
Joshua Wood
& Brian Tannous

Second

Edition

OpenShift for
Developers
A Guide for Impatient Beginners

Joshua Wood and Brian Tannous

OpenShift for Developers
A Guide for Impatient Beginners

SECOND EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-10336-1

[LSI]

OpenShift for Developers
by Joshua Wood and Brian Tannous

Copyright © 2021 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Suzanne McQuade
Development Editor: Nicole Taché
Production Editor: Katherine Tozer
Copyeditor: Audrey Doyle
Proofreader: Piper Editorial Consulting, LLC

Indexer: Potomac Indexing, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

September 2021: Second Edition

Revision History for the Second Edition
2021-09-02: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098103361 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. OpenShift for Developers, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good-faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Red Hat. See our statement of editorial inde‐
pendence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098103361
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

To Randy Wood

–Joshua

To Skeeter

–Brian

Table of Contents

Preface. ix

1. A Kubernetes Application Platform. 1
Linux Containers 1
Kubernetes 2
What OpenShift Adds 3

Web Console 3
Curated Software Catalogs: An OpenShift App Store 4
CI/CD: Pipelines 5
Networking and Service Mesh 5
Integrated Prometheus Metrics, Monitoring, and Alerts 5

Summary 6

2. OpenShift Concepts. 7
Projects Organize Applications and Teams 7

Projects and Applications 8
Application Components in OpenShift 9

Pods 10
Services 11
OpenShift Routes 11

Building Container Images 11
Deploying Applications 12
Interacting with OpenShift 12

oc 12
OpenShift Web Console 12

Summary 13

v

3. OpenShift Lab. 15
CodeReady Containers 15

CRC Requirements 16
Installing CRC on Windows 17
CRC Always Wants More 20

Logging In to OpenShift 21
Log In to the Web Console 21
Log In on the Command Line 25

Summary 26

4. Deploying an Application on OpenShift. 27
A Simple Sample Application 27

Git and GitHub 28
Building and Deploying the Application on OpenShift 28
Adding and Deploying a New Feature 32

Summary 36

5. OpenShift Pipelines. 37
Tekton 37
OpenShift Pipelines Operator 38

Installing the Pipelines Operator 38
Pipelines in the Web Console 40
Using Pipelines 41

OpenShift Pipelines Resources 42
Command 43
Script 43

Summary 43

6. Developing and Deploying from Source Code. 45
Noted: A Cloud-Ready Notes Application 45

Application Topology 46
Fork the Backend Repository 47
Create a New Project for the Noted App 47
Deploy the Backend Component 48
Inspect the Backend Resources 50
Deploy the Frontend Component 53
A Running Noted Application 55

Automatic Pipeline Runs Using Tekton Triggers 56
Pipeline Triggers 56
The Forward Proxy Workaround 57
Deploy the ngrok Template 58
GitHub Webhook Configuration 59

vi | Table of Contents

The Reversed Text Quarkus-Backend Bug Fix 62
Summary 65

7. Evolving the Application: Data Persistence. 67
Database Without Delay 67
Database Templates 68
Service Binding Operator 69
The Postgres Operator Designed for Service Binding 70

Add the Sample DB Operators OperatorSource 70
Install the PostgreSQL Database Operator 72
Verify Operator Installation 74
Deploy a PostgreSQL Database 74

Configure the pgsql quarkus-backend Branch 77
Inspect the quarkus-backend pgsql Branch 79

Service Binding Operator Usage 79
Configure a ServiceBinding 80
Test the ServiceBinding 81
Inspect the ServiceBinding Injection 82

Persistence in Action 86
Summary 87

8. Production Deployment and Scaling. 89
Application Scaling 89

Manual Scaling 89
The Service Abstraction 90
Automatic Scaling 93

Health Checks 98
Health-Checking Probes 99
Configure the Health Checks in OpenShift 100

Production Deployment Strategies 102
Available Deployment Strategies on OpenShift 102
Configuring a Deployment Strategy 104
Deployment Rollbacks 104

Summary 105

9. Monitoring and Managing Applications on OpenShift. 107
Listing and Detailing Resources 107

Using Labels to Filter Listed Resources 109
Describing Resources 109

Events and Logs 109
Debugging an Application in Its Container 110

oc rsh 110

Table of Contents | vii

oc exec 111
oc debug 112

OpenShift Monitoring 112
Monitoring in the Web Console Developer Perspective 114

Deleting Resources, Applications, and Projects 115
Summary 116

10. Templates, Operators, and OpenShift Automation. 117
Templates 117

Templates in the OpenShift Web Console 118
Creating Your Own Templates 120

Operators 121
Operator Subscriptions and the Operator Lifecycle Manager 122
Operators from the Developer Perspective 122

Summary 122

Index. 125

viii | Table of Contents

Preface

Software serves more people more critically than ever before. These two demands are
generalized as scale and reliability. Over the past decade, the software industry has
pursued scale and reliability with tactics, infrastructure, and cultural initiatives like
DevOps, which sees developers share the operational responsibility of keeping appli‐
cations running.

One set of tactics is the automation of operations chores: writing software to run your
software. The automation of repetitive toil is among the keystones of Site Reliability
Engineering (SRE), an IT discipline defined by the O’Reilly title of the same name.
DevOps and its younger cousin GitOps both apply SRE’s automation ideas to devel‐
opment machinery and to the practice of building software. The simplest form might
be the triggering of automatic construction and deployment processes whenever an
application’s source code changes.

Modern software infrastructure pursues scale and reliability through distributed com‐
puting. Despite all the syllables, distributed computing just means making many com‐
puters act like one big computer. The assembled system can do more work (scale),
and it can cast understudies for potential points of failure (reliability).

Kubernetes is a system for managing applications on distributed computers by encap‐
sulating them in discrete, interchangeable artifacts called containers. Kubernetes can
manage where and when containers run without knowing all about them and their
dependencies. Kubernetes is termed a container orchestrator.

OpenShift uses Kubernetes orchestration at its core to harness computers together
into a cluster. The computers that form the cluster are called nodes. OpenShift defines
how those nodes relate and how work is performed on them. By packaging core dis‐
tributed computing primitives with tools, policies, and interfaces for using them,
OpenShift helps teams adopt modern practices from DevOps and GitOps and auto‐
mate repetitive processes according to SRE precepts.

ix

Who This Book Is For
If you’re an application developer familiar with data structures and functions and
how to build them into programs, but you’re new to containers, Kubernetes, and
application platforms, this guide to OpenShift is for you. It will show you how to use
OpenShift to build, deploy, scale, and manage your software, and how you can auto‐
mate those chores with OpenShift features such as build triggers, pipelines, and
demand-driven autoscaling. You don’t need to have used Kubernetes or OpenShift
before.

What You Will Learn
This book explains what OpenShift is and how to use it to build your applications,
run them, and keep them running through changing demand, failure recovery, and a
continuous stream of new releases as you iterate on their source code with new fixes
and features.

• Chapters 1 and 2 introduce OpenShift, its components, and its concepts.
• Chapter 3 shows you how to run OpenShift on your computer so that you have a

virtual cluster to conduct the book’s exercises.
• In Chapter 4, you’ll configure OpenShift to fetch the source code for a simple

Hello World application, build it into a container image, and run it.
• Chapter 5 introduces OpenShift Pipelines, a framework for composing Continu‐

ous Integration and Continuous Deployment (CI/CD) routines, and shows you
how to add Pipelines to your cluster.

• In Chapter 6, you’ll deploy a more realistic application with a tiered architecture
and multiple components.

• In Chapter 7, you’ll augment the application’s backend to retain data between
sessions.

• Chapter 8 shows you how to examine, manipulate, and scale the running applica‐
tion both manually and automatically, how to set up OpenShift to periodically
check application health, and how to govern the rollout of new versions of your
application.

• Chapter 9 is a high-level overview of OpenShift’s monitoring and alerting
facilities.

• Chapter 10 dissects OpenShift automation features you used along the way to set
you on the path toward eliminating toil by letting the platform do the repetitive
work.

x | Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Bold
Shows commands or other text that should be typed literally by the user.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/openshift-for-developers.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting

Preface | xi

https://github.com/openshift-for-developers
mailto:bookquestions@oreilly.com

example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require per‐
mission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “OpenShift for Develop‐
ers, 2nd edition by Joshua Wood and Brian Tannous (O’Reilly). Copyright 2021
O’Reilly Media, 978-1-098-10336-1.”

If you feel your use of code examples falls outside fair use or the permission given
here, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/openshift-for-developers-2.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

xii | Preface

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com
https://oreil.ly/openshift-for-developers-2
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
We’d like to thank the Red Hat OpenShift team, and especially the OpenShift Devel‐
oper Advocates group, specifically for their support as we created this text and gener‐
ally for their endless efforts to refine and augment OpenShift since its initial release in
2011. As OpenShift grew from pioneer platform to later adopt a Kubernetes core, its
goal has remained the same: automate and streamline the work of running applica‐
tions on modern, massively scalable infrastructure to let developers focus on their
code. This book shares that goal.

We also thank those who edited, fact-checked, suggested, occasionally ridiculed, and
in so many ways lent their time and minds to make this book more useful and consis‐
tent, among them Jason Dobies, Daniel Hinojosa, and Tero Ahonen. Sun Seng David
Tan created the original code on which we based the book’s main example applica‐
tion, “Noted,” and our families and friends tolerated us while we wrote it.

Preface | xiii

http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
https://github.com/sunix
https://github.com/sunix

CHAPTER 1

A Kubernetes Application Platform

OpenShift gives your applications distributed computing power without forcing you
to become a distributed computing expert. Translated into jargon, that means Open‐
Shift is a platform as a service (PaaS).

OpenShift includes tools for building applications from source in composable pipe‐
lines. It adds a browser-based graphical interface, the OpenShift Web Console, for
deploying and managing workloads. You can point and click to set up network con‐
nections, monitoring and alerts, and rules for automatically scaling workloads. An
OpenShift cluster applies software updates to itself and its nodes without cluster
downtime.

OpenShift is a product from Red Hat. You can run it on your laptop, on a cluster of
physical or virtual machines, on all the major cloud providers, and as a managed ser‐
vice. Like most software from Red Hat, OpenShift is developed as an open source
project, the OpenShift Kubernetes Distribution (OKD). OpenShift is in turn built
atop two open source keystones: application containers and the Kubernetes container
orchestrator.

Linux Containers
Containers are an atomic unit of execution. Each running instance of a container is
stamped from an Open Container Initiative (OCI) image that packages an application
executable with all the pieces it needs to run. These dependencies can include shared
libraries, auxiliary programs, language runtimes, and anything else the application
requires. Such a self-contained parcel is easier to distribute among a team, in a con‐
tinuous series of releases on a server, and to arbitrary nodes in a cluster.

Container images are stored in a repository often called a container registry. Linux
kernel facilities isolate and mediate running containers. A running container has its

1

https://www.okd.io
https://oreil.ly/ZjwqR

own filesystem and a defined share of the resources of the node where it runs. This
isolation allows an orchestrator to schedule containers on a node with sufficient
resources without evaluating every other workload running there for potential con‐
flicts in filenames, network port numbers, or other resources.

Kubernetes
OpenShift is a distribution of Kubernetes. Kubernetes is an open source project
started at Google and developed by a group of companies and individuals since its
release in 2014. This community has adopted formal governance through the Cloud
Native Computing Foundation (CNCF). Red Hat has been a leading contributor to
Kubernetes since the project began, and OpenShift is developed in collaboration with
the Kubernetes community.

Kubernetes in OpenShift is like the Linux kernel in a Linux distribution. A Linux dis‐
tribution combines the kernel with the more familiar programs you use directly. It
also makes some basic choices about how you log in, where your files are stored, and
what software is essential, letting you do useful work with the system without build‐
ing it entirely from scratch.

Kubernetes defines a set of common resources and an API for manipulating them.
Those resources describe the desired state and track the actual state of the cluster and
the things running on it. Kubernetes tries to make the actual state of a resource match
its desired state. It repeats this for the life of the cluster. This continuous cycle of
watching and tending is called the reconcile loop.

Kubernetes alone isn’t enough to sustain software in production. There are many
decisions to make and components to configure before you can do much with it.
Imagine you have the source code for an application and the job of deploying it on a
Kubernetes cluster. How will you compile the source code or pair it with its inter‐
preter for packaging in a container image? Will your build process need other com‐
puting resources, such as a specialized build server? Once the image is constructed,
where will it be stored so that your cluster can access it? A public container registry
(and external dependency) like Docker Hub or Quay? Or will you need to run your
own registry? Your program likely depends on other programs, like a database or
application server. Where and how will those run? Can you run them on the cluster,
or will you have to maintain another system? These are basic considerations.
Addressing them yields a running pod and a new set of questions: How should your
application connect with the outside world? How should the power to scale the appli‐
cation, or deploy new versions of it, be governed?

2 | Chapter 1: A Kubernetes Application Platform

https://cncf.io
https://cncf.io
https://hub.docker.com
https://quay.io

What OpenShift Adds
OpenShift builds atop its Kubernetes core to add features and the components that
support them. Some of its original developers called Kubernetes “a platform for
building platforms.” OpenShift took them up on it. It provides the automation and
resilience of modern infrastructure while letting you stay focused on your application
code (Figure 1-1).

Figure 1-1. OpenShift around a Kubernetes core

This book focuses on the features you’ll use to run your applications. It is not an
OpenShift system administration guide. The next section previews some of Open‐
Shift’s developer features. You’ll use most of them in the following chapters.

Web Console
The OpenShift Web Console is a graphical view of the cluster and your applications.
As the name suggests, it runs in a web browser. The Web Console lets you do every‐
thing necessary to deploy and run your software projects with graphical controls and
forms for configuration, rather than sifting through so many lines and indentations
of underlying YAML. The console depicts connections between services with a
topological view of application components, and shows project, application, and con‐
tainer resource consumption with graphical gauges and charts (Figure 1-2).

What OpenShift Adds | 3

Figure 1-2. OpenShift Web Console showing the topology of an application’s components

Curated Software Catalogs: An OpenShift App Store
The Web Console also aggregates software catalogs, from application templates to
Kubernetes Operators. The OperatorHub inside the Web Console, for example, is like
an app store for Kubernetes applications. You can use it to find and deploy databases,
message queues, and other middleware—the kinds of components nearly all applica‐
tions rely on. Like apps on your mobile device, Operators keep their applications run‐
ning and updated with the latest features and fixes.

4 | Chapter 1: A Kubernetes Application Platform

CI/CD: Pipelines
OpenShift brings the continuous integration and continuous development (CI/CD)
system into the cluster. OpenShift’s pipelines let you compose a process to build, test,
package, and release your application. In this book, you’ll go from logging in to the
OpenShift Web Console to having the platform automatically build and deploy your
code when you commit changes to your source repository. Once you establish
deployment settings and build triggers, OpenShift should fade into the background of
daily application development.

Networking and Service Mesh
OpenShift can simplify or even automate much of the tedious work of connecting
application components together and to the outside world of your users and
customers.

OpenShift Routes configure an included Layer 7 reverse proxy for external HTTP
connections to internal, load-balancing cluster Services. A Service is a stable endpoint
representing the running pods of an application, since those may come and go with
scaling, failover, or upgrades. A route specifies the external DNS hostnames for which
it relays traffic and the Service to which that traffic should be directed.

OpenShift also has a bolt-on service mesh, Istio. A service mesh measures and con‐
trols how services connect with one another and the outside world. Istio detail is
beyond the scope of this book, but once you’ve mastered deploying applications on
OpenShift, you can learn more about service meshes and Istio in Introducing Istio Ser‐
vice Mesh for Microservices by Christian Posta and Burr Sutter (O’Reilly).

Integrated Prometheus Metrics, Monitoring, and Alerts
OpenShift constructs its features for monitoring cluster resources atop the open-
source Prometheus project. The Web Console presents graphs showing CPU, mem‐
ory, and network usage for the whole cluster, a project, a deployment, or all the way
down to a running container. Figure 1-3 shows the CPU usage of a deployment.

What OpenShift Adds | 5

https://istio.io
https://learning.oreilly.com/library/view/introducing-istio-service/9781491988770/
https://learning.oreilly.com/library/view/introducing-istio-service/9781491988770/
https://prometheus.io

Figure 1-3. Deployment resource consumption monitoring in Web Console

OpenShift can gather application-specific metrics from programs that produce the
standard Prometheus data format. Prometheus exporter libraries available for many
languages equip an application to deliver statistics about its internal state in an inter‐
operable way.

Summary
You’ve seen how OpenShift layers developer tools and application management atop
Kubernetes to make it easier to deliver your software and keep it running. The next
chapter introduces key concepts for building and deploying applications on
OpenShift.

6 | Chapter 1: A Kubernetes Application Platform

CHAPTER 2

OpenShift Concepts

OpenShift is a superset of Kubernetes. Kubernetes concepts, commands, and practi‐
ces work on OpenShift. You can do any of the usual kubectl operations in the Open‐
Shift API. The reverse is not true. OpenShift has features and entire workflows that
are not part of Kubernetes. For example, BuildConfig and Build resources in the
OpenShift API represent the configuration and iterative executions of a process to
build an application. They are not in the Kubernetes API, because Kubernetes doesn’t
define a mechanism for compiling software and assembling container images. Open‐
Shift adds these two types of resources and the facilities that use them. Likewise,
while Kubernetes has a namespace to organize resources, OpenShift augments the
namespace to form the Project. A Project demarcates access boundaries for clusters
occupied by multiple tenants and serves as a discrete unit for administrative policy.

Kubernetes establishes the components of a container orchestrator and a way of
addressing them. OpenShift builds on that foundation, adding tools and abstractions
for the developers who build the apps that run on the cluster. Keeping those apps
running is the reason the cluster exists.

This chapter introduces key concepts for building, deploying, and maintaining appli‐
cations with OpenShift. It notes where these concepts extend or replace Kubernetes
abstractions. We’ll begin by explaining how OpenShift Projects extend the basic
Kubernetes namespace.

Projects Organize Applications and Teams
The Kubernetes namespace defines a scope for resource names. A cluster may be
divided into any number of namespaces. Within a namespace, the names of resources
must be unique. Namespaces partition a cluster among multiple applications, multi‐
ple application layers, or multiple users. To enforce access control or any security

7

among those namespaces requires additional pieces and policies. OpenShift’s Project
extends the basic namespace with default access controls (Figure 2-1).

Figure 2-1. OpenShift Project: production-ready namespace

OpenShift enforces access control to the cluster and its resources. Details are beyond
the scope of this book, but essentially, in OpenShift pluggable authentication modules
govern authentification for an authorization regime built atop Kubernetes role-based
access control (RBAC).

RBAC rules define a user and make the user a member of at least one group. Groups
are used to represent teams or units within a company that might need different lev‐
els of access to different Projects. Your user and group determine what resources you
can see and what you can do with them. Projects, then, can be used to divide the clus‐
ter among multiple teams or multiple applications, enforcing the rules that keep them
from interfering in other Projects. You can assign roles and the rights they entail to
individual users, and users inherit roles from their group memberships.

Projects and Applications
Is a Project the same thing as an “application”? Projects divide the cluster into func‐
tional units, but they leave the ontology up to a cluster’s admins. On some clusters, a
Project is dedicated to an application. Sometimes a Project is instead granted to a
team, who might then run several applications in it, using labels to brand each appli‐
cation’s resources. OpenShift provides convenience features to apply and employ
these labels to sort multiple applications in a Project. For example, resource icons can

8 | Chapter 2: OpenShift Concepts

be grouped together by application in an OpenShift Web Console Topology view, like
the components of sample-app shown in Figure 2-2.

Figure 2-2. An application group in Project Topology view

Application Components in OpenShift
OpenShift represents an application as several abstractions, including the BuildCon‐
fig or pipeline for building that source and packaging the result in a container image,
the configuration of how the running program should be deployed and scaled, and
how it connects to the cluster’s network and potentially onto the wider internet in
Figure 2-3.

Application Components in OpenShift | 9

Figure 2-3. Application parts in an OpenShift Project

Pods
The basic unit of running code in any Kubernetes cluster is the pod. A pod groups
one or more containers together and guarantees they all run on the same cluster
node. A pod has a unique IP address within the cluster, shared by all the containers in
it. Containers in a pod can also share persistent storage volumes and memory, and
can communicate with one another over the localhost interface.

Pods are the unit of horizontal scaling. When a deployment is scaled up, new pods are
created, usually on other cluster nodes. In a deployment’s specification, these are
called replicas. Each replicated pod has the same set of containers and configuration
but its own local runtime state.

10 | Chapter 2: OpenShift Concepts

Services
Each pod in a set of replicas has a unique IP address that can be reached from within
the cluster. But the pods could be scaled up or down or be replaced by new pods in a
failure or a rolling application update. The cluster provides an indirection through
which you can reach a dynamic set of replicas. This is the Service abstraction. A
service has an IP address and DNS name in the cluster. Connections there are routed
to one of the pods in the set, even as the pods in the set are scaled or replaced.

OpenShift Routes
A Kubernetes Service is a load-balanced endpoint representing a set of pods. Usually
there is an application running in those pods providing a service of some kind. A Ser‐
vice has a DNS name resolving to an IP address within the cluster, so it is uncompli‐
cated for other application components to connect to it. But that name and IP address
are meaningless outside of the cluster. The rest of the office, the outside world, and
the whole internet don’t know anything about them. Something has to connect out‐
side traffic to the cluster Service living in the cluster’s logical network.

Kubernetes provides the Ingress resource to define the wiring of outside connections
to the cluster’s logical network. Ingress is a flexible, configurable representation of a
network aperture and the rules under which it may be traversed. An Ingress resource
requires an Ingress controller to satisfy its rules. An Ingress controller is a program
that knows how to control an external network. There are Ingress controllers for
reverse proxies, hardware load balancers, routers, and API-driven cloud provider
networks, for example.

The OpenShift Route is a simplified way to expose the most common HTTP and
HTTPS services to networks outside the cluster. Creating a route associated with a
Service causes OpenShift to configure its included reverse proxy with a DNS name
and an IP address reachable from an external network. Connections to the route’s
external IP address are then forwarded to the cluster Service, and from there on to an
application pod.

Building Container Images
Before a pod fields requests coming in through a route to a Service, you must build
the application. An OpenShift BuildConfig describes how to combine source code
with a “base image” to create a new application container image. The base image usu‐
ally contains the tools for building source code in some programming language or
framework. For example, there are Builder Images for common languages such as
Java, Python, Go, and PHP. A BuildConfig can respond to webhooks, triggering
builds in automatic response to changes to their base image or source code.

Building Container Images | 11

https://oreil.ly/rVfKT
https://oreil.ly/6eKxj

Deploying Applications
An application is built to be deployed. OpenShift’s Deployment defines the template
from which new pods are stamped and the rules for recycling those pods when their
configuration or their container image changes. For example, a deployment can begin
a rolling update of its pods to deploy a new container image when a new build is trig‐
gered by a source code commit, or when a security update to a distribution requires a
new base image. A deployment usually represents a single service or application
component.

Interacting with OpenShift
There is more than one tool for using OpenShift, and the tools are different in their
capabilities and intended users. All of the tools, however, are the same in how they
talk to a cluster: through the OpenShift API. The Kubernetes core presents, and
OpenShift extends, a REST API. In fact, any network client can communicate with
the API, given authorized access and the OpenShift API reference documentation.
This book does not go into detail on the subject, but API access is useful for integrat‐
ing with external systems; for example, an existing container-building process.

oc
The oc command-line tool is an OpenShift API client. It’s one of the main ways of
interacting with an OpenShift cluster. Based on the same client-go library as the stan‐
dard Kubernetes API client, kubectl, oc speaks all the kubectl commands as well as
the superset of commands specific to OpenShift. While kubectl can scale a replica set
to more pods, it doesn’t know anything about the OpenShift Routes you’ll soon use to
connect outside traffic to your applications, for example. oc understands both,
including the other important developer-oriented features like on-cluster builds,
image streams, and the Projects that organize them.

OpenShift Web Console
The other tool you’ll get cozy with in this book is the OpenShift Web Console, a
graphical environment for deploying, managing, and monitoring your applications
on OpenShift. The Web Console lets you see how application parts relate and how
they consume cluster resources with topographical representations, graphs, and vis‐
ual connections.

12 | Chapter 2: OpenShift Concepts

https://oreil.ly/MUj6p
https://oreil.ly/HZQCC

Summary
Now that you understand the relationship between OpenShift’s developer features
and its Kubernetes core, you’re ready to put them to work. You need an OpenShift
cluster to conquer the exercises throughout the rest of the book. That’s why the next
chapter shows you how to get one.

Summary | 13

CHAPTER 3

OpenShift Lab

You need an OpenShift cluster to complete the exercises throughout the rest of the
book. This chapter explains how to run OpenShift in a virtual machine (VM) on your
computer and introduces the basics of interacting with it. It also suggests other ways
to access a cluster if you can’t run OpenShift locally.

OpenShift runs on your laptop, on a brigade of aging computers in the home lab of
one of this book’s authors, on premises in data centers, and in public clouds. You can
step through the examples in this book on any OpenShift cluster of recent vintage,
meaning version 4.7 or later. If you don’t already have access to a cluster, this chapter
will show you how to set up an OpenShift VM on your computer.

CodeReady Containers
For the scenarios in this book, we recommend using CodeReady Containers (CRC),
an OpenShift 4 cluster that runs on your local computer in a single VM. This cluster
provides a minimal environment for developing and testing purposes, including
everything you need to get started.

The CRC VM is considered a minimal environment because the monitoring and
machine-config operators within the cluster are disabled to conserve resources.
Unfortunately, this means that all of the various performance monitoring charts
within the Web Console are presented as blank space. And of course, CRC is a single-
node “cluster,” so it can only emulate multinode scaling or rolling upgrades.

The CRC cluster uses an internal virtual network on your local machine. The IP
address of the VM may vary from deployment to deployment, but your configuration
will be displayed after OpenShift is deployed. You can always print the current clu‐
ster’s configuration with the command crc console --credentials.

15

CRC Requirements
CRC requires a few things from a hardware and operating system perspective in
order to run. If you cannot satisfy these requirements, it may be possible to run on
the book scenarios an existing OpenShift cluster, but we have not tested those
environments.

CRC requires at least the following system resources:

• 4 virtual CPUs (vCPUs)
• 9 GB of free memory
• 35 GB of storage space

Be sure to provide at least the minimum requirements and, if possible, use hardware
that exceeds these specifications. The CRC VM is a single-node OpenShift cluster and
requires a powerful machine to run.

The OpenShift Lab has been tested on relatively generous laptops with Intel i7 CPUs
or similar, with 16 GiB of memory, but be prepared for some latency. In these situa‐
tions we suggest allocating n – 1 CPU resources, where n is equal to the number of
cores on your system. In addition to the CPU resource allocation, we recommend
allocating at least 12 of the machine’s 16 GiB of memory to the CRC VM, connecting
to AC power and closing all unrelated programs.

CRC runs on Windows, macOS, and Linux and has specific requirements for each.
You will likely need administrative privileges on your local computer to set up CRC.

CRC Operating System Requirements
Windows

Windows 10 Fall Creators Update (version 1709) or newer; Windows 10 Home
Edition is not supported.

macOS
OS X 10.4 Mojave or newer

Linux
Officially supported on Red Hat Enterprise Linux/CentOS 7.5 or newer, or the
latest two stable Fedora releases

16 | Chapter 3: OpenShift Lab

While the following steps will walk you through configuring CRC
on Windows, CRC also supports Mac and Linux operating systems.
It is always a good idea to check out the CodeReady documentation
for updated and specific instructions for your system. You can do
that on the CRC website.

Installing CRC on Windows
To install CRC on Windows:

1. Head to Red Hat OpenShift Cluster Manager and log in to your Red Hat account
(Figure 3-1). Create an account for free if you do not already have one.

Figure 3-1. OpenShift Cluster Manager login

2. In the Cluster Manager (Figure 3-2), download the latest version of CRC for your
operating system and download your pull secret. The pull secret encodes your
CRC license entitlement for CRC and OpenShift components retrieved from Red
Hat repositories.

CodeReady Containers | 17

https://oreil.ly/m64rY
https://oreil.ly/2iEgH

Figure 3-2. OpenShift Cluster Manager

3. Extract the CRC archive and navigate to the extracted folder in a PowerShell
terminal:

PS C:\Users\Brian\CRC\crc-windows> ls

 Directory: C:\Users\Brian\CRC\crc-windows

Mode LastWriteTime Length Name
---- ------------- ------ ----
------ 4/12/2021 10:00 AM 2490319884 crc.exe
------ 4/12/2021 10:00 AM 406768 doc.pdf
------ 4/12/2021 10:00 AM 10759 LICENSE

4. Install the crc command on your machine by placing it within your terminal
session’s path.

Refer to the CRC installation documentation for more infor‐
mation on how to do this for your specific operating system.

18 | Chapter 3: OpenShift Lab

5. Run crc setup. You will likely need to provide administrative access. Be sure to
read the command’s output, as the logs might mention that you need to reboot to
continue.
a. (Optional) If you needed to reboot your machine, run crc setup again in a

PowerShell terminal to continue the setup process:
PS> crc setup
INFO Checking if admin-helper executable is cached
INFO Checking minimum RAM requirements
[...]
INFO Extracting embedded bundle crc_hyperv_4.7.5.crcbundle to C:\Use...
INFO Uncompressing crc_hyperv_4.7.5.crcbundle

6. Now that your local machine is configured to run CRC, run crc start --help
to see all of the available configuration switches:

PS > crc start --help
Usage:
 crc start [flags]

Flags:
 -b, --bundle string The system bundle used for deployment
 of the OpenShift cluster (default "C:\\
 Users\\Brian\\.crc\\cache\\
 crc_hyperv_4.7.5.crcbundle")
 -c, --cpus int Number of CPU cores to allocate
 to the OpenShift cluster (default 4)
 --disable-update-check Don't check for update
 -d, --disk-size uint Total size in GiB of the disk used by
 the OpenShift cluster (default 31)
 -h, --help help for start
 -m, --memory int MiB of memory to allocate to the
 OpenShift cluster (default 9216)
 -n, --nameserver string IPv4 address of nameserver to use for
 the OpenShift cluster
 -o, --output string Output format. One of: json
 -p, --pull-secret-file string File path of image pull secret
 (download from ...)

Global Flags:
 --log-level string log level (e.g. "debug | info | warn | error")
 (default "info")

7. Now you can start CRC by specifying at least the default 4-vCPU and 9 GiB
memory configuration.
Execute crc start -p pull-secret.txt -m 9216 -c 4:

PS > crc start -p C:\Users\Brian\CRC\pull-secret.txt -m 9216 -c 4
INFO Checking if podman remote executable is cached
INFO Checking if admin-helper executable is cached

CodeReady Containers | 19

INFO Checking minimum RAM requirements
INFO Checking if running in a shell with administrator rights
INFO Checking Windows 10 release
[…]
INFO All operators are available. Ensuring stability ...
INFO Operators are stable (2/3) ...
INFO Operators are stable (3/3) ...
INFO Adding crc-admin and crc-developer contexts to kubeconfig...
Started the OpenShift cluster.
[… Continued below]

CRC Always Wants More
The OpenShift cluster requires at least these minimums to run in the CRC VM. Some
workloads may need more resources. We suggest assigning as much as possible while
not constraining your host workstation. For example, avoid most shortages by run‐
ning CRC on a powerful machine and configuring the VM with 20 GiB of memory
and six CPU cores.

You can increase the memory allocated to the CRC VM by providing crc start with
the argument -m <memory>, where memory is a value in MiB, usually a power of two.
Start the VM with 20 GiB of RAM by issuing a command like crc start -m 20480,
for instance. Set the number of CPU cores for the CRC VM by adding the argument
-c <number of vCPUs>.

One workaround for constrained systems might be to configure CRC as a headless
server and then connecting to it from a second machine, dedicating to CRC nearly all
of the resources of the first machine. You can learn more about remoting to CRC on
the OpenShift blog.

CLI How-To: Common CRC Life Cycle Tasks

The crc console --credentials command will return the cre‐
dentials for the CRC machine as well as the URL for accessing the
Web Console.
To check the status of the CRC machine, use the command crc
status. If you need to stop the OpenShift VM while saving your
progress, you can run the command crc stop.
To start a stopped CRC machine and continue where you left off,
run the command crc start. Note: This command will create a
new CRC VM if one does not exist.
To clean up and completely remove your CRC cluster and VM, use
crc cleanup.
Run crc help for a complete and always current guide to its sub‐
commands.

20 | Chapter 3: OpenShift Lab

https://oreil.ly/nBlJL
https://oreil.ly/nBlJL

Logging In to OpenShift
Now that the OpenShift cluster has started, you can log in. You probably noticed that
the tail of the output from the crc start command showed the Web Console URL
along with authentication credentials for both an administrator and a typical user:

The server is accessible via web console at:
 https://console-openshift-console.apps-crc.testing

Log in as administrator:
 Username: kubeadmin
 Password: un1Q-g3n3r8d # Note: Your password will be different.

Log in as user:
 Username: developer
 Password: developer

Use the 'oc' command line interface:
 PS> & crc oc-env | Invoke-Expression
 PS> oc login -u developer https://api.crc.testing:6443

Log In to the Web Console
Use the printed username and password pairs to access your new OpenShift cluster.

Go to the Web Console of your OpenShift instance at the URL in your terminal out‐
put and log in using the administrator credentials printed by the crc start com‐
mand or at any time by invoking crc console --credentials (Figure 3-3).

Logging In to OpenShift | 21

https://console-openshift-console.apps-crc.testing

Figure 3-3. OpenShift Web Console login

OpenShift Web Console
The Administrator perspective of the OpenShift Web Console will allow you to han‐
dle all administrative tasks within the OpenShift cluster, such as working with users,
nodes, workloads, and networking (Figure 3-4).

22 | Chapter 3: OpenShift Lab

Figure 3-4. OpenShift Web Console Administrator perspective

Developer Web Console
While technically you could accomplish deployments and builds of your application
from within the Administrator perspective of the OpenShift Web Console, we will be
working primarily in the Developer perspective. Switch perspectives by clicking on
the upper-left dropdown and choosing Developer (Figure 3-5).

Logging In to OpenShift | 23

Figure 3-5. Web Console perspectives

Here you will see the Developer console that you will primarily be interacting with
throughout the book. This console allows you to handle developer-related tasks such
as deploying, building, and monitoring your application (Figure 3-6).

Figure 3-6. OpenShift Developer perspective

24 | Chapter 3: OpenShift Lab

Log In on the Command Line
As we discussed in Chapter 2, the command-line interface for OpenShift is oc.

The output of the crc start command has the information on how to get started
and log in with oc:

Use the 'oc' command line interface:
 PS> & crc oc-env | Invoke-Expression
 PS> oc login -u developer https://api.crc.testing:6443

 PS> oc whoami
 developer
 PS> oc get nodes
 [...]

It is generally best to match oc versions to OpenShift server versions. Since you are
using CRC to launch this specific version of OpenShift, we used the built-in version
of oc set with the & crc oc-env | Invoke-Expression command. You can check
that the versions of the client and server match with oc version:

PS> oc version
Client Version: 4.7.5
Server Version: 4.7.5
Kubernetes Version: v1.20.0+5fbfd19

You can also download the oc command-line tool by clicking on the question mark
(?) icon on the top-right corner of the OpenShift Web Console and choosing Com‐
mand Line Tools from the menu (Figure 3-7).

Visual Studio Code: OpenShift Connector

Now that CRC is ready to go, you might want to check out the
OpenShift Connector for Visual Studio Code, especially if you hap‐
pen to already be a VS coder. This extension adds features in VS
Code to easily create, deploy, and debug your application on Open‐
Shift. You can also use it to set up and start CRC.

Logging In to OpenShift | 25

Figure 3-7. OpenShift Command Line Tools

Summary
In this chapter, you set up CRC so that you have access to a local OpenShift cluster.
You also logged in to the cluster with both the Web Console and the command-line
oc utility. You explored two of the common user roles in OpenShift, and surveyed the
Developer and Administrator perspectives in the Web Console. Now that you have a
running cluster, let’s get something deployed!

26 | Chapter 3: OpenShift Lab

CHAPTER 4

Deploying an Application on OpenShift

You’ve got a handle on OpenShift concepts and you have access to an OpenShift clus‐
ter. Now you’ll use OpenShift to create a project, build the project’s application from
source, and run it.

A Simple Sample Application
We will honor tech tradition by beginning with a “Hello World” program. This chap‐
ter’s simple program runs an HTTP service that prints a response to each request.
We’ve selected the Go programming language because it compiles quickly and to
demonstrate more than one language environments. You’ll use the Java Quarkus
framework to build a more complex application in later chapters. OpenShift techni‐
ques you’ll use throughout the book, like on-cluster builds and automatic deploy‐
ment, are largely agnostic about the language and frameworks you choose for a
project.

First, get a copy of the source code for the Hello World application. You’ll use Git to
manage the source and GitHub to make your copy available for your cluster to build.
Point your browser to this chapter’s GitHub repository. Fork a copy to your own Git‐
Hub account with the Fork button at the top right. In Git terms, a “fork” is an exact
copy of a repository at a point in time. You can modify your fork to create your own
version or to make, test, and submit changes back to the original repo. You’ll use Git
in this chapter, but you don’t need deep Git expertise; the following extremely brief
overview of Git words and ways should get you started.

27

http://git-scm.com
https://github.com
https://oreil.ly/QVVNi

Git and GitHub
Git is a system for distributed version control. Usually, a Git repository on your com‐
puter will store the working copies of your source code. You’ll use the git tool to
commit changes there, then push the repository somewhere, or collaborate with an
upstream repo with change proposals referred to as pull requests. This decentralized
operation is the “distributed” part.

In this book, you’ll push source code to GitHub, a social network for source code.
The “social” part means other people and, more importantly for your project, other
systems can connect to, copy, work with, and propose changes to your source code
stored on GitHub. GitHub also has browser-based tools for editing source and com‐
miting changes, and in this chapter you’ll use those so that you can play the first few
levels of OpenShift without a side quest into the command line.

Building and Deploying the Application on OpenShift
The first thing you need is an OpenShift Project to contain the application resources.
Log in to your CRC cluster web console. There, the default account is “developer” and
the password is also “developer”.

Make sure you’re using the Developer perspective by checking or changing the selec‐
tion to Developer using the OpenShift perspective switcher dropdown in the upper-
left corner. Click on Topology. Create a new project by clicking the Project: All
Projects dropdown and then click Create Project (Figure 4-1).

Figure 4-1. OpenShift Web Console: Project dropdown

28 | Chapter 4: Deploying an Application on OpenShift

https://console-openshift-console.apps-crc.testing

In the Create Project dialog, configure the new Project, as shown in Figure 4-2.

Figure 4-2. Creating a new Project

CLI How-To: Create a New Project

Create a new Project in the OpenShift CLI by executing the follow‐
ing code:

oc new-project \
--display-name='Hello OpenShift for Developers' \
--description='hello world' \
o4d-hello

Since you haven’t deployed anything, the Topology view will try to help out with a
grid of things you might want to deploy. Choose From Git.

The console will present a Git build configuration dialog, similar to that seen in
Figure 4-3. Enter the URL of your forked Hello World source in your GitHub
account: for example, https://github.com/<your-name>/hello.git. When you do, Open‐
Shift will check the contents of the repository and, for known languages, will auto‐
matically select the appropriate Builder Image containing the compiler and other
tools to build it.

A Simple Sample Application | 29

Figure 4-3. Configuring a build from Go source code in the OpenShift Web Console

Check that Go is selected in the grid of Builder Images offered in the dialog. Other‐
wise, accept the defaults and click Create.

CLI How-To: Create a New Go Application

It is possible to create the hello deployment using the command
line by executing the following:

oc new-app golang~https://github.com/<your-name>/hello.git

When you click Create, OpenShift will start building your source code with the Go
compiler tools of the selected Builder Image. You’ll be returned to the console’s Top‐
ology view, which shows the application and updates its display as it builds and
deploys (Figure 4-4).

The application’s Topology icon conveys key information. Mouse over the badges on
the icon’s edge and you’ll see that you can click through to build status, directly to the
Git repository URL with the app’s source code, or to the external URL of a route to
the application (Figure 4-5).

30 | Chapter 4: Deploying an Application on OpenShift

Figure 4-4. Topology view with Hello World application

Figure 4-5. Topology icon Route badge

The status of the deployment is conveyed by different colors and tool tips. Dark blue
indicates a running application, light blue one that is not yet ready, and red an appli‐
cation that needs attention because errors have occurred.

Click the Route badge to open the application’s external URL in your web browser
(Figure 4-6).

A Simple Sample Application | 31

Figure 4-6. HTTP response printed by the Hello World application

CLI How-To: List Routes in a Project

List the routes in a Project on the command line by running oc
get routes.

Adding and Deploying a New Feature
Starting with a few lines of source code, you’ve used OpenShift to fetch, build, and
deploy a stateless web application of contrived simplicity. Now imagine you are
assigned a ticket for a feature request: change the displayed text to “Hello World!”.
You can make this change and then have OpenShift rebuild the application and
deploy the result, replacing the previous version.

This basic loop prepares you for two key ideas in the more elaborate application
you’ll build through the rest of the book. The source-to-image build system on Open‐
Shift will form the core of the more complete deployment pipeline you’ll create in
Chapter 6. In later chapters, you’ll see how to set and change deployment strategies to
keep services available during redeployments, or to deploy a new application version
to only a subset of replicas, for single-cluster A/B testing.

Changing hello source
To address the text-change ticket, you need to change a string in the application
source. If you’re a Git veteran, you may have cloned the repo to your local machine,
and you already know how to edit with your preferred tool, commit, and push back
to your GitHub repo. If that process isn’t familiar to you, don’t worry; for now, the
needed change is simple enough to do it quickly in the GitHub web editor, and we
will show you how to clone, change, commit, and send your changes back to your
publicly visible GitHub repository before you need to do more involved coding.

Open the Go source file for your Hello World application, hello-openshift-for-
developers.go, in your browser. Your copy will be at https://github.com/<your-name>/
hello/blob/master/hello-openshift-for-developers.go. You will see the code shown in
Figure 4-7.

32 | Chapter 4: Deploying an Application on OpenShift

Figure 4-7. Existing GitHub source view of Hello World Go source

Click the pencil icon at the top right of the source view (Figure 4-8) to enter editor
mode.

Figure 4-8. GitHub pencil icon

Then find the string Hello OpenShift for Developers! and change it to Hello
World!, as shown in Figure 4-9.

A Simple Sample Application | 33

Figure 4-9. Edited GitHub source view of Hello World Go source

Finally, save the changes to the main branch of your application repo. It’s good prac‐
tice to provide a pithy commit message explaining the change, with a subject and
body similar to an email, as shown in Figure 4-10. Click “Commit changes” to com‐
mit your changes.

Figure 4-10. Committing changes to the Hello World repo

A new OpenShift Deployment
An OpenShift BuildConfig represents a source code location and a process for build‐
ing it into a deployable container. You already have a BuildConfig, created for build‐
ing the Hello World app and reused each time a new release is deployed. Open the

34 | Chapter 4: Deploying an Application on OpenShift

Builds view from the left menu of the Web Console’s Developer perspective. Then
click on the hello-git BuildConfig to open it (Figure 4-11).

Figure 4-11. OpenShift hello-git BuildConfig

Start a build with the “Start build” item from the Actions menu at top right
(Figure 4-12).

Figure 4-12. Actions menu: “Start build” item

A Simple Sample Application | 35

CLI How-To: Start a Build from an Existing BuildConfig

It is possible to start the hello-git build using the command line
by executing oc start-build hello-git.

As shown in Figure 4-13, when the build completes, clicking on the URL icon in the
Topology view will open the latest version of your application in a browser tab. Hello
World!

Figure 4-13. Application feature request ticket closed

Summary
Believe it or not, you’ve just mastered the key pieces of deploying your code on Open‐
Shift. From source to build to rollout and a changeset in between, once configured,
OpenShift assumed the “ops” chores and let you concentrate on the “dev” part. In
Chapter 5, you’ll expand on the build concept with the more capable and modular
OpenShift Pipelines, creating a CD process for a more complete and realistic applica‐
tion with multiple components and persistent state.

36 | Chapter 4: Deploying an Application on OpenShift

CHAPTER 5

OpenShift Pipelines

OpenShift Pipelines is a CI/CD system based on the open source Tekton project.
With Pipelines, you can trigger repeatable builds when source code changes, integrate
tests into the process, and configure automatic redeployment strategies, from rolling
updates to traffic-splitting A/B testing on a single cluster.

In this chapter, you’ll see how Pipelines integrates Tekton fundamentals with Open‐
Shift to make it easier to create and manage stepwise build and deployment processes.
You’ll add the Pipelines Operator to your OpenShift cluster. Then you’ll be ready to
create a pipeline to build, test, and deploy a realistic application with multiple compo‐
nents, which you’ll iterate on to add features and fix bugs throughout the rest of the
book.

Tekton
Tekton lets you create pipelines of repeatable steps. Tekton steps happen in a pod
specifically created for the task. Tekton tasks are therefore isolated from one another
and from the rest of the cluster, but you don’t have to manage a dedicated build
server. Tekton’s moving parts are Kubernetes resources, so you can use familiar tools
to create, manage, and monitor Tekton pipelines.

Tekton is the foundation of OpenShift Pipelines. Pipelines make it easier to set up,
run, and monitor build processes by bundling the essential Tekton components and
adding management tools in line with OpenShift conventions, including graphical
representations of pipelines in the Web Console. You’ll see the two terms used inter‐
changeably in this book, in Pipelines documentation, and in OpenShift CLI and GUI
elements as well.

37

OpenShift Pipelines Operator
The OpenShift Pipelines Operator installs and manages Pipelines components and
services. This includes automatically updating Pipelines as new versions are released.

Installing the Pipelines Operator
Log in to the Web Console with an account granted cluster-admin or enough equiv‐
alent rights to install and manage Operators. On CRC, you were issued a cluster-
admin username and password when you ran crc start. The username is usually
kubeadmin; your password for it is generated and unique. If you don’t remember the
password generated for your cluster’s kubeadmin account, you can recover it with the
command crc console --credentials.

OperatorHub
The OperatorHub is a catalog of available Operators in the OpenShift Web Console
Administrator view. Administrators establish a subscription to an Operator in the
OperatorHub, after which the application or service that the Operator manages is
available for instantiation in one or more cluster namespaces. You’ll use the
OperatorHub to find and install the Red Hat OpenShift Pipelines Operator. Then
you’ll switch back to your developer role and create and run an actual pipeline.

Check out the Kubernetes community’s home to share Operators
for use on OpenShift, OKD, or Kubernetes. If you have a commer‐
cial application that you want to make accessible to your custom‐
ers, get it included in the OpenShift OperatorHub using the
certification workflow provided on the Red Hat Partner Connect
portal.

First, make sure you’re in the Administrator perspective by checking or changing the
selection at the top left of the console. Click on Operators and then OperatorHub in
the left menu. Search for “pipelines”, as shown in Figure 5-1.

38 | Chapter 5: OpenShift Pipelines

https://operatorhub.io
https://operatorhub.io
https://connect.redhat.com
https://connect.redhat.com

Figure 5-1. Pipelines in OperatorHub

Install the Red Hat OpenShift Pipelines Operator
Click the Red Hat OpenShift Pipelines card. You’ll see the install configuration screen
for Pipelines as shown in Figure 5-2. Note that the Pipelines version on your Open‐
Shift cluster will likely be newer than the version 1.4.1 shown in the figure.

CLI How-To: Install the OpenShift Pipelines Operator

You can install the OpenShift Pipelines Operator via the command
line using a little bit of YAML:

cat <<EOF | kubectl apply -f -
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-pipelines-operator
 namespace: openshift-operators
spec:
 channel: stable
 name: openshift-pipelines-operator-rh
 source: redhat-operators
 sourceNamespace: openshift-marketplace
EOF

Accept the defaults selected on the Install screen. The default settings make pipelines
available in all namespaces, with automatic updates managed by the Pipelines

OpenShift Pipelines Operator | 39

Operator. OpenShift Pipelines is ready to go when the status dialog shows “Installed
Operator - Ready for use”.

Figure 5-2. Red Hat OpenShift Pipelines install configuration

Pipelines in the Web Console
Once the Operator is installed, you can see the high-level Administrator perspective
view of the APIs through which you can manipulate pipelines. Click on Installed
Operators in the left navigation pane, and then click on the Red Hat OpenShift Pipe‐
lines Operator (Figure 5-3).

You can also see the same APIs that Tekton provides using the OpenShift command
line:

$ oc api-resources --api-group=tekton.dev
NAME SHORTNAMES APIVERSION NAMESPACED KIND
clustertasks tekton.dev/v1beta1 false ClusterTask
conditions tekton.dev/v1alpha1 true Condition
pipelineresources tekton.dev/v1alpha1 true PipelineResource
pipelineruns pr,prs tekton.dev/v1beta1 true PipelineRun
pipelines tekton.dev/v1beta1 true Pipeline
runs tekton.dev/v1alpha1 true Run
taskruns tr,trs tekton.dev/v1beta1 true TaskRun
tasks tekton.dev/v1beta1 true Task

40 | Chapter 5: OpenShift Pipelines

Figure 5-3. OpenShift Pipelines APIs

Using Pipelines
In the Web Console Developer perspective, you can create pipeline tasks and select
reusable tasks to form pipelines, then run and observe them, check their log output,
and control them graphically. On the command line, you drive pipelines with the
OpenShift oc tool and a specific utility for pipelines called tkn. The tkn and oc
command-line utilities are available in the OpenShift web user interface. Click the
question mark icon near your username at the top-right corner and then select Com‐
mand Line Tools, as shown in Figure 5-4, to access download links for both tools for
the three most popular operating systems.

If you are a VS coder, be sure to check out the extension for Tekton
Pipelines in addition to the OpenShift Connector for Visual Studio
Code that we mentioned in Chapter 3. This extension allows you to
graphically build a pipeline, and it connects to Tekton Hub for
reusable pipelines and tasks shared by the community.

OpenShift Pipelines Operator | 41

Figure 5-4. OpenShift command-line tools available in the Web Console

OpenShift Pipelines Resources
Tekton constructs pipelines from a list of Tasks, and therefore the Task is the basic
unit of OpenShift Pipelines as well. A Task contains one or more steps. A Task occu‐
pies a pod, and each of its steps runs as a container in that pod. Tasks execute steps in
serial order, starting each step on the completion of the one before it. A pipeline exe‐
cutes a set of these Tasks. Unlike the steps within them, all of a pipeline’s Tasks run at
once in parallel unless a Task is configured to wait on another. A PipelineRun repre‐
sents a single execution of a pipeline. Each run can be configured with parameters
read from the environment or from programmatic input (Figure 5-5).

Figure 5-5. Tekton taxonomy

A Step is a series of commands that achieve a specific goal, such as building an image.
Each Step runs sequentially in its own container inside a Task’s pod. Since the con‐
tainers in a pod can optionally share resources, Steps in a Task can use common
shared volumes, ConfigMaps, and Secrets.

42 | Chapter 5: OpenShift Pipelines

Command
A command is a sequence of a named executable, any subcommand, and its argu‐
ments. In the following code for a command called generate, the command to run is
the s2i Source-to-Image utility. This example command gives s2i’s build subcom‐
mand the --image-scripts-url argument with a filepath. It also references a param‐
eter, the $PATH_CONTEXT, to set its value to the openjdk image:

 - name: generate
 command:
 - s2i
 - build
 - $(params.PATH_CONTEXT)
 - registry.access.redhat.com/redhat-openjdk-18/openjdk18-openshift
 - '--image-scripts-url'
 - 'image:///usr/local/s2i'

Script
A script puts an executable script inline so that a single Step that must run several
operations can be more readably defined. An executable script can specify a com‐
mand shell like bash or any language interpreter, such as python3 in the following
example:

- name: lint-markdown
 script:|-
 #!/usr/bin/env python3
 …

Pipelines use other custom and native resources, like PersistentVolumes and claims,
along with a set of parameters allowing for data persistence configuration of pro‐
grams and scripts running in Steps or even between pod-isolated Tasks. Still, this look
at the main elements should give you enough traction to apply pipelines in the next
chapter to build an application with multiple components.

Summary
You’ve installed the OpenShift Pipelines Operator on your cluster. You’re ready to cre‐
ate pipelines to build, test, and package the application you’ll work on throughout the
rest of the book. You met the open source Tekton system underpinning Pipelines, and
you learned about a handful of the key resources in an OpenShift pipeline. Along the
way, you got a glimpse of how Operators make it easier to install and manage founda‐
tion software and cluster services. In Chapter 6, you’ll start developing a multitiered
application and create a pipeline to build it from source.

Summary | 43

CHAPTER 6

Developing and Deploying
from Source Code

Now that your local OpenShift has OpenShift Pipelines installed, you’re ready to
deploy a multitier application. This app is more complex than your initial “Hello
World” service from Chapter 4, as it has two components that need to communicate.
The app also has been designed to eventually incorporate a database, as you will see in
Chapter 7. You will hand some of these complexities off to a pipeline to automate
some of the repetitive tasks of building and rebuilding the application through several
iterations.

Noted: A Cloud-Ready Notes Application
Noted is a simple note board where each note contains a title and some content.
When an optional database is connected, it will allow you to maintain the list of prior
posts and delete them. It consists of two main components, a frontend and a backend,
similar to how a typical web application might be architected.

The frontend is written in Node.js and uses the React library to display the list of
posts. The posts call the quarkus-backend REST endpoint at /posts. While you will
not be editing the frontend component of the app, you can find the source code for
the frontend app on GitHub.

The backend is written using Quarkus, a Kubernetes-native Java stack for microservi‐
ces and serverless development with fast startup times, hot reloads, a small memory
footprint, and compact applications. The backend provides the /posts REST end‐
point to the frontend app. Right now the lists of posts is volatile, stored only in
memory. In Chapter 7, you’ll modify the quarkus-backend to use a database to main‐
tain the post list.

45

https://oreil.ly/RmsiM
https://oreil.ly/RmsiM

Application Topology
The easiest way to see the connectivity among components is through a topology
view of the application (Figure 6-1).

Figure 6-1. Noted topology

Figure 6-2 shows the primary pipeline used to clone both the frontend and backend
source code repositories, build the applications into images, and deploy them on your
local OpenShift cluster.

Figure 6-2. Noted pipeline

In Chapter 4, you deployed an application using the s2i build tool‐
ing in OpenShift. With OpenShift Pipelines, the build task will use
buildah, and the deploy task will use the OpenShift CLI tool oc to
handle deploying the image from OpenShift’s internal registry.
However, your pipeline will be extensible, allowing integration of
commonly used services like GitHub and Slack. It will also handle
other tasks that Tekton can run. Check out Tekton Hub for some
community-shared reusable tasks and pipelines.

46 | Chapter 6: Developing and Deploying from Source Code

https://hub.tekton.dev

Fork the Backend Repository
Before you deploy the application, you need to set up the GitHub repository for the
quarkus-backend component. Open the book’s quarkus-backend repo and fork the
repository by clicking the Fork button at the top-right corner, as in Chapter 4.

Create a New Project for the Noted App
Now that you have your Git repository, you can deploy the frontend and backend
components to OpenShift:

1. First, be sure you are logged in as a developer in the upper-right corner. If you
are not logged in as a developer, log out and log in using the username and the
password: developer as both.

2. Next, open the Developer console’s Topology view in your browser.
3. Create a new Project by clicking the dropdown next to the currently selected

project and then by clicking Create Project, as shown in Figure 6-3.

Figure 6-3. Creating a new Project for the Noted application

Noted: A Cloud-Ready Notes Application | 47

4. Configure the new Project as follows:
• Name: o4d-noted
• Display Name: OpenShift for Developers note
• Description: The Noted Application for the OpenShift for Developers Book

Deploy the Backend Component
Now deploy the quarkus-backend component to the new Project by clicking the Add
from Git tile. The main branch is what you will initially deploy, which is configured
to operate without a database.

Next, configure the new application component. For the Git Repo URL, enter https://
github.com/<your-name>/quarkus-backend.git. Click on “Show advanced Git
options”; for “Git reference,” enter main; and for “Context dir,” enter /. Leave the
Source Secret box empty. See Figure 6-4.

Figure 6-4. Configuring the quarkus-backend deployment

48 | Chapter 6: Developing and Deploying from Source Code

A source secret is used if you are working with a private registry and
you need to specify some secret such as an ssh key. See the CI/CD
section of the OpenShift documentation for more details.

Continue configuring the quarkus-backend deployment. For Builder, make sure Java
is selected. Under General, enter noted for the “Application name” and quarkus-
backend for the Name (this is important for frontend/backend connectivity). Under
Resources, make sure Deployment is selected. See Figure 6-5.

Figure 6-5. Configuring the General and Resources sections of the quarkus-backend
deployment

Continue to configure the quarkus-backend app by quickly adding a pipeline to build
it from the source repository. Under Pipelines, check the “Add pipeline” checkbox.
And under “Advanced options,” uncheck the Create a Route to the Application check‐
box, as this service does not need to be exposed externally. Then click Create (see
Figure 6-6).

Noted: A Cloud-Ready Notes Application | 49

https://oreil.ly/1TunK
https://oreil.ly/1TunK

Figure 6-6. Configuring the quarkus-backend deployment’s pipelines and advanced
options

Inspect the Backend Resources
We can use the OpenShift CLI to inspect the backend resources. First you need to
change the project you are working on to the newly created o4d-noted:

$ oc project o4d-noted
Now using project "o4d-noted" on server "https://api.apps-crc.testing:6443".

Now inspect the resources that were created. all is a useful shortcut for listing each
standard OpenShift API resource that is common with deployment services, such as
pod, service, route, deployment, replicaset, build, buildconfig, imagestream,
job, and cronjobs:

50 | Chapter 6: Developing and Deploying from Source Code

$ oc get all
NAME READY STATUS …
pod/quarkus-backend-1-build 0/1 Completed
pod/quarkus-backend-5c84d4754f-5vsxp 1/1 Running

NAME TYPE … PORT(S)
service/quarkus-backend ClusterIP 8080/TCP,8443/TCP,8778/TCP

NAME READY …
deployment.apps/quarkus-backend 1/1

NAME DESIRED CURRENT READY …
replicaset.apps/quarkus-backend-5c84d4754f 1 1 1
replicaset.apps/quarkus-backend-74dcd74d86 0 0 0

When you are instantiating the quarkus-backend deployment, a few Kubernetes
resources get created to manage the current state of the application. A replicaset is
managed by the deployment resource and will keep track of and manage the desired
versus available number of quarkus-backend pods that are running. A service also
was created to spread the load across any other quarkus-backend components. You
will see this in practice when you scale up the backend in the next chapter:

NAME TYPE FROM …
buildconfig.build.openshift.io/quarkus-backend Source Git@main

NAME TYPE FROM STATUS …
Build…/quarkus-backend-1 Source Git@c718b6b Complete

NAME IMAGE REPOSITORY …
Imagestream…/quarkus-backend …/o4d-noted/quarkus-backend

The output continues to show resources that are related to building the application as
the pipeline resource configures native OpenShift resources to handle the build task.
A buildconfig contains the configuration needed to instantiate a build for the con‐
tainer image from the GitHub repo. The imagestream provides the image registry
location for the container image of the build.

Notice how there are no Routes listed in this output. You can verify that a Route was
not created by querying the OpenShift CLI:

$ oc get route
No resources found in o4d-noted namespace.

Quite a few resources get created with the quarkus-backend deployment, but you
may be wondering: where is the pipeline that created the buildconfig in the previous
output?

$ oc get pipelines
NAME AGE
quarkus-backend 3m53s

Noted: A Cloud-Ready Notes Application | 51

Notice that the all shortcut, as in oc get all, doesn’t match custom resources, so
custom resource types don’t appear in a listing of “all”. Custom resources are never‐
theless full-fledged resources. So you can describe them and do other common API
operation “verbs” on them. You’ll learn more about generally working with API
verbs, kinds, and objects, custom or otherwise, in Chapter 9. For now, describe the
custom quarkus-backend pipeline custom resource to get an idea of how oc
describe reveals object specification and status:

$ oc describe pipeline quarkus-backend
Name: quarkus-backend
Namespace: o4d-noted
Labels: app.kubernetes.io/instance=quarkus-backend
 pipeline.openshift.io/runtime=java
 pipeline.openshift.io/type=kubernetes
Annotations: <none>
API Version: tekton.dev/v1beta1
Kind: Pipeline
[…]

The first section of the description includes the labels, annotations, and name. These
labels are commonly used to organize and group components in your application:

Spec:
 Params:
 Default: quarkus-backend
 Name: APP_NAME
 Type: string
 Default: https://github.com/btannous/quarkus-backend.git
 Name: GIT_REPO
 [...]

The spec defines the parameters that are used in the pipeline. This configuration
defines the default parameters, such as the Git repo and branch, for use in the instan‐
tiation of the pipeline, or pipelinerun:

 Tasks:
 Name: fetch-repository
 Params:
 Name: url
 Value: $(params.GIT_REPO)
 [...]
 Task Ref:
 Kind: ClusterTask
 Name: git-clone
 Workspaces:
 Name: output
 Workspace: workspace
 Name: build
 Params:
 Name: IMAGE
 Value: $(params.IMAGE_NAME)

52 | Chapter 6: Developing and Deploying from Source Code

 [...]
 Run After:
 fetch-repository
 Task Ref:
 Kind: ClusterTask
 Name: s2i-java-11
 [...]

The Task stanza of the pipeline configuration lists all of the tasks that will be pro‐
cessed for this pipeline. Recall that Tasks execute in parallel unless they are config‐
ured to wait on each other, as shown by the Run After field in the preceding code.

Deploy the Frontend Component
Now you will deploy the frontend component of the Noted application.

In the Developer console, click +Add in the left column and choose the From Git tile.
To configure the new nodejs-frontend component, enter https://github.com/
openshift-for-developers/nodejs-frontend.git. Click “Show advanced Git options”;
for “Git reference” enter main, and for “Context dir” enter /. Leave the Source Secret
box empty.

Under Builder, make sure Node.js is selected. Under General, in the Application box
enter noted, and in the Name box enter nodejs-frontend.

Under Resources, make sure Deployment is selected. Under Pipelines, check the “Add
pipeline” checkbox. And under Advanced Options, check the “Create a route to the
application” checkbox, and then click the link for the Deployment advanced option
(see Figure 6-7).

The Git repository URL configured is the nodejs-frontend reposi‐
tory under the book’s GitHub account. You are able to use this
URL, instead of forking your own, as the following scenarios will
not make any changes to the source code of the frontend.

Figure 6-7. nodejs-frontend deployment Advanced Options links

Noted: A Cloud-Ready Notes Application | 53

Click the “Environment variables (runtime only)” link, and then enter the following
for Name and Value, as shown in Figure 6-8:

COMPONENT_QUARKUS_BACKEND_HOST quarkus-backend
COMPONENT_QUARKUS_BACKEND_PORT 8080

Then click Create.

Figure 6-8. nodejs-frontend environment variable deployment configuration

In the Advanced Options of the nodejs-frontend deployment, you added two envi‐
ronment variables. These variables set the hostname and port of the quarkus-backend
component within src/setupProxy.js so that the frontend knows how to retrieve
the list of posts:

if (process.env.COMPONENT_QUARKUS_BACKEND_HOST) {
 backend_quarkus_host =
 process.env.COMPONENT_QUARKUS_BACKEND_HOST;
}

if (process.env.COMPONENT_QUARKUS_BACKEND_PORT) {
 backend_quarkus_port =
 process.env.COMPONENT_QUARKUS_BACKEND_PORT;
}

This hostname works, as the quarkus-backend deployment has a service that is
named quarkus-backend. The service is accessible within the OpenShift cluster
through the DNS hostname of quarkus-backend or the fully qualified domain name
of quarkus-backend.o4d-noted.svc.cluster.local.

You can watch the progress of the build by clicking on Pipelines in the left sidebar, as
shown in Figure 6-9. When both pipelines’ Last run status changes to Succeeded, the
components are fully built and deployed, and you can test the application! To do so,
open the Route to nodejs-frontend by clicking the Open URL icon in the Topology
view for the nodejs-frontend.

54 | Chapter 6: Developing and Deploying from Source Code

Figure 6-9. OpenShift Developer console pipeline status

CLI How-To: List the Pipeline Runs to See the Current Progress

List the pipeline runs in a project to inspect the current progress of
the pipelines that are running using the OpenShift CLI by execut‐
ing oc get pipelineruns.

A Running Noted Application
Welcome to the Noted web frontend, and congratulations on deploying a cloud native
application! Submit at least two posts with both Title and Content. You will notice the
first bug in the application: each post’s title and content are displayed backward, as
shown in Figure 6-10.

Figure 6-10. Noted application running

Noted: A Cloud-Ready Notes Application | 55

Automatic Pipeline Runs Using Tekton Triggers
Before you fix the display bug, it would be nice to set up some automation since you
will be developing and rebuilding the quarkus-backend a few times. When you
update your source code and push a commit to GitHub, a webhook or REST callback
will trigger the pipeline to start and build the latest commit of your code. You need to
set up a pipeline trigger to make this happen.

Pipeline Triggers
A pipeline trigger will create an EventListener pod in your project. This EventListener
will also have an external URL, or route, that you can point the GitHub webhook to.
This EventListener will run on OpenShift as a pod and will wait for GitHub to notify
it about any source code change and act accordingly by running the corresponding
pipeline.

To configure a trigger, in the Developer console, click Pipelines in the left column.
Open the quarkus-backend pipeline. In the top right, click the Actions menu, and
then click Add Trigger (Figure 6-11).

Figure 6-11. Adding a pipeline trigger for the quarkus-backend

Now you’ll configure the new trigger. Under Webhook, enter github-push for “Git
Provider type.” Under Parameters, enter quarkus-backend for APP_Name, https://
github.com/<your-name>/quarkus-backend.git for GIT_REPO, and main for
GIT_REVISION. Do not change the image_name, path_context, version, or work‐
space configuration. When you’re finished, click Add (see Figure 6-12).

56 | Chapter 6: Developing and Deploying from Source Code

Figure 6-12. Configuring a trigger for a GitHub webhook

The Forward Proxy Workaround
One of the fundamental limitations of CodeReady Containers is that the running
OpenShift cluster is isolated in a VM that is only accessible to the host computer. If
you were using an OpenShift cluster that is accessible to your version control system,
you would be able to use the URL of the Route for the trigger’s event listener that was
just created. Instead, the CRC deployment of OpenShift is local to only your worksta‐
tion, and GitHub cannot send a webhook to that local-only Route. Luckily, a few for‐
ward proxy services are available for free for developers to work around this
limitation. There are even a few that integrate with Kubernetes and OpenShift pretty
well, such as ngrok.

Automatic Pipeline Runs Using Tekton Triggers | 57

The quickest way to deploy ngrok into your OpenShift CRC Deployment is to use a
custom template. Templates are a way to create portable application deployments, but
since we will discuss templates in Chapter 10, for now, don’t worry too much about
how they work.

Deploy the ngrok Template
The ngrok template requires two input variables, HOST and PORT, that you will specify
to configure the forward proxy to allow ngrok to service the trigger URL:

1. First, open your terminal and make sure you are using the o4d-noted project:
$ oc project o4d-noted
Now using project "o4d-noted" on server
"https://api.apps-crc.testing:6443".

If you do not have oc in your path, you can run crc oc-env
and follow the instructions to get going.

2. To get the HOST and PORT, we will need to get the list of services and search for the
name of the event-listener service to use when deploying the template in the next
step:

$ oc get service | grep event-listener | \
 awk -F ' ' '{print $1 " PORT: " $5}'

el-event-listener-3ccb6d PORT: 8080/TCP

3. Deploy the ngrok template using your el-event-listener- as the HOST and be
sure to configure the PORT to 8080:

$ oc new-app -p HOST=el-event-listener-3ccb6d -p PORT=8080 -f \
 https://raw.githubusercontent.com/openshift-for-developers/ngrok/ \
 main/ngrok.yaml

--> Deploying template "o4d-noted/ngrok" for "https://raw.githubuser..."
...
--> Success
 Access your application via route 'ngrok-o4d-noted.apps-crc.testing'
 Run 'oc status' to view your app.

4. Open the URL displayed in the Success output of the oc new-app command you
just ran. Be sure you open this URL as HTTP:// and not HTTPS:// (Figure 6-13).

58 | Chapter 6: Developing and Deploying from Source Code

Figure 6-13. ngrok tunnel URLs

5. Next, copy the ngrok forward proxy URL, or the https:// tunnel URL, to use
for the Payload URL webhook on GitHub.

ngrok is a free service, and the URL will only work for two
hours. If you need more time, you can delete the original
deployment by opening a terminal, running oc delete all -
l app=ngrok, and redeploying the template as described in the
preceding steps.

Since you are already in a terminal, try to curl the URL to validate that the ngrok for‐
ward proxy URL is deployed and working as expected:

$ curl https://78f8f9ea90fc.ngrok.io/

{"eventListener":"event-listener-3ccb6d","namespace":"o4d-noted",
 "errorMessage":"Invalid event body format format: unexpected end of
 JSON input"}

Even though your JSON response has an error, it is working as expected.

GitHub Webhook Configuration
You need to configure GitHub to notify the trigger’s event listener through your
ngrok forward proxy URL:

1. Open your quarkus-backend repository on GitHub and click Settings, as shown
in Figure 6-14.

Automatic Pipeline Runs Using Tekton Triggers | 59

Figure 6-14. GitHub quarkus-backend settings

2. Select Webhooks from the left sidebar and click the “Add webhook” button, as
shown in Figure 6-15.

Figure 6-15. Adding a webhook in GitHub

3. Now you’ll configure the webhook. For Payload URL, enter your https://ngrok
forward proxy URL, and for “Content type,” enter application/json. Leave the
Secret box blank, as you do not need this field when using an event listener.

4. Under “SSL verification,” make sure “Enable SSL verification” is selected.
5. For “Which events would you like to trigger this webhook?” make sure that “Just

the push event” is selected (you only need the pipeline to rebuild when new code
has been pushed to the repo).

6. Check the Active checkbox and then click “Add webhook.” See Figure 6-16.

60 | Chapter 6: Developing and Deploying from Source Code

Figure 6-16. Adding a webhook in GitHub

Automatic Pipeline Runs Using Tekton Triggers | 61

The Reversed Text Quarkus-Backend Bug Fix
Now that your automation is configured, you can fix the title and content bug from
earlier. The /posts endpoint is in the quarkus-backend Post.java source file.

1. First, open your quarkus-backend repository on GitHub and head to src/main/
java/com/openshift/fordevelopers/Post.java.
Notice that lines 26 through 32 reverse the title and content strings:

public String getTitle() {
 return new StringBuilder(title)
 .reverse().toString();
 // Should be: return title;
}

public String getContent() {
 return new StringBuilder(content)
 .reverse().toString();
 // Should be: return content;
}

Since the issue affects only two lines of the source code, it should be quick to edit
using the in-browser editor on GitHub.

2. Click the pencil icon in the upper right corner to edit the source code.
Update the code to fix the bug, as shown in Figure 6-17.

Figure 6-17. Editing Post.java on GitHub

3. Commit the fix and be sure to leave a descriptive commit message, as shown in
Figure 6-18.

62 | Chapter 6: Developing and Deploying from Source Code

Figure 6-18. Committing the bug fix changes on GitHub

Now it’s time to check out the pipeline and make sure the automation works as
expected.

4. Open the OpenShift Developer console and click on Pipelines in the left sidebar.
Notice that the quarkus-backend pipeline started automatically!

5. Click “quarkus-backend.”
6. Click the Pipeline Runs tab, where you can see the status of all the pipeline runs

for the quarkus-backend pipeline, as shown in Figure 6-19.

Figure 6-19. quarkus-backend pipeline runs

You can watch the output logs of the tasks in the pipeline. Compare each step’s
output to the tasks stanza in the quarkus-backend pipeline from “Inspect the
Backend Resources” on page 50. These logs are vital for debugging within Open‐
Shift and should be one of the first locations you look at in the event of an error
of your pipeline run.

The Reversed Text Quarkus-Backend Bug Fix | 63

7. Click the currently running quarkus-backend pipeline run.
8. Open the Logs tab to monitor the output of each task, as shown in Figure 6-20.

Figure 6-20. Pipeline run logs

Once the pipeline run completes, open the nodejs-frontend application route by
heading to the Topology view and clicking on the Open URL icon.

Notice that the posts you added earlier have been deleted because they were stored in
an in-memory array that was reset when the backend was re-created. Add that bug to
the backlog to handle later.

Now, add a post or two. As shown in Figure 6-21, you should notice that the title and
the content are displayed correctly!

Figure 6-21. Noted application fixed

64 | Chapter 6: Developing and Deploying from Source Code

Summary
Awesome! You deployed the nodejs-frontend and quarkus-backend components of
the Noted application. You configured a webhook from GitHub, through ngrok, to
your pipeline’s trigger to automatically build the application after the source code had
been updated on GitHub. The content display bug was also fixed and is no longer in
reverse. In the next chapter, you will work with a database to save the list of posts in
case of accidental restarts or deletions.

Summary | 65

CHAPTER 7

Evolving the Application: Data Persistence

As you saw in the preceding chapter, the current deployment of the quarkus-backend
only stores the list of posts in memory. Keeping lists in memory is excellent for per‐
formance, but all the posts will be lost each time the app restarts. Now, imagine if
your bank lost your account information each time it decided to add a new feature or
fix an issue. You’d probably be first in line at a new bank.

State is a critical aspect of many applications, and databases are one way to handle the
information your application needs to keep, such as tracking your bank account’s
ledger or maintaining the list of notes when the quarkus-backend restarts. In this
chapter, you will deploy a PostgreSQL database and bind the Noted app to it to store
the posts.

Database Without Delay
If you read the subtitle of the book, you know you’re supposed to be impatient. To
spare you some waiting, your forked version of the quarkus-backend component
already has a Git branch called pgsql with wiring in place to connect to a database.
Check it out by opening a browser window to https://github.com/<your-name>/
quarkus-backend/tree/pgsql (see Figure 7-1).

67

Figure 7-1. GitHub quarkus-backend pgsql branch

Database Templates
First you need to deploy a database for the pgsql branch to connect to. OpenShift
makes it easy to deploy a database for development using built-in templates, as shown
in Figure 7-2.

Figure 7-2. OpenShift Developer catalog database templates

68 | Chapter 7: Evolving the Application: Data Persistence

However, when using a template you need to manually configure the quarkus-
backend deployment to inject environment variables if you want to connect to the
database. Instead, you will use the power of the OpenShift Service Binding Operators
to automatically configure these environment variables.

Service Binding Operator
The Service Binding Operator (SBO) allows you to quickly bind an instance of a data‐
base to an application deployed on OpenShift without dealing with distributing
secrets or configuration maps such as usernames, passwords, or connection informa‐
tion. The SBO can pick up a few mappings automatically, as long as the database was
deployed via an operator or helm chart. The operator or helm chart will need to be
developed to configure the status fields for that service as expected by the SBO.

To install the SBO, first log out of the Developer account and log back in using the
administrator login provided by crc console --credentials.

1. Now, switch to the Administrator console.
Open the OperatorHub via the left sidebar, search for “service binding,” and
choose the Service Binding Operator to install, as shown in Figure 7-3.

Figure 7-3. OperatorHub Service Binding Operator

2. Now you’ll configure the installation of the SBO. For “Update channel,” choose
preview; for “Installation mode,” choose “All namespaces on the cluster
(default)”; for Installed Namespace, choose “openshift-operators”; and for
“Approval strategy,” choose Automatic. When you’re done, click Install (see
Figure 7-4).

Service Binding Operator | 69

Figure 7-4. Service Binding Operator installation

The Postgres Operator Designed for Service Binding
The operator that deploys Postgres will need to be able to configure the status for
each database instance as expected by the SBO. Luckily, you can use the PostgreSQL
Database operator, which is used in a few examples the SBO references.

Since this operator provides the expected fields, it will be able to automatically bind
configuration values for things like the username, password, database name, and
other database connection info.

Add the Sample DB Operators OperatorSource
While one of the existing PostgreSQL Database operators in the OperatorHub would
be able to store the list of posts, you would have to configure how the quarkus-
backend connects to it manually.

70 | Chapter 7: Evolving the Application: Data Persistence

Details about the Operator Lifecycle Manager are beyond the scope
of this book. For more information about OLM and OperatorSour‐
ces, the OLM website is a good place to start.
If you have quick and easy access to a terminal, you can run the fol‐
lowing command to install the Postgres Database OperatorSource
and then skip to “Install the PostgreSQL Database Operator” on
page 72:

oc apply -f https://oreil.ly/hthiF

To set up the new PostgreSQL Database operator, you will need to install a completely
new repository, or OperatorSource, that will provide the Operator Lifecycle Manager
running on OpenShift with the means to install the PostgreSQL Database operator in
the next step.

1. In the OpenShift console, click on the (+) icon at the top-right corner of the
screen to Import YAML (see Figure 7-5).

Figure 7-5. Import YAML button

2. Add the following CatalogSource to configure a new repository for OpenShift to
install operators from:

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: sample-db-operators
 namespace: openshift-marketplace
spec:
 sourceType: grpc
 image: quay.io/redhat-developer/sample-db-operators-olm:v1
 displayName: Sample DB Operators

OpenShift will fetch the index referenced by the CatalogSource that includes the
PostgreSQL Database operator, which the new Sample DB Operators CatalogSource
includes.

The Postgres Operator Designed for Service Binding | 71

Install the PostgreSQL Database Operator
Wait a moment for the new CatalogSource index to be fetched. The Status will indi‐
cate READY once it’s fetched, as shown in Figure 7-6.

Figure 7-6. The sample-db-operators CatalogSource

Now install the PostgreSQL Database operator by opening the OperatorHub. Then
follow these steps:

1. Search for PostgreSQL Database operator by clicking PostgreSQL Database, as
shown in Figure 7-7.

Figure 7-7. OperatorHub PostgreSQL Database

2. Now you’ll configure the installation for the PostgreSQL Database operator.
Under the Install Operator, for “Update channel” choose “stable”; for “Installation

72 | Chapter 7: Evolving the Application: Data Persistence

mode” choose “All namespaces on the cluster (default)”; for Installed Namespace
choose “openshift-operators”; and for “Approval strategy” choose Automatic.

3. Click Install. (See Figure 7-8.)

Figure 7-8. Configuring the PostgreSQL Database operator installation

Congrats! Your OpenShift cluster can now deploy a PostgreSQL Database and can
automatically bind it to an application by injecting runtime environment variables
into the app’s deployment using the SBO.

The Postgres Operator Designed for Service Binding | 73

As a developer, you may wonder how you can make this work on the application side.
Don’t worry! We will highlight the integration points so that you can reuse some of
these ideas in your app, but first you need to deploy the database and rebuild the
quarkus-backend component.

Verify Operator Installation
Now would be a good time to double-check that your OpenShift cluster has all three
operators required in the next steps: the PostgreSQL Database, Red Hat OpenShift
Pipelines, and Service Binding Operator.

Click Installed Operators in the left sidebar of the Administrator console to verify the
operator installations, as shown in Figure 7-9.

Figure 7-9. Installed operators

Deploy a PostgreSQL Database
The operators should be running smoothly.

Before you deploy the database using the newly installed operator, log out of the
administrator account and login using the developer account.

Open the Developer console. Be sure you are working with the o4d-noted project.
Select Add from the sidebar and then click the Database tile, as shown in Figure 7-10.

74 | Chapter 7: Evolving the Application: Data Persistence

Figure 7-10. Adding a database using the Developer console

To deploy the PostgreSQL database, choose Other in the left column list of filters. Fil‐
ter by the keyword Database, and then click the Operator Backed Database tile to add
the PostgreSQL Database, as shown in Figure 7-11.

To accept the default installation configuration, in the Name box choose “demo-
database.” Leave the Labels box empty (see Figure 7-12).

The Postgres Operator Designed for Service Binding | 75

Figure 7-11. Adding the PostgreSQL Database

Figure 7-12. Configuring the new PostgreSQL Database

76 | Chapter 7: Evolving the Application: Data Persistence

Configure the pgsql quarkus-backend Branch
Now that you have created a PostgreSQL Database, you can update the quarkus-
backend to use the pgsql branch:

1. Click Pipelines in the left sidebar and Select the quarkus-backend pipeline.
2. Click on the Actions menu in the top-right corner, as shown in Figure 7-13.

Figure 7-13. Pipeline Action Menu

3. Click Start.
4. To update the configuration of the Start Pipeline dialog, as shown in Figure 7-14,

in the GIT-REVISION box enter pgsql.

OpenShift Pipelines will now fetch, build, and update the deployment of the pgsql
branch of the quarkus-backend.

Once the pipeline has finished running, you will notice that the status of the quarkus-
backend deployment will be in a CrashLoopBackOff state. This is expected, since the
ServiceBinding has not been created yet and the quarkus-backend is expecting data‐
base connection configuration.

Configure the pgsql quarkus-backend Branch | 77

Figure 7-14. Updating the quarkus-backend pipeline to the pgsql branch

78 | Chapter 7: Evolving the Application: Data Persistence

Inspect the quarkus-backend pgsql Branch
Now is an excellent time to look at the changes needed to go from in-memory to a
database using quarkus by using GitHub’s comparison tool.

One exciting change to be sure that you notice is how the quarkus-backend integrates
with the Service Binding Operator by configuring the database connection to use the
environment variables specified in the application.properties:

quarkus-backend/src/main/resources/application.properties

configure your datasource
quarkus.datasource.db-kind = postgresql
quarkus.datasource.username = ${DATABASE_USER:postgres}
quarkus.datasource.password = ${DATABASE_PASSWORD:password}
quarkus.datasource.jdbc.url =
 ${DATABASE_JDBC_URL:jdbc:postgresql://localhost:5432/postgres}

Service Binding Operator Usage
For the quarkus-backend to connect to a database, you need to configure the applica‐
tion.properties source file to provide details on what type of database it will connect
with and how it will connect to it.

quarkus.datasource.username is configured with the environment variable DATA
BASE_USER value, or the default value of postgres if that variable is not set. Notice
how the quarkus.datasource.password and quarkus.datasource.jdbc.url values
are configured similarly.

This configuration allows for deployments on OpenShift using the environment vari‐
ables or local development by running mvn compile quarkus:dev as documented in
README.md.

By now the quarkus-backend should be redeployed, and you are able to create a Serv
iceBinding instance to automatically inject the environment variables that the appli
cation.properties source expects.

Using the SBO is not the only way to connect your application and
database.
You can manually bind the database by configuring the quarkus-
backend’s Advanced Deployment option “Environment variables
(runtime only)” to include the DATABASE_USER, DATABASE_PASS
WORD, and DATABASE_JDBC_URL fields the same way you configured
the nodejs-frontend in Chapter 6.

Service Binding Operator Usage | 79

Configure a ServiceBinding
To create a service binding instance to bind the database and the quarkus-backend,
you first need to open the Developer Web Console perspective.

Click the (+) icon (refer back to Figure 7-5); when you hover your cursor over the
icon, a tool tip will appear that says Import YAML.

Copy each section of the YAML to import the entire ServiceBinding.

If you happen to have quick access to a terminal, you can use the
following command instead of typing out the entire ServiceBinding
out:

oc apply -f https://raw.githubusercontent.com/
openshift-for-developers/noted/main/svc-bind-
quarkus-database.yaml

Next, define that this configuration is a ServiceBinding, as set by the kind configura‐
tion, and is scoped to the currently-in-use project, o4d-noted, using the the name
svc-bind-quarkus-database:

apiVersion: binding.operators.coreos.com/v1alpha1
kind: ServiceBinding
metadata:
 name: svc-bind-quarkus-database
 namespace: o4d-noted

Configure the specification or spec to know which application to bind with. If the
bindAsFiles value is configured as false, the ServiceBinding will inject environment
variables instead of a directory of files, as shown in the SBO documentation:

spec:
 bindAsFiles: false
 application:
 group: apps
 name: quarkus-backend
 resource: deployments
 version: v1

The following services configuration defines which database to bind to the quarkus-
backend. In this example, we only bind to a single database, but if you needed to bind
multiple services, databases, or secrets, you could define them in this list:

 services:
 - group: postgresql.baiju.dev
 id: postgresDB
 kind: Database
 name: demo-database
 version: v1alpha1

80 | Chapter 7: Evolving the Application: Data Persistence

The mappings configuration defines the custom variables to bind. The DATA
BASE_JDBC_URL field is built here:

 value: >
 'jdbc:postgresql://{{ .postgresDB.status.dbConnectionIP }}:
 {{ .postgresDB.status.dbConnectionPort }}/{{ .postgresDB.status.dbName }}'

Import the svc-bind-quarkus-database ServiceBinding by clicking Create.

Test the ServiceBinding
Now the database is bound, as shown in Figure 7-15 by the arrow between the
quarkus-backend and demo-database in the Topology view.

Figure 7-15. Topology view showing the ServiceBinding

Test the app. It should be fully functional!

Service Binding Operator Usage | 81

You now should have a database that is connected with the quarkus-backend, thereby
storing its posts statefully.

Open the frontend URL and notice that each post’s delete button now works as well
(see Figure 7-16)! Quarkus really makes working with Postgres databases simple by
using Hibernate ORM with Panache as used in the quarkus-backend component.

Be sure at least one post has been added before moving on.

Figure 7-16. The stateful Noted application

You might notice that the ServiceBinding configuration did not have any credential
information. Still, since the database was deployed using an operator that is aware of
the SBO, it automatically picked up on those values—and a few more.

Inspect the ServiceBinding Injection
You can see the list of environment variables in use by the quarkus-backend deploy‐
ment by opening the Topology view and clicking on the quarkus-backend icon:

1. Click on the quarkus-backend Resources link in the right sidebar, as shown in
Figure 7-17.

82 | Chapter 7: Evolving the Application: Data Persistence

Figure 7-17. quarkus-backend Resources link

2. Open the Environment tab and look at the “All values from existing ConfigMaps
or Secrets (envFrom)” field, as shown in Figure 7-18.

Figure 7-18. quarkus-backend environment variables

3. The SBO stores the environment variables inside a secret, as shown in
Figure 7-18.

Service Binding Operator Usage | 83

4. Search for your secret in use by first checking the Secret checkbox in the Resour‐
ces dropdown.
Now click on your “svc-bind-quarkus-database-__” secret in the list of secrets, as
shown in Figure 7-19.

Figure 7-19. Searching for the ServiceBinding secret

5. Click the “Reveal values” link to see each configured variable that the Service‐
Binding creates to bind to the quarkus-backend as environment variables
(Figure 7-20).

CLI How-To: Expose the Secrets

You can use the OpenShift CLI to get all the secrets using the fol‐
lowing command:

oc get secret <secret name> -o jsonpath='{.data}'

Note that the secret values will be base64 encoded.

84 | Chapter 7: Evolving the Application: Data Persistence

Figure 7-20. The svc-bind-quarkus-database secrets revealed

You can further inspect the database to see where some of the environment variables
such as .postgresDB.status.dbConnectionIP or .postgresDB.status.dbName

come from to use in the ServiceBinding using the oc CLI:

$ oc describe database demo-database

Name: demo-database
Namespace: o4d-noted-pgsql
Labels: <none>
Annotations: <none>
API Version: postgresql.baiju.dev/v1alpha1
Kind: Database
…
Spec:
 Db Name: postgres
 Image: docker.io/postgres
 Image Name: postgres

Service Binding Operator Usage | 85

Status:
 Db Config Map: demo-database
 Db Connection IP: 172.30.250.167
 Db Connection Port: 5432
 Db Credentials: demo-database-postgresql
 Db Name: postgres
Events: <none>

Persistence in Action
Now that you have created and deployed a database, what happens to the application
if you delete all running instances of the quarkus-backend to quickly simulate an
application crash or a potential node failure of a multinode cluster? We’ll give you a
hint: as a user, you shouldn’t notice.

In this test, you’ll delete the quarkus-backend pod to simulate an application crash
because, essentially, they are handled by the ReplicaSet controller in a similar way. If
a pod is not running, but at least one instance is desired, a pod will be created.

To delete the running quarkus-backend pod, open the Topology view of the Devel‐
oper console.

Click the quarkus-backend deployment, select the one running pod in the sidebar,
and in the Actions menu select Delete Pod, as shown in Figure 7-21.

Figure 7-21. Deleting the running quarkus-backend pod

86 | Chapter 7: Evolving the Application: Data Persistence

CLI How-To: Delete a Pod and Scale a Deployment

You can forcefully delete a pod by first listing the pods that are run‐
ning using oc get pods and then running oc delete pod <pod
name>.
Another way to redeploy the quarkus-backend deployment could
be to scale it down to zero and back up to one using the following
commands:

oc scale deployment quarkus-backend --replicas 0
oc scale deployment quarkus-backend --replicas 1

Now head back to the Topology view. Notice that the quarkus-backend should be
running. Open the nodejs-frontend URL to test the Noted application.

You should notice that the posts that were posted earlier should persist after reloading
the frontend URL for the Noted app.

Summary
In this chapter, you deployed the Service Binding Operator and a PostgreSQL Data‐
base operator. You used them both to enable the quarkus-frontend component to pre‐
serve the list of notes. You’re ready to disrupt the social media industry with your new
Noted application. So what happens when a bunch of new users show up? You’d bet‐
ter be ready to scale up your application with more running instances. You’ll learn
how to do that in the next chapter.

Summary | 87

CHAPTER 8

Production Deployment and Scaling

Now that you have deployed the Noted application with a database, we can talk about
some basic tasks that you might need to perform to make the platform work for your
app. First you will need to scale the quarkus-backend component to run multiple
instances and handle more load. Since a few instances of your backend component
will be running, we will discuss how OpenShift can deploy updates to the fleet and
potentially roll out an update to your app with zero downtime using the proper
deployment strategy for your specific application. OpenShift also has robust health
checking built in to make sure things are running as expected, which we’ll cover in
this chapter as well.

Application Scaling
OpenShift has some powerful built-in mechanisms in place that allow your applica‐
tion to scale by replicating. When a deployment scales upward its replica set creates
additional pods for an application. The service associated with this deployment will
perform the simple task of spreading the load across the replica set. The number of
replicas that a deployment has can be configured manually or automatically based on
CPU, memory, or concurrency metrics, as you will see and configure in the sections
that follow.

Manual Scaling
Manually scaling the quarkus-backend deployment is a quick and easy way for your
application to be able to handle more load.

Open the Topology view to manually scale the quarkus-backend. Select “quarkus-
backend,” and click the Details tab in the slideout. Then click the ^ icon to deploy at
least two quarkus-backend pods, as shown in Figure 8-1.

89

Figure 8-1. Adding quarkus-backend pods

Increasing the count adds more pods to the deployment. OpenShift will attempt to
run the desired number of pods as hardware resources allow. These pods use a service
to load-balance the incoming quarkus-backend API requests.

CLI How-To: Scale an Application

You can configure your application’s scale using the OpenShift CLI
by executing oc scale --replicas=<desired replica count>
<name>.

The Service Abstraction
Services, introduced in Chapter 2, are a key component of how OpenShift makes scal‐
ing as simple as clicking an up arrow.

Click on the Resources tab in the quarkus-backend slideout and open the quarkus-
backend service, as shown in Figure 8-2.

In Figure 8-2, you can see the details for the quarkus-backend service. This cluster-
wide service has ports that are configured to be available via the cluster IP, or they can
be more easily found at service-name.project-name.svc.cluster.local or in the
case of quarkus-backend, quarkus-backend.o4d-noted.svc.cluster.local.

90 | Chapter 8: Production Deployment and Scaling

Figure 8-2. quarkus-backend services

You can see all the pods that are load-balanced across this service by opening the
Pods tab (see Figure 8-3).

Figure 8-3. quarkus-backend service’s pods

You may be wondering: how does the quarkus-backend service select the pods to be
load-balanced?

Well, let’s see by inspecting the quarkus-backend service. Click on the YAML tab. The
service matches the pods that are labeled with the same configuration under
the .spec.selector stanza within the service:

Application Scaling | 91

kind: Service
apiVersion: v1
metadata:
 name: quarkus-backend
 [...]
spec:
 selector:
 app: quarkus-backend
 deploymentconfig: quarkus-backend
 [...]

Here you can compare the selector with how the quarkus-backend deployment has
been labeled.

Open the quarkus-backend deployment by heading to the Toplogy view. Click on the
quarkus-backend icon, and then open the Details tab on the slideout.

Notice how the deployment has a label that matches the service’s app: quarkus-
backend selector, as shown in Figure 8-4.

Figure 8-4. quarkus-backend deployment labels and selector

92 | Chapter 8: Production Deployment and Scaling

CLI How-To: Working with Services and Selectors

You can list the services in your cluster using the OpenShift CLI
command oc get service.
You can also list the endpoints that match to pods that are load-
balanced across a particular service by running these commands:

oc describe service <service name>

oc get service <service name> -o yaml

You can list all the pods that match a specific label or selector using
the OpenShift CLI command oc get pods -l <label=value>.

Automatic Scaling
Scaling an application by clicking an up or down arrow is awesome and makes it so
that you can quickly define how many replicas are available to your application. This
allows you to manually grow your application to be able to handle more users. How‐
ever, in most cases automated scaling is preferred in production environments as it
will allow you to maximize the available resources to your application by reacting to
its usage.

The Horizontal Pod Autoscaler
The Horizontal Pod Autoscaler (HPA) is one of the automatic scaling mechanisms
built into OpenShift that will automatically scale your application deployment based
on a CPU and memory threshold that you define. These metrics are captured using
Prometheus, an open source monitoring solution that is included with the OpenShift
Container Platform. You will explore Prometheus and OpenShift monitoring in
Chapter 9.

Prometheus is disabled using CRC as it would require additional
resources in a potentially already constrained workstation. You will
configure the quarkus-backend to scale using an HPA, but due to
this limitation, the actual automated scaling will not work.

To configure an HPA, you need a deployment that specifies memory as well as CPU
requests and limits so that the HPA knows what to base the load threshold on. There‐
fore, you will need to edit the quarkus-backend deployment to add these metrics, as
they were not configured in the deployment step in Chapter 6.

Application Scaling | 93

Update the quarkus-backend requests and limits
Requests and limits can be added at creation of a deployment or updated after an
application has been deployed, as in the case of quarkus-backend. These simple con‐
figuration specifications define the minimum and maximum CPU and memory that
deployments are allowed to consume. It is always recommended to configure requests
and limits for every deployment on OpenShift. An application could clobber 100% of
the CPU of the entire cluster at the expense of every other running workload on that
individual node without the guardrails that limits and requests provide.

You can edit the configuration to add the requests and limits and then rebind it back
to the database:

1. Open the Topology view. Select the quarkus-backend deployment, and in the
Actions menu in the upper-right corner, select “Edit quarkus-backend,” as shown
in Figure 8-5.

Figure 8-5. Editing in the quarkus-backend Actions menu

2. In the “Advanced options” configuration, click on the “Resource limits” link, as
shown in Figure 8-6.

94 | Chapter 8: Production Deployment and Scaling

Figure 8-6. “Resource limits” link

3. Configure the Resource limit. For CPU Request choose “100 millicores”; for CPU
Limit choose “1 cores”; for Memory Request choose “250 Mi”; and for Memory
Limit choose “500 Mi.” When you’re finished, click Save. (See Figure 8-7.)

Figure 8-7. quarkus-backend resource limits and requests

Application Scaling | 95

Autoscaling Future Outlook
The OpenShift Container Platform’s Vertical Pod Autoscaler Operator (VPA) auto‐
matically reviews the historic and current CPU and memory resources for containers
in pods and can update the resource limits and requests based on the usage values it
learns. Be on the lookout for the VPA method. In our opinion, it is a highly promis‐
ing tech-preview feature of OpenShift to be able to automatically tune the scaling
properties.

Rest assured, now the quarkus-backend will not be able to overrun the available
resources for your OpenShift cluster due to the configured limits.

Configure a Horizontal Pod Autoscaler
The quarkus-backend now has CPU and memory limits and requests, so you are able
to configure the Horizontal Pod Autoscaler to autoscale based on the load:

1. Open the Developer console’s Topology view. Click on the quarkus-backend
deployment icon, and in the Actions menu, click Add HorizontalPodAutoscaler,
as shown in Figure 8-8.

Figure 8-8. Adding an HPA for the quarkus-backend deployment

96 | Chapter 8: Production Deployment and Scaling

2. To configure the HorizontalPodAutoscaler, for Name choose “hpa-quarkus-
backend”; for Minimum Pods choose “1”; for Maximum Pods choose “5”; for
CPU Utilization choose “80%”; and for Memory Utilization choose “80%.” When
you’re finished, click Save. (See Figure 8-9.)

Figure 8-9. Configuring the hpa-quarkus-backend

Now the quarkus-backend is configured to autoscale once 80% of its CPU or memory
limit has been consumed.

Verify autoscaling
Open the Details tab for the quarkus-backend in the Topology view. You will see the
Pod Count displayed as Autoscaled to …, indicating that OpenShift is automatically
scaling this service (see Figure 8-10).

Application Scaling | 97

Figure 8-10. quarkus-backend autoscaled

Your deployment might be autoscaled to a different value than displayed in
Figure 8-10 due to the manual scaling exercise and Prometheus not being enabled.

The quarkus-backend is now configured to automatically scale based on the load. You
even configured limits to not allow it to grow out of control and take over all of the
cluster resources.

Health Checks
Now that you don’t need to focus on manually scaling your Noted application compo‐
nents, you can rest easy knowing that it will always be available. What happens if the
quarkus-backend is up and running in a noncrashed state but is not processing things
as expected?

At the moment: nothing at all.

OpenShift’s health-checking functionality can automatically poll your application
using HTTP, TCP, or container commands to verify that it is healthy. The poll’s
response will be compared to a preconfigured expected value. OpenShift can attempt
to redeploy a deployment with a failed health check as well as notify administrators
about the health issue.

The quarkus-backend has a basic implementation of the quarkus extension SmallRye
Health that is configured with a few health-checking probe endpoints defined in the
following sections.

98 | Chapter 8: Production Deployment and Scaling

https://oreil.ly/vfeCR
https://oreil.ly/vfeCR

Health-Checking Probes
Health-checking probes provide the polling functionality to guarantee that your
application is up, healthy, and responding as expected. There are three common
health checks that you can configure when deploying your application on OpenShift:
Readiness, Liveness, and Startup.

Readiness probe
A readiness probe determines whether a container is ready to accept service requests.
If the readiness probe fails for a container, it will be removed from the list of available
service endpoints. After a failure, the probe continues to poll the pod. If it becomes
available, OpenShift will add the pod to the list of available service endpoints.

The quarkus-backend is configured to respond to the readiness probe based on its
Postgres connection status at the endpoint /health/ready.

We use a remote shell, as we explain in Chapter 9, to show you the output of this end‐
point so that you can configure OpenShift’s health-checking functionality in the next
section:

$ curl quarkus-backend.o4d-noted.svc.cluster.local:8080/health/ready

{
 "status": "UP",
 "checks": [
 {
 "name": "Database connections health check",
 "status": "UP"
 }
]
}

Liveness probe
A liveness probe determines whether a container is still running. The container will
be killed if the liveness probe fails due to a condition such as a deadlock. The pod
then responds based on its restart policy.

The quarkus-backend’s /health/live endpoint is configured to respond with the
liveness of the application:

sh-4.4$ curl quarkus-backend:8080/health/live

{
 "status": "UP",
 "checks": [
]
}

Health Checks | 99

Startup probe
A startup probe indicates whether the application within a container is started. All
other probes are disabled until the startup succeeds. If the startup probe does not suc‐
ceed within a specified period, OpenShift will kill the container, usually restarting it
immediately after.

Configure the Health Checks in OpenShift
Now you are able to configure the health checking within OpenShift. This will
instruct the cluster to begin polling the health endpoints of the quarkus-backend to
verify that it is healthy and ready to process posts:

1. First, open the OpenShift Developer console’s Topology view. Then click on the
quarkus-backend deployment, and in the Actions menu, click Add Health
Checks.

2. We will configure only the liveness and readiness probes for the quarkus-
backend. To do so, configure the health checks as follows. Start by adding a readi‐
ness probe by choosing HTTP GET in the Type field. Under HTTP Headers, for
the Path enter /health/ready and for the Port enter 8080.
Next, you will choose a series of thresholds:

Failure threshold: 3
The failure threshold is how many times the probe will try starting or restart‐
ing before giving up.

Success threshold: 1
The success threshold is how many consecutive successes are required for
the probe to be considered successful after having failed.

Initial delay: 30 seconds
The initial delay is how long to wait after the container starts before checking
its health.

Period: 10 seconds
The period is how often to perform the probe

Timeout: 1 second
The timeout is how long to wait for the probe to finish. If the time is excee‐
ded, the probe will be considered a failure.

3. Make your threshold selections. For Failure choose “3”; for Success choose “1”;
for “Initial delay” choose “30 seconds”; for Period choose “10 seconds”; and for
Timeout choose “1 second.” See Figure 8-11.

100 | Chapter 8: Production Deployment and Scaling

Figure 8-11. Configuring the quarkus-backend readiness probe

4. Click the check mark, as shown in Figure 8-12, to save the probe.

Figure 8-12. Saving the probe by clicking the check mark button

5. To configure the liveness probe, choose HTTP GET in the Type field. Under
HTTP Headers, for the Path enter /health/live and for the Port enter 8080.

6. For the Failure threshold choose “3”; for the Success threshold choose “1”; for
“Initial delay” choose “30 seconds”; for Period choose “10 seconds”; and for
Timeout choose “1 second.”

7. Click the check mark button.
8. Click Save to save the updated deployment.

Health Checks | 101

OpenShift can now programmatically detect whether the deployment is ready and
working based on the health checks built into the quarkus-backend component. This
offloads certain failure states that the health-check probes monitor to attempt to be
automatically redeployed, resulting in fewer manual tasks for teams running produc‐
tion systems.

Production Deployment Strategies
A few different types of production deployment strategies are available within Open‐
Shift that allow you to determine how OpenShift handles rolling out your application
in the event of an update, creation, updated scale, or if a pod was killed for some
other reason.

Available Deployment Strategies on OpenShift
This section details the available strategies, as well as how the strategy that is used is
determined by the constraints of the specific application.

Rolling deployment strategy
A rolling deployment is the default and most common deployment strategy within
OpenShift. This method slowly replaces instances of the previous version of an appli‐
cation with instances of the new version of the application. If your deployment has
heath checking configured, a rolling deployment will wait for new pods to become
ready via a readiness check before scaling down the old components.

Rolling deployments are used when you would like updates with no downtime. One
requirement of rolling deployments is that your application needs to support having
old code and new code running at the same time. Typically, this requirement is not an
issue in general deployments.

Canary deployments
A canary deployment is a common deployment paradigm that tests a new version of
an application before rolling it out to the entire install base of that app. In fact, in
OpenShift, all rolling deployments are canary deployments. The canary version, or
the new version in a deployment update, is tested before all the old instances of that
deployment are replaced. If the canary crashes immediately or if a configured readi‐
ness check never succeeds, the canary will be removed and the deployment will be
automatically rolled back to the previously known working deployment.

Recreate deployment strategy
The recreate strategy has basic rollout behavior and could be used when your applica‐
tion is not able to run alongside an older version. This method will completely scale

102 | Chapter 8: Production Deployment and Scaling

the deployment down to zero and then scale the deployment back up using the new
version of your application. Be aware that using the recreate deployment strategy will
incur downtime during updates as the deployment will scale down to zero for a brief
period.

Recreate deployment strategies can also be used during one-time migrations or other
data transformations before your new version starts; just switch the strategy for the
update. Recreate deployments also need to be used when you want your deployment
to use a persistent volume with strict writing requirements that specify that only one
pod can mount the volume at a time. To put it another way, recreate deployments
need to be used when the deployment needs to be configured to mount the volume
with the access mode of read-write-once.

Custom deployment strategy
Custom deployments are…custom! You can customize how your deployment rolls
out on OpenShift if the application has specific needs. This type of deployment strat‐
egy allows you to run custom commands for each rollout, and you are able to base
your deployment rollout on the specific needs of a given application as well.

See the OpenShift documentation for more information on how to customize deploy‐
ments for your app’s requirements.

Are There Servers in Serverless?
Of course! Sometimes those servers run OpenShift.

While discussing Serverless in detail is beyond the scope of this book, we suggest you
check out the serverless model for your applications. It abstracts even more of the sys‐
tems management required to develop and deploy applications. OpenShift Serverless
is powered by the open source Knative project, and it provides an automated and
opinionated way to deploy and scale applications and functions in response to events.

An event-driven serverless deployment, for example, makes it possible to run code
and provision infrastructure only when necessary. That allows the application to be
idle when it isn’t needed. A serverless application will automatically scale up based on
event triggers in response to incoming demand, and it can scale down to zero
afterward.

To learn more about OpenShift Serverless and Knative, check out Knative Cookbook:
Building Effective Serverless Applications with Kubernetes and OpenShift by Burr Sutter
and Kamesh Sampath (O’Reilly).

Production Deployment Strategies | 103

https://oreil.ly/DYGoB
https://learning.oreilly.com/library/view/knative-cookbook/9781492061182/
https://learning.oreilly.com/library/view/knative-cookbook/9781492061182/

Configuring a Deployment Strategy
You can easily configure rolling or recreate deployment strategies using the Devel‐
oper console.

Open the Developer console Topology view. Select “quarkus-backend,” and in the
Actions menu, click Edit Update Strategy. Notice how to change the strategy, and
then click Cancel, as shown in Figure 8-13.

Figure 8-13. Edit Update deployment strategy

Deployment Rollbacks
OpenShift makes it easy to roll back a deployment if something doesn’t work cor‐
rectly with your rolled-out version. You can use the OpenShift command line to
determine the rollout history for a specific deployment and then perform the roll‐
back, as shown here (the latest revision will be at the end of the rollout history list):

$ oc rollout history deployment/quarkus-backend
deployment.apps/quarkus-backend
REVISION CHANGE-CAUSE
1 <none>
2 <none>
3 <none>

104 | Chapter 8: Production Deployment and Scaling

$ oc rollout undo deployment/quarkus-backend --to-revision=<Revision Number>
deployment.apps/quarkus-backend rolled back

While your revision numbers may differ, you can validate that the quarkus-backend
has been rolled back by listing the history again:

% oc rollout history deployment/quarkus-backend
deployment.apps/quarkus-backend
REVISION CHANGE-CAUSE
1 <none>
3 <none>
2 <none>

Summary
In this chapter, you learned how to manually scale the Noted app’s backend compo‐
nent, as you might do when you’re testing and measuring an application to determine
its baseline number of replicas and resources. Then you configured OpenShift to
automatically scale to more or fewer quarkus-backends in response to demand. You
also did the important job of configuring a health check for the quarkus-backend. In
the next chapter, you’ll learn more about OpenShift’s metrics and monitoring tools
and views.

Summary | 105

CHAPTER 9

Monitoring and Managing
Applications on OpenShift

You’ve made an application with multiple components, and you’ve automated its
build and deployment with a repeatable pipeline. You’ve set up OpenShift to watch
your applications and take action on your behalf when they need to be scaled in
response to demand or restarted in response to their going sideways. You’re in a good
position to focus on your application’s features and code, because when everything
goes right, you commit changes and OpenShift handles the rest.

But no one defies Murphy’s Law forever. Eventually you’ll need to troubleshoot your
application, or its deployment, by examining its moving parts, available cluster
resources, and the logs that record build, deployment, and application events. This
chapter introduces the most common OpenShift tools for examining running resour‐
ces, from listing them to check their basic status, to walking in your application’s
shoes by connecting to it and interactively running commands inside its container.

Listing and Detailing Resources
The oc tool is the simplest form of monitoring OpenShift resources. There is a gen‐
eral pattern for addressing a resource in an oc command line. You specify the action
you want to do, the kind of object you want to do it to, and the name of that specific
object: oc <verb> <kind> <name>. Specifying a kind but not a name refers to all the
objects of that kind.

107

For example, to list all the objects of the Pod type running in the current project, use
the get verb aimed at objects of the pod kind:

$ oc get pods
NAME READY STATUS RESTARTS
Demo-database-postgresql-6bbdc7b9d-btn2h 1/1 Running 0
el-event-listener-4dtv4l-844ddcb4-5697h 1/1 Running 0
nodejs-frontend-5d4f95bd9d-9998w 1/1 Running 0
…

Notice how each instance of a running pod is suffixed with a unique ID to distinguish
among replicas in a horizontally scaled deployment. Running oc get pods immedi‐
ately after completing Chapter 8’s exercises will print a list that includes several build
pods, named with -build suffixes, and with their status marked as Completed, along
with the Running pods of the Noted application’s components shown here.

This is the same set of resources you’d see in the Web Console’s Topology view but
presented as a textual list. It is very similar to what you’ll see if you switch the Topol‐
ogy view to list mode with the button at the top right in the Topology view, as shown
in Figure 9-1.

Figure 9-1. Topology view list mode toggle icon

108 | Chapter 9: Monitoring and Managing Applications on OpenShift

Taking a single pod’s name from the list of all pods shows how you can narrow down
an API verb’s target from an entire class of objects to a specific object of that type:

$ oc get pod nodejs-frontend-5d4f95bd9d-9998w

NAME READY STATUS RESTARTS
Nodejs-frontend-5d4f95bd9d-9998w 1/1 Running 0

Using Labels to Filter Listed Resources
Labels identify characteristics of API resources. The Noted application’s components,
for instance, are labeled with a key value pair that indicates their app is noted. You
can select only those resources with a given label by passing a --selector argument
to oc get naming the label and value you want. This provides a mechanism for
organizing more than one application in a single Project. For example, try getting
pods in your Noted application, labeled with app=noted-app:

$ oc get pods --selector app=noted-app

Describing Resources
You can learn a lot about any resource with the describe subcommand. For example,
the Operators we’ve used to provision databases in the Noted application define their
own new custom resources. Custom resources represent the things an Operator
manages.

Consider how you looked for pipelines and pipelineruns to confirm progress
throughout Chapter 6. Pipelines are not native Kubernetes resources. In fact, they
didn’t exist as a resource type on your OpenShift cluster until you bolted on the Pipe‐
lines Operator. Once the Operator was added, though, your cluster’s API had new
custom resource types, among them pipeline and pipelinerun. Your pipeline for
building the Noted app comprised instances of those custom resources. Custom
resources can be treated like any other resource in the API. For example, list all of
them in a project with the get verb and the kind of object:

$ oc get pipelines
NAME AGE
quarkus-backend 3m53s

Events and Logs
When a problem comes up, the log files are often the first troubleshooting step. You
can retrieve logs for a resource with the logs verb. You’ll need to drill down to a spe‐
cific instance of the deployment, pod, or container whose logs you want to read. In
the following excerpt, first the list of all pods is retrieved, giving the name of the sin‐
gle pod whose logs you want:

Events and Logs | 109

$ oc get pods
NAME READY STATUS RESTARTS
caddy-5bf94cc5b6-qfhh2 1/1 Running 0
El-event-listener-4dtv4l-844ddcb4-5697h 1/1 Running 0
Nodejs-frontend-5d4f95bd9d-9998w 1/1 Running 0

$ oc logs caddy-5bf94cc5b6-qfhh2
Activating privacy features... done.

Serving HTTP on port 8080
http://0.0.0.0:8080

Given the name of the single caddy pod, logs prints the pod’s logs on standard
output.

Debugging an Application in Its Container
When the problem isn’t with configuration or deployment, troubleshooting moves to
the application level. OpenShift’s command-line tool oc has a set of subcommands for
running things inside your application’s container. You encountered one of them, oc
rsh, back in Chapter 8. The other two are exec and debug.

oc rsh
The rsh subcommand takes the name of a Deployment, ReplicaSet, Pod or other run‐
ning resource and sets up a connection to an interactive shell running there. By
default, rsh picks the first container in the pod. You can specify another container in
the pod by passing its name to rsh’s -c argument. The container image must include
an interactive shell.

In the following excerpt, the oc new-app command creates a new Apache HTTP
server deployment from the template included with OpenShift. Once it’s running, oc
get retrieves the name of the pod instance to pass to oc rsh. The rsh subcommand
connects to the shell in the Apache container. Once connected, you can run com‐
mands inside the container to list the processes running in it, check environment
variables, and generally see the world from the application’s point of view:

$ oc new-app httpd-example
--> Deploying template "openshift/httpd-example" to project default

 Apache HTTP Server

[...]

$ oc get pods
NAME READY STATUS RESTARTS
httpd-example-1-build 0/1 Completed 0
httpd-example-1-deploy 0/1 Completed 0

110 | Chapter 9: Monitoring and Managing Applications on OpenShift

httpd-example-1-t7lhk 1/1 Running 0

$ oc rsh httpd-example-1-t7lhk # This command drops into the container’s shell

sh-4.4$ ps ax
 PID TTY STAT TIME COMMAND
 1 ? Ss 0:00 httpd -D FOREGROUND
 34 ? S 0:00 /usr/bin/coreutils --coreutils-prog-shebang=cat /usr/bin/cat
 35 ? S 0:00 /usr/bin/coreutils --coreutils-prog-shebang=cat /usr/bin/cat
 36 ? S 0:00 /usr/bin/coreutils --coreutils-prog-shebang=cat /usr/bin/cat
 37 ? S 0:00 /usr/bin/coreutils --coreutils-prog-shebang=cat /usr/bin/cat
 38 ? S 0:00 httpd -D FOREGROUND
 39 ? Sl 0:00 httpd -D FOREGROUND
 43 ? Sl 0:00 httpd -D FOREGROUND
 47 ? Sl 0:00 httpd -D FOREGROUND
 253 pts/0 Ss 0:00 /bin/sh
 263 pts/0 R+ 0:00 ps ax

sh-4.4$ env
HTTPD_CONTAINER_SCRIPTS_PATH=/usr/share/container-scripts/httpd/
HTTPD_DATA_ORIG_PATH=/var/www
HTTPD_EXAMPLE_PORT_8080_TCP_ADDR=10.217.4.209
SUMMARY=Platform for running Apache httpd 2.4 or building httpd-based application
HTTPD_DATA_PATH=/var/www
HOSTNAME=httpd-example-1-t7lhk

oc exec
The oc exec subcommand runs a specified command inside the specified container.
You can exec where you can’t rsh; exec can directly invoke an executable without
needing a shell. For example, the caddy image in this chapter’s examples doesn’t
include any shell, or any other executable besides the caddy web server. Nevertheless,
exec can execute /bin/caddy and arrange to print its output. Like rsh, exec connects
to the pod’s first container by default, or to the container named in a -c argument.
Unlike rsh, exec expects the target command name or executable path to be explic‐
itly named:

$ oc get pods
NAME READY STATUS RESTARTS
Caddy-5bf94cc5b6-qfhh2 1/1 Running 0

$ oc rsh caddy-5bf94cc5b6-qfhh2
ERRO[0000] exec failed: container_linux.go:366: starting container process
caused: exec: "/bin/sh": stat /bin/sh: no such file or directory
command terminated with exit code 1

$ oc exec caddy-5bf94cc5b6-qfhh2 -- /bin/caddy --version
v1.11

Debugging an Application in Its Container | 111

oc debug
Like rsh, debug connects you to a terminal running inside a specified container that
must have a shell on its PATH. Unlike rsh or exec, debug starts a new instance run‐
ning a command shell instead of the entry point specified in the container image.
Imagine a container that’s failing to start with its usual server command. Run debug
on the failing container’s deployment or pod to run a new instance and bypass the
failing server in favor of a shell. From the shell you can invoke the failing service by
hand.

You can sometimes resuscitate a pod from a CrashLoopBackOff with debug. Because
debug starts a new instance of the container with an entry point you specify, you can
enter a shell within the container and manually trigger and step through your appli‐
cation’s startup sequence:

$ oc debug deployment/hello
Starting pod/hello-debug ...
Pod IP: 10.128.2.27
If you don't see a command prompt, try pressing enter.

sh-4.2$

In the preceding shell excerpt, we started a new instance of the hello application
from Chapter 4. Instead of starting the application, however, debug has started and
wired your terminal up to a shell inside the new hello-debug container. From here,
you can execute the hello binary by hand and watch it for failures as well as review
the environment, network connectivity, and other application resources from the
application’s containerized point of view.

OpenShift Monitoring
OpenShift monitoring is built atop the open source Prometheus project. It includes
monitoring for the cluster’s resources, such as nodes and their CPU and memory
resources, control plane pods, and platform services. It includes a set of alerts to
notify cluster administrators about exceptional conditions. Dashboards in the Open‐
Shift Web Console display graphs representing capacity and consumption across the
entire cluster; see Figure 9-2.

112 | Chapter 9: Monitoring and Managing Applications on OpenShift

Figure 9-2. Web Console utilization overview

CRC doesn’t activate monitoring by default because it requires considerable addi‐
tional resources beyond CRC’s already sizable minimums. This section is intended to
give an overview of monitoring facilities, but leaves enabling and experimenting with
them mostly as an exercise for the reader.

If you have at least 14 GB of memory available to dedicate to the CRC VM, you can
switch on monitoring by stopping, configuring, and restarting CRC:

$ crc stop
$ crc config set enable-cluster-monitoring true
$ crc start -m 14336 -c 6

Once it’s enabled, monitoring cannot be disabled on a given cluster. Instead, you’ll
need to create a new cluster after setting the enable-cluster-monitoring parameter
back to false.

OpenShift Monitoring | 113

Monitoring in the Web Console Developer Perspective
The Monitoring item in the Developer perspective’s main navigation includes a
ready-made Dashboard of graphs depicting a selected project’s consumption of CPU,
memory, and other compute resources (Figure 9-3).

Figure 9-3. Monitoring a Project in the Developer perspective

Monitoring a Deployment
Within a Topology view of a Project, you can check the same basic consumption
measurements for just a Deployment or DeploymentConfig. Click on a Deployment
in the Topology view to slide its details panel in from the right. The panel’s Monitor‐
ing tab graphs the resources consumed by the deployment or other component
selected in the topology (Figure 9-4).

114 | Chapter 9: Monitoring and Managing Applications on OpenShift

Figure 9-4. Monitoring a Deployment in a Project topology

Deleting Resources, Applications, and Projects
Once you’ve built, extended, examined, and managed the exercises in this book, you
may want to remove their pieces to reclaim cluster capacity or just to be tidy. The
simplest way to do this is to remove the entire project containing those resources.
OpenShift will remove the project and all the resources in it:

$ oc delete project o4d-hello
project.project.openshift.io "o4d-hello" deleted

Sometimes a team or developer is instead granted one project on the cluster, so there
might be more than one application and you may need to delete more selectively.
You’ve already used labels to select a subset of resources tagged with an arbitrary key
and value. Apply the same technique to first get resources as a test, and then to
delete resources matching the label. This time, however, instead of matching labeled
resources of a certain kind, you can use the all identifier to get a list of any resource
with a matching label:

Deleting Resources, Applications, and Projects | 115

$ oc get all --selector app=noted-app

oc will print a list of the matching resources in your current namespace, which is
assumed to be the Noted project you created with the exercises in this book. Once
you’ve validated the list of resources with a matching label, pass the same selector to
the delete subcommand:

$ oc delete all --selector app=noted-app
route.project.openshift.io “noted” deleted
...

Summary
This chapter highlighted commands and Web Console controls for managing, moni‐
toring, and troubleshooting applications. It also showed how resource consumption
and activity are graphed at the cluster, project, and deployment levels in the Open‐
Shift Web Console. You have the basic skills you need to manage your applications on
OpenShift, and also to look for clues when things go wrong.

In Chapter 10, you’ll learn more about automating some of the rote labor of deploy‐
ing and managing applications with OpenShift Templates and Kubernetes Operators.
You’ve already used Operators to manage the database for your Noted application.
Operators automatically manage services you depend on, and you can create Opera‐
tors to package your application as a managed deployment for your customers.

116 | Chapter 9: Monitoring and Managing Applications on OpenShift

CHAPTER 10

Templates, Operators, and
OpenShift Automation

You’ve used templates and Operators throughout this book. Both automate repetitive
tasks. This chapter provides more detail about these two mechanisms and relates
them to the principle of automation in OpenShift. Triggering builds and deployments
when source code changes, restarting failed pods, and an Operator upgrading your
application’s database server are all ways of delegating to software some of the toil of
operating software.

An OpenShift template automates the creation of a set of resources so that it can
describe, for example, an application’s components and then be repeatedly processed
to deploy that application. An Operator also deploys an application and its resources,
but an Operator continues to watch and govern those resources over their entire life
cycle. The most advanced Operators turn their applications into managed services.
You took steps in an administrator role to set up Operators for Pipelines and other
services. But consider the process after that was done: back in your developer role,
you selected and instantiated services in your Project without much concern for the
details of their deployment and administration. The Operator created the resources,
started the services, and kept them running so that you could use them in your
application.

Templates
A template is a list of objects and the named parameters of their configuration. Each
time OpenShift processes a template, it inserts values for the template’s parameters
from command-line arguments or Web Console forms. Special values can signal the
template processor to populate those parameters with random strings or other input

117

it generates. Template metadata can inform the processor of criteria for validating
proposed values.

A template can define a set of labels to apply to every object in the template. For
example, services, build configurations, and deployments can be defined in templates
and then repeatedly created even in a shared Project namespace by processing the
template with a set of appropriate variables.

Templates in the OpenShift Web Console
You used a template in Chapter 4’s Hello World application, and again in Chapter 6 to
create the ngrok proxy that relays GitHub webhooks to your CRC cluster. The Go
language builder you used in Chapter 4 is defined as a template with an annotation
that identifies it as a “builder” and a parameter specifying a Git repository with the
source to be built. To check out other templates, click Add from the Developer per‐
spective. When presented with the Developer Catalog, check the Template box to fil‐
ter the listing to just those catalog items defined in a template, as shown in
Figure 10-1.

Figure 10-1. Filtering for Templates in the Web Console Developer Catalog

118 | Chapter 10: Templates, Operators, and OpenShift Automation

Inspecting templates

You can also list a cluster’s templates with the API get verb, like any other cluster
resource. OpenShift Templates included with a particular cluster install are in the
openshift Project namespace, so direct oc get to look there with the -n openshift
argument:

$ oc get templates -n openshift
NAME DESCRIPTION
[...]
Nginx-example An example Nginx HTTP server and a reverse...
Nodejs-mongodb-example An example Node.js application with a Mong...
Openjdk-web-basic-s2i An example Java application using OpenJDK....
[...]

Processing templates with oc process

You can list and create the objects from a template with the command-line oc tool. If
a template has been uploaded to your cluster, you can refer to it by its namespace and
name. oc can also process a template in a YAML file that has not been added to the
cluster by specifying the file path with oc process -f file.yaml.

The oc process subcommand processes a template, combining it with provided
parameters to produce a YAML manifest for the template objects on the standard
output. You can run process and check the output. Once it’s correct, run process
again, piping the output to oc create to actually create the objects.

In the following shell excerpts, the nginx-example template’s objects are examined,
then piped to oc create:

$ oc process -n openshift nginx-example
{
 "kind": "List",
 "apiVersion": "v1",
 "metadata": {},
 "items": [
 {
 "apiVersion": "v1",
 "kind": "Service",
 "metadata": {
 "annotations": {
 "description": "Exposes and load balances the application pods"
 },
 "labels": {
 "template": "nginx-example"
 },
 "name": "nginx-example"
 },
 "spec": {
[...]

Templates | 119

oc process will list all the template’s configurable parameters, in case you need to
adjust any of the defaults after inspecting the output:

$ oc process --parameters -n openshift nginx-example
NAME The name assigned to all of the frontend
nginx-example objects defined in this template.

NAMESPACE The OpenShift Namespace where the ImageStream
openshift Resides.

NGINX_VERSION Version of NGINX image to be used (1.16-el8 by
1.16-el8 default).

MEMORY_LIMIT Maximum amount of memory the container can use.
512Mi

You can set these parameters on the oc process command line with successive -p or
--param arguments giving the parameter and value to set. In the following example,
the template’s default NAME parameter is changed from nginx-example to nginx-two.

Notice the trailing dash (“-”) in the invocation of oc create -f -. It indicates that
oc should read from the standard input:

$ oc process -n openshift nginx-example -p NAME=nginx-two | oc create -f -
service/nginx-two created
route.route.openshift.io/nginx-two created
imagestream.image.openshift.io/nginx-two created
buildconfig.build.openshift.io/nginx-two created
deploymentconfig.apps.openshift.io/nginx-two created

After piping the template objects to oc create, you’ll have a simple nginx web server
running in your project. You can check with oc or see the new nginx deployment in
the Web Console Developer Topology view:

$ oc get dc nginx-two
NAME REVISION DESIRED CURRENT TRIGGERED BY
Nginx-two 1 1 1 config,image(nginx-two:latest)

Creating Your Own Templates
You can define new templates to control the creation and repeated deployment of
your own applications. The template defines the objects it creates along with some
metadata to guide the creation of those objects.

The following is an example of a template object definition. As you can see, templates
are defined in YAML manifests like other resources:

apiVersion: v1
kind: Template
metadata:
 name: redis-template

120 | Chapter 10: Templates, Operators, and OpenShift Automation

 annotations:
 description: "Description"
 iconClass: "icon-redis"
 tags: "database,nosql"
objects:
 - apiVersion: v1
 kind: Pod
 metadata:
 name: redis-master
 spec:
 containers:
 - env:
 - name: REDIS_PASSWORD
 value: ${REDIS_PASSWORD}
 image: dockerfile/redis
 name: master
 ports:
 - containerPort: 6379
 protocol: TCP
parameters:
- description: Password used for Redis authentication
 from: '[A-Z0-9]{8}'
 generate: expression
 name: REDIS_PASSWORD
labels:
 redis: master

The all-caps keywords are the parameters for properties that should vary each time
the objects in the template are created. Notice that this template designates the
REDIS_PASSWORD as a generated parameter and sets the range of characters from
which it should be generated. For more on creating templates, see the OpenShift
documentation.

Operators
An Operator knows how to deploy its application’s resources. But unlike a template,
an Operator keeps running and it knows how to keep its application running. Opera‐
tors manage applications with persistent state, or with their own notion of clustering,
where failure recovery or scaling requires more than just restarting interchangeable
replicas. Operator authors create custom controller code that understands a specific
application’s internal state and can, for instance, issue credentials, reconnect persis‐
tent storage, or arrange a node hierarchy as in a database cluster where some mem‐
bers are write leaders and others are followers.

Operators adopt the key Kubernetes concept, the reconcile loop, watching
application-specific custom resources to continuously shepherd them toward a
desired state. They adopt Kubernetes API conventions. They can build atop and use

Operators | 121

https://oreil.ly/IAppK
https://oreil.ly/IAppK

native Kubernetes resources. They can be addressed and manipulated with the usual
tools like any other Kubernetes object.

Operator Subscriptions and the Operator Lifecycle Manager
You dealt with Operators from beginning to end when you installed the Pipelines
Operator in Chapter 5, and to provide a database for your application in Chapter 7.
As a cluster admin, you used the Administrator perspective’s OperatorHub to add a
subscription for each Operator.

A subscription declares that an Operator should be installed on the cluster, and sets
parameters for how the Operator should be updated and in which Projects or name‐
spaces it should be available. As an Operator manages installation and upgrades for
its application, a cluster component called the Operator Lifecycle Manager (OLM)
acts as an Operator for Operators, managing the installation and life cycle of Opera‐
tors on a cluster in accordance with the cluster’s subscriptions. Details of OLM and
Operator subscriptions are beyond the scope of this book, but you can learn more
about Operator internals, OLM subscriptions, and how to build Operators at the
OpenShift Operators page and in Kubernetes Operators by Jason Dobies and Joshua
Wood (O’Reilly).

Operators from the Developer Perspective
In many production OpenShift Deployments, developers will use Operator-backed
services like any other catalog item, without making cluster-wide decisions about
which Operators are installed. Administrators subscribe to an appropriate set of
Operators. Developers consume the applications those Operators manage from the
Developer Catalog.

Operators shepherd foundation services with custom logic and make adding a data‐
base, a message queue, or other common components similar to using a managed
cloud service. The Operator pattern lets you construct Kubernetes native applications
that not only run on Kubernetes platforms like OpenShift, but also make use of plat‐
form resources, obey platform conventions, and apply platform automation
principles.

Summary
This chapter investigated Operators and templates to illustrate the principle of auto‐
mation in OpenShift. In earlier chapters, you learned how to deploy and incremen‐
tally improve an application on the platform. You used OpenShift Pipelines to
automate your application’s release process, watching OpenShift build and run your
app with cluster horsepower each time you committed changes to its source code.
You used OpenShift features like the Developer Catalog and Operators to quickly

122 | Chapter 10: Templates, Operators, and OpenShift Automation

https://learning.oreilly.com/library/view/kubernetes-operators/9781492048039/

deploy managed services. You’ve practiced daily application care and grooming on
OpenShift, and have an idea of where to look when things go wrong.

When things go right, you can focus on improving your applications. OpenShift
builds the latest release, rolls it out, scales it, and keeps it running until your next
killer feature or bug fix triggers the cycle again.

Summary | 123

Index

A
Administrator perspective, Web Console, 38, 40
administrators, Web Console, 21, 22, 38
application.properties source file, 79
applications

components in Project, 9
debugging, 110-112
deleting, 115
deploying (see deployment)
developing from source code (Noted), 45-47
Go application, 30, 32
monitoring and managing, 107-116
Noted, 45-55
versus Projects, 8
scaling of, 89-98
topology, 30-31, 46

authentication, logging in to OpenShift, 21
automatic pipeline runs using Tekton triggers,

56-60
deploying ngrok template, 58-59
forward proxy workaround, 57
GitHub webhook configuration, 59-60
pipeline triggers, 56-56

automatic scaling (autoscaling), 93-98
HPA, 93, 96-97
updating quarkus-backend requests and

limits, 94-96
verifying autoscaling, 97

B
backend component, Noted app

deleting running pod to test data persis‐
tence, 86-87

deployment for, 48-49

frontend connection to, 53-54
Git branch, 67
pgsql branch, inspecting, 79
REST endpoint/posts, 45
service, 90-93
updating requests and limits, 94-96

Build, as unique to OpenShift, 7
buildah, 46
BuildConfig, 11

opening, 34
to package, 9
starting a build from existing (command

line), 36
as unique to OpenShift, 7

buildconfig resource, 51
Builder Image, 29-30

C
canary deployment strategy, 102
CatalogSource, 71
CI/CD (continuous integration and continuous

development), 5
CLI (command-line interface—oc), 12

accessing resources, 107-109
CRC life cycle tasks, 20
creating new Project, 29
deleting a pod, 87
downloading, 25
exposing secret values, 84
Go application, 30
inspecting backend for Noted resources,

50-53
listing pipeline runs, 55
logging in to OpenShift, 25

125

Pipelines Operator installation, 39
Pipelines Operator resources list, 40
routes list for a Project, 32
scaling a deployment, 87
scaling an application (adding pods), 90
services and selectors, 93
starting a build from existing BuildConfig,

36
Step in Pipelines, 43
using pipelines, 41

Cloud Native Computing Foundation (see
CNCF)

Cluster Manager, installing CRC VM, 17
clusters, ix

CRC, 15-20, 57-60, 112-116
monitoring resources, 5-6
oc command-line tool, 12
in pods, 10
running OpenShift, 15-25
Service abstraction to connect to pods, 11

CNCF (Cloud Native Computing Foundation),
2

CodeReady Containers (see CRC)
command, in PipelineRun, 43
commit command, Git, 28
container orchestrators, ix, 7
container registry, 1
containers, ix, 1

(see also CRC)
Build, 7
BuildConfig, 7, 9, 11, 34, 36
in pods, 10

CPU resource allocation, CRC, 16
CrashLoopBackOff state, 77, 112
CRC (CodeReady Containers), 15-20

configuring, 19
documentation for running on operating

systems, 18
forward proxy workaround for CRC isola‐

tion, 57-60
installing on Windows, 17-19
monitoring OpenShift, 112-116
requirements, 16-17
starting, 19

crc cleanup command, 20
crc command, 18
crc console --credentials command, 15, 20,

21-22
crc help command, 20

crc start command, 20, 25
crc status command, 20
crc stop command, 20
custom deployment strategy, 103
custom resources, quarkus-backend deploy‐

ment, 52

D
database for data persistence, 67-87

configuring quarkus-backend pgsql branch,
77

deleting running quarkus-backend pod,
86-87

inspecting quarkus-backend pgsql branch,
79

quarkus-backend component Git branch, 67
Service Binding Operator (see SBO)
templates, 68

debugging application and its container,
110-112

deleting resources, applications, projects, 115
deployment, application, 12, 27-36

adding and deploying new feature, 32-36
monitoring in Web Console, 114
multitier application (Noted), 47-55

backend component, 48-53
frontend component, 53-54

production (see production deployment and
scaling)

status indicators, 31
strategies for, 102-104

Developer perspective, Web Console, 23-24
building and deploying application, 28
monitoring and managing applications, 114
Operators, 122
using pipelines, 41

DevOps, ix
distributed computing, ix
Dobies, Jason

Kubernetes Operators (O’Reilly), 122
Docker Hub, 2
documentation, 12, 18

E
environment variables, SBO to automatically

inject, 69-73, 82-85
EventListener pod, 56
events and logs, 109

126 | Index

F
forward proxy workaround, pipeline runs using

Tekton triggers, 57
frontend component, Noted app, 45, 53-54

G
Git and GitHub

commit command, 28
deploying application, 28
quarkus-backend repo for Noted, 47-49, 67
web editor, 32
webhook configuration, pipeline runs using

Tekton triggers, 59-60
git tool, 28
GitOps, ix
Go application, 30, 32
group, 8

H
hardware requirements, CRC, 16
health checks, 98-102

configuring, 100-102
health-checking probes, 99-100

HPA (Horizontal Pod Autoscaler), 93, 96-97

I
imagestream resource, 51
Ingress resource, 11
Introducing Istio Service Mesh for Microservi‐

ces (O’Reilly), 5
Istio service mesh, 5

J
Java Quarkus framework, 27, 45

(see also quarkus-backend component)

K
kind configuration, ServiceBinding, 80
Knative Cookbook: Building Effective Server‐

less Applications with Kubernetes and
OpenShift (O’Reilly), 103

Knative project, 103
kubeadmin account, 38
kubectl operations, 7, 12
Kubernetes, ix, 2

Ingress resource, 11
namespace, 7-9

OpenShift contribution to, 3-6
and Operators, 121
pods in, 10-11
REST API and OpenShift, 12
sharing Operators with community, 38
using on OpenShift, 7

Kubernetes Operators (O’Reilly), 122

L
labels to filter listed resources, 109
Linux, 1

comparison to Kubernetes/OpenShift rela‐
tionship, 1

CRC VM system requirements, 16
liveness health-checking probe, 99
load balancing of pods, 90-93
logging in to OpenShift, 21-25

command-line interface, 25
to install Pipelines Operator, 38
Web Console, 21-24

logs and events, 109

M
macOS, CRC VM system requirements, 16
manual scaling, 89-90
mappings configuration, ServiceBinding, 81
memory allocation, CRC VM, 20
minimum hardware requirements, CRC, 16
monitoring and managing applications,

107-116
debugging application and its container,

110-112
deleting resources, applications, projects,

115
listing and detailing resources, 107-109
OpenShift monitoring, 112-116

N
namespace, Kubernetes, 7-9
networking, 5, 11
ngrok template, deploying, 58-59
Node.js, 45
nodejs-frontend component, Noted app, 53
nodes, ix
Noted cloud-ready notes application, 45-55

creating new Project, 47-48
deleting running pod to test data persis‐

tence, 86-87

Index | 127

deploying backend component, 48-49
deploying frontend component, 53-54
forking backend repository, 47
Git branch, 67
inspecting backend resources, 50-53
inspecting pgsql branch, 79
running the application, 55
service, 90-93
topology, 46
updating requests and limits, 94-96

O
oc command-line utility, 12

(see also CLI)
accessing resources, 107-109
downloading, 25
oc new-project, 29

oc create command, 119-120
oc debug subcommand, 112
oc describe command, 52, 109
oc exec subcommand, 111
oc get pods command, 108
oc get routes command, 32
oc get service command, 93
oc new-app command, 30
oc new-project command, 29
oc process command, 119-120
oc rsh subcommand, 110
oc version command, 25
OCI (Open Container Initiative), 1
OKD (OpenShift Kubernetes Distribution), 1
OLM (Operator Lifecycle Manager), 71, 122
Open Container Initiative (see OCI)
OpenShift, ix, 1

application components, 9-11
automation with templates and operators,

117-123
CI/CD pipelines, 5
command-line utility (see CLI)
concepts, 7-12
contribution to Kubernetes, 3-6
curated software catalogs, 4
data persistence (see database for data per‐

sistence)
deploying applications (see deployment)
developing from source code (Noted), 45-47
monitoring and managing applications,

107-116
Operators, 121-122

Pipeline (see pipelines)
Project (see Projects)
relationship to Kubernetes, 7
routes, 5, 11, 30
running on VM, 15-25
scaling applications, 11, 89-98
Services, 5
templates, 117-121
versions, 15, 25

OpenShift API, 12
OpenShift Kubernetes Distribution (see OKD)
openshift Project namespace, templates in, 118
OpenShift Serverless, 103
operating system requirements, CRC, 16
Operator Lifecycle Manager (see OLM)
OperatorHub, 4, 38
Operators, 38-39, 121-122

from Developer perspective, 122
installing, 38-39
pipelines, 38-39, 40, 109
Service Binding Operator (see SBO)
sharing with Kubernetes community, 38
subscriptions, 122
VPA, 96
Web Console, 122

OperatorSource, adding, 70-71

P
PaaS (platform as a service), OpenShift as, 1
pgsql quarkus-backend branch, configuring, 67,

77
PipelineRun, 42-43
pipelines, 37-43

automatic runs using Tekton triggers, 56-60
CI/CD, 5
listing runs, 55
for Noted app, 46
resources, 40-43
Tasks in, 42-43, 53
Tekton, 37

Pipelines Operator, 38-39, 40, 109
pods

CrashLoopBackOff state, 77, 112
deleting running pod to test data persis‐

tence, 86-87
deployment’s role in managing, 12
EventListener pod, 56
load balancing of, 90-93
replicas, 10, 89

128 | Index

scaling an application, 10, 93, 96-98
Service abstraction to connect to, 11
Tasks within, 42
verifying autoscaling of, 97
VPA, 96

Posta, Christian
Introducing Istio Service Mesh for Micro‐

services (O’Reilly), 5
Postgres operator for SBO, 70-79

adding OperatorSource, 70-71
deploying PostgreSQL database, 74-75
installing PostgreSQL Database operator,

72-74
verifying operator installation, 74

PostgreSQL database, 67, 72-75
production deployment and scaling, 89-105

automatic scaling, 93-98
health checks, 98-102
rollback of deployment, 104
scaling applications, 89-98
strategies, 102-104

Projects, 7-9
configuring new, 29
creating new, 28-30, 47-48
purpose of, 8
removing, 115
routes list, 32

Prometheus project, 5-6, 93, 112
pull requests, Git, 28
push command, Git, 28

Q
quarkus-backend component

custom resources, 52
deleting running pod to test data persis‐

tence, 86-87
deployment for Noted app, 48-49
frontend connection to, 53-54
Git branch, 47-49, 67
pgsql branch, 67, 77
REST endpoint/posts, 45
reversed text bug fix, 62-64
service, 90-93
updating requests and limits, 94

Quay, 2

R
RBAC (role-based access control), 8
React library, 45

readiness health-checking probe, 99
reconcile loop, 2, 121
recreate deployment strategy, 102
Red Hat, 1
Red Hat OpenShift Cluster Manager, 17
Red Hat OpenShift Pipelines Operator, 39, 74
Red Hat Partner Connect portal, 38
replicas, pod, 10, 89
resources

applying limits, 94-96
buildconfig, 51
custom, 52
deleting, 115
inspecting backend for Noted app, 50-53
listing and detailing, 107-109
monitoring cluster, 5-6
pipelines, 40-43
for running CRC VM, 20

REST API, OpenShift and Kubernetes, 12
reversed text quarkus-backend bug fix, 62-64
role-based access control (see RBAC)
rollback of deployment, 104
rolling deployment strategy, 102
routes, 5, 11, 30
running OpenShift on VM, 9, 15-25

CRC VM setup, 15-20
logging in to OpenShift, 21-25

S
Sampath, Kamesh

Knative Cookbook: Building Effective Serv‐
erless Applications with Kubernetes and
OpenShift (O’Reilly), 103

SBO (Service Binding Operator), 69-73
configuring ServiceBinding, 80-81
inspecting ServiceBinding injection, 82-85
installing, 69
Postgres operator, 70-79

adding DB operators OperatorSource,
70-71

deploying PostgreSQL database, 74-75
installing PostgreSQL Database operator,

72-74
verifying operator installation, 74

testing ServiceBinding, 81-82
scaling of application, 89-98

autoscaling, 93-98
manual scaling, 89-90
pods’ role in, 10

Index | 129

scaling a deployment in CLI, 87
service tangent, 90-93

script, in PipelineRun, 43
secrets, SBO environmental variables in, 83-85
Serverless model, 103
Service Binding Operator (see SBO)
services

configuration, ServiceBinding, 80
connecting to pods, 11

Site Reliability Engineering (see SRE)
SmallRye Health, 98
software catalogs, Web Console, 4
source code, developing and deploying app

from, 45-65
automatic pipeline runs using Tekton trig‐

gers, 56-60
Noted cloud-ready notes application, 45-55
reversed text quarkus-backend bug fix,

62-64
source secret, 49
spec configuration, ServiceBinding, 80
spec, in command-line interface, 52
SRE (Site Reliability Engineering), ix, 122
startup health-checking probe, 100
Steps, in Task's pod, 42-43
strategies, production deployment, 102-104

canary, 102
configuring of, 104
custom, 103
recreate, 102
rolling, 102

Sutter, Burr
Introducing Istio Service Mesh for Micro‐

services (O’Reilly), 5
Knative Cookbook: Building Effective Serv‐

erless Applications with Kubernetes and
OpenShift (O’Reilly), 103

T
Tasks in OpenShift Pipelines, 42-43, 53
Tekton, 37, 46, 56-60
templates

creating your own, 120
database, 68
deploying ngrok template, 58-59
inspecting, 119

processing with oc process, 119-120
in Web Console, 118-121

tkn command-line utility, 41
topology

building and deploying application, 30-31
in Noted app development, 46
Project, 8
in Web Console, 3

triggers, Tekton pipeline, 56-60
troubleshooting OpenShift (see monitoring and

managing applications)

U
user, 8, 21
user interface (see CLI; Web Console)

V
verifying autoscaling, 97
Visual Studio Code, 25, 41
VPA (Vertical Pod Autoscaler Operator), 96

W
Web Console, 3-5, 12

Administrator perspective, 38, 40
administrators, 21, 22, 38
Developer perspective, 23-24, 28, 41, 114,

122
logging in to OpenShift, 21-24
monitoring cluster resources, 5-6
Operators, 40, 122
pipelines, 40
templates, 118-121

webhooks
BuildConfig response capability, 11
GitHub configuration for ngrok forward

proxy URL, 59-60
Windows

CRC VM system requirements, 16
installing CRC, 17-19

Wood, Joshua
Kubernetes Operators (O’Reilly), 122

Y
YAML, 71, 80, 119

130 | Index

About the Authors
Joshua Wood is a principal developer advocate at Red Hat. Joshua was formerly
responsible for documentation at CoreOS and coauthored Kubernetes Operators
(O’Reilly). Wood has worked in roles from sysadmin to CTO to build utility comput‐
ing with open source software. He likes fast cars, slow boats, and writing short
autobiographies.

Brian Tannous is a principal developer advocate at Red Hat. He is a founder at GT
Media where he builds mobile applications. Throughout his career, Brian has held
development, marketing, and advocacy roles in distributed computing, mobile, and
open source technology.

Colophon
The bird on the cover of OpenShift for Developers is a black-headed caique (Pionites
melanocephalus), also known as the black-headed or black-capped parrot. They
inhabit mostly humid forest areas in the Amazon (north of the Amazon River), Brazil
(to the west of the Ucayali River), northern Bolivia, Colombia, Ecuador, French Gui‐
ana, Guyana, Peru, Suriname, and Venezuela.

The black-headed caique has a short tail, black crown, yellow-orangeish head, white
belly, yellow thighs, and green wings, back, and upper tail. Males and females have
identical plumage; the only way to distinguish them is through surgical sexing or
DNA sexing. Wild caiques often have a brownish stained breast; their captive cousins
have white there instead. They are popular among parrot breeders and keepers.

Black-headed caiques are often found in pairs or small flocks of up to 10 to 30 birds.
They mostly eat flowers, pulp, seeds, and possibly insects. The birds use their beaks
more than other parrot species and tend to bite. They mimic sounds such as alarms,
smoke detectors, microwave beeps, laughs, and whistles. Caiques also combine
sounds in their vocabulary to form new sounds.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The color illustration is by Karen Montgomery, based on a black and white engraving
from Heck’s Nature and Science. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

https://learning.oreilly.com/library/view/kubernetes-operators/9781492048039/

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com

	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	What You Will Learn
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. A Kubernetes Application Platform
	Linux Containers
	Kubernetes
	What OpenShift Adds
	Web Console
	Curated Software Catalogs: An OpenShift App Store
	CI/CD: Pipelines
	Networking and Service Mesh
	Integrated Prometheus Metrics, Monitoring, and Alerts

	Summary

	Chapter 2. OpenShift Concepts
	Projects Organize Applications and Teams
	Projects and Applications

	Application Components in OpenShift
	Pods
	Services
	OpenShift Routes

	Building Container Images
	Deploying Applications
	Interacting with OpenShift
	oc
	OpenShift Web Console

	Summary

	Chapter 3. OpenShift Lab
	CodeReady Containers
	CRC Requirements
	Installing CRC on Windows
	CRC Always Wants More

	Logging In to OpenShift
	Log In to the Web Console
	Log In on the Command Line

	Summary

	Chapter 4. Deploying an Application on OpenShift
	A Simple Sample Application
	Git and GitHub
	Building and Deploying the Application on OpenShift
	Adding and Deploying a New Feature

	Summary

	Chapter 5. OpenShift Pipelines
	Tekton
	OpenShift Pipelines Operator
	Installing the Pipelines Operator
	Pipelines in the Web Console
	Using Pipelines

	OpenShift Pipelines Resources
	Command
	Script

	Summary

	Chapter 6. Developing and Deploying from Source Code
	Noted: A Cloud-Ready Notes Application
	Application Topology
	Fork the Backend Repository
	Create a New Project for the Noted App
	Deploy the Backend Component
	Inspect the Backend Resources
	Deploy the Frontend Component
	A Running Noted Application

	Automatic Pipeline Runs Using Tekton Triggers
	Pipeline Triggers
	The Forward Proxy Workaround
	Deploy the ngrok Template
	GitHub Webhook Configuration

	The Reversed Text Quarkus-Backend Bug Fix
	Summary

	Chapter 7. Evolving the Application: Data Persistence
	Database Without Delay
	Database Templates
	Service Binding Operator
	The Postgres Operator Designed for Service Binding
	Add the Sample DB Operators OperatorSource
	Install the PostgreSQL Database Operator
	Verify Operator Installation
	Deploy a PostgreSQL Database

	Configure the pgsql quarkus-backend Branch
	Inspect the quarkus-backend pgsql Branch

	Service Binding Operator Usage
	Configure a ServiceBinding
	Test the ServiceBinding
	Inspect the ServiceBinding Injection

	Persistence in Action
	Summary

	Chapter 8. Production Deployment and Scaling
	Application Scaling
	Manual Scaling
	The Service Abstraction
	Automatic Scaling

	Health Checks
	Health-Checking Probes
	Configure the Health Checks in OpenShift

	Production Deployment Strategies
	Available Deployment Strategies on OpenShift
	Configuring a Deployment Strategy
	Deployment Rollbacks

	Summary

	Chapter 9. Monitoring and Managing Applications on OpenShift
	Listing and Detailing Resources
	Using Labels to Filter Listed Resources
	Describing Resources

	Events and Logs
	Debugging an Application in Its Container
	oc rsh
	oc exec
	oc debug

	OpenShift Monitoring
	Monitoring in the Web Console Developer Perspective

	Deleting Resources, Applications, and Projects
	Summary

	Chapter 10. Templates, Operators, and OpenShift Automation
	Templates
	Templates in the OpenShift Web Console
	Creating Your Own Templates

	Operators
	Operator Subscriptions and the Operator Lifecycle Manager
	Operators from the Developer Perspective

	Summary

	Index
	About the Authors
	Colophon

