtual IP. For example, we could have both prod.istioinaction.io and
api.istioinaction.io resolve to the same virtual IP address. This would mean requests
for both hostnames would end up going to the same virtual IP, and thus the same
ingress reverse proxy would route the request. If the reverse proxy was smart enough,
it could use the Host HTTP header to further delineate which requests should go to
which group of services (see figure 4.4).

Client

1.1.1.1 2.2.2.2 3.3.3.3 4.4.4.4

foo.example.com

Resolves to 2.2.2.2

No good!
What if this
instance fails?

Figure 4.2 We don’t want to map domain names 
to specific instances and IPs of a service.

Client

1.1.1.1

Reverse
proxy

2.2.2.2

3.3.3.3 4.4.4.4

calls foo.example.com

Resolves to 2.2.2.2

If any of these instances fail, the
proxy will stop routing to them,
and the client won’t be impacted.

Figure 4.3 Let’s map a virtual IP to a reverse 
proxy that handles load balancing across 
service instances.
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Figure 4.4 Virtual hosting lets us map multiple services to a single virtual IP.

Hosting multiple different services at a single entry point is known as virtual hosting.
We need a way to decide which virtual host group a particular request should be
routed to. With HTTP/1.1, we can use the Host header; with HTTP/2, we can use the
:authority header; and with TCP connections, we can rely on Server Name Indica-
tion (SNI) with TLS. We’ll take a closer look at SNI later in this chapter. The import-
ant thing to note is that the edge ingress functionality we see in Istio uses virtual IP
routing and virtual hosting to route service traffic into the cluster. 

4.2 Istio ingress gateways
Istio has the concept of an ingress gateway that plays the role of the network ingress
point and is responsible for guarding and controlling access to the cluster from traffic
that originates outside of the cluster. Additionally, Istio’s ingress gateway handles load
balancing and virtual-host routing.

 Figure 4.5 shows Istio’s ingress gateway component allowing traffic into the cluster
and performing reverse proxy functionality. Istio uses a single Envoy proxy as the
ingress gateway. We saw in chapter 3 that Envoy is a capable service-to-service proxy,
but it can also be used to load balance and route traffic from outside the service mesh
to services running inside it. All the features of Envoy that we discussed in the previ-
ous chapter are also available in an ingress gateway.

 Let’s take a closer look at how Istio uses Envoy to implement its ingress gateway
component. As we saw when we installed Istio in chapter 2, figure 4.6 shows the list of
components that make up the control plane and additional components that support
the control plane.

NOTE In figure 4.6, next to the istio-ingressgateway Pod, notice the
istio-egressgateway component. This component is responsible for rout-
ing traffic out of the cluster. The egress gateway is configured with the same
resources as the ingress gateway which we’ll see in this chapter.

Client Client

Reverse
proxy

2.2.2.2

7.7.7.7 8.8.8.8 9.9.9.9

calls foo.example.com

Resolves to 2.2.2.2Resolves to 2.2.2.2

calls bar.example.com

Virtual hosts

Foo -> 7.7.7.7,
8.8.8.8

Bar -> 9.9.9.9
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Figure 4.5 An Istio ingress gateway plays the role of a network ingress point and uses 
an Envoy proxy to do routing and load balancing.

 

Figure 4.6 Review of the components installed in chapter 2; some form 
the Istio control plane, and others support it.

If you’d like to verify that the Istio service proxy (Envoy proxy) is indeed running in
the Istio ingress gateway, you can run something like this from the root directory of
the book’s source code:

$ kubectl -n istio-system exec \
deploy/istio-ingressgateway -- ps

PID TTY TIME CMD
1 ? 00:00:04 pilot-agent

14 ? 00:00:24 envoy
44 ? 00:00:00 ps
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gateway
2.2.2.2

7.7.7.7 8.8.8.8 9.9.9.9

calls foo.example.com

Resolves to 2.2.2.2Resolves to 2.2.2.2

calls bar.example.com

Service mesh

Virtual hosts

Foo -> 7.7.7.7,
8.8.8.8

Bar -> 9.9.9.9

Namespace: istio-system

Ingress
gateway

Egress
gateway

Controller

istiod

Supporting components

Jaeger

Traffic in/out of mesh

Kiali GrafanaPrometheus
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You should see a process listing as the output, showing the Istio service proxy com-
mand line with both pilot-agent and envoy as the running processes. The pilot-
agent process initially configures and bootstraps the Envoy proxy; and as we’ll see in
chapter 13, it implements a DNS proxy as well.

 To configure Istio’s ingress gateway to allow traffic into the cluster and through the
service mesh, we’ll start by exploring two Istio resources: Gateway and Virtual-
Service. Both are fundamental for getting traffic to flow in Istio, but we’ll look at
them only within the context of allowing traffic into the cluster. We will cover
VirtualService more fully in chapter 5.

4.2.1 Specifying Gateway resources

To configure an ingress gateway in Istio, we use the Gateway resource and specify
which ports we wish to open and what virtual hosts to allow for those ports. The exam-
ple Gateway resource we’ll explore is quite simple and exposes an HTTP port on port
80 that accepts traffic destined for virtual host webapp.istioinaction.io:

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:

name: coolstore-gateway
spec:

selector:
istio: ingressgateway

servers:
- port:

number: 80
name: http
protocol: HTTP

hosts:
- "webapp.istioinaction.io"

Our Gateway resource configures Envoy to listen on port 80 and expect HTTP traffic.
Let’s create that resource and see what it does. In the root of the book’s source code is
a ch4/coolstore-gw.yaml file. To create the configuration, run the following:

$ kubectl -n istioinaction apply -f ch4/coolstore-gw.yaml

Let’s see whether our settings took effect:

$ istioctl -n istio-system proxy-config \
listener deploy/istio-ingressgateway

ADDRESS PORT MATCH DESTINATION
0.0.0.0 8080 ALL Route: http.80
0.0.0.0 15021 ALL Inline Route: /healthz/ready*
0.0.0.0 15090 ALL Inline Route: /stats/prometheus*

If you see this output, you’ve exposed the HTTP port (port 80) correctly! Looking at
the routes for virtual services, we see that the gateway doesn’t have any at the moment
(you may see another route for Prometheus, but you can ignore it for now):

Name of the 
gateway

Which gateway 
implementation

Ports to 
expose

Host(s) for 
this port
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NOTE If you are not using Docker Desktop, the name of the listener (in
this instance “http.8080”) may be different. Update the command below
accordingly.

$ istioctl proxy-config route deploy/istio-ingressgateway \
-o json --name http.8080 -n istio-system

[
{

"name": "http.8080",
"virtualHosts": [

{
"name": "blackhole:80",
"domains": [

"*"
],

}
],
"validateClusters": false

}
]

Our listener is bound to a blackhole default route that routes everything to HTTP
404. In the next section, we set up a virtual host to route traffic from port 80 to a ser-
vice within the service mesh.

 Before we go on, there’s an important last point to be made. The Pod running the
gateway, whether that’s the default istio-ingressgateway or your own custom gate-
way, must be able to listen on a port or IP that is exposed outside the cluster. For
example, on the local Docker Desktop that we’re using for these examples, the ingress
gateway is listening on port 80. If you’re deploying on a cloud service like Google Con-
tainer Engine (GKE), make sure you use a service of type LoadBalancer, which gets an
externally routable IP address. You can find more information at https://istio.io/
v1.13/docs/tasks/traffic-management/ingress/.

 Additionally, the default istio-ingressgateway does not need privileged access
to open any ports, as it does not listen on any system ports (80 for HTTP). istio-
ingressgateway by default listens on port 8080; however, whatever service or load bal-
ancer you use to expose the gateway is the actual port. In our examples with Docker
Desktop, we expose the service on port 80. 

4.2.2 Gateway routing with virtual services

So far, all we’ve done is configure an Istio gateway to expose a specific port, expect a
specific protocol on that port, and define specific hosts to serve from the port/proto-
col pair. When traffic comes into the gateway, we need a way to get it to a specific ser-
vice within the service mesh; and to do that, we’ll use the VirtualService resource.
In Istio, a VirtualService resource defines how a client talks to a specific service
through its fully qualified domain name, which versions of a service are available, and

https://istio.io/v1.13/docs/tasks/traffic-management/ingress/
https://istio.io/v1.13/docs/tasks/traffic-management/ingress/
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other routing properties (like retries and request timeouts). We’ll cover Virtual-
Service in more depth in the next chapter when we explore traffic routing; in this
chapter, it’s sufficient to know that VirtualService allows us to route traffic from the
ingress gateway to a specific service.

 An example of a VirtualService that routes traffic for the virtual host
webapp.istioinaction.io to services deployed in our service mesh looks like this:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:

name: webapp-vs-from-gw
spec:

hosts:
- "webapp.istioinaction.io"
gateways:
- coolstore-gateway
http:
- route:

- destination:
host: webapp
port:
number: 8080

With this VirtualService resource, we define what to do with traffic when it comes
into the gateway. In this case, as you can see from the spec.gateways field, these traf-
fic rules apply only to traffic coming from the coolstore-gateway gateway definition,
which we created in the previous section. Additionally, we specify the virtual host
webapp.istioinaction.io for which traffic must be destined for these rules to
match. An example of matching this rule is a client querying http://webapp.istio
inaction.io, which resolves to an IP that the Istio gateway is listening on. Addition-
ally, a client can explicitly set the Host header in the HTTP request to be
webapp.istioinaction.io, as we’ll show through an example.

 Again, verify that you’re in the root directory of the source code:

$ kubectl apply -n istioinaction -f ch4/coolstore-vs.yaml

After a few moments (the configuration needs to sync; recall that configuration in the
Istio service mesh is eventually consistent), we can re-run our commands to list the lis-
teners and routes:

$ istioctl proxy-config route deploy/istio-ingressgateway \
-o json --name http.8080 -n istio-system

[
{

"name": "http.8080",
"virtualHosts": [

{

Name of the 
virtual service

Virtual host name(s) 
to match

Gateways to which 
this applies

Destination service 
for this traffic
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"name": "webapp-vs-from-gw:80",
"domains": [

"webapp.istioinaction.io"
],
"routes": [

{
"match": {

"prefix": "/"
},
"route": {

"cluster":
"outbound|8080||webapp.istioinaction.svc.cluster.local",
"timeout": "0.000s"

}
}

]
}

]
}

]

The output for route should look similar to the previous listing, although it may con-
tain other attributes and information. The critical part is that we can see how defining
a VirtualService created an Envoy route in our Istio gateway that routes traffic
matching domain webapp.istioinaction.io to webapp in our service mesh.

 We have the routing set up for our services, but we should deploy the services for
them to work. The following commands are meant to be run from the root of the
book’s source code:

$ kubectl config set-context $(kubectl config current-context) \
--namespace=istioinaction

$ kubectl apply -f services/catalog/kubernetes/catalog.yaml
$ kubectl apply -f services/webapp/kubernetes/webapp.yaml

Once all the Pods are ready, you should see something like this:

$ kubectl get pod
NAME READY STATUS RESTARTS AGE
webapp-bd97b9bb9-q9g46 2/2 Running 18 19d
catalog-786894888c-8lbk4 2/2 Running 8 6d

Verify that your Gateway and VirtualService resources are installed correctly:

$ kubectl get gateway
NAME CREATED AT
coolstore-gateway 2h

$ kubectl get virtualservice
NAME GATEWAYS HOSTS
webapp-vs-from-gw ["coolstore-gateway"] ["webapp.istioinaction.io"]

Domains to match

Where to route
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Now, let’s try to call the gateway and verify that the traffic is allowed into the cluster.
Remember that we are using the Docker Desktop approach, where the Istio ingress
gateway is available on port 80 on localhost. If you’re using a cloud service or Node-
Port service, you’ll need to figure out what that external IP is. For example, in chapter
2, we saw that one way to get the correct host for the ingress gateway exposed on a
public load balancer looks like this:

$ URL=$(kubectl -n istio-system get svc istio-ingressgateway \
-o jsonpath='{.status.loadBalancer.ingress[0].ip}')

Once you have the correct endpoint, you can run something similar to this (remem-
ber, localhost is on Docker Desktop):

$ curl http://localhost/api/catalog

You should see no response. Why is that? If we take a closer look at the call by printing
the headers, we see that the Host header we sent in is not a host that the gateway rec-
ognizes:

$ curl -v http://localhost/api/catalog
* Trying ::1...
* TCP_NODELAY set
* Connected to localhost (::1) port 80
> GET /api/catalog HTTP/1.1
> Host: localhost
> User-Agent: curl/7.54.0
> Accept: */*
>
< HTTP/1.1 404 Not Found
< date: Tue, 21 Aug 2018 16:08:28 GMT
< server: envoy
< content-length: 0
<
* Connection #0 to host 192.168.64.27 left intact

Neither the Istio gateway nor any of the routing rules we declared in the Virtual-
Service knows anything about Host: localhost:80, but it does know about the vir-
tual host webapp.istioinaction.io. Let’s override the Host header on our command
line, and then the call should work:

$ curl http://localhost/api/catalog -H "Host: webapp.istioinaction.io"

Now you should see a successful response. 

4.2.3 Overall view of traffic flow

In the previous sections, we got hands-on with the Gateway and VirtualService
resources from Istio. The Gateway resource defines ports, protocols, and virtual hosts
that we wish to listen for at the edge of our service-mesh cluster. VirtualService
resources define where traffic should go once it’s allowed in at the edge. Figure 4.7
shows the full end-to-end flow. 

Host

Not found
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Figure 4.7 Flow of traffic from a client outside the service mesh/cluster to 
services inside the service mesh through the ingress gateway

4.2.4 Istio ingress gateway vs. Kubernetes Ingress

When running on Kubernetes, you may ask, “Why doesn’t Istio just use the Kuberne-
tes Ingress v1 resource to specify ingress?” Istio does support the Kubernetes
Ingress v1 resource, but there are significant limitations with the Kubernetes Ingress
v1 specification.

 The first limitation is that Kubernetes Ingress v1 is a very simple specification geared
toward HTTP workloads. There are implementations of Kubernetes Ingress (like
Nginx and Traefik); however, each is geared toward HTTP traffic. In fact, the Ingress
specification only considers port 80 and port 443 as ingress points. This severely limits
the types of traffic a cluster operator can allow into the service mesh. For example, if
you have Kafka or NATS.io workloads, you may wish to expose direct TCP connections
to these messaging systems. Kubernetes Ingress doesn’t allow for that.

 Second, the Kubernetes Ingress v1 resource is severely underspecified. There is no
common way to specify complex traffic routing rules, traffic splitting, or things like
traffic shadowing. The lack of specification in this area causes each vendor to reimag-
ine how best to implement configurations for each type of Ingress implementation
(HAProxy, Nginx, and so on).

 Finally, since things are underspecified, most vendors have chosen to expose con-
figuration through bespoke annotations on deployments. The annotations between
vendors vary and are not portable, and if Istio had continued that trend, there would
have been many more annotations to account for all the power of Envoy as an edge
gateway.
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 Ultimately, Istio decided on a clean slate for building ingress patterns and specifi-
cally separated out the layer 4 (transport) and layer 5 (session) properties from the
layer 7 (application) routing concerns. Istio Gateway handles the L4 and L5 concerns,
while VirtualService handles the L7 concerns. Many mesh and gateway providers
have also built their own APIs for ingress, and the Kubernetes community is working
on a revised Ingress API.

4.2.5 Istio ingress gateway vs. API gateways

An API gateway allows an organization to abstract a client that consumes a set of ser-
vices in a boundary (either network-wise or architectural) from the details of the
implementation of those services. For example, clients may call a set of APIs that are
expected to be well documented, evolve with backward- and forward-compatible
semantics, and offer self-service and other mechanisms for usage. To accomplish this,
the API gateway needs to be able to identify clients using different security challenges
(OpenID Connect [OIDC], OAuth 2.0, Lightweight Directory Access Protocol
[LDAP]), transform messages (SOAP to REST, gRPC to Rest, body and header text-
based transformations, and so on), provide sophisticated business-level rate limiting,
and have a self-signup or developer portal. Istio’s ingress gateway does not do these
things out of the box. For a more capable API gateway—even one built on an Envoy
proxy—that can play this role inside and outside your mesh, take a look at something
like Solo.io Gloo Edge (https://docs.solo.io/gloo-edge/latest). 

4.3 Securing gateway traffic
So far, we’ve shown how to expose basic HTTP services with an Istio gateway using the
Gateway and VirtualService resources. When connecting services from outside a
cluster (let’s say, the public internet) to those running inside a cluster, one of the basic
capabilities of the ingress gateway in a system is to secure traffic and help establish
trust in the system. We can begin to secure our traffic by giving clients confidence that
the service they’re hoping to communicate with is indeed the service it claims to be.
Additionally, we want to exclude anyone from eavesdropping on our communication,
so we should encrypt the traffic.

 Istio’s gateway implementation allows us to terminate incoming TLS/SSL traffic,
pass it through to the backend services, redirect any non-TLS traffic to the proper
TLS ports, and implement mutual TLS. We’ll look at each of these capabilities in this
section.

Kubernetes Gateway API
At the time of this writing, the Kubernetes community is hard at work on the Gateway
API to supplant the Ingress v1 API. You can find more information at https://gateway
-api.sigs.k8s.io. This is different from the Istio Gateway and VirtualService
resources covered in this book. Istio’s implementation and resources came before
the Gateway API and in many ways inspired the Gateway API. 

https://gateway-api.sigs.k8s.io
https://gateway-api.sigs.k8s.io
https://gateway-api.sigs.k8s.io
https://docs.solo.io/gloo-edge/latest


89Securing gateway traffic
4.3.1 HTTP traffic with TLS

To prevent man-in-the-middle (MITM) attacks and encrypt all traffic coming into the
service mesh, we can set up TLS on the Istio gateway so that any incoming traffic is
served over HTTPS (for HTTP traffic; we’ll cover non-HTTP traffic in later sections).
MITM attacks occur when a client intends to connect to a service but instead connects
to an impostor service claiming to be the intended service. The impostor service can
gain access to the communication, including sensitive information. TLS helps to miti-
gate this attack.

 To enable HTTPS for ingress traffic, we need to specify the correct private keys
and certificates that the gateway should use. As a quick reminder, the certificate that
the server presents is how it announces its identity to any clients. The certificate is
basically the server’s public key, which has been signed by a reputable authority, also
known as a certificate authority (CA). Figure 4.8 visualizes how a client can trust that
the server’s certificate is indeed valid. First, it must have installed the CA issuer’s certif-
icate, which means this is a trusted CA and certificates issued by it are trusted too.
With the CA certificate installed, the client can verify that the certificate is signed by a
CA that it trusts. It proceeds to encrypt traffic sent to the server using the public key
within the certificate. The server can then decrypt the traffic using the private key.

Figure 4.8 Basic model of how TLS is established between a client and server

NOTE The previous statement wasn’t entirely correct: the TLS handshake
includes a more sophisticated protocol that combines the public/private keys
(asymmetric) for initial communication and then creates a session key (sym-
metric) that is used for the TLS session to encrypt and decrypt traffic. See
appendix C for a more complete explanation of TLS.

Before we can configure the default istio-ingressgateway to use certificates and
keys, we need to create them as Kubernetes secrets.

Client Server

1. Let’s connect!

2. Sure, here’s my cert.

3. Do I trust
    this cert?

4. I sure do!

5. Encrypted
    traffic

Trusted CA
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NOTE Kubernetes secrets are not secret: they’re effectively stored as clear
text. You may wish to consider a more appropriate approach for storing keys
and certs.

Let’s start by creating the webapp-credential secret. Run the following from within
the root of the repository:

$ kubectl create -n istio-system secret tls webapp-credential \
--key ch4/certs/3_application/private/webapp.istioinaction.io.key.pem \
--cert ch4/certs/3_application/certs/webapp.istioinaction.io.cert.pem

secret/webapp-credential created

In this step, we create the secret in the istio-system namespace. At the time of writ-
ing (Istio 1.13.0), the secret used for TLS in the gateway can only be retrieved if it’s in
the same namespace as the Istio ingress gateway. The default gateway is run in the
istio-system namespace, so that’s where we put the secret. We could run the ingress
gateway in a different namespace, but the secret would still have to be in that name-
space. For production, you should run the ingress gateway component in its own
namespace, separate from istio-system.

 Now we can configure our Istio Gateway resource to use the certificates and keys:

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:

name: coolstore-gateway
spec:

selector:
istio: ingressgateway

servers:
- port:

number: 80
name: http
protocol: HTTP

hosts:
- "webapp.istioinaction.io"

- port:
number:
name: https
protocol: HTTPS

tls:
mode: SIMPLE
credentialName: webapp-credential

hosts:
- "webapp.istioinaction.io"

In the Gateway resource, we open port 443 on our ingress gateway and specify its pro-
tocol to be HTTPS. Additionally, we add a tls section to our gateway configuration,
where we specify the locations of the certificates and keys to use for TLS. Note that these
are the same locations mounted into the istio-ingressgateway that we saw earlier.

Admits 
HTTP traffic

Admits secured 
HTTPS traffic

A secure 
connection

The name of the Kubernetes secret 
containing the TLS certificates
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 Let’s replace our gateway with this new Gateway resource. Run this from the root
of the source code:

$ kubectl apply -f ch4/coolstore-gw-tls.yaml

gateway.networking.istio.io/coolstore-gateway replaced

If we call the service as we did in the previous section, by passing in the proper Host
header, we see something like this (note that we use https:// in the URL):

$ curl -v -H "Host: webapp.istioinaction.io" https://localhost/api/catalog

* Trying 192.168.64.27...
* TCP_NODELAY set
* Connected to 192.168.64.27 (192.168.64.27) port 31390 (#0)
* ALPN, offering http/1.1
* Cipher selection: ALL:!EXPORT:!EXPORT40:!EXPORT56:!aNULL:!LOW:!RC4:@STRENGTH
* successfully set certificate verify locations:
* CAfile: /usr/local/etc/openssl/cert.pem

CApath: /usr/local/etc/openssl/certs
* TLSv1.2 (OUT), TLS header, Certificate Status (22):
* TLSv1.2 (OUT), TLS handshake, Client hello (1):
* OpenSSL SSL_connect: SSL_ERROR_SYSCALL in connection to 192.168.64.27:31390
* Closing connection 0
curl: (35) OpenSSL SSL_connect: SSL_ERROR_SYSCALL in connection to
192.168.64.27:31390

This means the certificate presented by the server cannot be verified using the default
CA certificate chains. Let’s pass in the proper CA certificate chain to our curl client:

$ curl -v -H "Host: webapp.istioinaction.io" https://localhost/api/catalog \
--cacert ch4/certs/2_intermediate/certs/ca-chain.cert.pem

* Trying 192.168.64.27...
* TCP_NODELAY set
* Connected to 192.168.64.27 (192.168.64.27) port 31390 (#0)

Use the correct host and ports for your environment
The commands in this book assume we’re using Docker Desktop, but if you’re using
your own Kubernetes cluster (or a public-cloud hosted one), you can use those values
directly. For example, on GKE, you can figure out the HOST IP by using the cloud load
balancer’s public IP, as shown when looking at the Kubernetes services:

$ kubectl get svc -n istio-system

NAME TYPE CLUSTER-IP EXTERNAL-IP
istio-ingressgateway LoadBalancer 10.12.2.78 35.233.243.32
istio-pilot ClusterIP 10.12.15.206 <none>

In this case, 35.233.243.32 is used for HTTPS_HOST. You can then use the real
ports (80 and 443) for HTTP and HTTPS, respectively.

Default 
certificate chain
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* ALPN, offering http/1.1
* Cipher selection: ALL:!EXPORT:!EXPORT40:

!EXPORT56:!aNULL:!LOW:!RC4:@STRENGTH
* successfully set certificate verify locations:
* CAfile: certs/2_intermediate/certs/ca-chain.cert.pem

CApath: /usr/local/etc/openssl/certs
* TLSv1.2 (OUT), TLS header, Certificate Status (22):
* TLSv1.2 (OUT), TLS handshake, Client hello (1):
* OpenSSL SSL_connect: SSL_ERROR_SYSCALL in

connection to 192.168.64.27:31390
* Closing connection 0
curl: (35) OpenSSL SSL_connect: SSL_ERROR_SYSCALL in connection to
192.168.64.27:31390

The client still cannot verify the certificate! This is because the server certificate is
issued for webapp.istioinaction.io, and we’re calling the Docker Desktop host
(localhost, in this case). We can use a curl parameter called --resolve that lets us
call the service as though it were at webapp.istioinaction.io but then tell curl to
use localhost:

$ curl -H "Host: webapp.istioinaction.io" \
https://webapp.istioinaction.io:443/api/catalog \
--cacert ch4/certs/2_intermediate/certs/ca-chain.cert.pem \
--resolve webapp.istioinaction.io:443:127.0.0.1

Now we see a proper HTTP/1.1 200 response and the JSON payload for the products
list. As a client, we’re verifying that the server is who it says it is by trusting the CA that
signed the certificate, and we’re able to encrypt the traffic to the server by using this
certificate.

 Note that we use the --resolve flag to map the hostname and port in the certifi-
cate to the real IP we’re using. With Docker Desktop, the ingress runs on localhost, as
we’ve seen. If you are using a cloud-provided load balancer, you can replace 127.0.0.1
with the appropriate IP.

Figure 4.9 visualizes that we have achieved end-to-end encryption. We’ve secured traf-
fic by encrypting it to the Istio ingress gateway, which terminates the TLS connection
and then sends the traffic to the backend webapp service running in our service

Will curl work for you?
Note that for curl to work in this section, you need to make sure it supports TLS,
and you can add your own CA certificates to override the default. Not all builds of
curl support TLS. For example, in some versions of curl on macOS, CA certificates
can only come from the Apple keychain. Newer builds of curl should have the proper
SSL libraries and should work for you, but you need to see something about your SSL
library (OpenSSL, LibreSSL, and so on) when you type this:

curl --version | grep -i SSL
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mesh. The hop between the istio-ingressgateway component and the webapp ser-
vice is encrypted using the identities of the services. We will elaborate that further in
chapter 9.

Figure 4.9 Secured traffic from the outside world to the Istio ingress 
gateway component. Traffic within the mesh is not secured yet.

NOTE You will likely want to integrate your certificate workflows with an
external CA or your own internal PKI. You can use something like cert-
manager to help with that integration. See https://cert-manager.io/docs for
more. 

4.3.2 HTTP redirect to HTTPS

We set up TLS in the previous section, but what if we want to force all traffic to always
use TLS? We could have used both http:/./ and https:/./ to access our service through
the ingress gateway, but in this section, we force all traffic to use HTTPS. To do that,
we have to modify our Gateway resource slightly to force a redirect for HTTP traffic:

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:

name: coolstore-gateway
spec:

selector:
istio: ingressgateway

servers:
- port:

number: 80
name: http
protocol: HTTP

hosts:
- "webapp.istioinaction.io"
tls:

httpsRedirect: true
- port:

number: 443

    Service-mesh cluster

Client Istio ingress
gateway

webapp
service

Secure by default

Redirects HTTP 
to HTTPS

https://cert-manager.io/docs
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name: https
protocol: HTTPS

tls:
mode: SIMPLE
credentialName: webapp-credential

hosts:
- "webapp.istioinaction.io"

If we update our Gateway to use this configuration, we can limit all traffic to only
HTTPS:

$ kubectl apply -f ch4/coolstore-gw-tls-redirect.yaml

gateway.networking.istio.io/coolstore-gateway configured

Now, if we call the ingress gateway on the HTTP port, we should see something like
this:

$ curl -v http://localhost/api/catalog \
-H "Host: webapp.istioinaction.io"

* Trying 192.168.64.27...
* TCP_NODELAY set
* Connected to 192.168.64.27 (192.168.64.27) port 31380 (#0)
> GET /api/catalog HTTP/1.1
> Host: webapp.istioinaction.io
> User-Agent: curl/7.61.0
> Accept: */*
>
< HTTP/1.1 301 Moved Permanently
< location: https://webapp.istioinaction.io/api/catalog
< date: Wed, 22 Aug 2018 21:01:29 GMT
< server: envoy
< content-length: 0
<
* Connection #0 to host 192.168.64.27 left intact

This redirect instructs the client to call the HTTPS version of this API. Now we can
expect all traffic going to our ingress gateway to always be encrypted. 

4.3.3 HTTP traffic with mutual TLS

In the previous section, we used standard TLS to allow the server to prove its identity
to the client. But what if we want our cluster to verify who the clients are before we
accept any traffic from outside the cluster? In the simple TLS scenario, the server
sends its public certificate to the client, and the client verifies that it trusts the CA that
signed the server’s certificate. We want to have the client send its public certificate and
let the server verify that it trusts it. Figure 4.10 visualizes how with the mutual TLS
(mTLS) protocol both the client and the server verify each other’s certificates, in
other words mutually authenticate. And the certificates are used to encrypt traffic.

HTTP 301 
redirect
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Figure 4.10 Basic model of how mTLS is established between a client and server

To configure the default istio-ingressgateway to participate in a mutual TLS con-
nection, we need to give it a set of CA certificates to use to verify a client’s certificate.
Just as we did in the previous section, we need to make this CA certificate (or certifi-
cate chain, more specifically) available to the istio-ingressgateway with a Kuberne-
tes secret.

 Let’s start by configuring the istio-ingressgateway-ca-certs secret with the
proper CA certificate chain:

$ kubectl create -n istio-system secret \
generic webapp-credential-mtls --from-file=tls.key=\
ch4/certs/3_application/private/webapp.istioinaction.io.key.pem \
--from-file=tls.crt=\
ch4/certs/3_application/certs/webapp.istioinaction.io.cert.pem \
--from-file=ca.crt=ch4/certs/2_intermediate/certs/ca-chain.cert.pem

secret/webapp-credential-mtls created

Now let’s update the Istio Gateway resource to point to the location of the CA certifi-
cate chain and configure the expected protocol to be mutual TLS:

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:

name: coolstore-gateway
spec:

selector:
istio: ingressgateway

servers:
- port:

number: 80
name: http
protocol: HTTP

hosts:

Client Server

1. Let’s connect!

2. Sure, here’s my cert.

3. Do I trust
    this cert?

4. I sure do! 6. Do I trust
    this cert?

7. Looks
    like it!

5. Sure, here’s mine.

Trusted CA Trusted CA
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- "webapp.istioinaction.io"
- port:

number: 443
name: https
protocol: HTTPS

tls:
mode: MUTUAL
credentialName: webapp-credential-mtls

hosts:
- "webapp.istioinaction.io"

Let’s replace the Gateway configuration with this new updated version. Run this from
the root of the source code:

$ kubectl apply -f ch4/coolstore-gw-mtls.yaml

gateway.networking.istio.io/coolstore-gateway configured

Now, if we try to call the ingress gateway the same way we did in the previous section
(assuming simple TLS), the call is rejected:

$ curl -H "Host: webapp.istioinaction.io" \
https://webapp.istioinaction.io:443/api/catalog \
--cacert ch4/certs/2_intermediate/certs/ca-chain.cert.pem \
--resolve webapp.istioinaction.io:443:127.0.0.1

curl: (35) error:14094410:SSL routines:ssl3_read_bytes:sslv3 alert
handshake failure

This call is rejected because the SSL handshake wasn’t successful. We are only passing
the CA certificate chain to the curl command; we need to also pass the client’s certifi-
cate and private key. With curl, we can do so by passing the --cert and --key param-
eters like this:

$ curl -H "Host: webapp.istioinaction.io" \
https://webapp.istioinaction.io:443/api/catalog \
--cacert ch4/certs/2_intermediate/certs/ca-chain.cert.pem \

Istio gateway SDS
An Istio gateway gets the certificates from the secret discovery service (SDS) built
into the istio-agent process that’s used to start the istio-proxy. SDS is a
dynamic API that should automatically propagate the updates. The same is true for
service proxies.

You can check the status of certificates delivered via SDS with the following com-
mand:

istioctl pc secret -n istio-system deploy/istio-ingressgateway

Note that if you don’t see the new certificate configuration take effect, you may wish
to “bounce” the istio-ingressgateway Pod:

kubectl delete po -n istio-system -l app=istio-ingressgateway

Configured 
for mTLS

Credentials with a 
trusted CA configured
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--resolve webapp.istioinaction.io:443:127.0.0.1 \
--cert ch4/certs/4_client/certs/webapp.istioinaction.io.cert.pem \
--key ch4/certs/4_client/private/webapp.istioinaction.io.key.pem

Now we should see a proper HTTP/1.1 200 response and the JSON payload for the
products list. The client is validating the server’s certificate and sending its own certif-
icate for validation to achieve mutual TLS. 

4.3.4 Serving multiple virtual hosts with TLS

Istio’s ingress gateway can serve multiple virtual hosts, each with its own certificate and
private key from the same HTTPS port (port 443). To do that, we add multiple entries
for the same port and the same protocol. For example, we can add multiple entries
for both the webapp.istioinaction.io and catalog.istioinaction.io services,
each with its own certificate and key pair. An Istio Gateway resource that describes
multiple virtual hosts served with HTTPS looks like this:

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:

name: coolstore-gateway
spec:

selector:
istio: ingressgateway

servers:
- port:

number: 443
name: https-webapp
protocol: HTTPS

tls:
mode: SIMPLE
credentialName: webapp-credential

hosts:
- "webapp.istioinaction.io"

- port:
number: 443
name: https-catalog
protocol: HTTPS

tls:
mode: SIMPLE
credentialName: catalog-credential

hosts:
- "catalog.istioinaction.io"

Notice that both entries listen on port 443 and serve the HTTPS protocol, but they
have different names: https-webapp and https-catalog. Each has unique certificates
and keys that are used for the specific virtual host it serves. To put this into action, we
need to add these new certificates and keys. Let’s create them. From the root of the
book source, run the following command:

$ kubectl create -n istio-system secret tls catalog-credential \
--key ch4/certs2/3_application/private/catalog.istioinaction.io.key.pem \
--cert ch4/certs2/3_application/certs/catalog.istioinaction.io.cert.pem

First entry

Second entry
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Now let’s update the gateway configuration. From the root of the source code, run the
following:

$ kubectl apply -f ch4/coolstore-gw-multi-tls.yaml
gateway.networking.istio.io/coolstore-gateway replaced

Finally, we need to add a VirtualService resource for the catalog service we’ll
expose through this ingress gateway:

$ kubectl apply -f ch4/catalog-vs.yaml

Now that we’ve updated the istio-ingressgateway, let’s give it a try. Calling
webapp.istioinaction.io should work just as it did for the simple TLS:

$ curl -H "Host: webapp.istioinaction.io" \
https://webapp.istioinaction.io:443/api/catalog \
--cacert ch4/certs/2_intermediate/certs/ca-chain.cert.pem \
--resolve webapp.istioinaction.io:443:127.0.0.1

When we call the catalog service through the Istio gateway, let’s use different
certificates:

$ curl -H "Host: catalog.istioinaction.io" \
https://catalog.istioinaction.io:443/items \
--cacert ch4/certs2/2_intermediate/certs/ca-chain.cert.pem \
--resolve catalog.istioinaction.io:443:127.0.0.1

Both calls should succeed with the same response. You may wonder how the Istio
ingress gateway knows which certificate to present, depending on who’s calling.
There’s only a single port opened for these connections: how does it know which ser-
vice the client is trying to access and which certificate corresponds with that service?
The answer lies in an extension to TLS called Server Name Indication (SNI). Basically,
when an HTTPS connection is created, the client first identifies which service it’s try-
ing to reach using the ClientHello part of the TLS handshake. Istio’s gateway (Envoy,
specifically) implements SNI on TLS, which is how it can present the correct cert and
route to the correct service.

 In this section, we successfully exposed the different virtual hosts through the
ingress gateway and served each with its own unique certificate through the same
HTTPS port. In the next section, we look at TCP traffic. 

4.4 TCP traffic
Istio’s gateway is powerful enough to serve not only HTTP/HTTPS traffic but also any
traffic accessible via TCP. For example, we can expose a database (like MongoDB) or a
message queue, like Kafka, through the ingress gateway. When Istio treats the traffic as
plain TCP, we do not get as many useful features like retries, request-level circuit
breaking, complex routing, and so on. This is simply because Istio cannot tell what
protocol is being used (unless a specific protocol that Istio understands is used, like
MongoDB). Let’s take a look at how to expose TCP traffic through an Istio gateway so
that clients outside the cluster can communicate with those running inside the cluster.
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4.4.1 Exposing TCP ports on an Istio gateway

The first thing we need to do is create a TCP-based service within our service mesh.
For this example, we use the echo service from https://github.com/cjimti/go-echo.
This TCP service will allow us to log in with a simple TCP client like Telnet and issue
commands that should be displayed back to us.

 Let’s deploy the TCP service and inject the Istio service proxy next to it. Recall that
we’re pointing to the istioinaction namespace:

$ kubectl config set-context $(kubectl config current-context) \
--namespace=istioinaction

$ kubectl apply -f ch4/echo.yaml

deployment.apps/tcp-echo-deployment created
service/tcp-echo-service created

Next, we create an Istio Gateway resource that exposes a specific non-HTTP port for
this service. In the following example, we expose port 31400 on the default istio-
ingressgateway. Just as with the HTTP ports (80 and 443), TCP port 31400 must be
made available either as a NodePort or as a cloud LoadBalancer. In our examples run-
ning on Docker Desktop, it is exposed as a NodePort running on port 31400:

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:

name: echo-tcp-gateway
spec:

selector:
istio: ingressgateway

servers:
- port:

number: 31400
name: tcp-echo
protocol: TCP

hosts:
- "*"

You can find the port in which the istio-ingressgateway service is listening for TCP
traffic using the following command:

$ kubectl get svc -n istio-system istio-ingressgateway \
-o jsonpath='{.spec.ports[?(@.name == "tcp")]}'

{"name":"tcp","nodePort":30851,"port":31400,

➥"protocol":"TCP","targetPort":31400}

Let’s create the gateway:

$ kubectl apply -f ch4/gateway-tcp.yaml

gateway.networking.istio.io/echo-tcp-gateway created

Now that we’ve exposed a port on our ingress gateway, we need to route the traffic to
the echo service. To do that, we use the VirtualService resource as we did in the

Port to expose

Expected protocol

For any hosts

https://github.com/cjimti/go-echo
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previous sections. Note that for TCP traffic, we must match on the incoming port—in
this case, port 31400:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:

name: tcp-echo-vs-from-gw
spec:

hosts:
- "*"
gateways:
- echo-tcp-gateway
tcp:
- match:

- port: 31400
route:
- destination:

host: tcp-echo-service
port:
number: 2701

Let’s create the virtual service:

$ kubectl apply -f ch4/echo-vs.yaml

virtualservice.networking.istio.io/tcp-echo-vs-from-gw created

NOTE If you’re running in a public cloud or a cluster that creates a Load-
Balancer for the istio-ingressgateway service, and you can’t connect as
shown next, you may need to explicitly add a port to the istio-ingressgateway
service on port 31400 and use targetPort 31400 for this to work correctly. By
default, Istio 1.13.0 adds this port to the istio-ingressgateway service, but you
may want to double-check.

Now that we have exposed a port on our ingress gateway and set up routing, we should
be able to connect with a very simple telnet command:

$ telnet localhost 31400

Trying 192.168.64.27...
Connected to kubebook.
Escape character is '^]'.
Welcome, you are connected to node docker.
Running on Pod tcp-echo-deployment-6fbccd8485-m4mqq.
In namespace istioinaction.
With IP address 172.17.0.11.
Service default.

When you type anything into the console and press Return/Enter, your text is
replayed back to you:

hello there
hello there
by now
by now

Which gateway

Match on the port

Where to route
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To quit Telnet, press Ctrl-], type quit, and press Return/Enter. 

4.4.2 Traffic routing with SNI passthrough

In the previous section, we learned how to use the Istio gateway functionality to accept
and route non-HTTP traffic: specifically, applications that may communicate over a
TCP protocol that is very application-specific. Earlier, we saw how to route HTTPS
traffic and present certain certificates depending on the SNI hostname. In this sec-
tion, we look at a combination of these two capabilities: routing TCP traffic based on
SNI hostname without terminating the traffic on the Istio ingress gateway. All the gate-
way will do is inspect the SNI headers and route the traffic to the specific backend,
which will then terminate the TLS connection. The connection will “pass through”
the gateway and be handled by the actual service, not the gateway.

 This opens the door for a much wider swath of applications that can participate in
the service mesh, including TCP over TLS services like databases, message queues,
caches, and so on—even legacy applications that expect to handle and terminate
HTTPS/TLS traffic. To see this in action, let’s look at a Gateway definition that is con-
figured to use PASSTHROUGH as its routing mechanism:

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:

name: sni-passthrough-gateway
spec:

selector:
istio: ingressgateway

servers:
- port:

number: 31400
name: tcp-sni
protocol: TLS

hosts:
- "simple-sni-1.istioinaction.io"
tls:

mode: PASSTHROUGH

In our example application, we configure the application to terminate TLS for the
HTTPS connection using certificates. This means we don’t need the ingress gateway
to do anything with the connection. We won’t need to configure any certificates on
the gateway as we did in the previous section.

 Let’s get started by deploying our example application that terminates TLS. Switch
to the root directory of the book’s source code, and default to the istioinaction
namespace in Kubernetes:

$ kubectl apply -f ch4/sni/simple-tls-service-1.yaml

Next, let’s deploy our Gateway resource that opens port 31400. But before we do that,
since we’re using the same port as in section 4.4, let’s make sure to delete the gateway
that’s already using that port:

$ kubectl delete gateway echo-tcp-gateway -n istioinaction

Opens a specific 
non-HTTP port

Associates this host 
with the port

Treats this as 
passthrough traffic
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Now let’s apply the passthrough gateway:

$ kubectl apply -f ch4/sni/passthrough-sni-gateway.yaml

At this point, we’ve opened port 31400 on the Istio ingress gateway. As you’ll recall
from previous sections, we also need to specify routing rules with a VirtualService
resource to get the traffic from the gateway to the service. Here’s the VirtualService:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:

name: simple-sni-1-vs
spec:

hosts:
- "simple-sni-1.istioinaction.io"
gateways:
- sni-passthrough-gateway
tls:
- match:

- port: 31400
sniHosts:
- simple-sni-1.istioinaction.io

route:
- destination:

host: simple-tls-service-1
port:
number: 80

Let’s create the VirtualService:

$ kubectl apply -f ch4/sni/passthrough-sni-vs-1.yaml

Now let’s call the Istio ingress gateway on port 31400:

$ curl -H "Host: simple-sni-1.istioinaction.io" \
https://simple-sni-1.istioinaction.io:31400/ \
--cacert ch4/sni/simple-sni-1/2_intermediate/certs/ca-chain.cert.pem \
--resolve simple-sni-1.istioinaction.io:31400:127.0.0.1

{
"name": "simple-tls-service-1",
"uri": "/",
"type": "HTTP",
"ip_addresses": [

"10.1.0.63"
],
"start_time": "2020-09-03T20:09:08.129404",
"end_time": "2020-09-03T20:09:08.129846",
"duration": "441.5µs",
"body": "Hello from simple-tls-service-1!!!",
"code": 200

}

Our call from curl went to the Istio ingress gateway, traversed through without termi-
nation, and ended up on the example service simple-tls-service-1. To make the

Matching clause on a 
specific port and host

Routing destination 
if traffic matched

Routes to the 
service port
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routing more apparent, let’s deploy a second service with different certificates and
routes based on the SNI host:

$ kubectl apply -f ch4/sni/simple-tls-service-2.yaml

Let’s see what the Gateway resource looks like:

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:

name: sni-passthrough-gateway
spec:

selector:
istio: ingressgateway

servers:
- port:

number: 31400
name: tcp-sni-1
protocol: TLS

hosts:
- "simple-sni-1.istioinaction.io"
tls:

mode: PASSTHROUGH
- port:

number: 31400
name: tcp-sni-2
protocol: TLS

hosts:
- "simple-sni-2.istioinaction.io"
tls:

mode: PASSTHROUGH

Let’s apply this Gateway and VirtualService:

$ kubectl apply -f ch4/sni/passthrough-sni-gateway-both.yaml
$ kubectl apply -f ch4/sni/passthrough-sni-vs-2.yaml

Next we call again to the same ingress gateway port with a different hostname, and
watch how the request is routed to the correct service:

$ curl -H "Host: simple-sni-2.istioinaction.io" \
https://simple-sni-2.istioinaction.io:31400/ \
--cacert ch4/sni/simple-sni-2/2_intermediate/certs/ca-chain.cert.pem \
--resolve simple-sni-2.istioinaction.io:31400:127.0.0.1

{
"name": "simple-tls-service-2",
"uri": "/",
"type": "HTTP",
"ip_addresses": [

"10.1.0.64"
],
"start_time": "2020-09-03T20:14:13.982951",
"end_time": "2020-09-03T20:14:13.984547",
"duration": "1.5952ms",
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"body": "Hello from simple-tls-service-2!!!",
"code": 200

}

Notice how this response in the body field indicates this request is served by the sim-
ple-tls-service-2 service. 

4.5 Operational tips
In this section, we leave you with some tips for using Istio’s gateway capabilities in your
environment. Although we deployed the out-of-the-box demo installation of Istio,
which includes an ingress gateway and egress gateway deployment, the gateways are
just Envoy proxies and can be configured and used as simple Envoy proxy deploy-
ments for a variety of use cases. Let’s see how we can configure and tune them to meet
our needs.

4.5.1 Split gateway responsibilities

We focused on the ingress use case in this chapter, but as stated previously, Istio’s gate-
way is really just a simple Envoy proxy that’s not deployed as a sidecar. This means you
can use the gateway for various use cases such as ingress (covered here), egress,
shared-gateway functionality, multi-cluster proxying, and so on. Although we posi-
tioned the ingress gateway as the single point of ingress, you can (and sometimes
should) have multiple points of ingress.

 You may want to deploy another ingress point to split up traffic and isolate traffic
paths among various services (see figure 4.11). Some services may be more sensitive to
performance or need to be more highly available or isolated for compliance reasons.
Sometimes you want to let individual teams own their gateways and configuration
without impacting other teams.

Figure 4.11 Multiple gateways allow teams to manage their configuration without 
impacting others.

Cluster
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Whatever the reason, it may be a good idea to allow multiple ingress gateways aligned
to various boundaries (compliance, domain, team, and so on). Here’s an example of
how to define and install a new custom gateway:

apiVersion: install.istio.io/v1alpha1
kind: IstioOperator
metadata:

name: my-user-gateway-install
namespace: istioinaction

spec:
profile: empty
values:

gateways:
istio-ingressgateway:

autoscaleEnabled: false
components:

ingressGateways:
- name: istio-ingressgateway

enabled: false
- name: my-user-gateway

namespace: istioinaction
enabled: true
label:

istio: my-user-gateway

We could deploy this gateway with the following istioctl command:

$ istioctl install -y -n istioinaction -f ch4/my-user-gateway.yaml

This would install a new gateway just for the istioinaction namespace.
 Keep in mind that when you create new ingress gateways, they likely need to be

exposed outside of the cluster with a load balancer or other networking configura-
tion. For example, in a public cloud, using the type LoadBalancer for the Kubernetes
service that exposes the gateway incurs a cost per load balancer. 

4.5.2 Gateway injection

Another way to allow users to create their own gateways without having to give them
full access to IstioOperator resources (which can modify an existing Istio installa-
tion) is through gateway injection. With gateway injection, you deploy a stubbed-out
gateway deployment, and Istio fills in the rest, similar to how sidecar injection is done.
This way, you can give a team a stubbed-out gateway deployment resource and have
Istio auto-configure the rest of it. Let’s see an example:

apiVersion: apps/v1
kind: Deployment
metadata:

name: my-user-gateway-injected
namespace: istioinaction

spec:
selector:

matchLabels:
ingress: my-user-gateway-injected
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template:
metadata:

annotations:
sidecar.istio.io/inject: "true"
inject.istio.io/templates: gateway

labels:
ingress: my-user-gateway-injected

spec:
containers:
- name: istio-proxy

image: auto

The Kubernetes deployment specified is stubbed out and annotated with instructions
for how Istio should do the injection. Specifically, we configure the template used for
injection to be the gateway template. You can see which templates are available in the
istio-sidecar-injector configmap in the istio-system namespace.

 Let’s apply this stubbed-out gateway:

$ kubectl apply -f ch4/my-user-gw-injection.yaml

deployment.apps/my-user-gateway-injected created
service/my-user-gateway-injected created
role.rbac.authorization.k8s.io/my-user-gateway-injected-sds created
rolebinding.rbac.authorization.k8s.io/my-user-gateway-injected-sds created

If you review which Pods exist in the istioinaction namespace, you should see the
full gateway correctly filled out by Istio injection. 

4.5.3 Ingress gateway access logs

A common feature for a proxy is logging every individual request that it processes.
These access logs are helpful for troubleshooting issues. Istio’s proxy (Envoy) can gen-
erate access logging. In the demo installation profile, the ingress gateways and service
proxies are configured to print access logs to the standard output stream. To view the
access logs, you only have to print the container logs:

kubectl -n istio-system logs deploy/istio-ingressgateway

This command prints the access logs of the ingress gateway. You should see the
records of the traffic generated when we executed the earlier examples. It might sur-
prise you to learn that access logging is disabled for the production Istio installation
when using the default profile. However, you can change this by setting the
accessLogFile property to print to the standard output stream:

$ istioctl install --set meshConfig.accessLogFile=/dev/stdout

Access logs are turned off by default, which makes sense given that production clusters
have hundreds or thousands of workloads, each of which processes a lot of traffic. Addi-
tionally, because each request makes multiple hops from one service to another, the
amount of access logging generated would strain any logging system. A better approach
is to enable access logging only for the workloads for which you are interested in using

Enables 
injection

Uses the gateway 
template

Must be 
named

Stubbed-out image
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the (new in Istio 1.12 as Alpha level) Telemetry API. For example, to show the access
logs of only the ingress gateway workloads, you can use the following Telemetry
configuration:

apiVersion: telemetry.istio.io/v1alpha1
kind: Telemetry
metadata:

name: ingress-gateway
namespace: istio-system

spec:
selector:

matchLabels:
app: istio-ingressgateway

accessLogging:
- providers:

- name: envoy
disabled: false

This telemetry definition enables access logs for the Pods matching the selector in the
istio-system namespace. If you have configured the Istio installation to print access
logs to standard output, there is no need for access logging because all workloads are
already printing to the console. However, to test it, you can set the disabled property
to true and observe that the ingress gateway doesn’t write access logs.

 Istio configuration such as telemetry, sidecars, peer authentication, and so on can
be applied in different scopes and have different precedence:

 Mesh-wide—Configurations are applied to workloads in the entire mesh. Mesh-
wide configs must be applied in the Istio installation namespace and lack work-
load selectors.

 Namespace-wide—Configurations are applied to all workloads in a namespace.
Namespace-wide configurations are applied in the namespace of the workloads
we want to configure and also lack a workload selector. This overrides any mesh-
wide configuration applied to the workloads.

 Workload-specific—Configurations apply only to workloads matching the work-
load selector in the namespace where the configuration is applied (as shown in
the previous code). Workload-specific configuration overrides both mesh-wide
and namespace-wide configuration.

NOTE Istio defines the following default providers: prometheus, stack-
driver, and envoy. You can define custom providers using the Extension-
Provider API in the mesh configuration (http://mng.bz/REKP). 

4.5.4 Reducing gateway configuration

Out of the box, Istio configures every proxy to know about every service in the mesh.
If you have a mesh with many services, the configuration of the data-plane proxies can
become very large. This large configuration can lead to resource bloat, performance
issues, and scalability concerns. To deal with this, you can optimize the configuration

Pods matching the label get 
the telemetry configuration.

The provider configuration 
for access logging Enable by setting 

disabled to false

http://mng.bz/REKP
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for both the data plane and the control plane. See chapter 11 for more on using the
Sidecar resource to trim down this configuration.

 However, the Sidecar resource does not apply to gateways. When you deploy a
new gateway (ingress gateway, for example), the proxy is configured with all of the ser-
vices available for routing in the mesh. As mentioned, this can contribute to a very
large configuration and put stress on the gateway.

 The trick is to trim out any additional configurations for the proxy by including
only configuration that’s relevant to the gateway. Until recently, this functionality was
turned off by default. In more recent versions, you can double-check whether it’s
enabled. In either case, you can explicitly enable configuration trimming for the gate-
ways with the following configuration:

apiVersion: install.istio.io/v1alpha1
kind: IstioOperator
metadata:

name: control-plane
spec:

profile: minimal
components:

pilot:
k8s:

env:
- name: PILOT_FILTER_GATEWAY_CLUSTER_CONFIG
value: "true"

meshConfig:
defaultConfig:

proxyMetadata:
ISTIO_META_DNS_CAPTURE: "true"

enablePrometheusMerge: true

The important part of this configuration is the PILOT_FILTER_GATEWAY_CLUSTER_
CONFIG feature flag. It trims down the clusters in the gateway’s proxy configuration to
only those that are actually referenced in a VirtualService that applies to the partic-
ular gateway.

 In the next chapter, we expand on our understanding of VirtualService
resources for the purpose of more powerful routing within the service mesh and how
this control helps us control new deployments, route around failures, and implement
powerful testing capabilities. 

Summary
 Ingress gateways provide fine-grained control over what traffic enters our ser-

vice mesh.
 Using the Gateway resource, we can configure the type of traffic admitted into

the mesh for a specific host.
 Just as with any service in the mesh, it uses VirtualService resources to route

the traffic.
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 TLS mode is configurable per host with one of the following modes:

– Encrypt and prevent man-in-the-middle attacks with the SIMPLE TLS mode.
– Mutually authenticate both server and client with the MUTUAL TLS mode.
– Admit and reverse proxy encrypted traffic using the SNI header with the

PASSTHROUGH TLS mode.

 Plain TCP traffic is supported in Istio for L7 protocols that are currently not
supported. However, many features are not possible with plain TCP, such as
retries, complex routing, and so on.

 We can enable teams to manage their own gateways by using gateway injection.



Traffic control:
Fine-grained traffic routing
In the previous chapter, we saw how to get traffic into a cluster and what consider-
ations we needed to account for when doing so. Once a request makes it into our
cluster, how is it routed to the appropriate service to handle the request? How do
services that live within the cluster communicate with other services that live within
the same cluster or outside the cluster? Finally, and most importantly, when we
make changes to a service and introduce new versions, how do we safely expose our
clients and customers to these changes with minimal disruption and impact?

 As we’ve seen, Istio service proxies intercept the communication between ser-
vices within the service-mesh cluster and give us a point of control for traffic. Istio
allows us to finely control traffic flowing between applications down to the individ-
ual request. In this chapter, we look at why you might want to do that, how to do it,
and what benefits you should achieve when utilizing these capabilities.

This chapter covers
 Traffic routing basics

 Shifting traffic during a new release

 Mirroring traffic to reduce the risk of a new release

 Controlling traffic as it leaves a cluster
110
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5.1 Reducing the risk of deploying new code
In chapter 1, we introduced the scenario of ACME Inc. moving to a cloud platform and
adopting practices that helped reduce the company’s risk of deploying code. One of
the patterns ACME tried was blue /
green deployments to introduce
changes to applications. With a
blue/green deployment, ACME
took v2 (green) of the service they
wanted to change and deployed it
in production next to v1 (blue), as
shown in figure 5.1.

 When ACME wanted to release
to customers, it cut the traffic over
to v2 (green). This approach
helped reduce outages during
deployments because if there were
any issues, ACME could cut back to
v1 (blue) of the service.

 Blue/green deployments help,
but when we cut over from v1 to v2,
we still experience a “big bang” in
which we release all the code changes at once. Let’s see how we can further reduce the
risk of doing deployments. First, we should clarify what we mean by deployment and
release.

5.1.1 Deployment vs. release

Let’s use our fictitious catalog service to help illustrate the differences between a
deployment and a release. Suppose v1 of the catalog service is running in production at
the moment. If we want to introduce a code change to the catalog service, we expect
to build it using our continuous-integration system, tag it with a new version (let’s say
v1.1), and then deploy it and test it in pre-production environments. Once we can val-
idate these changes in pre-production and have the necessary approvals, we can begin
to bring the new version v1.1 to production.

 When we do a deployment to production, we install the new code onto production
resources (servers, containers, and so on), but we do not send any traffic to it. Doing a
deployment to production should not impact users running in production because it
doesn’t take any user requests. At this point, we can run tests on the new deployment
running in production to verify that it works as we expect (see figure 5.2). We should
have metrics and log collection enabled, so we can use these signals to inform our
confidence that our new deployment is behaving as expected.

Client

Proxy

Svc 1.0

Svc 1.0 Svc 1.0

Svc 2.0

Svc 2.0 Svc 2.0

“Blue” “Green”

Cutover traffic

Figure 5.1 In a blue/green deployment, blue is the 
currently released software. When we release the new 
software, we cut over traffic to the green version.
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Figure 5.2 A deployment is code that is installed into production but does not take any 
live production traffic. While the deployment is installed into production, we do smoke 
tests and validate it.

Once we have code deployed into production, we can make a business decision about
how to release it to our users. Releasing code means bringing live traffic over to our
new deployment. But this is not an all-or-nothing proposition. This is where a decou-
pling between deployment and release becomes crucial to reduce the risk of bringing

Client

Proxy

Svc 1.0

Svc 1.0 Svc 1.0

Svc 2.0

Svc 2.0 Svc 2.0

Production
cluster

Smoke testing, 
verification, 
monitoring

Deployed, not getting
user traffic

Client

Proxy

Svc 1.0

Svc 1.0 Svc 1.0

Svc 2.0

Svc 2.0 Svc 2.0

Production
cluster If user==internal,

send traffic 

Telemetry collection

Figure 5.3 A release 
is when we start to 
bring production 
traffic over to the 
deployment, ideally in 
an incremental way.
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new code to production. We can decide to release new software only to internal
employees (see figure 5.3). Those internal employees can control the traffic such that
they are exposed to the new version of the software. As operators of the software, they
can then observe (using logging and metrics collection) and verify that the code
change had the intended effect.

 Now the old version of our software is taking the bulk of the live traffic, and the
newer version is taking a small fraction of the traffic. This approach is known as
canarying or a canary release (using the metaphor of a canary in a coal mine). Basically,
we choose a small group of users to expose to the new version of our code and watch
how it behaves. If it has unintended behaviors, we can back out the release and redi-
rect traffic to the previous version of our service.

 If we’re comfortable with the behavior and performance of the new code changes,
we can further open the aperture of the release (see figure 5.4). We may wish to allow
non-paying customers or silver-level (versus gold or platinum) customers to see these
changes now.

Figure 5.4 We can graduate the release to more of our user base by opening 
the criteria for which users should be routed to our new deployment.

We continue this iterative approach to release and observe until all of our customers
are exposed to these new code changes (see figure 5.5). At any point in this process,
we may find that the new code doesn’t deliver the functionality, behavior, or perfor-
mance we expected and validated through real user interaction. We can then roll back
the release by directing traffic back to the previous version.

Client

Proxy

Svc 1.0

Svc 1.0 Svc 1.0

Svc 2.0

Svc 2.0 Svc 2.0

Production
cluster If user==internal,

OR level==silver

Telemetry collection
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In the past, ACME combined the two ideas of deployment and release. To bring code
changes to production, the company initiated a rolling upgrade that effectively
replaced old versions of a service with a new version. As soon as the new version was
introduced to the cluster, it received production traffic. This approach exposed users
to the new version of the code and any bugs or issues that it brought along.

 Decoupling deployment and release allows us to more finely control how and
which users are exposed to the new changes. This allows us to reduce the risk of bring-
ing new code to production. Let’s see how Istio can help lower the risk of doing a
release by controlling traffic based on the requests that come into the system. 

5.2 Routing requests with Istio
In chapter 2, we used Istio to control traffic to the catalog service. We used the Istio
VirtualService resource to specify how to route the traffic. Let’s take a closer look at
how that works. We’ll control the route of a request based on its content (by evaluat-
ing its headers). In this way, we can make a deployment available to certain users with
a technique called a dark launch. In a dark launch, a large percentage of users are sent
to a known working version of a service, while certain classes of users are sent to a
newer version. Thus we can expose new functionality in a controlled way to a specific
group without affecting everyone else.

5.2.1 Cleaning up our workspace

Before we dive in, let’s clean up our environment, so we can start from a clean slate. If
you’re not already in the istioinaction namespace in your Kubernetes cluster,
switch to the istioinaction namespace like this:

$ kubectl config set-context $(kubectl config current-context) \
--namespace=istioinaction

Client

Proxy

Svc 1.0

Svc 1.0 Svc 1.0

Svc 2.0

Svc 2.0 Svc 2.0

Production
cluster Fully released

Telemetry collection

Still deployed, 
no traffic

Figure 5.5 We can 
continue to shift traffic 
over to our new 
deployment until it’s fully 
released. A rollback 
shifts traffic back to the 
original deployment.
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Now clean up any resources:

$ kubectl delete deployment,svc,gateway,\
virtualservice,destinationrule --all -n istioinaction

5.2.2 Deploying v1 of the catalog service

Let’s deploy v1 of our catalog service. From the root of the book’s source code, run
the following command:

$ kubectl apply -f services/catalog/kubernetes/catalog.yaml

serviceaccount/catalog created
service/catalog created
deployment.extensions/catalog created

Give it a few moments to start up. You can watch the progress with the following
command:

$ kubectl get pod -w

NAME READY STATUS RESTARTS AGE
catalog-98cfcf4cd-xnv79 2/2 Running 0 33s

At this point, we can only reach the catalog service from within the cluster. Run the
following command to verify that we can reach the catalog service and that it
responds correctly:

$ kubectl run -i -n default --rm --restart=Never dummy \
--image=curlimages/curl --command -- \
sh -c 'curl -s http:/./catalog.istioinaction/items'

Now, let’s expose the catalog service to clients that live outside the cluster. Recalling
what we learned in chapter 4, we use an Istio Gateway resource to do this (note that
the domain we’re using is catalog.istioinaction.io):

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:

name: catalog-gateway
spec:

selector:
istio: ingressgateway

servers:
- port:

number: 80
name: http
protocol: HTTP

hosts:
- "catalog.istioinaction.io"

Run the following command:

$ kubectl apply -f ch5/catalog-gateway.yaml

gateway.networking.istio.io/catalog-gateway created
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Next, just as we saw in chapter 4, we need to create a VirtualService resource that
routes traffic to our catalog service. The VirtualService resource looks like this:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:

name: catalog-vs-from-gw
spec:

hosts:
- "catalog.istioinaction.io"
gateways:
- catalog-gateway
http:
- route:

- destination:
host: catalog

Let’s create this VirtualService:

$ kubectl apply -f ch5/catalog-vs.yaml

virtualservice.networking.istio.io/catalog-vs-from-gw created

We can now reach the catalog service from outside the cluster by calling into the Istio
gateway. We are using Docker Desktop, which publishes the Istio ingress gateway on
localhost:80, so we can run the following command:

$ curl http:/./localhost/items -H "Host: catalog.istioinaction.io"

You should see the same output as when we called the service from inside the cluster.
In this case, we’re going through the gateway and calling the catalog service from
outside the cluster (see figure 5.6). 

Figure 5.6 In this initial example, we’re calling the catalog 
service directly through the gateway.

5.2.3 Deploying v2 of the catalog service

To see the traffic-control features of Istio, let’s deploy v2 of the catalog service. This
command assumes you’re at the root of the source code directory:

$ kubectl apply -f services/catalog/kubernetes/catalog-deployment-v2.yaml

deployment.extensions/catalog-v2 created

catalog
(v1)

curl
client

Istio
ingress
gateway
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List the Pods in your cluster:

$ kubectl get pod

NAME READY STATUS RESTARTS AGE
catalog-98cfcf4cd-xnv79 2/2 Running 0 14m
catalog-v2-598b8cfbb5-6vw84 2/2 Running 0 36s

If you call the catalog service multiple times, some responses have an additional field
in the response. v2 responses have a field called imageUrl, while v1 responses do not:

$ for in in {1..10}; do curl http:/./localhost/items \
-H "Host: catalog.istioinaction.io"; printf "\n\n"; done

[
{

"id": 0,
"color": "teal",
"department": "Clothing",
"name": "Small Metal Shoes",
"price": "232.00",
"imageUrl": "http:/./lorempixel.com/640/480"

}
]
[

{
"id": 0,
"color": "teal",
"department": "Clothing",
"name": "Small Metal Shoes",
"price": "232.00"

}
]

5.2.4 Routing all traffic to v1 of the catalog service

As we did in chapter 2, let’s route all traffic to v1 of the catalog service. This is the
usual traffic pattern before beginning the dark launch. We need to give Istio a hint
about how to identify which workloads are v1 and which are v2. In our Kubernetes
Deployment resource for v1 of the catalog service, we use the labels app: catalog
and version: v1. For the Deployment that specifies v2 of catalog, we use the labels
app: catalog and version: v2. For Istio, we create a DestinationRule that specifies
these different versions as subsets:

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:

name: catalog
spec:

host: catalog
subsets:
- name: version-v1

labels:
version: v1



118 CHAPTER 5 Traffic control: Fine-grained traffic routing
- name: version-v2
labels:

version: v2

Let’s create this DestinationRule. Run the following:

$ kubectl apply -f ch5/catalog-dest-rule.yaml

destinationrule.networking.istio.io/catalog created

Now that we’ve specified to Istio how to break up the different versions of our catalog
service, let’s update our VirtualService to route all traffic to v1 of catalog:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:

name: catalog-vs-from-gw
spec:

hosts:
- "catalog.istioinaction.io"
gateways:
- catalog-gateway
http:
- route:

- destination:
host: catalog
subset: version-v1

Let’s update this VirtualService: 

$ kubectl apply -f ch5/catalog-vs-v1.yaml

virtualservice.networking.istio.io/catalog-vs-from-gw configured

Now, when we call our catalog service, we see only v1 responses:

$ for i in {1..10}; do curl http:/./localhost/items \
-H "Host: catalog.istioinaction.io"; printf "\n\n"; done

At this point, all traffic is routed to v1 of the catalog service, as depicted in figure 5.7.
Now, suppose we want to route specific requests to v2 in a controlled manner. Let’s see
how in the next section. 

Specify 
subset

catalog
(v1)

curl
client

Istio
ingress
gateway

catalog
(v2)

Figure 5.7 Routing all 
traffic to v1 of catalog
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5.2.5 Routing specific requests to v2

Maybe we wish to route any traffic that includes the HTTP header x-istio-cohort:
internal to v2 of catalog. We can specify this request routing in the Istio Virtual-
Service resource like this:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:

name: catalog-vs-from-gw
spec:

hosts:
- "catalog.istioinaction.io"
gateways:
- catalog-gateway
http:
- match:

- headers:
x-istio-cohort:
exact: "internal"

route:
- destination:

host: catalog
subset: version-v2

- route:
- destination:

host: catalog
subset: version-v1

Let’s update this VirtualService:

$ kubectl apply -f ch5/catalog-vs-v2-request.yaml

virtualservice.networking.istio.io/catalog-vs-from-gw configured

When we call our service, we still see v1 responses. However, if we send a request with
the x-istio-cohort header equal to internal, we are routed to v2 of the catalog
service and see the expected response, as shown in figure 5.8:

$ curl http:/./localhost/items \
-H "Host: catalog.istioinaction.io" -H "x-istio-cohort: internal"

catalog
(v1)

catalog
(v2)

curl
client

Istio
ingress
gateway

Header:
x-istio-cohort: internal

Figure 5.8 Fine-grained 
request routing for requests 
with certain content
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5.2.6 Routing deep within a call graph

Up to this point, we’ve seen how we can use Istio to do request routing, but we’ve
been doing the routing from the edge/gateway. These traffic rules can also be applied
deep within a call graph (see figure 5.9). We did this in chapter 2, so let’s re-create the
process and verify that it works as expected.

NOTE Istio’s routing capabilities derive from Envoy’s capabilities. For
request-specific routing, teams may opt to use application injected headers,
as we see in this example of using x-istio-cohort, or rely on known head-
ers like Agent or a value from a cookie. In practice, you can also use decision
engines to decide what headers to inject and subsequently make routing
decisions on.

First, remove all the Istio resources in our istioinaction namespace:

$ kubectl delete gateway,virtualservice,destinationrule --all

Let’s restore the architecture we had in chapter 2 with the webapp and catalog ser-
vices (and an Istio gateway directing traffic to webapp):

$ kubectl apply -f \
services/webapp/kubernetes/webapp.yaml

serviceaccount/webapp created
service/webapp created
deployment.extensions/webapp created

Now, set up the Istio ingress gateway to route to the webapp service:

$ kubectl apply -f services/webapp/istio/webapp-catalog-gw-vs.yaml

gateway.networking.istio.io/coolstore-gateway created
virtualservice.networking.istio.io/webapp-virtualservice created

Wait until the Pods come up correctly:

catalog
(v1)

Istio
ingress
gateway

webapp
service

catalog
(v2) Figure 5.9 Fine-grained request 

routing for requests with certain 
content deep within a call graph
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$ kubectl get pod -w

NAME READY STATUS RESTARTS AGE
catalog-98cfcf4cd-tllnl 2/2 Running 0 13m
catalog-v2-598b8cfbb5-5m65c 2/2 Running 0 28s
webapp-86b9cf46d6-5vzrg 2/2 Running 0 13m

If you issue calls again to the webapp service, you should see alternating responses to
v1 and v2 of catalog as we saw earlier when accessing catalog directly:

$ curl -H "Host: webapp.istioinaction.io" http:/./localhost/api/catalog

Let’s create VirtualService and DestinationRule resources that route all traffic to
v1 of the catalog service:

$ kubectl apply -f ch5/catalog-dest-rule.yaml

destinationrule.networking.istio.io/catalog created

$ kubectl apply -f ch5/catalog-vs-v1-mesh.yaml

virtualservice.networking.istio.io/catalog created

Now, if you hit the webapp service endpoint again, you should only see v1 catalog
responses:

$ curl http:/./localhost/api/catalog -H "Host: webapp.istioinaction.io"

Finally, we add request-based routing specifying that routing depends on whether the
x-istio-cohort header is present and equals internal:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:

name: catalog
spec:

hosts:
- catalog
gateways:

- mesh
http:
- match:

- headers:
x-istio-cohort:
exact: "internal"

route:
- destination:

host: catalog
subset: version-v2

- route:
- destination:

host: catalog
subset: version-v1

The virtual service applies to 
all sidecars in the mesh.
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Let’s update the VirtualService:

$ kubectl apply -f ch5/catalog-vs-v2-request-mesh.yaml

Pass in the x-istio-cohort header, and you see the traffic routed to v2 of the cata-
log service in the call graph:

$ curl http:/./localhost/api/catalog -H "Host: webapp.istioinaction.io" \
-H "x-istio-cohort: internal"

5.3 Traffic shifting
In this section, we look at another way to “canary” or incrementally release a deploy-
ment. In the previous section, we showed routing based on header matching to
achieve a dark launch for certain user groups. In this section, we distribute all live traf-
fic to a set of versions for a particular service based on weights. For example, if we’ve
dark-launched v2 of our catalog service to internal employees, and we’d like to slowly
release this version to everyone, we can specify a routing weight of 10% to v2: 10% of
all traffic destined for catalog will go to v2, and 90% of the traffic will still go to v1.
This way, we can further reduce the risk of doing a release by controlling how much of
the total traffic would be affected by any negative impacts of the v2 code.

 As with the dark launch, we want to monitor and observe our service for any errors
and roll back the release if there are issues. In this case, rolling back is as simple as
changing the routing weights so that v2 of the catalog service gets a reduced percent-
age of total traffic (all the way back to 0%, if needed). Let’s take a look at using Istio to
perform weighted traffic shifting.

 From the previous section, the following services are running (including v1 and v2
of catalog):

$ kubectl get pod

NAME READY STATUS RESTARTS AGE
webapp-86b9cf46d6-5vzrg 2/2 Running 58 12h
catalog-98cfcf4cd-tllnl 1/2 Running 60 12h
catalog-v2-598b8cfbb5-5m65c 1/2 Running 58 11h

Let’s reset all traffic to v1 of the catalog service:

$ kubectl apply -f ch5/catalog-vs-v1-mesh.yaml

virtualservice.networking.istio.io/catalog configured

If we call our service, we see only responses from v1, as expected:

$ for i in {1..10}; do curl http:/./localhost/api/catalog \
-H "Host: webapp.istioinaction.io"; done

Let’s route 10% of the traffic to v2 of catalog:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
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name: catalog
spec:

hosts:
- catalog
gateways:
- mesh
http:
- route:

- destination:
host: catalog
subset: version-v1

weight: 90
- destination:

host: catalog
subset: version-v2

weight: 10

Now we update the routing for catalog:

$ kubectl apply -f ch5/catalog-vs-v2-10-90-mesh.yaml

virtualservice.networking.istio.io/catalog configured

If we call our service, approximately 1 out of 10 calls have the v2 response:

$ for i in {1..100}; do curl -s http:/./localhost/api/catalog \
-H "Host: webapp.istioinaction.io" \
| grep -i imageUrl; done | wc -l

In this command, we call the /api/catalog endpoint 100 times. When the command
returns, a result close to 10 (10% of 100 items) should be printed on the screen.

 If we want to split traffic 50/50, we just need to update the weights on the routing:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:

name: catalog
spec:

hosts:
- catalog
gateways:

- mesh
http:
- route:

- destination:
host: catalog
subset: version-v1

weight: 50
- destination:

host: catalog
subset: version-v2

weight: 50

$ kubectl apply -f ch5/catalog-vs-v2-50-50-mesh.yaml

virtualservice.networking.istio.io/catalog configured

Most traffic 
goes to v1.

Some traffic 
goes to v2.
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Try calling the service again:

$ for i in {1..100}; do curl -s http:/./localhost/api/catalog \
-H "Host: webapp.istioinaction.io" \
| grep -i imageUrl; done | wc -l

A value of approximately 50 is returned from that command, which means about half
the calls returned with a response from v2 of our backend catalog service.

 You can shift the traffic between 1 and 100 for each version of your service, but the
sum of all the weights must equal 100. If it doesn’t, unpredictable traffic routing can
occur. Also note that if you have versions other than just v1 and v2, they must be
declared as subsets in the DestinationRule. See ch5/catalog-dest-rule.yaml for an
example.

 For the steps in this chapter, we’ve manually shifted traffic between different ver-
sions. Ideally, we want to automate this traffic shifting behind some tooling or a deploy-
ment pipeline in the continuous integration / continuous delivery (CI/CD) pipeline.
In the next section, we look at a tool that can help automate this canary release process.

WARNING As you slowly release a new software version, you should monitor
and observe both the new and old versions to verify things like stability, per-
formance, and correctness. If you spot any signs of impact, you can easily roll
back to the older version of the service by shifting the weights. Also keep in
mind that your services need to be built to support multiple versions running
concurrently when you use this approach. The more stateful a service is (even
if it depends on external state), the more difficult this can be. See our blog
posts at http://bit.ly/2NSE2gf and http://bit.ly/2oJ86jc for more thoughts on
this topic.

5.3.1 Canary releasing with Flagger

Istio gives operators some powerful features to control traffic routing, as we saw in the
previous sections, but we had to manually make the routing changes and apply new
configuration from the CLI. We also created multiple versions of the configuration,
which means more work and opportunities for misconfiguration.

 We wish to avoid this manual human intervention when driving the canary since
hundreds of releases may be going on simultaneously, and we want to reduce the
chance for errors. We can automate the release of a service by using something like
Flagger (https://flagger.app). Flagger is a canary-automation tool written by Stefan
Prodan that allows you to specify parameters about how to perform the release, when
to open the release to more users, and when to roll back if a release introduces issues.
Flagger creates all of the appropriate configuration to drive the release.

 Let’s see how to use Flagger with Istio. In the previous section, we deployed cata-
log-v2 and a VirtualService resource to explicitly control the traffic routing. Let’s
remove those and let Flagger handle the routing and the deployment changes:

$ kubectl delete vs catalog
virtualservice.networking.istio.io "catalog" deleted

http://bit.ly/2NSE2gf
http://bit.ly/2oJ86jc
https://flagger.app
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$ kubectl delete deploy catalog-v2
deployment.apps "catalog-v2" deleted

$ kubectl delete service catalog
service "catalog" deleted

$ kubectl delete destinationrule catalog
destinationrule.networking.istio.io "catalog" deleted

Flagger relies on metrics to determine the health of a service, especially as a canary
release is introduced. For Flagger to use any of the success metrics, we need to have
Prometheus installed and scraping the Istio data plane. If you’ve been following along
with the examples in this book, the Prometheus sample should already be installed. If
not, quickly install the Prometheus add-on that comes with Istio:

$ kubectl apply -f istio-1.13.0/samples/addons/prometheus.yaml \
-n istio-system

Next we want to install Flagger. Flagger uses Helm for installation, so verify that you
have Helm 3.x on your system path:

$ helm repo add flagger https:/./flagger.app
$ kubectl apply -f \
https:/./raw.githubusercontent.com/fluxcd/\
flagger/main/artifacts/flagger/crd.yaml

$ helm install flagger flagger/flagger \
--namespace=istio-system \
--set crd.create=false \
--set meshProvider=istio \
--set metricsServer=http:/./prometheus:9090

NOTE See the Flagger documentation at https://docs.flagger.app/install/
flagger-install-on-kubernetes for more complete installation options and steps.

After installation, you should see the Prometheus and Flagger deployments in the
istio-system namespace:

$ kubectl get po -n istio-system
NAME READY STATUS RESTARTS AGE
flagger-6764c647ff-w6jqz 1/1 Running 0 27h
istio-ingressgateway-7576658c9b-vcx7n 1/1 Running 0 5d4h
istiod-c85d85ddd-vtrlz 1/1 Running 0 7d21h
prometheus-7d76687994-nh9bf 2/2 Running 0 27h

We’re going to use the Flagger Canary resource to specify the parameters of our canary
release, and we’ll let Flagger create the appropriate resources to orchestrate this release
as shown in the following listing.

apiVersion: flagger.app/v1beta1
kind: Canary

Listing 5.1 Flagger Canary resource to configure canary automation

https://docs.flagger.app/install/flagger-install-on-kubernetes
https://docs.flagger.app/install/flagger-install-on-kubernetes
https://docs.flagger.app/install/flagger-install-on-kubernetes


126 CHAPTER 5 Traffic control: Fine-grained traffic routing
metadata:
name: catalog-release
namespace: istioinaction

spec:
targetRef:

apiVersion: apps/v1
kind: Deployment
name: catalog

progressDeadlineSeconds: 60
# Service / VirtualService Config
service:

name: catalog
port: 80
targetPort: 3000
gateways:
- mesh
hosts:
- catalog

analysis:
interval: 45s
threshold: 5
maxWeight: 50
stepWeight: 10
metrics:
- name: request-success-rate

thresholdRange:
min: 99

interval: 1m
- name: request-duration

thresholdRange:
max: 500

interval: 30s

In this Canary resource, we specify which Kubernetes Deployment should be the tar-
get of the canary, what Kubernetes Service and Istio VirtualService should be auto-
matically created, and how to proceed with the canary. The last part of the Canary
resource describes how quickly to promote the canary, what metrics to watch to deter-
mine viability, and the thresholds for determining success. We evaluate the canary
steps every 45 seconds and increase the traffic by 10% at each step; when we get to
50% traffic, we cut over traffic to 100%.

 We also specify that for the success-rate metric, we will tolerate only 99% success
checking over a period of 1 minute. We also allow only a 500 ms request duration at
P99 (the 99th percentile). If these metrics deviate from what we’ve specified for more
than five intervals, the canary will be halted and rolled back.

 Let’s apply the configuration from listing 5.1 and begin the process of canarying
the catalog service to v2 automatically. From the ch5 folder, run the following:

$ kubectl apply -f ch5/flagger/catalog-release.yaml

canary.flagger.app/catalog-release created

Which deployment 
to canary

Configuration 
for the service

Canary progression 
parameters
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It may take a few moments, but during that time you can check the status of the
canary as follows:

$ kubectl get canary catalog-release -w
NAME STATUS WEIGHT LASTTRANSITIONTIME
catalog-release Initializing 0 2021-01-20T22:50:16Z
catalog-release Initialized 0 2021-01-20T22:51:11Z

At this point, Flagger has automatically created some of the Kubernetes resources nec-
essary to drive a canary release, such as the Deployment, Service, and Virtual-
Service objects. For example, if we examine the Istio VirtualService set up by
Flagger, we’ll get an idea of the routing rules.

 Run the following command:

$ kubectl get virtualservice catalog -o yaml

Flagger automatically creates the corresponding VirtualService:

apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:

name: catalog
namespace: istioinaction

spec:
gateways:
- mesh
hosts:
- catalog
http:
- route:

- destination:
host: catalog-primary

weight: 100
- destination:

host: catalog-canary
weight: 0

From this VirtualService, we can see that traffic destined for the catalog service will
be routed 100% to the catalog-primary service and 0% to the canary. Up to this
point, all we’ve done is set up the base configuration; we haven’t actually done the
canary. Flagger watches for changes to the original deployment target (in this case,
the catalog deployment), creates the canary deployment (catalog-canary) and ser-
vice (catalog-canary), and adjusts the VirtualService weights.

 Let’s introduce v2 of catalog and see how Flagger automates it through a release
and makes decisions based on metrics. Let’s also generate load to the service through
Istio, so Flagger has a baseline of what the metrics look like when healthy. In a new ter-
minal window, run the following to loop through calling the services:

$ while true; do curl "http:/./localhost/api/catalog" \
-H "Host: webapp.istioinaction.io" ; sleep 1; done
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Next, run the following command to deploy the catalog-v2 service:

$ kubectl apply -f ch5/flagger/catalog-deployment-v2.yaml
deployment.apps/catalog configured

We can watch the evolution and progress of the canary with the following command:

$ kubectl get canary catalog-release -w

While the canary progresses and we see weight being shifted to the catalog-v2 ser-
vice, we can check the VirtualService resource config and verify that it matches with
the traffic shifting expected:

$ kubectl get virtualservice catalog -o yaml

Flagger controls the weights of the VirtualService:

apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:

name: catalog
namespace: istioinaction

spec:
gateways:
- mesh
hosts:
- catalog
http:
- route:

- destination:
host: catalog-primary

weight: 90
- destination:

host: catalog-canary
weight: 10

We expect progression to happen for the canary every 45 seconds, as configured in
the Canary object. Steps are made in 10% increments until 50% of the traffic is shifted
to the canary. If Flagger sees that the metrics look good and there are no deviations,
the process will progress until all traffic goes to the canary and it is promoted to the
primary service. If things misbehave, Flagger will automatically roll back the canary
release.

 After a time, the output for the canary status looks something like this:

$ kubectl get canary catalog-release -w
NAME STATUS WEIGHT LASTTRANSITIONTIME
catalog-release Initializing 0 2021-01-20T22:50:16Z
catalog-release Initialized 0 2021-01-20T22:51:11Z
catalog-release Progressing 0 2021-01-20T22:58:41Z
catalog-release Progressing 10 2021-01-20T22:59:26Z
catalog-release Progressing 20 2021-01-20T23:00:11Z
catalog-release Progressing 30 2021-01-20T23:00:56Z
catalog-release Progressing 40 2021-01-20T23:01:41Z
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catalog-release Progressing 50 2021-01-20T23:02:26Z
catalog-release Promoting 0 2021-01-20T23:03:11Z
catalog-release Finalising 0 2021-01-20T23:03:56Z
catalog-release Succeeded 0 2021-01-20T23:04:41Z

We used Flagger to automatically control the canary release using Istio’s APIs and
removed the need to manually configure resources or introduce any manual behavior
that could cause configuration errors. Flagger can also do dark-launch testing, traffic
mirroring (discussed in the next section), and more; see https://flagger.app.

 To clean up this exercise and get the configuration into a state to continue the
chapter, let’s remove the Flagger Canary resource, reset the catalog deployment, and
deploy catalog-v2 as a separate deployment:

$ kubectl delete canary catalog-release
$ kubectl delete deploy catalog
$ kubectl apply -f services/catalog/kubernetes/catalog-svc.yaml
$ kubectl apply -f services/catalog/kubernetes/catalog-deployment.yaml
$ kubectl apply -f services/catalog/kubernetes/catalog-deployment-v2.yaml
$ kubectl apply -f ch5/catalog-dest-rule.yaml

Finally, remove Flagger:

$ helm uninstall flagger -n istio-system

5.4 Reducing risk even further: Traffic mirroring
Using the previous two techniques of request-level routing and traffic shifting, we can
lower the risk of doing releases. Both techniques use live traffic and requests and can
impact users even though you can control how widespread a potentially negative
effect may be. Another approach is to mirror production traffic to a new deployment
that copies the production traffic and sends it to the new deployment out of band of
any customer traffic, as shown in figure 5.10. Using the mirroring approach, we can
direct real production traffic to our deployment and get real feedback about how new
code will behave without impacting users. Istio supports mirroring traffic, which can
reduce the risk of doing a deployment and release even more than the other two
approaches. Let’s take a look.

catalog
(v1)

Istio
ingress
gateway

webapp
service

catalog
(v2)

Mirrored traffic

Figure 5.10 Traffic mirrored to 
the catalog-v2 service out of 
band from the request path

https://flagger.app
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To mirror traffic to v2 of our catalog service, let’s first reset all traffic to v1. From the
ch5 folder, run the following:

$ kubectl apply -f ch5/catalog-vs-v1-mesh.yaml

Now, let’s look at the VirtualService we need to do the mirroring:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:

name: catalog
spec:

hosts:
- catalog
gateways:

- mesh
http:
- route:

- destination:
host: catalog
subset: version-v1

weight: 100
mirror:

host: catalog
subset: version-v2

With this VirtualService definition, we route 100% of live traffic to v1 of the cata-
log service, but we also mirror the traffic to v2. As mentioned earlier, mirroring is
done in a fire-and-forget manner in which a copy of the request is created and sent to
the mirrored cluster (in this case, v2 of catalog). This mirrored request cannot affect
the real request because the Istio proxy that does the mirroring ignores any responses
(success/failure) from the mirrored cluster. Let’s create this VirtualService
resource:

$ kubectl apply -f ch5/catalog-vs-v2-mirror.yaml

virtualservice.networking.istio.io/catalog created

Now, if we send traffic to our service, we should see a response only from v1 of the
catalog service:

$ curl http:/./localhost/api/catalog -H "Host: webapp.istioinaction.io"

We can check the log of the v1 service to verify that we’re getting traffic:

$ CATALOG_V1=$(kubectl get pod -l app=catalog -l version=v1 \
-o jsonpath={.items..metadata.name})
$ kubectl logs $CATALOG_V1 -c catalog

The log entries look like this:

request path: /items
blowups: {}
number of blowups: 0

Mirroring 
clause

Subset of the 
catalog service
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GET catalog.istioinaction:80 /items 200 502 - 2.363 ms
GET /items 200 2.363 ms - 502

If we get the log of v2 of the catalog service, we also see logging entries:

$ CATALOG_V2=$(kubectl get pod -l app=catalog -l version=v2 \
-o jsonpath={.items..metadata.name})
$ kubectl logs $CATALOG_V2 -c catalog

request path: /items
blowups: {}
number of blowups: 0
GET catalog.istioinaction-shadow:80 /items 200 698 - 2.517 ms
GET /items 200 2.517 ms - 698

For each request we send into our service, a request goes to v1 of catalog as well as v2.
The request that makes it to v1 is the live request, and that’s the response we see. The
request that makes it to v2 is mirrored and sent as fire-and-forget.

 Note that when the mirrored traffic makes it to catalog v2, the Host header
has been modified to indicate that it is mirrored/shadowed traffic: instead of Host:
catalog:8080, it is Host: catalog-shadow:8080. A service that receives a request with
the -shadow postfix can identify that request as a mirrored request and take that into
consideration when processing it (for example, the response will be discarded, so
either roll back a transaction or don’t make any calls that are resource-intensive).

 Mirroring traffic is one part of the story to lower the risk of doing releases. Just as
with request routing and traffic shifting, our applications should be aware of this con-
text and be able to run in both live and mirrored modes, run as multiple versions, or
both. See our blog posts at http://bit.ly/2NSE2gf and http://bit.ly/2oJ86jc to learn
more. 

5.5 Routing to services outside your cluster by using 
Istio’s service discovery
By default, Istio allows any traffic out of the service mesh. For example, if an applica-
tion tries to talk with external websites or services not managed by the service mesh,
Istio allows this traffic out. Since all traffic first passes through the service-mesh side-
car proxy (Istio proxy), and we can control traffic routing, we can change Istio’s
default policy and deny all traffic that tries to leave the mesh.

 Blocking all traffic leaving the mesh is a basic defense-in-depth posture to prevent
bad actors from phoning home if a service or application within the mesh becomes
compromised. Blocking external traffic using Istio is not sufficient, however. A compro-
mised Pod could bypass the proxy. Therefore, you need a defense-in-depth approach
with additional traffic blocking mechanisms such as layer 3 and layer 4 protection.

 For example, if a vulnerability allows an attacker to take control of a particular ser-
vice, they can try to inject code or otherwise manipulate the service to reach out to
servers they control. If they can do this and further control the compromised service,
they can exfiltrate company-sensitive data and intellectual property.

http://bit.ly/2NSE2gf
http://bit.ly/2oJ86jc
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 Let’s configure Istio to block external traffic, leaving the mesh providing a simple
layer of protection (see figure 5.11). Run the following command to change Istio’s
default from ALLOW_ANY to REGISTRY_ONLY. This means we’ll allow traffic to leave the
mesh only if it’s explicitly whitelisted in the service-mesh registry:

$ istioctl install --set profile=demo \
--set meshConfig.outboundTrafficPolicy.mode=REGISTRY_ONLY

Figure 5.11 Let’s block any traffic trying to leave the service by default.

NOTE Here we update the Istio installation and set the outboundTraffic-
Policy setting to REGISTRY_ONLY. For this book and experimentation pur-
poses, that is fine. However, in a real deployment, you’d likely make changes
to the Istio installation with IstioOperator or update the istio configmap in
istio-system directly.

Since not all services live in the service mesh, we need a way for services inside the
mesh to communicate with those outside the mesh. Those could be existing HTTP
services or, more likely, infrastructure services like databases or caches. We can still
implement sophisticated routing for services that reside outside Istio, but first we have
to introduce the concept of a ServiceEntry.

 Istio builds up an internal service registry of all the services that are known by the
mesh and that can be accessed within the mesh. You can think of this registry as the
canonical representation of a service-discovery registry that services within the mesh
can use to find other services. Istio builds this internal registry by making assumptions
about the platform on which the control plane is deployed. For example, in this book,
we’re deploying the control plane onto Kubernetes. Istio uses the default Kubernetes
API to build its catalog of services (based on Kubernetes Service objects; see https://
kubernetes.io/docs/concepts/services-networking/service), as depicted in figure
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5.12. For our services within the mesh to communicate with those outside the mesh,
we need to let Istio’s service-discovery registry know about this external service.

Figure 5.12 We can specify ServiceEntry resources that augment 
and insert external services into the Istio service registry.

In our fictitious store, we want to provide the best possible customer service and allow
customers to give feedback or share thoughts directly with each other. To do that, we’ll
connect our users with an online forum that is built and deployed outside of our service-
mesh cluster. In this case, our forum lives at the URL jsonplaceholder.typicode.com.

 The Istio ServiceEntry resource encapsulates registry metadata that we can use to
insert an entry into Istio’s service registry. Here’s an example:

apiVersion: networking.istio.io/v1alpha3
kind: ServiceEntry
metadata:

name: jsonplaceholder
spec:

hosts:
- jsonplaceholder.typicode.com
ports:
- number: 80

name: http
protocol: HTTP

resolution: DNS
location: MESH_EXTERNAL

This ServiceEntry resource inserts an entry into Istio’s service registry, which makes
explicit that clients within the mesh are allowed to call JSON Placeholder using host
jsonplaceholder.typicode.com. The JSON Placeholder service exposes a sample
REST API that we can use to simulate talking with services that live outside our cluster.
Before we create this service entry, let’s install a service that talks to the jsonplace-
holder.typicode.com REST API and observe that Istio indeed blocks any outbound
traffic.

 To install an example forum application that uses jsonplaceholder.typicode
.com, run the following command from the root of the book’s source code:

$ kubectl apply -f services/forum/kubernetes/forum-all.yaml

istiod
service
registry

Kubernetes
API/registry

Add custom services 
with ServiceEntry.

Pull services from the 
platform-specific registry.
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Give that a few moments to come up. The output should be similar to this:

$ kubectl get pod -w

NAME READY STATUS RESTARTS AGE
catalog-b56cf7fdd-4smrk 2/2 Running 0 8m10s
catalog-v2-86854b8c7-blfp7 2/2 Running 0 8m6s
forum-7476c4f789-j5hqg 2/2 Running 0 30s
webapp-f7bdbcbb5-gkvpn 2/2 Running 0 25m

Let’s try calling our new forum service from within the mesh:

$ curl http:/./localhost/api/users -H "Host: webapp.istioinaction.io"

error calling Forum service

To allow this call to go through, we can create an Istio ServiceEntry resource to the
jsonplaceholder.typicode.com host. Doing so inserts an entry into Istio’s service
registry and makes it known to the service mesh. From the ch5 folder, run the
following:

$ kubectl apply -f ch5/forum-serviceentry.yaml

serviceentry.networking.istio.io/jsonplaceholder created

Now try calling the forum service again:

$ curl http:/./localhost/api/users -H "Host: webapp.istioinaction.io"

...

{
"id": 10,
"name": "Clementina DuBuque",
"username": "Moriah.Stanton",
"email": "Rey.Padberg@karina.biz",
"address": {

"street": "Kattie Turnpike",
"suite": "Suite 198",
"city": "Lebsackbury",
"zipcode": "31428-2261",
"geo": {

"lat": "-38.2386",
"lng": "57.2232"

}
},
"phone": "024-648-3804",
"website": "ambrose.net",
"company": {

"name": "Hoeger LLC",
"catchPhrase": "Centralized empowering task-force",
"bs": "target end-to-end models"

}
}
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The call goes through and returns a users list, as shown in figure 5.13.

Figure 5.13 We can call external services from within the service mesh once we 
explicitly add the ServiceEntry resource.

In this chapter, we explored how to reduce the risk of deploying new code by using
traffic mirroring, traffic shifting, and traffic routing to slowly introduce changes to our
users. In the next chapter, we look at making application interactions more resilient
by implementing timeouts, retries, and circuit breakers. 

Summary
 Workloads can be separated into smaller subsets, such as version v1 and version

v2, using DestinationRules.
 VirtualServices use these subsets to route traffic in a fine-grained manner.
 VirtualServices configure routing decisions based on application layer infor-

mation such as HTTP headers. This enables the dark-launch technique, which
sends a specific set of users (such as beta testers) to new versions of a service to
test it.

 Service proxies using weighted routing (configured with VirtualService
resources) can gradually route traffic to new deployments, enabling methods
such as canary deployments (aka traffic shifting).

 Traffic shifting can be automated using Flagger, an open source solution that
uses collected metrics to gradually increase traffic routed to a new deployment.

 Setting outboundTrafficPolicy to REGISTRY_ONLY prevents bad actors from
phoning home by blocking all traffic that leaves the cluster.

 When outbound traffic is set to REGISTRY_ONLY, a ServiceEntry can permit
traffic to external services.
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Resilience:
Solving application

networking challenges
Once we have traffic coming into our cluster through the Istio ingress gateway (cov-
ered in chapter 4), we can manipulate the traffic at the request level and control
exactly where to route the request. In the previous chapter, we covered traffic con-
trol for weighted routing, request-match-based routing, and certain types of release
patterns that can then be enabled. We can also use this traffic control to route
around problems in the event of application errors, network partitions, and other
major issues.

 The problem with distributed systems is that they often fail in unpredictable
ways, and we cannot manually take traffic-shifting actions. We need a way to build
sensible behaviors into the application so they can respond on their own when they

This chapter covers
 Understanding the importance of resilience

 Leveraging client-side load balancing

 Implementing request timeouts and retries

 Circuit breaking and connection pooling

 Migrating from application libraries used for 
resilience
136



137Building resilience into the application
encounter problems. We can do that with Istio, including adding timeouts, retries,
and circuit breaking, without having to alter application code. In this chapter, we look
at how to do this and the implications for the rest of the system.

6.1 Building resilience into the application
Microservices must be built with resilience as a first-class concern. The world of “just
build it so it won’t fail” is not real; and when failure strikes, we risk taking down all of
our services. When we build distributed systems with services communicating over the
network, we risk creating even more failure points and face the possibility of cata-
strophic failures. Service owners should adopt a few resilience patterns consistently
across their applications and services.

 If service A calls service B, as depicted in figure
6.1, and experiences latency in requests sent to
particular endpoints of service B, we want it to
proactively identify this and route to other end-
points, other availability zones, or even other
regions. If service B experiences intermittent
errors, we may want to retry a failed request. Simi-
larly, if we experience issues calling service B, we may wish to back off until it can
recover from whatever problems it may be experiencing. If we keep putting load on
service B (and, in some cases, amplifying the load as we retry the request), we risk
overloading the service. This overload could ripple to service A and anyone that
depends on these services and cause significant cascading errors.

 The solution is to build our applications to expect failures and have a way for them
to automatically attempt remediation or fall back to alternative paths when servicing a
request. For example, when service A calls service B and starts to experience issues, we
could retry a request, time out our request, or cancel any further outgoing requests
using a circuit-breaking pattern. In this chapter, we explore how Istio can be used to
solve these problems transparently so that applications have a correct and consistent
implementation for resilience concerns regardless of what programming language
the application is written in.

6.1.1 Building resilience into application libraries

Before service-mesh technology was widely available, as service developers we had to
write a lot of these basic resilience patterns into our application code. Some frameworks
emerged in the open source community that helped solve these problems. Twitter open
sourced its resilience framework Finagle in 2011 (http://mng.bz/q2X6). Twitter Fina-
gle is a Scala/Java/JVM application library that can be used to implement various
remote procedure call (RPC) resilience patterns such as timeouts, retries, and circuit
breaking. Shortly afterward, Netflix open sourced components of its resilience frame-
work including Hystrix (http://mng.bz/7Wz7) and Ribbon (http://mng.bz/mx4W),

Service BService A

Figure 6.1 Service A, calling service 
B, can experience network issues.

http://mng.bz/q2X6
http://mng.bz/7Wz7
http://mng.bz/mx4W
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which provided circuit-breaking and client-side load balancing, respectively. Both of
these libraries were very popular in the Java community, including the Spring Frame-
work adopting the NetflixOSS stack in its Spring Cloud framework (https://spring.io/
projects/spring-cloud-netflix).

 The problem with these frameworks is that across different permutations of lan-
guages, frameworks, and infrastructure, we will have varying implementations. Twitter
Finagle and NetflixOSS were great for Java developers, but Node.js, Go, and Python
developers had to find or implement their own variants of these patterns. In some
cases, these libraries were also invasive to the application code, so networking code
was sprinkled around and obscured the actual business logic. Finally, maintaining
these libraries across multiple languages and frameworks strains operational aspects
of running microservices: we have to try to patch and maintain functionality parity
with all of the combinations at the same time. 

6.1.2 Using Istio to solve these problems

As we’ve seen in previous chapters, Istio’s service proxy sits next to the application and
handles  all  network  traffic  to  and  from  the  application  (see  figure  6.2).  With  Istio,

since the service proxy understands appli-
cation-level requests and messages (such
as HTTP requests), we can implement
resilience features within the proxy.
     For example, we can configure Istio to
retry a failed request up to three times
when we experience an HTTP 503 error
on a service call. We can configure exactly
what failures to retry on, the number of
retries we would want, and the per-retry

timeouts. Since the service proxy is deployed per service instance, we can have very
fine-grained retry behavior that’s customized to fit the specific needs of the applica-
tion. The same is true for all of Istio’s resilience settings. Istio’s service proxy imple-
ments these basic resilience patterns out of the box:

 Client-side load balancing
 Locality-aware load balancing
 Timeouts and retries
 Circuit breaking 

6.1.3 Decentralized implementation of resilience

Using Istio, we see that the data-plane proxy, through which an application’s requests
traverse, is co-located with the application instance, and no centralized gateway is
needed. We get the same architecture if we use application libraries that co-locate the
handling of these resilience patterns into the code. In previous iterations of solving

Proxy

Service A

Proxy

Service B

Figure 6.2 We can use Istio’s service proxy to 
help add resilience.
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for some of these cross-cutting distributed systems, we’ve placed expensive, difficult-
to-change, centralized hardware appliances and other software middleware into the
path of the request (hardware load balancers, messaging systems, Enterprise Service
Bus, API management, and so on). These earlier implementations, built for more
static environments, do not scale or respond well to highly dynamic, elastic cloud
architectures and infrastructure. When solving for some of these resilience patterns,
we should opt for distributed implementations.

 In the following sections, we explore the resilience patterns that Istio can help
with. We use a different set of sample applications, to get finer-grained control over
how the services behave: a project called Fake Service (https://github.com/nicholas
jackson/fake-service) by Nic Jackson, who created this project to illustrate how ser-
vices may behave in more realistic production environments. In these following exam-
ples, we’ll see a simple-web service call a set of simple-backend backends, as shown in
figure 6.3. 

Figure 6.3 Example services: a web service calls a backend service.

6.2 Client-side load balancing
Client-side load balancing is the practice of informing the client about the various end-
points available for a service and letting the client pick specific load-balancing algo-
rithms for the best distribution of requests over the endpoints. This reduces the need
to rely on centralized load balancing, which could create bottlenecks and failure
points, and allows the client to make direct, deliberate requests to specific endpoints
without having to take unnecessary extra hops. Thus our clients and services can scale
better and deal with a changing topology.
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Istio uses service and endpoint discovery to
equip the client-side proxy of service-to-ser-
vice communication with the correct and
most up-to-date information, as illustrated in
figure 6.4. Developers and operators of the
services can then configure this client-side
load-balancing behavior through the Istio
configuration.
     Service operators and developers can
configure what load-balancing algorithm a
client uses by defining a DestinationRule

resource. Istio’s service proxy is based on Envoy and supports Envoy’s load-balancing
algorithms, some of which include:

 Round robin (default)
 Random
 Weighted least request

Let’s take a look at a quick example.

6.2.1 Getting started with client-side load balancing

Before we begin, let’s clean up our istioinaction namespace by deleting any
resources from previous chapters. Be sure you’re in the right namespace, delete the
appropriate resources, and double-check that the namespace is labeled for sidecar
injection:

$ kubectl config set-context $(kubectl config current-context) \
--namespace=istioinaction

$ kubectl delete virtualservice,deployment,service,\
destinationrule,gateway --all

Navigate to the root folder of the source code for the book. We deploy two example
services with the appropriate Istio VirtualService and Gateway resources so we can
call the service (for more information on Gateway and VirtualService for ingress
routing, see chapter 4):

$ kubectl apply -f ch6/simple-backend.yaml
$ kubectl apply -f ch6/simple-web.yaml
$ kubectl apply -f ch6/simple-web-gateway.yaml

It takes a few moments for the Pods to come up in the istioinaction namespace.
When they’re running, you should see something similar to this:

$ kubectl get pod
NAME READY STATUS RESTARTS AGE
simple-backend-1-54856d64fc-59dz2 2/2 Running 0 29h
simple-backend-2-64f898c7fc-bt4x4 2/2 Running 0 29h
simple-backend-2-64f898c7fc-kx88m 2/2 Running 0 29h
simple-web-56d955b6f5-7nflr 2/2 Running 0 29h

Proxy

simple-web

Proxy config

simple-backend
10.40.8.1
10.40.8.2
10.40.8.3

Figure 6.4 The simple-web proxy knows 
about simple-backend endpoints.
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Let’s specify the load balancing for any client calling the simple-backend service to be
ROUND_ROBIN with an Istio DestinationRule resource. A destination rule specifies pol-
icies for clients in the mesh calling the specific destination. Our starting destination
rule for simple-backend looks like the following:

apiVersion: networking.istio.io/v1beta1
kind: DestinationRule
metadata:

name: simple-backend-dr
spec:

host: simple-backend.istioinaction.svc.cluster.local
trafficPolicy:

loadBalancer:
simple: ROUND_ROBIN

Let’s apply this destination rule:

$ kubectl apply -f ch6/simple-backend-dr-rr.yaml
destinationrule.networking.istio.io/simple-backend-dr configured

We have simple-web, which calls simple-backend, but there are multiple replicas of
the simple-backend service. This is intentional, as we’ll modify some of the endpoints
at runtime.

 If all is successful, you should be able to call the example service. We’ve been using
Docker Desktop in our examples thus far, and for Docker Desktop, it looks similar to
the following:

$ curl -s -H "Host: simple-web.istioinaction.io" http:/./localhost/

{
"name": "simple-web",
"uri": "/",
"type": "HTTP",
"ip_addresses": [

"10.1.0.45"
],
"start_time": "2020-09-15T20:39:29.270499",
"end_time": "2020-09-15T20:39:29.434684",
"duration": "164.184432ms",
"body": "Hello from simple-web!!!",
"upstream_calls": [

{
"name": "simple-backend",
"uri": "http:/./simple-backend:80/",
"type": "HTTP",
"ip_addresses": [

"10.1.0.64"
],
"start_time": "2020-09-15T20:39:29.282673",
"end_time": "2020-09-15T20:39:29.433141",
"duration": "150.468571ms",
"headers": {

"Content-Length": "280",
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"Content-Type": "text/plain; charset=utf-8",
"Date": "Tue, 15 Sep 2020 20:39:29 GMT",
"Server": "envoy",
"X-Envoy-Upstream-Service-Time": "155"

},
"body": "Hello from simple-backend-1",
"code": 200

}
],
"code": 200

}

In this set of example services, we get a JSON response that shows a chain of calls. The
simple-web service calls the simple-backend service, and we ultimately see the
response message Hello from simple-backend-1. If we repeat this call a few more
times, we get responses from simple-backend-1 and simple-backend-2:

$ for in in {1..10}; do \
curl -s -H "Host: simple-web.istioinaction.io" localhost \
| jq ".upstream_calls[0].body"; printf "\n"; done

"Hello from simple-backend-1"
"Hello from simple-backend-1"
"Hello from simple-backend-2"
"Hello from simple-backend-2"
"Hello from simple-backend-2"
"Hello from simple-backend-1"
"Hello from simple-backend-2"
"Hello from simple-backend-1"
"Hello from simple-backend-1"
"Hello from simple-backend-2"

Notice that the calls between simple-web and simple-backend are effectively load-bal-
anced to the different simple-backend endpoints. We are seeing client-side load bal-
ancing between the simple-web and simple-backend services because the service
proxy deployed with simple-web knows about all of the simple-backend endpoints
and is using the default algorithm to determine which endpoints get requests. We
configured our DestinationRule resource to use ROUND_ROBIN load balancing, but by
default, Istio service proxy uses a ROUND_ROBIN load-balancing strategy anyway. How
can client-side load balancing contribute to a service’s resilience?

 Let’s look at a somewhat realistic scenario using a load generator and changing the
latency of the simple-backend service. Then we can use Istio’s load-balancing strate-
gies to help pick an appropriate configuration. 

6.2.2 Setting up our scenario

In a realistic setting, services take time to process requests. The amount of time can
vary for several reasons:

 Request size
 Processing complexity
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 Database usage
 Calling other services that take time

Reasons outside the service may also contribute to the response time:

 Unexpected, stop-the-world garbage collections
 Resource contention (CPU, network, and so on)
 Network congestion

To mimic this for our example service, we will introduce delays and variance into our
response times. Let’s call our service again and observe the initially configured differ-
ences in overall service response times:

$ time curl -s -o /dev/null -H \
"Host: simple-web.istioinaction.io" localhost

real 0m0.189s
user 0m0.003s
sys 0m0.013s

$ time curl -s -o /dev/null -H \
"Host: simple-web.istioinaction.io" localhost

real 0m0.179s
user 0m0.003s
sys 0m0.005s

$ time curl -s -o /dev/null -H \
"Host: simple-web.istioinaction.io" localhost

real 0m0.186s
user 0m0.003s
sys 0m0.006s

Each time we call the service, the response times are different. Load balancing can be
an effective strategy to reduce the effect of endpoints experiencing periodic or unex-
pected latency spikes. We will use a CLI load generation tool called Fortio (http://
github.com/fortio/fortio) to exercise our services and observe differences in client-
side load balancing. You can download Fortio for your platform from https://
github.com/fortio/fortio/releases.

Getting Fortio for your platform
If you cannot find a distribution of Fortio for your platform, follow the instructions at
https://github.com/fortio/fortio#installation to install it. If that doesn’t work, you can
still use Fortio to follow the next steps by running it within Kubernetes. You may not
have the same experience outlined here, but it will work. For example, you can call
Fortio by running it within Kubernetes with the following command:

kubectl -n default run fortio --image=fortio/fortio:1.6.8 \
--restart='Never' -- load -H "Host: simple-web.istioinaction.io" \
-jitter -t 60s -c 10 -qps 1000 \
http://istio-ingressgateway.istio-system/

http://github.com/fortio/fortio
http://github.com/fortio/fortio
https://github.com/fortio/fortio/releases
https://github.com/fortio/fortio/releases
https://github.com/fortio/fortio#installation
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Let’s make sure Fortio can call our service:

$ fortio curl -H "Host: simple-web.istioinaction.io" http:/./localhost/

You should see a response similar to when we called the service with curl directly. 

6.2.3 Testing various client-side load-balancing strategies

Now that our Fortio load-testing client is ready to go, let’s explore the use case. We will
use Fortio to send 1,000 requests per second through 10 connections for 60 seconds.
Fortio will track the latency numbers for each call and plot them on a histogram with
a latency percentile breakdown. Before our test, we’ll introduce a version of the simple
-backend-1 service that increases latency for up to one second. This will simulate one
of the endpoints experiencing a long garbage-collection event or other application
latency. We will vary our load-balancing strategy between round robin, random, and
least connection and observe the differences.

 Let’s deploy the delayed simple-backend-1 service:

$ kubectl apply -f ch6/simple-backend-delayed.yaml

By running Fortio in server mode, we can access a web dashboard where we can
input the parameters of our test, execute the test, and visualize the results:

$ fortio server

Open your browser to the Fortio UI (http:/./localhost:8080/fortio) and fill in the fol-
lowing parameters, as shown in figure 6.5:

 Title: roundrobin
 URL: http://localhost
 QPS: 1000

Figure 6.5 Fortio 
server UI for setting 
up our load test
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 Duration: 60s
 Threads: 10
 Jitter: Checked
 Headers: "Host: simple-web.istioinaction.io"

Start running the test by clicking the Start button about halfway down the Fortio web
page (see figure 6.6), and wait for the test to complete. When it does, it saves a results
file to your file system with a name similar to 2020-09-15-101555_roundrobin.json. It
also displays a results graph like that shown in figure 6.7.

Figure 6.6 Fortio load test is in progress for 60s

Figure 6.7 Results for load-testing round-robin client-side load balancing
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For this round-robin load-balancing strategy, the resulting latencies are as follows:

 50%: 191.47 ms
 75%: 1013.31 ms
 90%: 1033.15 ms
 99%: 1045.05 ms
 99.9%: 1046.24 ms

Now, let’s change the load-balancing algorithm to RANDOM and try the same load test
again:

$ kubectl apply -f ch6/simple-backend-dr-random.yaml
destinationrule.networking.istio.io/simple-backend-dr configured

Now, go back to the Fortio load-testing page (click the Back button or the Top link).
Fill in the information as before, but change the title to random:

 Title: random
 URL: http:/./localhost
 QPS: 1000
 Duration: 60s
 Threads: 10
 Jitter: Checked
 Headers: "Host: simple-web.istioinaction.io"

Click the Start button, and wait for the results. For this random load-balancing strat-
egy, the resulting latencies are as follows (see figure 6.8):

 50%: 189.53 ms
 75%: 1007.72 ms
 90%: 1029.68 ms
 99%: 1042.85 ms
 99.9%: 1044.17 ms

Finally, do the same for least-connection load balancing:

$ kubectl apply -f ch6/simple-backend-dr-least-conn.yaml
destinationrule.networking.istio.io/simple-backend-dr configured

Use these load-testing settings:

 Title: leastconn
 URL: http:/./localhost
 QPS: 1000
 Duration: 60s
 Threads: 10
 Jitter: Checked
 Headers: "Host: simple-web.istioinaction.io"
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Figure 6.8 Results for load-testing random client-side load balancing

Click the Start button. For this least-connection load-balancing strategy, the latencies
are as follows (see figure 6.9):

 50%: 184.79 ms
 75%: 195.63 ms
 90%: 1036.89 ms
 99%: 1124.00 ms
 99.9%: 1132.71 ms 

6.2.4 Understanding the different load-balancing algorithms

The load-testing result diagrams in figures 6.7, 6.8, and 6.9 show several things. First,
the different load balancers produce different results under realistic service latency
behavior. Second, their results differ in both the histogram and their percentiles.
Finally, least connection performs better than both random and round robin. Let’s
see why.

 Round robin and random are both simple load-balancing algorithms. They’re sim-
ple to implement and simple to understand. Round robin (or next-in-loop) delivers
requests to endpoints in a successive loop. Random uniformly picks an endpoint at
random. With both, you would expect a similar distribution. The challenge with these
strategies is that the endpoints in the load-balancer pool are not typically uniform,
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even if they are backed by the same service and resources. As we simulated in our tests,
any of these endpoints can experience garbage collection or resource contention that
introduces high latency, and round robin and random do not take any runtime behav-
ior into account.

 The least-connection load balancer (in Envoy, it’s implemented as least request) does
take into account the latencies of the specific endpoints. When it sends requests out to
endpoints, it monitors the queue depths, tracking active requests, and picks the end-
points with the fewest active requests in flight. Using this type of algorithm, we can
avoid sending requests to endpoints that behave poorly and favor those that are
responding more quickly.

Envoy least-request load balancing
Even though the Istio configuration refers to the least-request load balancing as
LEAST_CONN, Envoy is tracking request depths for endpoints, not connections. The
load balancer picks two random endpoints, checks which has the fewest active
requests, and chooses the one with the fewest active requests. It does the same
thing for successive load-balancing tries. This is known as the power of two choices:
it has been shown to be a good trade-off (versus a full scan) when implementing a
load balancer like this, and it achieves good results. See the Envoy documentation
for more on this load balancer (http://mng.bz/enQJ).

Figure 6.9 Results for load-testing least-connection client-side load balancing

http://mng.bz/enQJ
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At this point, we are finished with the Fortio web UI. Shut down the fortio server
command by pressing Ctrl-C. 

6.3 Locality-aware load balancing
One role of a control plane like Istio’s is understanding the topology of services and
how that topology may evolve. An advantage of understanding the overall topology of
services in a service mesh is automatically making routing and load-balancing deci-
sions based on heuristics like the locations of services and peer services.

 Istio supports a type of load balancing that gives weights to routes and makes routing
decisions based on where a particular workload is. For example, Istio can identify the
region and availability zone in which a particular service is deployed and give priority
to services that are closer. If the simple-backend service is deployed across multiple
regions (us-west, us-east, europe-west), there are multiple options to call it. If
simple-web is deployed in the us-west region, we want calls from simple-web to
simple-backend to stay local to us-west (see figure 6.10). If we treat all endpoints
equally, we will likely incur high latency as well as cost when we cross zones or regions.

6.3.1 Hands-on with locality load balancing

Let’s see locality load balancing in action. When deploying in Kubernetes, region and
zone information can be added to labels on the Kubernetes nodes. For example, the
labels failure-domain.beta.kubernetes.io/region and failure-domain.beta

.kubernetes.io/zone allow us to specify the region and zone, respectively. Often

Proxy

simple-web

Region: us-west/1a

Region: us-west/1b

Proxy

simple-backend

10.40.8.1

Proxy

simple-backend

10.40.8.2

Proxy

simple-backend

10.40.8.3
Figure 6.10 Prefer 
calling services in the 
same locality.
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these labels are automatically added by cloud providers like Google Cloud and Ama-
zon Web Services (AWS). Istio picks up these node labels and enriches the Envoy load-
balancing endpoints with the locality information.

Since we’re using Docker Desktop for this book, it’s a little more difficult to demon-
strate locality-aware routing using the out-of-the-box locality information that Istio
pulls from the nodes. We could set up multiple nodes and label them with a desktop
deployment of Kubernetes (using Kind or K3s, for example), but luckily for us, Istio
provides an approach to explicitly set the locality of our workloads. We can label our
Pod with istio-locality and give it an explicit region/zone. This will be sufficient to
demonstrate locality-aware routing and load balancing. For example, our simple-web
deployment could look like this:

apiVersion: apps/v1
kind: Deployment
metadata:

labels:
app: simple-web

name: simple-web
spec:

replicas: 1
selector:

matchLabels:
app: simple-web

template:
metadata:

labels:
app: simple-web
istio-locality: us-west1.us-west1-a

spec:
serviceAccountName: simple-web
containers:
- image: nicholasjackson/fake-service:v0.14.1

imagePullPolicy: IfNotPresent
name: simple-web
ports:
- containerPort: 8080
name: http
protocol: TCP

securityContext:
privileged: false

Kubernetes failure domain labels
In previous versions of Kubernetes' API, failure-domain.beta.kubernetes.io/
region and failure-domain.beta.kubernetes.io/zone were the labels used to
identify the region and zone, respectively. In recent, generally available versions of
the Kubernetes API, those labels have been replaced with topology.kubernetes
.io/region and topology.kubernetes.io/zone. Be aware that cloud vendors still
use the older failure-domain labels. Istio looks for both.

Locality 
label
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When we deploy the simple-backend service, we’ll annotate it with a couple of differ-
ent localities. We will deploy simple-backend-1 in the same locality as simple-web:
us-west1-a. And will deploy simple-backend-2 in us-west1-b. In this case, the local-
ities are in the same region but in different zones. Istio’s ability to load-balance across
localities includes region, zone, and even a finer-grained subzone.

 Let’s deploy these services:

$ kubectl apply -f ch6/simple-service-locality.yaml

deployment.apps/simple-web configured
deployment.apps/simple-backend-1 configured
deployment.apps/simple-backend-2 configured

We have now deployed our services with locality information. Istio’s locality-aware load
balancing is enabled by default. If you wish to disable it, you can configure the mesh-
Config.localityLbSetting.enabled setting to be false.

With the locality information in place, we expect calls from simple-web in us-west1
-a to go to simple-backend services deployed in the same zone: us-west1-a. In our
example, we expect all traffic from simple-web to go to simple-backend-1, which is in
us-west1-a. Deployment of the simple-backend-2 service is in us-west1-b, which is
not in the same zone as simple-web, so we expect traffic to go to that endpoint only if
the services in us-west1-a start to fail.

 Let’s call our Istio ingress gateway (configured in the previous section to accept
traffic and route to simple-web):

$ for in in {1..10}; do \
curl -s -H "Host: simple-web.istioinaction.io" localhost \
| jq ".upstream_calls[0].body"; printf "\n"; done

"Hello from simple-backend-1"
"Hello from simple-backend-1"
"Hello from simple-backend-2"

Locality aware load balancing is enabled by default
When a cluster’s nodes are deployed into multiple availability zones, as simulated in
our previous setup, you must consider that the default locality-aware load balancing
may not be desirable. In our example, we never show fewer replicas of simple-back-
end (the target service) than simple-web (the calling service) in any one locality. But
you could end up with a deployment in your environment where there are fewer target-
service instances than there are calling-service instances in a single locality. This
could potentially overwhelm the target service and make the overall system load bal-
ancing less balanced than intended.

This great blog post by Karl Stoney at https://karlstoney.com/2020/10/01/locality
-aware-routing gives more details. The bottom line is to tune load balancing given your
specific load characteristics and topology.

https://karlstoney.com/2020/10/01/locality-aware-routing
https://karlstoney.com/2020/10/01/locality-aware-routing
https://karlstoney.com/2020/10/01/locality-aware-routing
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"Hello from simple-backend-2"
"Hello from simple-backend-2"
"Hello from simple-backend-1"
"Hello from simple-backend-2"
"Hello from simple-backend-1"
"Hello from simple-backend-1"
"Hello from simple-backend-2"

What happened? The traffic has been load-balanced across all of the available end-
points that make up the simple-backend service. It appears that the locality informa-
tion was not taken into account.

 For locality-aware load balancing to work in Istio, we need to configure one last
piece of the puzzle: health checking. Without health checking, Istio does not know
which endpoints in the load-balancing pool are unhealthy and what heuristics to use
to spill over into the next locality.

 Outlier detection passively watches the behavior of endpoints and whether they
appear healthy. It does so by tracking errors that an endpoint may return and marking
them as unhealthy. We cover outlier detection in more detail in the following sections.

 Let’s add a passive health-checking configuration by configuring outlier detection
for the simple-backend service:

apiVersion: networking.istio.io/v1beta1
kind: DestinationRule
metadata:

name: simple-backend-dr
spec:

host: simple-backend.istioinaction.svc.cluster.local
trafficPolicy:

connectionPool:
http:

http2MaxRequests: 10
maxRequestsPerConnection: 10

outlierDetection:
consecutiveErrors: 1
interval: 1m
baseEjectionTime: 30s

Let’s apply this destination rule. Run the following from the root folder in the book’s
source code:

$ kubectl apply -f ch6/simple-backend-dr-outlier.yaml
destinationrule.networking.istio.io/simple-backend-dr created

Now let’s try calling the simple-web service through the Istio ingress gateway:

$ for in in {1..10}; do \
curl -s -H "Host: simple-web.istioinaction.io" localhost \
| jq ".upstream_calls[0].body"; printf "\n"; done

"Hello from simple-backend-1"
"Hello from simple-backend-1"
"Hello from simple-backend-1"
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"Hello from simple-backend-1"
"Hello from simple-backend-1"
"Hello from simple-backend-1"
"Hello from simple-backend-1"
"Hello from simple-backend-1"
"Hello from simple-backend-1"
"Hello from simple-backend-1"

All the traffic went to the simple-backend service, which is in the same zone as
simple-web. To see traffic spill over to another availability zone, let’s put the simple
-backend-1 service into a state where it misbehaves. Whenever simple-web calls sim-
ple-backend-1, it will get an HTTP 500 error 100% of the time:

$ kubectl apply -f ch6/simple-service-locality-failure.yaml
deployment.apps/simple-backend-1 configured

Give the new Pod a few moments to come to the ready state.
 When we call our service through the Istio ingress gateway, all traffic should go to

the simple-backend-2 service. This happens because simple-backend-1, which is in
the same locality as simple-web, returns with an HTTP 500 error and is marked as
unhealthy. When enough of the endpoints in the same locality as the simple-web ser-
vice are unhealthy, load balancing will automatically spill over to the next-closest local-
ity—in this case, the endpoints in the simple-backend-2 deployment:

$ for in in {1..10}; do \
curl -s -H "Host: simple-web.istioinaction.io" localhost \
| jq ".upstream_calls[0].body"; printf "\n"; done

"Hello from simple-backend-2"
"Hello from simple-backend-2"
"Hello from simple-backend-2"
"Hello from simple-backend-2"
"Hello from simple-backend-2"
"Hello from simple-backend-2"
"Hello from simple-backend-2"
"Hello from simple-backend-2"
"Hello from simple-backend-2"
"Hello from simple-backend-2"

Now we get the locality-aware load-balancing outcome we expect when services in a
particular locality do not behave well. Note that this locality-aware load balancing is
within a single cluster; we will explore locality-aware load-balancing behavior across
multiple clusters in chapter 12. 

6.3.2 More control over locality load balancing with weighted distribution

In the previous section, we saw locality-aware load balancing in action. The last aspect
of locality-aware load balancing to know about is that you can control some of how it
works. By default, Istio’s service proxy sends all traffic to services in the same locality
and spills over only when there are failures or unhealthy endpoints. We can influence
this behavior in scenarios where we may wish to load-balance some of the traffic across
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multiple locality zones, also known as weighted distribution across localities (see figure
6.11). We may wish to do this when we expect services in a particular locality to
become overloaded because of peak or seasonal traffic.

Figure 6.11 Defining locality weights more explicitly

In the previous examples, we introduced a misbehaving service. Let’s restore our ser-
vices so they all behave correctly and return HTTP 200 responses:

$ kubectl apply -f ch6/simple-service-locality.yaml
deployment.apps/simple-web unchanged
deployment.apps/simple-backend-1 configured
deployment.apps/simple-backend-2 unchanged

Let’s say there is incoming load that the services in a certain zone or region won’t be
able to handle. We want to spill over to a neighboring locality so that 70% of traffic
goes to the closest locality and 30% goes to the neighboring locality. Following our
previous example, we will send 70% of the traffic destined for simple-backend service
to us-west1-a and 30% to us-west1-b. This roughly translates to 70% of traffic to the
simple-backend-1 service and 30% to simple-backend-2.

 To accomplish this configuration, we specify our locality load-balancing prefer-
ences in a DestinationRule resource:

Proxy

simple-web

Region: us-west/1a

Region: us-west/1b

Proxy

simple-backend

10.40.8.1

Proxy

simple-backend

10.40.8.2

Proxy

simple-backend

10.40.8.3

70%

30%
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apiVersion: networking.istio.io/v1beta1
kind: DestinationRule
metadata:

name: simple-backend-dr
spec:

host: simple-backend.istioinaction.svc.cluster.local
trafficPolicy:

loadBalancer:
localityLbSetting:

distribute:
- from: us-west1/us-west1-a/*
to:

"us-west1/us-west1-a/*": 70
"us-west1/us-west1-b/*": 30

connectionPool:
http:

http2MaxRequests: 10
maxRequestsPerConnection: 10

outlierDetection:
consecutive5xxErrors: 1
interval: 5s
baseEjectionTime: 30s
maxEjectionPercent: 100

Let’s apply this so it takes effect:

$ kubectl apply -f ch6/simple-backend-dr-outlier-locality.yaml
destinationrule.networking.istio.io/simple-backend-dr configured

Now we call our service once again:

$ for in in {1..10}; do \
curl -s -H "Host: simple-web.istioinaction.io" localhost \
| jq ".upstream_calls[0].body"; printf "\n"; done

"Hello from simple-backend-1"
"Hello from simple-backend-1"
"Hello from simple-backend-1"
"Hello from simple-backend-1"
"Hello from simple-backend-2"
"Hello from simple-backend-1"
"Hello from simple-backend-1"
"Hello from simple-backend-1"
"Hello from simple-backend-2"
"Hello from simple-backend-1"

Some of the requests were load-balanced, mostly to the closest locality but with some
wiggle room to spill over to the next-closest locality. Note that this is not exactly the
same as controlling the traffic explicitly, as we did in chapter 5. With traffic routing, we
can control the traffic between different subsets of our services, typically when there
are different classes of service or versions of service within the overall group. In this
case, we’re weighting the traffic based on the deployed topology of the services, inde-
pendent of subsets. These are not mutually exclusive concepts: they can be layered so

Adds the load-balancer 
configuration

Origin zone

Destination zone

Destination 
zone
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that the fine-grained traffic control and routing that we saw in chapter 5 can be applied
on top of the location-aware load balancing we explored in this section. 

6.4 Transparent timeouts and retries
When building systems that rely on components distributed over the network, the big-
gest issues include latency and failures. We saw in earlier sections how we could use
Istio to mitigate these challenges using load balancing and locality. What happens if
these network calls take too long? Or what if we experience intermittent failures as a
result of latency or due to other network factors? How can Istio help with these issues?
Istio allows us to configure various types of timeouts and retries to overcome inherent
network unreliability.

6.4.1 Timeouts

One of the most difficult scenarios to handle in a distributed environment is latency.
When things slow down, resources may be held longer, services can back up, and the sit-
uation can potentially trigger cascading failures. To guard against these unexpected
latent scenarios, we should implement timeouts on the connection, a request, or both.

 An important point to note is how timeouts across service calls interact with each
other. For example, if service A calls service B with a timeout of one second, but ser-
vice B calls service C with a timeout of two seconds, which timeout will trip first? The
most restrictive will time out first, so the timeout on the call from service B to service
C may never be invoked. Generally, it makes sense to have larger timeouts at the edge
(where traffic comes in) of an architecture and shorter (or more restrictive) timeouts
for the layers deeper in the call graph. Let’s see how Istio can be used to control poli-
cies around timeouts.

 Let’s reset our environment to a known state:

$ kubectl apply -f ch6/simple-web.yaml
$ kubectl apply -f ch6/simple-backend.yaml
$ kubectl delete destinationrule simple-backend-dr

If we call the services through the Istio ingress gateway and calculate how long each call
takes, we can see they respond with HTTP 200 and are generally around 10 to 20 ms:

$ for in in {1..10}; do time curl -s \
-H "Host: simple-web.istioinaction.io" localhost \
| jq .code; printf "\n"; done

...

real 0m0.170s
user 0m0.025s
sys 0m0.007s

200

real 0m0.169s
user 0m0.024s
sys 0m0.007s
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200

real 0m0.171s
user 0m0.025s
sys 0m0.007s

...

Let’s deploy a version of the simple-backend service that inserts a one-second delay in
processing for 50% of the calls to that instance:

$ kubectl apply -f ch6/simple-backend-delayed.yaml
deployment.apps/simple-backend-1 configured

When we make the calls again, some take one second or longer:

$ for in in {1..10}; do time curl -s \
-H "Host: simple-web.istioinaction.io" localhost \
| jq .code; printf "\n"; done

...

real 0m1.117s
user 0m0.025s
sys 0m0.007s

200

real 0m0.169s
user 0m0.024s
sys 0m0.007s

200

real 0m0.169s
user 0m0.024s
sys 0m0.007s

...

Maybe 1 second is okay, but what if the latency for simple-backend jumped to 5
seconds—or 100 seconds? Let’s use Istio to enforce a timeout for calls to the simple-
backend service.

 We can specify per-request timeouts with the Istio VirtualService resource. For
example, to specify a half-second timeout for calls to simple-backend from clients in
the mesh, we can do something like this:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:

name: simple-backend-vs
spec:

hosts:
- simple-backend
http:
- route:
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- destination:
host: simple-backend

timeout: 0.5s

Let’s apply this to our service mesh:

$ kubectl apply -f ch6/simple-backend-vs-timeout.yaml

When we call the services again, the maximum time is 0.5 second, but the calls fail
with an HTTP 500 error:

$ for in in {1..10}; do time curl -s \
-H "Host: simple-web.istioinaction.io" localhost \
| jq .code; printf "\n"; done

...

real 0m0.174s
user 0m0.026s
sys 0m0.010s

500

real 0m0.518s
user 0m0.025s
sys 0m0.007s

500

real 0m0.517s
user 0m0.025s
sys 0m0.007s

...

In the next section, we discuss other options to remedy failures like timeouts. 

6.4.2 Retries

When calling a service and experiencing intermittent network failures, we may want
the application to retry the request. If we don’t retry the request, we make our services
susceptible to common and expected failures that could deliver a bad user experi-
ence. On the other hand, we have to balance out the fact that unbridled retries can
contribute to degraded system health, including causing cascading failures. If a ser-
vice is legitimately overloaded and misbehaving, retrying requests will only amplify the
degraded situation. Let’s take a look at the retry options provided by Istio.

 Before we begin, let’s set our example services back to some sane defaults:

$ kubectl apply -f ch6/simple-web.yaml
$ kubectl apply -f ch6/simple-backend.yaml

Istio has retries enabled by default and will retry up to two times. We need to under-
stand the default behavior before we start fine-tuning it. To begin, let’s disable the

Specifies the 
timeout value
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default retries for our example application by configuring VirtualService resources
to set the maximum retries to 0:

$ istioctl install --set profile=demo \
--set meshConfig.defaultHttpRetryPolicy.attempts=0

Now let’s deploy a version of the simple-backend service that has periodic (75%) fail-
ures. In this case, one of the three endpoints (simple-backend-1) returns HTTP 503
on 75% of its calls, as illustrated in figure 6.12:

$ kubectl apply -f ch6/simple-backend-periodic-failure-503.yaml
deployment.apps/simple-backend-1 configured

Figure 6.12 Service simple-web calling simple-backend with 
failures from simple-backend-1

If we call the service a number of times, we should see some failures:

$ for in in {1..10}; do curl -s \
-H "Host: simple-web.istioinaction.io" localhost \
| jq .code; printf "\n"; done

Retry attempts in earlier Istio versions
If you are using a version of Istio before 1.12.0, you will have to change the retry
attempts in each VirtualService. You can use the following to do this for the
examples:

$ kubectl apply -f ch6/simple-service-disable-retry.yaml

Proxy

simple-web

Proxy
HTTP 503

simple-backend

Proxy

simple-backend

Proxy

simple-backend

10.40.8.1

10.40.8.2

10.40.8.3
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200
500
200
200
200
500
200
200
200
200

By default, Istio tries a call and, if it fails, tries two more times. This default retry only
applies to certain situations. Typically, it is safe to retry a request in these default situa-
tions because they indicate that network connectivity could not be established, and
the request could not have been sent on the first try:

 connect-failure

 refused-stream

 unavailable (gRPC status code 14)
 cancelled (gRPC status code 1)
 retriable-status-codes (defaults to HTTP 503 in Istio)

In the previous configurations, we disabled the default retry policy. Let’s explicitly
configure retry attempts to be 2 for calls to simple-backend with the following
VirtualService resource:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:

name: simple-backend-vs
spec:

hosts:
- simple-backend
http:
- route:

- destination:
host: simple-backend

retries:
attempts: 2

$ kubectl apply -f ch6/simple-backend-enable-retry.yaml
virtualservice.networking.istio.io/simple-backend-vs configured

If we call our service again, we see no failures:

$ for in in {1..10}; do curl -s \
-H "Host: simple-web.istioinaction.io" localhost \
| jq .code; printf "\n"; done

200
200
200
200
200

Expected failure

Expected failure



161Transparent timeouts and retries
200
200
200
200
200

Although there were failures (as we saw earlier), they are not bubbled up to the caller
because we enabled Istio’s retry policy to work around those errors. By default, HTTP
503 is one of the retriable status codes. The following VirtualService retry policy
shows what parameters are configurable out of the box for retries:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:

name: simple-backend-vs
spec:

hosts:
- simple-backend
http:
- route:

- destination:
host: simple-backend

retries:
attempts: 2
retryOn: gateway-error,connect-failure,retriable-4xx
perTryTimeout: 300ms
retryRemoteLocalities: true

The various settings for retries give us some control over retry behavior (how many,
how long, which endpoints to retry) and on which status codes to retry. As we men-
tioned previously, not all requests can or should be retried.

 For example, if we deploy our simple-backend service to return HTTP 500 codes,
the default retry behavior will not catch that:

$ kubectl apply -f ch6/simple-backend-periodic-failure-500.yaml
deployment.apps/simple-backend-1 configured

When we call our service again, those HTTP 500 failures bubble up:

$ for in in {1..10}; do curl -s \
-H "Host: simple-web.istioinaction.io" localhost \
| jq .code; printf "\n"; done

500
200
500
200
200
200
200
500
200
200

Maximum 
retries

Errors to retry
Timeouts

Whether to retry endpoints 
in other localities
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HTTP 500 is not among the status codes that are retried. Let’s use a VirtualService
retry policy that retries on all HTTP 500 codes (including connect-failure and
refused-stream):

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:

name: simple-backend-vs
spec:

hosts:
- simple-backend
http:
- route:

- destination:
host: simple-backend

retries:
attempts: 2
retryOn: 5xx

Let’s apply this VirtualService:

$ kubectl apply -f ch6/simple-backend-vs-retry-500.yaml

virtualservice.networking.istio.io/simple-backend-vs created

No HTTP 500 errors bubble up:

$ for in in {1..10}; do curl -s \
-H "Host: simple-web.istioinaction.io" localhost \
| jq .code; printf "\n"; done

200
200
200
200
200
200
200
200
200
200

For more about the available retryOn configurations, see the Envoy documentation at
http://mng.bz/p2BP.

RETRIES IN TERMS OF TIMEOUTS

Each retry has its own perTryTimeout. One thing to note about this setting is that the
perTryTimeout value multiplied by the total number of attempts must be less than the
overall request timeout (described in the previous section). For example, an overall
timeout of one second and a retry policy of three attempts with a per-retry timeout of
500 ms won’t work. The overall request timeout will kick in before all of the retries get
a chance. Also keep in mind there is a backoff delay between retries, which goes
against the overall request timeout. We talk more about the backoff next. 

Retries on 
HTTP 5xx

http://mng.bz/p2BP
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HOW IT WORKS

When a request flows through the Istio service proxy, if it fails to be delivered
upstream, it is marked as failed and retried up to the maximum attempts field
defined in the VirtualService resource. This means with an attempts value of 2, the
request will actually be delivered up to three times: once for the original request and
twice for the retries. Between retries, Istio will “back off” the retry with a base of 25 ms.
See figure 6.13 for an illustration of the retry and backoff behavior. This means for
each successive retry, Istio backs off (waits) until (25 ms x attempt #) to stagger the
retries. At the moment, this retry base is fixed; but as we discuss in the next section, we
can make changes to parts of the Envoy API that are not exposed by Istio.

As mentioned, Istio by default has retry attempts set to 2. You may wish to override this
setting so that different layers of your system retry a different number of times. Naive
retry settings (like the default) can lead to a significant retry “thundering herd” prob-
lem (see figure 6.14). For example, if a service chain is 5 calls deep and each step can
retry a request 2 times, we could end up with 32 requests for each incoming request. If

Timeout Backoff
time

Application Proxy Upstream

Figure 6.13 Request flow 
on retries when requests fail

Service 1 Service 2 Service 3 Service 4 Service 5

Figure 6.14 The “thundering 
herd” effect when retries 
compound each other
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a resource at the end of the chain is overloaded, this extra load could overwhelm the
target resource to the point that it falls over. An option to deal with this situation is to
limit the retry attempts at the edges of your architecture to one or none and only retry
deep into your call stack, with intermediate components not retrying. This may not
work very well either. Another tactic is to put caps on total overall retries. We can do that
with retry budgets; however, budgets are not yet exposed in the Istio API. There are
workarounds for this issue in Istio, but they are outside the scope of this book.

 Finally, retries are attempted against endpoints in their own locality by default.
The retryRemoteLocalities setting affects this behavior: if we set it to true, Istio
allows retries to spill over to other localities. This may come in handy before outlier
detection determines that the locally preferred endpoints are misbehaving. 

6.4.3 Advanced retries

In the previous section, we saw how Istio can help make our services resilient to inter-
mittent network failures by using automatic retries. We also discussed parameters we
can tune for retry use cases. Some of the retry capabilities take into account defaults
that aren’t easy to change, like the backoff retry time and the default retriable status
codes. By default, the backoff time is 25 ms, and the retriable code is limited to HTTP
503. Even though the Istio API doesn’t expose these configurations at the time of writ-
ing, we can use the Istio extension API to alter these values directly in the Envoy con-
figuration. We use the EnvoyFilter API to do this:

apiVersion: networking.istio.io/v1alpha3
kind: EnvoyFilter
metadata:

name: simple-backend-retry-status-codes
namespace: istioinaction

spec:
workloadSelector:

labels:
app: simple-web

configPatches:
- applyTo: HTTP_ROUTE

match:
context: SIDECAR_OUTBOUND
routeConfiguration:

vhost:
name: "simple-backend.istioinaction.svc.cluster.local:80"

patch:
operation: MERGE
value:

route:
retry_policy:

retry_back_off:
base_interval: 50ms

retriable_status_codes:
- 408
- 400

Directly from the 
Envoy configuration

Increases the 
base interval

Adds retriable 
codes
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NOTE The EnvoyFilter API is a “break glass” solution. In general, Istio’s API
is an abstraction over the underlying data plane. The underlying Envoy API
may change at any time between releases of Istio, so be sure to validate any
Envoy filter you put into production. Do not assume any backward compati-
bility here. See chapter 14 for more about configuring Envoy’s HTTP filters
with the EnvoyFilter resource.

We use the Envoy API directly here to configure/override retry policy settings. Let’s
apply these configurations:

$ kubectl apply -f ch6/simple-backend-ef-retry-status-codes.yaml
envoyfilter.networking.istio.io/simple-backend-retry-status-codes configured

We also want to update our retryOn field to include retriable-status-codes:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:

name: simple-backend-vs
spec:

hosts:
- simple-backend
http:
- route:

- destination:
host: simple-backend

retries:
attempts: 2
retryOn: 5xx,retriable-status-codes

Let’s apply this new retry configuration:

$ kubectl apply -f ch6/simple-backend-vs-retry-on.yaml
virtualservice.networking.istio.io/simple-backend-vs configured

Finally, let’s update our sample-backend service to return HTTP 408 (timeout) and
verify that we continue to get HTTP 200:

$ kubectl apply -f ch6/simple-backend-periodic-failure-408.yaml
deployment.apps/simple-backend-1 configured

$ for in in {1..10}; do curl -s \
-H "Host: simple-web.istioinaction.io" localhost \
| jq .code; printf "\n"; done

200
200
200
200
200
200
200
200
200
200

Includes the retriable 
status codes
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REQUEST HEDGING

This last treatment of retries centers around an advanced topic that is also not directly
exposed in the Istio API. When a request reaches its threshold and times out, we can
optionally configure Envoy under the covers to perform what’s called request hedging.
With request hedging, if a request times out, Envoy can send another request to a dif-
ferent host to “race” the original, timed-out request. In this case, if the raced request
returns successfully, its response is sent to the original downstream caller. If the origi-
nal request returns before the raced request returns, the original request is returned
to the downstream caller.

 To set up request hedging, we can use the following EnvoyFilter resource:

apiVersion: networking.istio.io/v1alpha3
kind: EnvoyFilter
metadata:

name: simple-backend-retry-hedge
namespace: istioinaction

spec:
workloadSelector:

labels:
app: simple-web

configPatches:
- applyTo: VIRTUAL_HOST

match:
context: SIDECAR_OUTBOUND
routeConfiguration:

vhost:
name: "simple-backend.istioinaction.svc.cluster.local:80"

patch:
operation: MERGE
value:

hedge_policy:
hedge_on_per_try_timeout: true

As we’ve seen in this section, the topic of timeouts and retries is not that simple. Com-
ing up with good timeouts and retry policies for services is challenging, especially con-
sidering how they can be chained together. Misconfigured timeouts and retries can
amplify undesirable behaviors in a system architecture to the extent that they overload
the system and cause cascading failures. One last piece of the puzzle for building resil-
ient architectures is skipping retries altogether: instead of retrying, we fail fast. Instead
of promoting more load, we can limit load for a time to allow upstream systems to
recover. For that, we can employ circuit breaking. 

6.5 Circuit breaking with Istio
We use circuit-breaking functionality to help guard against partial or cascading fail-
ures. We want to reduce traffic to unhealthy systems, so we don’t continue to overload
them and prevent them from recovering. For example, if the simple-web service calls
out to the simple-backend service and simple-backend returns errors for successive
calls, then instead of doing continuous retries and adding more stress to the system,



167Circuit breaking with Istio
we may want to halt any calls to simple-backend. This approach is similar in spirit to
how a circuit breaker works in the electrical system for a house. If we experience
shorts in the system or repeated faults, a circuit breaker is designed to open the circuit
to protect the rest of the system. The circuit-breaker pattern forces our application to
deal with the fact that network calls can and do fail and helps safeguard the overall sys-
tem from cascading failures.

 Istio doesn’t have an explicit configuration called “circuit breaker,” but it provides
two controls for limiting load on backend services, especially those experiencing
issues, to effectively enforce a circuit breaker. The first is to manage how many con-
nections and outstanding requests are allowed to a specific service. We use this control
to guard against services that slow down and thus back up the client, as illustrated in
figure 6.15.

Figure 6.15 Circuit-breaking endpoints that don’t behave correctly

If there are ten requests in flight to a particular service and that number keeps grow-
ing for the same amount of inbound load, it doesn’t make sense to continue to send
requests—sending more requests could overwhelm the upstream service. In Istio, we
use the connectionPool settings in a destination rule to limit the number of connec-
tions and requests that can pile up when calling a service. If too many requests pile up,
we can short-circuit them (fail fast) and return to the client.

 The second control is to observe the health of endpoints in the load-balancing
pool and evict misbehaving endpoints for a time. If certain hosts in a service pool are
experiencing failures, we can skip sending traffic to them. If we exhaust all hosts, the
circuit is effectively “open” for a while. Let’s see how to implement each of these cir-
cuit-breaking controls with Istio.

Proxy
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6.5.1 Guarding against slow services with connection-pool control

To set up the examples here, let’s first scale down the simple-backend service, so
there is only a single Pod. We can take all of the simple-backend-2 services down to a
replica of 0:

$ kubectl scale deploy/simple-backend-2 --replicas=0
deployment.apps/simple-backend-2 scaled

Next, let’s deploy the version of simple-backend service that introduces a one-second
delay in responses:

$ kubectl apply -f ch6/simple-backend-delayed.yaml
deployment.apps/simple-backend-1 configured

If there are any existing destination rules from previous sections, we delete them:

$ kubectl delete destinationrule --all

Now we can begin testing Istio’s connection-limiting circuit breaking. Let’s run a very
simple load test with one connection (-c 1) sending one request per second (-qps 1).
Also note that since the backend returns in approximately one second, we should
have smooth traffic and 100% successful responses:

$ fortio load -H "Host: simple-web.istioinaction.io" \
-quiet -jitter -t 30s -c 1 -qps 1 http:/./localhost/

# target 50% 1.27611
# target 75% 1.41565
# target 90% 1.49938
# target 99% 1.54961
# target 99.9% 1.55464
Sockets used: 1 (for perfect keepalive, would be 1)
Jitter: true
Code 200 : 30 (100.0 %)
All done 30 calls (plus 1 warmup) 1056.564 ms avg, 0.9 qps

Let’s introduce some connection and request limits and see what happens. We start
with a very simple set of limits:

apiVersion: networking.istio.io/v1beta1
kind: DestinationRule
metadata:

name: simple-backend-dr
spec:

host: simple-backend.istioinaction.svc.cluster.local
trafficPolicy:

connectionPool:
tcp:

maxConnections: 1
http:

http1MaxPendingRequests: 1
maxRequestsPerConnection: 1
maxRetries: 1
http2MaxRequests: 1

Total number 
of connections

Queued requests Requests per 
connection

Maximum concurrent 
requests to all hosts
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Next, we apply this file:

$ kubectl apply -f ch6/simple-backend-dr-conn-limit.yaml
destinationrule.networking.istio.io/simple-backend-dr created

Let’s run the same load test. We set maxConnections, http1MaxPendingRequests, and
http2MaxRequests to a value of 1. We also set maxRetries and maxRequestsPer-
Connection, but we won’t dig into those here; we covered maxRetries in a previous
section, and maxRequestsPerConnection is 1 for these HTTP 1.1 examples. Here’s
what these settings mean:

 maxConnections—The threshold at which we report a connection overflow. The
Istio proxy (Envoy) uses connections to service requests up to an upper bound
defined in this setting. In reality, we can expect the maximum number of con-
nections to be one per endpoint in the load-balancing pool plus the value of this
setting. Any time we go over this value, Envoy will report it in its metrics.

 http1MaxPendingRequests—The allowable number of requests that are pend-
ing and don’t have a connection to use.

 http2MaxRequests—This setting is unfortunately misnamed in Istio. Under the
covers, it controls the maximum number of parallel requests across all end-
points/hosts in a cluster regardless of HTTP2 or HTTP1.1 (see https://
github.com/istio/istio/issues/27473).

Let’s run our test again and verify that for these settings, when we send one request
per second over one connection, things work fine:

$ fortio load -H "Host: simple-web.istioinaction.io" \
-quiet -jitter -t 30s -c 1 -qps 1 http:/./localhost/

...
Sockets used: 1 (for perfect keepalive, would be 1)
Jitter: true
Code 200 : 30 (100.0 %)
All done 30 calls (plus 1 warmup) 1027.857 ms avg, 1.0 qps

What would happen if we increased the number of connections and requests per sec-
ond to two? From our load-testing tool, we’d basically start sending one request per
second from two connections. On the Istio proxy side, we would be over our connec-
tion limit, and outgoing requests would begin to queue up. If we bumped up against
either the maximum number of requests (one) or maximum number of pending
requests (one), we might trip the circuit breaker. Let’s try it:

$ fortio load -H "Host: simple-web.istioinaction.io" \
-quiet -jitter -t 30s -c 2 -qps 2 http:/./localhost/

...
Sockets used: 27 (for perfect keepalive, would be 2)
Jitter: true
Code 200 : 31 (55.4 %)
Code 500 : 25 (44.6 %)
All done 56 calls (plus 2 warmup) 895.900 ms avg, 1.8 qps

https://github.com/istio/istio/issues/27473
https://github.com/istio/istio/issues/27473
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Requests were returned as failed (HTTP 5xx). How do we know for sure that they
were affected by circuit breaking and not upstream failures? To determine this infor-
mation, we need to enable more statistics collection in the Istio service proxy. By
default, Istio’s service proxy (Envoy) keeps a large number of statistics for each clus-
ter, but Istio trims these down so as not to overwhelm the collection agents (such as
Prometheus) with a large cardinality of statistics. Let’s tell Istio to enable statistics col-
lection for the simple-web service since that ends up calling the simple-backend ser-
vice in our service graph.

 To extend the statistics exposed by Istio, especially upstream circuit-breaking statis-
tics, we use the annotation sidecar.istio.io/statsInclusionPrefixes in our
simple-web Kubernetes deployment:

template:
metadata:

annotations:
sidecar.istio.io/statsInclusionPrefixes:

             ➥"cluster.outbound|80||simple-backend.istioinaction.svc.cluster.local"
labels:

app: simple-web

Here we add additional statistics that follow the cluster.<name> format. You can see
the entire deployment description and even deploy it by applying the simple-web-
stats-incl.yaml file:

$ kubectl apply -f ch6/simple-web-stats-incl.yaml
deployment.apps/simple-web configured

Let’s make sure we’re starting from a known state with regard to statistics by resetting
all the statistics for the Istio proxy in the simple-web service:

$ kubectl exec -it deploy/simple-web -c istio-proxy \
-- curl -X POST localhost:15000/reset_counters

OK

When we generate load again, we see similar results and can inspect the statistics to
determine whether circuit breaking kicked in:

$ fortio load -H "Host: simple-web.istioinaction.io" \
-quiet -jitter -t 30s -c 2 -qps 2 http:/./localhost/

...
Sockets used: 25 (for perfect keepalive, would be 2)
Jitter: true
Code 200 : 31 (57.4 %)
Code 500 : 23 (42.6 %)
All done 54 calls (plus 2 warmup) 1020.465 ms avg, 1.7 qps

In this case, 23 calls failed. We believe that they failed because of our circuit-breaking
settings, but we can verify that by looking at the statistics from the Istio proxy. Let’s
run the following query:
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$ kubectl exec -it deploy/simple-web -c istio-proxy \
-- curl localhost:15000/stats | grep simple-backend | grep overflow

<omitted>.upstream_cx_overflow: 59
<omitted>.upstream_cx_pool_overflow: 0
<omitted>.upstream_rq_pending_overflow: 23
<omitted>.upstream_rq_retry_overflow: 0

We’ve omitted the cluster name here for readability. The statistics we’re most inter-
ested in are upstream_cx_overflow and upstream_rq_pending_overflow, which indi-
cate that enough connections and requests went over our specified thresholds (either
too many requests in parallel or too many queued up) to trip the circuit breaker.
There were 23 such requests, which exactly matches how many did not complete suc-
cessfully in our load test. Note that no errors bubble up because of the connection
overflow, but it’s important to know that when connections overflow, more pressure is
put on the existing connections. This results in the pending queue growing, which
eventually trips the circuit breaker. The fail-fast behavior comes from those pending
or parallel requests exceeding the circuit-breaking thresholds.

 What if we increase our http2MaxRequests field to account for more requests hap-
pening in parallel? Let’s raise that value to 2, reset our counters, and re-run our load test:

$ kubectl patch destinationrule simple-backend-dr --type merge \
--patch \
'{"spec": {"trafficPolicy": {"connectionPool": {

"http": {"http2MaxRequests": 2}}}}}'

$ kubectl exec -it deploy/simple-web -c istio-proxy \
-- curl -X POST localhost:15000/reset_counters

$ fortio load -H "Host: simple-web.istioinaction.io" \
-quiet -jitter -t 30s -c 2 -qps 2 http:/./localhost/

...
Sockets used: 4 (for perfect keepalive, would be 2)
Jitter: true
Code 200 : 32 (94.1 %)
Code 500 : 2 (5.9 %)
All done 34 calls (plus 2 warmup) 1786.089 ms avg, 1.1 qps

Fewer requests were blocked by circuit breaking:

$ kubectl exec -it deploy/simple-web -c istio-proxy \
-- curl localhost:15000/stats | grep simple-backend | grep overflow

<omitted>.upstream_cx_overflow: 32
<omitted>.upstream_cx_pool_overflow: 0
<omitted>.upstream_rq_pending_overflow: 2
<omitted>.upstream_rq_retry_overflow: 0

What likely happened is that some requests tripped the pending queue circuit
breaker. Let’s increase the pending queue depth to 2 and re-run:

$ kubectl patch destinationrule simple-backend-dr --type merge \
--patch \
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'{"spec": {"trafficPolicy": {"connectionPool": {
"http": {"http1MaxPendingRequests": 2}}}}}'

$ kubectl exec -it deploy/simple-web -c istio-proxy \
-- curl -X POST localhost:15000/reset_counters

$ fortio load -H "Host: simple-web.istioinaction.io" \
-quiet -jitter -t 30s -c 2 -qps 2 http:/./localhost/

...
Sockets used: 2 (for perfect keepalive, would be 2)
Jitter: true
Code 200 : 33 (100.0 %)
All done 33 calls (plus 2 warmup) 1859.655 ms avg, 1.1 qps

With these limits, we successfully complete our load test.
 When circuit breaking occurs, we can use statistics to determine what happened.

But what about at runtime? In our example, simple-web calls simple-backend; but if
the request fails because of circuit breaking, how does simple-web know that and dis-
cern the issue from an application or network failure?

 When a request fails for tripping a circuit-breaking threshold, Istio’s service proxy
adds an x-envoy-overloaded header. One way to test this is to set the connection lim-
its back to their most stringent settings (1 for connections, pending requests, and
maximum requests) and run the load test again. If we also issue a single curl com-
mand while the load test is running, there’s a high chance it will fail because of circuit
breaking. When using curl, we can see the actual response from the simple service
implementations:

curl -v -H "Host: simple-web.istioinaction.io" http:/./localhost/

{
"name": "simple-web",
"uri": "/",
"type": "HTTP",
"ip_addresses": [

"10.1.0.101"
],
"start_time": "2020-09-22T20:01:44.949194",
"end_time": "2020-09-22T20:01:44.951374",
"duration": "2.179963ms",
"body": "Hello from simple-web!!!",
"upstream_calls": [

{
"uri": "http:/./simple-backend:80/",
"headers": {

"Content-Length": "81",
"Content-Type": "text/plain",
"Date": "Tue, 22 Sep 2020 20:01:44 GMT",
"Server": "envoy",
"x-envoy-overloaded": "true"

},
"code": 503,
"error": "Error processing

Header 
indication
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upstream request: http:/./simple-backend:80//,
expected code 200, got 503"

}
],
"code": 500

}

In general, you should write application code in such a way that the network can fail.
If your application code watches for this header, it can make decisions about things
like fallback strategies for responding to its calling client. 

6.5.2 Guarding against unhealthy services with outlier detection

In the previous section, we saw how Istio can limit requests to services that are misbe-
having when they introduce unexpected latency. In this section, we explore Istio’s
approach to removing certain hosts of a service that are misbehaving. Istio uses
Envoy’s outlier-detection functionality for this. We saw outlier detection in section
6.3.1, and we’ll take a closer look here.

 To get started, let’s set everything back to a known-working state:

$ kubectl apply -f ch6/simple-backend.yaml
$ kubectl delete destinationrule --all

Note that we are staying with the simple-web deployment that has extended statistics
about the simple-backend cluster. If you’re not sure whether you’re in that state
(from section 6.5.1), you can be sure by deploying that version of simple-web:

$ kubectl apply -f ch6/simple-web-stats-incl.yaml

To explore the behavior, we also disable Istio’s default retry mechanisms. Retry and
outlier detection go well together, but we’ll try to isolate the outlier-detection func-
tionality for these examples (we add back retry at the end to see how they comple-
ment each other). See section 6.4.2 to disable retries for the entire mesh, although we
will include the command here for a better experience. We will also need to remote
any VirtualService resources that may have retry settings in them already:

$ istioctl install --set profile=demo \
--set meshConfig.defaultHttpRetryPolicy.attempts=0

$ kubectl delete vs simple-backend-vs

Finally, before we run our tests, let’s introduce failure from the simple-backend service.
In this case, we’ll fail with HTTP 500 on 75% of the calls to the simple-backend-1
endpoint:

$ kubectl apply -f ch6/simple-backend-periodic-failure-500.yaml

Now let’s run our load test. We turned off retry and introduced periodic failures, so
we expect some of the requests from the load test to fail:

$ fortio load -H "Host: simple-web.istioinaction.io" \
-allow-initial-errors -quiet -jitter -t 30s -c 10 -qps 20 http:/./localhost/
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...
Sockets used: 197 (for perfect keepalive, would be 10)
Jitter: true
Code 200 : 412 (68.7 %)
Code 500 : 188 (31.3 %)
All done 600 calls (plus 10 warmup) 189.855 ms avg, 19.9 qps

Some calls did indeed fail. We expected that because we made simple-backend-1
endpoints return failures. If we are sending requests to a service that is failing regu-
larly, and the other endpoints that make up the service do not, maybe it’s overloaded
or somehow degraded, and we should stop sending traffic to it for a while. Let’s con-
figure outlier detection to do exactly that:

apiVersion: networking.istio.io/v1beta1
kind: DestinationRule
metadata:

name: simple-backend-dr
spec:

host: simple-backend.istioinaction.svc.cluster.local
trafficPolicy:

outlierDetection:
consecutive5xxErrors: 1
interval: 5s
baseEjectionTime: 5s
maxEjectionPercent: 100

In this destination rule, we configure consecutive5xxErrors with a value of 1, which
means outlier detection will trip after only one bad request (see figure 6.16). This
might be good for our example, but you may want to target something more realistic
for your environment. The interval setting specifies how often the Istio service
proxy checks on the hosts and decides whether to eject an endpoint based on the
consecutive5xxErrors setting. If a service endpoint is ejected, it is ejected for

Proxy
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Load-balancing pool

Proxy

simple-backend

Proxy

simple-backend

Proxy

simple-backend
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Figure 6.16 If endpoints 
are misbehaving, eject 
them for a time.
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n * baseEjectionTime, where n is the number of times that particular endpoint has
been ejected. After the time has elapsed, the endpoint is added back to the load-
balancing pool. Finally, we can control how many of the hosts in the load-balancing
pool are eligible for ejection. In this particular configuration, we’re willing to eject
100% of the hosts. This is analogous to a circuit being tripped open: no requests will
pass through when all the hosts are misbehaving.

 Let’s enable outlier detection and re-run our tests:

$ kubectl apply -f ch6/simple-backend-dr-outlier-5s.yaml
destinationrule.networking.istio.io/simple-backend-dr created

$ fortio load -H "Host: simple-web.istioinaction.io" \
-allow-initial-errors -quiet -jitter -t 30s -c 10 -qps 20 http:/./localhost/

...
Sockets used: 22 (for perfect keepalive, would be 10)
Jitter: true
Code 200 : 589 (98.2 %)
Code 500 : 11 (1.8 %)
All done 600 calls (plus 10 warmup) 250.173 ms avg, 19.7 qps

Our error rate is reduced dramatically because the misbehaving endpoint was ejected
for a time. However, we still have 11 failed calls. To prove that these errors were caused
by the misbehaving endpoints, we can check the statistics:

$ kubectl exec -it deploy/simple-web -c istio-proxy -- \
curl localhost:15000/stats | grep simple-backend | grep outlier

<omitted>.outlier_detection.ejections_active: 0
<omitted>.outlier_detection.ejections_consecutive_5xx: 3
<omitted>.outlier_detection.ejections_detected_consecutive_5xx: 3
<omitted>.outlier_detection.ejections_detected_

consecutive_gateway_failure: 0
<omitted>.outlier_detection.ejections_detected_

consecutive_local_origin_failure: 0
<omitted>.outlier_detection.ejections_detected_failure_percentage: 0
<omitted>.outlier_detection.ejections_detected_

local_origin_failure_percentage: 0
<omitted>.outlier_detection.ejections_detected_

local_origin_success_rate: 0
<omitted>.outlier_detection.ejections_detected_success_rate: 0
<omitted>.outlier_detection.ejections_enforced_consecutive_5xx: 3
<omitted>.outlier_detection.ejections_enforced_

consecutive_gateway_failure: 0
<omitted>.outlier_detection.ejections_enforced_

consecutive_local_origin_failure: 0
<omitted>.outlier_detection.ejections_enforced_failure_percentage: 0
<omitted>.outlier_detection.ejections_enforced_

local_origin_failure_percentage: 0
<omitted>.outlier_detection.ejections_enforced_

local_origin_success_rate: 0
<omitted>.outlier_detection.ejections_enforced_success_rate: 0
<omitted>.outlier_detection.ejections_enforced_total: 3
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<omitted>.outlier_detection.ejections_overflow: 0
<omitted>.outlier_detection.ejections_success_rate: 0
<omitted>.outlier_detection.ejections_total: 3

The simple-backend-1 host was ejected three times; and during the previous run, 11
calls failed. During the five-second interval setting, requests hit this misbehaving
host, and it wasn’t until the outlier-detection check happened (after five seconds) that
some of those requests hit the misbehaving host—hence the errors.

 What can we do to work around those last few errors? We can add default retry set-
tings (or explicitly set them in each VirtualService):

$ istioctl install --set profile=demo \
--set meshConfig.defaultHttpRetryPolicy.attempts=2

Try the load test once again, and you should see no errors.
 Prior to this chapter, we’ve seen how we can use Istio’s functionality and APIs to

change the behavior of the network from the edge using the ingress gateway to intra-
cluster communication. However, as we established at the beginning of this chapter,
manual intervention to react to unexpected network failures may be nearly impossible
in large-scale, constantly changing systems.

 In this chapter, we dug deep into Istio’s various client-side resilience features that
allow services to transparently recover from intermittent network issues or topology
changes. In the next chapters, we’ll layer onto these capabilities by exploring how to
observe network behaviors. 

Summary
 Load-balancing is configured with DestinationRule resources. The supported

algorithms are as follows:
– ROUND_ROBIN delivers requests to endpoints in succession (or “next-in-loop”)

and is the default algorithm.
– RANDOM routes traffic to endpoints at random.
– LEAST_CONN routes traffic to endpoints with the fewest active requests in

flight.
 Istio uses the zone and region information of nodes in combination with the

health of endpoints (for which outlierDetection must be configured) to
route traffic to workloads within the same zone (when possible, and spill over to
next localities when not).

 Using destination rules, we can configure clients to do a weighted distribution
across localities.

 Retries and timeouts are configured in VirtualService resources.
 EnvoyFilter resources can be used to implement capabilities of Envoy that are

not exposed by the Istio API. We showcased that with request hedging.
 Circuit breaking is configured in DestinationRule resources, which allows

upstream services time to recover before additional traffic is sent their way.



Observability:
Understanding the

behavior of your services
Recently, you may have heard the term observability start to creep into the vocabu-
lary of software engineers, operations, and site-reliability teams. These teams have
to deal with the near-exponential increase in complexity when operationalizing a
microservices-style architecture on cloud infrastructure. When we start to deploy
our application as tens or hundreds of services (or more) per application, we
increase the number of moving pieces, reliance on the network for things to suc-
ceed, and the number of things that can and do go wrong.

 As our systems go down this path and become bigger, there is a higher probabil-
ity that at least some part of the system is always running in a degraded state. Not
only must we build our applications to be more reliable and resilient, but we also

This chapter covers
 Collecting basic request-level metrics

 Understanding Istio’s standard service-to-service 
metrics

 Using Prometheus to scrape workload and 
control-plane metrics

 Adding new metrics in Istio to track in Prometheus
177
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must improve our tooling and instrumentations to be able to understand what’s really
happening when they are running. If we can confidently comprehend what’s happen-
ing with our services and infrastructure at run time, we can learn to detect failures and
dive deep into debugging when we observe something unexpected. This effort will
help us improve our mean time to recovery (MTTR), an important measure of high-
performing teams and their impact on the business.

 In this chapter, we look at some of the fundamentals of observability and how Istio
helps lay the foundation for metrics collection at the network level to support observ-
ability. In the next chapter, which builds on this one, we will see how to use some of
this information to visually understand our network call graphs.

7.1 What is observability?
Observability is a characteristic of a system that is measured by the level to which you
can understand and reason about a system’s internal state just by looking at its exter-
nal signals and characteristics. Observability is important to implement controls for a
system in which we can change its run-time behavior. This definition is based on the
study of control theory first introduced in the 1960 paper from “On the General The-
ory of Control Systems” by Rudolf E. Kálmán. In more practical terms, we value stabil-
ity in our systems, and we need to understand when things are going well in order to
discern when things are going wrong and implement the right levels of automated
and manual control to maintain this dynamic.

 Figure 7.1 illustrates that Istio’s data plane is in a position to affect the behavior of
a request through the system. Istio can help implement controls like traffic shifting,
resilience, policy enforcement, and more; but to know what controls to engage and
when, we need to understand what’s happening in the system. Since most of Istio’s con-
trol capabilities are implemented at the network level for application requests, we
shouldn’t be surprised to find that Istio’s ability to collect metrics to inform our obser-
vations is also at this level. This does not mean that using Istio to help with observability

Metric/Logging/Tracing Control plane

Observe
network
behavior.

Control
network
behavior.

Istio
proxy

forum

Istio
proxy

webapp

Istio
proxy

catalog

Istio
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Figure 7.1 Istio is in a position to implement controls and observations.
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is the only thing you need to get observability into your system. Observability is a char-
acteristic of a system involving various levels, not an off-the-shelf solution, and it must
incorporate a combination of application instrumentation, network instrumentation,
signal collection infrastructure, and databases as well as a way to sift through the vast
amount of data to piece together a picture when unpredictable things happen. Istio
helps with one part of observability: application-level network instrumentation. 

7.1.1 Observability vs. monitoring

The term observability has brought a level of confusion to the market in terms of a
practice with which you may already be familiar: monitoring. Monitoring is the practice
of collecting metrics, logs, traces, and so on, aggregating them, and matching them
against predefined criteria of system states that we should carefully watch. When we
find that one of our metrics has crossed a threshold and may be heading toward a
known bad state, we take action to remedy the system. For example, operations teams
can collect information about disk usage for a particular database installation. If those
metrics show the disk usage approaching its capacity, we can fire an alert to trigger
some kind of remediation like adding more storage to the disks.

 Monitoring is a subset of observability. With monitoring, we are specifically collect-
ing and aggregating metrics to watch for known undesirable states and then alert on
them. On the other hand, observability supposes that our systems are highly unpre-
dictable, and we cannot know all of the possible failure modes in advance. We need to
collect much more data—even high-cardinality data like user IDs, request IDs, source
IPs, and so on, where the entire set could be exponentially large—and use tools to
quickly explore and ask questions about the data. For example, suppose a particular
user—say, user John Doe, with user ID 400000021—tries to pay for the items in their
cart and experiences a 10-second delay choosing a payment option. All the pre-
defined metric thresholds (disk usage, queue depth, machine health, and so on) may
be at acceptable levels, but John Doe is highly irritated at this user experience. If we
have designed with observability in mind, we can sift through the many layers of ser-
vices and determine the exact path a request may have taken through the system. 

7.1.2 How Istio helps with observability

Istio is in a unique position to help build an observable system because Istio’s data-
plane proxy, Envoy, sits in the network request path between services. Through the
Envoy service proxy, Istio can capture important metrics related to request handling
and service interaction, such as the number of requests per second, how long requests
are taking (broken out into percentiles), how many failed requests we’ve experienced,
and so on. Istio can also help dynamically add new metrics to a system to capture new
information we hadn’t thought about ahead of time.

 Another aspect of understanding a distributed system is tracing requests through
the system to understand what services and components are involved in a request flow
and how long each node in that graph takes to process the request. We cover distrib-
uted tracing in the next chapter.
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 Finally, Istio comes with some out-of-the-box sample tools like Prometheus,
Grafana, and Kiali, which can help you visualize and explore the state of the service
mesh and the services it knows about. We will not be using the sample out-of-the-box
Prometheus, Grafana, or Kiali tools—they are add-ons that we installed in chapter 2
and are intended to be used for demo purposes. In this chapter and the next, we use a
more realistic setup.

 Let’s delete the sample tools that we installed in chapter 2. From the root of the
Istio distribution that you downloaded in chapter 2, run the following:

$ cd istio-1.13.0
$ kubectl delete -f samples/addons/

7.2 Exploring Istio metrics
Istio’s data plane handles requests, and Istio’s control plane configures the data plane
to handle requests. Both keep a very deep set of metrics that give insight into what’s
going on at run time in terms of the application network and the operation of the
mesh. Let’s dig into what metrics are available for the data plane and control plane.

7.2.1 Metrics in the data plane

Envoy can keep a large set of connection, request, and run-time metrics that we can
use to form a picture of a service’s network and communication health. First, let’s
deploy a subset of our example application and explore its components to understand
where those metrics come from and how to access them. We’ll explore Istio’s capabili-
ties for building an observable system by collecting metrics around application net-
working and bringing those back to an area we can explore and visualize.

 Let’s assume that we have Istio deployed (see chapter 2 to do that) but that we
don’t have any other application components deployed. If you are continuing from
previous chapters, you may have to clean up any left-behind deployments, services,
gateways, and virtual services:

$ kubectl config set-context $(kubectl config current-context) \
--namespace=istioinaction

$ kubectl delete virtualservice,deployment,service,\
destinationrule,gateway --all

To deploy the application for this section, run the following command from the root
of the book’s source code:

$ kubectl apply -f services/catalog/kubernetes/catalog.yaml
$ kubectl apply -f services/webapp/kubernetes/webapp.yaml
$ kubectl apply -f services/webapp/istio/webapp-catalog-gw-vs.yaml

Now we can run the following command to verify that we can reach our services and
that they return correctly:

$ curl -H "Host: webapp.istioinaction.io" http:/./localhost/api/catalog
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The first things we discover are the metrics kept by a service’s sidecar proxy. If we list
the Pods that we have deployed and that have a sidecar proxy deployed alongside, we
see both the webapp and catalog services :

$ kubectl get pod
NAME READY STATUS RESTARTS AGE
webapp-67bd5dfd77-g7gcf 2/2 Running 0 20m
catalog-c89594fb9-hm47h 2/2 Running 0 20m

Let’s execute a query to view the statistics from the webapp Pod:

$ kubectl exec -it deploy/webapp -c istio-proxy \
-- curl localhost:15000/stats

Wow! That’s a lot of information kept by the sidecar proxy. In fact, the proxy keeps
even more information, but much of it has been trimmed out by default. What we see
here is mostly information about the proxy connected to the control plane, how many
cluster or listener updates have taken place, and other high-level statistics. We also see
some request- and response-level metrics, but they’re buried in the output. Look for
something like this:

reporter=.=destination;.;source_workload=.=istio-ingressgateway;.;
source_workload_namespace=.=istio-system;.;source_principal=.
=spiffe://cluster.local/ns/istio-system/sa/istio
-ingressgateway-service-account;.;source_app=.=istio-ingressgateway;.
;source_version=.=unknown;.;source_canonical_service=.
=istio-ingressgateway;.;source_canonical_revision=.=
latest;.;destination_workload=.=webapp;.
;destination_workload_namespace=.=istioinaction;.;destination_principal=.
=spiffe://cluster.local/ns/istioinaction/sa/webapp;.
;destination_app=.=webapp;.;

Querying Envoy admin endpoints without using curl
Why might you query Envoy’s admin endpoints without curl? For security reasons
Istio provides a set of distroless images (http://mng.bz/KB2n) that contain the bare
minimum dependencies to run pilot-agent. Not surprisingly, curl doesn’t make
the cut.

Querying the endpoints is important when debugging the envoy proxy, so a minimal-
istic command-line interface has been added to pilot-agent to query the endpoints.
For example, you can still query the statistics as follows:

$ kubectl exec -it deploy/webapp -c istio-proxy \
-- pilot-agent request GET stats

You can learn more about the other Envoy admin endpoints by querying the help
endpoint:

pilot-agent request GET help

We will keep using curl to query the endpoints, but be aware that this option exists
in case you use distroless images.

http://mng.bz/KB2n
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destination_version=.=unknown;.;destination_service=.
=webapp.istioinaction.svc.cluster.local;.;destination_service_name=.
=webapp;.;destination_service_namespace=.=istioinaction;.;
destination_canonical_service=.=webapp;

.;destination_canonical_revision=.
=latest;.;request_protocol=.=http;.;response_flags=.=-;.
;connection_security_policy=.=mutual_tls;.;response_code=.=200;.
;grpc_response_status=.=;.;destination_cluster=.=Kubernetes;.
;source_cluster=.=Kubernetes;.;istio_requests_total: 2

The most important part of this line is the last bit: istio_requests_total. If you read
through the rest of it, you can see that this is a metric for requests coming from the
ingress gateway to the webapp service with a request total of 2. If you don’t see these
metrics, try calling the service a few times.

 The following histograms are the standard Istio metrics kept for each proxy for
both inbound and outbound calls. They provide a wealth of information without hav-
ing to tune or do anything for your metrics collection:

 istio_requests_total 

 istio_request_bytes 

 istio_response_bytes 

 istio_request_duration 

 istio_request_duration_milliseconds 

See the Istio documentation at https://istio.io/latest/docs/reference/config/metrics
for more about the standard Istio metrics.

CONFIGURING PROXIES TO REPORT MORE ENVOY STATISTICS

Sometimes we need to see more information than the standard Istio metrics to trou-
bleshoot the behavior of the network. In earlier chapters, we showed a sneak preview
of enabling these other metrics, but let’s take a closer look.

 When a call from an application goes through its client-side proxy, the proxy
makes routing decisions and routes to an upstream cluster. An upstream cluster is the
actual service that is called along with any settings associated with calling the service
(load balancing, security, circuit-breaking settings, and so on). In this example, the
webapp service routes to the catalog service. Let’s enable more information for the
calls to the upstream catalog service.

 How do we do this? We have the option to configure this as a mesh-wide setting
during the Istio installation by specifying the default proxy configuration, as follows:

apiVersion: install.istio.io/v1alpha1
kind: IstioOperator
metadata:

name: control-plane
spec:

profile: demo
meshConfig:

defaultConfig:
proxyStatsMatcher:

Defines the default proxy 
configuration for all services Customizes the 

reported metrics

https://istio.io/latest/docs/reference/config/metrics
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inclusionPrefixes:
- "cluster.outbound|80||catalog.istioinaction"

NOTE To learn more about proxy configuration possibilities, check out the
API reference documentation at http://mng.bz/9K08.

Increasing the collected metrics in the entire mesh can overload your metrics-collec-
tion system and for that reason should be done very carefully. A better approach is to
specify the included metrics as an annotation on a per-workload basis. For example, to
get the metrics for the webapp deployment, we can add the same configuration to the
proxy.istio.io/config annotation:

metadata:
annotations:

proxy.istio.io/config: |-
proxyStatsMatcher:

inclusionPrefixes:
- "cluster.outbound|80||catalog.istioinaction"

Let’s apply the annotated webapp deployment:

$ kubectl apply -f ch7/webapp-deployment-stats-inclusion.yaml

Now make a few more calls through the service chain:

$ curl -H "Host: webapp.istioinaction.io" http:/./localhost/api/catalog

And grab the statistics again—but this time, let’s grep for only the catalog service
entries:

$ kubectl exec -it deploy/webapp -c istio-proxy \
-- curl localhost:15000/stats | grep catalog

The output is massive for this command, so we’ve omitted it; however, let’s cover a few
key metrics. Note that your output may look slightly different, as we’ve trimmed the
fully qualified domain name (FQDN) from the listing. In this case, we omitted istio-
inaction.svc.cluster.local, which will appear in your listing.

 These metrics indicate whether circuit breaking is in effect for connections or
requests going to this upstream cluster:

cluster.outbound|80||catalog.circuit_breakers.default.cx_open: 0
cluster.outbound|80||catalog.circuit_breakers.default.cx_pool_open: 0
cluster.outbound|80||catalog.circuit_breakers.default.rq_open: 0
cluster.outbound|80||catalog.circuit_breakers.default.rq_pending_open: 0
cluster.outbound|80||catalog.circuit_breakers.default.rq_retry_open: 0

Envoy has a notion of internal origin versus external origin when identifying traffic. Inter-
nal is typically what we recognize as traffic from within the mesh, and external is traffic
originating outside the mesh (traffic coming into an ingress gateway). With the
cluster_name.internal.* metrics, we can see how many successful requests have
come from an internal origin or within the mesh:

Metrics matching the prefix 
will be reported alongside 
the default ones.

Proxy configurations for 
the webapp replicas

http://mng.bz/9K08
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cluster.outbound|80||catalog.internal.upstream_rq_200: 2
cluster.outbound|80||catalog.internal.upstream_rq_2xx: 2

The cluster_name.ssl.* metrics are very useful to determine whether the traffic is
going to the upstream cluster over TLS and any other details (cipher, curve, and so
on) associated with the connections:

cluster.outbound|80||catalog.ssl.ciphers.ECDHE-RSA-AES256-GCM-SHA384: 1
cluster.outbound|80||catalog.ssl.connection_error: 0
cluster.outbound|80||catalog.ssl.curves.X25519: 1
cluster.outbound|80||catalog.ssl.fail_verify_cert_hash: 0
cluster.outbound|80||catalog.ssl.fail_verify_error: 0
cluster.outbound|80||catalog.ssl.fail_verify_no_cert: 0
cluster.outbound|80||catalog.ssl.fail_verify_san: 0
cluster.outbound|80||catalog.ssl.handshake: 1

Finally, upstream_cx and upstream_rq give more fidelity about what’s happening on
the network. As the names indicate, they are metrics about upstream connections and
requests:

cluster.outbound|80||catalog.upstream_cx_active: 1
cluster.outbound|80||catalog.upstream_cx_close_notify: 0
cluster.outbound|80||catalog.upstream_cx_connect_attempts_exceeded: 0
cluster.outbound|80||catalog.upstream_cx_connect_fail: 0
cluster.outbound|80||catalog.upstream_cx_connect_timeout: 0
cluster.outbound|80||catalog.upstream_cx_destroy: 0
cluster.outbound|80||catalog.upstream_cx_destroy_local: 0
cluster.outbound|80||catalog.upstream_cx_destroy_local_with_active_rq: 0
cluster.outbound|80||catalog.upstream_cx_destroy_remote: 0
cluster.outbound|80||catalog.upstream_cx_destroy_remote_with_active_rq: 0
cluster.outbound|80||catalog.upstream_cx_destroy_with_active_rq: 0
cluster.outbound|80||catalog.upstream_cx_http1_total: 1
cluster.outbound|80||catalog.upstream_cx_http2_total: 0
cluster.outbound|80||catalog.upstream_cx_idle_timeout: 0
cluster.outbound|80||catalog.upstream_cx_max_requests: 0
cluster.outbound|80||catalog.upstream_cx_none_healthy: 0
cluster.outbound|80||catalog.upstream_cx_overflow: 0
cluster.outbound|80||catalog.upstream_cx_pool_overflow: 0
cluster.outbound|80||catalog.upstream_cx_protocol_error: 0
cluster.outbound|80||catalog.upstream_cx_rx_bytes_buffered: 1386
cluster.outbound|80||catalog.upstream_cx_rx_bytes_total: 2773
cluster.outbound|80||catalog.upstream_cx_total: 1
cluster.outbound|80||catalog.upstream_cx_tx_bytes_buffered: 0
cluster.outbound|80||catalog.upstream_cx_tx_bytes_total: 2746
cluster.outbound|80||catalog.upstream_rq_200: 2
cluster.outbound|80||catalog.upstream_rq_2xx: 2
cluster.outbound|80||catalog.upstream_rq_active: 0
cluster.outbound|80||catalog.upstream_rq_cancelled: 0
cluster.outbound|80||catalog.upstream_rq_completed: 2
cluster.outbound|80||catalog.upstream_rq_maintenance_mode: 0
cluster.outbound|80||catalog.upstream_rq_max_duration_reached: 0
cluster.outbound|80||catalog.upstream_rq_pending_active: 0
cluster.outbound|80||catalog.upstream_rq_pending_failure_eject: 0
cluster.outbound|80||catalog.upstream_rq_pending_overflow: 0
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cluster.outbound|80||catalog.upstream_rq_pending_total: 1
cluster.outbound|80||catalog.upstream_rq_per_try_timeout: 0
cluster.outbound|80||catalog.upstream_rq_retry: 0
cluster.outbound|80||catalog.upstream_rq_retry_backoff_exponential: 0
cluster.outbound|80||catalog.upstream_rq_retry_backoff_ratelimited: 0
cluster.outbound|80||catalog.upstream_rq_retry_limit_exceeded: 0
cluster.outbound|80||catalog.upstream_rq_retry_overflow: 0
cluster.outbound|80||catalog.upstream_rq_retry_success: 0
cluster.outbound|80||catalog.upstream_rq_rx_reset: 0
cluster.outbound|80||catalog.upstream_rq_timeout: 0
cluster.outbound|80||catalog.upstream_rq_total: 2
cluster.outbound|80||catalog.upstream_rq_tx_reset: 0

You can learn more about these metrics, and any of the others for upstream clusters,
in the Envoy documentation (http://mng.bz/jyg9).

 Let’s try another query to list information about all of the backend clusters and
their respective endpoints that the proxy knows about:

$ kubectl exec -it deploy/webapp -c istio-proxy \
-- curl localhost:15000/clusters

Wow! The proxy knows about a lot of upstream services. Let’s grep for only the met-
rics related to the catalog service:

$ kubectl exec -it deploy/webapp -c istio-proxy \
-- curl localhost:15000/clusters | grep catalog

outbound|80||catalog::default_priority::max_connections::4294967295
outbound|80||catalog::default_priority::max_pending_requests::4294967295
outbound|80||catalog::default_priority::max_requests::4294967295
outbound|80||catalog::default_priority::max_retries::4294967295
outbound|80||catalog::high_priority::max_connections::1024
outbound|80||catalog::high_priority::max_pending_requests::1024
outbound|80||catalog::high_priority::max_requests::1024
outbound|80||catalog::high_priority::max_retries::3
outbound|80||catalog::added_via_api::true
outbound|80||catalog::10.1.0.71:3000::cx_active::1
outbound|80||catalog::10.1.0.71:3000::cx_connect_fail::0
outbound|80||catalog::10.1.0.71:3000::cx_total::1
outbound|80||catalog::10.1.0.71:3000::rq_active::0
outbound|80||catalog::10.1.0.71:3000::rq_error::0
outbound|80||catalog::10.1.0.71:3000::rq_success::1
outbound|80||catalog::10.1.0.71:3000::rq_timeout::0
outbound|80||catalog::10.1.0.71:3000::rq_total::1
outbound|80||catalog::10.1.0.71:3000::hostname::
outbound|80||catalog::10.1.0.71:3000::health_flags::healthy
outbound|80||catalog::10.1.0.71:3000::weight::1
outbound|80||catalog::10.1.0.71:3000::region::
outbound|80||catalog::10.1.0.71:3000::zone::
outbound|80||catalog::10.1.0.71:3000::sub_zone::
outbound|80||catalog::10.1.0.71:3000::canary::false
outbound|80||catalog::10.1.0.71:3000::priority::0
outbound|80||catalog::10.1.0.71:3000::success_rate::-1.0
outbound|80||catalog::10.1.0.71:3000::local_origin_success_rate::-1.0

http://mng.bz/jyg9
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In this output, we see more information about a particular upstream cluster, including
what endpoints exist for it (10.1.0.71, in this case); what region, zone, and subzone
the endpoint lives in; and any active request or errors for this upstream endpoint. The
previous set of statistics provided data for the cluster as a whole. With this set of statis-
tics, we see detailed information about each endpoint.

 The proxies do a good job of collecting metrics, but we don’t want to have to go to
each service instance and each proxy to retrieve them. The Istio service proxy can be
scraped by a metric-collection system such as Prometheus or Datadog. We explore
how to set up Prometheus in upcoming sections. Before that, let’s see what metrics are
available in the control plane. 

7.2.2 Metrics in the control plane

The control plane istiod keeps a wealth of information about how it performs, such
as how many times it has synchronized configuration with the various data-plane prox-
ies, how long configuration synchronization takes, and other information such as bad
configurations, certificate issuance/rotation, and much more. We will cover these met-
rics in greater detail when we look at tuning control-plane performance in chapter 11.

 To view the control-plane metrics, run the following command:

kubectl exec -it -n istio-system deploy/istiod -- curl localhost:15014/metrics

This returns a large number of metrics. Let’s explore some of the interesting ones.
 Here we can see when the root certificate used to sign workload certificate

requests (CSRs) expires as well as how many CSR requests and issued certificates have
come into the control plane:

citadel_server_root_cert_expiry_timestamp 1.933249372e+09
citadel_server_csr_count 55
citadel_server_success_cert_issuance_count 55

We can also see run-time information about the version of the control plane. In this
case, we are running Istio 1.13.0 in the control plane:

istio_build{component="pilot",tag="1.13.0"} 1

This section shows a distribution about how long it takes for configuration to be
pushed and synchronized with the data-plane proxies. In this case, 1,101 out of 1,102
configuration convergence events happened in less than one-tenth of a second, as
indicated by le="0.1", while one of them took longer (le stands for “less than or
equal to”):

pilot_proxy_convergence_time_bucket{le="0.1"} 1101
pilot_proxy_convergence_time_bucket{le="0.5"} 1102
pilot_proxy_convergence_time_bucket{le="1"} 1102
pilot_proxy_convergence_time_bucket{le="3"} 1102
pilot_proxy_convergence_time_bucket{le="5"} 1102
pilot_proxy_convergence_time_bucket{le="10"} 1102

1,101 updates were 
distributed to proxies in 
less than 0.1 milliseconds.

One request took longer 
and fell in the range 
from 0.1 to 0.5.
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pilot_proxy_convergence_time_bucket{le="20"} 1102
pilot_proxy_convergence_time_bucket{le="30"} 1102
pilot_proxy_convergence_time_bucket{le="+Inf"} 1102
pilot_proxy_convergence_time_sum 11.862998399999995
pilot_proxy_convergence_time_count 1102

This section shows how many services are known to the control plane, how many
VirtualService resources have been configured by users, and how many proxies are
connected:

# HELP pilot_services Total services known to pilot.
# TYPE pilot_services gauge
pilot_services 14
# HELP pilot_virt_services Total virtual services known to pilot.
# TYPE pilot_virt_services gauge
pilot_virt_services 1
# HELP pilot_vservice_dup_domain Virtual services with dup domains.
# TYPE pilot_vservice_dup_domain gauge
pilot_vservice_dup_domain 0
# HELP pilot_xds Number of endpoints connected to this pilot using XDS.
# TYPE pilot_xds gauge
pilot_xds{version="1.13.0"} 4

This last section shows the number of updates for any particular part of the xDS API.
In chapter 3, we covered how to dynamically update the Envoy configuration for areas
such as cluster discovery (CDS), endpoint discovery (EDS), listener and route discov-
ery (LDS/RDS), and secret discovery (SDS):

pilot_xds_pushes{type="cds"} 756
pilot_xds_pushes{type="eds"} 1077
pilot_xds_pushes{type="lds"} 671
pilot_xds_pushes{type="rds"} 538
pilot_xds_pushes{type="sds"} 55

We cover more control-plane metrics when we explore performance tuning of the
Istio control plane in chapter 11.

 At this point, we have demonstrated how much detail the data plane and control
plane report about what’s going on under the covers. Exposing this detail is crucial for
building an observable system. Although the service-mesh components we explored
expose this information, how does an operator or user of the mesh consume these met-
rics? It’s not practical to expect to log in to each data-plane or control-plane component
to get these metrics, so let’s examine how we can use metrics-collection and time-series
database systems to automate this process and display the data in a useable fashion. 

7.3 Scraping Istio metrics with Prometheus
Prometheus is a metrics-collection engine and set of related monitoring and alerting
tools that originated at SoundCloud and was loosely based on Google’s internal moni-
toring system, Borgmon (in a way similar to how Kubernetes was based on Borg). Pro-
metheus is slightly different from other telemetry or metrics-collection systems in that
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it “pulls” metrics from its targets rather than expects agents to “push” metrics to it.
With Prometheus, we expect our applications or the Istio service proxy to expose an
endpoint with the latest metrics from which Prometheus can then pull or scrape the
information.

 In this book, we won’t discuss whether pull or push metric collection is better, but
we’ll acknowledge that both exist and that an organization may choose one over the
other or both. The podcast with Brian Brazil at https://thenewstack.io/exploring
-prometheus-use-cases-brian-brazil tells more about Prometheus’s approach to pull-
based metrics and how it differs from push-based systems.

 We can quickly spin up a Prometheus server and begin scraping metrics even if we
have other Prometheus servers already scraping from the metrics endpoints on indi-
vidual targets (Pods, in this case). In fact, this is how Prometheus can be configured to
be highly available: we can run multiple Prometheus servers scraping the same targets
(see figure 7.2).

One of the benefits of using Prometheus is that using a simple HTTP client or web
browser, we can examine our metrics endpoints. Let’s use a curl command to scrape
an HTTP endpoint that exposes our Istio service proxy metrics in Prometheus format.

 First, we list our Pods and pick any of the services running. For this example, we
use the webapp Pod:

$ kubectl get pod
NAME READY STATUS RESTARTS AGE
webapp-76b86b49fd-gj589 2/2 Running 0 22h
catalog-68666d4988-sglvz 2/2 Running 0 22h

Next, we issue a curl command to port 15090, where the service proxy exposes the
Prometheus metrics:

$ kubectl exec -it deploy/webapp -c istio-proxy \
-- curl localhost:15090/stats/prometheus

...
envoy_cluster_assignment_stale{cluster_name="

outbound|80||catalog.istioinaction.svc.cluster.local"} 0
envoy_cluster_assignment_stale{cluster_name="xds-grpc"} 0

Prometheus

Periodically poll
for stats

Istio
proxy

catalog

Store

/metrics

Figure 7.2 Prometheus scraping 
Istio service proxy for metrics

https://thenewstack.io/exploring-prometheus-use-cases-brian-brazil
https://thenewstack.io/exploring-prometheus-use-cases-brian-brazil
https://thenewstack.io/exploring-prometheus-use-cases-brian-brazil
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envoy_cluster_assignment_timeout_received{cluster_name="
outbound|80||catalog.istioinaction.svc.cluster.local"} 0

envoy_cluster_assignment_timeout_received{cluster_name="xds-grpc"} 0

envoy_cluster_bind_errors{cluster_name="
outbound|80||catalog.istioinaction.svc.cluster.local"} 0

envoy_cluster_bind_errors{cluster_name="xds-grpc"} 0

envoy_cluster_client_ssl_socket_factory_downstream_
context_secrets_not_ready{cluster_name="

outbound|80||catalog.istioinaction.svc.cluster.local"} 0

envoy_cluster_client_ssl_socket_factory_ssl_context_
update_by_sds{cluster_name="

outbound|80||catalog.istioinaction.svc.cluster.local"} 2

envoy_cluster_client_ssl_socket_factory_upstream_
context_secrets_not_ready{cluster_name="

outbound|80||catalog.istioinaction.svc.cluster.local"} 0

envoy_cluster_default_total_match_count{
cluster_name="

outbound|80||catalog.istioinaction.svc.cluster.local"} 0
envoy_cluster_default_total_match_count{cluster_name="xds-grpc"} 1

envoy_cluster_http1_dropped_headers_with_underscores{
cluster_name="

outbound|80||catalog.istioinaction.svc.cluster.local"} 0
...

We see a list of metrics formatted the way Prometheus expects. All of our applications
that have the Istio service proxy injected automatically expose these Prometheus met-
rics. All we have to do is set up a Prometheus server to scrape them.

7.3.1 Setting up Prometheus and Grafana

As we mentioned earlier in the chapter, we removed the sample Prometheus and
Grafana that ship with Istio, as they’re intended only for demo usage. In this section,
we explore a more production-like setup. If you didn’t remove the sample add-ons
earlier in the chapter, navigate to the root of the Istio distribution that we downloaded
in chapter 2 and run this command:

$ cd istio-1.13.0
$ kubectl delete -f samples/addons/

We will set up a realistic observability system called kube-prometheus that uses Pro-
metheus and many other components (https://github.com/prometheus-operator/
kube-prometheus). This project tries to curate and pre-integrate a realistic, highly
available deployment of Prometheus with the Prometheus operator, Grafana, and a
lot of ancillary pieces like Alertmanager, node exporters, adapters for the Kube API,
and others. See the kube-prometheus docs for more. In this chapter, we cover con-
necting to Prometheus; in chapter 8, we discuss integrating with Grafana.

https://github.com/prometheus-operator/kube-prometheus
https://github.com/prometheus-operator/kube-prometheus
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 To install kube-prometheus, we use the kube-prometheus-stack Helm chart
(http://mng.bz/W7PX). Note that, for this section, we slightly trim the number of
components, so we don’t overwhelm our local installation of Docker Desktop.

 To install the chart, we initially have to add the Helm repository containing it and
do a helm repo update:

$ helm repo add prometheus-community \
https:/./prometheus-community.github.io/helm-charts

$ helm repo update

After doing so, we can run the Helm installer. Notice that we are disabling some com-
ponents of kube-prometheus while keeping the overall spirit of the realistic deploy-
ment. To do this, we pass in a values.yaml file that explicitly controls what is installed.
Feel free to review this file to understand it a bit more:

$ kubectl create ns prometheus
$ helm install prom prometheus-community/kube-prometheus-stack \
--version 13.13.1 -n prometheus -f ch7/prom-values.yaml

At this point, we should have successfully installed Prometheus and Grafana. To verify
the components that were installed to support observability for us, let’s check the
Pods in the prometheus namespace :

$ kubectl get po -n prometheus

NAME READY STATUS AGE
prom-grafana-5ff645dfcc-qp57d 2/2 Running 21s
prom-kube-prometheus-stack-operator-5498b9f476-j6hjc 1/1 Running 21s
prometheus-prom-kube-prometheus-stack-prometheus-0 2/2 Running 17s

A newly deployed Prometheus does not know how to scrape the Istio workloads. Let’s
see how to configure Prometheus to scrape the Istio data-plane and control-plane
metrics. 

7.3.2 Configuring the Prometheus Operator to scrape the Istio control 
plane and workloads

To configure Prometheus to collect metrics from Istio, we will use the Prometheus
Operator custom resources ServiceMonitor and PodMonitor. These CRs are
described in good detail in the design doc on the Prometheus Operator repo (http://
mng.bz/8lpg). Here’s how we can set up a ServiceMonitor resource to scrape the
Istio control-plane components:

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:

name: istio-component-monitor
namespace: prometheus
labels:

monitoring: istio-components
release: prom

http://mng.bz/W7PX
http://mng.bz/8lpg
http://mng.bz/8lpg
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spec:
jobLabel: istio
targetLabels: [app]
selector:

matchExpressions:
- {key: istio, operator: In, values: [pilot]}

namespaceSelector:
any: true

endpoints:
- port: http-monitoring

interval: 15s

Let’s apply this ServiceMonitor to begin scraping the control plane. From the root
directory of the book’s source code, run the following:

$ kubectl apply -f ch7/service-monitor-cp.yaml

At this point, we start to see important telemetry about the control plane, such as the
number of sidecars attached to the control plane, configuration conflicts, the amount
of churn in the mesh, and basic memory/CPU usage of the control plane in Pro-
metheus. Let’s port-forward Prometheus’s simple query dashboard and see what exists:

$ kubectl -n prometheus port-forward \
statefulset/prometheus-prom-kube-prometheus-stack-prometheus 9090

Navigate to http://localhost:9090 and begin typing pilot_xds (one of the control-plane
metrics) in the expression field, as shown in figure 7.3, to see various control-plane met-
rics. Note, it may take a few minutes for the metric names to propagate to Prometheus.

Figure 7.3 Querying Istio control-plane metrics from Prometheus

Meanwhile, to enable scraping for the data plane, we use a PodMonitor resource that
configures the Prometheus Operator to scrape metrics from every Pod containing the
istio-proxy container:

apiVersion: monitoring.coreos.com/v1
kind: PodMonitor
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metadata:
name: envoy-stats-monitor
namespace: prometheus
labels:

monitoring: istio-proxies
release: prom

spec:
selector:

matchExpressions:
- {key: istio-prometheus-ignore, operator: DoesNotExist}

namespaceSelector:
any: true

jobLabel: envoy-stats
podMetricsEndpoints:
- path: /stats/prometheus

interval: 15s
relabelings:
- action: keep

sourceLabels: [__meta_kubernetes_pod_container_name]
regex: "istio-proxy"

- action: keep
sourceLabels: [

__meta_kubernetes_pod_annotationpresent_prometheus_io_scrape]
- sourceLabels: [

__address__, __meta_kubernetes_pod_annotation_prometheus_io_port]
action: replace
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
targetLabel: __address__

- action: labeldrop
regex: "__meta_kubernetes_pod_label_(.+)"

- sourceLabels: [__meta_kubernetes_namespace]
action: replace
targetLabel: namespace

- sourceLabels: [__meta_kubernetes_pod_name]
action: replace
targetLabel: pod_name

Just as we did for the ServiceMonitor, let’s apply this PodMonitor to begin scraping
the data-plane proxies. From the root directory of the book’s source code, run the
following:

$ kubectl apply -f ch7/pod-monitor-dp.yaml

Let’s also generate some load for the data plane, so metrics will start to trickle into
Prometheus:

$ for i in {1..100}; do curl http:/./localhost/api/catalog -H \
"Host: webapp.istioinaction.io"; sleep .5s; done

We can revisit the Prometheus query window and try to find a data-plane metric like
istio_requests_total, as shown in figure 7.4. We see that metrics from the Istio data
plane and control plane are being scraped into Prometheus. In the next chapter, we’ll
look at how to graph these metrics using a dashboard tool like Grafana.
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Figure 7.4 Querying Istio data-plane metrics from Prometheus

7.4 Customizing Istio’s standard metrics
Early in the chapter, we introduced some of Istio’s standard metrics that are enabled
by default for service-to-service communication. Table 7.1 lists the standard metrics
and their types.

Please see the Istio docs (https://istio.io/latest/docs/reference/config/metrics) for
the most current list of metrics.

 Istio uses a couple of plugins to the Envoy proxy sidecar to control how metrics are
displayed, customized, and created. We explore this plugin in detail in this section.
But before we get to that, we need to understand three main concepts:

 Metric
 Dimension
 Attribute

Table 7.1 Istio standard metrics

Metric Description

istio_requests_total COUNTER that increments for each request that 
comes through

istio_request_duration_milliseconds DISTRIBUTION of request durations

istio_request_bytes DISTRIBUTION that measures request body 
sizes

istio_response_bytes DISTRIBUTION that measures response body 
sizes

istio_request_messages_total (gRPC) COUNTER incremented for messages from 
a client

istio_response_messages_total (gRPC) COUNTER incremented for messages sent 
from a server

https://istio.io/latest/docs/reference/config/metrics
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A metric is a counter, gauge, or histogram/distribution of telemetry between service
calls (inbound/outbound). For example, the istio_requests_total metric counts
the total number of requests to a service (inbound) or originating from (outbound) a
service. We see two entries for the istio_requests_total metric if a service has both
inbound and outbound requests. Inbound or outbound is an example of a dimension
for a metric. When we query the statistics on Istio’s proxy, we will see separate statistics
for metric and dimension combinations. This will become clear when we look at an
example.

 Direction is not the only dimension, however. A metric can contain many dimen-
sions, such as the following default dimensions for istio_requests_total:

# TYPE istio_requests_total counter
istio_requests_total{

response_code="200",
reporter="destination",
source_workload="istio-ingressgateway",
source_workload_namespace="istio-system",
source_app="istio-ingressgateway",
source_version="unknown",
source_cluster="Kubernetes",
destination_workload="webapp",
destination_workload_namespace="istioinaction",
destination_app="webapp",
destination_version="unknown",
destination_service="webapp.istioinaction.svc.cluster.local",
destination_service_name="webapp",
destination_service_namespace="istioinaction",
destination_cluster="Kubernetes",
request_protocol="http",
response_flags="-",
grpc_response_status="",
connection_security_policy="mutual_tls",
source_canonical_service="istio-ingressgateway",
destination_canonical_service="webapp",
source_canonical_revision="latest",
destination_canonical_revision="latest"

} 6

If any of these dimensions are different, we’ll see a new entry for this metric. For
example, if there are any HTTP 500 response codes, we’ll see this in a different line
(some dimensions are left out for brevity):

istio_requests_total{
response_code="200",
reporter="destination",
source_workload="istio-ingressgateway",
source_workload_namespace="istio-system",
destination_workload="webapp",
destination_workload_namespace="istioinaction",
request_protocol="http",
connection_security_policy="mutual_tls",

} 5

Request details

Point of view 
of metric

Caller

Target of call

Number of calls

HTTP 200 calls

Number of HTTP 
200 calls
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istio_requests_total{
response_code="500",
reporter="destination",
source_workload="istio-ingressgateway",
source_workload_namespace="istio-system",
destination_workload="webapp",
destination_workload_namespace="istioinaction",
request_protocol="http",
connection_security_policy="mutual_tls",

} 3

We see two different entries for istio_requests_total if the dimensions differ. In
this case, the response_code dimension is different between the two metrics.

 The dimensions to populate and report for a particular metric can be specified at
configuration time. Where do the values for a particular dimension come from? From
attributes that are run-time values kept by the Envoy proxy. For example, some of the
default out-of-the-box attributes for requests are listed in table 7.2.

These are just the request attributes available in Envoy. There are also other attributes:

 Response attributes
 Connection attributes
 Upstream attributes
 Metadata/filter state attributes
 Wasm attributes

See the Envoy documentation (http://mng.bz/Exdr) for more details about which
attributes are available out of the box from Envoy.

Table 7.2 Out-of-the-box Envoy request attributes

Attribute Description

request.path The path portion of the URL

request.url_path The path portion of the URL without the query string

request.host The host portion of the URL

request.scheme The scheme portion of the URL (such as “http”)

request.method Request method (such as “GET”)

request.headers All request headers indexed by the lowercased header name

request.referer Referrer request header

request.useragent User agent request header

request.time Time of the first byte received

request.id Request ID corresponding to the x-request-id header value

request.protocol Request protocol

HTTP 500 calls

Number of HTTP 
500 calls

http://mng.bz/Exdr
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 Another set of attributes comes from Istio’s peer-metadata filter (built into the
Istio proxy) and is available for both upstream_peer and downstream_peer in a ser-
vice invocation. The attributes listed in table 7.3 are available.

To use any of these attributes, prefix them with upstream_peer or downstream_peer
for the respective upstream (outgoing from proxy) or downstream (incoming to the
proxy) metrics. For example, to refer to the Istio proxy version of a caller to a service,
you use downstream_peer.istio_version. To refer to the cluster of an upstream ser-
vice, you use upstream_peer.cluster_id.

 Attributes are used to define the value of a dimension. Let’s see how we can cus-
tomize an existing metric’s dimensions using attributes.

7.4.1 Configuring existing metrics

By default, Istio metrics are configured in the stats proxy plugin using an Envoy-
Filter resource that’s installed when you first install Istio. For example, the following
Envoy filters are available out of the box on a default installation:

$ kubectl get envoyfilter -n istio-system

NAME                      AGE
stats-filter-1.11         45h
stats-filter-1.12         45h
stats-filter-1.13         45h
tcp-stats-filter-1.11     45h
tcp-stats-filter-1.12     45h
tcp-stats-filter-1.13     45h

If you look at stats-filter-1.13, you should see something like the following:

Table 7.3 Istio specific attributes contributed by the metadata exchange filter

Attribute Description

name Name of the Pod

namespace Namespace the Pod runs in

labels Workload labels

owner Workload owner

workload_name Workload name

platform_metadata Platform metadata with prefixed keys

istio_version Version identifier for the proxy

mesh_id Unique identifier for the mesh

cluster_id Identifier for the cluster to which this workload belongs

app_containers List of short names for the application containers
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- applyTo: HTTP_FILTER
match:

context: SIDECAR_OUTBOUND
listener:

filterChain:
filter:
name: envoy.filters.network.http_connection_manager
subFilter:

name: envoy.filters.http.router
proxy:

proxyVersion: ^1\.13.*
patch:

operation: INSERT_BEFORE
value:

name: istio.stats
typed_config:

'@type': type.googleapis.com/udpa.type.v1.TypedStruct
type_url: type.googleapis.com/
envoy.extensions.filters.http.wasm.v3.Wasm

value:
config:

configuration:
'@type': type.googleapis.com/google.protobuf.StringValue
value: |

{
"debug": "false",
"stat_prefix": "istio"

}
root_id: stats_outbound
vm_config:

code:
local:

inline_string: envoy.wasm.stats
runtime: envoy.wasm.runtime.null
vm_id: stats_outbound

This Envoy filter directly configures a filter called istio.stats, which is a Web-
Assembly (Wasm) plugin that implements the statistics functionality. This Wasm filter is
actually compiled directly into the Envoy codebase and runs against a NULL VM, so it’s
not run in a Wasm VM. To run it in a Wasm VM, you must pass the --set values
.telemetry.v2.prometheus.wasmEnabled=true flag to installation with istioctl or
the respective IstioOperator configuration. We will dig more into Wasm in chapter 14.

ADDING DIMENSIONS TO EXISTING METRICS

Let’s say we want to add two new dimensions to the istio_requests_total metric.
Maybe, for upgrade-tracking reasons, we want to check what versions of proxies exist
on the upstream call for which meshId. Let’s add upstream_proxy_version and
source_mesh_id dimensions (we could also remove existing dimensions that we don’t
want to track or that create more information than we want):

apiVersion: install.istio.io/v1alpha1
kind: IstioOperator

Listing 7.1 Default stats-filter configuration

Filter name

Filter configuration
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spec:
profile: demo
values:

telemetry:
v2:

prometheus:
configOverride:

inboundSidecar:
metrics:
- name: requests_total

dimensions:
upstream_proxy_version: upstream_peer.istio_version
source_mesh_id: node.metadata['MESH_ID']

tags_to_remove:
- request_protocol

outboundSidecar:
metrics:
- name: requests_total

dimensions:
upstream_proxy_version: upstream_peer.istio_version
source_mesh_id: node.metadata['MESH_ID']

tags_to_remove:
- request_protocol

gateway:
metrics:
- name: requests_total

dimensions:
upstream_proxy_version: upstream_peer.istio_version
source_mesh_id: node.metadata['MESH_ID']

tags_to_remove:
- request_protocol

In this configuration, we are specifically configuring the requests_total metric
(notice that we don’t prefix it with istio_—that happens automatically) to have two
new dimensions that come from attributes. We also remove the request_protocol
dimension. Let’s update the Istio installation with those changes:

$ istioctl install -f ch7/metrics/istio-operator-new-dimensions.yaml -y

Before we can see this dimension in our metrics, we need to let Istio’s proxy know
about it. To do this, we have to annotate our deployment Pod spec with the

What happens behind the scenes?
After we update the Istio installation with the IstioOperator configuration contain-
ing the new dimensions, behind the scenes, istioctl updates the Envoy filter
stats-filter-1.13, which, as we mentioned earlier, configures the Istio metrics.

You can verify that using the following command:

kubectl get envoyfilter -n istio-system stats-filter-{stat-postfix}
-o yaml

New dimensions 
added

List of tags to 
be removed
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sidecar.istio.io/extraStatTags annotation. Note that this annotation needs to go
on the spec.template.metadata Pod template, not on the deployment metadata
itself:

spec:
replicas: 1
selector:

matchLabels:
app: webapp

template:
metadata:

annotations:
proxy.istio.io/config: |-
extraStatTags:
- "upstream_proxy_version"
- "source_mesh_id"

labels:
app: webapp

Let’s apply this change:

$ kubectl -n istioinaction apply -f \
ch7/metrics/webapp-deployment-extrastats.yaml

Now let’s call our services and check the metrics:

$ curl -H "Host: webapp.istioinaction.io" \
http://localhost/api/catalog

We can check the metrics directly on the proxy for the webapp service like this:

$ kubectl -n istioinaction exec -it deploy/webapp -c istio-proxy \
-- curl localhost:15000/stats/prometheus | grep istio_requests_total

You should see something similar to the following (you may see two entries: one for
inbound traffic and one for outbound traffic):

istio_requests_total{
response_code="200",
reporter="destination",
source_workload="istio-ingressgateway",
source_workload_namespace="istio-system",
destination_workload="webapp",
destination_workload_namespace="istioinaction",
request_protocol="http",
upstream_proxy_version="{1.13.0}",
source_mesh_id="cluster.local"

} 5

Some of the output has been trimmed. Also note that the request_protocol dimen-
sion is not in the list of dimensions, because we removed it in the previous configura-
tion (understandably, you’d still find this dimension in the previously generated
metrics).

Upstream 
proxy

Mesh ID
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7.4.2 Creating new metrics

We’ve seen how to customize the dimensions of existing standard metrics like
istio_requests_total, but what if we want to create our own metric? To do so, we
can configure the stats plugin with new metric definitions. Here’s an example:

apiVersion: install.istio.io/v1alpha1
kind: IstioOperator
spec:

profile: demo
values:

telemetry:
v2:

prometheus:
configOverride:

inboundSidecar:
definitions:
- name: get_calls

type: COUNTER
value: "(request.method.startsWith('GET') ? 1 : 0)"

outboundSidecar:
definitions:
- name: get_calls

type: COUNTER
value: "(request.method.startsWith('GET') ? 1 : 0)"

gateway:
definitions:
- name: get_calls

type: COUNTER
value: "(request.method.startsWith('GET') ? 1 : 0)"

Here we create a new metric called istio_get_calls, but note that we define it with a
name of get_calls. As mentioned previously, the istio_ prefix is added automatically.
We define this metric as a COUNTER, but GAUGE and HISTOGRAM are options as well. The

Using the new Telemetry API
Istio introduced a new Telemetry API in Istio 1.12, which gives the user more flexibility
and control over how metrics are configured. In this section, we used the Istio-
Operator to install new metric configurations, but this approach configures the met-
rics globally. If we want to limit the metric configuration to just a single namespace
or a single workload, we can use the new Telemetry API.

At the time of writing (Istio 1.13), the Telemetry API is in alpha form, which means
it’s subject to changes. We cover bits and pieces of the Telemetry API in chapter 4
for access logging and chapter 8 for tracing. For this chapter, we point you to any
new information in the Istio docs at https://istio.io/latest/docs/reference/config/
telemetry/#Telemetry. We also offer an example of how to do the equivalent metric
configuration:

$ kubectl apply -f ch7/metrics/v2/add-dimensions-telemetry.yaml

ttps://istio.io/latest/docs/reference/config/telemetry/#Telemetry
ttps://istio.io/latest/docs/reference/config/telemetry/#Telemetry
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value of the metric is a string that is a Common Expression Language (CEL; https://
opensource.google/projects/cel) expression that must return an integer for type
COUNTER. The CEL expression operates on attributes, and in this case, we are counting
the number of requests that are HTTP GET requests.

 Let’s apply this configuration to create a new metric called istio_get_calls:

$ istioctl install -f ch7/metrics/istio-operator-new-metric.yaml -y

In the previous section, we had to explicitly tell the Istio proxy about our new dimen-
sions. When we create new metrics, we need to tell Istio to expose them on the proxy
with the sidecar.istio.io/statsInclusionPrefixes annotation on the webapp
deployment Pod spec:

spec:
replicas: 1
selector:

matchLabels:
app: webapp

template:
metadata:

annotations:
proxy.istio.io/config: |-
proxyStatsMatcher:

inclusionPrefixes:
- "istio_get_calls"

labels:
app: webapp

Let’s apply this new configuration:

$ kubectl -n istioinaction apply -f \
ch7/metrics/webapp-deployment-new-metric.yaml

Now we can put some traffic through our example services:

$ curl -H "Host: webapp.istioinaction.io" \
http://localhost/api/catalog

And if we check the metrics on the Istio proxy, we see our new metric:

$ kubectl -n istioinaction exec -it deploy/webapp -c istio-proxy \
-- curl localhost:15000/stats/prometheus | grep istio_get_calls

# TYPE istio_get_calls counter
istio_get_calls{} 2

We do not have any dimensions specified for this metric. You can follow the steps in
the previous section to customize the dimensions you wish to see. In this case, we are
trying to count the number of GET requests across any requests in the system—a
contrived example to illustrate the power of creating new metrics. What if you want
to count the number of requests for all GET requests to the /items endpoint on
the catalog service? The Istio stats plugin is powerful enough to do it. We can get

https://opensource.google/projects/cel
https://opensource.google/projects/cel
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finer grained by creating new dimensions and new attributes. Let’s take a look in the
next section. 

7.4.3 Grouping calls with new attributes

We can create new attributes based on existing attributes to be finer-grained or domain
specific. For example, we can create a new attribute called istio_operationId, which
combines request.path_url and request.method to try to track the number of GET
calls to the /items API on the catalog service. To do this, we use the Istio attribute-
gen proxy plugin, which is another Wasm extension used to customize the behavior of
the proxy’s metrics. The attribute-gen plugin complements the stats plugin, which
we used in the previous section. The attribute-gen plugin layers in before the stats
plugin so that any attributes it creates can be used in stats.

 Let’s see how to configure the attribute-gen plugin using an EnvoyFilter
resource:

{
"attributes": [

{
"output_attribute": "istio_operationId",
"match": [

{
"value": "getitems",
"condition": "request.url_path == '/items'

&& request.method == 'GET'"
},
{
"value": "createitem",
"condition": "request.url_path == '/items'

&& request.method == 'POST'"
},
{
"value": "deleteitem",
"condition": "request.url_path == '/items'

&& request.method == 'DELETE'"
}

]
}

]
}

You can see the full EnvoyFilter resource in the ch7/metrics/attribute-gen.yaml file.
 This configuration combines a couple of different out-of-the-box attributes to cre-

ate a new attribute called istio_operationId, which can identify certain classes of
calls. In this case, we are trying to identify and count calls to a particular API, /items.
We add this attribute-gen plugin to the outbound calls from the webapp service to
track calls to /items on the catalog service:

$ kubectl apply -f ch7/metrics/attribute-gen.yaml

Attribute 
name

Attribute 
values
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We also create a new dimension called upstream_operation that uses this attribute in
the istio_requests_total metric to identify the API calls to catalog. Let’s update
our stats plugin configuration to the following:

configOverride:
outboundSidecar:

metrics:
- name: requests_total

dimensions:
upstream_operation: istio_operationId

Now we apply this new configuration:

$ istioctl install -y -f ch7/metrics/istio-operator-new-attribute.yaml

When we use new dimensions, we also need to add them to the extraStats annota-
tion in our service. Let’s apply that:

$ kubectl apply -f ch7/metrics/webapp-deployment-extrastats-new-attr.yaml

At this point, if we put traffic through our services and query the metrics, we see
the new dimension in our istio_requests_total metric with the new upstream_
operation dimension:

$ curl -H "Host: webapp.istioinaction.io" \
http:/./localhost/api/catalog

We can check the metrics directly on the proxy for the webapp service like this:

$ kubectl -n istioinaction exec -it deploy/webapp -c istio-proxy \
-- curl localhost:15000/stats/prometheus | grep istio_requests_total

You should see something similar to the following for the istio_requests_total
metric for the outgoing calls (trimmed for brevity):

istio_requests_total{
response_code="200",
reporter="destination",
source_workload="istio-ingressgateway",
source_workload_namespace="istio-system",
destination_workload="webapp",
destination_workload_namespace="istioinaction",
request_protocol="http",
upstream_proxy_version="1.9.2",
source_mesh_id="cluster.local",
upstream_operation="getitems"

} 1

The new dimension is added—and with that, we are at the end of the chapter. You
should know that the more our applications communicate over the network, the more
things can go wrong. Having a consistent view into what’s happening between services,
regardless of who wrote the application or what language was used, is almost a prereq-
uisite to running a microservice-style architecture. Istio makes metrics collection

New 
dimension

New 
dimension
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between services easier by observing things like success rate, failure rate, number of
retries, latency, and so on, without the developer having to explicitly code this into their
applications. This does not mean app- or business-level metrics are not needed—they
most definitely are, but Istio can simplify collecting golden-signal networking metrics.
(The Google SRE book [https://sre.google/sre-book/monitoring-distributed-systems]
refers to the following as the golden-signal metrics: latency, throughput, errors, and
saturation.)

 In this chapter, we’ve covered how to scrape metrics from the Istio service proxy
(Envoy proxy) and the control plane, how to extend the metrics that are exposed, and
how to aggregate the metrics into a time-series system like Prometheus. From there,
we can visualize the metrics using Grafana or Kiali, as we’ll see in the next chapter. 

Summary
 Monitoring is the process of collecting and aggregating metrics to watch for

known undesirable states so that corrective measures can be taken.
 Istio collects the metrics used for monitoring when intercepting requests in the

sidecar proxy. Because the proxy acts at layer 7 (the application-networking
layer), it has access to a great deal of information such as status codes, HTTP
methods, and headers that can be used in metrics.

 One of the key metrics is istio_requests_total, which counts requests and
answers questions such as how many requests ended with status code 200.

 The metrics exposed by the proxies set the foundation to build an observable
system.

 Metrics-collection systems collect and aggregate the exposed metrics from the
proxies.

 By default, Istio configures the proxies to expose only a limited set of statistics.
You can configure the proxies to report more mesh-wide using the meshConfig
.defaultConfig or on a per-workload basis using the annotation proxy.istio
.io/config.

 The control plane also exposes metrics for its performance. The most import-
ant is the histogram pilot_proxy_convergence_time, which measures the time
taken to distribute changes to the proxies.

 We can customize the metrics available in Istio using the IstioOperator and
use them in services by setting the extraStats value in the annotation
proxy.istio.io/config that defines the proxy configuration. This level of
control gives the operator (end user) flexibility over what telemetry gets
scraped and how to present it in dashboards.

https://sre.google/sre-book/monitoring-distributed-systems


Observability: Visualizing
network behavior with

Grafana, Jaeger, and Kiali
In this chapter, we build on the foundation we established in the previous chapter,
and we use some tools to visualize data from the service mesh. We saw how Istio’s
data-plane and control-plane components expose a lot of very useful operational
metrics and how we can scrape those into a time-series system like Prometheus. In
this chapter, we use tools like Grafana and Kiali to visualize those metrics to better
understand the behavior of the services in the mesh as well as the mesh itself. We
also dig into visualizing the network call graph with distributed tracing tools.

8.1 Using Grafana to visualize Istio service and control-
plane metrics
In the previous chapter, we removed the sample Prometheus and Grafana add-ons
that come with a demo installation of Istio. Instead, we installed kube-prometheus

This chapter covers
 Using Grafana to observe metrics visually

 Distributed tracing instrumentation with Jaeger

 Visualizing the network call graph with Kiali
205
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(https://github.com/prometheus-operator/kube-prometheus), which is a more real-
istic set of observability tools.

 To double-check that you’ve got the kube-prometheus stack installed correctly,
check what’s in the prometheus namespace:

$ kubectl get po -n prometheus

NAME READY STATUS AGE
prom-grafana-5ff645dfcc-qp57d 2/2 Running 21s
prom-kube-prometheus-stack-operator-5498b9f476-j6hjc 1/1 Running 21s
prometheus-prom-kube-prometheus-stack-prometheus-0 2/2 Running 17s

If you don’t have this namespace or the installation doesn’t look right, see chapter 7
to install the kube-prometheus stack. The list of Pods in the prometheus namespace
includes a Pod named prom-grafana-xxx: this is the deployment of Grafana that we
use in this chapter.

 Let’s verify that we can access and log in to the Grafana dashboards. We port-
forward the Grafana Pod on port 3000 to our local machine:

$ kubectl -n prometheus port-forward svc/prom-grafana 3000:80

Log in with the following credentials:

Username: admin
Password: prom-operator

You should now see the Grafana home page, shown in figure 8.1. If you’re familiar
with Grafana, you can poke around and see what dashboards are available out of the
box. Otherwise, don’t worry about it; in the next section, we walk through installing
and using the Istio dashboards so we can visualize metrics from our service mesh.

Figure 8.1 Grafana home screen

https://github.com/prometheus-operator/kube-prometheus
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8.1.1 Setting up Istio’s Grafana dashboards

Istio has some preconfigured Grafana dashboards that are a good place to start visual-
izing Istio’s metrics. Unfortunately, they are no longer part of the official distribution,
so you have to download them directly from the Istio source code on GitHub. We have
included them in the source code in ch8/dashboards for use in this part of the book.
You can also find them published with other community dashboards at https://
grafana.com/orgs/istio/dashboards. Navigate to the ch8 directory of the book’s
source code, and run the following command:

$ cd ch8/

$ kubectl -n prometheus create cm istio-dashboards \
--from-file=pilot-dashboard.json=dashboards/pilot-dashboard.json \
--from-file=istio-workload-dashboard.json=dashboards/\
istio-workload-dashboard.json \
--from-file=istio-service-dashboard.json=dashboards/\
istio-service-dashboard.json \
--from-file=istio-performance-dashboard.json=dashboards/\
istio-performance-dashboard.json \
--from-file=istio-mesh-dashboard.json=dashboards/\
istio-mesh-dashboard.json \
--from-file=istio-extension-dashboard.json=dashboards/\
istio-extension-dashboard.json

This creates a configmap resource with the dashboard JSON source, which we can
import to Grafana. Finally, we need to label this configmap resource so that our
Grafana picks it up:

$ kubectl label -n prometheus cm istio-dashboards grafana_dashboard=1

Wait a few moments, and then click the Home menu item in the top-left corner of the
Grafana dashboard (see figure 8.2), which takes you to a screen of available Grafana
dashboards. The list includes Istio dashboards for things like the control plane, work-
loads, and services (if you don’t see the dashboards, you may have to refresh the page). 

Figure 8.2 Click the 
Home link to see available 
dashboards (you may 
have to refresh).

https://grafana.com/orgs/istio/dashboards
https://grafana.com/orgs/istio/dashboards
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8.1.2 Viewing control-plane metrics

To view graphs of the control-plane metrics, click Istio Control Plane Dashboard, as
shown in figure 8.3. In the previous chapter, we set up the ServiceMonitor resource
to scrape the control plane. After a few minutes, metrics begin to appear in the con-
trol-plane graph (see figure 8.4).

Figure 8.3 Select Istio Control Plane Dashboard.

Figure 8.4 The control-plane dashboard with metrics graphed
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You should see information like graphs of CPU, memory, and goroutines, as well as
vital data about any control-plane errors, configuration sync issues, active data-plane
connections, and more. Click around to see what information you can glean from the
control plane. Try clicking the details of one of the graphs and the Explore option to
view the raw queries used to generate the graph as shown in figure 8.4. For example, if
you check the for Pilot Push Time graph, you will find that it’s visualizing the
pilot_proxy_convergence_time metric; as we learned in the previous chapter, this
metric measures the time taken to distribute changes to the proxies. 

8.1.3 Viewing data-plane metrics

To review the metrics for specific services that come from the data plane, click Istio
Service Dashboard in the list of dashboards. You can select a specific service like
webapp.istioinaction (see figure 8.5).

Figure 8.5 The service dashboard for the webapp service with metrics graphed

These graphs are populated with the Istio standard metrics. You can tweak and tune
them or add new graphs for different metrics. See chapter 7 for how to enable custom
metrics or specific Envoy metrics. 

8.2 Distributed tracing
As we build more applications as microservices, we are creating a network of distributed
components that work together to achieve a business objective, as illustrated in figure
8.6. When things start to go wrong on the request path, it’s critical to understand what’s
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happening so we can diagnose it quickly and fix it. In the
previous sections, we’ve seen how Istio can help collect met-
rics and telemetry related to networking on behalf of the
application. In this section, we look at a concept called distrib-
uted tracing and how it can help diagnose misbehaving
requests as it traverses a web of microservices.
     In a monolith, if things start to misbehave, we can jump in
and start debugging with familiar tools at our disposal. We
have debuggers, runtime profilers, and memory analysis
tools to find areas where parts of the code introduce latency
or trigger faults that cause an application feature to misbe-
have. With an application made up of distributed parts, we
need a new set of tools to accomplish the same things.
    Distributed tracing gives us insights into the components
of a distributed system involved in serving a request. It was
introduced by the Google Dapper paper (“Dapper, a Large-

Scale Distributed Systems Tracing Infrastructure,” 2010, https://research.google/
pubs/pub36356) and involves annotating requests with correlation IDs that represent
service-to-service calls and trace IDs that represent a specific request through a graph
of service-to-service calls. Istio’s data plane can add these kinds of metadata to the
requests as they pass through the data plane (and, importantly, remove them when
they are unrecognized or come from external entities).

 OpenTelemetry is a community-driven framework that includes OpenTracing,
which is a specification that captures concepts and APIs related to distributed tracing.
Distributed tracing, in part, relies on developers instrumenting their code and anno-
tating requests as they are processed by the application and make new requests to
other systems. A tracing engine helps put together the full picture of a request flow,
which can be used to identify misbehaving areas of our architecture.

 With Istio, we can provide the bulk of the heavy lifting developers would other-
wise have to implement themselves and provide distributed tracing as part of the
service mesh.

8.2.1 How does distributed tracing work?

At its simplest form, distributed tracing with OpenTracing consists of applications cre-
ating Spans, sharing those Spans with an OpenTracing engine, and propagating a
trace context to any of the services it subsequently calls. A Span is a collection of data
representing a unit of work within a service or component. This data includes things
like the start time of the operation, the end time, the operation name, and a set of
tags and logs.

 In turn, those upstream services do the same thing: create a Span capturing its part
of the request, send that to the OpenTracing engine, and further propagate the trace
context to other services. Using these Spans and the trace context, the distributed-
tracing engine can construct a Trace, which is a causal relationship between services

A

B

C D

E

Figure 8.6 Services 
often take multiple hops 
to service a request. We 
need the ability to see 
what hops were involved 
for a given request and 
how long each hop took.

https://research.google/pubs/pub36356
https://research.google/pubs/pub36356
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that show direction, timing, and other debugging information. Spans have their own
ID and a Trace ID. These IDs are used for correlation and are expected to be propa-
gated between services. See figure 8.7 for an illustration.

 OpenTracing implementations include systems like these:

 Jaeger
 Zipkin
 Lightstep
 Instana

Figure 8.7 With distributed tracing, we can collect Spans for each network hop, capture them in 
an overall Trace, and use them to debug issues in our call graph.

Istio can handle sending the Spans to the distributed tracing engine, so you don’t
need language-specific libraries and application-specific configuration to do this.
When a request traverses the Istio service proxy, a new trace is started if there isn’t one
in progress, and the start and end times for the request are captured as part of the
Span. Istio appends HTTP headers, commonly known as the Zipkin tracing headers,
to the request that can be used to correlate subsequent Span objects to the overall
Trace. If a request comes into a service and the Istio proxy recognizes the distributed-
tracing headers, the proxy treats it as an in-progress trace and does not try to generate
a new one. The following Zipkin tracing headers are used by Istio and the distributed-
tracing functionality:

 x-request-id 

 x-b3-traceid 

 x-b3-spanid 

 x-b3-parentspanid 

 x-b3-sampled 

 x-b3-flags 

 x-ot-span-context 

For the distributed-tracing functionality provided by Istio to work across the entire
request call graph, each application needs to propagate these headers to any outgoing

SPAN A

SPAN B 

SPAN C
Spans

A

B

C D

E
SPAN D

SPAN E

Trace
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calls it makes (see figure 8.8). The reason is that Istio cannot know which outgoing
calls were a result of which incoming requests. To correctly correlate upstream calls
with calls that came into the service, the application must assume responsibility for
propagating these headers. Many times, out-of-the-box RPC frameworks integrate with
or directly support OpenTracing and can automatically propagate these headers for
you. Either way, the application must ensure that these headers are propagated. 

Figure 8.8 The application must propagate the tracing headers. Otherwise, we lose the full span of the 
request.

8.2.2 Installing a distributed tracing system

In section 7.1.2, we removed the default sample apps to give a more realistic deploy-
ment of the various components. Jaeger is a bit more complex and requires a data-
base. For that reason, in this book, we stick with the sample Jaeger all-in-one
deployment. This deployment also creates a zipkin Kubernetes service that allows us
to plug directly in with some of the defaults Istio expects. See section 8.2.5 for more
on customization of the distributed tracing functionality. Also, refer to the Jaeger doc-
umentation for full production deployment steps (http://mng.bz/GGdN).

 Let’s install the sample Jaeger all-in-one deployment from the Istio samples
directory:

$ kubectl apply -f istio-1.13.0/samples/addons/jaeger.yaml

deployment.apps/jaeger created
service/tracing created
service/zipkin created
service/jaeger-collector created

Service A

Istio proxy

1. Incoming request

2. Oh! This is a new request,
as it lacks tracing headers.
Let’s generate those to
trace the request across
services.

4. The application must
propagate the trace
headers when calling
any other service. Service B

Istio proxy

3. Trace headers have been
added to request headers:
 x-request-id: c9421...

5. Trace headers are propagated:
  x-request-id: c9421...

7. If the application doesn’t
 propagate the requests
 headers...

8. …the request lacks the
 trace headers, as the app
 didn’t propagate those.

6. The Istio proxy propagates
  the existing trace headers
  to the application.

http://mng.bz/GGdN
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The following Pods are in istio-system:

$ kubectl get pod -n istio-system

NAME READY STATUS RESTARTS AGE
istio-egressgateway-96cf6b468-9n65h 1/1 Running 0 11d
istio-ingressgateway-57b94d999-6llwn 1/1 Running 0 26h
istiod-58c5fdd87b-lr4jf 1/1 Running 0 11d
jaeger-7f78b6fb65-cr7n6 1/1 Running 0 34s

Finally, let’s check the services that were installed. We see a zipkin service. Jaeger is
compatible with the Zipkin format (http://mng.bz/zQrZ), and this is how we will con-
figure Istio in the next section:

$ kubectl get svc -n istio-system

istio-egressgateway ClusterIP 10.104.124.38 <none>
istio-ingressgateway LoadBalancer 10.111.91.191 localhost
istiod ClusterIP 10.103.244.151 <none>
jaeger-collector ClusterIP 10.96.251.47 <none>
tracing ClusterIP 10.102.201.5 <none>
zipkin ClusterIP 10.107.57.119 <none>

If your output looks similar to this, you should be good to go. Next, we need to config-
ure the data plane to send traces to the new Jaeger service. 

8.2.3 Configuring Istio to perform distributed tracing

We can configure Istio for distributed tracing multiple levels: global mesh, name-
space, or specific workload. We will cover global and workload tracing configurations
in this chapter.

NOTE Istio 1.12 introduced a more granular API for logging, metrics,
and tracing called the Telemetry API (https://istio.io/latest/docs/tasks/
observability/telemetry). At the time of writing, this API is considered Alpha
and has had issues working correctly. We do not cover the Telemetry API in
this chapter; however, we will try to keep the source code repo up to date
with appropriate examples.

CONFIGURING TRACING AT INSTALLATION

Istio supports distributed tracing backends including Zipkin, Datadog, Jaeger (Zipkin
compatible), and others. Here’s a sample configuration using an IstioOperator
resource when installing Istio, which would configure various distributed tracing
backends:

apiVersion: install.istio.io/v1alpha1
kind: IstioOperator
metadata:

namespace: istio-system
spec:

meshConfig:
defaultConfig:

http://mng.bz/zQrZ
https://istio.io/latest/docs/tasks/observability/telemetry
https://istio.io/latest/docs/tasks/observability/telemetry
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tracing:
lightstep: {}
zipkin: {}
datadog: {}
stackdriver: {}

If we want to use Jaeger, for example, which is Zipkin compatible, we configure some-
thing like this:

apiVersion: install.istio.io/v1alpha1
kind: IstioOperator
metadata:

namespace: istio-system
spec:

meshConfig:
defaultConfig:

tracing:
zipkin:
address: zipkin.istio-system:9411

Then we run this command from istioctl or with the Istio operator to do the instal-
lation with this configuration:

$ istioctl install -y -f ch8/install-istio-tracing-zipkin.yaml

We configure the global mesh configuration object with the correct tracing settings.
We can also do that directly in the MeshConfigconfigmap that is installed with Istio if
we didn’t configure tracing on installation. 

CONFIGURING TRACING USING MESHCONFIG

If you have already installed Istio and did not configure a tracing backend, or if you
want to update the configuration, you can see Istio’s mesh-wide defaults in the Mesh-
Config object in the istioconfigmap in the istio-system namespace:

$ kubectl get cm istio -n istio-system -o yaml

apiVersion: v1
data:

mesh: |-
defaultConfig:

discoveryAddress: istiod.istio-system.svc:15012
proxyMetadata: {}
tracing:

zipkin:
address: zipkin.istio-system:9411

enablePrometheusMerge: true
rootNamespace: istio-system
trustDomain: cluster.local

meshNetworks: 'networks: {}'

You can update any of the configurations for the mesh-wide defaults in the default-
Config.tracing section of the configuration. 
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CONFIGURING TRACING PER WORKLOAD

It’s often desirable to have the granularity to configure tracing parameters on individ-
ual workloads. We can do that with annotations on the Deployment resources of a
workload. Here’s an example:

apiVersion: apps/v1
kind: Deployment
...
spec:

template:
metadata:

annotations:
proxy.istio.io/config: |
tracing:

zipkin:
address: zipkin.istio-system:9411

This configures the tracing system for the one specific workload specified by this
deployment. 

EXAMINING THE DEFAULT TRACING HEADERS

At this point, we have configured the distributed tracing engine and Istio to send
traces to the correct location. Let’s try a few tests to make sure we see what we expect
from Istio regarding generation of the Zipkin headers for tracing.

 To demonstrate Istio automatically injecting the OpenTracing headers and cor-
relation IDs, we’ll try to use Istio’s ingress gateway to call an external httpbin service
and call an endpoint that displays the request headers. Let’s deploy an Istio Virtual-
Service resource that does this routing:

$ kubectl apply -n istioinaction \
-f ch8/tracing/thin-httpbin-virtualservice.yaml

Now, let’s call the Istio ingress gateway on localhost and watch how it forwards to an
external service, which should return the headers used originally in the request:

$ curl -H "Host: httpbin.istioinaction.io" http:/./localhost/headers
{

"headers": {
"Accept": "*/*",
"Content-Length": "0",
"Host": "httpbin.istioinaction.io",
"User-Agent": "curl/7.54.0",
"X-Amzn-Trace-Id": "Root=1-607f16c8-4ea437616d5505ac516bbfe1",
"X-B3-Sampled": "1",
"X-B3-Spanid": "17ed6f800f125ecb",
"X-B3-Traceid": "05516f0b84c9de6817ed6f800f125ecb",
"X-Envoy-Attempt-Count": "1",
"X-Envoy-Decorator-Operation": "httpbin.org:80/*",
"X-Envoy-Internal": "true",
"X-Envoy-Peer-Metadata": "<omitted>",
"X-Envoy-Peer-Metadata-Id": "<omitted>"

}
}
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When we called our Istio ingress gateway, we were routed to an external URL, http://
httpbin.org, which is a simple HTTP testing service. When we GET the /headers end-
point, it returns the request headers we used with the request. We can clearly see that
the x-b3-* Zipkin headers were automatically appended to our request. These Zipkin
headers are used to create Spans and are sent to Jaeger. 

8.2.4 Viewing distributed tracing data

When spans are sent to Jaeger (or any OpenTracing engine), we need a way to query
and view the Traces and their associated spans. Using the out-of-the-box Jaeger UI, we
can do just that. To view the UI, let’s port-forward it locally:

$ istioctl dashboard jaeger --browser=false

http:/./localhost:16686
skipping opening a browser

This is a shortcut for port-forwarding the Jaeger UI to localhost. Now, if we navigate to
http:/./localhost:16686, we see the Jaeger UI. Press Ctrl-C to exit the istioctl dash-
board command (when you’re ready to shut down the connection).

 Click the Services dropdown and select istio-ingressgateway, as shown in figure
8.9. At bottom left, click Find Traces. If you don’t see any traces, try sending some traf-
fic through the istio-ingressgateway:

$ curl -H "Host: webapp.istioinaction.io" http:/./localhost/api/catalog

Figure 8.9 Choose 
the istio-
ingressgateway 
service to see the 
requests that have 
come into the 
cluster.

http://httpbin.org
http://httpbin.org
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Click back to the UI, and try Find Traces again. You should see a new trace for each
attempt you made to call the sample services, as shown in figure 8.10.

 You still may not see any traces (or far fewer than you expect). If that is the case,
skip to the next section, where we discuss the trace-collection aperture. However,
when we installed Istio in chapter 2, we installed the demo profile, which should set
trace sampling to 100%. The next section discusses how to control this sampling rate.

Figure 8.10 Clicking into a specific trace shows more granular detail like the specific spans 
that make up the trace.

8.2.5 Trace sampling, force traces, and custom tags

Distributed tracing and span collection can impose a hefty performance penalty on your
system, so you may opt to restrict how frequently you collect distributed traces when your
services are running correctly. Earlier in the book, we installed Istio using the demo pro-
file, which sets the sampling for distributed tracing to 100%. You can control the sam-
pling of traces by configuring the percentage of traces to collect in the system.

Propagating trace context and headers
For the sample applications to work correctly, they must propagate the Zipkin trace
headers:

 x-request-id 
 x-b3-traceid 
 x-b3-spanid 
 x-b3-parentspanid 
 x-b3-sampled 
 x-b3-flags 
 x-ot-span-context 

This means that when the application code takes the request and begins processing
it, it should save these headers and their values and insert them into any outgoing
requests the application must make. This cannot be done automatically by the proxy. 
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TUNING THE TRACE SAMPLING FOR THE MESH

Just as we configured the backend distributed tracing at install time, at run time, or
per workload, we can do the same thing with the sampling rate. Let’s edit the istio-
configmap in the istio-system namespace and edit the MeshConfig to look like this
for the tracing configuration:

$ kubectl edit -n istio-system cm istio

apiVersion: v1
data:

mesh: |-
accessLogFile: /dev/stdout
defaultConfig:

discoveryAddress: istiod.istio-system.svc:15012
proxyMetadata: {}
tracing:

sampling: 10
zipkin:
address: zipkin.istio-system:9411

This changes the sampling rate to 10% globally for all the workloads in the service
mesh.

 Instead of global configuration, we can also configure this per workload in annota-
tions. Here we edit the annotations for a deployment’s Pod template to include the
tracing configuration:

apiVersion: apps/v1
kind: Deployment
...
spec:

template:
metadata:

annotations:
proxy.istio.io/config: |
tracing:

sampling: 10
zipkin:

address: zipkin.istio-system:9411

For example, we can apply this deployment like this:

$ kubectl apply -f ch8/webapp-deployment-zipkin.yaml

FORCE-TRACING FROM THE CLIENT

In production, it makes a lot of sense to keep the sampling rate of traces to a mini-
mum and then enable it per workload when there are issues. Sometimes you will need
to enable tracing for specific traces. You can configure Istio to force tracing for spe-
cific requests.

 For example, in an application, we can add the x-envoy-force-trace header to a
request to trigger Istio to capture the spans and traces for a particular call graph gen-
erated by the request. Let’s try it in our sample application:
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$ curl -H "x-envoy-force-trace: true" \
-H "Host: webapp.istioinaction.io" http:/./localhost/api/catalog

Every time we send in this x-envoy-force-trace header, we trigger tracing for that
request and the entire call graph of that request. We can build tools on top of Istio,
like API gateways and diagnostics services, that can inject this header when we want to
know more about a particular request. Building these types of tools is outside the
scope of this book. 

CUSTOMIZING THE TAGS IN A TRACE

Adding tags to a span is a way for an application to attach additional metadata to a
trace. A tag is just a key-value pair with custom, application or organization-specific
information that is added to spans that are sent to the backend distributed tracing
engine. At the time of writing, you can configure three different types of custom tags:

 Explicitly specifying a value
 Pulling a value from environment variables
 Pulling a value from request headers

For example, to add a custom tag to our spans in the webapp service, we can annotate
the Deployment resource of that workload with the following:

apiVersion: apps/v1
kind: Deployment
...
spec:

template:
metadata:

annotations:
proxy.istio.io/config: |
tracing:

sampling: 100
customTags:

custom_tag:
literal:

value: "Test Tag"
zipkin:

address: zipkin.istio-system:9411

We can apply this deployment of the webapp service like this:

$ kubectl apply \
-f ch8/webapp-deployment-zipkin-tag.yaml \
-n istioinaction

Sending traffic through the ingress gateway generates some of the traces we expect in
the Jaeger UI:

$ curl -H "Host: webapp.istioinaction.io" \
http:/./localhost/api/catalog

Go to the Jaeger UI, find a recent trace, and click it. Then, click the span representing
the webapp service, as shown in figure 8.11.
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Once you expand the span, you’ll see a Tags entry, as shown in figure 8.12. Custom
tags can be used for reporting, filtering, and otherwise exploring the tracing data. See
the Istio documentation (https://istio.io/latest/docs/tasks/observability/distributed
-tracing/) for more details on customizing the tags included in a span or trace. 

Figure 8.11
Clicking into a 
specific trace 
shows the specific 
spans that make 
up the trace.

Figure 8.12
Clicking into a 
specific span 
shows more 
granular detail, 
such as tags.

https://istio.io/latest/docs/tasks/observability/distributed-tracing/
https://istio.io/latest/docs/tasks/observability/distributed-tracing/
https://istio.io/latest/docs/tasks/observability/distributed-tracing/
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CUSTOMIZING THE BACKEND DISTRIBUTED TRACING ENGINE

In this last section on distributed tracing, we explore how to configure the backend set-
tings for connecting with the distributed tracing engine. As mentioned earlier, Istio
released a new Alpha API for Telemetry including tracing in Istio 1.12, so you can
expect the user experience to improve in the tracing configuration area. What we cover
here in this section is a bit advanced and may not be applicable for your use case.

 In the examples so far, we’ve configured Istio with the hostname and port of the
tracing engine backend; but what if you need to tune more configurations? For exam-
ple, with Zipkin compatibility from Jaeger, we need to send the traces to a specific
endpoint on the Jaeger collector. By default, that is configured in Istio’s proxy via
static settings.

 Let’s look at the default tracing configuration for Zipkin-based tracing engines
(note that you need the jq tool to perform this command):

$ istioctl pc bootstrap -n istioinaction deploy/webapp \
-o json | jq .bootstrap.tracing

{
"http": {

"name": "envoy.tracers.zipkin",
"typedConfig": {

"@type": "type.googleapis.com/envoy.config.trace.v3.ZipkinConfig",
"collectorCluster": "zipkin",
"collectorEndpoint": "/api/v2/spans",
"traceId128bit": true,
"sharedSpanContext": false,
"collectorEndpointVersion": "HTTP_JSON"

}
}

}

We configure the tracing engine to be based on Zipkin, to send to the /api/v2/spans
endpoint, and to treat this as a JSON endpoint. If we need to override these settings or
tune them in any way, we must be able to override the static definitions built into Istio
when using Zipkin as the tracing engine. We can do that with a custom bootstrap con-
figuration. To do this, we specify the snippet of the configuration that we want to tune
in a Kubernetes configmap:

apiVersion: v1
kind: ConfigMap
metadata:

name: istio-custom-zipkin
data:

custom_bootstrap.json: |
{

"tracing": {
"http": {
"name": "envoy.tracers.zipkin",
"typedConfig": {

"@type": "type.googleapis.com/
envoy.config.trace.v3.ZipkinConfig",

"collectorCluster": "zipkin",
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"collectorEndpoint": "/zipkin/api/v1/spans",
"traceId128bit": "true",
"collectorEndpointVersion": "HTTP_JSON"

}
}

}
}

We can apply this configmap to the same namespace where the workload resides that
we want to configure with this bootstrap configuration override:

$ kubectl apply -f ch8/istio-custom-bootstrap.yaml \
-n istioinaction

Next, we need to add an annotation to the Pod template of the Deployment resource
to refer to this configmap:

apiVersion: apps/v1
kind: Deployment
metadata:

labels:
app: webapp

name: webapp
spec:

replicas: 1
selector:

matchLabels:
app: webapp

template:
metadata:

annotations:
sidecar.istio.io/bootstrapOverride: "istio-custom-zipkin"

Let’s apply this deployment to use our custom Zipkin configuration:

$ kubectl apply -f ch8/webapp-deployment-custom-boot.yaml \
-n istioinaction

If we check the bootstrap configuration for tracing, we see our changes:

$ istioctl pc bootstrap -n istioinaction deploy/webapp \
-o json | jq .bootstrap.tracing

{
"http": {

"name": "envoy.tracers.zipkin",
"typedConfig": {

"@type": "type.googleapis.com/envoy.config.trace.v3.ZipkinConfig",
"collectorCluster": "zipkin",
"collectorEndpoint": "/zipkin/api/v1/spans",
"traceId128bit": true,
"collectorEndpointVersion": "HTTP_JSON"

}
}

}
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WARNING Using custom bootstrap files to configure some of the static set-
tings of the Istio proxy is an advanced scenario. The custom bootstrap config-
uration is tied to the version of the Envoy proxy being used under the covers,
and there is no guarantee of backward compatibility. Any misconfiguration
could take down your service. Please proceed with caution and thoroughly
test out your changes before applying to any live services. 

The above bootstrap configuration will break the tracing of the webapp service.
Before proceeding any further let's set the service to a working configuration without
the bootstrap config:

kubectl apply -f services/webapp/kubernetes/webapp.yaml 

8.3 Visualization with Kiali
Istio can be used with a powerful visualization dashboard from an open source project
named Kiali (www.kiali.io) that can assist in understanding the service mesh at run
time. Kiali pulls a lot of the metrics from Prometheus and the underlying platform
and establishes a run-time graph of the components in the mesh to give you a visual
overview of what services are communicating with others. You can also interact with
the graph and dig into areas that could be problems to learn more about what’s hap-
pening. Kiali is different from Grafana in that it focuses on building a directed graph
of how the services interact with each other with live-updating metrics. Grafana is
great at dashboards with gauges, counters, charts, and more but does not present an
interactive drawing or map of the services in the cluster. In this section, we look at the
capabilities of the Kiali dashboard.

8.3.1 Installing Kiali

Just like for Prometheus and Grafana, Istio ships with a sample version of Kiali out of
the box; but for realistic deployments, the Istio and Kiali teams recommend using the
Kiali Operator (https://github.com/kiali/kiali-operator). That is the approach we’ll
take for this section. For more details on installing Kiali, see the official install guide at
https://v1-41.kiali.io/docs/installation/installation-guide/. We start by installing the
Kiali Operator:

$ kubectl create ns kiali-operator
$ helm install \

--set cr.create=true \
--set cr.namespace=istio-system \
--namespace kiali-operator \
--repo https:/./kiali.org/helm-charts \
--version 1.40.1 \
kiali-operator \
kiali-operator

NOTE Kiali visualizes the Istio metrics stored in Prometheus. Therefore, Pro-
metheus is a hard dependency that must be installed and configured before
Kiali is installed. In chapter 7, we installed Prometheus, and the subsequent
installation of Kiali will depend on that.

https://github.com/kiali/kiali-operator
https://v1-41.kiali.io/docs/installation/installation-guide/
www.kiali.io
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Let’s check that it’s up and running:

$ kubectl get po -n kiali-operator

NAME READY STATUS RESTARTS AGE
kiali-operator-67f4977465-rq2b8 1/1 Running 0 42s

Next, we will create an instance of Kiali in the istio-system namespace. This will be
the actual application with a web dashboard that we can use to visualize the call graph
of services in the Istio service mesh. Let’s define the Kiali instance to connect to the
Prometheus and Jaeger instances we deployed in the previous sections:

apiVersion: kiali.io/v1alpha1
kind: Kiali
metadata:

namespace: istio-system
name: kiali

spec:
istio_namespace: "istio-system"
istio_component_namespaces:

prometheus: prometheus
auth:

strategy: anonymous
deployment:

accessible_namespaces:
- '**'

external_services:
prometheus:

cache_duration: 10
cache_enabled: true
cache_expiration: 300
url: "http:/./prom-kube-prometheus-stack-prometheus.prometheus:9090"

tracing:
enabled: true
in_cluster_url: "http:/./tracing.istio-system:16685/jaeger"
use_grpc: true

Kiali uses the telemetry signals that Prometheus scrapes from the Istio control plane
and data plane and the traces sent to Jaeger. In chapter 7, we installed Prometheus,
but for Kiali, we need to configure it to use our specific Prometheus. In the configura-
tion, we show how to configure Kiali to connect to Prometheus and Jaeger. You may
be wondering how to secure the connection between them. Neither Prometheus nor
Jaeger comes with any out-of-the-box security strategies—they recommend running a
reverse proxy in front. From Kiali, we can use TLS and basic authentication to con-
nect to Prometheus. This is left as an exercise for the reader.

 Let’s create the Kiali instance:

$ kubectl apply -f ch8/kiali.yaml

After a few moments, the Kiali instances are available in the istio-system name-
space:

Allows anonymous 
access

Configuration of Prometheus 
running in the cluster

Configuration of Jaeger
running in the cluster
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$ kubectl get po -n istio-system

NAME READY STATUS RESTARTS AGE
istio-egressgateway-96cf6b468-9n65h 1/1 Running 0 10d
istio-ingressgateway-57b94d999-6llwn 1/1 Running 0 15h
istiod-58c5fdd87b-lr4jf 1/1 Running 0 10d
jaeger-7f78b6fb65-cr7n6 1/1 Running 0 10d
kiali-6cfd9945c7-lchjj 1/1 Running 0 102s

We port-forward to the Kiali deployment, so we can view the dashboard locally:

$ kubectl -n istio-system port-forward deploy/kiali 20001

The Kiali console is now accessible from http://localhost:20001. In this installation,
we configured Kiali to have an anonymous authentication strategy, so you should not
be prompted for any credentials to log in (see figure 8.13).

Figure 8.13 Overview dashboard of the service mesh using Kiali

NOTE We are installing this Kiali dashboard with anonymous authentication, but
there are various ways to configure Kiali. For example, in the blog post at https://
www.solo.io/blog/securing-kiali-in-istio-1-7, we dig deeply into using OpenID
Connect (OIDC); but we definitely recommend checking the official documen-
tation for Kiali installations and authentication strategies: https://kiali.io/docs/.

The overview dashboard shows the different namespaces and how many applications
are running in each. You also have a visual indication of the overall health of the
applications running in the respective namespaces. If you click the green checkmark
circle link next to Applications in the Istioinaction box in the overview dashboard in
figure 8.13, you’re taken to an overview of all the applications in that namespace (fig-
ure 8.14). If you have any issues with the applications, you are given more information
about what’s happening with the traffic. Click the Graph tab in the menu on the left
in figure 8.13 to go to a directed graph showing the traffic flow in the service mesh.

https://www.solo.io/blog/securing-kiali-in-istio-1-7
https://www.solo.io/blog/securing-kiali-in-istio-1-7
https://kiali.io/docs/
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Figure 8.14 Information about application health in a particular Kubernetes namespace

To get some meaningful reporting in the Kiali dashboard, let’s make a few calls to the
application:

$ for i in {1..20}; do curl http:/./localhost/api/catalog -H \
"Host: webapp.istioinaction.io"; sleep .5s; done

After a few moments, you should start to see the graph shown in figure 8.15. From the
graph, we can observe the following about the mesh:

 Traversal and flow of traffic
 Number of bytes, requests, and so on

Figure 8.15 Simple visual graph of the services in our namespace and how they’re connected to each 
other



227Visualization with Kiali
 Multiple traffic flows for multiple versions (such as canary release or weighted
routing)

 Requests/second; percentage of total traffic for multiple versions
 Application health based on network traffic
 HTTP/TCP traffic
 Networking failures, which can be quickly identified

If we select one of the workloads, we see the traffic and traces related to it.

CORRELATION OF TRACES, METRICS, AND LOGS

Kiali is gradually evolving into the one dashboard that answers all service mesh observ-
ability questions. One of the Kiali features—correlating traces, metrics, and logs—is
just a promise of the possibilities to come.

 To view the correlation between telemetry data, drill into one of the workloads by
clicking the Workloads menu item at left in the overview dashboard in figure 8.13,
and then select a workload from the list. The menu items in the Workload view reveal
the following (see, for example, figure 8.16):

 Overview—Pods of the service, Istio configuration applied to it, and a graph of
the upstreams and downstreams

 Traffic—Success rate of inbound and outbound traffic

Figure 8.16 The Inbound Metrics tab shows the correlation of metrics and traces.

Check to enable span 
and metric correlation.

Maximize to see 
more details.
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 Logs—Application logs, Envoy access logs, and spans correlated together
 Inbound Metrics and Outbound Metrics —Correlated with spans
 Traces—The traces reported by Jaeger
 Envoy—The Envoy configuration applied to the workload, such as clusters, lis-

teners, and routes

When correlated, the telemetry immensely simplifies the debugging process, as you
don’t have to switch between different windows and check (or quadruple check) if the
time is the same between all graphs. In the dashboard, if there is a spike in request
duration, you have the traces correlated to it, which could reveal that those requests
were being served by a new version of an application or by a degraded service. Feel
free to explore the dashboard while sending in traffic.

As we’ll see in chapter 10, Kiali is useful for service mesh operators, too, as it can vali-
date the following Istio resources:

 VirtualService pointing to non-existent Gateway
 Routing to destinations that do not exist
 More than one VirtualService for the same host
 Service subsets not found

Many others are documented in Kiali validations: https://kiali.io/docs/features/vali
dations. 

8.3.2 Conclusion

In this chapter, we built on the foundation we set in chapter 7 to show how to graph
the metrics collected by Prometheus. Prometheus scrapes metrics from both the data
and control planes and makes them available to tools like Grafana. We used Grafana
and the out-of-the-box Istio dashboards to watch what was happening at the service
level as well as the control-plane level.

 We then explored distributed tracing, which is a powerful way to understand where
there may be latencies in a multi-hop service-call graph. Distributed tracing allows

Understanding Kiali workload vs. application
In Kiali, you’ll notice a distinction between a workload and an application. For our
example application, they’re effectively the same, but the big distinction between the
two is this:

 A workload is a running binary that can be deployed as a set of identical run-
ning replicas. For example, in Kubernetes, this would be the Pods part of a
deployment. A service A deployment with three replicas would be a workload.

 An application is a grouping of workloads and associated constructs like ser-
vices and configuration. In Kubernetes, this would be a service A along with a
service B and maybe a database. Each would be its own workload, and
together they would make up a Kiali application.

https://kiali.io/docs/features/validations
https://kiali.io/docs/features/validations
https://kiali.io/docs/features/validations
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developers to annotate their requests with metadata to correlate requests; Istio can
automatically detect that metadata and send those spans to a backend tracing engine.

 Finally, we saw how we can use the Kiali tool to visually represent the traffic flow
between services in a graph and then dig into the configuration that enables this traf-
fic flow. In the next chapter, we look at how to secure this traffic. 

Summary
 Grafana can be used to visualize Istio metrics, including using out-of-the-box

dashboards for the Istio control plane and data plane.
 Distributed tracing gives us insights into the components involved in serving a

request. To do so, it annotates requests with trace headers at the service proxy.
 Applications need to propagate trace headers in order to get a full view of a

request.
 A trace is a collection of spans that can be used to debug latency and request

hops in a distributed system.
 Istio can be configured to route tracing headers using defaultConfig during

Istio installation, which applies to the entire mesh; or the same configuration
can be applied on a per-workload basis using the annotation proxy.istio.io/
config.

 The Kiali Operator can be configured to read metrics from Prometheus and
traces from Jaeger.

 Kiali has quite a few Istio-specific debugging dashboards, including a network-
ing graph and metric correlation to aid debugging.



Securing microservice
communication
In chapter 4, we covered admitting traffic into the mesh, including some ways to
secure that traffic. Here, we take a closer look at transparently improving the security
posture of a services-based architecture by using the capabilities of the service mesh.

 Istio is secure by default. In this chapter, we see what that means, how it works,
how service-to-service and end-user authentication are implemented, and the
access control we have over services in the service mesh. Before getting to the fea-
tures, we give a brief refresher of security topics; see appendix C for more detailed
information about how security works in Istio.

9.1 The need for application-networking security
Application security comprises all activities that contribute to protecting applica-
tion data that is of critical value and should not be compromised, stolen, or other-
wise accessed by an unauthorized user. To protect user data, we need the following:

This chapter covers
 Handling service-to-service authentication and 

authorization in the service mesh

 Handling end-user authentication and 
authorization
230
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 Authentication and authorization of the user before allowing access to a resource
 Encryption of data in transit to prevent it from being eavesdropped on while

it’s passing through multiple networking devices to reach the client requesting
the data

NOTE Authentication is the process by which a client or server proves its iden-
tity using something it knows (a password), something it has (a device, a cer-
tificate), or something it is (a unique trait such as a fingerprint). Authorization
is the process of allowing or denying an already authenticated user to per-
form an operation such as creating, reading, updating, or deleting a resource.

9.1.1 Service-to-service authentication

To be secure, a service should authenticate any services it interacts with. In other
words, it should trust the other service only after it presents a verifiable document of
identity. Usually, this document is validated with the trusted third party that issued the
document. In this chapter, we show how Istio provides an automated way to issue the
identity of services using the Secure Production Identity Framework for Everyone
(SPIFFE) framework. The issued identity is used for services to mutually authenticate. 

9.1.2 End-user authentication

Authentication of end users is key for applications that store private user data. There
are multiple mature end-user authentication protocols; however, most of those revolve
around redirecting a user to an authentication server where, on successful login, they
are given a credential (stored as an HTTP cookie, or a JSON Web Token [JWT], and
so on) that contains user information. Users present this credential to services for
authentication. Services validate the credential with the authentication server that
issued it before permitting any sort of access. 

9.1.3 Authorization

Authorization occurs after a caller is authenticated. The caller identifies to the server
“who” they are, and then the server checks “what” operations this identity is allowed to
perform and accordingly admits or rejects it. For example, in web applications, autho-
rization typically takes the form of checking whether a user is allowed to create, read,
update, or delete a resource. Istio builds on service authentication and its identity
model to provide fine-grained authorization capabilities between services or between
end users and services. 

9.1.4 Comparison of security in monoliths and microservices

Both microservices and monoliths need to implement end-user and service-to-service
authentication and authorization. However, microservices have a lot more intercon-
nections and requests flying around the network that need to be secured. In contrast,
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monoliths have fewer connec-
tions and typically are run on
more static infrastructure like
virtual or physical machines.
Being run in static infrastruc-
ture makes IP addresses a good
source of identity, and for that
reason, they are commonly used
in certificates for authentica-
tion (as well as network firewall
rules). Figure 9.1 shows a static
infrastructure where IPs are a
good source of trust.
    On the other hand, micro-
services easily grow into hun-
dreds and thousands of services,

which makes operating the services in a static environment untenable. For this reason,
teams utilize dynamic environments such as cloud computing and container orchestra-
tion, where services are scheduled into numerous servers and are short-lived. This
makes traditional methods such as using IP addresses a nonreliable source of identity.
To make things worse, the services are not necessarily run within the same network and
can span different cloud providers and even run on-premises, as shown in figure 9.2.

Figure 9.2 Microservices running on the cloud and on-premises with many interconnections
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Trusted network
Static IP Static IP

Figure 9.1 Monolithic application running on-premises 
with static IPs
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The services have
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To resolve these challenges and provide identity in highly dynamic and heteroge-
neous environments, Istio uses the SPIFFE specification. SPIFFE is a set of open
source standards for providing identity to workloads in highly dynamic and heteroge-
neous environments. See appendix C for a more detailed treatment of SPIFFE and
how it underpins the identity assumptions in Istio. 

9.1.5 How Istio implements SPIFFE

SPIFFE identity is an RFC 3986 compliant URI composed in the format spiffe:/ /trust-
domain/path, where

 The trust-domain represents the issuer of identities, such as an individual or
organization.

 The path uniquely identifies a workload within the trust domain.

The details on how the path identifies the workload are left open-ended and can be
decided by the implementer of the SPIFFE specification. Istio populates this path
using the service account under which a particular workload runs. This SPIFFE iden-
tity is encoded in an X.509 certificate, also known as a SPIFFE Verifiable Identity Doc-
ument (SVID), which Istio’s control plane mints for workloads. These certificates are
then used to secure the transport for service-to-service communication by encrypting
data in transit. Again, in appendix C, we go into much more detail about how all this
works. In this chapter, we focus on improving our security posture with Istio’s func-
tionality. 

9.1.6 Istio security in a nutshell

To understand Istio security, let’s change to the perspective of the service mesh opera-
tor who configures the service proxies using custom resources defined by Istio:

 The PeerAuthentication resource configures the proxy to authenticate ser-
vice-to-service traffic. On successful authentication, the proxy extracts the infor-
mation encoded in the peer’s certificate and makes it available to authorize the
request.

 The RequestAuthentication resource configures the proxy to authenticate
end-user credentials against the servers that issued them. On successful authen-
tication, it also extracts the information encoded in the credential and makes it
available for authorizing the request.

 The AuthorizationPolicy resource configures the proxy to authorize or reject
requests by making decisions based on the data extracted by the previous two
resources.

Figure 9.3 shows how the PeerAuthentication and RequestAuthentication

resources configure the proxy to authenticate a request, at which point the data
encoded into the credentials (SVID or JWT) is extracted and stored as filter metadata.
The filter metadata represents the connection identity. AuthorizationPolicy resources
decide whether to allow or reject a request based on its connection identity.
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Figure 9.3 The resources that configure the service proxy to authenticate and authorize a request

This is Istio security in a nutshell. Next, let’s put the resources into action and learn
about their intricacies. 

9.2 Auto mTLS
Traffic between services that have the
sidecar proxy injected is encrypted
and mutually authenticated by
default. Having an automated pro-
cess that issues and rotates certifi-
cates is very important because,
historically, the process was error-
prone when managed by humans.
This caused needless and costly out-
ages that would have been avoided
using an automated process such as
that implemented by Istio.

 Figure 9.4 shows how services use
the certificates issued by the control
plane to mutually authenticate and
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encrypt traffic—thus being secure by default. Actually, when we say “secure by
default,” we mean almost secure by default, as work is still required on our side to
make the mesh more secure.

 First we need to configure the service mesh to allow only mutually authenticated
traffic. You may wonder why this isn’t the default on installation. It’s a design decision
to simplify the adoption of the mesh—in larger enterprises where different teams
manage their own services, an orchestrated effort of months and years might be
required until all services were migrated into the mesh.

 Second, having the services authenticated enables us to adhere to the principle of
least privilege, create policies for each service, and allow only the minimum access
needed for its functions. This is very important because when a certificate represent-
ing the identity of a service ends up in the wrong hands, the damage is scoped only to
the few services the identity was permitted to access.

9.2.1 Setting up the environment

Execute the following commands to clean up your environment, so we start from the
same clean slate:

$ kubectl config set-context $(kubectl config current-context) \
--namespace=istioinaction

$ kubectl delete virtualservice,deployment,service,\
destinationrule,gateway --all

To demonstrate the capabilities of mutual TLS, we’ll set up three services, as shown in
figure 9.5. The webapp and catalog services are already familiar. We added the sleep
service, which represents a legacy workload, meaning it lacks a sidecar proxy and thus
cannot mutually authenticate.

Figure 9.5 The three workloads we’ll set up

To install the services, execute these commands:

$ kubectl label namespace istioinaction istio-injection=enabled
$ kubectl apply -f services/catalog/kubernetes/catalog.yaml
$ kubectl apply -f services/webapp/kubernetes/webapp.yaml
$ kubectl apply -f services/webapp/istio/webapp-catalog-gw-vs.yaml
$ kubectl apply -f ch9/sleep.yaml -n default

Listing 9.1 Installing all services

 Namespace: default

sleep

Namespace: istioinaction

webapp catalog
HTTP HTTPS
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Verify that the services are correctly set up by executing a clear-text request from the
legacy sleep workload to the webapp workload:

$ kubectl -n default exec deploy/sleep -c sleep -- \
curl -s webapp.istioinaction/api/catalog \
-o /dev/null -w "%{http_code}"

200

The successful response shows that the services are set up correctly and that the
webapp service accepted a clear-text request from the sleep service. By default, Istio
permits clear-text requests so that teams can gradually adopt the service mesh without
causing outages until all workloads are migrated into the mesh. However, clear-text
traffic can be prohibited using a PeerAuthentication resource. 

9.2.2 Understanding Istio’s PeerAuthentication resource

The PeerAuthentication resource enables configuration of workloads to either
strictly require mTLS or be permissive and accept clear-text traffic, using the STRICT
or PERMISSIVE authentication mode, respectively. The mutual authentication mode
can be configured in different scopes:

 Mesh-wide PeerAuthentication policies apply to all workloads of the service
mesh.

 Namespace-wide PeerAuthentication policies apply to all workloads in a name-
space.

 Workload-specific PeerAuthentication policies apply to all workloads that match
the selector specified in the policy.

Let’s introduce all of the scopes with practical examples.

DENYING ALL NON-AUTHENTICATED TRAFFIC USING A MESH-WIDE POLICY

To improve the security of our mesh, we can prohibit clear-text traffic by creating a
mesh-wide policy that enforces the STRICT mutually authentication mode. A mesh-
wide PeerAuthentication policy must fulfill two conditions: it must be applied in the
Istio installation namespace, and it must be named "default".

NOTE Naming mesh-wide resources "default" is not a requirement but rather
a convention so that only one mesh-wide PeerAuthentication resource is
created.

If you’ve followed the instructions in the book, then you have installed Istio in the
istio-system namespace. Thus the following PeerAuthentication definition fulfills
both conditions and applies to the entire mesh:

apiVersion: "security.istio.io/v1beta1"
kind: "PeerAuthentication"
metadata:

name: "default"
namespace: "istio-system"

Mesh-wide policies must 
be named “default”. Istio installation 

namespace
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spec:
mtls:

mode: STRICT

Apply it to the cluster:

$ kubectl apply -f ch9/meshwide-strict-peer-authn.yaml

Next, verify that clear-text requests from the sleep service are no longer permitted:

$ kubectl -n default exec deploy/sleep -c sleep -- \
curl -s webapp.istioinaction/api/catalog

command terminated with exit code 56

This verifies that the clear-text request was rejected. Having a STRICT mutual authenti-
cation requirement is a good default, but such a drastic change is not feasible for
ongoing projects as coordination between multiple teams is needed to migrate work-
loads. A better approach is to gradually increase the restrictions we put in place and
allow a timeframe in which teams can migrate their services to become part of the ser-
vice mesh. The PERMISSIVE mutual authentication does just that: it permits workloads
to accept both encrypted and clear-text requests. 

PERMITTING NON-MUTUALLY AUTHENTICATED TRAFFIC

Using a namespace-wide policy, we can override the mesh-wide policy and apply more
specific PeerAuthentication requirements for workloads in a namespace. The follow-
ing PeerAuthentication resource allows workloads in the istioinaction namespace
to accept clear-text traffic from legacy workloads that are not part of the mesh, such as
the sleep service:

apiVersion: "security.istio.io/v1beta1"
kind: "PeerAuthentication"
metadata:

name: "default"
namespace: "istioinaction"

spec:
mtls:

mode: PERMISSIVE

But let’s not do that. We can definitely do better and allow unauthenticated traffic
only from the sleep workload to the webapp and still keep STRICT mutual authentica-
tion requirements for the catalog workload. This will keep the attack surface area
smaller when the security of our network is compromised. 

APPLYING WORKLOAD-SPECIFIC PEERAUTHENTICATION POLICIES

To target only webapp, we update the earlier PeerAuthentication policy to specify the
workload selector; thus it applies only to workloads that match the selector. Addition-
ally, we change the name from "default" to webapp. This doesn’t change the func-
tionality, but we follow the convention of giving the name "default" only to
PeerAuthentication policies that apply to the entire namespace:

Mutual TLS mode

Uses the "default" naming 
convention so that only one 
namespace-wide resource exists

Specifies the namespace 
to apply the policy

PERMISSIVE allows 
HTTP traffic.
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apiVersion: "security.istio.io/v1beta1"
kind: "PeerAuthentication"
metadata:

name: "webapp"
namespace: "istioinaction"

spec:
selector:

matchLabels:
app: "webapp"

mtls:
mode: PERMISSIVE

This way, the permissive mutual authentication policy applies only to the webapp work-
load, and it doesn’t apply to the catalog workload because it doesn’t match the selec-
tor. Apply the policy to the cluster by executing this command:

$ kubectl apply -f ch9/workload-permissive-peer-authn.yaml

And verify that clear-text requests are accepted by webapp:

$ kubectl -n default exec deploy/sleep -c sleep -- \
curl -s webapp.istioinaction/api/catalog

[
{

"id": 1,
"color": "amber",
"department": "Eyewear",
"name": "Elinor Glasses",
"price": "282.00"

},
<omitted>

]

This returns a successful response! Using the mesh-wide policy, we applied strict
defaults. But for some services (the laggards), we use workload-specific policies to
allow non-mutually authenticated traffic until those are migrated into the mesh (see
figure 9.6).

NOTE By now we have a good understanding of how Istio works, but let’s hit this
point once more: istiod listens to the creation of the PeerAuthentication
resource, transforms the resource into an Envoy-specific configuration, and
applies it to the service proxies using the listener discovery service (LDS). The
configured policies are evaluated for every incoming request. 

TWO ADDITIONAL MUTUAL AUTHENTICATION MODES

Most of the time, you will use either STRICT or PERMISSIVE mode. But there are two
additional modes:

 UNSET—Inherit the PeerAuthentication policy of the parent.
 DISABLE—Do not tunnel the traffic; send it directly to the service.

Workloads matching the label use 
the PERMISSIVE mode of mTLS.
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Figure 9.6 webapp accepts HTTP traffic. The catalog service requires mutual authentication.

With that, we have put the PeerAuthentication resource to use. It allows us to specify
the type of traffic to tunnel to the workload, such as mutually authenticated traffic,
clear-text traffic, or forward requests directly to the application without going to the
proxy. In the next section, let’s verify that the traffic is encrypted when using mutual
TLS. 

EAVESDROPPING ON SERVICE-TO-SERVICE TRAFFIC USING TCPDUMP

The Istio proxy comes with the tcpdump command-line utility preinstalled. This utility
captures and analyzes network traffic going through our network interfaces. For secu-
rity purposes, it requires privileged permissions; and by default, those are turned off.
To turn on privileged permissions, update the Istio installation by setting the property
values.global.proxy.privileged=true using istioctl:

$ istioctl install -y --set profile=demo \
--set values.global.proxy.privileged=true

Once we’ve updated Istio to inject privileged sidecar proxies, we need to re-create the
webapp workloads in order for the changes to be configured with auto-injection when
the new Pod replaces the deleted one:

$ kubectl delete po -l app=webapp -n istioinaction

      Mesh

 Namespace: default

sleep

Namespace: istioinaction

webapp catalog
HTTP HTTPS

HTTP

apiVersion:
"security.istio....
kind: "PeerAuthentication"
metadata:
  name: "default"
  namespace: "istio-system"
spec:
  mtls:
   mode: STRICT

Mesh-wide strict authentication
policy configures all proxies to reject
non-mutually authenticated traffic.apiVersion: "security.is...

kind: "PeerAuthentication"
metadata:
  name: "webapp"
  namespace: "istioinaction"
spec:
  selector:
    matchLabels:
      app: "webapp"
  mtls:
   mode: PERMISSIVE

Clear-text traffic is accepted
because of the permissive mode
applied to webapp.

Workload-specific
PeerAuthentication

overrides the mesh-wide
policy for Pods matching
the label selector.
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TIP Elevated permissions on the service proxy provide a vector of attack for
malicious users. Do not install Istio with elevated proxies in production clus-
ters. To quickly debug one service, you can change the fields manually by
editing the deployment: kubectl edit.

As soon as the new webapp Pods are ready, we can sniff out the Pod traffic by executing
the following tcpdump command:

$ kubectl -n istioinaction exec deploy/webapp -c istio-proxy \
-- sudo tcpdump -l --immediate-mode -vv -s 0 \
'(((ip[2:2] - ((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0)>>2)) != 0)'

Open a second terminal to trigger a request from the sleep workload to the webapp:

$ kubectl -n default exec deploy/sleep -c sleep -- \
curl -s webapp.istioinaction/api/catalog

Now, if we check the first terminal, which is sniffing out traffic, we see that the infor-
mation is in clear text, as shown in the example output in figure 9.7.

Figure 9.7 Output of terminal 1. The sniffed traffic is in clear text.

Malicious users can easily exploit clear-text traffic to get to end-user data by intercept-
ing it in any intermediary networking devices. You should always aim to have only
encrypted traffic between workloads, as is the case from the webapp to the catalog
workload where traffic is mutually authenticated and encrypted. Figure 9.8 shows this
traffic.

 > 

To the sleep serviceResponse from the webapp service

HTTP/1.1 200 OK
date: Fri, 11 Jun 2021 13:46:24 GMT
content-length: 130
content-type: text/plain; charset=utf-8
x-envoy-upstream-service-time: 26
server: istio-envoy
x-envoy-decorator-operation: webapp.istioinaction.svc.cluster.local:80/*

[

  {
    "id": 1,
    "color": "amber",
    "department": "Eyewear",
    "name": "Elinor Glasses",
    "price": "282.00"
  }
][!http]

The traffic is in clear text!

webapp-f7bdbcbb5-jz6v4.8080 10-244-0-12.sleep.default.svc.cluster.local.35146: ...
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Figure 9.8 Mutually authenticated traffic is encrypted and cannot be sniffed.

This verifies that the traffic between mutually authenticated workloads is encrypted in
transit. Furthermore, it showcases how insecure it is to have legacy services in the ser-
vice mesh, as data to and from it is in clear text and can be sniffed out (by unsuspect-
ing observers) while it is in transit through multiple networking devices. 

VERIFYING THAT WORKLOAD IDENTITIES ARE TIED TO THE WORKLOAD SERVICE ACCOUNT

Before we end the mutual-authentication section, let’s check that the issued certifi-
cates are valid SVID documents and have the SPIFFE ID encoded in them, and that
the ID matches the workload service account. Use the openssl command utility to
check out the contents of the X.509 certificate of the catalog workload:

$ kubectl -n istioinaction exec deploy/webapp -c istio-proxy \
-- openssl s_client -showcerts \
-connect catalog.istioinaction.svc.cluster.local:80 \
-CAfile /var/run/secrets/istio/root-cert.pem | \
openssl x509 -in /dev/stdin -text -noout

With this convoluted command, we query the certificate of the catalog service and
print it in a human-readable format. The certificate contains the SPIFFE ID, which is
set to the workload’s service account:

# shortened for brevity
X509v3 Subject Alternative Name: critical

URI:spiffe://cluster.local/ns/istioinaction/sa/catalog

Using the openssl verify utility, let’s make sure the contents of the X.509 SVID
are valid by checking its signature against the certificate authority (CA) root certifi-
cate, which is mounted to the istio-proxy container in the following path: /var/
run/secrets/istio/root-cert.pem. Get a shell into the running Pod by executing this
command:

$ kubectl -n istioinaction exec -it \
deploy/webapp -c istio-proxy -- /bin/bash

Flags [P.], cksum 0x1d4f (incorrect -> 0xd991), seq 3979:5813, ack 3953, win 501,
options [nop,nop,TS val 3455370151 ecr 2985785501], length 1834
13:43:35.030172 IP (tos 0x0, ttl 64, id 22411, offset 0,
flags [DF], proto TCP (6), length 434)

To the webapp service Response from the 
catalog service

The traffic is encrypted and
not readable.

10-244-0-11.catalog.istioinaction.svc.cluster.local.3000 > webapp-f7bdbcbb5-bvzbd...
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Next, verify the certificate:

$ openssl verify -CAfile /var/run/secrets/istio/root-cert.pem \
<(openssl s_client -connect \
catalog.istioinaction.svc.cluster.local:80 -showcerts 2>/dev/null)

/dev/fd/63: OK

On successful validation, an OK message is displayed in the command output. This
informs us that the Istio CA signed the certificate, and the data in it is to be trusted.

NOTE Remember, to exit from the remote shell type exit.

Now that we have verified all the components that facilitate peer-to-peer authentica-
tion, we are assured that the issued identities are verifiable and that traffic is secure.
Having verifiable identities is the precursor to being able to control access. In other
words, since we know the identity of a workload, we can define the operations it is
allowed to perform. In the following sections, we look at authorization policies. 

9.3 Authorizing service-to-service traffic
Authorization is the process that defines whether an authenticated subject is allowed
to perform an operation, such as accessing, editing, or deleting a resource. Policies
are formed in conjunction with the authenticated subject (the “who”) and authoriza-
tion (the “what”) and define who can do what.

 Istio provides the AuthorizationPolicy resource, which is a declarative API to
define mesh-wide, namespace, or workload-specific access policies in a service mesh.
Figure 9.9 shows how access policies limit the scope or blast radius of access if a partic-
ular identity is compromised.

   Mesh

webapp

catalog

forum

Service X

Access to the service is prohibited
because the webapp identity
was not authorized to access it.

Unauthorized user who stole 
the private key and certificate 
of the webapp service

Figure 9.9 Authorization 
reduces the attack scope 
to only what the stolen 
identity was authorized to 
access.
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Before diving into authorization policies, it’s useful to understand how authorization
is implemented in Istio. Let’s quickly explore the fundamentals in the next section.

9.3.1 Understanding authorization in Istio

The service proxy deployed with each service is the authorization or enforcement
engine, because it contains all the policies for determining whether a request should
be denied or allowed. Thus access control in Istio is extremely efficient, as decisions
are made directly in the proxy. Proxies are configured with the AuthorizationPolicy
resource, which defines the policies. A sample AuthorizationPolicy definition is
shown next:

apiVersion: "security.istio.io/v1beta1"
kind: "AuthorizationPolicy"
metadata:

name: "allow-catalog-requests-in-web-app"
namespace: istioinaction

spec:
selector:

matchLabels:
app: webapp

action: ALLOW
rules:
- to:

- operation:
paths: ["/api/catalog*"]

When istiod sees that a new AuthorizationPolicy has been applied to the cluster, it
processes and updates the data-plane proxies with the resource, just like other Istio
resources. Don’t worry about understanding each part of the configuration just yet;
we explore it in detail in the following sections.

PROPERTIES OF AN AUTHORIZATION POLICY

The AuthorizationPolicy resource specification provides three fields to configure
and define a policy:

 The selector field defines the subset of workloads to which the policy applies.
 The action field specifies whether this is an ALLOW, DENY, or CUSTOM policy. The

action will be applied only if one of the rules matches the request.
 The rules field defines a list of rules that identify a request for which the policy

will be activated.

The rules property is more complex and warrants a deeper investigation. 

UNDERSTANDING AUTHORIZATION POLICY RULES

Authorization policy rules specify the source of the connection and (optionally) the
operation that, when matched, activates the rule. Authorization policy enforcement is
activated only if one of the rules matches the source and the operation. In that case
only, the policy is activated, and the connection is either allowed or denied according
to the action property.
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on 
 The fields of a single rule are as follows:

 The from field specifies the source of the request, which can be one of the fol-
lowing types:

– principals—A list of source identities (SPIFFE ID, as seen in the mTLS exam-
ples). A negated property, notPrincipals, applies when the request is not
from a set of principals. Services must mutually authenticate for this to work.

– namespaces—A list of namespaces that match the source namespace. The
source namespace is retrieved from the SVID of the peer. For that reason,
mTLS must be enabled for this to work.

– ipBlocks—A list of single IP addresses or ranges using classless inter-domain
routing (CIDRs ) that match the source IP address.

 The to field specifies the operations of the request, such as the host or method
of the request.

 The when field specifies a list of conditions that need to be met after the rule
has matched.

NOTE Istio documents all the properties of AuthorizationPolicy at https://
istio.io/latest/docs/reference/config/security/authorization-policy.

If these properties sound a bit complex, don’t worry. We clarify them in the following
few examples. 

9.3.2 Setting up the workspace

We’ll continue with the same state from the earlier sections. However, if you’ve made
modifications and want a fresh start, execute the following commands to reset and
restore the expected state:

$ kubectl config set-context $(kubectl config current-context) \
--namespace=istioinaction

$ kubectl delete virtualservice,deployment,service,\
destinationrule,gateway --all

$ kubectl apply -f services/catalog/kubernetes/catalog.yaml
$ kubectl apply -f services/webapp/kubernetes/webapp.yaml
$ kubectl apply -f services/webapp/istio/webapp-catalog-gw-vs.yaml
$ kubectl apply -f ch9/sleep.yaml -n default

$ kubectl apply -f ch9/meshwide-strict-peer-authn.yaml
$ kubectl apply -f ch9/workload-permissive-peer-authn.yaml

Let’s summarize the state of the environment that we have running (see figure 9.7):

 The sleep workload is deployed in the default namespace and used to trigger
clear-text HTTP requests.

 The webapp workload is deployed in the istioinaction namespace and accepts
unauthenticated requests from workloads in the default namespace.

Resets the 
environment

Installs 
apps

Applies PeerAuthenticati
resources

https://istio.io/latest/docs/reference/config/security/authorization-policy
https://istio.io/latest/docs/reference/config/security/authorization-policy
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 The catalog workload is deployed in the istioinaction namespace and
accepts requests only from authenticated workloads in the same namespace. 

9.3.3 Behavior changes when a policy is applied to a workload

Before we go into the details, there is one "gotcha" that you should know up front, as
it’s easy to get bitten by (and waste many hours of debugging!): if one or more ALLOW
authorization policies are applied to a workload, access to that workload is denied by
default for all traffic. In order for traffic to be accepted, at least one ALLOW policy must
match it.

 Let’s illustrate with an example. The following AuthorizationPolicy resource
allows requests to webapp containing the HTTP path /api/catalog*:

apiVersion: "security.istio.io/v1beta1"
kind: "AuthorizationPolicy"
metadata:

name: "allow-catalog-requests-in-web-app"
namespace: istioinaction

spec:
selector:

matchLabels:
app: webapp

rules:
- to:

- operation:
paths: ["/api/catalog*"]

action: ALLOW

Due to its simplicity, instead of applying this authorization policy to the cluster, let’s
mentally examine the outcomes for the following two requests:

$ kubectl -n default exec deploy/sleep -c sleep -- \
curl -sSL webapp.istioinaction/api/catalog

$ kubectl -n default exec deploy/sleep -c sleep -- \
curl -sSL webapp.istioinaction/hello/world

The first scenario is plain and simple: a policy allowed the request because the path
matched. However, the second scenario may raise some eyebrows—why was the request
rejected when a policy neither allowed nor rejected it? This is the deny-by-default behav-
ior that applies only when ALLOW policies are applied to a workload. In other words, if
a workload has ALLOW policies, one has to match for traffic to be allowed.

 To simplify the thought process and not have to ask yourself for every service
whether a call will be allowed and whether an ALLOW policy is applied, it’s recom-
mended to add a deny catch-all policy that is activated whenever no other policy

Selector for 
workloads

Matches requests with 
the path /api/catalog

If a match, 
ALLOW.

The request is allowed, as 
the authorization policy 
matches the path, and the 
action allows the request.

The request is denied, because 
no authorization policy 
explicitly allows the request.
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applies to incoming traffic. Thus you only have to think about the traffic you want to
admit, and create policies for it.

 Figure 9.10 shows how the deny catch-all policy changes our thought process to
“We deny requests if not explicitly specified otherwise.” Thus we only have to ensure
that we allow traffic. 

9.3.4 Denying all requests by default with a catch-all policy

To increase security and simplify our thought process, let’s define a mesh-wide policy
that denies all requests that do not explicitly specify an ALLOW policy. In other words,
we define a catch-all deny-all policy:

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
name: deny-all
namespace: istio-system

spec: {}

Let’s apply the deny-all policy to the cluster:

$ kubectl apply -f ch9/policy-deny-all-mesh.yaml

Wait for a short time until the proxies receive the new configuration and trigger a
request from the sleep service. Because no policy allows the request, it is denied by
the catch-all deny-all policy:

$ kubectl -n default exec deploy/sleep -c sleep -- \
curl -sSL webapp.istioinaction/api/catalog

RBAC: access denied

The output shows that the deny-all authorization policy has kicked into effect and
denied the request.

Allow

Deny

Any ALLOW rule
matching

No

Traffic Yes

Figure 9.10 Denying traffic by 
default allows us to only think 
about what we want to admit.

Policies in the Istio 
installation namespace target 
all workloads in the mesh.

Policies with an empty 
specification deny 
every request.
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9.3.5 Allowing requests originating from a single namespace

Frequently, you will want to allow traffic for all services originating from a namespace.
This can be done using the source.namespace property. The following example
allows HTTP GET traffic from a single namespace:

apiVersion: "security.istio.io/v1beta1"
kind: "AuthorizationPolicy"
metadata:
name: "webapp-allow-view-default-ns"
namespace: istioinaction

spec:
rules:
- from:

- source:
namespaces: ["default"]

to:
- operation:

methods: ["GET"]

Here, we configure workloads in the istioinaction namespace to admit traffic origi-
nating from workloads in the default namespace for HTTP GET traffic. So if we apply
this resource, traffic from the sleep service will be served by webapp, right?

 Nope—in our case, that won’t work! The sleep service is a legacy workload; it
doesn’t have a sidecar, and as such, it lacks identity. Thus the webapp proxy cannot val-
idate whether the request is from a workload in the default namespace.

 To solve this, we can do one of the following:

 Inject a service proxy into the sleep service.
 Allow non-authenticated requests in webapp.

The recommended approach is to inject the service proxy into the sleep service.
Doing so bootstraps the identity and performs mutual authentication with other work-
loads, enabling them to verify the source of the request and the namespace. But for
demonstration purposes, let’s suppose the first approach is not possible (the entire

Catch-all authorization policies
Just as the lack of any rule is an indicator that no requests are allowed, the opposite,
the presence of an empty rule means all requests are allowed. For an example, the
following allows all requests by default:

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:

name: allow-all
namespace: istio-system

spec:
rules:
- {}

Workloads in 
istioinaction

Source originating from 
the default namespace

Only for the HTTP 
GET method
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team is on holiday) and we are forced to take the second (less secure) approach:
allowing non-authenticated requests. 

9.3.6 Allowing requests from non-authenticated legacy workloads

To allow requests from non-authenticated workloads, we need to drop the from field:

apiVersion: "security.istio.io/v1beta1"
kind: "AuthorizationPolicy"
metadata:
name: "webapp-allow-unauthenticated-view"
namespace: istioinaction

spec:
selector:

matchLabels:
app: webapp

rules:
- to:

- operation:
methods: ["GET"]

To apply this policy only to webapp, we add the selector app: webapp. This way, the
catalog service still requires mutual authentication.

 Apply the policy to the cluster by executing this command:

$ kubectl apply -f ch9/allow-unauthenticated-view-default-ns.yaml

Retrying the request from the sleep service to webapp, we get the following error
response:

$ kubectl -n default exec deploy/sleep -c sleep -- \
curl -sSL webapp.istioinaction/api/catalog

error calling Catalog service

This is an application error, not an Istio error. webapp received the request from the
sleep service, but the mesh-wide deny-all policy denied the subsequent request to
the catalog service. Remember why we added this deny-all policy? We only want to
think about admitting traffic; we didn’t add an ALLOW policy for requests to the cata-
log service, and the request was rejected. Let’s fix this in the next section. 

9.3.7 Allowing requests from a single service account

A simple way to authenticate that traffic is from the webapp service is to use the service
account injected into it. The service account information is encoded into the SVID,
and during mutual authentication, that data is validated and stored in filter metadata.
The following policy configures the catalog service to use the filter metadata and,
based on it, admit traffic only from workloads with the webapp service account:

apiVersion: "security.istio.io/v1beta1"
kind: "AuthorizationPolicy"
metadata:
name: "catalog-viewer"
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namespace: istioinaction
spec:
selector:

matchLabels:
app: catalog

rules:
- from:

- source:
principals: ["cluster.local/ns/istioinaction/sa/webapp"]

to:
- operation:

methods: ["GET"]

Apply the policy to the cluster by executing this command:

$ kubectl apply -f ch9/catalog-viewer-policy.yaml

Now, if we try once more, our request successfully reaches the catalog workload:

$ kubectl -n default exec deploy/sleep -c sleep -- \
curl -sSL webapp.istioinaction/api/catalog

[
{

"id": 0,
"color": "teal",
"department": "Clothing",
"name": "Small Metal Shoes",
"price": "232.00"

}
<omitted>

]

But more importantly, we have strict authorization policies in place so that if the iden-
tity of a workload is stolen, the damage will be limited to the smallest scope possible. 

9.3.8 Conditional matching of policies

Often, a policy applies only when a condition is met, such as allowing all operations
when a user is an administrator. This can be achieved using the when property of an
authorization policy, such as this example:

apiVersion: "security.istio.io/v1beta1"
kind: "AuthorizationPolicy"
metadata:

name: "allow-mesh-all-ops-admin"
namespace: istio-system

spec:
rules:

- from:
- source:

requestPrincipals: ["auth@istioinaction.io/*"]
when:
- key: request.auth.claims[group]

values: ["admin"]

Allows requests with
the identity of webapp

Specifies the 
Istio attributeSpecifies a list of values 

that must match
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This policy allows requests only if two conditions are met: first, that the token was
issued by the request principal auth@istioinaction.io/*; and second, that the JWT
contains the group claim with the value of admin.

 Alternatively, we can use the notValues property to define all the values for which
this policy should not apply. A full list of Istio attributes that can be used in conditions
can be found at https://istio.io/latest/docs/reference/config/security/conditions.

9.3.9 Understanding value-match expressions

In the earlier examples, we saw that values do not always have to match exactly. Istio
supports simple match expressions to make rules more versatile:

 Exact matching of values. For example, GET matches only the exact value.
 Prefix matching of values. For example, /api/catalog* matches all values start-

ing with that prefix, such as /api/catalog/1.
 Suffix matching of values. For example, *.istioinaction.io matches all of its

subdomains, such as login.istioinaction.io.
 Presence matching, which matches all values and is denoted with *. This specifies

that a field must be present, but the value is not important and can be
anything.

UNDERSTANDING HOW POLICY RULES ARE EVALUATED

To understand policy rules, let’s break down a more complex rule concretely to what
requests it applies to:

apiVersion: "security.istio.io/v1beta1"
kind: "AuthorizationPolicy"
metadata:

name: "allow-mesh-all-ops-admin"
namespace: istio-system

spec:
rules:

- from:
- source:

principals: ["cluster.local/ns/istioinaction/sa/webapp"]
- source:

namespaces: ["default"]
to:

Principals vs. request principals
In the documentation for defining a source (http://mng.bz/NxYD), the from clause
provides two options for identifying the subject of a request: principals and
requestPrincipals. The difference between them is that principals is the peer
from an mTLS connection configured by PeerAuthentication, and requestPrin-
cipals is for end-user RequestAuthentication and comes from a JWT. We cover
RequestAuthentication in subsequent sections. 

First 
rule

http://mng.bz/NxYD
https://istio.io/latest/docs/reference/config/security/conditions
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- operation:
methods: ["GET"]
paths: ["/users*"]

- operation:
methods: ["POST"]
paths: ["/data"]

when:
- key: request.auth.claims[group]

values: ["beta-tester", "admin", "developer"]
- to:

- operation:
paths: ["*.html", "*.js", "*.png"]

For this authorization policy to apply to a request, either the first rule or the second
rule needs to match. Let’s dive deeper into the cases when the first rule will match:

    - from:
- source:

principals: ["cluster.local/ns/istioinaction/sa/webapp"]
- source:

namespaces: ["default"]
to:
- operation:

methods: ["GET"]
paths: ["/users*"]

- operation:
methods: ["POST"]
paths: ["/data"]

when:
- key: request.auth.claims[group]

values: ["beta-tester", "admin", "developer"]

For this rule to match a request, we need matches in all three properties: one source
defined in the sources list needs to match with one operation defined in the opera-
tions list, and all of the conditions need to match. In other words, one source defined
in from is AND-ed with one of the operations defined in to, and both are AND-ed with
all the conditions specified in when.

 Let’s take a closer look at the operations to understand how one operation matches:

to:
- operation:

methods: ["GET"]
paths: ["/users*"]

- operation:
methods: ["POST"]
paths: ["/data"]

For this rule to have an operation match, either the first or the second operation
needs to match. For an operation to match, all of its properties need to match, mean-
ing the properties are AND-ed together. Meanwhile, for the when property, all condi-
tions need to match because they are AND-ed together. 

Second 
rule

Sources

Operations

Conditions

First operation
Two properties that need to match 
for the first operation to match

Second operation
Two properties that need to match 
for the second operation to match
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9.3.10 Understanding the order in which authorization policies are 
evaluated

The complexity of policies arise when many are applied to a workload, and it is diffi-
cult to understand the order. Many solutions use a priority field to define the order.
Istio uses a different approach for evaluating policies:

1 CUSTOM policies are evaluated first. We will show an example of CUSTOM policies
later, when we integrate with an external authorization server.

2 DENY policies are evaluated next. If no DENY policy is matched . . .
3 ALLOW policies are evaluated. If one matches, the request is allowed. Otherwise. . .
4 According to the presence or absence of a catch-all policy, we have two outcomes:

a When a catch-all policy is present, it determines whether the request is
approved.

b When a catch-all policy is absent, the request is:

– Allowed if there are no ALLOW policies, or it’s 
– Rejected when there are ALLOW policies but none matches.

Because the behavior changes based on conditions, some visual folks find it easier to
understand using a flow diagram like that in figure 9.11. The flow is slightly complex,
but it becomes much simpler when you define a catch-all DENY policy. If no CUSTOM
and DENY policies reject the request, you only need to make sure to have an ALLOW pol-
icy to allow it.

 This completes our discussion of authentication and authorization for workload-to-
workload requests. In the next section, we look at end-user authentication and author-
ization capabilities. 

9.4 End-user authentication and authorization
We mentioned briefly that end-user authentication and authorization are supported
by Istio when using JWT. Before diving into the details of how authentication and
authorization of requests work, let’s have a brief refresher on JWTs. If you already have
basic knowledge of this topic, you can skip to the next section.

9.4.1 What is a JSON web token?

A JWT is a compact claims representation used to authenticate a client to a server.
JWTs consist of the following three parts:

 Header—Composed of the type and the hashing algorithm
 Payload—Contains the user claims
 Signature—Used to verify the authenticity of the JWT

Those three parts—the header, payload, and signature—are separated by dots (.) and
Base64 URL encoded, which makes a JWT perfect for use in HTTP requests.
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Let’s check out the contents of a token located in ch9/enduser/user.jwt and decode
its payload using the jwt-cli utility (https://github.com/mike-engel/jwt-cli):

$ cat ./ch9/enduser/user.jwt | jwt decode -

Token header
------------
{

"typ": "JWT",
"alg": "RS256",
"kid": "CU-ADJJEbH9bXl0tpsQWYuo4EwlkxFUHbeJ4ckkakCM"

}

Figure 9.11 Evaluation flow of authorization policies
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Token claims
------------
{

"exp": 4743986578,
"group": "user",
"iat": 1590386578,
"iss": "testing@secure.istio.io",
"sub": "9b792b56-7dfa-4e4b-a83f-e20679115d79"

}

This data represents the claims of the subject. The claims enable the service to deter-
mine the identity and authorization of a client. For example, this token belongs to a
subject in the user group. The service can use this information to decide the level of
access for this subject. For claims to be trusted, the token needs to be verifiable.

HOW IS A JWT ISSUED AND VALIDATED?
The JWT is issued by an authentication server that contains a private key for signing
the token and a public key for validating it. The public key is known as a JSON Web
Key Set (JWKS) and is exposed at a well-known HTTP endpoint. At this well-known
HTTP endpoint, a service can retrieve the public key to validate tokens issued by the
authentication server.

 There are multiple solutions to set up an authentication server:

1 It can be implemented in the application backend framework.
2 It can be implemented as a service on its own, such as OpenIAM (openiam

.com) or Keycloak (keycloak.org).
3 It can be implemented as an Identity-as-a-Service solution, such as Auth0

(auth0.com), Okta (okta.com), and so on.

Figure 9.12 visualizes how the server uses the JWKS to validate a token. The JWKS con-
tains the public key that is used to decrypt the signature which is then compared to
the hash of the token data. If those match, the token claims can be trusted. 

Expiration 
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"group" claim
Issue time Token 
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of the token

Authentication
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Server

The client gets the JWT
by authenticating to the 
authentication server.

The server gets the JSON Web
Key Set (JWKS) to validate the
token sent by the client.

Get JWKS

Get
token

HTTP request
with token

Figure 9.12 The server retrieves 
a JWKS to validate the token 
presented by the client.
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9.4.2 End-user authentication and authorization at the ingress gateway

Istio workloads can be configured to authenticate and authorize end-user requests
with JWTs. End user means the user that was authenticated by an identity provider and
received a token issued to represent its identity and claims.

 Although end-user authorization can be done at any workload level, this function
is typically performed at the Istio ingress gateway. This improves performance, as
invalid requests are rejected early on. Additionally, it enables Istio to redact the JWT
from the request so that subsequent services cannot accidentally leak it or malicious
users perform replay attacks with it.

SETTING UP THE WORKSPACE

Let’s remove all the resources created so far and start from a fresh environment:

$ kubectl config set-context $(kubectl config current-context) \
--namespace=istioinaction

$ kubectl delete virtualservice,deployment,service,\
destinationrule,gateway,peerauthentication,authorizationpolicy --all
$ kubectl delete peerauthentication,authorizationpolicy \
-n istio-system --all

Now, let’s set up the sample workloads:

$ kubectl apply -f services/catalog/kubernetes/catalog.yaml
$ kubectl apply -f services/webapp/kubernetes/webapp.yaml

Before setting up authentication and authorization, we need to admit traffic into
Istio’s ingress gateway using a Gateway resource, as discussed in chapter 4. Addition-
ally, a VirtualService resource is needed to route the traffic to the webapp service.
Those resources can be applied by executing this command:

$ kubectl apply -f ch9/enduser/ingress-gw-for-webapp.yaml

gateway.networking.istio.io/webapp-gateway created
virtualservice.networking.istio.io/webapp-virtualservice created

Now the workspace is prepared to begin exploring the RequestAuthentication
resource. 

9.4.3 Validating JWTs with RequestAuthentication

The main purpose of the RequestAuthentication resource is to validate JWTs, extract
the claims of valid tokens, and store those claims in filter metadata, which is used by
authorization policies to take actions based on the data. Filter metadata is a set of key-
value pairs available in the service proxy while processing the request between filters.
As an Istio user, this is mostly an implementation detail. For example, if a request with
the claim group: admin is validated, this value is stored as filter metadata, which is
used by authorization policies to allow or deny the request.

 There can be three different outcomes based on the end-user requests:

 Requests with valid tokens are admitted into the cluster, and their claims are
made available to policies in the form of filter metadata.



256 CHAPTER 9 Securing microservice communication
 Requests with invalid tokens are rejected.
 Requests without tokens are admitted into the cluster but lack a request iden-

tity, meaning that no claims are stored in filter metadata.

The difference between a request with a JWT and a request without is that the former
has been validated by the RequestAuthentication filter and has the JWT claims
stored in its connection filter metadata; in contrast, requests without JWTs lack claims
in their connection filter metadata. An important implicit detail here is that Request-
Authentication resources by themselves do not enforce authorizations. You still need
an AuthorizationPolicy for that.

 In the next section, we create a RequestAuthentication resource and showcase all
the previously mentioned cases with practical examples.

CREATING A REQUESTAUTHENTICATION RESOURCE

The following RequestAuthentication resource applies to Istio’s ingress gateway. It
configures the ingress gateway to validate tokens issued from auth@istioinaction.io:

apiVersion: "security.istio.io/v1beta1"
kind: "RequestAuthentication"
metadata:
name: "jwt-token-request-authn"
namespace: istio-system

spec:
selector:

matchLabels:
app: istio-ingressgateway

jwtRules:
- issuer: "auth@istioinaction.io"

jwks: |
{ "keys": [{"e":"AQAB","kid":"##REDACTED##",

➥"kty":"RSA","n":"##REDACTED##"}]}

Apply the resource to the cluster by executing this command:

$ kubectl apply -f ch9/enduser/jwt-token-request-authn.yaml

With the request authentication resource created, let’s verify the three types of
requests and their expected outcomes. 

REQUESTS WITH TOKENS FROM VALID ISSUERS ARE ACCEPTED

Let’s make a request with a valid JWT, which is stored in the file ch9/enduser/user.jwt:

$ USER_TOKEN=$(< ch9/enduser/user.jwt); \
curl -H "Host: webapp.istioinaction.io" \

-H "Authorization: Bearer $USER_TOKEN" \
-sSl -o /dev/null -w "%{http_code}" localhost/api/catalog

200

Great! The response code shows that the authentication was successful. And as no
authorization policies were applied to the workload, it was allowed by default. 

Applied in this 
namespace

Expected issuer: 
auth@istioinaction.io

Verifiable with 
a specific JWKS
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REQUESTS WITH TOKENS FROM INVALID ISSUERS ARE REJECTED

For demonstration purposes, let’s make a request with a token issued by old-
auth@istioinaction.io, located in the file ch9/enduser/not-configured-issuer.jwt:

$ WRONG_ISSUER=$(< ch9/enduser/not-configured-issuer.jwt); \
curl -H "Host: webapp.istioinaction.io" \

-H "Authorization: Bearer $WRONG_ISSUER" \
-sSl localhost/api/catalog

Jwt issuer is not configured

This fails as expected. The error message clarifies that the JWT we used could not be
authenticated by any of the RequestAuthentication resources applied to the
workload. 

REQUESTS WITHOUT TOKENS ARE ADMITTED INTO THE CLUSTER

For this case, let’s execute a curl request without a token:

$ curl -H "Host: webapp.istioinaction.io" \
-sSl -o /dev/null -w "%{http_code}" localhost/api/catalog

200

The response code shows that the request was admitted into the cluster. This is confus-
ing, as you’d expect requests without tokens to be rejected. But in practice, there are
many scenarios in which requests do not have tokens, such as serving the frontend of
an application. For this reason, rejecting requests without tokens requires a little extra
work that we’ll show next. 

DENYING REQUESTS WITHOUT JWTS

To deny requests without a JWT, we need to create an AuthorizationPolicy resource
that explicitly denies them:

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
name: app-gw-requires-jwt
namespace: istio-system

spec:
selector:

matchLabels:
app: istio-ingressgateway

action: DENY
rules:
- from:

- source:
notRequestPrincipals: ["*"]

to:
- operation:

hosts: ["webapp.istioinaction.io"]

This policy matches all requests from sources that lack the requestPrincipals prop-
erty and then denies them (as specified by the action property). You might be

Matches all sources where the request 
principal doesn’t contain any value

The rule applies only for 
this particular host.
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surprised where requestPrincipals is initialized: it is composed of the issuer and
subject JWT claims (concatenated in the format iss/sub). The claims are authenticated
by the RequestAuthentication resource and then made available as connection
metadata to be used by other filters, such as the AuthorizationPolicy filter.

 Apply the resource to the cluster as follows:

$ kubectl apply -f ch9/enduser/app-gw-requires-jwt.yaml

And now, trigger a request without a token and verify that it fails authorization
because it lacks a request principal:

$ curl -H "Host: webapp.istioinaction.io" \
-sSl -o /dev/null -w "%{http_code}" localhost/api/catalog

403

Great! We prohibited requests without tokens, and as such, we have ensured that only
authenticated end users have full access to the endpoints exposed by webapp. Thus we
have denied unauthenticated requests. Another frequent requirement for real-world
apps is to allow different levels of access for different users. 

DIFFERENT LEVELS OF ACCESS BASED ON JWT CLAIMS

In this example, we allow regular users to read data from the API but prohibit writing
any new data or changing existing data. Meanwhile, we’ll allow administrators full
access. For the example requests used in this section, the “regular” user token is found
in the file ch9/enduser/user.jwt, and the “admin” user token is found in the file ch9/
enduser/admin.jwt. The tokens have different claims: the regular user has the claim
group: user, and the admin has the claim group: admin.

 Let’s set up an AuthorizationPolicy resource to allow regular users to read data
when they are targeting webapp:

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
name: allow-all-with-jwt-to-webapp
namespace: istio-system

spec:
selector:

matchLabels:
app: istio-ingressgateway

action: ALLOW
rules:
- from:

- source:
requestPrincipals: ["auth@istioinaction.io/*"]

to:
- operation:

hosts: ["webapp.istioinaction.io"]
methods: ["GET"]

And with the AuthorizationPolicy resource, we allow all operations to an admin user:

Represents the end-user 
request principal
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apiVersion: "security.istio.io/v1beta1"
kind: "AuthorizationPolicy"
metadata:

name: "allow-mesh-all-ops-admin"
namespace: istio-system

spec:
rules:

- from:
- source:

requestPrincipals: ["auth@istioinaction.io/*"]
when:
- key: request.auth.claims[group]

values: ["admin"]

NOTE In this example, we omitted to explicitly set the value of action to
ALLOW as that’s the default value.

Apply these resources to the cluster:

$ kubectl apply -f \
ch9/enduser/allow-all-with-jwt-to-webapp.yaml

$ kubectl apply -f ch9/enduser/allow-mesh-all-ops-admin.yaml

Now, let’s verify that the regular user can read data:

$ USER_TOKEN=$(< ch9/enduser/user.jwt);
curl -H "Host: webapp.istioinaction.io" \

-H "Authorization: Bearer $USER_TOKEN" \
-sSl -o /dev/null -w "%{http_code}" localhost/api/catalog

200

But writing is not allowed for a regular user:

$ USER_TOKEN=$(< ch9/enduser/user.jwt);
curl -H "Host: webapp.istioinaction.io" \

-H "Authorization: Bearer $USER_TOKEN" \
-XPOST localhost/api/catalog \
--data '{"id": 2, "name": "Shoes", "price": "84.00"}'

RBAC: access denied

Next, let’s verify that for the administrator, writing is allowed:

$ ADMIN_TOKEN=$(< ch9/enduser/admin.jwt);
curl -H "Host: webapp.istioinaction.io" \

-H "Authorization: Bearer $ADMIN_TOKEN" \
-XPOST -sSl -w "%{http_code}" localhost/api/catalog/items \
--data '{"id": 2, "name": "Shoes", "price": "84.00"}'

200

The response shows that the request with the claim group: admin was admitted into
the cluster, and thus administrators are allowed to create new items in the catalog. 

Allows only requests 
containing this claim
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9.5 Integrating with custom external authorization 
services
We’ve seen how Istio’s authentication mechanism built on SPIFFE provides a founda-
tion on which service authorizations can be built. Istio uses Envoy’s out-of-the-box
role-based access control (RBAC) capabilities to implement authorization—but what
if we need a more sophisticated or custom mechanism for authorization? We can con-
figure Istio’s service proxy to call out to a different authorization service to determine
whether to allow a request.

 In figure 9.13, a request that comes into the service proxy pauses while the proxy
calls out to an external authorization (ExtAuthz) service. This ExtAuthz service can
live in the mesh, as a sidecar to the application, or even outside of the mesh. ExtAuthz
needs to implement Envoy’s CheckRequest API (http://mng.bz/DxRE). Examples of
external authorization services that implement this API include the following:

 Open Policy Agent (https://www.openpolicyagent.org/docs/latest/envoy
-tutorial-istio)

 Signal Sciences (www.signalsciences.com/blog/integrations-envoy-proxy
-support)

 Gloo Edge Ext Auth (https://docs.solo.io/gloo-edge/latest/guides/security/
auth/extauth)

 Istio sample Ext Authz (https://github.com/istio/istio/tree/release-1.9/
samples/extauthz)

The ExtAuthz service returns an “allow” or “deny” message that the proxy then uses to
enforce authorizations.

App

Other DENY policies can
still reject the request.

Authorization
server

Envoy

CUSTOM
policy

Request DENY
and

ALLOW
policies

Allow / rejectCUSTOM policies delegate
the decision to an
authorization server.

Figure 9.13 Using CUSTOM 
policies to get requests authorized 
by an external server

https://www.openpolicyagent.org/docs/latest/envoy-tutorial-istio
https://www.openpolicyagent.org/docs/latest/envoy-tutorial-istio
https://www.openpolicyagent.org/docs/latest/envoy-tutorial-istio
www.signalsciences.com/blog/integrations-envoy-proxy-support
www.signalsciences.com/blog/integrations-envoy-proxy-support
www.signalsciences.com/blog/integrations-envoy-proxy-support
https://docs.solo.io/gloo-edge/latest/guides/security/auth/extauth
https://docs.solo.io/gloo-edge/latest/guides/security/auth/extauth
https://github.com/istio/istio/tree/release-1.9/samples/extauthz
https://github.com/istio/istio/tree/release-1.9/samples/extauthz
https://github.com/istio/istio/tree/release-1.9/samples/extauthz
http://mng.bz/DxRE
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9.5.1 Hands-on with external authorization

To get started with a custom authorization policy and external authorization, let’s
delete all of the existing authentication and authorization policies:

$ kubectl delete authorizationpolicy,peerauthentication,\
requestauthentication --all -n istio-system

We are deleting these policies so we can see how the custom authorization works by
itself. Just as we layered in authentication and authorization throughout the chapter,
we can do the same with custom authorization.

 Let’s deploy a sample external authorization service that comes from the Istio sam-
ples. Navigate to your Istio distribution, and run the following:

$ kubectl apply \
-f istio-1.13.0/samples/extauthz/ext-authz.yaml \
-n istioinaction

If you list the Pods in the istioinaction namespace, you should see our new ext-
authz service:

$ kubectl get pod -n istioinaction

NAME READY STATUS RESTARTS AGE
webapp-f7bdbcbb5-cpng5 2/2 Running 0 5d14h
catalog-68666d4988-pb498 2/2 Running 0 5d14h
ext-authz-6c85b4d8d-drh4x 2/2 Running 0 52s

A Kubernetes service called ext-authz was also created. We use this service name to
configure Istio’s ExtAuthz capabilities:

$ kubectl get svc -n istioinaction

NAME TYPE CLUSTER-IP PORT(S) AGE
webapp ClusterIP 10.99.80.174 80/TCP 5d14h
catalog ClusterIP 10.99.216.206 80/TCP 5d14h
ext-authz ClusterIP 10.106.20.54 8000/TCP,9000/TCP 94s

The ext-authz service we created is very simple and only checks whether an incoming
request contains the x-ext-authz header for a value of allow. If the header is

ExtAuthz performance tradeoffs
The call out to the ExtAuthz service happens in the request path, so you should be
prepared for a latency hit when using this approach. Istio’s built-in authorizations
should be sufficient and flexible, but if you need full control, you have to evaluate the
trade-off in performance of calling out to an external authorization service. As men-
tioned in the previous paragraphs, it’s possible to deploy an ExtAuthz service as a
sidecar to your application to minimize network overhead. See the Istio documenta-
tion (https://istio.io/latest/docs/tasks/security/authorization/authz-custom) for
more information.

https://istio.io/latest/docs/tasks/security/authorization/authz-custom
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included in the request, the request is allowed; if it’s not included, the request is
denied. You can write your own external authorization service to evaluate other prop-
erties of the request or use one of the existing services mentioned previously. 

9.5.2 Configuring Istio for ExtAuthz

We need to configure Istio to know about this new ExtAuthz service. To do this, we
need to configure extensionProviders in the main Istio meshconfig configuration.
This configuration lives in the istioconfigmap in the istio-system namespace. Let’s
edit this configmap and add the following appropriate configuration for our new Ext-
Authz service:

$ kubectl edit -n istio-system cm istio

Add the following snippet to the configmap:

     extensionProviders:
- name: "sample-ext-authz-http"

envoyExtAuthzHttp:
service: "ext-authz.istioinaction.svc.cluster.local"
port: "8000"
includeHeadersInCheck: ["x-ext-authz"]

You should now have something similar to the following:

apiVersion: v1
data:

mesh: |-
extensionProviders:
- name: "sample-ext-authz-http"

envoyExtAuthzHttp:
service: "ext-authz.istioinaction.svc.cluster.local"
port: "8000"
includeHeadersInCheck: ["x-ext-authz"]

accessLogFile: /dev/stdout
defaultConfig:

discoveryAddress: istiod.istio-system.svc:15012
proxyMetadata: {}
tracing:

zipkin:
address: zipkin.istio-system:9411

enablePrometheusMerge: true
rootNamespace: istio-system
trustDomain: cluster.local

meshNetworks: 'networks: {}'

We’ve configured Istio to be aware of a new extension called sample-ext-authz-http,
an HTTP implementation of the envoyExtAuthz service. This service is defined to
live at ext-authz.istioinaction.svc.cluster.local, which lines up with the Kuber-
netes service we saw in the previous section. We can configure what headers to pass
along to the ExtAuthz service: in this configuration, we pass along the x-ext-authz
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header. In our example ExtAuthz service, this header is used to determine an authori-
zation result. The last step in using this ExtAuthz functionality is to configure an
AuthorizationPolicy resource to use it. Let’s see how that works. 

9.5.3 Using a custom AuthorizationPolicy resource

In the previous sections, we created AuthorizationPolicy resources with an action
of DENY or ALLOW. In this section, we create an AuthorizationPolicy with an action
of CUSTOM and then specify exactly what ExtAuthz service to use:

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:

name: ext-authz
namespace: istioinaction

spec:
selector:

matchLabels:
app: webapp

action: CUSTOM
provider:

name: sample-ext-authz-http
rules:
- to:

- operation:
paths: ["/"]

This AuthorizationPolicy resource is applied to the webapp workload in the istio-
inaction namespace that delegates to an ExtAuthz service named sample-ext-
authz-http. Note that the name specified in the provider section must match the
name given in the Istio configmap that we configured earlier:

$ kubectl apply -f ch9/custom-authorization-policy.yaml

In the previous section, we deployed a sleep service in the default namespace that is
not part of the mesh. Please refer back to the beginning of this chapter to see how to
deploy sleep. If we call our webapp service from the sleep service in the default
namespace, it does not pass the external authorization checks using our sample Ext-
Authz service:

$ kubectl -n default exec -it deploy/sleep -- \
curl webapp.istioinaction/api/catalog

denied by ext_authz for not found header `x-ext-authz: allow` in the request

The example ExtAuthz service is simple enough that it only checks for the x-ext-
authz header to be present with a value of allow. Let’s add this header to our call and
verify that it passes the authorization checks:

$ kubectl -n default exec -it deploy/sleep -- \
curl -H "x-ext-authz: allow" webapp.istioinaction/api/catalog

Uses a custom 
action

Must match the 
meshconfig name

Path on which 
to apply authz
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[
{

"id": 1,
"color": "amber",
"department": "Eyewear",
"name": "Elinor Glasses",
"price": "282.00"

},
<omitted>

]

Now the call should succeed! If it does not, go back and check that you’ve applied the
configurations in this section correctly. Also double-check that you’ve removed any
other AuthorizationPolicy or PeerAuthentication policies that may be blocking
the request.

 In the next chapter, we’ll dive deeper into how to troubleshoot the data-plane
component of the service mesh, how to gain visibility using envoy access logs, and
much more. 

Summary
 PeerAuthentication is used for defining peer-to-peer authentication, and

applying strict authentication requirements ensures that traffic is encrypted
and cannot be eavesdropped on.

 The PERMISSIVE policy allows an Istio workload to accept both encrypted traffic
and clear-text traffic and can be used to slowly migrate without downtime.

 AuthorizationPolicy is used for authorizing service-to-service and end-user
requests based on the set of verifiable metadata extracted from either the work-
load identity certificate or the end-user JWT.

 RequestAuthentication is used for authenticating end-user requests contain-
ing JWTs.

 We can integrate external authorization services using the CUSTOM action of
authorization policies.



Part 3

Istio day-2 operations

This part of the book discusses troubleshooting issues and day-2 operations.
Chapters 10 and 11 show you how to troubleshoot issues in the data plane and
maintain the stability and performance of the control plane.
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Troubleshooting
the data plane
When communicating over the network, many things can go wrong, as we’ve
demonstrated throughout this book. A major reason why Istio exists is to help shine
a light on network communication when things go wrong and put in place remedi-
ation capabilities like timeouts, retries, and circuit breaking so that applications
can automatically respond to network issues. The service proxy gives us a very
detailed view of what’s happening on the network, but what happens when the
proxy itself behaves unexpectedly?

This chapter covers
 Troubleshooting a misconfigured workload

 Detecting and preventing misconfigurations using 
istioctl and Kiali

 Using istioctl to investigate the service proxy 
configuration

 Making sense of Envoy logs

 Using telemetry to gain insights into apps
267
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 Figure 10.1 shows the components that participate in serving a request:

 istiod, which ensures that the data plane is synchronized to the desired state
 The ingress gateway that admits traffic into the cluster
 The service proxy that provides access control and handles traffic from down-

stream to the local application
 The application itself, which serves the request and may request another service

that continues the chain to another upstream service, and so on

Figure 10.1 Components that participate in routing a request

Thus, unexpected issues can be related to any of the components in this chain.
Debugging every component could take a lot of time, which we don’t have when apps
are impacting the entire cluster or system. In this chapter, we use the tools at our dis-
posal to troubleshoot an erroneous scenario by examining the proxy and its associ-
ated configuration.

10.1 The most common mistake: A misconfigured data plane
Istio exposes a human-readable format to configure the services proxies in the form of
custom resource definitions such as VirtualService, DestinationRule, and so on.
These resources are translated into the Envoy configuration and applied to the data
plane. After we apply new resources, if the behavior of the data plane doesn’t match
our expectations, the most common cause is that we misconfigured it.
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istiod

Application
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Control plane
Data plane
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1. istiod synchronizes the
  data plane to the latest
  desired state.

2. The ingress gateway admits
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 (e.g., the ingress gateway) 
   to the local application.

4. The app that serves the
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    other services for
  information to do so.

5. Querying another
 upstream service
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 To showcase how to troubleshoot the data plane when it’s misconfigured, we’ll set
up the following example: we’ll use a Gateway resource to allow traffic through the Istio
ingress gateway and a VirtualService resource to route 20% of the requests to the sub-
set version-v1 and the other 80% of the requests to the subset version-v2, as shown
in figure 10.2. For more information on traffic routing and splitting, see chapter 5.

Figure 10.2 The ingress gateway is configured to route requests to 
non-existent subsets.

You may think “So far, so good”—but no. Without a DestinationRule resource, the
ingress gateway has no cluster definitions for subsets version-v1 and version-v2,
and thus all requests will fail. This is a good issue to troubleshoot!

 First, let’s assume that we have Istio deployed (see chapter 2), but we don’t have
any other application components deployed. If you are continuing from previous
chapters, you may have to clean up any left-behind deployments, services, gateways,
and virtual services, as follows:

$ kubectl config set-context $(kubectl config current-context) \
--namespace=istioinaction

$ kubectl delete virtualservice,deployment,service,\
destinationrule,gateway,authorizationpolicy,peerauthentication --all
$ kubectl delete authorizationpolicy,peerauthentication --all -n istio-system

To deploy the application for the purposes of this section, let’s run the following com-
mand from the root of the book’s source code:

$ kubectl apply -f services/catalog/kubernetes/catalog.yaml
$ kubectl apply -f ch10/catalog-deployment-v2.yaml
$ kubectl apply -f ch10/catalog-gateway.yaml
$ kubectl apply -f ch10/catalog-virtualservice-subsets-v1-v2.yaml

Subset: version-v1

Subset: version-v2

Ingress
gateway

catalog
(v1)

catalog
(v2)

catalog
(v2)

20%

80%

Request
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This starts the catalog workload in the cluster and creates a Gateway resource to con-
figure the ingress gateway to admit HTTP traffic. Finally, it creates a VirtualService
resource to route traffic to the catalog workload.

 With the resources created, open a new terminal and execute a continuously run-
ning command to generate traffic to the catalog workloads:

$ for i in {1..100}; do curl http://localhost/items \
-H "Host: catalog.istioinaction.io" \
-w "\nStatus Code %{http_code}\n"; sleep .5s;  done

Status Code 503

In the output, we see that due to the missing subsets, the response code is 503: “Ser-
vice Unavailable.” This gives us enough content to showcase how to troubleshoot the
data plane when workloads are misconfigured. 

10.2 Identifying data-plane issues
In day-to-day operations, you will most commonly deal with data-plane issues. Diving
directly into debugging the data plane can become a habit, but it’s critical to quickly
rule out control-plane issues. Considering that the primary function of the control
plane is to synchronize the data plane to the latest configuration, the first step is to
verify that the control plane and data plane are in sync. 

10.2.1 How to verify that the data plane is up to date

The data-plane configuration is eventually consistent by design. This means changes
to the environment (services, endpoints, health) or changes to the configuration are
not immediately reflected in the data plane until proper synchronization has
occurred with the control plane. For example, as we’ve seen in previous chapters, the
control plane sends each individual endpoint IP address for a particular service to the
data plane (roughly equal to the IP address of each Pod in a service). If any one of
those endpoints becomes unhealthy, it takes a while for Kubernetes to recognize that
and mark the Pod as unhealthy. At some point, the control plane also recognizes the
issue and removes the endpoint from the data plane. Thus the data plane is back to
the latest configuration, and the proxy configuration is consistent again. Figure 10.3
visualizes the events that take place to update the data plane.

NOTE For larger clusters, where the number of workloads and events
increases, the period needed for the data plane to be synchronized increases
proportionally. We’ll explore how to improve performance in larger clusters
in chapter 11.
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Figure 10.3 Series of events until the configuration of a data-plane component is updated after a 
workload becomes unhealthy

Let’s check whether the data plane is synchronized with the latest configuration, using
the istioctl proxy-status command:

$ istioctl proxy-status

NAME CDS LDS RDS
catalog.<...>.istioinaction SYNCED SYNCED SYNCED
catalog.<...>.istioinaction SYNCED SYNCED SYNCED
catalog.<...>.istioinaction SYNCED SYNCED SYNCED
istio-egressgateway.<...>.istio-system SYNCED SYNCED NOT SENT
istio-ingressgateway.<...>.istio-system SYNCED SYNCED SYNCED

The output lists all workloads and their synchronization state for every xDS API. The
status for EDS is redacted from the output to improve readability (see chapter 3 for
more details on Envoy xDS).

 SYNCED—Envoy has acknowledged the last configuration sent by the control
plane.

 NOT SENT—The control plane hasn’t sent anything to Envoy. This is usually
because the control plane has nothing to send. Such is the case of the route dis-
covery service (RDS) for istio-egressgateway, shown in the previous snippet.

 STALE—The istiod control plane has sent an update, but it wasn’t acknowl-
edged. This indicates one of the following: the control plane is overloaded; lack
or drop of connectivity between Envoy and the control plane; or a bug on Istio.
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However, our output shows that there are no stale workloads that didn’t receive the
configuration. Thus we are assured that the issue is unlikely to be in the control plane,
and we should investigate the data-plane components.

 The most common issues with the data-plane components are due to workload
misconfiguration. Using Kiali, we can perform a quick validation of the configuration. 

10.2.2 Discovering misconfigurations with Kiali

In chapter 8, we briefly mentioned that Kiali can discover misconfigured services. Now
let’s see those capabilities in action. Open the Kiali dashboard, shown in figure 10.4:

$ istioctl dashboard kiali
http:/./localhost:20001/kiali

Figure 10.4 The Kiali Overview dashboard shows one error in the istioinaction namespace.

The dashboard shows a warning in the istioinaction namespace. Clicking it redi-
rects you to the Istio Config view (see figure 10.5), which lists all Istio configurations
applied in the selected namespace. Misconfigured Istio configurations are accompa-
nied by notifications, as is the case for the catalog-v1-v2 VirtualService resource.
Clicking the warning icon shown in figure 10.5 redirects you to the YAML view of the
virtual service, where the misconfigured sections are highlighted in the embedded
editor (see figure 10.6).
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Figure 10.5 The catalog virtual service has warnings.

Figure 10.6 Kiali Istio configuration YAML view displaying a warning message

Hovering over the warning icon shows the warning message “KIA1107 Subset not
found.” For more information about this warning, check out the Kiali validations page
of the Kiali docs at http://mng.bz/2jzX; this page provides a description, severity, and
resolution for the identified errors. As an example, here is the Resolution section for
the KIA1107 warning:

Fix the routes that points to a non existing subsets. It might be fixing a typo in the subset’s
name or defining the missing subset in a DestinationRule.

http://mng.bz/2jzX
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This description helps us identify and fix the issue, as it correctly points out what is
misconfigured. In this case, the subsets are missing, and we should create a
DestinationRule resource to define them.

 The Kiali validations are helpful and should be one of the first stops when your
workloads are not behaving according to your expectations. The next step is to use
istioctl, which provides another set of validations. 

10.2.3 Discovering misconfigurations with istioctl

To automatically troubleshoot misconfigured workloads, two of the most useful
istioctl commands are istioctl analyze and istioctl describe. Let’s explore
them.

ANALYZING ISTIO CONFIGURATIONS WITH ISTIOCTL

The istioctl analyze command is a powerful diagnostic tool that analyzes Istio con-
figurations. It can be run on clusters that are already experiencing issues or can vali-
date configurations before they are applied to clusters to prevent misconfiguring
resources in the first place.

 The analyze command runs a set of analyzers, each of which is specialized to
detect a certain set of issues. It is easily extendable, which ensures that it evolves along-
side Istio.

 Let’s analyze the istioinaction namespace and see the issues that are detected:

$ istioctl analyze -n istioinaction

Error [IST0101] (VirtualService catalog-v1-v2.istioinaction)

➥Referenced host+subset in destinationrule not found:

➥"catalog.istioinaction.svc.cluster.local+version-v1"
Error [IST0101] (VirtualService catalog-v1-v2.istioinaction)

➥Referenced host+subset in destinationrule not found:

➥"catalog.istioinaction.svc.cluster.local+version-v2"
Error: Analyzers found issues when analyzing namespace: istioinaction.

See https:/./istio.io/v1.13/docs/reference/config/analysis

➥for more information about causes and resolutions.

The output shows that the subsets are not found. In addition to the error message
Referenced host+subset in destinationrule not found, it provides the error
code IST0101, with which we can find more details about the issue in Istio’s documen-
tation (https://istio.io/latest/docs/reference/config/analysis). 

DETECTING WORKLOAD-SPECIFIC MISCONFIGURATIONS

The describe subcommand is used to describe the workload-specific configuration. It
analyzes the Istio configuration that affects one workload directly or indirectly and
prints a summary. This summary answers questions about the workload such as

 Is it part of the service mesh?
 What virtual services and destination rules apply to it?
 Does it require mutually authenticated traffic?

https://istio.io/latest/docs/reference/config/analysis
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Pick the name of any of the catalog workloads, and execute the following describe
command:

$ istioctl x describe pod catalog-68666d4988-vqhmb

Pod: catalog-68666d4988-q6w42
Pod Ports: 3000 (catalog), 15090 (istio-proxy)

--------------------
Service: catalog

Port: http 80/HTTP targets pod port 3000

Exposed on Ingress Gateway http:/./13.91.21.16
VirtualService: catalog-v1-v2

WARNING: No destinations match pod subsets (checked 1 HTTP routes)

Warning: Route to subset version-v1 but NO DESTINATION RULE defining
subsets!

Warning: Route to subset version-v2 but NO DESTINATION RULE defining
subsets!

The output shows the warning message Route to subset version-v1 but NO DES-
TINATION RULE defining subsets. That means the routing is configured for non-
existent subsets. For completeness, let’s show how the istioctl describe output
would look like if the workload was correctly configured:

Pod: catalog-68666d4988-q6w42
Pod Ports: 3000 (catalog), 15090 (istio-proxy)

--------------------
Service: catalog

Port: http 80/HTTP targets pod port 3000
DestinationRule: catalog for "catalog.istioinaction.svc.cluster.local"

Matching subsets: version-v1
(Non-matching subsets version-v2)

No Traffic Policy

Exposed on Ingress Gateway http:/./13.91.21.16
VirtualService: catalog-v1-v2

Weight 20%

Both the analyze and describe subcommands are helpful to identify common errors
in configurations and are usually enough to suggest fixes. For issues that do not sur-
face with these commands or do not give enough guidance for how to fix them, you
will need to dig deeper! That’s what we do in the next section. 

10.3 Discovering misconfigurations manually from the 
Envoy config
Whenever the automated analyzers fall short, we need to investigate the entire Envoy
configuration manually. We can retrieve the Envoy configuration that is applied on a
workload using the Envoy administration interface or istioctl.

Matching 
subsetNon-matching 

subsets

Virtual service that routes 
traffic to this Pod



276 CHAPTER 10 Troubleshooting the data plane
10.3.1 Envoy administration interface

The Envoy administration interface exposes the Envoy configuration and other capa-
bilities to modify aspects of the proxy, such as increasing the logging level. This inter-
face is accessible for every service proxy on port 15000. Using istioctl, we can port-
forward it to our localhost:

$ istioctl dashboard envoy deploy/catalog -n istioinaction

http:/./localhost:15000

A new browser window opens, listing all the options exposed by the admin dashboard.
Figure 10.7 shows a subset.

We can use config_dump to print the currently loaded Envoy configuration in the
proxy. Be warned before clicking it: it contains an immense amount of data. To see
just how much, let’s count the number of lines:

$ curl -s localhost:15000/config_dump | wc -l
13934

Wow! This output is so large that it’s basically not human-readable. For this reason,
istioctl provides tools to filter the output into smaller chunks, which aids readability
and comprehension.

NOTE You can find out more about the Administration interface in the offi-
cial Envoy docs: https://www.envoyproxy.io/docs/envoy/v1.20.1/operations/
admin

10.3.2 Querying proxy configurations using istioctl

The istioctl proxy-config command enables us to retrieve and filter the proxy
configuration of a workload based on the Envoy xDS APIs, where each subcommand
is appropriately named:

 cluster—Retrieves the cluster configuration
 endpoint—Retrieves the endpoint configuration
 listener—Retrieves the listener configuration
 route—Retrieves the route configuration
 secret—Retrieves the secret configuration

Figure 10.7 A subset 
of the options in the 
Envoy administration 
dashboard

https://www.envoyproxy.io/docs/envoy/v1.20.1/operations/admin
https://www.envoyproxy.io/docs/envoy/v1.20.1/operations/admin
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Understanding what configuration to query is simpler when you understand Envoy’s
underlying API. We explored this API in chapter 3, but let’s have a brief Envoy API
refresher.

THE INTERACTION OF ENVOY APIS TO ROUTE A REQUEST

Figure 10.8 shows the Envoy APIs that configure the routing of a request. These APIs
have the following effects on the proxy:

 Envoy listeners define a networking configuration such as an IP address and port
that allows downstream traffic into the proxy.

 An HTTP filter chain is created for the admitted connections. The most import-
ant filter in the chain is the router filter, which performs the advanced routing
tasks.

 Envoy routes are sets of rules that match the virtual hosts to clusters. Routes are
processed in the listed order. The first to match is used to route traffic to clus-
ters of workloads. Routes can be configured statically, but in Istio, RDS is used
to dynamically configure them.

 In Envoy clusters, each cluster has a group of endpoints to similar workloads.
Subsets are used to further divide workloads within a cluster, which enables
fine-grained traffic management.

 Envoy endpoints represent the IP addresses of the workloads that serve the
requests.

Figure 10.8 Interaction of Envoy APIs to route a request

In the next section, we query and manually validate the listeners, routes, clusters, and
endpoints configurations for the ingress gateway. This lets us verify if it’s configured
properly to route traffic to the catalog workloads. 

QUERYING THE ENVOY LISTENER CONFIGURATION

Begin by ensuring that traffic reaching the ingress gateway on localhost port 80 is admit-
ted into the cluster. As mentioned earlier, admitting traffic is the responsibility of Envoy
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listeners, which are configured in Istio using the Gateway resource. Let’s query the lis-
tener configuration of the gateway and verify that traffic is admitted in port 80:

$ istioctl proxy-config listeners \
deploy/istio-ingressgateway -n istio-system

ADDRESS PORT MATCH DESTINATION
0.0.0.0 8080 ALL Route: http.8080
0.0.0.0 15021 ALL Inline Route: /healthz/ready*
0.0.0.0 15090 ALL Inline Route: /stats/prometheus*

In the printed summary, we see that

 A listener is configured on port 8080.
 The traffic is routed according to the route named http.8080 for that listener.

You may be surprised that route http.8080 is configured to listen on port 8080 and
not port 80. Be assured that port 8080 is the correct port: traffic from port 80 to 8080
is forwarded by the Kubernetes service named istio-ingressgateway, which can be
seen when we print the service definition, as shown next. Additionally, the ingress
gateway listens on port 8080 since that’s not a restricted port:

$ kubectl -n istio-system get svc istio-ingressgateway -o yaml \
| grep "ports:" -A 10

ports:
- name: status-port

nodePort: 30618
port: 15021
protocol: TCP
targetPort: 15021

- name: http2
nodePort: 32589
port: 80
protocol: TCP
targetPort: 8080

We have verified that traffic reaches port 8080 and that a listener exists to admit it into
the ingress gateway. Additionally, we saw that the routing for this listener is done by
route http.8080, which is our next checkpoint. 

QUERYING THE ENVOY ROUTE CONFIGURATION

The Envoy route configuration defines the set of rules that determine the cluster where
traffic is routed. Istio configures Envoy routes using the VirtualService resource.
Meanwhile, clusters are either auto-discovered or defined using the DestinationRule
resource.

 To find out to which clusters traffic is routed to for the http.8080 route, let’s query
its configuration:

$ istioctl pc routes deploy/istio-ingressgateway \
-n istio-system --name http.8080

Requests on port 8080 are 
configured to route according 
to the route http.8080.

Traffic in port 80 targets 
Pods on port 8080.
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NOTE: This output only contains routes loaded via RDS.
NAME   DOMAINS MATCH VIRTUAL SERVICE
http.8080 catalog.istioinaction.io /* catalog.istioinaction

The summary shows that traffic for the host catalog.istioinaction.io whose URL
matches the path prefix /* is routed to the catalog VirtualService, located in the
catalog service in the istioinaction namespace. Details about the clusters behind
the catalog.istioinaction virtual service are shown when the route configuration is
printed in JSON format:

$ istioctl pc routes deploy/istio-ingressgateway -n istio-system \
--name http.8080 -o json

<omitted>
"routes": [

{
"match": {

"prefix": "/"
},
"route": {

"weightedClusters": {
"clusters": [

{
"name": "outbound|80|version-

v2|catalog.istioinaction.svc.cluster.local",
"weight": 80
},
{
"name": "outbound|80|version-

v1|catalog.istioinaction.svc.cluster.local",
"weight": 20
}

]
},

<omitted>
}

The output shows that two clusters are receiving the traffic when the route is matched:

 outbound|80|version-v1|catalog.istioinaction.svc.cluster.local

 outbound|80|version-v2|catalog.istioinaction.svc.cluster.local

Let’s investigate the meaning of each pipe-separated section and investigate how
workloads are assigned as members to these clusters. 

QUERYING THE ENVOY CLUSTER CONFIGURATION

The Envoy cluster configuration defines the backend services to which requests can
be routed. Clusters load-balance across instances or endpoints. These endpoints, typi-
cally IP addresses, represent individual workload instances that serve end-user traffic.

 Using istioctl, we can query the clusters that the ingress gateway is aware of; how-
ever, there are many clusters, as one is configured for every backend routable service.
We can only print clusters using the following istioctl proxy-config clusters flags:

Route rule that 
has to match

Clusters to which traffic is routed 
when the rule is matched
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direction, fqdn, port, and subset. The information for all the flags is contained
within the cluster name we retrieved earlier, as shown in figure 10.9.
Let’s query one of the clusters: for example, the cluster of the subset version-v1 for
which the ingress gateway is configured. We can specify all the cluster properties (as
shown in figure 10.9) in the query:

$ istioctl proxy-config clusters \
deploy/istio-ingressgateway.istio-system \
--fqdn catalog.istioinaction.svc.cluster.local \
--port 80 \
--subset version-v1

SERVICE FQDN PORT SUBSET DIRECTION TYPE DESTINATION RULE

There is no cluster for the subset version-v1—or even version-v2, for that matter!
Without clusters for these subsets, requests fail because the virtual service is routing to
clusters that do not exist.

 Clearly, this is a case of misconfiguration, and we can fix it by creating a destination
rule that defines the clusters for these subsets. A destination rule for these clusters is
defined in the file catalog-destinationrule-v1-v2.yaml located in the chapter 10 direc-
tory. But before applying it to the cluster, let’s use the istioctl analyze subcom-
mand to validate that this configuration would fix the service mesh errors identified
way back in section 10.2.3:

istioctl analyze ch10/catalog-destinationrule-v1-v2.yaml \
-n istioinaction

✔ No validation issues found when analyzing

➥ch10/catalog-destinationrule-v1-v2.yaml.

The output shows no validation errors in the cluster when simulating the impact of
applying the resource. This means applying the destination rule fixes the cluster con-
figuration. Let’s do that:

$ kubectl apply -f ch10/catalog-destinationrule-v1-v2.yaml

destinationrule.networking.istio.io/catalog created

Querying the clusters again, we should see the newly defined subsets for version-v1
and version-v2:

$ istioctl pc clusters deploy/istio-ingressgateway -n istio-system \
--fqdn catalog.istioinaction.svc.cluster.local --port 80

outbound  |  80  |  version-v1  |  catalog.istioinaction.svc.cluster.local

Direction

Port

Subset

FQDN

Figure 10.9 Components 
forming the cluster name
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SERVICE FQDN PORT SUBSET DIRECTION TYPE DESTINATION RULE
catalog.<...>.local 80 - outbound EDS catalog.<...>
catalog.<...>.local 80 version-v1 outbound EDS catalog.<...>
catalog.<...>.local 80 version-v2 outbound EDS catalog.<...>

Voilà! Now that the DestinationRule resource defines the clusters for subsets ver-
sion-v1 and version-v2, traffic can be routed to the members of those clusters.

 Recall that a cluster is a set of endpoints (or IP addresses). Let’s dig into how end-
points are retrieved. 

HOW CLUSTERS ARE CONFIGURED

The Envoy proxy provides multiple approaches to discover the endpoints of a cluster.
The option in use can be discovered by printing the cluster version-v1 in JSON for-
mat using istioctl (the following output is truncated to show the edsClusterConfig
section):

$ istioctl pc clusters deploy/istio-ingressgateway -n istio-system \
--fqdn catalog.istioinaction.svc.cluster.local --port 80 \
--subset version-v1 -o json

# Output is truncated
"name": "outbound|80|version-v1|catalog.istioinaction.svc.cluster.local",
"type": "EDS",
"edsClusterConfig": {

"edsConfig": {
"ads": {},
"resourceApiVersion": "V3"

},
"serviceName":

"outbound|80|version-v1|catalog.istioinaction.svc.cluster.local"
},

The output shows that edsClusterConfig is configured to use the Aggregated Discov-
ery Service (ADS) to query the endpoints. The service name outbound|80|version
-v1|catalog.istioinaction.svc.cluster.local is used as a filter for the endpoints
to query from ADS. 

QUERYING ENVOY CLUSTER ENDPOINTS

Now that we know the Envoy proxy is configured to query ADS with the service name,
we can use this information to manually query the endpoints for this cluster in the
ingress gateway using the istioctl proxy-config endpoints command:

$ istioctl pc endpoints deploy/istio-ingressgateway -n istio-system \
--cluster "outbound|80|version-v1|catalog.istioinaction.svc.cluster.local"

ENDPOINT STATUS OUTLIER CHECK CLUSTER
10.1.0.60:3000 HEALTHY OK outbound|80|version-v1|catalog...

The output lists the endpoint of the only workload that’s behind this cluster. Let’s query
the Pod with this IP address and verify that there is an actual workload behind it:

$ kubectl get pods -n istioinaction \
--field-selector status.podIP=10.1.0.60
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NAME READY STATUS RESTARTS AGE
catalog-5b56677c4c-v7hkj 2/2 Running 0 3h47m

And there it is! We’ve completed the entire chain of Envoy API resources that config-
ure the service proxy to route traffic to a workload. It’s a long path, but after going
through it a couple of times, you will be able to internalize it.

 This concludes our discussion of discovering misconfigured workloads. In the next
section, we investigate how service proxies help us debug application issues. 

10.3.3 Troubleshooting application issues

For a microservice-based application, the logs and metrics generated by service prox-
ies are helpful to troubleshoot many issues such as discovering services that are caus-
ing a performance bottleneck, identifying frequently failing endpoints, detecting
performance degradation, etc. In chapter 6, we saw how to work around those appli-
cation resilience issues. In this section, we use the Envoy access logs and metrics to
troubleshoot some of these issues. But first, let’s update our services to have an issue
that we can troubleshoot.

SETTING UP AN INTERMITTENTLY SLOW WORKLOAD THAT TIMES OUT

The catalog workloads can be configured to intermittently return slow responses
using the following command:

$  CATALOG_POD=$(kubectl get pods -l version=v2 -n istioinaction -o \ 
jsonpath={.items..metadata.name} | cut -d ' ' -f1) \

$ kubectl -n istioinaction exec -c catalog $CATALOG_POD  \
  -- curl -s -X POST -H "Content-Type: application/json" \
  -d '{"active": true, "type": "latency", "volatile": true}' \
  localhost:3000/blowup

blowups=[object Object]

Let’s configure the catalog-v1-v2 virtual service to time out when requests take
more than half a second to be served:

$ kubectl patch vs catalog-v1-v2 -n istioinaction --type json \
-p '[{"op": "add", "path": "/spec/http/0/timeout", "value": "0.5s"}]'

Those changes are represented visually in figure 10.10.
 Let’s generate continuous traffic to the catalog workloads in a separate terminal.

Doing so produces logs and telemetry that we need in subsequent sections:

$ for i in {1..9999}; do curl http://localhost/items \
-H "Host: catalog.istioinaction.io" \
-w "\nStatus Code %{http_code}\n"; sleep 1s;  done

In the continuously triggered requests, we see that some are routed to the slow work-
load; as a result, they end with a timeout. The output is as follows:

upstream request timeout
Status Code 504



283Discovering misconfigurations manually from the Envoy config
Status code 504, “Gateway Timeout,” is a piece of information we can use to query the
Envoy access logs. 

UNDERSTANDING ENVOY ACCESS LOGS

Envoy access logs record all requests processed by the Envoy proxy, which aids in
debugging and troubleshooting. By default, Istio configures the proxies to use the
TEXT format for the logs, which is concise but difficult to read:

$ kubectl -n istio-system logs deploy/istio-ingressgateway \
| grep 504

# output is truncated to a single failing request
[2020-08-22T16:20:20.049Z] "GET /items HTTP/1.1" 504 UT "-" "-" 0 24
501 - "192.168.65.3" "curl/7.64.1" "6f780bed-9996-9c95-a899-a5e293cd9fe4"
"catalog.istioinaction.io" "10.1.0.68:3000"
outbound|80|version-v2|catalog.istioinaction.svc.cluster.local
10.1.0.69:34488 10.1.0.69:8080 192.168.65.3:55962 - -

That’s a lot of recorded information for every request (which is helpful for debug-
ging), but it’s very difficult to make sense of the current format. In particular, new
users may scratch their heads and wonder what each value means. Fortunately, we can
configure the service proxies to use the JSON format, which is easier to read.

Enabling access logging mesh-wide
The service proxy access logs are configurable. By default, only Istio’s demo instal-
lation profile prints access logs to standard output. If you use any of the other profiles
or deviate from the installation as shown in chapter 2, you need to set the following
meshConfig.accessLogFile="/dev/stdout" property during Istio installation:

$ istioctl install --set meshConfig.accessLogFile="/dev/stdout"

Note that this enables access logging for the entire mesh. To enable access logging
for one particular workload, you can use the Telemetry API, as shown in chapter 7. 

Subset: version-v1

Subset: version-v2

Ingress
gateway

catalog
(v1)

catalog
(v2)

catalog
(v2)

20%

80%

Request

Timeout after
0.5 sec

Slow responses

Figure 10.10 Two 
changes: requests time 
out after half a second, 
and a workload is 
intermittently slow.
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CHANGING THE ENVOY ACCESS LOG FORMAT

Using istioctl, we can update the Istio installation to print access logs in JSON for-
mat. The benefit of this format is that values are associated with keys so we know their
meaning:

$ istioctl install --set profile=demo \
--set meshConfig.accessLogEncoding="JSON"

This update is applied to the entire mesh, which tremendously increases the amount
of logging for every workload proxy. On larger clusters, this is discouraged, as it causes
strain on the logging infrastructure.

 After the Istio installation is updated, we can query the access logs again. And this
time, because the output is JSON, we can pipe it to jq to improve readability:

$ kubectl -n istio-system logs deploy/istio-ingressgateway \
| grep 504 | tail -n 1 | jq
{

"user_agent":"curl/7.64.1",
"Response_code":"504",
"response_flags":"UT",
"start_time":"2020-08-22T16:35:27.125Z",
"method":"GET",
"request_id":"e65a3ea0-60dd-9f9c-8ef5-42611138ba07",
"upstream_host":"10.1.0.68:3000",
"x_forwarded_for":"192.168.65.3",
"requested_server_name":"-",
"bytes_received":"0",
"istio_policy_status":"-",
"bytes_sent":"24",
"upstream_cluster":

"outbound|80|version-v2|catalog.istioinaction.svc.cluster.local",
"downstream_remote_address":"192.168.65.3:41260",
"authority":"catalog.istioinaction.io",
"path":"/items",
"protocol":"HTTP/1.1",
"upstream_service_time":"-",
"upstream_local_address":"10.1.0.69:48016",
"duration":"503",
"upstream_transport_failure_reason":"-",
"route_name":"-",
"downstream_local_address":"10.1.0.69:8080"

}

Now, reading and understanding the access logs is much easier. Two things stand out:

 The response_flags value is UT, which stands for “upstream request timeout.”
 The upstream_host value represents the actual IP address of the workload that

handled the request.

Envoy 
response flag

Upstream host receiving 
the request

Exceeds the 
duration of 500 ms
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The upstream_host helps isolate which application is intermittently slow. What’s left
is to search the Pod with that IP address and then debug what has gone awry with it.
However, we won’t stop after showing one way to find the host that’s malfunctioning.
There are multiple ways to get to the same conclusion, and we will explore all of them.

 Let’s store the slow catalog name in the variable SLOW_POD to use it later, in sec-
tion 10.3.4:

$ SLOW_POD_IP=$(kubectl -n istio-system logs deploy/istio-ingressgateway \
| grep 504 | tail -n 1 | jq -r .upstream_host | cut -d ":" -f1)
$ SLOW_POD=$(kubectl get pods -n istioinaction \

--field-selector status.podIP=$SLOW_POD_IP \
-o jsonpath={.items..metadata.name})

In this case, we were able to find the slow Pod that’s causing issues. When access logs
don’t provide enough information, we can increase the level of logging for Envoy
proxies to get more detailed logs. 

INCREASING THE LOGGING LEVEL FOR THE INGRESS GATEWAY

istioctl provides tools to read and change the logging levels of the Envoy proxy. The
current logging level can be printed as shown here:

$ istioctl proxy-config log \
deploy/istio-ingressgateway -n istio-system

active loggers:
connection: warning
conn_handler: warning
filter: warning
http: warning
http2: warning
jwt: warning
pool: warning
router: warning
stats: warning

# output is truncated

Envoy response flags
Envoy provides more details for connection failures using response flags. For exam-
ple, the response flag UT means “the upstream was very slow according to the time-
out configuration.” Having the response flag UT associated with this request is
important as it enables us to distinguish that the timeout decision was made by the
proxy and not by the application. Some of the response flags you will see most often
are as follows:

 UH—No healthy upstream (the cluster has no workloads)
 NR—No route configured
 UC—Upstream connection termination
 DC—Downstream connection termination

The entire list can be found in the Envoy documentation at http://mng.bz/PWaP.

Connection scope logs information 
related to the network layer.

HTTP scope logs information related 
to the application layer, such as 
HTTP headers, path, and so on.

Routing scope logs details 
such as to which cluster 
the request is routed to.

http://mng.bz/PWaP
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From the output, let’s elaborate on the meaning of connection: warning. The key
connection represents the logging scope. Meanwhile, the value warning represents
the logging level for this scope, which means only logs with a logging level of warning
are printed for connection-related logs.

 Other possible logging levels are none, error, warning, info, and debug. Being
able to specify different logging levels for different scopes enables us to precisely
increase the logging level for the area of our interest without drowning in the logs
generated by Envoy.

 In our case, we can find helpful logs in those scopes:

 connection—Logs related to layer 4 (transport); TCP connection details
 http—Logs related to layer 7 (application); HTTP details
 router—Logs related to the routing of HTTP requests
 pool—Logs related to how a connection pool acquires or drops a connection’s

upstream host

Let’s increase the logging level for connection, http, and router loggers to get more
insight into our proxy behavior:

$ istioctl proxy-config log deploy/istio-ingressgateway \
-n istio-system \
--level http:debug,router:debug,connection:debug,pool:debug

Now, let’s print the logs of the ingress gateway. For simplicity, we redirect the output
into a temporary file:

$ kubectl logs -n istio-system deploy/istio-ingressgateway \
> /tmp/ingress-logs.txt

Open the logs stored in the temporary file with your favorite editor, and search for the
HTTP 504 response code in the output. You’ll find a section similar to this:

2020-08-29T13:59:47.678259Z debug envoy http
[C198][S86652966017378412] encoding headers via codec (end_stream=false):
':status', '504'
'content-length', '24'
'content-type', 'text/plain'
'date', 'Sat, 29 Aug 2020 13:59:47 GMT'
'server', 'istio-envoy'

After finding the connection ID (which in this case is C198), we can query all the logs
relevant to that connection:

2020-08-29T13:59:47.178478Z debug envoy http
[C198] new stream
2020-08-29T13:59:47.178714Z debug envoy http
[C198][S86652966017378412] request headers complete (end_stream=true):
':authority', 'catalog.istioinaction.io'
':path', '/items'

2020-08-29T13:59:47.178739Z debug envoy http
[C198][S86652966017378412] request end stream

Creates a new 
connection stream
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2020-08-29T13:59:47.178926Z debug envoy router
[C198][S86652966017378412] cluster
'outbound|80|version-v2|catalog.istioinaction.svc.cluster.local'
match for URL '/items'
2020-08-29T13:59:47.179003Z debug envoy router
[C198][S86652966017378412] router decoding headers:
':authority', 'catalog.istioinaction.io'
':path', '/items'
':method', 'GET'
':scheme', 'https'

A new stream is created for the connection. The stream ID S86652966017378412 is
added to the subsequent logs. Following logs with this stream ID, we see that the
router-scoped log prints the cluster that matched the routing rules: out-

bound|80|version-v2|catalog.istioinaction.svc.cluster.local.
 After we decide which cluster to route the request to, a new upstream connection

is created to one of the instances of that cluster, as shown in the following logs:

2020-08-29T13:59:47.179215Z debug envoy connection
[C199] connecting to 10.1.0.15:3000
2020-08-29T13:59:47.179392Z debug envoy connection
[C199] connection in progress
2020-08-29T13:59:47.179818Z debug envoy connection
[C199] connected
2020-08-29T13:59:47.180484Z debug envoy connection
[C199] handshake complete
2020-08-29T13:59:47.180548Z debug envoy router
[C198][S86652966017378412] pool ready
2020-08-29T13:59:47.67788Z debug envoy router
[C198][S86652966017378412] upstream timeout
2020-08-29T13:59:47.677983Z debug envoy router
[C198][S86652966017378412] resetting pool request
2020-08-29T14:52:37.036988Z debug envoy pool
[C199] client disconnected, failure reason:
2020-08-29T14:52:37.037060Z debug envoy http
[C198][S17065302543775437839] Sending local reply with details

➥upstream_response_timeout
2020-08-29T13:59:47.678259Z debug envoy http
[C198][S86652966017378412] encoding headers via

➥codec (end_stream=false):
':status', '504'
'content-length', '24'
'content-type', 'text/plain'
'date', 'Sat, 29 Aug 2020 13:59:47 GMT'
'server', 'istio-envoy'

2020-08-29T13:59:47.717360Z debug envoy connection
[C198] remote close
2020-08-29T13:59:47.717419Z debug envoy connection
[C198] closing socket: 0

Two important findings are first, that the IP address of the upstream that responds
slowly matches the IP address retrieved from the access logs, which further solidifies
that only one instance is misbehaving instance; and second, that the client (proxy)

Matches the cluster 
to route traffic to

A new connection was 
created to the upstream.

The timeout for the 
connection was exceeded.

The client 
disconnected.

A response with 504 was 
sent to the downstream.

The connection to the 
downstream was closed.
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terminated the connection to the upstream, as indicated by the log [C199] client
disconnected. This matches our expectation that the client (proxy) is terminating
the requests because the upstream instance is exceeding the timeout configuration.

 Envoy loggers provide deep insights into how the proxy is behaving. In the next
section, we investigate the network traffic on the server side. 

10.3.4 Inspect network traffic with ksniff

We can validate that the proxy terminates the connection by inspecting the network
traffic of the affected Pod. By now, this is not really necessary because we verified it
using the Envoy logs. But the goal is to give you practice with the following network
inspection tools:

 Ksniff—A kubectl plugin that uses tcpdump to capture the network traffic of a
Pod and redirects it to Wireshark

 Wireshark—A network packet analyzing tool

Using both in conjunction provides a smooth debugging experience.

INSTALLING KREW, KSNIFF, AND WIRESHARK

To install ksniff, we need Krew, the kubectl plugin manager. The installation proce-
dure for Krew is documented at https://krew.sigs.k8s.io/docs/user-guide/setup/
install. With that done, the ksniff installation is as simple as installing a package:

$ kubectl krew install sniff

The last required tool is Wireshark. Follow the installation guide for your system at
www.wireshark.org/download.html. After installing Wireshark, verify that it is accessi-
ble from the command line (that’s how ksniff activates it):

$ wireshark -v

Wireshark 3.2.5 (v3.2.5-0-ged20ddea8138)

With the tools installed, we are ready to proceed. 

INSPECTING NETWORK TRAFFIC ON THE LOCALHOST INTERFACE

To inspect network traffic of the malfunctioning Pod, execute the following
command:

$ kubectl sniff -n istioinaction $SLOW_POD -i lo

On a successful connection, ksniff uses tcpdump to capture network traffic from the
localhost network interface and redirects the output to your local Wireshark instance
for visualization. If you still have the script for generating traffic, sufficient traffic will be
captured in a short period. If not, execute the command in a separate terminal window:

$ for i in {1..100}; do curl http://localhost/items \
-H "Host: catalog.istioinaction.io" \
-w "\nStatus Code %{http_code}\n"; sleep .5s;  done

$SLOW_POD was set in the 
section “Changing the 
Envoy access log format.”

https://krew.sigs.k8s.io/docs/user-guide/setup/install
https://krew.sigs.k8s.io/docs/user-guide/setup/install
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After a couple of seconds, stop capturing traffic by clicking the stop icon on the main
toolbar (see figure 10.11).

To get a better overview, let’s only show packets of the HTTP protocol of the GET
method that have the path /items. This can be done using the Wireshark display filter
with the query http contains "GET /items", as shown in figure 10.12.

Figure 10.12 Filtering to show only HTTP "GET /items" requests

Figure 10.11
Stop capturing 
additional 
network 
packets.
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This reduces the output to only requests we are interested in. We can get more details
about the start of a TCP connection up to when it was canceled by following its TCP
stream. To do so, right-click the first row, select the Follow menu item, and then select
TCP Stream. The Follow TCP Stream window opens, which shows the TCP stream in
an easy-to-understand format. Feel free to close this window, as the filtered output in
the main Wireshark window will suffice.

 Figure 10.13 shows the TCP stream:

 Point 1—The TCP three-way handshake was performed to set up a TCP connec-
tion, as indicated by the TCP flags [SYN], [SYN, ACK], and [ACK].

 Point 2—After the connection is set up, we see that it is reused for multiple
requests from the client, and all of those are successfully served.

 Point 3—Another request comes in from the client, which is acknowledged by
the server, but the response takes longer than half a second. This can be seen
from the time difference from packet number 133 to packet number 137.

 Point 4—The client initiates a TCP connection termination by sending a FIN
flag. Because the request takes too long, this is acknowledged by the server side,
and the connection is terminated.

Figure 10.13 Stream of packets of a TCP connection
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Inspecting the network traffic verified both of our earlier observations: the client initi-
ates the connection termination, and the server is slow about responding to requests.
In the next section, we investigate the success rate of the server to get an idea of
whether this is a rare issue or a frequent one that requires immediate attention. 

10.4 Understanding your application using Envoy telemetry
In chapter 7, section 7.2.1, we covered the metrics stored in Envoy proxies. With those
metrics, we can find out the error rate of our services. The simplest way to get a quick
overview is to use Grafana and the dashboards that come preinstalled with the
Grafana addon.

10.4.1 Finding the rate of failing requests in Grafana

We’ll continue with the same state we left earlier in this chapter. We can generate traf-
fic as we did previously with the following command:

$ for i in {1..100}; do curl http://localhost/items \
-H "Host: catalog.istioinaction.io" \
-w "\nStatus Code %{http_code}\n"; sleep .5s;  done

Now, let’s open the Grafana dashboard:

$ kubectl -n prometheus port-forward svc/prom-grafana 3000:80

Log in with the following credentials:

Username: admin
Password: prom-operator

Navigate to the Istio Service Dashboard, filter for the service catalog.istioinac-
tion.svc.cluster.local and open the General panel. Here, check the diagram
titled Client Success Rate (Non-5xx Responses). You should see a success rate similar
to what we have shown in the figure 10.14. If you don’t see the Istio Service Dash-
board, refer back to chapter 7 to install Prometheus and Grafana and refer to chapter
8 to configure the dashboards.

TCP control flags
TCP control flags indicate a particular state for a connection. The flags we see here
are as follows:

 Synchronization (SYN) is used to establish a new connection.
 Acknowledgment (ACK) is used to acknowledge that a packet was success-

fully received.
 Finish (FIN) is used to request connection termination.

Knowledge of the TCP control flags simplifies inspecting the network traffic.
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When we compare to the server success rate (see figure 10.15), we see a difference.
The server is reporting a success rate of 100% because the Envoy proxy marks the
response code for downstream terminated requests with the value 0, which is not a
5xx response and hence doesn’t count toward the failure rate. Meanwhile, the client
marks the request with the correct status code of 504 (“Gateway timeout”); hence it’s
counted toward the failed requests (see figure 10.16).

With that clarified, we know that the correct rate is reported by the client. A failure
rate of 20 to 30% requires immediate attention! But Grafana shows us the success rate
of all workloads behind the catalog service. To identify the single instance that has
issues, we need more detailed output. 

10.4.2 Querying the affected Pods using Prometheus

Whenever the Grafana dashboard doesn’t provide enough details, we can query Pro-
metheus directly. For example, let’s query and find out the failure rate for every Pod,
which will help us isolate the unhealthy application.

 Open the Prometheus dashboard:

$ kubectl -n prometheus port-forward \
svc/prom-kube-prometheus-stack-prometheus 9090

Figure 10.14 The client success 
rate shows that approximately 
30% of requests are failing.

Figure 10.15 The server is not 
aware of any issues.

Ingress
gateway

catalog
(v2)

Request
timeout

Response flag:   UT
Status code:       504

Response flag:  DC
Status code:       0

Figure 10.16 Differences in 
response flags and response codes 
as set by the client and server
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Now, let’s query metrics that fulfill these criteria:

 Requests reported by the destination
 Requests whose destination service is the catalog service 
 Requests with the response flag DC (downstream connection termination)

sort_desc(sum(irate(
istio_requests_total{

reporter="destination",
destination_service=~"catalog.istioinaction.svc.cluster.local",
response_flags="DC"}[5m]))

by (response_code, kubernetes_pod_name, version))

After executing this query, navigate to the Graph view, where the failure rate is repre-
sented visually (see figure 10.17). The graph shows that only one workload is report-
ing failures. This is important information, as it reduces the doubt that the
deployment version-v2 is faulty. But it doesn’t entirely exclude the possibility—that
would require further investigation.

Figure 10.17 From the two version-v2 instances, only one workload reports a failure rate.

Filters to only metrics 
reported by the destination

Filters to only
metrics when catalog

is the destinationFilters to metrics that ended up with
downstream connection termination
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NOTE Instead of deleting the Pod, we recommend just removing its label, so
it doesn’t match the Kubernetes service label selector (in our example, we
need to remove the app: catalog label from the Pod). This will remove the
Pod IP address from the Kubernetes service endpoints, a change that istiod
propagates to the data plane.

If the Istio standard metrics do not provide the needed information, you can add cus-
tom metrics as shown in chapter 7, section 7.4. Additionally, you can use the Pro-
metheus client libraries to instrument your application to your liking.

 This concludes our exploration of the common tools used to troubleshoot the data
plane. You should now have confidence and a clear starting point when facing various
data-plane issues that previously might have seemed like black boxes. With the proper
tools and a deeper understanding of how Istio works, debugging data-plane issues gets
much easier (but it’s never a piece of cake).

 In the next chapter, we find out how to troubleshoot issues that occur in the con-
trol plane. We address how to improve control-plane performance, so it scales as the
count of workloads is increased in the service mesh. 

Summary
 Using istioctl commands, we gain insights into the service mesh and the ser-

vice proxy:

– proxy-status provides an overview of the data-plane synchronization state.
– analyze analyzes the service mesh configuration.
– describe gets a summary and validates a service proxy configuration.
– proxy-config queries and modifies the service proxy configuration.

 We can use istioctl analyze to validate a configuration before applying it to
the cluster.

 We can use Kiali and its validation capabilities to detect common configuration
mistakes.

 To gain perspective on failures, use Prometheus and the collected metrics.
 We can capture the network traffic of affected Pods using ksniff.
 We can increase the logging level of the Envoy proxy using the command

istioctl proxy-config log.



Performance-tuning
the control plane
In the previous chapter on troubleshooting the data plane, we took a deep dive
into the debugging tools available to diagnose issues with proxy configuration and
proxy behavior. Understanding the service proxy configuration simplifies trouble-
shooting when behaviors do not match our expectations.

 In this chapter, we focus on optimizing control-plane performance. We investi-
gate how the control plane configures the service proxies, the factors that slow down
this process, how to monitor it, and the knobs we can turn to improve performance.

11.1 The control plane’s primary goal
In previous chapters, we’ve said that the control plane is the brains of the service
mesh and that it exposes an API for service-mesh operators. This API can be used

This chapter covers
 Understanding the factors of control-plane 

performance

 How to monitor performance

 What are the key performance metrics

 Understanding how to optimize performance
295
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to manipulate the behavior of the mesh and configure the service proxies deployed
alongside each workload instance. What we omitted for brevity is that service mesh
operators—that is, us—making requests to this API is not the only way the mesh’s
behavior and configuration are affected. More generally, the control plane abstracts
away details of the run-time environment such as what services exist (service discov-
ery), which services are healthy, autoscaling events, and so on.

 Istio’s control plane listens to events from Kubernetes and updates the configura-
tion to reflect the new desired state. This is an ongoing process to maintain a correctly
behaving mesh, and it’s important that this state reconciliation process happens in a
timely fashion. Whenever the control plane fails to do so, it causes unexpected conse-
quences because workloads are configured for a state that has already changed.

 A common phenomenon that crops up when performance degrades is known as
phantom workloads: services are configured to route traffic to endpoints that are already
long gone, and hence the requests fail. The phantom workloads concept is illustrated
in figure 11.1:

1 A workload that is becoming unhealthy triggers an event.
2 A delayed update causes services to have a stale configuration.
3 Because of the outdated configuration, the service routes traffic to the non-exis-

tent workload.

Figure 11.1 Routing traffic to phantom workloads due to an outdated configuration

Due to the eventually consistent nature of the data plane, having a stale configuration
for a short time won’t cause too many negative consequences, as other protective mech-
anisms can be employed. For example, by default, if a request fails for networking rea-
sons, it will be retried twice, and potentially it will be served by other healthy endpoints.
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 Another remediation is outlier detection, which ejects endpoints from the cluster
when requests to it fail. However, when the delay exceeds just a few seconds, it can
begin to negatively affect end users, which we must avoid—and that’s what this chap-
ter is dedicated to.

11.1.1 Understanding the steps of data-plane synchronization

Synchronizing the data plane to the desired state is a multistep process: the control
plane receives an event from Kubernetes. The event is converted into an Envoy con-
figuration and pushed to the service proxies of the data plane. Understanding the
process under the hood will guide your decision-making when fine-tuning and opti-
mizing control-plane performance.

 Figure 11.2 shows the sequence of steps to synchronize the data plane for an
incoming change:

1 An incoming event triggers the synchronization process.
2 The DiscoveryServer component of istiod listens for these events. To improve

performance, it delays adding the event to the push queue for a defined time to
batch and merge subsequent events for that period. This is known as debouncing
and ensures that time-consuming tasks do not fire too often.

3 After the delay period expires, the DiscoveryServer adds the merged events to
the push queue, which maintains a list of pushes waiting to be processed.

4 The istiod server throttles (limits) the number of push requests that are pro-
cessed concurrently, which ensures that faster progress is made on the items
being processed and prevents CPU time from being wasted on context switch-
ing between the tasks.

5 The items that are processed are converted to Envoy configuration and pushed
to the workloads.

Figure 11.2 The sequence of actions to push the latest configuration to workloads
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In these steps, we see how istiod protects itself from becoming overloaded by using
the two practices of debouncing and throttling, which, as we see later, can be configured
to improve performance. 

11.1.2 Factors that determine performance

With a good understanding of the synchronization process, we can elaborate on the
factors that affect the performance of the control plane (see figure 11.3):

 The rate of changes—A higher rate of changes requires more processing to keep
the data plane synchronized.

 Allocated resources—If the demand exceeds the resources allocated to istiod,
work has to be queued, which results in a slower distribution of updates.

 Number of workloads to update—More processing power and network bandwidth
are required to distribute updates to more workloads.

 Configuration size—The distribution of larger Envoy configurations requires
more processing power and more network bandwidth.

Figure 11.3 The properties that affect control-plane performance

We’ll cover how to optimize performance for any of these factors. But before we do so,
let’s learn how to determine bottlenecks using the Grafana dashboards (as set up in
chapter 8), which visualize the metrics collected by Prometheus for istiod. 

11.2 Monitoring the control plane
istiod exposes metrics that measure the duration and frequency of key performance
indicators, such as resource utilization, load due to incoming or outgoing traffic, the
rate of errors, and much more. These metrics help illuminate how the control plane is
performing, what is about to break, and how to troubleshoot something that may
already be performing incorrectly.
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 The exposed metrics are described in the official Istio documentation (http://
mng.bz/y44q), but the number of metrics is overwhelming. Here we will identify the
key ones to pay attention to, and we’ll organize the metrics as they loosely fit into the
four golden signals.

11.2.1 The four golden signals of the control plane

The four golden signals, as defined by Google’s Site Reliability Engineering book
(https://sre.google/sre-book/table-of-contents), are the four key metrics to monitor
to understand the external view of how a service is performing. If a particular service
is falling outside its service-level objectives (SLOs), the golden metrics provide
insights into the cause. The four signals are latency, saturation, errors, and traffic.

 To get a quick view of the metrics in the control plane, we can query them using
the following command:

kubectl exec -it -n istio-system deploy/istiod -- curl localhost:15014/metrics

We examine these metrics in the rest of the chapter through the Grafana dashboards.

LATENCY: THE TIME NEEDED TO UPDATE THE DATA PLANE

The latency signal provides an external view into how the service is performing in the
eyes of end users. An increase in latency shows that the service is less performant.
However, it doesn’t guide us to what is causing the degradation. For that, other signals
need to be investigated.

 For Istio’s control plane, latency is measured by how quickly the control plane dis-
tributes updates to the data plane. The key metric that measures latency is
pilot_proxy_convergence_time. But to understand the step in the synchronization
process where most of the time has been spent, there are two supporting metrics:
pilot_proxy_queue_time and pilot_xds_push_time. Figure 11.4 shows the sections
of the synchronization process that these metrics cover:

1 pilot_proxy_convergence_time measures the entire process’s duration from
the time a proxy push request lands in the queue until it is distributed to the
workloads.

2 pilot_proxy_queue_time measures the time the push requests wait in the
queue until they are processed by a worker. If a considerable amount of time is
spent in the push queue, we might scale istiod vertically and increase the con-
current processing power.

3 pilot_xds_push_time measures the time required to push the Envoy configu-
ration to workloads. An increase shows that network bandwidth is overloaded
by the amount of data being transferred. We see in later sections how sidecars
can considerably improve this situation by reducing the size of configuration
updates and frequency of changes per proxy.

http://mng.bz/y44q
http://mng.bz/y44q
https://sre.google/sre-book/table-of-contents
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Figure 11.4 Portions of overall latency as covered by metrics

pilot_proxy_convergence_time is visualized in the Grafana dashboard and located
in the Istio Control Plane Dashboard in the section Pilot Push Information with the
title Proxy Push Time (see figure 11.5).

Figure 11.5 The graph shows that 99.9% of the pushes take less than 100 ms  
to be distributed to workloads, which is ideal!
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TIP Update the Istio dashboards to display the latency metrics pilot_proxy
_queue_time and pilot_xds_push_time.

As additional workloads are onboarded into the mesh, the latency for these various
metrics gradually increases. That’s expected, and you should not worry about slight
increases. But we need to define acceptable thresholds and trigger alerts when the
latency increases beyond an acceptable limit.

 We recommend thinking about thresholds with these baselines:

 Warning severity when latency exceeds 1 second for more than 10 seconds
 Critical severity when latency exceeds 2 seconds for more than 10 seconds

When notified by the first alert, there’s no reason to panic; it’s just a call to action that
service latency has increased and performance needs optimization. If left unchecked,
however, further degradation will affect end users.

 An increase in latency is the best indicator that control-plane performance is
degraded, but it doesn’t provide further insights into the cause of the degradation.
For that, we need to dig deeper into the other metrics. 

SATURATION: HOW FULL IS THE CONTROL PLANE?
The saturation metrics show the capacity at which resources are being utilized. If utili-
zation is over 90%, the service is saturated or about to become so. When istiod is sat-
urated, the distribution updates slow down as push requests are queued for longer
periods, waiting to be processed.

 Saturation is usually caused by the most constrained resource, and because istiod
is CPU intensive, usually the CPU becomes saturated first. The metrics that measure
CPU utilization are

 container_cpu_usage_seconds_total measures CPU utilization as reported by
the Kubernetes container.

 process_cpu_seconds_total

measures CPU utilization as
reported by the istiod

instrumentation.

Figure 11.6 shows the graph that
visualizes the CPU utilization met-
rics. It represents the most com-
mon pattern of CPU utilization for
istiod, where much of the time is
spent idle; when a service is
deployed, compute requests spike
as istiod is generating and push-
ing the Envoy configuration to
every workload.

Figure 11.6 CPU utilization graph from the Istio 
Control Plane Dashboard in the section Resource Usage



302 CHAPTER 11 Performance-tuning the control plane
When the control plane is saturated, it is running short on resources, and you should
reconsider how much is allocated. If you’ve tried other approaches to optimize the
behavior of the control plane, increasing resources may be the best option. 

TRAFFIC: WHAT IS THE LOAD ON THE CONTROL PLANE?
The traffic metrics measure the load the system experiences. For example, for a web
application, the load is defined by requests per second. Meanwhile, Istio’s control
plane is receiving incoming traffic (in the form of configuration changes) and has
outgoing traffic (pushing changes to the data plane). We need to measure traffic in
both directions to find the performance limiting factor; based on it, we can utilize dif-
ferent approaches to improve performance.

 The metrics for incoming traffic are as follows:

 pilot_inbound_updates shows the count of configuration updates received per
istiod instance.

 pilot_push_triggers is the total count of events that triggered a push. Push
triggers can be one of the following types: service, endpoint, or config, where
config represents any Istio custom resource such as Gateway or Virtual-
Service.

 pilot_services measures the number of services known to the pilot. When
more services are known to the pilot, more processing has to be done for
incoming events to generate the Envoy configuration. As such, this metric plays
a significant role in the load that istiod is put under due to incoming traffic.

The metrics for outgoing traffic are as follows:

 pilot_xds_pushes measures all types of pushes made by the control plane, such
as listener, route, cluster, and endpoint updates. This metric is graphed in
the Istio Control Plane Dashboard with the title Pilot Pushes (see figure 11.7).

Figure 11.7 The Pilot Pushes graph shows the frequency of pushes. The XDS Active Connections graph shows the 
endpoints managed by a control plane.
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 pilot_xds shows the total connections to workloads handled per pilot instance.
This metric is graphed in the Istio Control Plane Dashboard with the title ADS
Monitoring.

 envoy_cluster_upstream_cx_tx_bytes_total measures the configuration size
that is transferred over the network.

The distinction between incoming and outgoing traffic clarifies the cause of satura-
tion and the possible mitigation paths. When incoming traffic causes saturation, the
performance bottleneck is due to the rate of changes, and the resolution is to increase
the batching of events or scale up. If saturation correlates with outgoing traffic, the
resolution is to scale out the control plane so that each pilot has fewer instances to
manage, and to define Sidecar resources for every workload (demonstrated in later
sections). 

ERRORS: WHAT IS THE FAILURE RATE IN THE CONTROL PLANE?
Errors represent the failure rate of istiod and usually crop up when the service is sat-
urated and its performance degrades. The most important error metrics are listed in
table 11.1. They are visualized in the Istio Control Plane Dashboard with the title Pilot
Errors.

That covers the most important metrics that provide insights into the control plane’s
state and how it is performing and help us uncover performance bottlenecks. 

11.3 Tuning performance
Recall that the control-plane performance factors are the rate of changes in the clus-
ter/environment, the resources allocated to it, the number of workloads it manages,
and the configuration size pushed to those workloads. If any of those becomes a bottle-
neck, we have multiple ways to improve performance, as visualized in figure 11.8.

 
 

Table 11.1 The most important error metrics

Metric Description

pilot_total_xds_rejects The count of rejected configuration pushes

pilot_xds_eds_reject,
pilot_xds_lds_reject,
pilot_xds_rds_reject,
pilot_xds_cds_reject

The subsets of the pilot_total_xds_rejects metric, 
which are useful to reduce the scope of which API 
push was rejected

pilot_xds_write_timeout The sum of errors and timeouts when initiating a 
push

pilot_xds_push_context_errors The count of Istio Pilot errors while generating the 
Envoy configuration; usually bugs in Istio Pilot
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Figure 11.8 The options to improve control-plane performance

The knobs of control-plane performance are as follows:

 Ignoring events that are not relevant to the service mesh.
 Batching events for a longer period to reduce the number of pushes required to

update the data plane.
 Allocating additional resources by

– Scaling out the istiod deployment to reduce the load by splitting the num-
ber of workloads managed among pilot instances

– Scaling up the istiod deployment to speed up the generation of the Envoy
configuration and enable the processing of more push requests concurrently

 Pushing only relevant updates to workloads by defining a sidecar configuration
that informs the control plane about the relevant configuration for a workload.
This has two benefits:

– Reduces the configuration size sent to a service proxy by sending only the
minimal configuration needed for its processes

– Reduces the number of proxies that are updated for a single event

To show how performance can be improved by these means, let’s set up some services
in our cluster and define a performance test.

11.3.1 Setting up the workspace

First, let’s assume that we have Istio deployed but don’t have any other application
components deployed. If you are continuing from previous chapters, you may have to
clean up any left-behind deployments, services, gateways, and virtual services:

$ kubectl config set-context $(kubectl config current-context) \
--namespace=istioinaction

$ kubectl delete virtualservice,deployment,service,\
destinationrule,gateway --all
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To give istiod some workloads to manage, let’s create the catalog workloads and
another 10 dummy workloads:

$ kubectl -n istioinaction apply -f services/catalog/kubernetes/catalog.yaml
$ kubectl -n istioinaction apply -f ch11/catalog-virtualservice.yaml
$ kubectl -n istioinaction apply -f ch11/catalog-gateway.yaml
$ kubectl -n istioinaction apply -f ch11/sleep-dummy-workloads.yaml

For the pilot, this is still too easy. Let’s further aggravate the situation by bloating the
Envoy configuration with some dummy services:

$ kubectl -n istioinaction apply -f ./ch11/resources-600.yaml

So now the single istiod instance manages 13 workloads, including ingress and
egress gateways, and another 600 total services are known to it, which increases the
amount of processing to generate the Envoy configuration and bloats the configura-
tion that has to be pushed to the workloads. 

11.3.2 Measuring performance before optimizations

We’ll determine the control-plane performance with a test that generates load by cre-
ating services repeatedly and then measures both the number of pushes and the 99th
percentile (P99) latency to distribute the configuration updates to the proxies.

Let’s run the test with 10 repetitions and a delay of 2.5 seconds between repetitions to
spread out the changes and avoid having them batched:

$ ./bin/performance-test.sh --reps 10 --delay 2.5

gateway.networking.istio.io/service-003c-0 created
service/service-003c-0 created
virtualservice.networking.istio.io/service-003c-0 created
<omitted>
==============
Push count: 700
Latency in the last minute: 0.49 ms

According to the test, with the current configuration to distribute the changes, 700
pushes were performed with a P99 latency of 0.49 ms. If we remove the delay between
the services, we see that both the number of pushes and latency drop. That’s because
events are batched and served with less work (we explore how to configure batching

Understanding P99
The P99, or 99th percentile, measures the maximum latency of the fastest 99% of
propagated updates. For example, a P99 latency of 80 ms tells us that 99% of
requests were propagated faster than 80 ms! We don’t exactly know where each of
those requests falls, and the majority could be in the range of a few milliseconds. But
we know that even the worst-performing request was served within 80 ms when con-
sidering only the fastest 99%.

Push count to 
apply changes. Latency in the 

last minute
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in later sections). Keep in mind that the measurements will differ for you, and that’s
okay. The goal of this test is to make a “good enough” measurement that validates per-
formance gains after we try out optimizations in subsequent sections.

REDUCING CONFIGURATION SIZE AND NUMBER OF PUSHES USING SIDECARS

In a microservice environment, it’s common for one service to depend on other ser-
vices. It’s rare, however, for one service to require access to every other available ser-
vice (or, at least, we avoid this situation). Out of the box, Istio cannot determine the
access that each service needs, so by default, it configures every service proxy to know
about every other workload in the mesh. You can imagine that this bloats the configu-
ration of the proxies needlessly. For example, let’s calculate the configuration size of
the catalog workload:

$ CATALOG_POD=$(kubectl -n istioinaction get pod -l app=catalog \
-o jsonpath={.items..metadata.name} | cut -d ' ' -f 1)

$ kubectl -n istioinaction exec -ti $CATALOG_POD -c catalog \
-- curl -s localhost:15000/config_dump > /tmp/config_dump

$ du -sh /tmp/config_dump
2M /tmp/config_dump

Right now, we have a configuration size of 2 MB. And that’s a lot! Even for a medium
cluster of 200 workloads, that adds up to 400 MB of Envoy configuration, which
requires more compute power, network bandwidth, and memory as it is stored in
every sidecar proxy. 

THE SIDECAR RESOURCE

To resolve these concerns, we can use the Sidecar resource to fine-tune the configu-
ration of inbound and outbound traffic for the sidecar proxies. To understand how it
does this, let’s take a closer look at an example Sidecar resource:

apiVersion: networking.istio.io/v1beta1
kind: Sidecar
metadata:

name: default
namespace: istioinaction

spec:
workloadSelector:

labels:
app: foo

egress:
- hosts:

- "./bar.istioinaction.svc.cluster.local"
- "istio-system/*"

These fields are available for configuration:

 The workloadSelector field limits the workloads to which the sidecar configu-
ration applies.

 The ingress field specifies the handling of inbound traffic to the application.
If omitted, Istio configures the service proxy automatically by looking up the
Pod definition.
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 The egress field specifies the handling of the application’s outbound traffic to
an external service through the sidecar. If omitted, the configuration inherits
the egress configuration from a more generic sidecar, if present; otherwise, it
falls back on the default behavior of configuring access to all other services.

 The outboundTrafficPolicy field specifies the mode for handling outbound
traffic. It can be set to either of the following:

– REGISTRY_ONLY mode, which configures the workload to allow outbound
traffic to only services it was configured for

– ALLOW_ANY mode, which allows outbound traffic to any destination

When a Sidecar resource applies to a workload, the control plane uses the egress
field to determine which services the workload requires access to. That enables Istio’s
control plane to discern relevant configuration and updates and send only those to
the respective proxies. As a result, it avoids generating and distributing all the config-
urations on how to reach every other service, thus reducing CPU, memory, and net-
work bandwidth consumption. 

DEFINING BETTER DEFAULTS WITH A MESH-WIDE SIDECAR CONFIGURATION

The easiest way to reduce the Envoy configuration sent to every service proxy and
improve control-plane performance is to define a mesh-wide sidecar configuration
that permits egress traffic only to services in the istio-system namespace. Defining
such a default configures all proxies in the mesh with the minimal configuration to
connect only to the control plane and drops all configuration for connectivity to
other services. This approach nudges service owners toward the correct path of defin-
ing more specific sidecar definitions for their workloads and explicitly stating all
egress traffic their services require, thus ensuring that workloads receive minimal and
relevant configuration needed for their processes.

 With the following Sidecar definition, we configure all service sidecars in the mesh
to connect only to the Istio services located in the istio-system namespace (and for
Prometheus to scrape metrics):

apiVersion: networking.istio.io/v1beta1
kind: Sidecar
metadata:

name: default
namespace: istio-system

spec:
egress:
- hosts:

- "istio-system/*"
- "prometheus/*"

outboundTrafficPolicy:
mode: REGISTRY_ONLY

Let’s apply it to the cluster:

$ kubectl apply -f ch11/sidecar-mesh-wide.yaml

sidecar.networking.istio.io/default created

The sidecar in the istio-system 
namespace applies to the entire mesh.

Egress traffic is configured 
only for workloads in the 
istio-system namespace.

REGISTRY_ONLY mode allows outbound traffic 
only to services configured by the sidecar.
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Now, the control plane updates the current service proxies to have only the minimal
configuration that enables connectivity to services in the istio-system namespace. If
our hypothesis is correct, the Envoy configuration size for the catalog workload
should be reduced considerably. Let’s verify that:

$ kubectl -n istioinaction exec -ti $CATALOG_POD -c catalog \
-- curl -s localhost:15000/config_dump > /tmp/config_dump

$ du -sh /tmp/config_dump
644K /tmp/config_dump

That’s a massive reduction of the configuration size, down to 600 KB from 2 MB. Fur-
thermore, that’s not the only benefit: from now on, the control plane will make fewer
pushes as it determines which workloads need an update and which don’t. Let’s verify
that using the performance test:

$ ./bin/performance-test.sh --reps 10 --delay 2.5

<omitted>
==============
Push count: 135
Latency in the last minute: 0.10 seconds

As expected, both the push count and latency have dropped. This increase in perfor-
mance demonstrates the importance of defining a mesh-wide Sidecar resource.
Doing so is beneficial to reduce the operational cost of the mesh, improve its perfor-
mance, and ingrain good habits in the tenants of the platform to explicitly define
egress traffic for their workloads.

 For already existing clusters, to not cause service outages, you need to carefully
check with users or tenants of the platform, so they first define the egress traffic
of their workloads using more specific Sidecar resources. Then you can apply a
default mesh-wide sidecar configuration. You should always test the changes in a pre-
production environment.

Sidecar configuration scopes
Sidecar configurations, similar to PeerAuthentication resources, can be applied
on different scopes:

 A mesh-wide sidecar applies to all workloads within the mesh and enables
defining defaults, such as limiting egress traffic unless explicitly specified
otherwise. To create a mesh-wide sidecar configuration, apply it in the Istio
installation namespace (for us, istio-system). By convention, mesh-wide
sidecars are named default.

 A namespace-wide sidecar configuration is more specific and overrides the
mesh-wide configuration. To create a namespace-wide sidecar configuration,
apply it in the desired namespace without defining the workloadSelector
field. By convention, namespace-wide sidecars are named default.
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11.3.3 Ignoring events: Reducing the scope of discovery using 
discovery selectors

It may come as a surprise that the Istio control plane by default watches events for the
creation of Pods, services, and other resources in all namespaces! In larger clusters, this
can cause a strain in the control plane, which—to keep the data plane updated—pro-
cesses and generates the Envoy configuration for every event.

 To reduce this strain, in Istio 1.10, a new feature called namespace discovery selectors
was added that allows you to fine-tune exactly what inbound events the control plane
cares about. This functionality lets you specify exactly what namespaces to watch for
workloads and endpoints. Using the namespace-selector approach, you can dynami-
cally include namespaces and their respective workloads or exclude them from being
processed by the mesh. You may wish to do this either when a particular cluster has a
lot of workloads that may never be routed to by a workload in the mesh or when a par-
ticular cluster has workloads that churn constantly (like Spark jobs spinning up and
down). In this case, you want the control plane to ignore the events generated for
these workloads.

 You can enable discovery selector functionality at startup with an IstioOperator
file like the following:

apiVersion: install.istio.io/v1alpha1
kind: IstioOperator
metadata:

namespace: istio-system
spec:

meshConfig:
discoverySelectors:

- matchLabels:
istio-discovery: enabled

Here, we restrict the subset of namespaces that the control plane processes to only
those with the label istio-discovery: enabled. If a namespace does not have this
label, it is ignored.

 If you have a cluster scenario where you want to include most of the namespaces
and just exclude a small subset, you can use a label-match expression to specify which
namespaces not to include. For example, you could use something like this:

apiVersion: install.istio.io/v1alpha1
kind: IstioOperator
metadata:

 A workload-specific sidecar configuration targets specific workloads that
match the workloadSelector property. Being the most specific, it overrides
both mesh-wide and namespace-wide configurations.

At the time of this writing, multiple sidecar definitions of the same scope are not sup-
ported, and the expected behavior is not documented. 

Enables discovery 
selectors

Specifies the 
label to use
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namespace: istio-system
spec:

meshConfig:
discoverySelectors:

- matchExpressions:
- key: istio-exclude
operator: NotIn
values:

- "true"

We can update our installation of Istio with the following to exclude certain name-
spaces with the istio-exclude: true label without disrupting the existing behavior of
scanning everything:

$ istioctl install -y -f ch11/istio-discovery-selector.yaml

Then we can create a new namespace with new workloads. Let’s label this new name-
space with the following:

$ kubectl label ns new-namespace istio-exclude=true

If we deploy a new workload into this namespace, the workloads in the istioinaction
namespace will not see these endpoints. We leave this as an exercise for you to verify.

 When we have reduced the scope of discovery to only relevant namespaces using
discoverySelectors but the control plane is still saturated, our next option is to
batch events and resolve them as a group, instead of resolving each event separately. 

11.3.4 Event-batching and push-throttling properties

Events in the run-time environment that cause changes to the data-plane configura-
tions are usually outside the operator’s control. Events such as new services coming
online, scaling up replicas, or services becoming unhealthy are all detected by the
control plane and reconciled for the data-plane proxies. However, we have some con-
trol when determining how long we may delay updates and batch those events. This
has the benefit that the batched events are processed as a group and generate an
Envoy configuration that is pushed to the data plane proxies as a single unit.

 The sequence diagram in figure 11.9 shows how incoming events are delaying
(debouncing) the action of pushing changes to the service proxy. If we increase the
debounce period further, the last event (which is just falling out of the delay period)
would be included in the batch as well, ensuring that all events are merged in one
batch and pushed as a single request. On the other hand, delaying pushes by too
much will cause the data-plane configuration to become stale, and we don’t want that
either, as discussed earlier in the chapter.

 Meanwhile, going in the other direction and reducing the period ensures faster
updates. However, doing so will produce many push requests that the control plane
may not be able to distribute; those requests will be throttled in the push queue, lead-
ing to an increase in latency.
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ENVIRONMENT VARIABLES THAT DEFINE THE BATCHING PERIOD AND PUSH THROTTLING

The environment variables that define the batching period are as follows:

 PILOT_DEBOUNCE_AFTER—Specifies the time to debounce, adding an event to
the push queue. By default, it’s set to 100 ms, meaning that when the control
plane receives an event, it debounces the action of adding it to the push queue
for 100 ms. Further events occurring in this period are merged with the former
and debounce the action again. Whenever no events occur in this period, the
resulting batch is added to the push queue and is ready for processing.

 PILOT_DEBOUNCE_MAX—Specifies the maximum time in which debouncing of
events is allowed. When the time is passed, the currently merged events are
added to the push queue. By default, this variable is set to 10 seconds.

 PILOT_ENABLE_EDS_DEBOUNCE—Specifies if endpoint updates comply with the
debounce rules or have priority and land immediately in the push queue. By
default, this variable is set to true, meaning endpoint updates are debounced
as well.

 PILOT_PUSH_THROTTLE—Specifies push requests that istiod processes concur-
rently. By default, this variable is set to 100 concurrent pushes. If the CPU would
be underutilized, you can set the throttle to a higher number for faster updates.

Some general guidance for using these configuration options:

 Increase event batching when the control plane is saturated and incoming traf-
fic causes performance bottlenecks.

 Decrease event batching and increase concurrent pushes if the goal is to propa-
gate updates faster. Doing so is recommended only when the control plane is
not saturated.

Istio Pilot

Event

Service proxy

Event

Event

Event

Update pushed

ACK change

Push debounced by
incoming events

Event falling out of
the batch window

Update pushed

ACK change

Figure 11.9 Sequence 
diagram of how events are 
merged and pushed
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 Reduce concurrent pushes when the control plane is saturated and outgoing
traffic is the performance bottleneck.

 Increase concurrent pushes when the control plane is not saturated or you have
scaled up and want faster updates. 

INCREASING THE BATCHING PERIOD

To show the impact of batching, let’s set PILOT_DEBOUNCE_AFTER to a ridiculously high
value of 2.5 seconds. The adjective ridiculous is a good indicator that this shouldn’t be
done in production! It’s meant only to demonstrate the batching of events:

$ istioctl install --set profile=demo \
--set values.pilot.env.PILOT_DEBOUNCE_AFTER="2500ms"

Unless the limit is exceeded as defined by PILOT_DEBOUNCE_MAX, all events are merged
and added to the push queue, which dramatically decreases the push count. Let’s ver-
ify that by executing a performance test:

$ ./bin/performance-test.sh --reps 10 --delay 2.5

<omitted>
==============
Push count: 27
Latency in the last minute: 0.10 seconds

The push count is down to only 27 pushes! All the extra work of generating the Envoy
configuration and pushing it to the workloads is avoided, and CPU utilization and net-
work bandwidth consumption are reduced. Keep in mind that this example was just to
illustrate the effect of debouncing events and not a general goal of configuring
istiod. We recommended tuning the configuration for the Istio control plane based
on your observed metrics and environment and doing so in small increments, which is
safer than making a big change that could have an adverse effect on the performance
of the control plane. 

LATENCY METRICS DO NOT ACCOUNT FOR THE DEBOUNCE PERIOD!
After we increased the debounce period, the latency metric showed that the distribu-
tion of pushes took 10 ms, but that’s not the case. Recall that the period measured by
the latency metric starts from the point when the push request was added to the push
queue (see figure 11.4). This means that while events were being debounced, updates
were not delivered. And thus, the time of pushing updates increased, but this didn’t
appear in the latency metrics!

 This increased latency caused by debouncing events for too long leads to stale con-
figurations, just as low performance would. For this reason, make modest changes to
the batching properties by slightly increasing or decreasing the values.

NOTE The data plane is commonly affected by late endpoint updates. Setting
the environment variable PILOT_ENABLE_EDS_DEBOUNCE to false ensures that
endpoint updates are not delayed and skip the debouncing period. 
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ALLOCATING ADDITIONAL RESOURCES TO THE CONTROL PLANE

After defining a Sidecar resource, using discovery selectors, and configuring batching,
the only other option to improve performance is to allocate additional resources to the
control plane. When allocating additional resources, we can either scale out by adding
more istiod instances or scale up by providing more resources to every instance.

 The decision of whether to scale out or up depends on what’s causing the perfor-
mance bottleneck:

 Scale out when the outgoing traffic is the bottleneck. This occurs only when
there are many workloads managed per istiod instance. Scaling out reduces
the workload count that an istiod instance manages.

 Scale up when the incoming traffic is the bottleneck. This occurs when many
resources (Service, VirtualService, DestinationRule, and so on) are pro-
cessed to generate the Envoy configuration. Scaling up provides the istiod
instances with more processing power.

The following command scales out istiod by setting the replica count to three
instances and scales up the resources allocated to each istiod instance:

$ istioctl install --set profile=demo \
--set values.pilot.resources.requests.cpu=2 \
--set values.pilot.resources.requests.memory=4Gi \
--set values.pilot.replicaCount=3

By setting CPU and memory requests, we inform the kubelet (a Kubernetes compo-
nent that runs containers on nodes) that it should reserve those resources for istiod
instances. Meanwhile, increasing the replica count ensures that the deployment will
have three replicas among which the management of workloads is split.

Autoscaling istiod deployment
Autoscaling is generally a good idea to optimize resource consumption, especially for
burstable workloads like Istio’s control plane. But as of now, this isn’t effective for
istiod because it initiates a 30-minute connection with the workloads, which is used
to configure and update the proxies using the Aggregated Discovery Service (ADS).
So, newly spun up istiod
replicas don’t receive any
load until the connections
between the service proxies
and the previous pilot expire.
Because they don’t receive
any load, the new istiod
replicas are scaled in. This
produces a flapping behavior
where the deployment
repeatedly scales out and in,
as shown in this figure:

Sets CPU requests to 
two virtual cores

Sets memory 
requests to 4 GBNumber of replicas to 

scale the deployment to

istiod istiodistiod

Scale in

Scale out

CPU utilization 95% CPU utilization 95% CPU utilization 5%
AVG utilization 50%

Newly scaled-up
istiod replica

AVG utilization 95%
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The major takeaways of optimizing control-plane performance are as follows:

 Always define sidecar configurations for your workloads. This alone will provide
you with the majority of benefits.

 Modify event batching only when the control plane is saturated and you already
have a lot of resources allocated to it.

 Scale out when the bottleneck is outgoing traffic.
 Scale up when the bottleneck is incoming traffic. 

11.4 Performance tuning guidelines
Before tuning performance, keep in mind that Istio is really performant. The Istio
team tests every new release with the following parameters:

 1,000 Kubernetes services that bloat the Envoy configuration
 2,000 workloads that need to be synchronized
 70,000 requests per second in the entire service mesh

This load consumes only one virtual core and 1.5 GB of memory for the single Istio
Pilot instance, which synchronizes the entire mesh. (Performance is measured by Istio
and published at http://mng.bz/g4xl.) Even a moderate allocation of resources, such
as two vCPU and 2 GB with three replicas, will suffice for most production clusters.

NOTE Performance is an important factor for Istio. Besides ensuring scalabil-
ity for users of Istio, it benefits open source projects that are built on top of it,
such as Knative, Kyma, and many others.

Here are some guidelines for control-plane performance tuning:

 Ensure that this is a performance issue. Answer questions such as
– Is there connectivity from the data plane to the control plane?
– Is it a platform issue? For example, on Kubernetes, is the API server healthy?
– Are Sidecar resources defined to scope changes?

 Identify the performance bottleneck. Use the collected metrics for latency, satura-
tion, and traffic to inform your tuning decisions. For example:
– An increase in latency while the control plane is not saturated shows that

resources are not utilized optimally. You can increase the concurrent push
threshold so that more pushes are processed concurrently.

– Low utilization but quick saturation under load shows that your changes are
very bursty, meaning there are long periods without changes followed by a

(continued)

Currently, the best way to configure autoscaling is for a gradual load increase—as in
days, weeks, or even months. This reduces the human resource overhead to contin-
ually monitor performance and make decisions about scaling the deployment out or in.

http://mng.bz/g4xl
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spike of events for a short time. Increase the replica count of Istio Pilot or, if
there is room for delaying updates, tweak the batching properties.

 Make incremental changes. After identifying the bottleneck, make incremental
changes. For example, to resolve cases where the control plane is receiving a
sequence of events for a longer time, it is tempting to double or even quadruple
the debounce period, although doing so easily causes the data plane to become
stale. Instead, make slight adjustments such as increasing or decreasing proper-
ties in the range of 10% to 30%. Then, monitor the benefits (or degradation)
for a couple of days, and make informed decisions based on the new data.

 Err on the safe side. Istio Pilot is managing the network of the entire mesh; down-
time easily causes outage. Always be gracious with the resources given to the
control plane, never scale below two replicas, and err on the safe side.

 Consider using burstable VMs. Istio Pilot doesn’t need CPU resources continu-
ously and has burstable performance requirements.

Before finishing up, let’s remove the Sidecar resource we created earlier, as it could
cause unintended connectivity issues in future chapters:

$ kubectl delete -f ch11/sidecar-mesh-wide.yaml

In the next chapter, you learn how to scale Istio in your organization. We discuss using
multiple gateways, adding support for non-Kubernetes workloads, using the existing
certificate authority, and implementing control-plane availability patterns in your ser-
vice mesh. 

Summary
 The primary goal for the control plane is to keep the data plane synchronized

to the desired state.
 The factors that affect Istio Pilot performance are the rate of changes, the

resources allocated to the pilot, the workload count it manages, and the config-
uration size.

 The rate of changes received from the underlying platform is not in our con-
trol. But we can define how long to batch events and reduce the amount of
work to update the data plane.

 Allocate resources to istiod graciously. The default production profile is a
good starter.

 Always use the Sidecar custom resource to scope changes. Doing so ensures that
– Fewer workloads are updated for an event.
– The Envoy configuration size is reduced, as only relevant configuration is sent.

 Ignore events from namespaces that are not relevant to the mesh using discov-
ery selectors.

 Use the Grafana Istio Control Plane Dashboard to decide how to tune the con-
trol plane.
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Part 4

Istio in your organization

In the previous chapters, we saw how to configure and apply Istio’s powerful
capabilities for your service architectures. Chapters 12–14 deal with the reality of
running Istio in your organization. How do you scale, troubleshoot, and tune
Istio when running at scale? How do you include multiple clusters, VMs, and
other constraints in your environments? Finally, we help answer how to custom-
ize and tailor the behavior of the service mesh for your particular use cases with
technologies like WebAssembly (Wasm) and others.
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Scaling Istio in
your organization
In the previous chapters, we have seen many of Istio’s features and the capabilities
they enable within a mesh on a single cluster. However, a service mesh is not bound to
a single cluster; it can span many clusters and provide the same capabilities across all
of them. In fact, a mesh’s value increases when more workloads are part of it.

 But when would we want a service mesh to span multiple clusters? What are the
benefits of a multi-cluster service mesh compared to a single cluster? To answer those
questions, let’s revisit the fictitious ACME Inc., which moved to a cloud platform and
experienced all the networking complexities added by microservice architectures.

This chapter covers
 Scaling the service mesh in multiple clusters

 Resolving the prerequisites to join two clusters

 Setting up common trust between workloads of 
different clusters

 Discovering cross-cluster workloads

 Configuring Istio’s ingress gateway for east-west 
traffic
319
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12.1 The benefits of a multi-cluster service mesh
Early in its cloud migration efforts, ACME had the dilemma of how to size its clusters.
The company started with a single large cluster but quickly changed that decision.
ACME decided on multiple smaller clusters due to their benefits:

 Improved isolation—Ensures that mishaps of one team won’t affect another
 Failure boundary—Draws a boundary around possible configurations or opera-

tions that could affect an entire cluster and reduces the impact on any other
parts of the architecture if a cluster goes down

 Regulatory and compliance—Restricts services that access sensitive data from
other parts of the architecture

 Increased availability and performance—Runs clusters in different regions for
improved availability and routes traffic to the closest clusters to reduce latency

 Multi- and hybrid clouds—Enables running workloads in different environments,
whether different cloud providers or hybrid clouds

During its initial evaluation, ACME considered the ability to expand service meshes
across clusters and enable cross-cluster traffic management, observability, and security
as the major drivers for opting into service meshes. To support the multi-cluster
efforts, the company considered two approaches:

 Multi-cluster service mesh—A mesh that spans multiple clusters and configures
workloads to route cross-cluster traffic. All of this is in accordance with the
applied Istio configuration, such as VirtualService, DestinationRule, and
Sidecar resources.

 Mesh federation, also known as multi-mesh—Exposes and enables the communica-
tion of workloads of two separate service meshes. This option is less automated
and requires manual configuration on both meshes to configure service-to-
service traffic. However, it’s a good option when meshes are operated by differ-
ent teams or have strict security isolation needs.

The option that we cover in this book is the multi-cluster service mesh. For mesh fed-
eration, you can see the Istio documentation at http://mng.bz/enMz. 

12.2 Overview of multi-cluster service meshes
A multi-cluster service mesh connects services across clusters in a way that is fully
transparent to the apps, meanwhile maintaining all of the service mesh’s capabilities:
fine-grained traffic management, resiliency, observability, and security for cross-cluster
communication. Istio implements a multi-cluster service mesh by querying the ser-
vices in all clusters and then using this queried information to configure service prox-
ies on how to route service-to-service traffic across clusters.

 Figure 12.1 shows what’s required to join clusters into a single mesh:

 Cross-cluster workload discovery—The control planes must discover the workloads
in the peer clusters in order to configure the service proxies (the API server of
the clusters must be accessible to Istio’s control plane in the opposite cluster).

http://mng.bz/enMz
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 Cross-cluster workload connectivity—Workloads must have connectivity between
each other. Awareness of a workload endpoint is not useful unless we can initi-
ate a connection to it.

 Common trust between clusters—Cross-cluster workloads must mutually authenti-
cate to enable the security features of Istio.

Figure 12.1 A multi-cluster service mesh requires cross-cluster discovery, 
connectivity, and common trust.

Fulfilling those criteria ensures that clusters are aware of the workloads running in
other clusters, that workloads can connect to each other, and that workloads can
authenticate and authorize using Istio policies. All of those are preconditions to set-
ting up a multi-cluster service mesh.

12.2.1 Istio multi-cluster deployment models

We distinguish between two types of clusters in multi-cluster service meshes:

 Primary cluster—The cluster in which Istio’s control plane is installed
 Remote cluster—The cluster that is remote to the control-plane installation

Multi-cluster connectivity and security
As mentioned previously, for Istio to establish multi-cluster connectivity between the
clusters, workloads can be discovered only by accessing the Kubernetes API in the
peer clusters. For some organizations, this may be an undesirable security posture
where each cluster has access to all other clusters’ APIs. In this case, mesh federa-
tion is a better approach. Projects like Gloo Mesh (https://docs.solo.io/gloo-mesh/
latest) can help with both automation and the security posture.

Remote clusterPrimary cluster

Istio Pilot

Workload
Workload

Workload
Workload

Workload
Workload

Workload
Workload

Trust

Connectivity

Discovery

https://docs.solo.io/gloo-mesh/latest
https://docs.solo.io/gloo-mesh/latest


322 CHAPTER 12 Scaling Istio in your organization
Based on the availability we want
to achieve, we have the following
deployment models: primary-
remote (shared control plane),
primary-primary (replicated con-
trol plane), and external control
plane.
   The primary-remote deploy-
ment model (see figure 12.2) has
a single control plane managing
the mesh, and for that reason, it’s
often referred to as the single con-
trol plane or shared control plane

deployment model. This model uses fewer resources; however, an outage in the primary
cluster affects the entire mesh. As such, it has low availability.

 The primary-primary deployment model (see figure 12.3) has multiple control
planes, which ensures higher availability but has the trade-off of requiring more
resources. This improves availability as outages are scoped to the clusters in which
they occur. We refer to this model as the replicated control plane deployment model.

The external control plane (see
figure 12.4) is a deployment
model where all clusters are
remote to the control plane. This
deployment model enables cloud
providers to provide Istio as a
managed service.
  
Figure 12.4 The external control plane 
deployment model
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12.2.2 How workloads are discovered in multi-cluster deployments

Istio’s control plane needs to talk to the Kubernetes API server to gather relevant
information to configure the service proxies, such as services and endpoints behind
those services. Making requests to the Kubernetes API server is sort of a superpower,
as you can look up resource details, query sensitive information, and update or delete
resources to the degree of setting the cluster in a bad and irreversible state.

NOTE Although we will cover securing access to a remote Kubernetes API
using tokens and role-based access control (RBAC), an astute reader must
consider the trade-offs of this approach. See the previous section for how
mesh federation can mitigate this risk.

Kubernetes secures access to the API server using RBAC. Kubernetes RBAC is a broad
topic—and out of the scope of this book—but we can highlight some of the concepts
used to facilitate cross-cluster discovery:

 Service accounts provide identity to non-human clients such as machines or
services.

 Service account tokens are automatically generated for every service account and
represent its identity claim. Tokens are formatted as JSON Web Tokens and are
injected by Kubernetes into Pods that can use the tokens to authenticate to the
API server.

 Roles and cluster roles define the set of permissions for identity, such as a service
account or a regular user.

Figure 12.5 visualizes the Kubernetes resources that provide authentication and
authorization to istiod.

Figure 12.5 Resources that configure the identity and access of istiod
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Cross-cluster workload discovery is technically the same. However, as shown in figure
12.6, we need to provide istiod with the service account token of the remote cluster
(along with the certificates to initiate a secure connection to the API server, as we see
when we get to the concrete examples). istiod uses the token to authenticate to
remote clusters and discover workloads running in them.

Figure 12.6 istiod uses the service account credential to query the workload 
information of the second cluster.

This may sound like an arduous process, but there is nothing to worry about.
istioctl automates the process, as we see later in the chapter. 

12.2.3 Cross-cluster workload connectivity

The other precondition is that workloads have cross-cluster connectivity. When clus-
ters are in a flat network, such as sharing a single network (like Amazon VPC), or
when their networks are connected using network peering, workloads can connect
using IP addresses, and the condition is already met! However, when clusters are in
different networks, we have to use special Istio ingress gateways that are located at the
edge of the network and proxy cross-cluster traffic. Ingress gateways that bridge clus-
ters in multi-network meshes are known as east-west gateways (see figure 12.7). We’ll
elaborate on east-west gateways later in this chapter. 

12.2.4 Common trust between clusters

The last factor we need to resolve is that clusters in a multi-cluster service mesh must
have common trust. Having common trust ensures that workloads of opposite clusters
can mutually authenticate. There are two methods to achieve common trust between
workloads of opposite clusters. The first uses what we call plug-in CA certificates: user-
defined certificates issued from a common root CA. The second integrates an external
CA that both clusters use to sign certificates.
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Figure 12.7 East-west gateways reverse proxy requests to the workloads in their 
respective clusters.

PLUG-IN CA CERTIFICATES

Using plug-in intermediate CA certificates is easy! Instead of letting Istio generate an
intermediate CA, you specify the certificate to be used by providing it as a secret on
the Istio installation namespace. You do so for both clusters and use intermediate
CAs that were both signed by the common root CA. This approach is visualized in fig-
ure 12.8.

Figure 12.8 Using intermediate CA certificates that are signed by the same root
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This method is favorable due to its simplicity; however, it poses a security risk if the
intermediate CAs are exposed. Attackers can use them to sign certificates that are
trusted until the exposure is detected and the intermediate CA’s certificate is revoked.
For this reason, organizations are reluctant to hand over intermediate CAs. The expo-
sure risk can be reduced by only loading the intermediate CAs into memory and not
persisting them as Kubernetes secrets into etcd (the datastore where Kubernetes
resources such as secrets are stored). An even safer alternative is to integrate an exter-
nal CA that signs the certificates.

EXTERNAL CERTIFICATE AUTHORITY INTEGRATION

In this solution, istiod acts as a registration authority that validates and approves cer-
tificate signing requests (CSRs) stored as Kubernetes CSRs. The Kubernetes CSRs that
are approved are submitted to the external CA in one of the following ways:

 Using cert-manager—Only viable when our external CA is supported by cert-
manager (see the supported external issuers: https://cert-manager.io/docs/
configuration/external). If that’s the case, then with cert-manager’s istio-csr, we
can listen for Kubernetes CSRs and submit them to the external CA for signing.
This is discussed in more detail in Jetstack’s blog post at www.jetstack.io/blog/
cert-manager-istio-integration.

 Custom development—Create a Kubernetes controller that listens for approved
Kubernetes CSRs and submits them to an external CA for signing. Istio’s docu-
mentation on using custom CAs (http://mng.bz/p2JG) can be used as a start-
ing point; however, the solution needs to be adapted to use an external CA
instead of self-signing certificates with local keys. After the external CA signs the
certificate, it is stored in the Kubernetes CSR, which istiod forwards to the
workload using the Secret Discovery Service (SDS).

In this chapter, we set up common trust between clusters using plug-in CA certificates,
because it’s simpler and maintains focus on multi-cluster service meshes. We have now
covered at a high level all the required conditions to set up a multi-cluster service mesh. 

12.3 Overview of a multi-cluster, multi-network, multi-
control-plane service mesh
We’ll set up an infrastructure that mimics real-world enterprise services running in
multiple clusters, deployed across different regions, and located in different networks.
The infrastructure consists of the following (see figure 12.9):

 west-cluster—Kubernetes cluster with its private network in the us-west region.
This is where we’ll run the webapp service.

 east-cluster—Kubernetes cluster with its private network in the us-east region.
This is where we’ll run the catalog service.

Having the clusters in two different regions protects us from service outages when disas-
ters occur in one of them. There is no technical reason for the webapp and catalog

https://cert-manager.io/docs/configuration/external
https://cert-manager.io/docs/configuration/external
http://mng.bz/p2JG
www.jetstack.io/blog/cert-manager-istio-integration
www.jetstack.io/blog/cert-manager-istio-integration
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workloads to be in separate clusters—this is only for demonstration purposes. Whenever
possible, workloads that are “chatty” should be in close proximity to reduce latency.

12.3.1 Choosing the multi-cluster deployment model

The multi-network infrastructure dictates that we need to use an east-west gateway to
bridge the networks to achieve cross-cluster connectivity but leaves open the decision
whether to use the replicated control-plane deployment model or a single control
plane. The decision is driven by the business requirements. In ACME’s case, its online
store is highly popular: every minute of it being down would cost the business mil-
lions, for real! Hence high availability is a top priority, and we’ll use the primary-
primary deployment model, where the Istio control plane is deployed in each cluster. Put-
ting it all together, we’ll set up a multi-cluster, multi-network, multi-control-plane ser-
vice mesh using an east-west gateway to bridge the networks and use the primary-
primary deployment model. Let’s get started!

12.3.2 Setting up the cloud infrastructure

For multi-clusters, local environments won’t suffice; we have to use a cloud provider.
In the examples that follow, we use Azure. However, you can follow along as soon as
you set up two Kubernetes clusters in separate networks in any cloud provider.

CREATING CLUSTERS IN AZURE

The infrastructure consists of two Kubernetes clusters, each located on a different net-
work (see figure 12.9). Their creation is automated with the following script. To exe-
cute the script, you need to install the Azure CLI (see http://mng.bz/OG1n) and sign
in to get access to your subscription (see http://mng.bz/YgAN). After completing the
prerequisites, execute the script to create the infrastructure:

$ sh ch12/scripts/create-clusters-in-azure.sh

== Creating clusters ==
Done

 Network: east-network

Public internet

Cluster: east-cluster

webapp catalog

  Network: west-network

Cluster: west-cluster

Figure 12.9 Diagram of the 
multi-cluster service mesh

http://mng.bz/OG1n
http://mng.bz/YgAN
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== Configuring access to the clusters for `kubectl` ==
Merged "west-cluster" as current context in ~/.kube/config
Merged "east-cluster" as current context in ~/.kube/config

This script creates the clusters and configures the kubectl command-line tool with
two contexts: west-cluster and east-cluster. You can specify the context when exe-
cuting kubectl commands:

$ kubectl --context="west-cluster" get pods -n kube-system
$ kubectl --context="east-cluster" get pods -n kube-system

Each command prints the list of running Pods in the respective cluster, confirming
that the clusters are set up correctly. Let’s create some aliases to save us keystrokes by
not having to type the context all the time:

$ alias kwest='kubectl --context="west-cluster"'
$ alias keast='kubectl --context="east-cluster"'

With the aliases kwest and keast, the previous commands are reduced to

kwest get pods -n kube-system
keast get pods -n kube-system

Much neater! With the infrastructure created, the next step is to set up intermediate
certificates and establish common trust between clusters. 

12.3.3 Configuring plug-in CA certificates

In chapter 9, when we covered bootstrapping of workload identity—which is how
workloads get a signed certificate that proves their identity—for simplicity we omitted
the fact that Istio generates a CA to sign the certificates upon installation. This gener-
ated CA is stored as a secret named istio-ca-secret in the Istio installation name-
space and is shared with istiod replicas. The default behavior can be overridden by
plugging in our CA, which the Istio CA picks up instead of generating a new one. To
do so, we have to store the CA certificates as a secret named cacerts in the installa-
tion namespace istio-system, containing the following data (see figure 12.10):

 ca-cert.pem—The intermediate CA’s certificate.
 ca-key.pem—The intermediate CA’s private key.
 root-cert.pem—The root CA’s certificate that issued the intermediate CA. The

root CA validates the certificates issued by any of its intermediate CAs, which is
key for mutual trust across clusters.

 cert-chain.pem—The concatenation of the intermediate CA’s certificate and
the root CA certificate that forms the trust chain.

For your convenience, the intermediate CAs and the root CA are created in the direc-
tory ./ch12/certs. They are generated using the script ./ch12/scripts/generate-certif-
icates.sh, which creates a root CA and uses it to sign two intermediate CA certificates.
This results in two intermediate CAs that have common trust.
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APPLYING PLUG-IN CA CERTIFICATES

Configure the intermediate CAs in each cluster by creating the istio-system name-
space and then applying the certificates as secrets named cacerts:

$ kwest create namespace istio-system
$ kwest create secret generic cacerts -n istio-system \

--from-file=ch12/certs/west-cluster/ca-cert.pem \
--from-file=ch12/certs/west-cluster/ca-key.pem \
--from-file=ch12/certs/root-cert.pem \
--from-file=ch12/certs/west-cluster/cert-chain.pem

$ keast create namespace istio-system
$ keast create secret generic cacerts -n istio-system \

--from-file=ch12/certs/east-cluster/ca-cert.pem \
--from-file=ch12/certs/east-cluster/ca-key.pem \
--from-file=ch12/certs/root-cert.pem \
--from-file=ch12/certs/east-cluster/cert-chain.pem

With the plug-in certificates configured, we can install the Istio control plane, which
picks up the plug-in CA certificates (the user-defined intermediate certificates) to sign
workload certificates. 

12.3.4 Installing the control planes in each cluster

Before installing Istio’s control plane, let’s add network metadata for each cluster.
Network metadata enables Istio to utilize the topology information and configure
workloads based on it. Thus workloads can use locality information and prioritize
routing traffic to workloads in close proximity. Another benefit when Istio under-
stands the network topology is that it configures workloads to use east-west gateways
when routing traffic to workloads in remote clusters that are in different networks.

LABELING NETWORKS FOR CROSS-CLUSTER CONNECTIVITY

The network topology can be configured within the Istio installation using the Mesh-
Network configuration (http://mng.bz/GG6q). However, it’s a legacy piece of config-
uration kept only for rare and advanced use cases. The simpler option is to label the
Istio installation namespace with network topology information. For us, the Istio
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installation namespace is istio-system, and the network in the west-cluster is
west-network. Thus we label the istio-system in the west-cluster with topology
.istio.io/network=west-network:

$ kwest label namespace istio-system \
topology.istio.io/network=west-network

And for the east-cluster, we set the network topology label to east-network:

$ keast label namespace istio-system \
topology.istio.io/network=east-network

With these labels, Istio forms an understanding of the network topology and uses it to
decide how to configure workloads.

INSTALLING THE CONTROL PLANES USING ISTIOOPERATOR RESOURCES

Because we have to make numerous modifications, we are going to use an Istio-
Operator resource to define the Istio installations for the west-cluster:

apiVersion: install.istio.io/v1alpha1
metadata:
name: istio-controlplane
namespace: istio-system

kind: IstioOperator
spec:

profile: demo
components:

egressGateways:
- name: istio-egressgateway

enabled: false
values:

global:
meshID: usmesh
multiCluster:

clusterName: west-cluster
network: west-network

NOTE Kubernetes clusters can have many tenants and can span many teams.
Istio provides the option of installing multiple meshes within a cluster, allow-
ing teams to manage their mesh operations separately. The meshID property
enables us to identify the mesh to which this installation belongs.

The previous definition is stored in the file ch12/controlplanes/cluster-west.yaml,
and you can install Istio with that configuration using istioctl:

$ istioctl --context="west-cluster" install -y \
-f ch12/controlplanes/cluster-west.yaml

✔ Istio core installed
✔ Istiod installed

Disables the 
egress gateway

Name of 
the mesh

Cluster identifier in the 
multi-cluster mesh

Network in which this 
installation is occurring
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✔ Ingress gateways installed
✔ Installation complete

After a successful installation of the west-cluster, you can install the replicated con-
trol plane in the east-cluster. The IstioOperator definition for the east-cluster
differs from that of the west-cluster only in the cluster name and the network. And
because we want both control planes to form the same mesh, we specify the same
meshID that we used for the west-cluster installation:

apiVersion: install.istio.io/v1alpha1
metadata:

name: istio-controlplane
namespace: istio-system

kind: IstioOperator
spec:

profile: demo
components:

egressGateways:
- name: istio-egressgateway

enabled: false
values:

global:
meshID: usmesh
multiCluster:

clusterName: east-cluster
network: east-network

Next, we install the control plane in the east-cluster:

$ istioctl --context="east-cluster" install -y \
-f ch12/controlplanes/cluster-east.yaml

✔ Istio core installed
✔ Istiod installed
✔ Ingress gateways installed
✔ Installation complete

Before moving on, let’s create aliases for the different cluster contexts in istioctl, as
we did for kubectl earlier:

$ alias iwest='istioctl --context="west-cluster"'
$ alias ieast='istioctl --context="east-cluster"'

After installing the control planes on both clusters, we have two separate meshes—
each running one istiod replica that discovers only local services—and a gateway for
ingress traffic (see figure 12.11).

 The meshes lack cross-cluster workload discovery and connectivity, which we set up
in the following sections. But before proceeding, let’s run some workloads in each
cluster. The workloads will come in handy to verify that cross-cluster discovery and
connectivity are set up correctly. 
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Figure 12.11 Current setup of the meshes

Running workloads on both clusters
With the control planes installed, let’s run some workloads. In the west-cluster, we
deploy webapp:

$ kwest create ns istioinaction
$ kwest label namespace istioinaction istio-injection=enabled
$ kwest -n istioinaction apply -f ch12/webapp-deployment-svc.yaml
$ kwest -n istioinaction apply -f ch12/webapp-gw-vs.yaml
$ kwest -n istioinaction apply -f ch12/catalog-svc.yaml

In this listing, almost everything makes sense. For example, we create a namespace
and label it for auto-injection so that workloads get the sidecar proxies injected. Then
we deploy the webapp, including a service for it, and expose this service from the
ingress gateway by admitting traffic using a Gateway resource and routing traffic to it
with a VirtualService resource.

 But why do we need a service for the catalog workload, considering that we want to
run it only in the east-cluster? The reason for adding this stub service is that in its
absence, the webapp container cannot resolve the fully qualified domain name
(FQDN) to any IP address, and thus the request would fail prior to reaching the point
where traffic leaves the application and is redirected to the proxy. By adding a stub
catalog service, the FQDN is resolved to the service cluster IP and traffic is initiated by
the application, which makes it possible for it to be redirected to the Envoy proxy
where the actual Envoy configuration exists and handles the cross-cluster routing. This
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is an edge case that the Istio community plans to fix in upcoming versions when the
DNS proxy is enhanced further, which is a topic we will examine in the next chapter.

 Let’s install the catalog service in the east-cluster:

$ keast create ns istioinaction
$ keast label namespace istioinaction istio-injection=enabled
$ keast -n istioinaction apply -f ch12/catalog.yaml

Suppose this is our starting point: two clusters, each with workloads that need to con-
nect. But without cross-cluster workload discovery, the sidecar proxies are not config-
ured for the workloads in opposite clusters. Thus our next step is enabling cross-
cluster discovery. 

12.3.5 Enabling cross-cluster workload discovery

For Istio to be authenticated for querying information from the remote cluster, it
needs a service account that defines the identity and role bindings for its permissions.
For this reason, Istio, upon installation, creates a service account (named istio-
reader-service-account) with the minimal set of permissions that can be used by
another control plane to authenticate itself and look up workload-related information
such as services and endpoints. However, we need to make the service account token
available to the opposite cluster, along with certificates to initiate a secure connection
to the remote cluster.

CREATING THE SECRETS FOR REMOTE CLUSTER ACCESS

The istioctl utility has the create-remote-secret command, which by default cre-
ates the secret for remote cluster access using the default istio-reader-service-
account service account. When creating the secret, it’s important to specify the name
of the cluster as specified during Istio installation in the IstioOperator (see the ear-
lier listings for the west-cluster and the east-cluster in the section “Installing the
control planes using IstioOperator resources”). Pay attention to how the cluster name
is used as an identifier for the configuration to access the remote clusters:

$ ieast x create-remote-secret --name="east-cluster"

# This file is autogenerated, do not edit.
apiVersion: v1
kind: Secret
metadata:

annotations:
networking.istio.io/cluster: east-cluster

labels:
istio/multiCluster: "true"

name: istio-remote-secret-east-cluster
namespace: istio-system

stringData:
east-cluster: |

apiVersion: v1
kind: Config
preferences: {}
clusters:

Secrets with this label set to true 
are watched by Istio’s control 
plane to register new clusters.
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- cluster:
certificate-authority-data: <omitted>
server: https://east-clust-dkjqiu.hcp.eastus.azmk8s.io:443

name: east-cluster
users:
- name: east-cluster

user:
token: <omitted>

contexts:
- context:

cluster: east-cluster
user: east-cluster

name: east-cluster
current-context: east-cluster

Instead of printing the secret, let’s pipe it to the kubectl command and apply it to the
west-cluster:

$ ieast x create-remote-secret --name="east-cluster" \
| kwest apply -f -

secret/istio-remote-secret-east-cluster created

As soon as the secret is created, istiod picks it up and queries workloads in the newly
added remote cluster. This is logged in istiod, as shown in its logs:

$ kwest logs deploy/istiod -n istio-system | grep 'Adding cluster'

2021-04-08T08:47:32.408052Z info

➥Adding cluster_id=east-cluster from

➥secret=istio-system/istio-remote-secret-east-cluster

The logs verify that the cluster is initialized and that the west-cluster control plane can
discover workloads in the east-cluster. For a primary-primary deployment, we need
to do the opposite as well, configuring the east-cluster to query the west-cluster:

How kubectl talks to the Kubernetes API server
If you’ve checked how kubectl is configured to talk to the API server, the previous
data will look familiar. It is formatted as a kubeconfig file and contains the following
data:

 clusters—A list of clusters containing the cluster address and CA data to
verify the connection presented by the API server

 users—A list that defines the users containing the token to authenticate to
the API server

 contexts—A list of contexts, each grouping a user and a cluster, which sim-
plifies switching clusters (not relevant for our use case)

This is all kubectl needs to initiate secure connections to the Kubernetes API server
and authenticate to it. istiod uses the same approach to query remote clusters
securely.

CA used to initiate a
secure connection

to this clusterToken that represents the 
identity of the service account
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$ iwest x create-remote-secret --name="west-cluster" \
| keast apply -f -

secret/istio-remote-secret-west-cluster created

Now the control planes can query the workloads on the opposite clusters. Does that
mean we are done? Not yet! But we are one step closer. Next, we set up cross-cluster
connectivity. 

12.3.6 Setting up cross-cluster connectivity

In chapter 4, we discussed Istio’s ingress gateway and saw that it’s based on the Envoy
proxy. It represents the ingress point for traffic originating in the public network and
is directed to the organization’s internal network. This type of traffic is often referred
to as north-south traffic. In contrast, traffic between different internal networks—in our
instance, the networks of the clusters—is known as east-west traffic (see figure 12.12).

To simplify east-west traffic, most cloud providers enable peering of virtual networks—
provided the network address spaces do not overlap. Services in peered virtual networks
initiate direct connections using IPv4 and IPv6 addresses. However, network peering is
a cloud-specific feature. Whenever we want to connect clusters in different cloud pro-
viders or on-premises where network peering is not possible, the option Istio provides
is an east-west gateway. The gateway must be exposed with a load balancer that’s acces-
sible to the workloads of the opposite clusters.

 In this section, we set up cross-cluster connectivity and show how it works under
the hood. It may seem complicated, but we believe understanding how this works is
more important than just making it work. If things go wrong, you should have the
knowledge and ability to troubleshoot and restore connectivity.
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ISTIO’S EAST-WEST GATEWAY

The east-west gateway’s goal, in addition to being an ingress point for cross-cluster
east-west traffic, is to make this process transparent from the teams operating the ser-
vices. To meet this goal, the gateway must

 Enable fine-grained traffic management across clusters
 Route encrypted traffic to enable mutual authentication between workloads

And service mesh operators shouldn’t have to configure any additional resources! In
other words, you shouldn’t have to configure any additional Istio resources! This
ensures that there is no difference when routing in-cluster or cross-cluster traffic. In
both scenarios, workloads can target services in a fine-grained manner and can initi-
ate mutually authenticated connections. (One nuance is what happens to load balanc-
ing when it crosses a cluster boundary. We explore that in the next section.) To
understand how this is implemented, we need to introduce two of Istio’s features—
SNI clusters and SNI auto passthrough—and how they modify the gateway’s behavior. 

CONFIGURING EAST-WEST GATEWAYS WITH SNI CLUSTERS

East-west gateways are ingress gateways with additional configuration for Server Name
Indication (SNI) clusters for every service. But what are SNI clusters? SNI clusters are just
like regular Envoy clusters (see chapter 10, section 10.3.2, Querying the Envoy Cluster
Configuration subsection), consisting of the direction, subset, port, and FQDN that
group a set of similar workloads where traffic can be routed. However, SNI clusters have
one key difference: they encode all Envoy cluster information in the SNI. This enables
the east-west gateway to proxy encrypted traffic to the cluster specified by the client
within the SNI. To take a concrete example, when one client—such as the webapp—ini-
tiates a connection to a workload in a remote cluster—such as the catalog workload—
it encodes the cluster that it targets into the SNI, as shown in figure 12.13.

Figure 12.13 (1) Cluster information is encoded into the SNI. (2) The SNI contains the direction, port, 
version, and service name that dictates routing decisions.
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Thus the client can make fine-grained routing decisions, and the gateway can read the
cluster information from the SNI header and then proxy the traffic to the workload
intended by the client. All this happens while maintaining a secure and mutually
authenticated connection between the workloads.

Installing the east-west gateway with SNI clusters
For a gateway, the configuration of SNI clusters is an opt-in feature that can be
enabled by setting the gateway router mode to sni-dnat using the environment vari-
able ISTIO_META_ROUTER_MODE, as shown in the following IstioOperator definition:

apiVersion: install.istio.io/v1alpha1
kind: IstioOperator
metadata:

name: istio-eastwestgateway
namespace: istio-system

spec:
profile: empty
components:

ingressGateways:
- name: istio-eastwestgateway

label:
istio: eastwestgateway
app: istio-eastwestgateway

enabled: true
k8s:

env:
- name: ISTIO_META_ROUTER_MODE

value: "sni-dnat"
- name: ISTIO_META_REQUESTED_NETWORK_VIEW

value: east-network
service:
ports:

# redacted for brevity
values:

global:
meshID: usmesh
multiCluster:

clusterName: east-cluster
network: east-network

There is quite a lot to unravel in this definition:

 The name of the IstioOperator resource must not be the same as the resource
initially used to install the control plane. If the same name is used, the previous
installation will be overwritten.

 Setting ISTIO_META_ROUTER_MODE to sni-dnat configures SNI clusters automat-
ically. When not specified, it falls back to the standard mode, which doesn’t
configure SNI clusters.

 ISTIO_META_REQUESTED_NETWORK_VIEW defines the network traffic is proxied to.

Install the east-west gateway using the previous IstioOperator definition, which is
located in the file ch12/gateways/cluster-east-eastwest-gateway.yaml:

The IstioOperator name should not 
overlap the previous Istio installation.

The empty profile doesn’t install 
additional Istio components.

Name of 
the gateway

The sni-dnat mode adds the SNI 
clusters required for proxying traffic.

Network in which the 
gateway routes traffic

Mesh, cluster, and 
network identifying 
information
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$ ieast install -y -f ch12/gateways/cluster-east-eastwest-gateway.yaml

✔ Ingress gateways installed
✔ Installation complete

With the east-west gateway installed and the router mode set to sni-dnat the next step
is to expose the multi-cluster mTLS port through the east-west gateway using the SNI
auto passthrough mode. Istio is clever and only then configures the gateway with the
SNI clusters. 

ROUTING CROSS-CLUSTER TRAFFIC USING SNI AUTO PASSTHROUGH

To understand SNI auto passthrough, let’s recall that the manual SNI passthrough
configures the ingress gateway to admit traffic based on the SNI header (see chapter

4, section 4.4.2). This shows that to
route admitted traffic, service operators
have to manually define a VirtualSer-
vice resource (see figure 12.14). SNI
auto passthrough, as the name suggests,
doesn’t require manually creating a
VirtualService to route admitted traf-
fic. It is done using the SNI clusters,
which are configured automatically in
the east-west gateway when its router
mode is set to sni-dnat (figure 12.15).

Figure 12.15 Traffic routing with SNI auto passthrough uses SNI clusters 
initialized in the sni-dnat router mode.

SNI auto passthrough mode is configured using the Istio Gateway resource. In the fol-
lowing definition, we use SNI auto passthrough for all traffic where the SNI header
matches the expression *.local, which is the case for all Kubernetes services:

Ingress
gateway 1.1.1.1

Gateway admits 
traffic with SNI 
passthrough

VirtualService

configures routing to
workload

Figure 12.14 Traffic routing with SNI passthrough 
requires defining VirtualService resources.

East-west
gateway

2.2.2.2

Virtual hosts

3.3.3.3

Gateway admits 
and routes traffic 
using SNI auto 
passthrough

SNI: outbound_.80_.version-
v1_.catalog.istioinaction.svc.cluster.local
       
        -> 3.3.3.3

SNI: outbound_.80_.version-
v2_.catalog.istioinaction.svc.cluster.local

        -> 2.2.2.2
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apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:

name: cross-network-gateway
namespace: istio-system

spec:
selector:

istio: eastwestgateway
servers:

- port:
number: 15443
name: tls
protocol: TLS

tls:
mode: AUTO_PASSTHROUGH

hosts:
- "*.local"

This resource is defined in the file ch12/gateways/expose-services.yaml. Applying it to
the cluster exposes workloads of the east-cluster to the west-cluster:

$ keast apply -n istio-system -f ch12/gateways/expose-services.yaml

gateway.networking.istio.io/cross-network-gateway created

Before moving on, let’s do the opposite as well: create an east-west gateway in the
west-cluster and expose its services to the workloads in the east-cluster:

$ iwest install -y -f ch12/gateways/cluster-west-eastwest-gateway.yaml
$ kwest apply -n istio-system -f ch12/gateways/expose-services.yaml

Now, let’s verify that SNI clusters are configured by querying the cluster proxy config-
uration of the east-west gateway and filtering the output to only lines containing the
catalog text:

$ ieast pc clusters deploy/istio-eastwestgateway.istio-system \
| grep catalog | awk '{printf "CLUSTER: %s\n", $1}'

CLUSTER: catalog.istioinaction.svc.cluster.local
CLUSTER: outbound_.80_._.catalog.istioinaction.svc.cluster.local

The output shows the SNI cluster is defined for the catalog workload! And as we con-
figured the gateway with SNI auto passthrough, incoming traffic on the gateway uses
the SNI clusters to route to the intended workloads. Istio’s control plane listens for
the creation of these resources and discovers that now a path exists to route cross-
cluster traffic. Thus it updates all workloads with the newly discovered endpoints in
the remote cluster. 

VALIDATING CROSS-CLUSTER WORKLOAD DISCOVERY

Now, as the workloads in the east-cluster are exposed to the west-cluster, we
expect that the Envoy clusters of the webapp have an endpoint to the catalog workload.

Configuration is applied 
only to gateways 
matching the selector.

In Istio, port 15443 is a 
special port designated for 
multi-cluster mTLS traffic.

Resolves the destination 
using the SNI header and 
uses the SNI clustersAdmits traffic only for SNIs 

matching the regex *.local

SNI cluster for the
catalog service
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This endpoint should point to the east-west gateway’s address, which proxies the
request to the catalog workload in its network. To check this, let’s get the address of the
east-west gateway in the east-cluster:

$ keast -n istio-system get svc istio-eastwestgateway \
-o jsonpath='{.status.loadBalancer.ingress[0].ip}'

40.114.190.251

Now, let’s compare it to the address that the workloads in the west-cluster use when
routing cross-cluster traffic:

$ iwest pc endpoints deploy/webapp.istioinaction | grep catalog

In figure 12.16 we show our output of the previous command.

Figure 12.16 The catalog endpoint refers to the east-west gateway multi-cluster port

If the endpoint of the catalog resource matches the address of the east-west gateway,
then the workloads are discovered, and cross-cluster traffic is possible. Considering
the proxy configuration, everything is set up correctly. Let’s trigger a request manually
and make this the final validation:

$ EXT_IP=$(kwest -n istio-system get svc istio-ingressgateway \
-o jsonpath='{.status.loadBalancer.ingress[0].ip}')

$ curl http://$EXT_IP/api/catalog -H "Host: webapp.istioinaction.io"

[
{

"id": 0,
"color": "teal",
"department": "Clothing",
"name": "Small Metal Shoes",
"price": "232.00"

}
]

Hooray! We see that when we triggered a request to the ingress gateway, it was routed
to the webapp in the west-cluster. Then it was resolved to the catalog workload in

$  iwest pc endpoints deploy/webapp.istioinaction | grep catalog

40.114.190.251 : 15443  HEALTHY  OK  outbound|80||catalog...

Cross-cluster traffic uses the 
address of the east-west 
gateway as indicated by the IP.

Multi-cluster mTLS port
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ay 
the east-cluster, which in the end served the request. With that, we have validated
that the multi-cluster, multi-network, multi-control plane service mesh is set up and
workloads are discovered across clusters; they can initiate mutually authenticated con-
nections using east-west gateways as a passthrough.

 Let’s recap what was required to set up a multi-cluster service mesh:

1 Cross-cluster workload discovery by providing each control plane with access to the
peer cluster, using the kubeconfig containing the service account token and
certificates. The process was facilitated using istioctl, and we only applied it
to the opposite clusters.

2 Cross-cluster workload connectivity by configuring east-west gateways to route traffic
between workloads in different clusters (that reside in different networks) and
labeling each cluster with network information so that Istio knows the network
workloads reside in.

3 Configuring trust between clusters by using a common root of trust that issues the
intermediate certificates of the opposite clusters.

That’s just a few steps, and they are mostly automated to set up multi-cluster service
meshes. In the next section, let’s verify some of the service-mesh behaviors across
clusters. 

12.3.7 Load-balancing across clusters

In chapter 6, we promised to explore cross-cluster, locality-aware load balancing. And
now, with the multi-cluster service mesh at hand, we are ready to do so. To demon-
strate this, we’ll deploy two sample services, each of which is configured to return the
name of the cluster in which the workload is running. Thus we can easily determine
the locality of the workload that served the request.

 Let’s deploy the first service in the west-cluster:

$ kwest apply -f \
ch12/locality-aware/west/simple-backend-deployment.yaml

$ kwest apply -f \
ch12/locality-aware/west/simple-backend-svc.yaml

$ kwest apply -f \
ch12/locality-aware/west/simple-backend-gw.yaml

$ kwest apply -f \
ch12/locality-aware/west/simple-backend-vs.yaml

As soon as the resources are created, we make a request to the service in the west-
cluster and see that it returns the cluster name:

$ curl -s $EXT_IP -H "Host: simple-backend.istioinaction.io" | jq ".body"

"Hello from WEST"

Deploys a simple 
backend deployment 
in the west-cluster

Kubernetes service for the 
simple backend deployment

Applies a Gateway 
resource to admit traffic

Applies a VirtualService resource 
that routes traffic from the Gatew
to the simple backend workloads
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Now we can deploy the service in the east-cluster:

$ keast apply -f ch12/locality-aware/east/simple-backend-deployment.yaml
$ keast apply -f ch12/locality-aware/east/simple-backend-svc.yaml

With the services running in both clusters, their endpoints are configured in the
ingress gateway, and requests are load-balanced between them (see figure 12.17).

Figure 12.17 Cross-cluster load balancing

By default, Istio load-balances between workloads using the round-robin algorithm.
Thus traffic is load-balanced equally:

$ for i in {1..10}; do curl --max-time 5 -s $EXT_IP \
-H "Host: simple-backend.istioinaction.io" | jq .body; done

"Hello from EAST"
"Hello from WEST"
<...>

That’s good! However, performance can be improved further using locality-aware
load balancing so workloads prioritize routing traffic to workloads within their local-
ity. We mentioned in previous chapters that cloud providers add the locality informa-
tion into nodes as labels. Istio uses this information retrieved from the labels to
configure the locality of workloads.

VERIFYING LOCALITY-AWARE ROUTING ACROSS CLUSTERS

Because we created the multi-cluster service mesh in Azure, the nodes are labeled with
locality information from the cloud provider, as shown in this output:

$ kwest get nodes -o custom-columns="\
NAME:{.metadata.name},\

east-clusterwest-cluster

Ingress
gateway

Simple
backend

Simple
backend

East-west
gateway

Host:
simple-backend.istioinaction.io

Hello from WEST

Hello from EAST
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REGION:{.metadata.labels.topology\.kubernetes\.io/region},\
ZONE:{metadata.labels.topology\.kubernetes\.io/zone}"

NAME REGION ZONE
aks-nodepool1-31209271-vmss000003 westus 0

As expected, the node in the west-cluster is labeled with the westus region. Check-
ing the east-cluster shows the eastus region. This information is picked up by
istiod and propagated to the workloads when configuring the endpoints:

$ iwest pc endpoints deploy/istio-ingressgateway.istio-system \
--cluster \
'outbound|80||simple-backend.istioinaction.svc.cluster.local' \
-o json

[{
"name": "outbound|80||simple-backend.istioinaction.svc.cluster.local",
"addedViaApi": true,
"hostStatuses": [

{
"address": <omitted>,
"stats": <omitted>,
"healthStatus": {

"edsHealthStatus": "HEALTHY"
},
"weight": 1,
"locality": {

"region": "westus",
"zone": "0"

}
},
{

"address": <omitted>,
"stats": <omitted>,
"healthStatus": {

"edsHealthStatus": "HEALTHY"
},
"weight": 1,
"locality": {

"region": "eastus",
"zone": "0"

}
}

],
"circuitBreakers": <omitted>

}]

The output shows that both endpoints have locality information. Recall from chapter
6 that in order for Istio to use locality information, passive health checking is
required. Let’s apply a destination rule that uses outlier detection to passively check
the health of the endpoints:

$ kwest apply -f ch12/locality-aware/west/simple-backend-dr.yaml

Formats the output to 
show the node name, 
region, and zone

Locality information of the 
workload in the west-cluster

Locality information of the 
workload in the east-cluster
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After the configuration propagates, which usually takes a couple of seconds, we can ver-
ify that requests use the locality information and are routed within the same cluster:

$ for i in {1..10}; do curl --max-time 5 -s $EXT_IP \
-H "Host: simple-backend.istioinaction.io" | jq .body; done

"Hello from WEST"
"Hello from WEST"
"Hello from WEST"
<...>

As expected, all requests are routed within the west-cluster, which is the closest to
the ingress gateway that’s routing the traffic. Because all the routing decisions are
made in the Envoy proxy, we can conclude that the control plane must have modified
its configuration, which explains the different behavior. Let’s see how the configura-
tion was modified by printing it again:

$ iwest pc endpoints deploy/istio-ingressgateway.istio-system \
--cluster \
'outbound|80||simple-backend.istioinaction.svc.cluster.local' \
-o json

[{
"name": "outbound|80||simple-backend.istioinaction.svc.cluster.local",
"addedViaApi": true,
"hostStatuses": [

{
<omitted>
"weight": 1,
"locality": {

"region": "westus",
"zone": "0"

}
},
{

<omitted>
"weight": 1,
"priority": 1,
"locality": {

"region": "eastus",
"zone": "0"

}
}

],
"circuitBreakers": <omitted>

}]

Now we see the priority field that specifies the priority for traffic to be routed to this
host. The highest priority is 0 (the default, when not specified)—that is why it’s miss-
ing from the host in westus, which has the highest priority. A value of 1 has a lower
priority, and so on. When hosts with the highest priority are unavailable, traffic is
routed to those with a lower priority. Let’s verify this. 

Priority of 1 for 
the second host
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VERIFYING CROSS-CLUSTER FAILOVER

To simulate that the simple backend deployment is failing, we can configure it to fail
requests by setting the environment variable ERROR_RATE to 1. Let’s do so for the work-
load in the west-cluster:

$ kwest -n istioinaction set env \
deploy simple-backend-west ERROR_RATE='1'

After some time passes, outlier detection detects that the host is unhealthy and routes
traffic to the workload in the east-cluster, which has the second-highest priority:

$ for i in {1..10}; do curl --max-time 5 -s $EXT_IP \
-H "Host: simple-backend.istioinaction.io" | jq .body; done

"Hello from EAST"
"Hello from EAST"
"Hello from EAST"
<...>

This shows the cross-cluster failover in action: traffic was routed to the east-cluster
because the workloads with the highest priority failed the passive health checks.

NOTE As seen in this detailed walkthrough, cross-cluster traffic traverses the
opposite cluster’s east-west gateway and is treated as an SNI passthrough. This
has implications for load balancing once traffic reaches the remote cluster. Since
this call is an SNI/TCP connection and the gateway does not terminate the TLS
connection, the east-west gateway can only forward the connection as is to the
backend service. This opens a connection from the east-west gateway to the
backend service and does not have request-level load-balancing capabilities. Thus,
on failover or load balancing across multiple clusters, the load is balanced or
failed over from the client’s point of view but not necessarily balanced evenly
across all instances on the remote cluster. 

VERIFYING CROSS-CLUSTER ACCESS CONTROL USING AUTHORIZATION POLICIES

The last feature we will verify is access control across clusters. Recall that access control
requires that traffic is mutually authenticated between workloads, producing reliable
metadata that can be used to decide whether to admit or deny traffic. To demonstrate
this, let’s come up with a scenario. Suppose we want to admit traffic to the service only
if its source is Istio’s ingress gateway; otherwise, the traffic is denied. A policy to achieve
that is defined and stored in the file ch12/security/only-ingress-policy.yaml. Apply it to
the east-cluster:

$ keast apply -f ch12/security/allow-only-ingress-policy.yaml

authorizationpolicy.security.istio.io/allow-only-ingress created

Before executing any requests, let’s clean up the service from the west-cluster so
that only the instance in the east-cluster serves the traffic:

$ kwest delete deploy simple-backend-west -n istioinaction

deployment.apps "simple-backend-west" deleted
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After the update is propagated, we can test the policy by triggering a request from a
workload in the west-cluster. For that we will run a temporary Pod:

$ kubectl run -i --rm --restart=Never sleep --image=curlimages/curl \
--command -- curl -s simple-backend.istioinaction.svc.cluster.local

RBAC: access denied

As expected, the request was denied. Meanwhile, triggering a request to the ingress gate-
way and having the request routed from the gateway results in a successful response:

$ curl --max-time 5 -s $EXT_IP \
-H "Host: simple-backend.istioinaction.io" | jq .body

"Hello from EAST"

We can see that the policy admitted the traffic originating from the ingress gateway. This
shows that workloads were mutually authenticating across clusters, and policies could
use the authenticated data encoded into the identity certificates for access control.

 All our examples of load balancing, locality-aware routing, cross-cluster failover,
mutually authenticated traffic, and access control demonstrate that workloads in
multi-cluster service meshes can use all of Istio’s capabilities regardless of the cluster
in which they run. And they do so without requiring any additional configuration.

NOTE Remember to clean up resources in the cloud provider. If you are
using Azure, you can execute the script $ sh ch12/scripts/cleanup-azure-
resources.sh.

Hopefully, this chapter has shown you how Istio can scale within your organization
and incorporate multiple clusters into a single mesh and why this is important for
many organizations. In the next chapter, we integrate virtual machines into the service
mesh, which is a highly desirable feature for mature enterprises that have to operate
legacy workloads. 

Summary
 Istio supports three multi-cluster service mesh deployment models: single con-

trol plane (primary-remote), replicated control planes (primary-primary), and
external control plane.

 We can establish common trust across clusters using plug-in CA certificates by
installing intermediate certificates in the istio-system namespace.

 Cross-cluster workloads are discovered in replicated control-plane deployment
models using service accounts as an identity in the remote cluster and making
the service account token available to the opposite cluster as a secret.

 We can bridge the networks of multi-network service meshes using east-west
gateways. The sni-dnat router mode configures SNI clusters to route cross-
cluster traffic in a fine-grained manner.

 The east-west gateway can be configured to auto passthrough traffic and route
based on the automatically configured SNI clusters.

 Istio’s capabilities work across clusters in the same way they do within a cluster.



Incorporating virtual
machine workloads

into the mesh
So far, we’ve covered the Istio service mesh from the perspective of containers and
Kubernetes. In reality, however, workloads frequently run on virtual machines
(VMs) or physical machines. Containers and Kubernetes are often used in an effort
to modernize a technology stack, and this chapter shows how to bridge these two
worlds at the application-networking layer with Istio. You may wonder why we don’t
simply modernize legacy workloads and run them in a Kubernetes cluster instead
of integrating VMs into the mesh. We recommend that approach whenever it’s pos-
sible, but in a few cases it’s not—or at least, not when considering the cost:

This chapter covers
 Incorporating legacy workloads into Istio’s service 

mesh

 Installing and configuring the istio-agent in VMs

 Provisioning identity for VMs

 Exposing cluster services to VMs, and vice versa

 Using the local DNS proxy to resolve FQDNs of 
cluster services
347
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 Enterprises may have to run the workloads on-premises—due to regulatory
compliance—where they lack the expertise to set up and operate Kubernetes
clusters.

 Containerizing applications is not that simple. Some apps may require rearchi-
tecting; others might have dependencies that need to be updated but that con-
flict with other dependencies—dependency hell.

 Some have some unique dependencies on the VM they run on.

In this chapter, we show how any workload can become part of the mesh by installing
and configuring the sidecar proxy. This approach provides interesting capabilities for
enterprises that have legacy workloads and want to integrate them into the mesh in a
resilient, secure, and highly available manner.

13.1 Istio’s VM support
The integration of VMs into the mesh was supported from Istio’s early days, but it
required a ton of workarounds and automation external to the control plane. Istio’s
VM support graduated to beta in Istio 1.9.0 once some of the key features were imple-
mented and the APIs settled on a suitable approach. Those key features are

 Sidecar proxy installation and configuration in a VM were simplified using
istioctl.

 High availability of VMs was achieved by introducing two new Istio resources:
WorkloadGroup and WorkloadEntry.

 DNS resolution of in-mesh services from VMs was made possible using a local
DNS proxy, which is set up alongside Istio’s sidecar.

Because there is a lot of information to juggle in this chapter, we begin by covering
these new features at a high level. Then we put them into action with a concrete exam-
ple by integrating a VM into the mesh.

13.1.1 Simplifying sidecar proxy installation and configuration in a VM

For the VM to become part of the mesh, we need to

 Install the sidecar proxy to manage network traffic
 Configure the proxy to connect to istiod and receive the mesh configuration
 Provide the VM with an identity token, used to authenticate to istiod

Figure 13.1 shows the prerequisites needed for any workload to become part of the
mesh. The same steps are required for workloads running in Kubernetes as well:

 Install and configure the sidecar automatically with the webhook or using
istioctl.

 Possess an identity token—Kubernetes injects it automatically into the Pod.

These conveniences do not extend to workloads external to Kubernetes. Thus VM
owners must install and configure the proxy and provision a bootstrap token for work-
load identity—and only then can a workload become a part of the mesh.
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Figure 13.1 What it takes for a workload to become part of the mesh

A CLOSER LOOK AT PROVISIONING IDENTITY FOR VMS

Istio uses Kubernetes as the source of trust to provision the VM’s identity. This works by
generating a token in Kubernetes and transferring it to the machine. This token is picked
up by the istio-agent installed in the machine and used to authenticate to istiod. Fig-
ures 13.2 and 13.3 show the differences between the way identity is provisioned for cluster
workloads versus those in VMs.

Workload

istiod

Sidecar

Application

Configuration

Sidecar is installed and
manages the network
traffic of the workload

Configuration for 
how to connect to
istiod

Verifiable claim of identity
needed to authenticate to
istiod

Connect

Pod

Istio Pilot

Istio agent

Application

Figure 13.2 Workloads in 
the cluster (1) get the 
service account token 
injected into the Pod and (2) 
use the token to authenticate 
and retrieve an SVID.

VM

Istio Pilot

Istio agent

Application

Figure 13.3 Because VMs 
are external, they require 
manual steps to (1) create 
a service account, (2) transfer 
the token to the VM, and (3) 
use the token to authenticate 
and receive an SVID.
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The approaches are similar, with the sole difference that Kubernetes injects the token
automatically into Pods. In contrast, for VMs, this has to be done by service mesh
operators, which have to manually transfer the token securely to the VM. The istio-
agent uses this token to authenticate to istiod and, as a result, istiod issues its iden-
tity in the form of a SPIFFE Verifiable Identity Document (SVID).

 The drawback of this solution is that it requires service mesh operators to auto-
mate creating the tokens in Kubernetes and securely transferring them to VMs. This
may not require a lot of effort, but if the organization follows a multi-cloud strategy, as
most do, then it quickly adds up to a lot of effort.

In our example that follows, we use Kubernetes as the source of trust to provision the
identity of the machine. To keep the chapter snappy, we’ll manually transfer the token
to the VM. 

Platform-assigned identity
There is work in progress in the Istio community to provide an automated solution to
provision workload identity for machines in different cloud providers. This solution
uses the platform-assigned identity of a VM as the source of trust, which is picked
up by the istio-agent and used to authenticate to istiod. Understandably, Istio
will expose an API to configure the validation of the token against the cloud provider.
The entire process is visualized here:

How the platform-assigned identity is used to authenticate workloads

This solution is still not developed, but you can find more about it in the design doc-
umentation for the identity provider at http://mng.bz/zQGa.

Workload

Cloud provider

Sidecar

Application

The cloud provider
assigns a claim for the
virtual machine’s identity.

istiod

The sidecar uses the cloud
provider assigned identity
to authenticate to istiod.

istiod validates the
authenticity of the token
against the cloud provider.

Authenticates
using token

Validates token

http://mng.bz/zQGa
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13.1.2 Virtual machine high availability

To achieve high availability of VMs, Istio closely mimics the approach Kubernetes
takes with its containerized workloads. Basically, Kubernetes achieves high availability
with the following resources:

 Deployments, as higher-level resources, contain the configuration of how repli-
cas should be created.

 Pods are the replicas created from that configuration. This ensures that nothing
is unique about Pods, which can then be disposed of and replaced whenever
they are not healthy (or scaled down when not needed), thus maintaining a
highly available service.

The resources that Istio introduces for VMs closely align with the Kubernetes concepts
of Deployments and Pods:

 The WorkloadGroup resource is similar to Kubernetes’ Deployments as it
defines the template for how the workloads it manages are configured. It speci-
fies common properties such as the port in which the application is exposed,
the labels assigned to the instances of the group, the service account that rep-
resents the workload’s identity in the mesh, and how to probe the health of the
application.

 The WorkloadEntry is similar to Kubernetes Pods. It represents a single VM
that serves end-user traffic. In addition to the common properties defined by
the WorkloadGroup, the WorkloadEntry possesses unique properties such as the
address and health status of the instance it represents.

A WorkloadEntry can be created manually; however, the recommended approach is
to use workload auto-registration, where newly provisioned workloads join the mesh
automatically.

UNDERSTANDING WORKLOAD AUTO-REGISTRATION

During workload auto-registration, a workload connects to the control plane (using
the configuration supplied to it) and authenticates itself as a member of a Workload-
Group using the identity token. When this is done successfully, the control plane cre-
ates a WorkloadEntry to represent the VM in the mesh (see figure 13.4).

 The representation of the VM in the mesh using a WorkloadEntry is important for
many reasons. In particular, it can be selected by Kubernetes services or Istio Service-
Entry resources using label selectors and used as the backend to route traffic to.
Selecting workloads using Kubernetes services (that is, their fully qualified domain
name [FQDN] in the cluster) and not their actual addresses makes it possible to dis-
pose of workloads when they are not healthy or easily spin up new ones to meet
increased demand without any knowledge or impact on the client side.
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Figure 13.4 The workload auto-registration process

Figure 13.5 illustrates how services can be used to target workload entries and Pods.
You might want to do that to, for instance, reduce the risk when migrating from legacy
workloads running in VMs to modernized workloads running in a Kubernetes cluster.
This is done by running workloads in parallel and then using the traffic-shifting capa-
bilities of the service mesh (as described in chapter 5) to gradually move all traffic
from VMs to Pods, with the option of shifting traffic back to the VMs if there is an
increase in errors. 

Figure 13.5 WorkloadGroup and WorkloadEntry relation to Deployments and Pods
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UNDERSTANDING THE HEALTH CHECKS PERFORMED BY ISTIO

After becoming part of the service mesh, a workload needs to be ready to receive traffic
and is probed by health checks. To maintain high availability of a service, we need two
types of health checks (which are similar to how Kubernetes does health checking):

 Readiness probes check whether a workload is ready to receive traffic once it starts.
 Liveness probes check whether the application is healthy once it’s running; if not,

it should be restarted.

Liveness probes are not a service mesh concern! Ensuring the liveness of a workload is
a platform feature where workloads are run. For example, Kubernetes, which is also a
platform, performs liveness checks using the probes defined in the Deployment con-
figuration. Similarly, when running workloads on VMs in the cloud, we need to use
the features of the cloud to implement liveness probes and take corrective actions to
heal the VM if the probe fails, such as provisioning a new instance.

 To get you started, here are the docs for liveness checks and auto-healing for the
three most popular cloud providers:

 Azure implements automatic instance repairs for VM scale sets: http://mng.bz/
0wrx.

 Amazon Web Services implements health checks for auto-scale group instances:
http://mng.bz/KB4K.

 Google Cloud Platform implements health checking and auto-healing for man-
aged instance groups: http://mng.bz/9KNl. 

HOW ISTIO PERFORMS READINESS PROBES IN VMS

The application’s readiness to receive traffic is probed periodically by the istio-
agent, according to the specification in the WorkloadGroup definition. The agent
reports the application’s health status to istiod, such as when the status switches from
healthy to unhealthy or vice versa (see figure 13.6).

Cluster

istiod

Virtual machine

Application

Sidecar proxy

WorkloadEntry
address: 40.83.164.1
label: app=forum
status: healthy

Kubernetes
API server

Healthcheck

Update health
status

Figure 13.6 The 
sidecar proxy updates 
istiod with health 
information for the 
application.

http://mng.bz/9KNl
http://mng.bz/KB4K
http://mng.bz/0wrx
http://mng.bz/0wrx
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The control plane uses the health status to determine whether traffic should be routed
to a workload. For example, when the application is healthy, the data plane is config-
ured with the endpoint of the VM that hosts the application. And the opposite is also
true: the endpoint is removed from the data plane when the application is unhealthy.

 As a service mesh operator, you have to configure the readiness checks of the
application in the WorkloadGroup and create liveness checks in the infrastructure
layer by following your cloud provider’s recommended practices. We recommend
using different configurations for liveness and readiness probes:

 Readiness probes performed by the istio-agent should be aggressive and pre-
vent traffic from being routed to an instance that is returning errors.

 Liveness probes performed by the cloud provider should be more conservative
and allow the VM time to recover.

Aim to avoid killing instances too hastily, which would terminate inflight requests
without a grace period, causing end-user visible failures. A good rule of thumb is for
readiness probes to always fail before liveness probes. 

13.1.3 DNS resolution of in-mesh services

Because VMs are external to the Kubernetes cluster, they lack access to its internal
DNS server. As a result, VMs cannot resolve the hostnames for cluster services. Provid-
ing a solution to this is the last milestone to integrate VMs into the service mesh.

 You may wonder why we need DNS resolution in the first place. Doesn’t the service
proxy, deployed along with the application, possess the configuration to route traffic
to all workloads? You’re correct: the proxy has the configuration for how to route traf-
fic! However, the issue lies in getting the traffic out of the application and to the
proxy. A precondition for that to happen is for the hostname to be resolved. If it isn’t,
the traffic never leaves the application and cannot be redirected to the Envoy proxy.
This issue is visualized in figure 13.7.

 Previously, cluster hostnames were commonly resolved using a private DNS server
configured with all Kubernetes services. The VMs were configured to use this as a

Virtual machine

Application

Istio agent

Query
webapp.istioinaction

Envoy proxy

Cannot resolve
the FQDN

Traffic never leaves
the application to
reach the proxy.

Public
DNS server

Cluster

webapp

istiod

Figure 13.7 Outbound traffic never reaches the Envoy proxy because DNS resolution fails.
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nameserver to which they sent DNS queries. Due to the dynamic nature of workloads
in Kubernetes, the process of configuring the private DNS server had to be automated
using a Kubernetes controller that listens for these changes and keeps the DNS server
synchronized. external-dns (https://github.com/kubernetes-sigs/external-dns) is
an open source solution that does exactly that.

 However, that is a workaround and not an integrated solution that service mesh
users would like. Later versions of Istio (1.8 and onward) introduced a local DNS
proxy to the istio-agent sidecar, which is configured with all in-mesh services by
istiod (see figure 13.8). The DNS proxy runs in Istio’s sidecar alongside the Envoy
proxy and handles DNS queries from the application, which are redirected to the
DNS proxy using Iptable rules—the usual Istio traffic-capture approach. This differs
slightly when using istio-cni.

Figure 13.8 DNS queries are redirected to the DNS proxy for resolution, which is configured with 
the in-cluster services by istiod.

To keep the DNS proxy continuously updated, Istio introduced a new API called the
Name Discovery Service (NDS). With the NDS, the control plane synchronizes the
data plane with new DNS entries whenever a Kubernetes service or Istio ServiceEntry
is added to the mesh. However, the DNS proxy is not limited to VMs. It enables a host
of additional features, as described in the official Istio blog post at https://istio.io/
latest/blog/2020/dns-proxy.

 And with this, we conclude the discussion of the high-level concepts and their
objectives. Next, let’s put them into action by integrating a VM into the service mesh. 

13.2 Setting up the infrastructure
Figure 13.9 shows the infrastructure we will set up to showcase mesh expansion. We
will create a Kubernetes cluster and a VM, which will host our cool-store application:

 The webapp and catalogs services are deployed in the Kubernetes cluster.
 The forum service is deployed in a VM.
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Virtual machine
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It’s noteworthy that the cluster and the VM are in different networks, which requires
an east-west gateway to reverse-proxy traffic from the VM to the cluster services

13.2.1 Setting up the service mesh

In this chapter, we create the infrastructure in Azure. However, if you are using
another cloud provider, you don’t have to worry; as soon as you set up the infrastruc-
ture, all the other steps will work the same. Furthermore, because setting up this infra-
structure could exceed the free tiers of cloud providers, we structured the chapter so
that you can understand the process by just tagging along and not necessarily execut-
ing the steps.

 We begin by creating a Kubernetes cluster:

$ sh ch13/scripts/create-cluster-in-azure.sh

== Create cluster ==
Cluster created

== Configure access to the cluster for kubectl ==
Merged "west-cluster" as current context in ~/.kube/config

With the cluster created and kubectl configured to access it, we are ready to deploy
Istio to it. Because the cluster and the VM are in different networks, we need to label
the Istio installation namespace with the network information:

$ kubectl create namespace istio-system

$ kubectl label namespace istio-system \
topology.istio.io/network=west-network

Public internet

Cluster

webapp

forum

catalog

  Network: west-network

  Network: vm-network

VM workload

Figure 13.9 Virtual machine integration 
in the service mesh
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Now we install the control plane and specify the west network:

$ istioctl install -y -f ch13/controlplane/cluster-in-west-network.yaml

After installing the control plane, we deploy the cool-store services:

$ kubectl create ns istioinaction
$ kubectl label namespace istioinaction \

istio-injection=enabled

$ kubectl -n istioinaction apply \
-f ch12/webapp-deployment-svc.yaml

$ kubectl -n istioinaction apply \
-f ch12/webapp-gw-vs.yaml

$ kubectl -n istioinaction apply \
-f ch12/catalog.yaml

We deploy and expose the workloads through Istio’s ingress gateway. Let’s trigger an
HTTP request to verify the configuration:

$ EXT_IP=$(kubectl -n istio-system get svc istio-ingressgateway -o \
jsonpath='{.status.loadBalancer.ingress[0].ip}')

$ curl -H "Host: webapp.istioinaction.io" \
http:/./$EXT_IP/api/catalog/items/1

{
"id": 1,
"color": "amber",
"department": "Eyewear",
"name": "Elinor Glasses",
"price": "282.00"

}

If your outcome differs, it’s likely because you were too fast, and the workloads are not
ready to receive traffic. Verify that the workloads are ready, and try again. On a suc-
cessful response, we are ready to move to the next section. 

13.2.2 Provisioning the VM

We are getting closer to the crux of this chapter: the VM. We will provision it in Azure
in its own private network, with the following properties (yours doesn’t have to be the
same; but if it isn’t, the scripts and commands shown here may not work for you):

 The operating system of the VM is Ubuntu 18.04. Istio releases binaries only for
the Debian and Red Hat distributions. For any other distribution, you have to
build the binaries for the istio-agent from the source code.

 It has a public IP address so the cluster can access it. Keep in mind that this is
only for demonstration purposes. In real scenarios, you can peer the networks
so that the VM and the cluster can connect through a private connection.

Creates and labels 
the namespace

Deploys the webapp and 
creates a service for it

Deploys the catalog and 
creates a service for it
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 It is accessible with a Secure Shell (SSH) connection. To configure the VM for
remote access, we added SSH keys in the directory ch13/keys/ that scripts and
commands use when creating the machine.

 The application port 8080 is exposed so that cluster services can reach the
forum application listening on that port.

NOTE Keep in mind that your VM can have a different set of properties (the
ones we listed are only for demonstration purposes in this chapter). For
example, your VM may be in the cluster’s private network and not have a pub-
licly accessible IP address, and it will still work as long as you ensure that there
is a connection between the VM and the control plane.

The following script creates a VM with these properties, exposes the application port,
and configures it for remote access:

$ sh ch13/scripts/create-vm-in-azure.sh

It will take some time until the machine is up and running. Once it is running, verify
that remote access is possible. A simple way to verify that is to list the files in the VM.
Begin by retrieving the VM IP address:

$ VM_IP=$(az vm show -d --resource-group west-cluster-rg \
--name forum-vm | jq .publicIps -r)

And then execute the command:

$ ssh -i ch13/keys/id_rsa azureuser@$VM_IP -- ls -la

If the command lists the directories, the VM is accessible, and remote shell connec-
tions are possible. Another useful validation that can spare us headaches is ensuring
that we have opened the application port 8080 (our applications port) in the infra-
structure layer so that workloads in the cluster can initiate TCP connections to it. We
can do that using the Nmap utility. Nmap is an open source command-line tool used
to explore networks (such as by scanning the open ports of a VM); it is available for
the majority of operating systems from most package managers (apt, yum, Homebrew,
and Chocolatey). After installing it, validate that port 8080 is accessible using the fol-
lowing command:

$ nmap -Pn -p 8080 $VM_IP

Our output is shown in figure 13.10. If your output matches, the port is accessible! If
not, you need to configure the infrastructure to expose that port. Pay attention where
the figure shows that the port state is closed, which means that currently no applica-
tion is listening for packets on that port. That will change when we run the applica-
tion later; for now, everything is ready for us to integrate the workload into the mesh.
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Figure 13.10 Using the Nmap utility to verify that port 8080 is accessible

13.3 Mesh expansion to VMs
The features to integrate a VM are in the beta phase1 and not enabled by default. Hence
we need to update the Istio installation using the following IstioOperator definition,
which enables the following features: workload auto registration, health checks, cap-
turing DNS queries, and redirecting those queries to the DNS proxy. These features, as
covered earlier in this chapter, are required to integrate a VM into the mesh:

apiVersion: install.istio.io/v1alpha1
metadata:

name: istio-controlplane
namespace: istio-system

kind: IstioOperator
spec:

profile: demo
components:

egressGateways:
- name: istio-egressgateway

enabled: false
meshConfig:

defaultConfig:
proxyMetadata:

ISTIO_META_DNS_CAPTURE: "true"
values:

pilot:
env:

PILOT_ENABLE_WORKLOAD_ENTRY_AUTOREGISTRATION: true
PILOT_ENABLE_WORKLOAD_ENTRY_HEALTHCHECKS: true

global:
meshID: usmesh

1 To learn more about Istio’s feature phases, check the documentation at https://istio.io/latest/docs/releases/
feature-stages/.

$ nmap -Pn -p 8080 $VM_IP

PORT     STATE  SERVICE
8080/tcp closed http-proxy

Nmap done: 1 IP address (1 host up) scanned in 0.46 sec

Starting Nmap 7.91 ( https://nmap.org ) at 2021-06-01 
Nmap scan report for 138.91.144.131
Host is up (0.27s latency).

Port 8080 is reachable but
no application is listening
to it, as indicated by the
closed state.

This flag disables host discovery and
treats it as online. This is required
because Azure blocks any inbound
traffic to the VM unless explicitly
allowed.

Verify only port 8080.

DNS queries are captured and 
redirected to the DNS proxy.

Workloads can 
auto-register to 
the control plane.

Workloads in VMs 
are health-checked.

https://istio.io/latest/docs/releases/feature-stages/
https://istio.io/latest/docs/releases/feature-stages/
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multiCluster:
clusterName: west-cluster

network: west-network

Execute the following command to update the control-plane installation and enable
these features:

$ istioctl install -y -f \
ch13/controlplane/cluster-in-west-network-with-vm-features.yaml

The updated control plane configures the service proxies to capture DNS queries and
redirect them to the local DNS proxy in the sidecar for resolution. Furthermore,
workloads can auto-register and perform and report health status to istiod. There is
one further condition for us to use those features: the VM must be able to connect to
istiod and receive its configuration and identity. This is what we tackle next!

13.3.1 Exposing istiod and cluster services to the VM

To become part of the mesh, the VM must be able to talk to istiod and initiate con-
nections to the cluster services. This works out of the box when the VM and the clus-
ter are in the same network; but in our case, they are in separate networks and require
an east-west gateway to proxy the traffic to the Istio control plane or workloads.

 Let’s install the east-west gateway as we did in the previous chapter:

$ istioctl install -y -f ch13/gateways/cluster-east-west-gw.yaml

✔ Ingress gateways installed
✔ Installation complete

With the gateway installed, we can expose the needed ports for the VM to access clus-
ter services and istiod. Figure 13.11 shows the exposed ports that enable the VM to
connect to istiod and the cluster services. Let’s initially expose the multi-cluster
mTLS port (15443) that reverse-proxies requests from the VM to the in-mesh services:

$ kubectl apply -f ch13/expose-services.yaml

gateway.networking.istio.io/cross-network-gateway created

Multicluster mTLS port used
for cross-cluster (multi-cluster
routing) services

Exposes xDS and CA

Exposes injection and
validation webhooks

Service: webapp

15012

15017

15443

East-west
gateway

Istio Pilot
15012

15017

WorkloadWorkloadWeb app

The east-west gateway routes traffic to the
service istiod.istio-system on port 443,
which then targets port 15017.

Figure 13.11
The ports that 
expose istiod 
and cluster 
services to 
the VM
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Next, we expose the istiod ports by applying a Gateway resource and a Virtual-
Service resource to admit traffic and route it to istiod. We configure both by apply-
ing the following file:

$ kubectl apply -f ch13/expose-istiod.yaml

gateway.networking.istio.io/istiod-gateway created
virtualservice.networking.istio.io/istiod-vs created

With the infrastructure created, the updated control plane, and the ability for the
proxy to talk to the control plane, we have come a long way toward integrating VMs
into the service mesh. What’s left is to create a WorkloadGroup that represents the
group of workloads the VM belongs to. 

13.3.2 Representing a group of workloads with a WorkloadGroup

The WorkloadGroup defines the common properties of the VMs that are members of
it, including application-specific information such as what ports are exposed and how
to test the application’s readiness to receive traffic. For example, the common proper-
ties for the forum workloads are defined in this WorkloadGroup:

apiVersion: networking.istio.io/v1alpha3
kind: WorkloadGroup
metadata:

name: forum
namespace: forum-services

spec:
metadata:

annotations: {}
labels:

app: forum
template:

ports:
http: 8080

serviceAccount: forum-sa
network: vm-network

probe:
periodSeconds: 5
initialDelaySeconds: 1
httpGet:

port: 8080
path: /api/healthz

Some of the relevant properties for integrating a VM into the service mesh are as fol-
lows:

 labels—Enables Kubernetes services to select the workload entries that regis-
ter to this WorkloadGroup.

 network—Using this property, the control plane configures service proxies to
route traffic to the VM: if it’s the same network, use the IP address; otherwise,
use the east-west gateway deployed in that network.

Services can target workloads 
in this group using labels.

Validates that workloads possess an 
authentication token from forum-sa 
to register to this workload group

Enables Istio to configure direct 
access between workloads in 
the same network

The istio-agent that runs in the instances of 
this workload group checks the readiness of 
the app by making HTTP GET requests on 
port 8080 and path /api/healthz.
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con
to aut

the
 serviceAccount—Represents the identity of the workloads. For a workload to
register as a member of this group, it must represent a claim for the service
account identity.

Let’s create the namespace and service account and then apply the WorkloadGroup
configuration to the cluster:

$ kubectl create namespace forum-services
$ kubectl create serviceaccount forum-sa -n forum-services
$ kubectl apply -f ch13/workloadgroup.yaml

What happens after we apply the WorkloadGroup? Now the cluster is configured to
auto-register workloads that can represent a valid token for the service account
forum-sa as specified in the WorkloadGroup.

GENERATING THE CONFIGURATION FOR THE VM’S SIDECAR

Besides facilitating workload auto-registration, the WorkloadGroup can be used to gen-
erate the common configuration for VMs in this group. Using istioctl, creating the
VM configuration is pretty simple. It uses the information in the WorkloadGroup and
queries the Kubernetes cluster for additional information needed to generate the
configuration for the instances of that WorkloadGroup. For example, the following
command generates the configuration for the machines hosting the forum workload:

$ istioctl x workload entry configure \
--name forum \
--namespace forum-services \
--clusterID "west-cluster" \
--externalIP $VM_IP \
--autoregister \
-o ./ch13/workload-files/

Warning: a security token for namespace "forum-services" and
service account "forum-sa" has been generated and stored at
"ch13/workload-files/istio-token"

configuration generation into directory ./ch13/workload-files/
was successful

That was easy! If you check the generated configuration, you’ll find a number of mov-
ing pieces. You don’t have to know all of them; however, doing so will simplify trouble-
shooting issues that you may face. For that reason, we discuss the configuration in
more detail in appendix E.

 What’s important to know at a high level is that the files contain the following:

 The east-west gateway IP address through which istiod is exposed.

Generates the workload configuration 
from the WorkloadGroup named forum 
in the forum-services namespace

Must be set to the cluster name 
specified during Istio installation

The workloadIP parameter is required when 
workloads are not in the same network as the 
cluster. When not defined by default, it uses 
the private IP assigned to it by the network.

Sets the
figuration
o-register
 workload

Directory in which to store configuration files 
relative to where the command was executed
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 The root certificate to validate the authenticity of the certificate presented by
istiod. It’s a precursor to initiating a secure connection between the service
proxy and istiod.

 The service account token to authenticate as a member of the forum Work-
loadGroup, to istiod.

 Configuration about the service mesh, the network, and the common proper-
ties, as defined in the WorkloadGroup.

In the presence of this configuration, the service proxy can start a secure connection
to the control plane, get its SVID, and receive its Envoy configuration via xDS to
become a member of the mesh. 

TRANSFERRING THE GENERATED FILES TO THE VM
Because the configuration files contain sensitive data—specifically, the service account
token—we must securely transfer them to the VM. For demonstration purposes, we’ll
use the approach that requires the least effort and copy the files using rsync over SSH,
which is secure—but understandably, in production environments, this process must
be automated and must not require any manual intervention:

$ rsync -e "ssh -i ch13/keys/id_rsa" \
-avz ch13/workload-files/ azureuser@$VM_IP:~/

With the files copied over to the VM, we are ready to install and configure the sidecar
to join the service mesh. 

13.3.3 Installing and configuring the istio-agent in the VM

Open a remote shell session to the machine using the SSH client:

$ ssh -i ch13/keys/id_rsa azureuser@$VM_IP

NOTE In the following, we indicate when commands are run in the VM using
the bash prompt azureuser@forum-vm:~$. For commands run on the local
computer, we continue using only the dollar sign ($) symbol.

We need to download and install the istio-agent on the VM. The question is, what
options do we have to install the proxy? Istio releases the istio-agent in the follow-
ing package formats:

 Debian Software Package (.deb), which can be used to install the agent on any of
the Debian-based Linux distributions, such as Ubuntu and Linux Mint.

 Red Hat Package Manager (.rpm), which can be used to install the agent in Red
Hat-based Linux distributions such as Fedora, RHEL, and CentOS.

Because our VM’s operating system is based on Debian, we download and install the
istio-agent in the Debian packaging format:

azureuser@forum-vm:~$
curl -LO https:/./storage.googleapis.com/\

istio-release/releases/1.13.0/deb/istio-sidecar.deb
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azureuser@forum-vm:~$
sudo dpkg -i istio-sidecar.deb

The istio-agent reads the configuration files from specific locations, so let’s move
them and make it happy:

azureuser@forum-vm:~$
sudo mkdir -p /etc/certs

azureuser@forum-vm:~$
sudo cp \

"${HOME}"/root-cert.pem /etc/certs/root-cert.pem
azureuser@forum-vm:~$

sudo mkdir -p /var/run/secrets/tokens
azureuser@forum-vm:~$

sudo cp "${HOME}"/istio-token \
/var/run/secrets/tokens/istio-token

azureuser@forum-vm:~$
sudo cp "${HOME}"/cluster.env \

/var/lib/istio/envoy/cluster.env
azureuser@forum-vm:~$

sudo cp \
"${HOME}"/mesh.yaml /etc/istio/config/mesh

We are almost done! Next, we configure the system hosts file with an entry to statically
resolve the hostname istiod.istio-system.svc to the east-west gateway IP address,
which proxies the request to the istiod instances. This was generated by the earlier
istioctl command and stored in a file named hosts. We already copied it to the VM.
Next, concatenate the contents of the hosts file contents to the systems hosts file:

azureuser@forum-vm:~$
cat "${HOME}"/hosts | \

sudo sh -c 'cat >> /etc/hosts'

Next, hardcode the hostname of the machine to the hosts file so that the istio-agent
doesn’t interfere with its hostname resolution:

$ echo "$(hostname --all-ip-addresses | cut -d ' ' -f 1) $(hostname)" | \
sudo sh -c 'cat >> /etc/hosts'

The last step before starting the agent is giving it owner permissions in the directories
it reads and writes to:

Shouldn’t the DNS proxy resolve the in-cluster hostnames?
Indeed; but at this point, when the sidecar still doesn’t connect to the control plane,
it will lack the DNS entries known to the pilot.

Additionally, if statically defining the east-west gateway hostname in /etc/hosts is
not suitable for your environment, you can stand up a network load balancer to point
to the east-west gateway. Refer to your specific cloud or on-premises environment for
how to configure and expose a network load balancer.

The root certificate must be 
in the /etc/certs/ directory.

The service account 
token uses the same 
directory as in Pods.

The configuration must be 
moved to the directories 
it is read from.
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azureuser@forum-vm:~$
sudo mkdir -p /etc/istio/proxy

azureuser@forum-vm:~$
sudo chown -R istio-proxy /var/lib/istio \

/etc/certs /etc/istio/proxy /etc/istio/config \
/var/run/secrets /etc/certs/root-cert.pem

Finally, start the istio-agent as a system service:

azureuser@forum-vm:~$
sudo systemctl start istio

Verify the status of the service to ensure that it is running:

azureuser@forum-vm:~$
sudo systemctl status istio

● istio.service - istio-sidecar: The Istio sidecar
Loaded: loaded (/lib/systemd/system/istio.service; disabled;

➥vendor preset: enabled)
Active: active (running) since Tue 2021-06-01 12:02:40 UTC; 4s ago

Docs: http:/./istio.io/
Main PID: 2826 (su)

Tasks: 0 (limit: 4074)
CGroup: /system.slice/istio.service

➥2826 su -s /bin/bash -c INSTANCE_IP=138.91.144.131

➥POD_NAME=forum-vm POD_NAMESPACE=forum-services

➥exec /usr/local/bin/pilot-agent proxy 2> /var/log/ist...

The status shows that it is active and running! Next, let’s verify that it connected to the
control plane by checking the agent logs.

CHECKING THE AGENT LOGS

Istio’s agent logs are written in the following two locations:

 The standard output channel is written to the file /var/log/istio/istio.log.
 The standard error channel is written to the file /var/log/istio/istio.err.log.

To verify that the connection to the Istio control plane was successful, we can check
the standard output logs:

azureuser@forum-vm:~$
 cat /var/log/istio/istio.log | grep xdsproxy

2021-07-15T12:25:20.229041Z info xdsproxy

➥Initializing with upstream address "istiod.istio-system.svc:15012"

➥and cluster "west-cluster"

2021-07-15T12:25:21.405275Z info xdsproxy connected to

➥upstream XDS server: istiod.istio-system.svc:15012

Your logs may not be identical but if you look for logs in the xdsproxy scope, you will
find an entry showing that the connection was successful to the upstream. But what if
the log file wasn’t created? That can be the case only when the service failed to start.

The istio-agent connected
to istiod
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When that occurs, check the systemd logs using journalctl with the following com-
mand (this shows any failures that hindered the startup of the service):

journalctl -f -u istio

But in our case, the connection was successful, so we don’t have to do that. 

VERIFYING THAT THE WORKLOAD REGISTERED TO THE MESH

With workload auto-registration enabled, a WorkloadEntry is created as soon as the
machine’s istio-agent connects to istiod. Let’s verify that by listing the workload
entries in the forum-services namespace :

$ kubectl get workloadentry -n forum-services

NAME AGE ADDRESS
forum-40.83.164.1-vm-network 17s 40.83.164.1

As expected, the output shows the registered workload entry for the VM. Additionally,
it shows the address where a connection to the instance and the services it provides
can be initiated. These are the unique properties for the VM this entry represents.
Next, let’s see how traffic is routed to in-cluster services and vice versa. 

13.3.4 Routing traffic to cluster services

To check if traffic is routed to the cluster services, make a curl request from the VM
to the webapp workload:

azureuser@forum-vm:~$
curl webapp.istioinaction/api/catalog/items/1

{
"id": 1,
"color": "amber",
"department": "Eyewear",
"name": "Elinor Glasses",
"price": "282.00"

}

The successful response verifies the traffic routing from the VM to the cluster work-
load. However, let’s dig into the details of what transpired for the request to be served
(see figure 13.12):

1 For traffic to leave the application, it must resolve its hostname. For this to
occur, the DNS query must be redirected to the DNS proxy.

2 With the name resolved to an IP address, the application can trigger an out-
bound request that is redirected by Iptable rules to the Envoy proxy.

3 The Envoy proxy routes the traffic to the east-west gateway.
4 The east-west gateway proxies the request to the webapp, which queries the cat-

alog service for the items.

 Going over this process at a high level answers questions such as “How is the DNS
proxy configured?” and “How does the application interact with it?” and puts it in
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context with the entire process of routing traffic to the cluster services from the VM
workload. As a user of the service mesh, this suffices; but if you’re curious, you can
find more details in section 13.4. 

13.3.5 Routing traffic to the WorkloadEntry

In the previous section, we verified routing from the machine to the in-cluster/in-
mesh services. Next, let’s verify the opposite: routing from within the cluster to the
VM workloads.

 How should we make the request to reach services running in the VM? Should we
use its IP address, which we saw in the WorkloadEntry? Definitely not, for the same
reason we don’t use static IP addresses of Pods in Kubernetes: to allow the platform to
be flexible and replace instances.

 As briefly mentioned, we have to create a Kubernetes service that selects the
instances using labels and lets Istio dynamically configure all services with the correct
IP addresses. For example, to select the forum workload entries, we use the following
Kubernetes service:

apiVersion: v1
kind: Service
metadata:

labels:
app: forum

name: forum
spec:

ports:
- name: http

port: 80
protocol: TCP
targetPort: 8080

selector:
app: forum

Mesh

Cluster

istiod

Virtual machine

Application

Istio agent

DNS proxyConfigures the
Envoy and DNS proxies

1. DNS query is
  redirected to the
  DNS proxyEnvoy proxy

Web app
East-west
gateway

catalog
service

2. Outbound request
  is redirected to the
  Envoy proxy

3. Routes the
  request

4. Request is routed through
  the east-west gateway to
  services in the cluster 

Figure 13.12 How traffic reaches cluster services
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This service definition selects the endpoints of all workloads (Pods and Workload-
Entrys) that match the label selector app: forum. Thus it selects the workload entry
for the forum service.

 Let’s apply this service to the cluster using the following command:

$ kubectl apply -f services/forum/kubernetes/forum-svc.yaml \
-n forum-services

With the service created, the WorkloadEntry endpoint is selected, and istiod config-
ures the data plane with it. We can easily verify that by making a request to the forum
service:

$ EXT_IP=$(kubectl -n istio-system get svc istio-ingressgateway -o \
jsonpath='{.status.loadBalancer.ingress[0].ip}')

$ curl -is -H "Host: webapp.istioinaction.io" \
http:/./$EXT_IP/api/users | grep HTTP

HTTP/1.1 500 Internal Server Error

The request failed. Does that mean we did something wrong? We won’t know until we
do some troubleshooting and find the root cause! The goal of this drill is to give you
practice for when things don’t work out as you might have planned. Let’s begin
with the instance that returned an error: the webapp workload. Start looking into its
access logs:

$ kubectl -n istioinaction logs deploy/webapp -c istio-proxy | tail -2

Figure 13.13 shows the output of this command. As covered in chapter 10, the UH
response flag stands for “No healthy upstream,” which occurs only when a cluster has
no healthy endpoints where traffic can be routed. If that’s the case, webapp should
have no endpoints for the forum service.

Figure 13.13 The Envoy access logs of the webapp service

$  kwest -n istioinaction logs deploy/webapp -c istio-proxy | tail -2

[2021-05-10T13:40:16.648Z] "GET /api/users HTTP/1.1" 503 UH no_healthy_upstream 
- "-" 0 19 0 - "10.244.0.1" "Go-http-client/1.1" 
"c942191b-5c0f-4a99-a6e8-3a06633fc2c9" "forum.forum-services:80" "-" - - 10.0.199.116:80
10.244.0.1:0 - default

[2021-05-10T13:40:16.647Z] "GET /api/users HTTP/1.1" 500 - via_upstream - "-" 
0 28 19 18 "10.244.0.1" "curl/7.64.1" "c942191b-5c0f-4a99-a6e8-3a06633fc2c9" 
"webapp.istioinaction.io" "127.0.0.1:8080" inbound|8080|| 127.0.0.1:47518 
10.244.0.10:8080 10.244.0.1:0 
outbound_.80_._.webapp.istioinaction.svc.cluster.local default

The connection to the
forum service ends with
the UH response flag. 

The webapp application cannot
connect to any forum instance 
and fails with an internal 
server error.
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NOTE Envoy response flags are documented in the Envoy access logs: http://
mng.bz/jyBx.

Verify that using this istioctl command:

$ istioctl proxy-config endpoints deploy/webapp.istioinaction | \
grep forum

<empty>

The endpoint is definitely missing! We know (and verified) that the WorkloadEntry is
registered; however, we didn’t check whether it’s passing the health checks.

VERIFYING THE HEALTH OF THE FORUM WORKLOAD

The health or, to be exact, the readiness of a WorkloadEntry to receive traffic is shown
when we print its definition in the verbose YAML format:

$ WE_NAME=$(kubectl get workloadentry -n "forum-services" \
-o jsonpath='{.items..metadata.name}')

$ kubectl get workloadentry $WE_NAME \
-n forum-services -o yaml

apiVersion: networking.istio.io/v1beta1
kind: WorkloadEntry
metadata:

name: forum-10.0.0.4
namespace: forum-services
labels:

app: forum
service.istio.io/canonical-name: forum
service.istio.io/canonical-version: latest

spec:
address: 138.91.249.118
labels:

app: forum
service.istio.io/canonical-name: forum
service.istio.io/canonical-version: latest

network: vm-network
serviceAccount: forum-sa

status:
conditions:
- lastProbeTime: "2021-07-29T09:33:50.281295466Z"

lastTransitionTime: "2021-07-29T09:33:50.281296166Z"
message: 'Get "http:/./40.85.149.87:8080/api/healthz":

➥dial tcp 127.0.0.6:0->40.85.149.87:8080:
connect: connection refused'

status: "False"
type: Healthy

The output shows that the WorkloadEntry has failed health checks, as indicated by
status: "False". Why could that be the case? Ouch! Recall that when we checked
the ports of the machine using Nmap, port 8080 was closed, which indicated that

Gets the workload 
entry name

Prints the YAML definition 
of the workload entry

The False status of the health condition 
shows that the workload is unhealthy

http://mng.bz/jyBx
http://mng.bz/jyBx
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there is no application listening for packets on that port. So we still didn’t even start
the application in the VM! This explains why the application health checks are failing.
Let’s start the app. 

STARTING THE FORUM APPLICATION IN THE VM
To start the application, we have to download the forum binary, give it execute permis-
sion, and then start it to listen for traffic on port 8080. All of that is done here:

azureuser@forum-vm:~$
wget -O forum https:/./git.io/J3QrT

azureuser@forum-vm:~$
chmod +x forum

azureuser@forum-vm:~$
./forum

Server is listening on port:8080

After starting the application, wait until the health probes succeed and the istio-
agent informs istiod about the newly healthy status of the workload. This usually
takes just a few seconds. We can verify the updated status in the verbose YAML format:

$ kubectl get workloadentry $WE_NAME -n forum-services -o yaml

apiVersion: networking.istio.io/v1beta1
kind: WorkloadEntry
metadata:

name: forum-138.91.249.118-vm-network
namespace: forum-services

spec: <omitted>
status:

conditions:
- lastProbeTime: "2021-05-05T12:06:45.474329543Z"

lastTransitionTime: "2021-05-05T12:06:45.474330043Z"
status: "True"
type: Healthy

Now the workload entry is healthy! So istiod configures the data plane with its end-
point, which is shown when we print the webapp endpoints again:

$ istioctl proxy-config endpoints deploy/webapp.istioinaction |\
grep forum

52.160.67.232:8080 HEALTHY OK outbound|80||
forum.forum-services.svc.cluster.local

With that fixed, traffic should be routed to the forum workload in the VM. Let’s trig-
ger another request:

$ curl -is -H "Host: webapp.istioinaction.io" \
http:/./$EXT_IP/api/users | grep HTTP

HTTP/1.1 200 OK

The type of the condition is Healthy, 
and status is set to True.
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If you also get a successful response, it means that traffic was routed from the cluster
and to the forum workload.

 With that, we have validated the traffic flow from the cluster services to the work-
load entry. Additionally, this example has shown you how Istio doesn’t send traffic to a
workload that isn’t ready to receive traffic—by simply not configuring the data plane
with its endpoint. The benefits may not be clearly visible in this example, but in a pro-
duction cluster, this will protect clients from sending traffic to an instance that returns
errors and will instead route traffic only to healthy instances. 

13.3.6 VMs are configured by the control plane: Enforcing mutual 
authentication

Because the VM is integrated in the mesh and the sidecar proxy manages the network
traffic, we can apply Istio’s rich capabilities to the VM. To showcase this, let’s create a
PeerAuthentication to enforce mutually authenticated traffic and improve security.
Currently, because we exposed port 8080 of the VM, anyone who can connect to it
can get their requests served. Anyone—even unauthorized users! We can verify that by
initiating a request to the VM from our local computer, which is not integrated into
the mesh:

$ curl -is $VM_IP:8080/api/users | grep HTTP

HTTP/1.1 200 OK

The request was served, which is what we expected but what we will prohibit from now
on. To do so, we configure the service mesh with a mesh-wide policy to serve only mutu-
ally authenticated traffic and, as a result, protect our service from unauthorized access:

$ kubectl apply -f ch13/strict-peer-auth.yaml

Wait for some time to pass so the policy is distributed to the data plane. Then validate
that non-mutually authenticated traffic is prohibited:

$ curl $VM_IP:8080/api/users

curl: (56) Recv failure: Connection reset by peer

The request was rejected! Now, let’s verify that service-to-service traffic continues to
work; there is no reason for it not to, but we’ll check for our peace of mind:

$ curl -is -H "Host: webapp.istioinaction.io" \
http:/./$EXT_IP/api/users | grep HTTP

HTTP/1.1 200 OK

The output shows that requests from the webapp were served, meaning that the VM
adheres to the configuration applied by the control plane. The PeerAuthentication
policy is just one example; and you can similarly use all the Istio APIs to configure the
VM’s proxy. 
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13.4 Demystifying the DNS proxy
The DNS proxy is the new component in Istio’s sidecar and raises quite a few ques-
tions. Let’s demystify it by taking a close look under the hood. The goal in this sec-
tion is for you to understand how the DNS proxy resolves in-cluster service host-
names, but merely to satisfy your curiosity—you will do fine without knowing the con-
crete details. 

13.4.1 How the DNS proxy resolves cluster hostnames

To understand all the steps involved in resolving an in-cluster hostname, we will follow
a concrete example of how the webapp.istioinaction hostname is resolved. The
steps are shown in figure 13.14:

1 The client makes a DNS query to resolve webapp.istioinaction.
2 The operating system handles the DNS resolution. It begins by checking

whether the hostname matches any entry defined in the hosts file. If there are
no matches, the request is forwarded to the default DNS resolver.

3 The default resolver for Ubuntu is systemd-resolved (a system service that
provides hostname resolution to local applications), and it listens to the loop-
back address 127.0.0.53 on port 53. However, the request never reaches it
because the istio-agent configures Iptable rules to redirect it to the DNS
proxy.

Figure 13.14 The flow of cluster service hostname resolution
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4 The DNS proxy contains entries to resolve the services known within the service
mesh. If the hostname is matched, it gets resolved, which is the case for
webapp.istioinaction because it is configured by the control plane using NDS.

5 Otherwise, if it’s not a cluster service, the DNS proxy falls back to the nameserv-
ers specified in the resolv.conf file, where either it is resolved or resolution fails.

Instead of just theoretically understanding a concept, we prefer to verify each of its
steps. Let’s begin by verifying that the Iptable rules redirect the queries meant for
systemd-resolved (which is listening on 127.0.0.53) to the DNS proxy listening for
UDP and TCP packets on localhost port 15053. To do so, we print the Iptable rules
and grep for traffic routed to port 15053:

azureuser@forum-vm:~$
sudo iptables-save | grep 'to-ports 15053'

-A OUTPUT -d 127.0.0.53/32 -p udp -m udp --dport 53

➥-j REDIRECT --to-ports 15053
-A ISTIO_OUTPUT -d 127.0.0.53/32 -p tcp -m tcp --dport 53

➥-j REDIRECT --to-ports 15053

In the output, we see that traffic is redirected to the DNS proxy port. Let’s go full cir-
cle and verify that the istio-agent started the DNS proxy and is listening on that
port, by printing the processes and the ports they use:

azureuser@forum-vm:~$
sudo netstat -ltunp

Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address State PID/Program name
tcp 0 0 0.0.0.0:15021 LISTEN 1553/envoy
tcp 0 0 127.0.0.1:15053 LISTEN 1544/pilot-agent
tcp 0 0 0.0.0.0:15090 LISTEN 1553/envoy
tcp 0 0 127.0.0.53:53 LISTEN 850/systemd-resolve
tcp 0 0 127.0.0.1:15000 LISTEN 1553/envoy
tcp 0 0 0.0.0.0:15001 LISTEN 1553/envoy
tcp 0 0 0.0.0.0:15006 LISTEN 1553/envoy
tcp6 0 0 :::15020 LISTEN 1544/pilot-agent
udp 0 0 127.0.0.53:53 850/systemd-resolve
udp 0 0 10.0.0.4:68 828/systemd-network
udp 0 0 127.0.0.1:15053 1544/pilot-agent

The output shows that the pilot-agent (just another way we refer to the istio-
agent) is listening on port 15053 to resolve DNS queries. If that’s the case, we can
even manually (using the dig command-line utility) make an ad hoc request to
resolve an in-cluster hostname:

azureuser@forum-vm:~$
dig +short @localhost -p 15053 webapp.istioinaction

10.0.183.159

istio-agent is listening
for TCP connections

on port 15053.

istio-agent is listening for UDP
connections on port 15053.
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And as expected, the pilot-agent listening to port 15053 resolves the FQDN. In our
example, we manually specified the DNS server to resolve the request; however, that’s
not necessary—when applications resolve hostnames, the request is automatically
redirected by the Iptable rules to this port. Next, let’s find out what entries the DNS
proxy was configured with by the control plane. 

13.4.2 Which hostnames is the DNS proxy aware of?

To discover all the entries that the DNS proxy is aware of, we need to use the debug
endpoints of istiod (more about those in appendix D). Using them, we can query
the NDS configuration for every workload’s sidecar.

 Let’s begin by picking the workload name we’re interested in, which is forum-vm:

$ iwest proxy-status | awk '{print $1}'

NAME
webapp-644c89c6bc-c47l2.istioinaction
istio-eastwestgateway-8696b67f7f-d4xqf.istio-system
istio-ingressgateway-f7dff857c-f8zgd.istio-system
forum-vm.forum-services

We use the name for the proxyID parameter when retrieving its NDS configuration.
This command needs to be executed from your local computer:

$ kubectl -n istio-system exec deploy/istiod \
-- curl -Ls \
"localhost:8080/debug/ndsz?proxyID=forum-vm.forum-services"

...
"webapp.istioinaction.svc.cluster.local": {

"ips": [
"10.0.183.159"

],
"registry": "Kubernetes",
"shortname": "webapp",
"namespace": "istioinaction"

},
...

The abridged output shows the entry for the webapp service, which contains the list of
IP addresses that the name webapp.istioinaction.svc.cluster.local resolves to.
Checking the output closely, you’ll see that there aren’t shorter variations such as
webapp.istioinaction, so how did the resolution work? It’s pretty simple: when the
istio-agent receives the NDS configuration, it generates all variations that would be
configured in a Kubernetes cluster, such as

 webapp.istioinaction
 webapp.istioinaction.svc
 webapp.istioinaction.svc.cluster

And all of them resolve to the same list of IP addresses—which, as we see in the previ-
ous listing, is 10.0.183.159.

Workload name 
we’re interested in
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 Here’s a summary of the main takeaways:

 The DNS proxy is configured by istiod with the services known to it.
 The istio-agent generates the shorter variations of the hostnames (to match

the experience in Kubernetes).
 Those entries (in the DNS proxy) are used to resolve in-cluster service

hostnames.
 For queries of non-cluster hostnames (such as public domains), the resolution

falls back to the nameservers the machine was initially configured with. 

13.5 Customizing the agent’s behavior
The agent has a host of configuration options: what it logs, how it is formatted, and
behavior such as configuring the time certificate lifetime that’s requested by the agent
to get a certificate issued. For example, let’s say we want to make two modifications:

 Increase the logging level of the DNS proxy to debug.
 Reduce the certificate lifetime to 12 hours.

We can update the /var/lib/istio/envoy/sidecar.env file, which is meant for a sidecar-
specific configuration:

ISTIO_AGENT_FLAGS="--log_output_level=dns:debug"
SECRET_TTL="12h0m0s"

Restart the Istio service in order for the changes to be picked up:

sudo systemctl restart istio

You will see the debug logs for the DNS proxy. When the certificate is rotated, you can
also verify the expiry of the new certificate, which is stored in the file /etc/certs/cert-
chain.pem. For a list of all the configuration options, check Istio’s pilot-agent docu-
mentation: https://istio.io/latest/docs/reference/commands/pilot-agent. 

13.6 Removing a WorkloadEntry from the mesh
Just as the VM auto-registers to the mesh, when it is deleted, it gets cleaned up. Let’s
try that:

$ az vm delete \
--resource-group west-cluster-rg \
--name forum-vm -y

After some time passes, verify that the WorkloadEntry was cleaned up:

$ kubectl get workloadentries -n forum-services

No resources found in forum-services namespace.

Having workload entries automatically cleaned up is just as important as auto-registra-
tion, to support the ephemeral nature of cloud-native workloads.

https://istio.io/latest/docs/reference/commands/pilot-agent
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 And with that, we conclude this chapter. Because we covered so much, table 13.1
lists the differences between how a Kubernetes Pod and a VM are integrated into the
mesh.

We also want to leave you with a word of caution. To be concise, we manually installed
and configured the proxy, as this approach permitted us to show all the nooks and
crannies of how to integrate workloads into the mesh. But in real projects, this process
must be automated. Adding VMs manually into the mesh will result in a very fragile
mesh, and inadvertently it will get you paged at 3:00 a.m. to manually rebuild a virtual
machine and register it to the mesh to restore service.

 The word automate may sound daunting. But in reality, most projects nowadays fol-
low good practices and have automation in place to build and deploy VMs, generally
using tools such as Packer (packer.io), Ansible (ansible.com), and Terraform (terra
form.io). And whenever there is pre-existing automation, it reduces your work to only
updating the scripts to install Istio’s sidecar alongside the application and providing it
with the configuration and the token. And voilà: the VM is integrated into the mesh!

NOTE Remember to clean up resources in the cloud provider. If you are
using Azure, you can execute the script $ az group delete --resource-
group west-cluster-rg -y.

Summary
 Virtual machines graduated to beta as of Istio v1.9. There are further improve-

ments to be expected, and it will be an interesting area of development in the

Table 13.1 Differences between how a workload in Kubernetes and a workload in a VM are integrated
into the mesh

Feature Kubernetes implementation Virtual machine implementation

Installing proxy Manual injection using istioctl or 
automatically with the webhook

Download and install manually

Configuring proxy Done during sidecar injection Generate configuration from a 
WorkloadGroup using 
istioctl and transfer to the VM 
with the proxy

Bootstrap workload 
identity

Service account token is injected into 
the Pod by Kubernetes mechanisms

Transfer service account token to 
the VM manually

Health checking Readiness and liveness probes are per-
formed by Kubernetes.

Readiness probes are configured 
in the WorkloadGroup.

Registration Handled by Kubernetes Auto-registration of VMs as mem-
bers of a WorkloadGroup

DNS resolution In-cluster DNS server is used to resolve 
in-cluster FQDNs. The DNS proxy is 
optional.

The DNS proxy is configured by 
istiod and resolves FQDNs.
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upcoming months. At the same time, it is already mature, and what we covered
here is not expected to change.

 WorkloadGroup and WorkloadEntry enable auto-registration of VMs into the
mesh.

 Auto-registration is important to achieve high availability of workloads in VMs.
 istioctl can generate VM configuration for it to connect to istiod.
 East-west gateways expose istiod so that VMs can connect to it.
 The DNS proxy resolves the in-cluster hostnames and is configured by istiod

using the NDS API.
 The VM machine sidecar adheres to the Istio configuration just as other work-

loads do.



Extending Istio
on the request path
As you’ve seen throughout this book, Istio can bring a lot of value to organizations
with its application-networking functionality. Organizations adopting Istio will
likely have other constraints or assumptions that Istio may not fulfill out of the box.
You will likely need to extend Istio’s capabilities to more nicely fit within these
constraints.

 As we saw in chapter 3, and reinforced throughout the book, the Envoy proxy is
a foundational component of the Istio service mesh. Envoy is the service proxy that
lives with the application instance and on the request path between services in a
mesh. Although Envoy has a significant set of functionality that can simplify applica-
tion networking for your services, you will most likely run into scenarios where you

This chapter covers
 Understanding Envoy filters

 Using Istio’s EnvoyFilter resource to configure 
Envoy directly

 Using Lua to customize the request path

 Using WebAssembly to customize the request 
path
378
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need to enhance Envoy for “last-mile” or customized integration. The following are
examples of extension:

 Integrating with rate limiting or external authorization services
 Adding, removing, or modifying headers
 Calling out to other services to enrich a request payload
 Implementing custom protocols like HMAC signing/verification
 Non-standard security token handling

Envoy may provide almost everything you need, but eventually, you’ll need to custom-
ize it for your specific use cases. This chapter covers extending Istio on the request
path, which inevitably means extending Envoy.

14.1 Envoy’s extension capabilities
One of the Envoy proxy’s strengths is that it was built to be extended. A lot of
thought and care went into designing Envoy’s APIs, and a big reason for its popular-
ity is the extensions others have written for it. A significant way that Envoy can be
extended is with its filter extensions. To understand where we can extend Envoy and
what will give us the most benefit for applications, we should understand some of
Envoy’s architecture.

14.1.1 Understanding Envoy’s filter chaining

In chapter 3, we introduced Envoy’s concepts of listeners, routes, and clusters, as illus-
trated in figure 14.1. We made the point that these are high-level concepts but prom-
ised to go into more specifics in this chapter. Here, we focus on Listeners and how
the listener model can be extended with filters and filter chains.

Figure 14.1 A request comes in from a downstream system through the listeners, then goes 
through the routing rules, and ends up going to a cluster that sends to an upstream service.
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A listener in Envoy is a way to open a port on a networking interface and start listen-
ing to incoming traffic. Envoy is ultimately a layer 3 and layer 4 (L3/L4) proxy that
takes bytes off a network connection and processes them in some way. This brings us
to the first important part of the architecture: the filter. A listener reads bytes off the
networking stream and processes them through various filters or stages of functional-
ity, as shown in figure 14.2.

Figure 14.2 Bytes come in from the network through listeners, while listeners process bytes 
through network filters.

Envoy’s most basic filters are network filters, which operate on a stream of bytes for
either encoding or decoding. You can configure more than one filter to operate on
the stream in a sequence called a filter chain, and these chains can be used to imple-
ment the functionality of the proxy.

 For example, out of the box, Envoy has network filters for the following protocols,
along with many others:

 MongoDB
 Redis
 Thrift
 Kafka
 HTTP Connection Manager

One of the most commonly used network filters is HttpConnectionManager. This
filter is responsible for abstracting away the details of converting a stream of bytes
into HTTP headers, body, and trailers for HTTP-based protocols (that is, HTTP 1.1,
HTTP 2, gRPC, and recently HTTP 3, and so on) and is shown in figure 14.3.

 HttpConnectionManager (sometimes referred to as the HCM) handles HTTP
requests as well as things like access logging, request retry, header manipulation, and
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request routing based on headers, path prefixes, and other request attributes. The
HCM also has a filter-based architecture that allows you to build or configure HTTP
filters into a sequence or chain of filters that operate on an HTTP request. Some
examples of out-of-the-box HTTP filters include the following:

 Cross-origin resource sharing (CORS)
 Cross-site request forgery prevention (CSRF)
 ExternalAuth
 RateLimit
 Fault injection
 gRPC/JSON transcoding
 Gzip
 Lua
 Role-based access control (RBAC)
 Tap
 Router
 WebAssembly (Wasm)

A full list of HTTP filters can be found at http://mng.bz/BxKJ.
 HTTP filters can be configured in a sequence to operate on an HTTP request. The

HTTP filters must end in a terminal filter that sends the request to an upstream cluster.
The HTTP filter responsible for this is the router filter, shown in figure 14.4. The
router filter matches requests to upstream clusters with configurable timeout and
retry parameters. See chapter 6 and the Envoy docs (http://mng.bz/domQ) for more
on this functionality.

 Users can also write their own filters and layer them on top of the proxy without hav-
ing to change any of Envoy’s core code. For example, Istio’s proxy (https://
github.com/istio/proxy) adds filters on top of Envoy and builds a custom Envoy for its
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Figure 14.3 HttpConnectionManager is a popular and useful network filter for converting a 
stream of bytes into HTTP (HTTP/1, HTTP/2, and so on) requests and routing them based on L7 
properties like headers or body details.

http://mng.bz/BxKJ
http://mng.bz/domQ
https://github.com/istio/proxy
https://github.com/istio/proxy
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data plane. Other open source projects like Gloo Edge (http://github.com/solo-io/
gloo) follow this same approach. However, this introduces a custom Envoy proxy build
that can be a lot to maintain and require developers to use C++. 

14.1.2 Filters intended for extension

Although you can write your own filters in C++ and build them into the proxy, that’s
beyond the scope of this book. There are ways to extend Envoy’s HTTP capabilities,
including writing filters, without compiling changes into the Envoy binary itself, by
using the following HTTP filters:

 External processing
 Lua
 Wasm (WebAssembly)

With these filters, you can configure calls out to an external service, run a Lua script,
or run custom code to enhance the capabilities of the HCM when processing HTTP
requests or responses. For calling an external service for processing, we’ll focus on the
rate-limiting filter. We can also call out for external authorizations, as we covered in
chapter 9.

NOTE Envoy has an external processing filter for calling out to an external ser-
vice for generic processing. This filter exists in the code base but does not do
anything at the time of writing. We focus on other ways to call out to an exter-
nal service, such as with the global rate-limiting filter. 

14.1.3 Customizing Istio’s data plane

Armed with a high-level understanding of Envoy’s filter architecture, in the next few
sections we extend the capabilities of the Envoy data plane using one of the following
methods:

 Configuring an Envoy HTTP filter with the EnvoyFilter resource from the
Istio API

 Calling out to a rate-limit server
 Implementing a Lua script and loading it into the Lua HTTP filter
 Implementing a Wasm module for the Wasm HTTP filter
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Figure 14.4
HttpConnection-
Manager has a filter 
chain that processes 
HTTP requests, ending 
with a routing filter.
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We need to understand how to configure Envoy’s filters directly, and for this, we’ll use
Istio’s EnvoyFilter resource. We used this resource in previous chapters, but we dig
into it deeper here. 

14.2 Configuring an Envoy filter with the EnvoyFilter resource
The first step in extending Istio’s data plane is to figure out whether an existing filter
in Envoy is sufficient to accomplish the type of extension we’re looking for. If one
exists, we can use the EnvoyFilter resource to directly configure Istio’s data plane.

 Istio’s APIs generally abstract away the underlying Envoy configuration, focusing
on specific networking or security scenarios. Resources like VirtualService,
DestinationRule, and AuthorizationPolicy all end up getting translated to an
Envoy configuration and potentially configure specific HTTP filters in a filter chain.
Istio does not try to expose every possible filter or configuration for the underlying
Envoy proxy, and there may be cases where we need to configure Envoy directly. Istio’s
EnvoyFilter resource is intended for advanced use cases where a user needs to either
tweak or configure a portion of Envoy not exposed by Istio’s higher-level APIs. This
resource can configure just about anything (with some limitations) in Envoy, includ-
ing listeners, routes, clusters, and filters.

 The EnvoyFilter resource is intended for advanced usage of Istio and is a “break
glass” solution. The underlying Envoy API may change at any time between releases of
Istio, so be sure to validate any EnvoyFilter you deploy. Do not assume any backward
compatibility here. Bad configuration with this API can potentially take down the
entire Istio data plane.

 Let’s look at an example and understand how it works. If you’ve followed along
from previous chapters, let’s reset our workspace, so we can start from scratch:

$ kubectl config set-context $(kubectl config current-context) \
--namespace=istioinaction

$ kubectl delete virtualservice,deployment,service,\
destinationrule,gateway,authorizationpolicy,envoyfilter --all

Let’s deploy services we’ll use for the chapter:

$ kubectl apply -f services/catalog/kubernetes/catalog.yaml
$ kubectl apply -f services/webapp/kubernetes/webapp.yaml
$ kubectl apply -f services/webapp/istio/webapp-catalog-gw-vs.yaml
$ kubectl apply -f ch9/sleep.yaml
$ kubectl delete sidecar --all -n istio-system

Suppose we want to extend our data plane with tooling to debug certain requests that
flow through the webapp service. We can extend Envoy with some custom filters, but if
we look thoroughly enough, we see that a Tap filter exists for this type of functionality.
It is not exposed by Istio’s APIs, so we can use the EnvoyFilter resource to configure
this filter for our webapp service.

 The first thing to know about an EnvoyFilter resource is that it applies to all work-
loads in the namespace for which it is declared, unless you specify otherwise. If you
create an EnvoyFilter resource in the istio-system namespace, it will be applied to
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all workloads in the mesh. If you want to be more specific about the workloads in a
namespace to which the custom EnvoyFilter configuration applies, you can use a
workloadSelector, as we’ll see in our example.

 The second thing to know about an EnvoyFilter resource is that it applies after all
other Istio resources have been translated and configured. For example, if you have
VirtualService or DestinationRule resources, those configurations are applied to
the data plane first.

 Finally, you should take great care when configuring a workload with the Envoy-
Filter resource. You should be familiar with Envoy naming conventions and configu-
ration specifics. This really is an advanced usage of Istio’s API and can bring down
your mesh if misconfigured.

 In our example, we want to configure Envoy’s tap filter (http://mng.bz/ramX) to
sample messages that go over the data plane for the webapp workload, as shown in fig-
ure 14.5. Every time a request or response flows over the tap filter, it streams it out to
some listening agent. In this example, we stream it out to the console/CLI.

Figure 14.5 The Envoy HTTP tap filter allows you to stream requests and 
responses unmodified and without impacting the client or upstreams, as a way 
to debug/introspect the data plane.

We configure an EnvoyFilter resource like this:

apiVersion: networking.istio.io/v1alpha3
kind: EnvoyFilter
metadata:

name: tap-filter
namespace: istioinaction

spec:
workloadSelector:
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labels:
app: webapp

configPatches:
- applyTo: HTTP_FILTER

match:
context: SIDECAR_INBOUND
listener:

portNumber: 8080
filterChain:
filter:

name: "envoy.filters.network.http_connection_manager"
subFilter:

name: "envoy.filters.http.router"
patch:

operation: INSERT_BEFORE
value:
name: envoy.filters.http.tap
typed_config:

"@type": "type.googleapis.com/
envoy.extensions.filters.http.tap.v3.Tap"

commonConfig:
adminConfig:

configId: tap_config

Let’s go through this section by section to make sure we understand the details. The
first thing to notice is that we deploy this EnvoyFilter to the istioinaction name-
space. As mentioned earlier, this would otherwise apply to the sidecars for all the
workloads in that namespace, but we use a workloadSelector to be very specific
about the workloads to which this configuration should apply.

 Next, we need to specify where in the Envoy configuration to patch the configura-
tion. In this example, we specify that it will be an HTTP_FILTER for an inbound listener
(SIDECAR_INBOUND). As mentioned previously, there are network filters for listeners,
and one of those is the HCM. The HCM also has a chain of HTTP-specific filters that
process HTTP requests. We also specify a particular listener in this example: the HCM
on the listener bound to port 8080. Finally, we pick the envoy.filters.http.router
HTTP filter in this HCM HTTP filter chain. We pick this specific filter because we will
order our new filter right before it, as we’ll see in the next section of the configuration.

 In the patch section of this EnvoyFilter resource, we specify how we want to patch
the configuration. In this case, we merge the configuration before the specific filter we
selected in the previous configuration section. The filter we add, envoy.filters
.http.tap goes before the http.filters.http.router in the HCM filter chain. We
have to be explicit about the structure of the tap filter configuration, so we give it an
explicit type. For the details of the tap configuration format, see the Envoy documen-
tation: http://mng.bz/VlG5.

 Let’s apply this EnvoyFilter to the webapp workload in the istioinaction
namespace:

$ kubectl apply -f ch14/tap-envoy-filter.yaml

Workload selector

Where to 
configure

Envoy config 
patch

http://mng.bz/VlG5
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We can verify the Envoy configuration in the webapp sidecar proxy with the following
command. Try to find the HTTP filters for the HCM and locate the new tap filter con-
figuration:

$ istioctl pc listener deploy/webapp.istioinaction \
--port 15006 --address 0.0.0.0 -o yaml

Note that we are reviewing the listener on port 15006 because that’s the default
ingress port in the sidecar proxy. All other ports reroute to this listener.

 You should see something like this when you run the previous command:

- name: envoy.filters.http.tap
typedConfig:
'@type': type.googleapis.com/envoy.extensions.filters

.http.tap.v3.Tap
commonConfig:

adminConfig:
configId: tap_config

- name: envoy.filters.http.router
typedConfig:
'@type': type.googleapis.com/envoy.extensions.filters

.http.router.v3.Router

Let’s verify that the tap functionality is working. You need two terminal windows for
this. In one window, start the tap on the webapp workload by passing in a tap configu-
ration with curl:

{
"config_id": "tap_config",
"tap_config": {

"match_config": {
"http_request_headers_match": {
"headers": [

{
"name": "x-app-tap",
"exact_match": "true"

}
]

}
},
"output_config": {

"sinks": [
{

"streaming_admin": {}
}

]
}

}
}

This configuration instructs the tap filter to match on any incoming HTTP requests
with the x-app-tap header equal to true. When the tap filter finds a request like this,
it streams the request out to a tap handler, which is curl in this case (which is
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automatically sent to stdout). Before we can reach the admin tap endpoint, we should
port-forward the endpoint to localhost in one window:

$ kubectl port-forward -n istioinaction deploy/webapp 15000

In another window, start the tap:

$ curl -X POST -d @./ch14/tap-config.json localhost:15000/tap

In another window, call the service like this:

$ curl -H "Host: webapp.istioinaction.io" -H "x-app-tap: true" \
http:/./localhost/api/catalog

You should see the tap output in the window where you started the tap. It gives all the
information about the request, like headers, body, trailers, and so on. Continue to
investigate the Envoy tap filter and how it can be used in Istio to debug requests across
the network. 

14.3 Rate-limiting requests with external call-out
In the previous section, we extended the Istio data plane with functionality that exists
in an out-of-the-box HTTP filter. There are also out-of-the-box filters that enhance the
data plane with functionality that exists as a call-out. With these filters, we call out to an
external service and have it perform some functionality that can determine how or
whether to continue with a request. In this section, we explore how to configure Istio’s
data plane to call out to a rate-limiting service to enforce service-side rate-limiting for
a particular workload (see figure 14.6).

Just as Istio uses Envoy for the data plane, the specific call-out for rate limiting comes
from an Envoy HTTP filter. There are several ways to do rate limiting in Envoy (as a
network filter, local rate limiting, and global rate limiting), but we specifically explore
the global rate-limiting functionality. With global rate limiting, you have all Envoy
proxies for a particular workload calling the same rate-limiting service, which calls a
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Rate-limit server

Istio
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Istio
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Figure 14.6 Multiple replicas 
of the same service call the 
same rate-limit service to get 
global rate limiting for a 
particular service.
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backend global key-value store as shown in figure 14.7. With this architecture, we can
ensure that a rate limit is enforced regardless of how many replicas of a service exist.

 To configure rate limiting, we need to deploy the rate-limit server, which comes from
the Envoy community (see https://github.com/envoyproxy/ratelimit)—or, more
accurately, a rate-limit server that implements the Envoy rate-limiting API (http://
mng.bz/xvXB). This server is configured to talk with a backend Redis cache and stores
rate-limit counters in Redis (optionally, you can use Memcache). Before we deploy the
rate-limit server, we need to configure it with the expected rate-limiting behavior.

14.3.1 Understanding Envoy rate limiting

Before configuring the Envoy rate-limit server (RLS), we need to understand how rate
limiting works. We are specifically looking at understanding Envoy’s HTTP global rate
limiting, which exists as an HTTP filter and needs to be configured into the HTTP fil-
ter chain on the HCM. When the rate-limit filter processes an HTTP request, it takes
certain attributes from the request and sends them out to the RLS for evaluation.
Envoy rate-limiting terminology uses the word descriptors to refer to attributes or
groups of attributes. These descriptors, or attributes, of the request can be things like
remote address, request headers, destination, or any other generic attributes about
the request.

 The RLS evaluates the request attributes that have been sent as part of a request
against a set of predefined attributes, as shown in figure 14.8, and increments count-
ers for those attributes. The request attributes may be grouped or defined in a tree to
determine what attributes should be counted. If an attribute or set of attributes
matches the RLS definitions, then the counts for those limits are incremented. If a
count exceeds a threshold, that request is rate-limited.
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ExtAuth CORS Rate
limit Router

Rate-limit server

Check Yes/No

8080Incoming
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Figure 14.7 With Envoy global rate limiting, we can call out to a rate-limiting
server to determine whether we need to rate limit a particular request. Attributes 
of the request are sent to the rate-limiting server to make a decision.

https://github.com/envoyproxy/ratelimit
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http://mng.bz/xvXB
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CONFIGURING THE ENVOY RATE-LIMIT SERVER

Let’s configure the RLS with the attribute counters and limits. For our example use
case, we want to limit certain groups of users depending on what loyalty tier they have
with our example organization. We can determine the loyalty tier in a request by
examining the x-loyalty header.

 For a particular group of users in the gold tier (x-loyalty: gold), we allow 10
requests per minute. For silver (x-loyalty: silver), we allow five requests per minute;
and for bronze (x-loyalty: bronze), we allow three requests per minute. For a loyalty
tier that cannot be identified, rate limiting will kick in after one request per minute.

 The RLS configuration that captures these attributes of a request (descriptors) can
be expressed as follows:

apiVersion: v1
kind: ConfigMap
metadata:

name: catalog-ratelimit-config
namespace: istioinaction

data:
config.yaml: |

domain: catalog-ratelimit
descriptors:

- key: header_match
value: no_loyalty
rate_limit:
unit: MINUTE
requests_per_unit: 1

- key: header_match

HttpConnectionManager

HTTP
filter

Rate-limit server

Check
rate-limit
decision

Rate-limit filter

HTTP
filter

Request

Descriptors

Continue or
status 429

Extract attributes

Configured descriptors to count

Figure 14.8 Attributes of 
the request, like remote 
address, request headers, 
client ID, and so on, also 
known as descriptors in 
Envoy terminology, are sent 
to the rate-limiting server to 
make a rate-limit decision 
against a preconfigured set 
of descriptors.
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value: gold_request
rate_limit:
unit: MINUTE
requests_per_unit: 10

- key: header_match
value: silver_request
rate_limit:
unit: MINUTE
requests_per_unit: 5

- key: header_match
value: bronze_request
rate_limit:
unit: MINUTE
requests_per_unit: 3

Note that we don’t deal with the actual request headers directly, just the attributes sent
as part of a request. In the next section, we explore how to define these attributes. As
mentioned earlier, the RLS configuration defines what rules to follow for rate limit-
ing. When a request is processed through the Istio data plane, attributes are sent to
the RLS; and if they match, rate limiting happens accordingly. 

CONFIGURING THE REQUEST PATH FOR RATE LIMITING

Once we’ve configured the RLS, we need to configure Envoy with which attributes to
send for a particular request. Envoy terminology refers to this configuration as the rate-
limit actions taken for a particular request path. For example, if we call the catalog
service on path /items, we want to capture whether a request has an x-loyalty header
and the group to which it belongs.

 To configure the appropriate attributes (actions) sent to the RLS, we need to spec-
ify the rate_limit configuration for a particular Envoy route configuration. Istio
doesn’t have an API for this yet (at the time of this writing), so we have to use Envoy-
Filter resources. Here’s how we can specify rate-limit actions for any route on the
catalog service:

apiVersion: networking.istio.io/v1alpha3
kind: EnvoyFilter
metadata:

name: catalog-ratelimit-actions
namespace: istioinaction

spec:
workloadSelector:

labels:
app: catalog

configPatches:
- applyTo: VIRTUAL_HOST

match:
context: SIDECAR_INBOUND
routeConfiguration:
vhost:

route:
action: ANY

patch:
operation: MERGE
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value:
rate_limits:

- actions:
- header_value_match:

descriptor_value: no_loyalty
expect_match: false
headers:
- name: "x-loyalty"

- actions:
- header_value_match:

descriptor_value: bronze_request
headers:
- name: "x-loyalty"

exact_match: bronze
- actions:

- header_value_match:
descriptor_value: silver_request
headers:
- name: "x-loyalty"

exact_match: silver
- actions:

- header_value_match:
descriptor_value: gold_request
headers:
- name: "x-loyalty"

exact_match: gold

Now let’s deploy these rules along with the RLS and see how we configure the data plane.
 To deploy these rules as a Kubernetes configmap and then deploy the RLS with a

Redis backend, run the following commands:

$ kubectl apply -f ch14/rate-limit/rlsconfig.yaml
$ kubectl apply -f ch14/rate-limit/rls.yaml

If we list the Pods in the istioinaction namespace, we should see our new rate limit
server:

NAME READY STATUS RESTARTS AGE
webapp-f7bdbcbb5-qk8fx 2/2 Running 0 24h
catalog-68666d4988-qg6v5 2/2 Running 0 24h
ratelimit-7df4b47668-4x2q9 1/1 Running 1 24s
redis-7d757c948f-c84dk 1/1 Running 0 2m26s

So far, all we’ve done is configure and deploy the RLS, but we need to configure
Envoy with the attributes to send to the RLS to be counted and rate-limited. To do
that, let’s apply the EnvoyFilter resource that does that, as we’ve seen:

$ kubectl apply -f ch14/rate-limit/catalog-ratelimit.yaml
$ kubectl apply -f ch14/rate-limit/catalog-ratelimit-actions.yaml

To test our rate-liming functionality, let’s deploy the sleep app into the istioinac-
tion namespace to simulate a client calling the catalog service. If you didn’t install
the sleep app earlier in the chapter, run the following command:

$ kubectl apply -f ch9/sleep.yaml

Rate-limit 
actions
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Once this Pod comes up successfully, let’s make a call to the catalog service as in the
following example:

$ kubectl exec -it deploy/sleep -c sleep -- \
curl http:/./catalog/items

You can run this command only approximately once a minute. This aligns with the
rate limits specified for requests with no x-loyalty header. If you change the request
to add an x-loyalty header, more requests per minute will be allowed. Experiment
with the rate-limit enforcement by passing in different values for the x-loyalty
header as in the following example:

kubectl exec -it deploy/sleep -c sleep -- \
curl -H "x-loyalty: silver" http:/./catalog/items

If you find that rate limiting is not enforced, you can check that all of the correct
EnvoyFilter resources are applied and that the RLS is up and running without any
errors in the logs. To double-check that the underlying Envoy configuration has the
correct rate-limit actions, you can use istioctl to get the underlying routes for the
catalog service:

$ istioctl proxy-config routes deploy/catalog.istioinaction -o json \
| grep actions

You should see multiple output lines with the word actions. If you don’t, something
wasn’t configured right, and you should double-check that things were applied
correctly. 

14.4 Extending Istio’s data plane with Lua
Extending Istio’s data plane by configuring existing Envoy filters is convenient, but
what if the functionality we want to add doesn’t already exist as an out-of-the box
Envoy filter? What if we want to implement some custom logic on the request path? In
this section, we look at how to extend data-plane behavior with our own custom logic.

 We saw in the previous sections that Envoy has a lot of out-of-the-box filters that we
can add to a filter chain to enhance the behavior of the Envoy data plane. One of
those is the Lua filter, which allows us to customize the behavior of the request or
response path by writing Lua scripts and injecting them into the proxy (see figure
14.9). These scripts can be used to manipulate the headers and inspect the body of a
request or response. We will continue to use the EnvoyFilter resource to configure
the data plane to inject Lua scripts to change the processing of the request path.

Lua programming language
Lua is a powerful, embeddable scripting language that can be used to enhance the
capabilities of a system. Lua runs as a dynamically typed and interpreted language
with automatic memory management provided by a Lua VM (in Envoy, this is LuaJIT).
See https://lua.org and https://luajit.org for more information.

https://lua.org
https://luajit.org
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NOTE Inspecting the request body can impact how the stream is treated in
the proxy. For example, you may run operations on the body that cause it to
be fully buffered into memory. This can have performance impacts. See the
Envoy proxy documentation on the Lua filter: http://mng.bz/AxOW.

Let’s take a common example for customizing the behavior of the request path. Sup-
pose we want to treat every request that comes in as part of an A/B testing group. We
can only determine the correct group at run time based on characteristics of the
request. To do so, we need to call out to an A/B testing engine to determine the
group to which a particular request belongs. The response from this call-out should
be added as a header to the request, and any upstream service can use this header to
make decisions about routing for A/B testing purposes.

 Before we get started, let’s remove the configuration from the previous section:

$ kubectl delete envoyfilter -n istioinaction --all

Let’s deploy some supporting services for this example. We deploy a sample httpbin
service that will echo back the request headers we send into the service. We also
deploy our sample A/B testing bucket service. This service evaluates a request’s head-
ers and returns a string representing a particular group that request should be in:

$ kubectl apply -f ch14/httpbin.yaml
$ kubectl apply -f ch14/bucket-tester-service.yaml

Let’s look at a Lua script we can write to manipulate the request or response headers
and how we can implement this use case. In Envoy, we can implement the
envoy_on_request () or envoy_on_response() Lua function to inspect and manipu-
late the request and response, respectively. If we need to make a call to another ser-
vice from within Lua, we have to use an Envoy-provided function (we should not use a
general-purpose Lua library to make RPC calls, because we want Envoy to manage the
call correctly with its non-blocking threading architecture). We can use the http-
Call() function to communicate with an external service. The following script imple-
ments our use case:

function envoy_on_request(request_handle)
local headers, test_bucket = request_handle:httpCall(
"bucket_tester",
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{
[":method"] = "GET",
[":path"] = "/",
[":scheme"] = "http",
[":authority"] = "bucket-tester.istioinaction.svc.cluster.local",
["accept"] = "*/*"

}, "", 5000)

request_handle:headers():add("x-test-cohort", test_bucket)
end

We implement the envoy_on_request() function, and we use the httpCall() built-in
function to communicate with an external service. We take the response and add it to
a header called x-test-cohort. See the Envoy documentation for more about the
built-in functions, including httpCall (): http://mng.bz/mx2r.

 We can add this script to an EnvoyFilter resource as we did in the previous section:

apiVersion: networking.istio.io/v1alpha3
kind: EnvoyFilter
metadata:

name: webapp-lua-extension
namespace: istioinaction

spec:
workloadSelector:

labels:
app: httpbin

configPatches:
- applyTo: HTTP_FILTER

match:
context: SIDECAR_INBOUND
listener:

portNumber: 80
filterChain:
filter:

name: "envoy.filters.network.http_connection_manager"
subFilter:

name: "envoy.filters.http.router"
patch:

operation: INSERT_BEFORE
value:
name: envoy.lua
typed_config:

"@type": "type.googleapis.com/
envoy.extensions.filters.http.lua.v3.Lua"

inlineCode: |
function envoy_on_request(request_handle)

-- some code here
end
function envoy_on_response(response_handle)

-- some code here
end

We apply this filter to the httpbin workloads as defined by the workloadSelector in
the previous listing:

$ kubectl apply -f ch14/lua-filter.yaml

http://mng.bz/mx2r
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If we make a call to our httpbin service, we should see a new header x-test-cohort
that gets added when we make the call-out to the A/B testing service:

$ kubectl exec -it deploy/sleep \
-- curl httpbin.istioinaction:8000/headers

{
"headers": {

"Accept": "*/*",
"Content-Length": "0",
"Host": "httpbin.istioinaction:8000",
"User-Agent": "curl/7.69.1",
"X-B3-Sampled": "1",
"X-B3-Spanid": "1d066f4b17ee147b",
"X-B3-Traceid": "1ec27110e4141e131d066f4b17ee147b",
"X-Test-Cohort": "dark-launch-7"

}
}

You can examine the details more closely in the ch14/lua-filter.yaml file in the book’s
source code. In this example, we saw how to use a filter that was purposefully built to
extend the functionality of the data plane. We used the Lua scripting language to
implement this functionality and some built-in functions to make callouts to other ser-
vices. In the next section, we see how to use other languages to implement our custom
functionality with WebAssembly. 

14.5 Extending Istio’s data plane with WebAssembly
The last approach to extend Istio on the request path that we cover in this chapter is
writing new Envoy filters with WebAssembly. In the previous sections, we reused exist-
ing Envoy filters and configured them to extend the out-of-the-box Istio capabilities,
including injecting our own custom scripts to manipulate the request path. In this sec-
tion, we explore how we can build our own Envoy filters and dynamically deploy them
to the Istio data plane.

14.5.1 Introducing WebAssembly

WebAssembly (Wasm) is a binary instruction for-
mat that is intended to be portable across envi-
ronments and that can be compiled from many
different programming languages and run in a
VM. Wasm was originally developed to speed up
the execution of CPU-intensive operations for
web apps in a browser and extend the support
for browser-based apps to languages other than
JavaScript (see figure 14.10). It became a W3C
Recommendation in 2019 and is supported in
all major browsers.

Host (browser)

Wasm VM

Wasm module

Figure 14.10 WebAssembly is custom 
code packaged as a module that can 
run safely in a sandboxed VM within a 
target host like a web browser.
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Wasm is intended to have a compact size and load footprint and execute at near-native
speeds. It is also safe to embed in host applications (that is, a browser) because it is
memory safe and runs in a sandboxed execution environment (VM). A Wasm module
only has access to memory and functionality that the host system allows. 

14.5.2 Why WebAssembly for Envoy?

There are two main drawbacks to writing your own native Envoy filter:

 It must be in C++.
 You must statically build the changes into a new Envoy binary, which effectively

becomes a “custom” build of Envoy.

Envoy embeds a WebAssembly execution engine that can be used to customize and
extend various areas of Envoy, including HTTP filters. You can write Envoy filters in
any language supported by Wasm and dynamically load them into the proxy at run
time, as shown in figure 14.11. This means you can keep using the out-of-the-box
Envoy proxy in Istio and dynamically load your custom filters at run time. 

14.5.3 Building a new Envoy filter with WebAssembly

To build an Envoy filter with WebAssembly, you need to know what language you want
to use, what Envoy version you’re on, and what Envoy Abstract Binary Interface (ABI)
is supported by that particular version of Envoy. Then you need to pick the correct
language SDK and set up the build and dependency toolchain correctly. For this sec-
tion, we use an open source developer tool called wasme from the folks at Solo.io to
create and build Wasm filters for Envoy. With wasme, you can quickly bootstrap a
Wasm for the Envoy project and automate any of the boilerplate scaffolding. Let’s see
how to get started building Envoy filters with Wasm.

 At the time of this writing, there are Envoy Wasm SDKs for the following four pro-
gramming languages:

 C++
 Rust

HttpConnectionManager

HTTP
filter

HTTP
filter

Wasm filter

Wasm VM

Wasm module

Figure 14.11 A Wasm 
module can be packaged 
and run within the Wasm 
HTTP filter.
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 AssemblyScript (TypeScript)
 TinyGo

In this section, we build a new Envoy filter with Wasm using the AssemblyScript lan-
guage (www.assemblyscript.org). AssemblyScript is a variant of TypeScript, so Java-
Script developers should be familiar with it. It gives a nice alternative to C++ when
building filters for Envoy.

NOTE WebAssembly support in Envoy is considered experimental and subject
to change. We recommend thoroughly testing any Wasm modules you create
and deploy to Envoy before getting into a production environment. 

14.5.4 Building a new Envoy filter with the meshctl tool

The meshctl tool is a Docker-like tool for creating, building, publishing, and deploy-
ing Wasm modules; it significantly simplifies the user experience when building Wasm
filters for Envoy. First, download meshctl and put it on your system path:

curl -sL https:/./run.solo.io/meshctl/install | sh
export PATH=$HOME/.gloo-mesh/bin:$PATH

Next, pick a folder to bootstrap a new Wasm project, and then run the following
command:

$ meshctl wasm init ./hello-wasm --language=assemblyscript

This creates a new folder called hello-wasm, all the dependency files, and even an
index.ts file with the initial implementation of a filter. This initial implementation
shows how to add a header to an HTTP response. If you look into ./hello-wasm/
assembly/index.ts, you should see two TypeScript classes created. The first class,
AddHeaderRoot, sets up any custom configuration for the Wasm module. The second
class, AddHeader, contains the meat of the implementation where you can implement
the callback functions that end up processing the request path. In this example, we
implement the onResponseHeaders function of the AddHeader class like this:

class AddHeader extends Context {
root_context : AddHeaderRoot;
constructor(root_context:AddHeaderRoot){

super();
this.root_context = root_context;

}
onResponseHeaders(a: u32): FilterHeadersStatusValues {

const root_context = this.root_context;
if (root_context.configuration == "") {

stream_context.headers.response.add("hello", "world!");
} else {

stream_context.headers.response.add("hello",
root_context.configuration);

}
return FilterHeadersStatusValues.Continue;

}
}
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There are also other useful functions for manipulating the request or response:

 onRequestHeaders 
 onRequestBody 
 onResponseHeaders 
 onResponseBody 

If we navigate into the hello-wasm folder, we can build the Wasm module with the
meshctl wasm tooling like this:

$ meshctl wasm build assemblyscript ./hello-wasm/ \
-t webassemblyhub.io/ceposta/istioinaction-demo:0.1

The meshctl wasm tool handles all of the boilerplate tool-chain setup and initiates a
build appropriate for the language originally chosen for the module. The output for
the build process creates an Open Container Initiative (OCI)-compliant image pack-
aged with the .wasm module as one of the layers in the image.

 You can use the meshctl wasm tool to list what modules you have locally:

$ meshctl wasm list
NAME TAG SIZE SHA
webasseblyhub.io/ceposta/cache-example 1.0 12.6 kB 10addc6d
webassemblyhub.io/ceposta/demo-filter 1.0 12.6 kB a515a5d2
webassemblyhub.io/ceposta/istioinaction-demo 0.1 12.6 kB a515a5d2

You can publish this module to a registry capable of storing OCI images. For example,
to use the free webassemblyhub.io repository, you can publish your module like this:

$ meshctl wasm push webassemblyhub.io/ceposta/istioinaction-demo:1.0

To see the details of a specific OCI image, you can check the ~/.gloo-mesh/wasm/
store folder and find the image that was just built. For example:

$ ls -l ~/.gloo-mesh/wasm/store/bc234119a3962de1907a394c186bc486/

total 28
-rw-r--r-- 1 solo solo 224 Jul 2 19:04 descriptor.json
-rw-rw-r-- 1 solo solo 12553 Jul 2 19:04 filter.wasm
-rw-r--r-- 1 solo solo 43 Jul 2 19:04 image_ref
-rw-r--r-- 1 solo solo 221 Jul 2 19:04 runtime-config.json

Here you can see the filter.wasm binary along with some metadata files that describe
the OCI image and the versions of Envoy (and associated ABIs) that are compatible

WebAssembly Hub
WebAssembly Hub (webassemblyhub.io) is a free, open, community registry for stor-
ing Wasm filters that can then be deployed into Envoy proxy or Istio. See the latest
docs for WebAssembly Hub for more information: https://docs.solo.io/web-assembly
-hub/latest.

https://docs.solo.io/web-assembly-hub/latest
https://docs.solo.io/web-assembly-hub/latest
https://docs.solo.io/web-assembly-hub/latest
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with the filter. The intention of the image-based packaging is to store it in an existing
OCI registry and build tooling to support it.

14.5.5 Deploying a new WebAssembly Envoy filter

Before we get started, let’s remove the configuration from the previous section (or
any previous attemps to deploy a Wasm filter):

$ kubectl delete envoyfilter,wasmplugin -n istioinaction --all

Let’s deploy some supporting services for this example. We deploy a sample httpbin
service that will echo back the request headers we send into the service:

$ kubectl apply -f ch14/httpbin.yaml

In the previous section, we created a new Wasm module from scratch, built and pack-
aged it, and published it to a Wasm registry. In this section, we use Istio’s WasmPlugin
resource to deploy the Wasm filter to workloads running in the service mesh to
enhance the capabilities of the request/response path.

 Here is a simple WasmPlugin resource that selects the httpbin workload and speci-
fies the module URL (oci, file or https) to load the Wasm filter into the Istio data
plane:

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:

name: httpbin-wasm-filter
namespace: istioinaction

spec:
selector:

matchLabels:
app: httpbin

pluginName: add_header
url: oci://webassemblyhub.io/ceposta/istioinaction-demo:1.0

In this example, we pull the module directly from an OCI-compliant registry. We
already published our Wasm module to the webasseblyhub.io registry in the previous
section, and in this configuration we pull it directly down from the registry into the
proxy.

 Let’s apply the Wasm filter:

$ kubectl apply -f ch14/wasm/httpbin-wasm-filter.yaml

Packaging of Wasm modules
The Istio community is working on a specification that describes Wasm modules
packaged as OCI images. It is based on the work Solo.io contributed (https://
github.com/solo-io/wasm/tree/master/spec) and is used in the meshctl wasm tool-
ing. This area continues to evolve, and at the time of this writing it is very much in flux. 

Workload 
selector

Module 
URL

https://github.com/solo-io/wasm/tree/master/spec
https://github.com/solo-io/wasm/tree/master/spec
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Now, when we make a call to the httpbin service, we can verify that we get the
expected results. In this case, we expect to see a response header called “hello” with a
value of “world”:

$ kubectl exec -it deploy/sleep -c sleep -- \
curl -v httpbin:8000/status/200

* Trying 10.102.125.217:8000...
* Connected to httpbin (10.102.125.217) port 8000 (#0)
> GET /status/200 HTTP/1.1
> Host: httpbin:8000
> User-Agent: curl/7.79.1
> Accept: */*
>
* Mark bundle as not supporting multiuse
< HTTP/1.1 200 OK
< server: envoy
< date: Mon, 06 Dec 2021 16:02:37 GMT
< content-type: text/html; charset=utf-8
< access-control-allow-origin: *
< access-control-allow-credentials: true
< content-length: 0
< x-envoy-upstream-service-time: 3
< hello: world!
<
* Connection #0 to host httpbin left intact

Although this example was simple, more complex processing and logic can be built
into the filter. With WebAssembly, you can pick the language of your choice to extend
Envoy proxy and dynamically load the module at runtime. With Istio the WasmPlugin
is used to declaratively load the Wasm module. 

Summary
 Envoy’s internal architecture is built around listeners and filters.
 There are many out-of-the-box Envoy filters.
 We can extend Istio’s data plane (Envoy proxy).
 Envoy’s HTTP filter architecture can be configured directly with Istio’s Envoy-

Filter resource for more fine-grained configuration or to configure aspects of
Envoy not exposed by Istio’s API.

 We can extend Envoy’s request path for service-to-service communication with
functionality like rate limiting or the tap filter.

 Lua and Wasm are available for more advanced customizations to the data
plane without having to rebuild Envoy.

Expected response 
header



appendix A
Customizing the
Istio installation

It may surprise you that we dive into the customization of the Istio installation with-
out initially covering the installation. But installing Istio is easy peasy: you apply the
Istio resources to a Kubernetes cluster, and that’s it.

 There are many ways to apply Istio resources to the cluster:

 helm—The Kubernetes package manager command-line interface can be
used to generate and apply the Istio resources to the cluster. All the customi-
zation possibilities of the Istio installation are powered by Helm templating.

 istioctl—Exposes a simpler and safer API to install and customizes Istio
using the IstioOperator custom resource definition (CRD). Under the
hood, it uses Helm to generate the Istio resources.

 istio-operator—An operator running on the cluster side that manages
Istio installations in clusters using the IstioOperator API.

 kubectl—Or any tool (ArgoCD, Flux, and so on) that takes Kubernetes
resources and applies them to the cluster.

Configuring Istio to run in different environments, such as different cloud provid-
ers or networking topology, and to meet different application and security require-
ments becomes quite complex! Initially, Helm was the main tool to install Istio. But
as the number of configuration options grew, it became apparent that Helm’s lack
of user-input validation led to too many errors, that at best it was annoying to deal
with, and that at worst it was a question of time until an indentation error would
cause production outages.

A.1 The IstioOperator API
The IstioOperator API (http://mng.bz/PWXP) is a Kubernetes CRD that speci-
fies the desired state of an Istio installation. As a user, you have to define the
401
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desired state; then it’s up to the tools (such as istioctl and istio-operator) to use
it and figure out how to get from the current installation—or lack thereof—to the new
desired state.

 The IstioOperator API provides two major benefits. The first is user-input valida-
tion, which is big! Previously, when the configuration didn’t work, you’d have to dig
into the source code and reverse engineer the configuration capabilities just to find
out that the issue was a typo or an indentation error. The second benefit is that having
a well-defined API lets you consult the docs and discover all the configuration possibil-
ities in Istio, which makes coming up with the desired configuration straightforward.

 This API was a major improvement; however, to get Istio up and running, there is
still a ton of configuration needed. Istio tackles this, too, with ready-to-use installation
profiles. 

A.2 The Istio installation profiles
The installation profiles are predefined configurations that serve as a starting point
for installing Istio in a cluster. Recall that throughout the book, we’ve used the demo
installation profile. This profile comes with the control plane and the ingress and
egress gateways.

 In the following listing, we use istioctl to print all the built-in profiles. We’ve
added code annotations that explain each profile:

$ istioctl profile list

Istio configuration profiles:

default

demo

empty

external

minimal

openshift

preview

remote

You can view the definition of any of the profiles using the istioctl profile dump
subcommand:

$ istioctl profile dump demo

apiVersion: install.istio.io/v1alpha1

A starting point for production 
deployments. Autoscaling is enabled, and 
more resources are made available to 
istiod, the gateways, and the proxy.

Used for demonstration purposes. Resources 
are cranked all the way down so that it uses 
fewer resources when running locally.

Turns everything off. Its purpose is
to be a starting point for custom 
configurations that do not use any 
other profile as a starting point.

Used to install a control plane external to the 
clusters (data planes) that it manages. To learn 
about this deployment model, check chapter 12.

Same as the default 
profile, but without 
the ingress gateway

Same as the default profile, with the Istio CNI plugin 
enabled, which is a requirement for OpenShift

Same as default profile, but with 
experimental features enabled

As of now, identical to the default profile. It’s kept as 
a placeholder in case remote clusters’ configuration 
diverges from that of the default installation.
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kind: IstioOperator
spec:

components:
egressGateways:
- enabled: true

name: istio-egressgateway
ingressGateways:
- enabled: true

name: istio-ingressgateway
#...

istiodRemote: {...}
pilot: {...}
#...

meshConfig: {...}
values: {...}

It’s important to realize that we were using the demo configuration (shown in the list-
ing) throughout the book when we installed Istio. Next, let’s showcase how to custom-
ize the profiles using the IstioOperator API. A good example is to decouple the
lifecycle management of the data plane from that of the control plane, which simpli-
fies installation and makes control-plane upgrades transparent for the data plane
(which is a recommended best practice). 

A.3 Installing and customizing Istio using istioctl
To decouple the control-plane and data-plane installation, you need two separate
IstioOperator custom resources. The first resource handles the control-plane com-
ponents; meanwhile, the second handles the data-plane components.

 To install the control plane without the gateways, we’ll use the demo profile as a
starting point. Then we will set the gateway components to disabled. This is achieved
with the following IstioOperator definition:

apiVersion: install.istio.io/v1alpha1
kind: IstioOperator
metadata:

name: control-plane
spec:

profile: demo
components:

egressGateways:
- name: istio-egressgateway

enabled: false
ingressGateways:
- name: istio-ingressgateway

enabled: false

This manifest is stored in the file appendices/demo-profile-without-gateways.yaml.
Apply it to the cluster with this command:

$ istioctl install -f appendices/demo-profile-without-gateways.yaml

You can verify that the control plane is installed without the gateways by querying the
Pods in the Istio installation namespace.

List of egress 
gateways

Demo profile comes with 
one egress gateway List of ingress 

gateways
The demo profile comes 
with one ingress gateway.

The content 
is collapsed.

The demo profile 
is used as the base.

The egress gateway defined in 
the demo profile is set to false.

The ingress gateway defined in 
the demo profile is set to false.
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 With the first step done, we are ready to install the gateways separately. To do so,
let’s create another IstioOperator definition that defines only one ingress gateway.
But which profile should we use as a starting point? If we use the demo profile, it will
re-install all the previously applied resources, such as the roles and role bindings, cus-
tom resource definitions, and configuration, thus interfering with the previous instal-
lation. As we mentioned in the list of configuration profiles, the empty profile turns
everything off. Then we can selectively enable the ingress gateway:

apiVersion: install.istio.io/v1alpha1
kind: IstioOperator
metadata:

name: ingress-gateway
spec:

profile: empty
components:

ingressGateways:
- name: ingressgateway

namespace: istio-system
enabled: true
label:

istio: ingressgateway
k8s:

resources:
requests:

cpu: 100m
memory: 160Mi

Apply it to the cluster:

$ istioctl install -f appendices/ingress-gateway.yaml

Query the Istio installation namespace, and verify that the gateways are created. Here,
we split the management of the control plane from that of the ingress gateway. Decou-
pling the control plane from the gateways is the first step to allow for more control
when managing and upgrading gateways.

NOTE You can learn more about managing and upgrading gateways at the
official docs: http://mng.bz/J16v.

Let’s clean up the environment and start with a clean slate when we showcase the
same thing using the istio-operator:

$ kubectl delete namespace istio-system

A.4 Installing and customizing Istio with the istio-operator
A Kubernetes Operator is a type of Kubernetes controller that contains operational
knowledge about a particular software; it exposes the management of that software
through Kubernetes custom resources. In the context of the istio-operator, it man-
ages Istio installations in a cluster and allows the customization of the installation
using the IstioOperator API.

The name must be different from the 
previous installation. Otherwise, it 
would override the installation and 
remove the control-plane components.

http://mng.bz/J16v
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 The istio-operator (just like any other operator) must be able to talk to the
Kubernetes API server to perform its duties. The most straightforward approach is to
install the operator in the cluster itself. The operator from within the cluster will
authenticate to the API server using Kubernetes RBAC and watch for events of Istio-
Operator resources. If a new IstioOperator resource is created, the operator will
install Istio according to its definition. If an existing IstioOperator resource is
updated, the operator will update the existing Istio installation to match the new
IstioOperator definition (see figure A.1).

You may worry that introducing another component increases complexity, as it needs
to be maintained, and it’s another place for bugs to hide. And frankly, you’d be right!
However, the promise of the operator is that its benefits outweigh the downsides. It
promotes using patterns such as GitOps, where changes committed to Git are propa-
gated to the cluster by continuous delivery pipelines, and the operator updates the
Istio installation to match the new desired state.

A.4.1 Installing the istio-operator

We can install the istio-operator using istioctl:

$ istioctl operator init

✔ Istio operator installed
✔ Installation complete

Egress Gateway
Ingress Gateway

Istiod

IstioOperator CR
IstioOperator CR

istio-operator

IstioOperator CR

istiod
Ingress gateway

Egress gateway
Figure A.1 The istio-
operator manages Istio 
installations in a cluster.
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With the operator installed, we can start and apply IstioOperator resources. Let’s use
the same example with two IstioOperator definitions, where one is for the control
plane and the other for the data plane:

$ kubectl apply -f appendices/demo-profile-without-gateways.yaml \
-n istio-system

istiooperator.install.istio.io/control-plane created

When the operator receives the event that the IstioOperator resource is created, it
reads the content and, based on it, installs the components: in this case, the control
plane. The next step is to install the ingress gateway. This too is just a matter of apply-
ing the same IstioOperator definition as previously with istioctl:

$ kubectl apply -f appendices/ingress-gateway.yaml -n istio-system

istiooperator.install.istio.io/ingress-gateway created

And we’re done!

A.4.2 Updating the installation of a mesh

Let’s illustrate how the operator enables a fire-and-forget approach, where we make a
configuration change and let the operator do the actual work to update the installa-
tion and match the desired state. As an example, we’ll update the earlier control-
plane installation to print access logs in JSON format:

apiVersion: install.istio.io/v1alpha1
kind: IstioOperator
metadata:

name: control-plane
spec:

profile: demo
meshConfig:

accessLogEncoding: JSON
components:

egressGateways:
- name: istio-egressgateway

enabled: false
ingressGateways:
- name: istio-ingressgateway

enabled: false

Note that it is important for the name of the IstioOperator resource to match the
name of the installation we want to update. If the names don’t match, the operator
will assume that the intent is to have a second control plane—which also has its uses
for multi-tenancy, canary upgrades, and so on. Apply the updated definition to the
cluster:

$ kubectl apply -f appendices/demo-profile-without-gateways-json.yaml \
-n istio-system

istiooperator.install.istio.io/control-plane configured

Must match the installation 
that has to be updated

Access logs are 
formatted as JSON.
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The operator distributes the new configuration to the data plane. In the meantime,
you’re free to grab a coffee, smoke a cigarette (please, for your health’s sake, don’t!),
or, if you are a control freak, validate that the change was propagated and turn the
fire-and-forget process into a “fire-and-meticulously-validate” process.

 With all the options, you may be wondering, “What is the right way to install Istio?”
Our recommendation is to use either the istio-operator or istioctl, as they use
the IstioOperator API, which adds another layer of safety with its user-input valida-
tion capabilities. We frequently see enterprises leaning toward the istio-operator
because it is the GitOps approach and is more fitting to their ideology. In practice,
however, the operator adds complexity and requires maintenance. Further, you can
use istioctl and still adhere to the GitOps approach. Keep in mind that, being prag-
matic about its definition, GitOps basically means operations of services and their con-
figuration are sourced from a Git repository. It doesn’t matter what tool uses the
configuration—istioctl, Ansible, or any other tool. 



appendix B
Istio’s sidecar and

its injection options

In this book and in the wider Istio community, we synecdochically refer to Istio’s
sidecar as the service proxy or Envoy proxy. This is natural because the proxy does the
heavy lifting for most of Istio’s features. Yet this is not a one-person show; for exam-
ple, without supportive components, the proxy cannot place itself in the request
path of traffic directed toward apps (shortly, we explain how it does that). There
are many other examples where Envoy is helpless, such as getting its identity boot-
strapped, certificate rotation, and so on.

 The sidecar has these components:

 The Istio agent, often referred to as the pilot agent, has important functions
such as starting the Envoy proxy within the sidecar container and bootstrap-
ping its identity. Afterward, it maintains a bidirectional connection with the
control plane, receives the latest mesh configuration, and applies that con-
figuration to the Envoy proxy.

 The local DNS proxy is a recent addition to the Istio agent. It resolves cluster
hostnames when integrating virtual machines into the mesh or joining multi-
ple clusters into a single mesh. By default, the DNS proxy is disabled, but it
can be enabled during Istio installation.

 The Envoy proxy is started as a process and configured within the sidecar con-
tainer by the Istio agent.

Another integral component of the workload is the istio-init container that con-
figures the Pod environment to redirect inbound and outbound traffic from the
application to the service proxy. This container uses a Kubernetes feature called
init containers (http://mng.bz/7WWm) to run before any other container and, as a
result, configures Iptable rules and inserts the Envoy proxy into the request path of
the application before any traffic reaches the application.
408
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Figure B.1 visualizes the relationship between the components of the data plane, how
they work together to get the workload identity and configuration to the proxies,
and how the configured Iptable rules redirect traffic to go through the proxy.
Next, let’s elaborate on the options for injecting data-plane components into Kuber-
netes workloads.

B.1 Sidecar injection
Sidecar injection is the process of updating the Kubernetes application specifications,
which are written in YAML to contain the data-plane components. For example, here
is a standard Kubernetes app definition that lacks those components:

apiVersion: apps/v1
kind: Deployment
metadata:

name: httpbin
spec:

selector:
matchLabels:

app: httpbin
template:

metadata:
labels:

Pod

Istio’s sidecar

Pilot agent

App container

istiod

xDS API

DNS proxy

Envoy proxy

Outbound
traffic

The istio-init container
sets the Pod’s Iptable rules
and completes successfully.

Only after istio-init's
successful completion will
the other containers run.

The Iptable rules redirect inbound and
outbound traffic to the Envoy proxy.

The pilot agent maintains
a continuous connection
with istiod and receives
configuration updates.

The pilot agent starts the Envoy
proxy as a process and optionally
runs the local DNS proxy server.
It keeps those synchronized to the
latest mesh state received from
istiod.

The Iptable rules redirect DNS
queries to the DNS proxy.

istio-init

DNS
queries

Inbound traffic

Figure B.1 Istio’s data-plane components



410  APPENDIX B Istio’s sidecar and its injection options
app: httpbin
spec:

containers:
- image: docker.io/kennethreitz/httpbin

name: httpbin
ports:
- containerPort: 80

We could manually edit this definition and add the containers. However, updating
YAML is notoriously error-prone, and Istio provides us with simpler options.

B.1.1 Manual sidecar injection

In the manual sidecar-injection approach, we feed the app definition to istioctl and
let it add the data-plane components for us. On second thought, the process isn’t that
manual, after all! Here, we inject the components in the previous deployment:

$ istioctl kube-inject -f deployment.yaml

Figure B.2. shows the output after injecting the data-plane components into the deploy-
ment. While prototyping you can pipe the output of the above command to kubectl

$ istioctl kube-inject -f deployment.yaml

The istio-init container requires
privileged capabilities. When misused, 
they can pose a security threat!

apiVersion: apps/v1
kind: Deployment
metadata:
  name: httpbin
spec:
  template:
    spec:
      containers:
      - image: docker.io/kennethreitz/httpbin
        name: httpbin
        ports:
        - containerPort: 80
      - args:
        - proxy
        - sidecar
        # ... more arguments
        image: docker.io/istio/proxyv2:1.11.0
        name: istio-proxy
      initContainers:
      - args:
        - istio-iptables
        # ... even more arguments
        image: docker.io/istio/proxyv2:1.11.0
        name: istio-init
        securityContext:
          capabilities:
            add:
            - NET_ADMIN
            - NET_RAW
            drop:
            - ALL

The injected
sidecar
container

The injected
istio-init

init container

App container

Figure B.2
Injecting the 
data-plane 
components into 
the deployment
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apply (as we do throughout the book) to apply it to the cluster. For real production
clusters, you’d manually update every service and store the changes in a Git repository
used by your continuous delivery pipelines to apply the changes to the clusters.

 With automatic sidecar injection, the manual steps are not needed. Let’s take a
look. 

B.1.2 Automatic sidecar injection

Automatic sidecar injection uses Kubernetes mutating admission webhooks to inject
data-plane components into the Pod definition before it is applied to the Kubernetes
datastore (see figure B.3). The modifications are the same as when using istioctl.
However, app definitions can be applied as is, and the webhook injects the compo-
nents automatically.

Figure B.3 Automatic sidecar injection using mutating admission webhooks

Automatic sidecar injection is an opt-in feature enabled on a namespace-by-name-
space basis. To do this, you label the namespace with istio-injection=enabled. Let’s
create a namespace and label it for automatic injection:

$ kubectl create namespace istioinaction
$ kubectl label namespace istioinaction istio-injection=enabled

Now, switch to the newly created namespace:

$ kubectl config set-context $(kubectl config current-context) \
--namespace=istioinaction

From now on, the data-plane components will be injected into Pods created in this
namespace. To verify that, let’s create a deployment, which in turn creates the Pods
that are intercepted and updated:

$ kubectl apply -f services/catalog/kubernetes/catalog.yaml

Kubernetes
API server

etcd

apiVersion: v1
kind: Pod
metadata:
  name: httpbin-dng9w

istiod

1. A Pod-creation event is
 submitted to the API server.

2. The API server forwards the 
    Pod definition to istiod to inject 
    the data-plane components.

3. The updated Pod definition is
 stored in etcd.

4. Kubernetes controllers read the
 updated Pod definition.
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Verify that the Pod definition was updated:

$ POD_NAME=$(kubectl get pod -o jsonpath={.items..metadata.name})
$ kubectl get pod $POD_NAME -o yaml

apiVersion: v1
kind: Pod
metadata:

name: catalog-68666d4988-mfszp
namespace: istioinaction

spec:
containers:
- image: istioinaction/catalog:latest

name: catalog
- args:

- proxy
- sidecar
# ... more arguments
image: docker.io/istio/proxyv2:1.13.0
name: istio-proxy

initContainers:
- args:

- istio-iptables
# ... even more arguments
image: docker.io/istio/proxyv2:1.13.0
name: istio-init

The output shows that the webhook made the same changes as when using istioctl
(shown in the output in figure B.2).

Feel free to select whichever option—manual or automatic—makes more sense for
your organization. We frequently see organizations adopt automatic sidecar injection
because this approach is easier and doesn’t require the effort to manually update all
service definitions. But it isn’t rare for organizations to prefer manual injection as it
gives them complete control over what’s being deployed. 

How is Kubernetes configured to route Pod-creation events to the control
plane for modification?
The Kubernetes API server is configured by the MutatingWebhookConfiguration
resource to route matching events to an external service for modification. To list the
mutating webhook configuration that injects the sidecar, execute this command:

$ kubectl get MutatingWebhookConfiguration

NAME WEBHOOKS AGE
istio-sidecar-injector 4 4d3h

To get more details, print the configuration in the verbose YAML format. You’ll see
the resources and operations that have to match for the request to be sent to Istiod
for modification.

The application

The sidecar

The istio-init container
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B.2 Security issues with istio-init
The istio-init container requires elevated permissions to configure traffic redirec-
tion to the Envoy proxy. For some organizations, this requirement is against their
security standards. This is frequently the case for organizations that use larger clusters
shared by multiple tenants. In such larger clusters, and generally in all multi-tenant
environments, an important security standard is that a tenant must not be able to
harm another tenant. However, without permissions to run privileged containers,
application teams cannot run workloads containing the istio-init container. On
the other hand, if permissions are given to application teams to run elevated contain-
ers, those permissions can be abused and cause harm to other tenants.

 To resolve this issue, the Istio Container Network Interface (CNI) plugin was intro-
duced. This plugin moves the istio-init container functionality into centralized
Pods that run on every node and configure the traffic redirection rules for every Pod.
Thus the istio-init container is not needed, and neither are the elevated permis-
sions required to run the container. To learn more about this, check out https://
istio.io/latest/docs/setup/additional-setup/cni. 

https://istio.io/latest/docs/setup/additional-setup/cni
https://istio.io/latest/docs/setup/additional-setup/cni


appendix C
Istio security: SPIFFE

C.1 Authentication using PKI (public key 
infrastructure)
Authentication of communicating parties on the World Wide Web is done using
digitally signed certificates provisioned by a public key infrastructure (PKI). The
PKI is a framework that defines the process of providing the server (such as a web
app) with a digital certificate to prove its identity and providing the client with the
means of verifying the validity of the digital certificate. To dive deeper into how the
PKI works, check out https://www.securew2.com/blog/public-key-infrastructure
-explained.

 The certificates provisioned by the PKI have a public key and a private key. The
public key is contained in the certificate presented to the client as a means of
authentication; the client uses it to encrypt data before transmitting the data
through the public network back to the server. Only the server with the private key
can decrypt the data. In this manner, data is secure in transit.

NOTE The standard format for public key certificates is known as X.509
certificates. In this book, the terms X.509 certificates and digital certificates
are used interchangeably.

The Internet Engineering Task Force defined the Transport Layer Security (TLS)
protocol (which uses but is not limited to the PKI) and provisioned X.509 certifi-
cates to facilitate authentication and encryption of traffic.

C.1.1 Traffic encryption via TLS and end-user authentication

The TLS protocol uses X.509 certificates as the primary mechanism for authenticat-
ing the validity of the servers and securely exchanging keys for symmetric encryption
of the traffic in a process known as the TLS handshake, shown in figure C.1.
414
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Figure C.1 Steps in a TLS handshake

Let’s examine the steps in the figure:

1 The client initiates the handshake with ClientHello containing the TLS ver-
sion and the encryption methods supported by the client.

2 The server responds with ServerHello and its X.509 certificate containing
server identity data and the public key.

3 The client verifies that the server’s certificate data is not tampered with and val-
idates the chain of trust.

4 On a successful validation, the client sends the server a secret key: a randomly
generated string encrypted with the server’s public key.

5 The server uses its private key to decrypt the secret key and then uses the key to
encrypt a “finished” message sent as a response back to the client.

6 The client sends the server an encrypted “finished” message using the secret
key, and the TLS handshake is completed.

The result of the TLS handshake is that the client has authenticated the server and
has exchanged the symmetric key securely. This symmetric key will be used to encrypt
traffic between the client and the server for the duration of this connection, because
this approach is more performant than asymmetric encryption. To the end user, this
process is done transparently by the browser and denoted by the green lock in the
address bar, ensuring that the receiving party is authenticated and that the traffic is
encrypted and only the receiving party can decrypt it.

 Authenticating the end user to the server is an application detail. There are multi-
ple methods to do this, but all of them revolve around the user knowing a password

Client Server

1. Client Hello

2. Server Hello

Encrypted secret

5. Encrypted “finished”

6. Encrypted “finished”

Decrypt
secret

3. Validate
    certificate

4. Generate
    and encrypt
    secret key
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and then receiving a session cookie or JSON Web Token (JWT), which is preferably
short-lived and contains information to authenticate the users’ subsequent requests to
the server. Istio supports end-user authentication when using JWTs. We saw this in
action in section 9.4. 

C.2 SPIFFE: Secure Production Identity Framework 
for Everyone
SPIFFE is a set of open source standards for providing identity to workloads in highly
dynamic and heterogeneous environments. To issue and bootstrap identity, SPIFFE
defines the following specifications:

 SPIFFE ID—uniquely identifies a service within a trust domain.
 Workload Endpoint—bootstraps the identity of a workload.
 Workload API —signs and issues the certificate containing the SPIFFE ID.
 SPIFFE Verifiable Identity Document (SVID)—is represented as the certificate issued

by the Workload API.

The SPIFFE specification defines the process of issuing an identity to a workload with
the SPIFFE ID format and encoding it in an SVID, as well as how the control-plane
component (Workload API) and data-plane component (workload endpoint) work
together to verify, assign, and validate the identity of a workload. As those specifica-
tions are implemented by Istio, they warrant a deeper investigation.

C.2.1 SPIFFE ID: Workload identity

A SPIFFE ID is an RFC 3986 compliant URI in the following format: spiffe://trust
-domain/path. The two variables here are as follows:

 Trust-domain represents the issuer of identity, such as an individual or
organization.

 Path uniquely identifies a workload within the trust domain.

The details of how the path identifies the workload are left open-ended and can be
decided by the implementer of the SPIFFE specification. In this appendix, we see how
Istio uses Kubernetes service accounts to define the path that identifies the workload. 

C.2.2 Workload API

The Workload API represents the control-plane component of the SPIFFE specifica-
tion that exposes endpoints for workloads to fetch digital certificates that define their
identity in a format known as the SVID.

 The Workload API’s two main functions are

 Issuing certificates to workloads using the certificate authority (CA) private key
for signing certificate signing requests (CSRs) made by workloads

 Exposing an API to make its features available to workload endpoints

The specification sets a restriction that workloads must not possess secrets or other
information that defines their identity. Otherwise, the system can easily be exploited
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by a malicious user who gets access to those secrets. As a consequence of the restric-
tion, workloads lack a means of authentication and cannot initiate secure communica-
tion with the Workload API. To resolve this situation, SPIFFE defines the Workload
Endpoint specification, which represents the data-plane component and performs all
activities to bootstrap the identity of a workload, such as initiating secure communica-
tion with the Workload API and fetching SVIDs without being susceptible to eaves-
dropping or man-in-the-middle attacks. 

C.2.3 Workload endpoints

A workload endpoint represents the data-plane component of the SPIFFE specifica-
tion. It is deployed alongside every workload and provides the following functionalities:

 Workload attestation—Verifying the identity of a workload using a method such
as kernel introspection or orchestrator interrogation.

 Workload API exposure—Initiating and maintaining secure communication with
the Workload API. This secure communication is used to fetch and rotate SVIDs.

Figure C.2 shows an overview of the
steps to issue identities to workloads:

1 The workload endpoint verifies
the integrity of the workload
(that is, performs workload atte-
station) and creates a CSR with
the SPIFFE ID encoded in it.

2 The workload endpoint sub-
mits the CSR to the Workload
API for signing.

3 The Workload API signs the
CSR and responds with a digi-
tally signed certificate that has the SPIFFE ID in the URI extension of the SAN.
This certificate is the SVID that represents the workload identity. 

C.2.4 SPIFFE Verifiable Identity Documents

SVIDs are documents that represent a verifiable workload identity. Being verifiable is
the most important property, as otherwise the receiving party could not trust the iden-
tity of the workload. The specification defines two types of documents—X.509 certifi-
cates and JWTs—that meet the criteria to represent SVIDs, as both are composed of
the following components:

 The SPIFFE ID, which represents the workload identity
 A valid signature to ensure that the SPIFFE ID is not tampered with
 (Optional) A public key to build secure communication channels between

workloads

Workload

Workload
endpoint

Workload
API

1. Who is this
    service?

2. SPIFFE ID

3. SVID

Figure C.2 Issuing an identity for a workload
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Istio implements X.509 certificates for SVIDs. It does so by encoding the SPIFFE ID as
a URI in Subject Alternative Name (SAN) extensions. Using X.509 certificates has the
additional benefit that workloads can mutually authenticate and encrypt traffic
between each other (see figure C.3).

By implementing the SPIFFE specification, Istio automatically ensures that all work-
loads have their identity provisioned and receive certificates as proof of their identity.
Those certificates are used for mutual authentication and to encrypt all service-to-
service communication. Hence this feature is called auto mTLS. 

C.2.5 How Istio implements SPIFFE

With SPIFFE, the following two components work together to provide workloads with
identities:

 The workload endpoint, bootstrapping identity
 The Workload API, issuing certificates

In Istio, the Workload Endpoint specification is implemented by the Istio proxy, as it is
deployed alongside the workloads. The Istio proxy bootstraps the identity and fetches
certificates from the Istio CA, which is a component of istiod and implements the
Workload API specification.

 Figure C.4 shows how Istio implements the SPIFFE components:

 The workload endpoint is implemented by the Istio Pilot agent that performs
identity bootstrapping.

 The Workload API is implemented by Istio CA that issues certificates.
 The workload for which the identity is issued in Istio is the service proxy.

This is the high level of how Istio implements SPIFFE. Let’s examine the process step
by step to ensure that we understand it and that it sticks with us. 

Istio CA

Secure communication

Service A Service B

Fe
tch

SVID

Fetch

SVID
Figure C.3 Workloads fetching their 
SVIDs and initiating secure communication
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C.2.6 Step-by-step bootstrapping of workload identity

By default, every Pod initialized in Kubernetes has a secret mounted in the path /var/
run/secrets/kubernetes.io/serviceaccount/. This secret contains all the data needed
to securely talk to the Kubernetes API server:

 The ca.crt validates the certificates that are issued by the Kubernetes API server.
 The namespace represents where the Pod is located.
 The service account token contains a set of claims for the service account repre-

senting the Pod.

For the identity-bootstrapping process, the most important element is the token,
which is issued by Kubernetes API. Its payload cannot be modified, as otherwise it will
fail signature validation. The payload contains data that identifies the application:

{
"iss": "kubernetes/serviceaccount",
"kubernetes.io/serviceaccount/namespace": "istioinaction",
"kubernetes.io/serviceaccount/secret.name": "default-token-jl68q",
"kubernetes.io/serviceaccount/service-account.name": "default",
"kubernetes.io/serviceaccount/service-account.uid":

"074055d3-05ca-4968-943a-598b90d1072c",
"sub": "system:serviceaccount:istioinaction:default"

}

Pod

Istio proxy

Envoy

Pilot agent

App container

istiod

Istio CA

Fetch SVID

Host

Workload
API

Fetch SVID

Workload

Workload
endpoint

SPIFFE specification

Istio implementation

Add the certificate
to the proxy

Provide certificate
to the workload

Figure C.4 Mapping of 
Istio components to the 
SPIFFE specification
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The Pilot agent decodes the token and uses the payload data to create the SPIFFE ID
(e.g. spiffe://cluster.local/ns/istioinaction/sa/default), which is used in the CSR as a
SAN extension of type URI. Both the token and the CSR are sent in the request to the
Istio CA to get a certificate issued for the CSR.

 Before signing the CSR, the Istio CA uses the TokenReview API to validate that the
token was issued by the Kubernetes API. (This is a minor deviation from the SPIFFE
specification, according to which the workload endpoint [Istio agent] should do the
workload attestation.) On a successful validation, the CSR is signed, and the resulting
certificate is returned to the Pilot agent.

 The Pilot agent uses the Secrets Discovery Service (SDS) to forward the certificate
and the key to the Envoy proxy, which marks the end of the Identity bootstrapping
process. The proxy can now identify itself to clients and initiate mutually authenti-
cated connections.

 Figure C.5 briefly summarizes the steps:

1 A service account token is assigned to the Istio proxy container.
2 The token and a CSR are sent to istiod.
3 istiod validates the token using the Kubernetes TokenReview API.
4 On success, it signs the certificate and provides it as a response.
5 The Pilot agent uses the Envoy SDS to configure it to use the certificate contain-

ing the identity.

Figure C.5 Issuing an SVID in Kubernetes with Istio

And that’s the entire process of how Istio implements the SPIFFE specification to pro-
vision workload identity. This process is done automatically for every workload with
the Istio proxy sidecar injected. 
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C.3 Understanding request identity
Request identity is represented by the values stored in the filter metadata of the
request. This filter metadata contains facts or claims that were extracted from either
the JWT or the peer certificate and therefore can be trusted. In chapter 9, we covered
how validating the information in the JWT requires a RequestAuthentication
resource. Similarly, to authenticate the client workload information (such as the
namespace it originates), the workloads must mutually authenticate. The Peer-
Authentication resource can enforce workloads to use only mutual authentication.

 After either the JWT is validated or workloads mutually authenticate, the informa-
tion contained in them is stored as filter metadata. Some of the information stored in
the filter metadata is as follows:

 Principal—The workload identity defined by the PeerAuthentication
 Namespace—The workload namespace defined by the PeerAuthentication
 Request principal—The end-user request principal defined by the Request-

Authentication

 Request authentication claims—The end-user claims extracted from the end-user
token

To observe the collected metadata, we can configure the service proxies to log it to
standard output.

C.3.1 Metadata collected by the RequestAuthentication resource

By default, the Envoy rbac logger doesn’t print the metadata in the logs. To print it,
we need to set the logging level to debug:

$ istioctl proxy-config log deploy/istio-ingressgateway \
-n istio-system --level rbac:debug

Next, we need a few services to play with. If you are starting from a clean environment
with Istio installed and want to follow along, you only have to create the istioinac-
tion namespace, deploy the workloads, and configure the ingress gateway to route
traffic to it. All of that is done with the following commands:

$ kubectl create namespace istioinaction
$ kubectl label namespace istioinaction istio-injection=enabled
$ kubectl config set-context $(kubectl config current-context) \
--namespace=istioinaction

$ kubectl apply -f services/catalog/kubernetes/catalog.yaml
$ kubectl apply -f services/webapp/kubernetes/webapp.yaml
$ kubectl apply -f services/webapp/istio/webapp-catalog-gw-vs.yaml
$ kubectl apply -f ch9/enduser/ingress-gw-for-webapp.yaml

Next, create the RequestAuthentication resource and an AuthorizationPolicy that
uses the filter metadata:

$ kubectl apply -f ch9/enduser/jwt-token-request-authn.yaml
$ kubectl apply -f \

ch9/enduser/allow-all-with-jwt-to-webapp.yaml
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Make some requests utilizing the admin token, which will generate logs in the ingress
gateway:

$ ADMIN_TOKEN=$(< ch9/enduser/admin.jwt);
curl -H "Host: webapp.istioinaction.io" \

-H "Authorization: Bearer $ADMIN_TOKEN" \
-s -o /dev/null -w "%{http_code}" localhost/api/catalog

200

Now, query the ingress gateway logs to see the filter metadata:

$ kubectl -n istio-system logs \
deploy/istio-ingressgateway -c istio-proxy

# logs omitted
, dynamicMetadata: filter_metadata {

key: "envoy.filters.http.jwt_authn"
value {

fields {
key: "auth@istioinaction.io"
value {

struct_value {
fields {

key: "exp"
value {

number_value: 4745145071
}

}
fields {

key: "group"
value {

string_value: "admin"
}

}
fields {

key: "iat"
value {

number_value: 1591545071
}

}
fields {

key: "iss"
value {

string_value: "auth@istioinaction.io"
}

}
fields {

key: "sub"
value {

string_value: "218d3fb9-4628-4d20-943c-124281c80e7b"
}

}
# further logs omitted

The output shows that the RequestAuthentication filter validated the claims of the
end-user token and stored the claims as filter metadata. Policies can now act based on
this filter metadata. 
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C.3.2 Overview of the flow of one request

Every request targeting a workload goes through the following filters (see figure C.6):

 JWT authentication filter—An Envoy filter that does JWT validation based on the
JWT specification in authentication policies and extracts claims such as the
authentication claims and custom claims, which are stored as filter metadata

 PeerAuthentication filter—An Envoy filter that enforces service authentication
requirements and extracts authenticated attributes (peer identity such as
source namespace and principal)

 Authorization filter—The authorization engine that checks the filter metadata
collected by the previous filters and authorizes the request based on the policies
applied to the workload

Figure C.6 Collection of validated data in filter metadata

Let’s look at a scenario in which a request has to reach the webapp service:

1 The request passes the JWT authentication filter, which extracts the claims from
the token and stores them in the filter metadata. This provides the request with
an identity.

2 Peer-to-peer authentication is performed between the ingress gateway and the
webapp. The peer-to-peer authentication filter extracts the identity data of the
client and stores it in the filter metadata.

3 Authorization filters are executed in order:

 Custom authorization filters—Reject or allow further evaluation of the request.
 Deny authorization filters—Reject or allow further evaluation of the request.
 Allow authorization filters—Allow the request if the filter matches.
 Last (catch-all) authorization filter—Executed only if no prior filter has handled

the request.

And that’s how the request is authenticated and authorized for the request to get to
the webapp service. 
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appendix D
Troubleshooting
Istio components

Throughout the book, we frequently query the Istio agent and Pilot to get informa-
tion such as the configuration of a proxy, metrics exposed by it, and so on. These
queries are shown on a use-case by use-case basis and are scattered throughout the
book, making it difficult for the reader to recall what port 15000, 15020, or any of the
other ports are. This appendix presents all the open ports and the endpoints where
you can make requests to debug, troubleshoot, or get information from either the
control plane or the service proxy to understand the workings of the mesh.

D.1 Information exposed by the Istio agent
The Istio sidecar provides a lot of functionality:

 Health checking—Envoy as a proxy is ready as soon as it can process traffic. But
from the perspective of the service mesh, that doesn’t suffice. There have to
be more checks in place, such as whether the proxy receiving the configura-
tion and being assigned an identity before it can serve traffic.

 Metrics collection and exposure—Within a service, three components generate
metrics: the application, the agent, and the Envoy proxy. The agent aggre-
gates the metrics from the other components and exposes them.

 DNS resolution, routing inbound and outbound traffic, and much more.

The services are exposed on numerous ports, and they may appear overwhelming
when you list all of them:

$ kubectl -n istioinaction exec -it deploy/webapp \
-c istio-proxy -- netstat -tnl

Active Internet connections (only servers)
424
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Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:15021 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:15021 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:15090 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:15090 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:15000 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:15001 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:15001 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:15004 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:15006 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:15006 0.0.0.0:* LISTEN
tcp6 0 0 :::8080 :::* LISTEN
tcp6 0 0 :::15020 :::* LISTEN

Figure D.1 visualizes the ports the agent and proxy listen to and the functionality each
exposes:

 Ports facing other services:

 15020—Exposes a variety of functionalities, the main ones being as follows:

– Aggregating and exposing the metrics of the Envoy proxy by querying metrics
from port 15090, application metrics (if configured), and its own metrics.

– Health-checking the Envoy and DNS proxies. The proxy can be configured to
perform health checking of the application on this endpoint as well, but this
is generally only used for non-Kubernetes workloads such as virtual machines.

– Endpoints for debugging the pilot agent—useful for Istio development
teams—that expose information such as memory information, CPU profil-
ing, and so on.

 15021—Pods with the sidecar injected are configured to check their readiness
to receive traffic on this port. As explained previously, the Envoy proxy routes
the health checks to the Pilot agent on port 15020, where the actual health-
checking occurs.

 15053—Local DNS proxy configured by istiod to resolve edge cases where
Kubernetes DNS resolution doesn’t suffice.

 15001—Outbound traffic from the application is redirected to this port by
Iptable rules, from which point the proxy handles routing the traffic to the
services.

 15006—Inbound traffic to the application is redirected to this port by Iptable
rules, where it is routed to the local application.

Ports that are useful for debugging and introspecting the agent:

 15000—Envoy proxy administration interface (this is covered in chapter 10,
specifically the section 10.3.1).

 15090—Exposes Envoy proxy metrics such as xDS stats, connection stats, HTTP
stats, outlier stats, health check stats, circuit-breaker stats, and so on.
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 15004—Exposes the Istio Pilot debug endpoints (more on that later in this
appendix) through the agent. Useful to debug connection issues with the Pilot.

 15020—Exposes endpoints for debugging the Pilot agent (as mentioned for the
service-facing ports).

You may have noticed that port 15020 provides multiple functionalities. Let’s take a
closer look at it.

D.1.1 Endpoints to introspect and troubleshoot the Istio agent

The agent exposes a set of endpoints in port 15020 that aid troubleshooting and intro-
specting the agent and the proxy. These endpoints are:

 /healthz/ready—Performs a series of probes on the Envoy and DNS proxies to
ensure that the workload is ready to process client requests.

Pod

App

Exposes metrics generated by 
Envoy. The pilot agent queries 
this point as well when querying 
Prometheus stats in port 15020.

Envoy process

15
00
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traffic

15021

Exposes the health checking 
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istiod
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The local DNS proxy resolves 
hostnames for workloads 
running in different 
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traffic to services according 
to the Envoy configuration

Kubernetes 
readiness 
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Exposes a series of endpoints 
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from the Envoy proxy, the pilot 
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configured); and provides 
debugging information useful 
for Istio dev teams 

Exposes the Envoy 
administration interface

Sidecar

Pilot agent process

Figure D.1 Agent and Envoy proxy ports and their functionality
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 /stats/prometheus—Merges the metrics of the Envoy proxy and the application
with its own metrics and exposes them for scraping.

 /quitquitquit —Kills the process of the Pilot agent.
 /app-health/—Executes the application health probes defined as the environ-

ment variable ISTIO_KUBE_APP_PROBERS in the Istio proxy sidecar. When an
application defines Kubernetes health probes, the istiod mutating webhook
extracts the information and configures the health checks via this environment
variable. (For more, see http://mng.bz/mxxP.) Thus the agent redirects que-
ries on that path to the application.

 /debug/ndsz—Lists the hostnames for which DNS proxy is configured by istiod
using the Name Discovery Service (NDS) API.

 /debug/pprof /*—Golang profiling endpoints to help debug performance issues,
memory leaks, and so on (see https://golang.org/doc/diagnostics#profiling).
You can see the entire list of debug endpoints by querying the base path local-
host:15020/debug/pprof. The output is HTML and is best viewed in the browser
(remember that you can port-forward the port to your localhost). The profiling
endpoints are relevant for Istio developers and not a concern for Istio users.

The easiest way to access these endpoints is using kubectl exec to make an HTTP
request in any workload that you are interested in. For example, to check the merged
stats of the webapp workload we’d execute:

kubectl exec deploy/webapp -c istio-proxy -- \
curl localhost:15020/stats/prometheus

In the response, you’ll see metrics prefixed with istio_agent (originating in the
agent) and envoy (originating in the proxy), which shows that those are merged.
Before going into the next section take some time and investigate the other endpoints
listed earlier. 

D.1.2 Querying Istio Pilot debug endpoints through the Istio agent

The agent exposes a few istiod debug endpoints—you’ll learn more about those
endpoints later in the appendix—by default on port 15004. Requests on those end-
points are forwarded securely to istiod as xDS events, which is a good way to verify
connectivity to the control plane from the agent.

 For example, one of the endpoints that’s exposed allows us to query the synchroni-
zation status of workloads. To view that, get a shell connection in one of the proxies,
and make a request on the endpoint /debug/syncz on port 15004 of the pilot agent:

curl -v localhost:15004/debug/syncz
[
# other items are collapsed

{
"@type": "type.googleapis.com/

➥envoy.service.status.v3.ClientConfig",
"node": {

https://golang.org/doc/diagnostics#profiling
http://mng.bz/mxxP


428  APPENDIX D Troubleshooting Istio components
"id": "catalog-68666d4988-zjsmn.istioinaction"
},
"genericXdsConfigs": [

{
"typeUrl": "type.googleapis.com/

➥envoy.config.listener.v3.Listener",
"configStatus": "SYNCED"

},
{

"typeUrl": "type.googleapis.com/

➥envoy.config.route.v3.RouteConfiguration",
"configStatus": "SYNCED"

},
{

"typeUrl": "type.googleapis.com/

➥envoy.config.endpoint.v3.ClusterLoadAssignment",
"configStatus": "SYNCED"

},
{

"typeUrl": "type.googleapis.com/

➥envoy.config.cluster.v3.Cluster",
"configStatus": "SYNCED"

}
]

}]

The exposed information is a subset of the information exposed by the Istio Pilot
debug endpoints. The same endpoints are exposed by the istioctl x internal-
debug command, which is a new addition to istioctl.

 Knowledge of these ports and the services they expose will make troubleshooting
easier. You can query the latest Envoy configuration, manually test DNS resolution,
query metrics to learn about the workings of components, and so on. Next, let’s look
at what the Istio Pilot exposes. 

D.2 Information exposed by the Istio Pilot
The Pilot also exposes information to introspect and debug the service mesh. This
information is useful for external services and as well for service mesh operators.

 We can list the ports opened by the Istio Pilot as follows:

$ kubectl -n istio-system exec -it deploy/istiod -- netstat -tnl

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 127.0.0.1:9876 0.0.0.0:* LISTEN
tcp6 0 0 :::15017 :::* LISTEN
tcp6 0 0 :::8080 :::* LISTEN
tcp6 0 0 :::15010 :::* LISTEN
tcp6 0 0 :::15012 :::* LISTEN
tcp6 0 0 :::15014 :::* LISTEN

Workload 
ID

The xDS APIs are 
synchronized to 
the latest state.
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In addition to the ports exposed for workloads to get their configuration and certifi-
cates, there are quite a few ports that are useful for you to introspect and debug the
control plane. Figure D.2 visualizes the ports and the functionality they expose:

 Service-facing ports:

– 15010—Exposes the xDS APIs and the issuance of certificates in plain text.
Using this port is not recommended because the traffic can be sniffed.

– 15012—Exposes the same information as port 15010 but makes it secure.
This port uses TLS for issuing the identity, and subsequent requests are
mutually authenticated.

– 15014—Exposes control-plane metrics such as those covered in chapter 11.
– 15017—Exposes the webhook server that the Kubernetes API server calls to

inject the sidecar into newly created pods and validate Istio resources such as
Gateways, VirtualServices, and so on.

 Debugging and introspection ports:

– 8080—Exposes the Istio Pilot debug endpoints (discussed in the next section).
– 9876—Exposes introspection information for the istiod process.

Figure D.2 The exposed Istio Pilot ports and their functionality

D.2.1 The Istio Pilot debug endpoints

The Istio Pilot debug endpoints expose the configuration and state of the entire ser-
vice mesh—as it is known to the Pilot. The endpoints answer questions such as: Are
the proxies synchronized? When was the last push to a proxy performed? What’s the
state of the xDS APIs? All of these are important for resolving tricky cases and under-
standing how the proxy is configured.

Istio Pilot

15010

Webhook container port for sidecar 
injection and validation of resources

15012

15014

15017

98
76

80
80

Exposes control-plane metrics for 
scraping (such as by Prometheus)

Same as port 15010 but secured 
with TLS and mTLS (used by default)

Exposes the xDS APIs and certificate 
issuance for proxies to connect to 
receive configuration and certs in 
plain text. Certs can be sniffed!

istiod debug endpoint that exposes 
the configuration and state of the 
entire service mesh

ControlZ user interface 
for introspecting the 
Istio Pilot process
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 To access the debug endpoints, port-forward one of istiod instances to your local
environment:

$ kubectl -n istio-system port-forward deploy/istiod 8080

Forwarding from 127.0.0.1:8080 -> 8080
Forwarding from [::1]:8080 -> 8080

Then navigate to http:/./localhost:8080/debug to see a list of all the debug endpoints,
as shown in figure D.3.

Figure D.3 The Istio Pilot debug endpoints

NOTE The debug endpoints contain sensitive information that could be mis-
used if exposed. We recommend disabling the debug endpoints in produc-
tion by setting the environment variable ENABLE_DEBUG_ON_HTTP to false
during Istio installation. Doing so will break the functionality of tools depen-
dent on those endpoints; however, in future releases, these endpoints will be
exposed securely over xDS.
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These endpoints can be logically grouped as follows:

 Endpoints that represent the service mesh state as known to the Pilot:
– /debug/adsz—Configuration for clusters, routes, and listeners
– /debug/adsz?push=true—Trigger a push to all proxies managed by this Pilot
– /debug/edsz=proxyID=<pod>.<namespace>—Endpoints known to a proxy
– /debug/authorizationz—List of authorization policies as applied to namespaces

 Endpoints that represent the data-plane configuration as known to the Pilot:

– /debug/config_distribution—Version status of all Envoys connected to this Pilot
instance.

– /debug/config_dump?proxyID=<pod>.<namespace>—Generates the Envoy con-
figuration according to the current known state of Istio Pilot.

– /debug/syncz—Displays the proxies managed by this Pilot. Additionally, it
shows the latest nonce sent to the proxy and the latest nonce acknowledged.
When those are the same, the proxy has the latest configuration.

As a service mesh operator, you will usually use the endpoints indirectly through other
tools such as Kiali, istioctl, and so on. For example, the istioctl proxy-status
command uses the /debug/syncz endpoint to check whether the proxies are synchro-
nized. However, when the information provided by these tools is not enough, you can
dig deeper using the debug endpoints on your own. 

D.2.2 The ControlZ interface

The Istio Pilot comes bundled with an administrative user interface that enables
inspecting the current state of the Pilot process and some minor configuration possi-
bilities. This interface provides a quick lookup of information related to the Istio Pilot
instance, as covered in table D.1.

Table D.1 Content in the ControlZ interface

Page Description

Logging Scopes Logging for this process is organized in scopes, enabling us to configure 
the logging level separately for every scope.

Memory Usage This information is gathered from the Go runtime and represents the 
ongoing memory consumption of this process.

Environment Variables The set of environment variables defined for this process.

Process Information Information about this process.

Command-Line Arguments The set of command-line arguments used when starting this process.

Version Info Version information about the binary (such as Istio Pilot 1.7.3) and Go 
runtime (go1.14.7).

Metrics Another way of retrieving metrics exposed by the Pilot.

Signals Enables sending a SIGUSR1 signal to the running process.
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To access the dashboard, port-forward it to your local environment using istioctl,
and open it in your browser:

$ istioctl dashboard controlz deploy/istiod.istio-system

http:/./localhost:9876

Besides looking up information related to the Istio Pilot in a simple web interface, the
most common usage of the ControlZ dashboard is to change the logging scopes when
you have to debug the Istio Pilot. 



appendix E
How the virtual

machine is configured
to join the mesh

In this appendix, we take a closer look at the configuration generated by istioctl
for virtual machines (VMs) when we want to register them to the mesh. Specifically,
the files were generated when we executed the following command in chapter 13:

$ tree ch13/workload-files

istioctl x workload entry configure \
--name forum \
--namespace forum-services \
--clusterID "west-cluster" \
--externalIP $VM_IP \
--autoregister \
-o ./ch13/workload-files/

Quite a few files were generated, with a lot of structured configuration. If users had
to come up with it, a lot of trial and error would be required to get it right. That’s
why this process is automated with istioctl.

 To learn more about the generated configuration, start by listing all the files.

$ tree ch13/workload-files

ch13/workload-files
├── cluster.env
├── hosts
├── istio-token
├── mesh.yaml
├── root-cert.pem
433
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The files are as follows:

 The hosts file is configured with the host entry istiod.istio-system.svc,
which resolves to the IP of the east-west gateway. By default, this host entry uses
the IP of the gateway named istio-eastwestgateway. However, you can
change that by specifying the name with the flag --ingressService or the IP
directly with --ingressIP.

 The istio-token file contains a short-lived token (by default, 1 hour) that the
workload uses to identify itself to istiod. You can specify the expiry duration
with the flag --tokenDuration.

 The root-cert.pem file is the public certificate of the root certificate authority
(CA) that enables the workload to validate the control-plane certificate.

 The cluster.env file contains metadata for the workload such as the namespace,
service accounts, network, workload group it belongs to, and so on. To get a bet-
ter idea, let’s print the configured values:

$ cat ch13/workload-files/cluster.env

ISTIO_META_AUTO_REGISTER_GROUP='forum'
ISTIO_META_CLUSTER_ID='west-cluster'
ISTIO_META_DNS_CAPTURE='true'
ISTIO_META_MESH_ID='usmesh'
ISTIO_META_NETWORK='vm-network'
ISTIO_META_WORKLOAD_NAME='forum'
ISTIO_NAMESPACE='forum-services'
ISTIO_SERVICE='forum.forum-services'
ISTIO_SERVICE_CIDR='*'
ISTIO_SVC_IP='138.91.249.118'
POD_NAMESPACE='forum-services'
SERVICE_ACCOUNT='forum-sa'
TRUST_DOMAIN='cluster.local'

 The mesh.yaml file configures the discovery address and the probes by which
the sidecar tests the application’s readiness to receive traffic.

This is all the configuration needed to integrate one VM into the service mesh. It’s
preferable to always use istioctl to generate the configuration; but when trouble-
shooting why a workload is not connecting to the mesh, you will iterate faster by mak-
ing changes directly to the files and restarting the service proxy to pick up the
changes. 

The workload automatically 
registers to the forum group.

The workload 
authenticates to 
the west-cluster.

DNS capture is enabled, 
and traffic routes 
correctly to services 
within the mesh.

The workload is located 
in the vm-network.
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