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About this edition

This edition was published in April 2021.

I’ve gone over every chapter and made sure everything is in line with the latest patterns and trends in the cloud native ecosystem. I’ve also updated every example against Kubernetes 1.20.

As well as being up-to-date, this edition includes the following new chapters and content:

•	A new Namespaces chapter

•	A new Ingress chapter

•	A new RBAC chapter

•	A new API chapter

•	Added Secrets to the ConfigMaps chapter

•	Major refresh of the Pods and Deployments chapters






I’m particularly excited about the new Ingress and _Kubernetes API chapters.




I’ve had a lot of requests over the years for a chapter on Ingress. However, I kept holding off until it graduated to stable. Well, now that it’s finally stable, I’ve included an entire Ingress chapter.




I also get a lot of people telling me they’re confused by the Kubernetes API. In fact, a lot of readers are confused by APIs in general. So, I’m super excited to include a full chapter on the Kubernetes API. In fact, I spent days and days writing and re-writing this chapter so that readers with zero API experience could read it and walk away confident. I think you’ll love it.




I’ve also re-drawn every diagram in the book. I even learned how to use Adobe XD so I could create beautiful diagrams.




Enjoy the book!






Nigel







c) 2021 Nigel Poulton

All typos are mine. Or should that be typo’s… ;-
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0: Preface


Kubernetes is developing fast. With this in mind, I’m fully committed to updating this book every year. And when I say “update”, I mean real updates – every word and every concept will be reviewed, and every example will be tested and updated against the latest version of Kubernetes. Make no mistake, I’m 100% committed to making this the best Kubernetes book in the world.


If an update every year seems like a lot… welcome to the new normal.


We no longer live in a world where a 2-year-old book on Kubernetes is valuable. Don’t get me wrong, as an author, I’d love to write a book that was valuable for 5 years. It’s just not the world we live in anymore. Again, welcome to the new normal.


Paperbacks, hardbacks, eBooks, audio, and translations


At the time of writing, there’s an English language paperback in every Amazon market that supports the Amazon self-publishing platform (KDP).


The following additional paperbacks are also available (or will be very shortly):



  	Indian sub-continent version via Shroff Publishers and Amazon.in

  	Simplified Chinese via Posts & Telecom Press Co. LTD in China and Amazon.cn

  	Large-print paperback for anyone who finds it easier to read larger print




eBook copies are available from leanpub.com, Amazon Kindle, and several other subscription-based platforms.


The following editions are currently being created and will be released as soon as possible via as many markets as possible.



  	Spanish translation

  	Russian translation

  	English hardback




There’s also a high quality audio version of the March 2019 edition on Audible. I did a bit of tweaking to make it easier to listen to, and feedback has been all positive.


Finally, there’s a Klingon edition of the book, and a Borg edition. Yes, you read that right. 


The Klingon edition has a special front-cover with the book title and YAML extract in Klingon font. The Borg edition is the same, just in Borg font. For both editions, the actual content of the book is in English. Think of them as collector’s editions for Star Trek fans.


The book’s GitHub repo


The book has a GitHub repo with all the YAML code and examples used throughout the book.



https://github.com/nigelpoulton/TheK8sBook







You don’t have to, but It’s recommended to clone the repo locally (that’s jargon for copying it to your computer). You’ll need to install git and then run the following command.



$ git clone https://github.com/nigelpoulton/TheK8sBook.git







This creates a new folder in your current working directory called TheK8sBook with all the files you need to follow the examples.


Feedback and contacting me


If you like the book, I’d be stoked if you gave it a review and a few stars on Amazon. No pressure though, we’re all busy.


You can reach me on any of the following:



  	twitter.com/nigelpoulton

  	nigelpoulton.com

  	linkedin.com/in/nigelpoulton

  	youtube.com/nigelpoulton




If you want to submit a content suggestion, or a potential fix, drop me an email at tkb@nigelpoulton.com. I’ll do my best to respond.


Enjoy the book!








1: Kubernetes primer


This chapter is split into two main sections.



  	Kubernetes background – where it came from etc.

  	Kubernetes as the Operating System of the cloud




Kubernetes background


Kubernetes is an application orchestrator. For the most part, it orchestrates containerized cloud-native microservices apps. How about that for a sentence full of buzzwords!


You’ll come across terms like this a lot, so let’s take a minute to explain what each of them means. 


What is an orchestrator


An orchestrator is a system that deploys and manages applications. It can deploy your applications and dynamically respond to changes. For example, Kubernetes can:



  	Deploy your application

  	Scale it up and down dynamically based on demand

  	Self-heal it when things break

  	Perform zero-downtime rolling updates and rollbacks

  	Lots more…




And the best part about Kubernetes… it does all of this without you having to supervise or get involved. Obviously, you have to set things up in the first place, but once you’ve done that, you sit back and let Kubernetes work its magic.


What is a containerised app


A containerized application is an app that runs in a container. 


Before we had containers, applications ran on physical servers or in virtual machines. Containers are just the next iteration of how we package and run apps. As such, they’re faster, more lightweight, and more suited to modern business requirements than servers and virtual machines.


Think of it this way.



  	Apps ran on physical servers in the open-systems era (1980s and 1990s)

  	Apps ran in virtual machines in the virtualisation era (2000s and into the 2010s)

  	Apps run in containers in the cloud-native era (now)




While Kubernetes can orchestrate other workloads, such as virtual machines and serverless functions, it’s most commonly used to orchestrate containerised apps.


What is a cloud-native app


A cloud-native application is one that’s designed to meet cloud-like demands of auto-scaling, self-healing, rolling updates, rollbacks and more.


It’s important to be clear that cloud-native apps are not applications that will only run in the public cloud. Yes, they absolutely can run on public clouds, but they can also run anywhere that you have Kubernetes, even your on-premises datacenter.


So, cloud-native is about the way applications behave and react to events.


What is a microservices app


A microservices app is built from lots of independent small specialised parts that work together to form a meaningful application. For example, you might have an e-commerce app that comprises all of the following small specialised components:



  	Web front-end

  	Catalog service

  	Shopping cart

  	Authentication service

  	Logging service

  	Persistent store




Each of these individual services is called a microservice. Typically, each is coded and owned by a different team. Each can have its own release cycle and can be scaled independently. For example, you can patch and scale the logging microservice without affecting any of the others.


Building applications this way is vital for cloud-native features.


For the most part, each microservice runs as a container. Assuming this e-commerce app with the 6 microservices, there’d be one or more web front-end containers, one or more catalog containers, one or more shopping cart containers etc.


With all of this in mind, let’s re-phrase that definition that was full of buzzwords…


Kubernetes deploys and manages (orchestrates) applications that are packaged and run as containers (containerized) and that are built in ways (cloud-native microservices) that allow them to scale, self-heal, and be updated in-line with modern cloud-like requirements.


We’ll talk about these concepts a lot throughout the book, but for now, this should help you understand some of the main industry buzzwords.


Where did Kubernetes come from


Let’s start at the beginning…


Amazon Web Services (AWS) changed the world when it brought us modern cloud computing. Since then, everyone else has been playing catch-up.


One of the companies trying to catch-up was Google. Google has its own very good cloud, and needs a way to abstract the value of AWS, and make it easier for potential customers to get off AWS and onto their cloud.


Google also has a lot of experience working with containers at scale. For example, huge Google applications, such as Search and Gmail, have been running at extreme scale on containers for a lot of years – since way before Docker brought us easy-to-use containers. To orchestrate and manage these containerised apps, Google had a couple of in-house proprietary systems called Borg and Omega. 


Well, Google took the lessons learned from these in-house systems, and created a new platform called Kubernetes, and donated it to the newly formed Cloud Native Computing Foundation (CNCF) in 2014 as an open-source project. 
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Kubernetes enables two things Google and the rest of the industry needs.



  	It abstracts underlying infrastructure such as AWS

  	It makes it easy to move applications on and off clouds




Since its introduction in 2014, Kubernetes has become the most important cloud-native technology on the planet.


Like many of the modern cloud-native projects, it’s written in Go (Golang), it’s built in the open on GitHub (at kubernetes/kubernetes), it’s actively discussed on the IRC channels, you can follow it on Twitter (@kubernetesio), and slack.k8s.io is a pretty good slack channel. There are also regular meetups and conferences all over the planet.


Kubernetes and Docker


Kubernetes and Docker are complementary technologies.


Docker has tools that build and package applications as container images. It can also run containers. Kubernetes can’t do either of those things. Instead, Kubernetes operates at a higher level providing orchestration services such as self-healing, scaling and updates. 


It’s common practice to use Docker for build-time tasks such as packaging apps as containers, but then use a combination of Kubernetes and Docker to run them. In this model, Kubernetes performs high-level orchestration tasks such as self-healing, scaling and rolling updates, but it needs a tool like Docker to perform low-level tasks such as starting and stopping containers.


Assume you have a Kubernetes cluster with 10 nodes to run your production applications. Behind the scenes, each cluster node is running Docker as its container runtime. This means Docker is the low-level technology that starts and stops the containerised applications. Kubernetes is the higher-level technology that looks after the bigger picture, such as deciding which nodes to run containers on, deciding when to scale up or down, and executing updates.


Figure 1.2 shows a simple Kubernetes cluster with some nodes using Docker as the container runtime.
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As can be seen, Docker isn’t the only container runtime Kubernetes supports. In fact, Kubernetes has a couple of features that abstract the container runtime and make it interchangeable:



  	The Container Runtime Interface (CRI) is an abstraction layer that standardizes the way 3rd-party container runtimes work with Kubernetes.

  	
Runtime Classes allows you to create different classes of runtimes. For example, the gVisor or Kata Containers runtimes might provide better workload isolation than the Docker and containerd runtimes.




Kubernetes 1.20 deprecated Docker as a runtime. Container images created by Docker will continue to work as normal, and this won’t change. But a future release of Kubernetes will end support of Docker as a runtime. To streamline the deprecation process, many Kubernetes clusters already ship with containerd as the default runtime. containerd is effectively a stripped-down version of Docker with just the stuff that Kubernetes needs. It’s pronounced container dee and is a strategic Kubernetes container runtime.


While all of this is interesting, it’s low-level stuff that shouldn’t impact your Kubernetes learning experience. For example, whichever container runtime you use, the regular Kubernetes commands and patterns will continue to work as normal.


What about Kubernetes vs Docker Swarm


In 2016 and 2017 we had the orchestrator wars where Docker Swarm, Mesosphere DCOS, and Kubernetes competed to become the de-facto container orchestrator. To cut a long story short, Kubernetes won.


However, Docker Swarm is still under active development and is popular with small companies that need a simple alternative to Kubernetes.


Kubernetes and Borg: Resistance is futile!


There’s a good chance you’ll hear people talk about how Kubernetes relates to Google’s Borg and Omega systems.


As previously mentioned, Google has been running containers at scale for a long time – apparently crunching through billions of containers a week. So yes, Google has been running things like search, Gmail, and GFS on lots of containers for a very long time.


Orchestrating these containerised apps was the job of a couple of in-house technologies called Borg and Omega. So, it’s not a huge stretch to make the connection with Kubernetes – all three are in the game of orchestrating containers at scale, and they’re all related to Google.


However, it’s important to understand that Kubernetes is not an open-sourced version of Borg or Omega. It’s more like Kubernetes shares its DNA and family history with them.
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The point is, all three are separate, but all three are related. In fact, some of the people who built Borg and Omega were, and still are, involved with Kubernetes. So, although Kubernetes was built from scratch, it leverages much of what was learned at Google with Borg and Omega.


As things stand, Kubernetes is an open-source project donated to the CNCF in 2014. It’s licensed under the Apache 2.0 license, version 1.0 shipped way back in July 2015, and at-the-time-of-writing, we’re already into the 1.20’s.


Kubernetes – what’s in the name


The name Kubernetes (koo-ber-net-eez) comes from the Greek word meaning Helmsman – the person who steers a seafaring ship. This theme is reflected in the logo, which is the wheel (helm control) of a ship.
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Some of the people involved in the creation of Kubernetes wanted to call it Seven of Nine. If you know your Star Trek, you’ll know that Seven of Nine is a Borg drone rescued by the crew of the USS Voyager under the command of Captain Kathryn Janeway. Sadly, copyright laws prevented it from being called Seven of Nine. So the creators gave the logo seven spokes as a tip-of-the-hat to Seven of Nine.


One last thing about the name before moving on. You’ll often see it shortened to “K8s” (pronounced “kates”). The number 8 replaces the 8 characters between the “K” and the “s” and is why people sometimes joke that Kubernetes has a girlfriend called Kate.


Kubernetes as the operating system of the cloud


Kubernetes has emerged as the de facto platform for deploying and managing cloud-native applications. In many ways, it’s like an operating system (OS) for the cloud. Consider this:



  	You install a traditional OS (Linux or Windows) on a server, and it abstracts server resources and schedules application processes

  	You install Kubernetes on a cloud, and it abstracts cloud resources and schedules application microservices




In the same way that Linux abstracts the hardware differences between server platforms, Kubernetes abstracts the differences between different private and public clouds. Net result… as long as you’re running Kubernetes, it doesn’t matter if the underlying systems are on premises in your own datacenter, edge devices, or in the public cloud.


With this in mind, Kubernetes is a major step towards a true hybrid cloud, allowing you to seamlessly move and balance workloads across multiple different public and private cloud infrastructures. You can also migrate to and from different clouds, meaning you can choose a cloud today and not have to stick with that decision for the rest of your life.


Cloud scale


Generally speaking, cloud-native microservices applications make our previous scalability and complexity challenges look easy – we’ve just said that Google goes through billions of containers every week!


That’s great, but most of us are nothing like Google. What about the rest of us?


Well… as a general rule, if your legacy apps have hundreds of VMs, there’s a good chance your containerized cloud-native microservices apps will have thousands of containers. With this in mind, you’ll need help managing them.


Say hello to Kubernetes.


Also, we live in a business and technology world that’s increasingly fragmented and constantly in a state of disruption. With this in mind, we desperately need a framework and platform that is widely accepted and hides complexity.


Again, say hello to Kubernetes.


Application scheduling


A typical computer is a collection of CPU, memory, storage, and networking. But modern operating systems have done a great job abstracting that. For example, how many developers care which CPU core or exact memory address their application uses? Not many, we let the OS take care of things like that. And it’s a good thing, making the world of application development a far friendlier place.


Kubernetes does a similar thing with cloud and datacenter resources. At a high-level, a cloud or datacenter is a pool of compute, network and storage resources. Kubernetes abstracts them, meaning you don’t have to hard code which node or storage volume your applications run on, you don’t even have to care which cloud they run on. Kubernetes takes care of all that. 


So, gone are the days of naming your servers, mapping storage volumes in a spreadsheet, and otherwise treating your infrastructure assets like pets. Modern cloud-native apps don’t usually care. In the cloud-native world, we just say “Hey Kubernetes, here’s an app. Please deploy it and make sure it keeps running…“. 


A quick analogy…


Consider the process of sending goods via a courier service. 


You package the goods in the courier’s standard packaging, slap one of their labels on it, and hand it over to the courier. The courier is responsible for everything else. This includes all the complex logistics of which planes and trucks it goes on, which highways to use, and who the drivers should be etc. They also provide services that let you do things like track your package and make delivery changes. The point is, the only thing you have to do is package and label the goods. The courier does everything else.


It’s the same for apps on Kubernetes. You package the app as a container, give it a Kubernetes manifest, and let Kubernetes take care of deploying it and keeping it running. You also get a rich set of tools and APIs that let you introspect (observe and examine) it. It’s a beautiful thing.


Chapter summary


Kubernetes was created by Google based on lessons learned running containers at scale for a lot of years. It was donated to the community as an open-source project and is now the industry standard API for deploying and managing cloud-native applications. It runs on any cloud or on-premises datacenter and abstracts the underlying infrastructure. This allows you to build hybrid clouds, as well as migrate on and off the cloud and between different clouds. It’s open-sourced under the Apache 2.0 license and lives within the Cloud Native Computing Foundation (CNCF).


Tip!


Kubernetes is a fast-moving project under active development. But don’t let this put you off – embrace it. Change is the new normal.


To help you keep up to date, feel free to follow me and subscribe to my newsletter and YouTube channel.



  	nigelpoulton.com

  	twitter.com/nigelpoulton

  	linkedin.com/in/nigelpoulton/

  	youtube.com/nigelpoulton










2: Kubernetes principles of operation


In this chapter, you’ll learn about the major components required to build a Kubernetes cluster and deploy an app. The aim is to give you an overview of the major concepts. So don’t worry if you don’t understand everything straight away, we’ll cover most things again as you progress through the book, and the hands-on demos will help everything fall into place.


The chapter is divided as follows:



  	Kubernetes from 40K feet

  	Masters and nodes

  	Packaging apps for Kubernetes

  	The declarative model and desired state

  	Pods

  	Deployments

  	Services




Kubernetes from 40K feet


At the highest level, Kubernetes is two things:



  	A cluster to run applications on

  	An orchestrator of cloud-native microservices apps




Kubernetes as a cluster


Kubernetes is like any other cluster – a bunch of machines to host applications. We call these machines “nodes”, and they can be physical servers, virtual machines, cloud instances, Raspberry Pis, and more.


A Kubernetes cluster is made of a control plane and nodes. The control plane exposes the API, has a scheduler for assigning work, and records the state of the cluster and apps in a persistent store. Nodes are where user applications run.


It can be useful to think of the control plane as the brains of the cluster, and the nodes as the muscle. In this analogy, the control plane is the brains because it implements the clever features such as scheduling, auto-scaling, and zero-downtime rolling updates. The nodes are the muscle because they do the every-day hard work of executing user applications.


Kubernetes as an orchestrator


Orchestrator is just a fancy word for a system that takes care of deploying and managing applications.


Let’s look at a quick analogy.


In the real world, a football (soccer) team is made of individuals. Every individual is different, and each has a different role to play in the team – some defend, some attack, some are great at passing, some tackle, some shoot… Along comes the coach, and she or he gives everyone a position and organizes them into a team with a purpose. Things go from Figure 2.1 to Figure 2.2.
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The coach also makes sure the team keeps its formation, sticks to the game-plan, and deals with any injuries and other changes in circumstances. 


Well guess what, microservices apps on Kubernetes are the same.


Stick with me on this…


You start out with lots of individual specialised microservices. Some serve web pages, some do authentication, some perform searches, others persist data. Kubernetes comes along – like the coach in the football analogy – organizes everything into a useful app and keeps things running smoothly. It even responds to events and other changes in circumstance.


In the sports world this is called coaching. In the application world it’s called orchestration. Kubernetes orchestrates cloud-native microservices applications.


How it works


You start out with an app, package it as a container, then give it to the cluster (Kubernetes). The cluster is made up of one or more control plane nodes and a bunch of worker nodes.


As already stated, control plane nodes implement the cluster intelligence. Worker nodes are where user applications run.


You follow this simple process to run applications on a Kubernetes cluster.



  	Design and write the application as small independent microservices in your favourite languages.

  	Package each microservice as its own container.

  	Wrap each container in a Kubernetes Pod.

  	Deploy Pods to the cluster via higher-level controllers such as Deployments, DaemonSets, StatefulSets, CronJobs etc.





Now then… this is the beginning of the book and you’re not expected to know what all of this means yet. However, at a high-level, Kubernetes has several controllers that augment Pods with important features such as self-healing, scaling, smooth rollouts, and more. Some controllers are for stateless apps, and others are for stateful apps. You’ll learn all about them as you progress through the book.


Kubernetes likes to manage applications declaratively. This is a pattern where you describe what you want in a set of YAML files, post them to Kubernetes, then sit back while Kubernetes makes it all happen.


But it doesn’t stop there. Because the declarative pattern tells Kubernetes how an application should look, Kubernetes can watch it and make sure it doesn’t stray from what you asked for. If something isn’t as it should be, Kubernetes tries to fix it.


That’s the big picture. Let’s dig a bit deeper.


Control plane and worker nodes


As previously mentioned, a Kubernetes cluster is made of control plane nodes and worker nodes. These are Linux hosts that can be virtual machines (VM), bare metal servers in your datacenter, or instances in a private or public cloud. You can even run Kubernetes on ARM and IoT devices.


The control plane


A Kubernetes control plane node is a server running collection of system services that make up the control plane of the cluster. Sometimes we call them Masters, Heads or Head nodes.


The simplest setups run a single control plane node. However, this is only suitable for labs and test environments. For production environments, multiple control plane nodes configured for high availability (HA) is vital. Generally speaking, 3 or 5 is recommended for HA.


It’s also considered a good practice not to run user applications on control plane nodes. This frees them up to concentrate entirely on managing the cluster.


Let’s take a quick look at the different services making up the control plane.


The API server


The API server is the Grand Central of Kubernetes. All communication, between all components, must go through the API server. We’ll get into the detail later, but it’s important to understand that internal system components, as well as external user components, all communicate via the API server – all roads lead to the API Server.


It exposes a RESTful API that you POST YAML configuration files to over HTTPS. These YAML files, which we sometimes call manifests, describe the desired state of an application. This desired state includes things like which container image to use, which ports to expose, and how many Pod replicas to run.


All requests to the API server are subject to authentication and authorization checks. Once these are done, the config in the YAML file is validated, persisted to the cluster store, and work is scheduled to the cluster.


The cluster store


The cluster store is the only stateful part of the control plane and persistently stores the entire configuration and state of the cluster. As such, it’s a vital component of every Kubernetes cluster – no cluster store, no cluster.


The cluster store is currently based on etcd, a popular distributed database. As it’s the single source of truth for a cluster, you should run between 3-5 etcd replicas for high-availability, and you should provide adequate ways to recover when things go wrong. A default installation of Kubernetes installs a replica of the cluster store on every control plane node and automatically configures HA.


On the topic of availability, etcd prefers consistency over availability. This means it doesn’t tolerate split-brains and will halt updates to the cluster in order to maintain consistency. However, if this happens, user applications should continue to work, you just won’t be able to update the cluster config.


As with all distributed databases, consistency of writes to the database is vital. For example, multiple writes to the same value originating from different places need to be handled. etcd uses the popular RAFT consensus algorithm to accomplish this.


The controller manager and controllers


The controller manager implements all the background controllers that monitor cluster components and respond to events. 


Architecturally, it’s a controller of controllers, meaning it spawns all the independent controllers and monitors them. 


Some of the controllers include the Deployment controller, the StatefulSet controller, and the ReplicaSet controller. Each one is responsible for a small subset of cluster intelligence and runs as a background watch-loop constantly watching the API Server for changes.


The aim of the game is to ensure the observed state of the cluster matches the desired state (more on this shortly).


The logic implemented by each controller is as follows, and is at the heart of Kubernetes and declarative design patterns.



  	Obtain desired state

  	Observe current state

  	Determine differences

  	Reconcile differences




Each controller is also extremely specialized and only interested in its own little corner of the Kubernetes cluster. No attempt is made to over-complicate design by implementing awareness of other parts of the system – each controller takes care of its own business and leaves everything else alone. This is key to the distributed design of Kubernetes and adheres to the Unix philosophy of building complex systems from small specialized parts.



  Terminology: Throughout the book we’ll use terms like controller, control loop, watch loop, and reconciliation loop to mean the same thing.




The scheduler


At a high level, the scheduler watches the API server for new work tasks and assigns them to appropriate healthy worker nodes. Behind the scenes, it implements complex logic that filters out nodes incapable of running tasks, and then ranks the nodes that are capable. The ranking system is complex, but the node with the highest ranking score is selected to run the task.


When identifying nodes capable of running a task, the scheduler performs various predicate checks. These include is the node tainted, are there any affinity or anti-affinity rules, is the required network port available on the node, does it have sufficient available resources etc. Any node incapable of running the task is ignored, and those remaining are ranked according to things such as does it already have the required image, how much free resource does it have, how many tasks is it currently running. Each is worth points, and the node with the most points is selected to run the task.


If the scheduler doesn’t find a suitable node, the task isn’t scheduled and gets marked as pending.


The scheduler isn’t responsible for running tasks, just picking the nodes to run them. A task is normally a Pod/container. You’ll learn about Pods and containers in later chapters.


The cloud controller manager


If you’re running your cluster on a supported public cloud platform, such as AWS, Azure, GCP, or Linode, your control plane will be running a cloud controller manager. Its job is to facilitate integrations with cloud services, such as instances, load-balancers, and storage. For example, if your application asks for an internet-facing load-balancer, the cloud controller manager provisions a load-balancer from your cloud and connects it to your app.


Control Plane summary


Kubernetes control plane nodes are servers that run the cluster’s control plane services. These services are the brains of the cluster where all the control and scheduling decisions happen. Behind the scenes, these services include the API server, the cluster store, scheduler, and specialised controllers.


The API server is the front-end into the control plane and all instructions and communication pass through it. By default, it exposes a RESTful endpoint on port 443.


Figure 2.3 shows a high-level view of a Kubernetes control plane node.
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Worker nodes


Nodes are servers that are the workers of a Kubernetes cluster.


At a high-level they do three things:



  	Watch the API server for new work assignments

  	Execute work assignments

  	Report back to the control plane (via the API server)




As you can see in Figure 2.4, they’re a bit simpler than control plane nodes. 
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Let’s look at the three major components of a node.


Kubelet


The kubelet is main Kubernetes agent and runs on every cluster node. In fact, it’s common to use the terms node and kubelet interchangeably.


When you join a node to a cluster, the process installs the kubelet, which is then responsible for registering it with the cluster. This process registers the node’s CPU, memory, and storage into the wider cluster pool.


One of the main jobs of the kubelet is to watch the API server for new work tasks. Any time it sees one, it executes the task and maintains a reporting channel back to the control plane.


If a kubelet can’t run a task, it reports back to the control plane and lets the control plane decide what actions to take. For example, if a kubelet cannot execute a task, it is not responsible for finding another node to run it on. It simply reports back to the control plane and the control plane decides what to do.


Container runtime


The kubelet needs a container runtime to perform container-related tasks – things like pulling images and starting and stopping containers.


In the early days, Kubernetes had native support for Docker. More recently, it’s moved to a plugin model called the Container Runtime Interface (CRI). At a high-level, the CRI masks the internal machinery of Kubernetes and exposes a clean documented interface for 3rd-party container runtimes to plug into.


Kubernetes is dropping support for Docker as a container runtime. This is because Docker is bloated and doesn’t support the CRI (requires a shim). containerd is replacing it as the most common container runtime on Kubernetes.



  Note: containerd (pronounced “container-dee”) is the container supervisor and runtime logic stripped out from the Docker Engine. It was donated to the CNCF by Docker, Inc. and has a lot of community support. Other CRI container runtimes exist.




Kube-proxy


The last piece of the node puzzle is the kube-proxy. This runs on every node and is responsible for local cluster networking. It ensures each node gets its own unique IP address, and it implements local iptables or IPVS rules to handle routing and load-balancing of traffic on the Pod network. More on all of this later in the book.


Kubernetes DNS


As well as the various control plane and node components, every Kubernetes cluster has an internal DNS service that is vital to service discovery.


The cluster’s DNS service has a static IP address that is hard-coded into every Pod on the cluster. This ensures every container and Pod can locate it and use it for discovery. Service registration is also automatic. This means apps don’t need to be coded with the intelligence to register with Kubernetes service discovery.


Cluster DNS is based on the open-source CoreDNS project (https://coredns.io/).


Now that you understand the fundamentals of control plane nodes and worker nodes, let’s switch gears and see how to package applications to run on Kubernetes.


Packaging apps for Kubernetes


An application needs to tick a few boxes to run on a Kubernetes cluster. These include.



  	Packaged as a container

  	Wrapped in a Pod

  	Deployed via a declarative manifest file




It goes like this… 


You write an application microservice in a language of your choice. Then you build it into a container image and store it in a registry. At this point, the application service is containerized.


Next, you define a Kubernetes Pod to run the containerized application. At the kind of high level we’re at, a Pod is just a wrapper that allows a container to run on a Kubernetes cluster. Once you’ve defined the Pod, you’re ready to deploy the app to Kubernetes.


While it’s possible to run static Pods like this on a Kubernetes cluster, the preferred model is to deploy all Pods via higher-level controllers. The most common controller is the Deployment. It offers scalability, self-healing, and rolling updates for stateless apps. You define Deployments in YAML manifest files that specify things how many replicas to deploy and how to perform updates.


Figure 2.5 shows application code packaged as a container, running inside a Pod, managed by a Deployment controller.
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Once everything is defined in the Deployment YAML file, you can use the Kubernetes command-line tool to post it to the API server as the desired state of the application, and Kubernetes will implement it.


Speaking of desired state…


The declarative model and desired state


The declarative model and the concept of desired state are at the very heart of Kubernetes. So, it’s vital you understand them.


In Kubernetes, the declarative model works like this.



  	Declare the desired state of an application microservice in a manifest file

  	Post it to the API server

  	Kubernetes stores it in the cluster store as the application’s desired state


  	Kubernetes implements the desired state on the cluster

  	A controller makes sure the observed state of the application doesn’t vary from the desired state





Let’s look at each step in a bit more detail.


Manifest files are written in simple YAML and tell Kubernetes what an application should look like. This is called desired state. It includes things such as which image to use, how many replicas to run, which network ports to listen on, and how to perform updates.


Once you’ve created the manifest, you post it to the API server. The easiest way to do this is with the kubectl command-line utility. This sends the manifest to the control plane as an HTTP POST, usually on port 443.


Once the request is authenticated and authorized, Kubernetes inspects the manifest, identifies which controller to send it to (e.g. the Deployments controller), and records the config in the cluster store as part of overall desired state. Once this is done, any required work tasks get scheduled to cluster nodes where the kubelet co-ordinates the hard work of pulling images, starting containers, attaching to networks, and starting application processes.


Finally, controllers run as background reconciliation loops that constantly monitor the state of things. If the observed state varies from desired state, Kubernetes performs the tasks are necessary to reconcile the issue.


It’s important to understand that what we’ve described is the opposite of the traditional imperative model. The imperative model is where you write long scripts of platform-specific commands to build and monitor things.


Not only is the declarative model a lot simpler than long scripts with lots of imperative commands, it also enables self-healing, scaling, and lends itself to version control and self-documentation. It does all of this by telling the cluster how things should look. If they start to look different, the appropriate controller notices the discrepancy and does all the hard work to reconcile the situation.



  Terminology: observed state, actual state and current state all mean the same thing.




Let’s consider an example.


Declarative example


Assume you have an app with a desired state that includes 10 replicas of a web front-end Pod. If a node running two replicas fails, the observed state will be reduced to 8 replicas, but desired state will still be 10. This will be observed by a controller and Kubernetes will schedule two new replicas to bring the total back up to 10.


The same thing will happen if you intentionally scale the desired number of replicas up or down. You could even change the image you want to use (this is called a rollout). For example, if the app is currently using v2.00 of an image, and you update the desired state to specify v2.01, the relevant controller will notice the difference and go through the process of updating the cluster so all 10 replicas are running the new version.


To be clear. Instead of writing a complex script to step through the entire process of updating every replica to the new version, you simply tell Kubernetes you want the new version, and Kubernetes does the hard work for you.


Despite how simple this might seem, it’s extremely powerful and at the very heart of how Kubernetes operates. 


Pods


In the VMware world, the atomic unit of scheduling is the virtual machine (VM). In the Docker world, it’s the container. Well… in the Kubernetes world, it’s the Pod.
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It’s true that Kubernetes runs containerized apps. However, Kubernetes demands that every container runs inside a Pod.



  Note: Pods are objects in the Kubernetes API, so we capitalize the first letter. This might annoy you if you’re passionate about language and proper use of capitalization. However, it adds clarity and the official Kubernetes docs are moving towards this standard.




Pods and containers


The very first thing to understand is that the term Pod comes from a pod of whales – in the English language we call a group of whales a pod of whales. As the Docker logo is a whale, Kubernetes ran with the whale concept and that’s why we have Pods.


The simplest model is to run a single container in every Pod. This is why we often use the terms “Pod” and “container” interchangeably. However, there are advanced use-cases that run multiple containers in a single Pod. Powerful examples of multi-container Pods include:



  	Service meshes

  	Web containers supported by a helper container pulling updated content

  	Containers with a tightly coupled log scraper




The point is, a Kubernetes Pod is a construct for running one or more containers. Figure 2.7 shows a multi-container Pod.
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Pod anatomy


At the highest-level, a Pod is a ring-fenced environment to run containers. Pods themselves don’t actually run applications – applications always run in containers, the Pod is just a sandbox to run one or more containers. Keeping it high level, Pods ring-fence an area of the host OS, build a network stack, create a bunch of kernel namespaces, and run one or more containers. 


If you’re running multiple containers in a Pod, they all share the same Pod environment. This includes the network stack, volumes, IPC namespace, shared memory, and more. As an example, this means all containers in the same Pod will share the same IP address (the Pod’s IP). This is shown in Figure 2.8.
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If two containers in the same Pod need to talk to each other (container-to-container within the Pod) they can use the Pod’s localhost interface as shown in Figure 2.9.
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Multi-container Pods are ideal when you have requirements for tightly coupled containers that may need to share memory and storage. However, if you don’t need to tightly couple containers, you should put them in their own Pods and loosely couple them over the network. This keeps things clean by having each Pod dedicated to a single task. However, it creates a lot of potentially un-encrypted network traffic. You should seriously consider using a service mesh to secure traffic between Pods and application services.


Pods as the unit of scaling


Pods are also the minimum unit of scheduling in Kubernetes. If you need to scale an app, you add or remove Pods. You do not scale by adding more containers to existing Pods. Multi-container Pods are only for situations where two different, but complimentary, containers need to share resources. Figure 2.10 shows how to scale the nginx front-end of an app using Pods as the unit of scaling.
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Pods - atomic operations


The deployment of a Pod is an atomic operation. This means a Pod is only ready for service when all its containers are up and running. The entire Pod either comes up and is put into service, or it doesn’t, and it fails.


A single Pod can only be scheduled to a single node - you cannot schedule a single Pod across multiple nodes. This is also true of multi-container Pods – all containers in the same Pod run on the same node.


Pod lifecycle


Pods are mortal. They’re created, they live, and they die. If they die unexpectedly, you don’t bring them back to life. Instead, Kubernetes starts a new one in its place. However, even though the new Pod looks, smells, and feels like the old one, it isn’t. It’s a shiny new Pod with a shiny new ID and IP address.


This has implications on how you design your applications. Don’t design them to be tightly coupled to a particular instance of a Pod. Instead, design them so that when Pods fail, a totally new one (with a new ID and IP address) can pop up somewhere else in the cluster and seamlessly take its place.


Pod immutability


Pods are also immutable – this means you don’t change them once they’re running. 


Once a Pod is running, you never change its configuration. If you need to change or update it, you replace it with a new one running the new configuration. When we’ve talked about updating Pods, we’ve really meant delete the old one and replace it with a new one.


Deployments


Most of the time you’ll deploy Pods indirectly via higher-level controllers. Examples of higher-level controllers include Deployments, DaemonSets, and StatefulSets.


As an example, a Deployment is a higher-level Kubernetes object that wraps around a Pod and adds features such as self-healing, scaling, zero-downtime rollouts, and versioned rollbacks.


Behind the scenes, Deployments, DaemonSets and StatefulSets are implemented as controllers that run as watch loops constantly observing the cluster making sure observed state matches desired state.


Service objects and stable networking


You’ve just learned that Pods are mortal and can die. However, if they’re managed via higher level controllers, they get replaced when they fail. But replacements come with totally different IP addresses. This also happens with rollouts and scaling operations. Rollouts replace old Pods with new ones with new IPs. Scaling up adds new Pods with new IP addresses, whereas scaling down takes existing Pods away. Events like these cause a lot of IP churn.


The point we’re making is that Pods are unreliable, and this poses challenges… 


Assume you’ve got a microservices app with a bunch of Pods performing video rendering. How will this work if other parts of the app that use the rendering service can’t rely on rendering Pods being there when needed?


This is where Services come in to play. They provide reliable networking for a set of Pods.


Figure 2.11 shows the uploader microservice talking to the renderer microservice via a Kubernetes Service object. The Service (capital “S” because it’s a Kubernetes API object) is providing a reliable name and IP. It’s also load-balancing requests to the two renderer Pods behind it.
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Digging into a bit more detail. Services are fully-fledged objects in the Kubernetes API – just like Pods and Deployments. They have a front-end consisting of a stable DNS name, IP address, and port. On the back-end, they load-balance traffic across a dynamic set of Pods. As Pods come and go, the Service observes this, automatically updates itself, and continues to provide that stable networking endpoint.


The same applies if you scale the number of Pods up or down. New Pods are seamlessly added to the Service and will receive traffic. Terminated Pods are seamlessly removed from the Service and will not receive traffic.


That’s the job of a Service – it’s a stable network abstraction point that provides TCP and UDP load-balancing across a dynamic set of Pods.


As they operate at the TCP and UDP layer, they don’t possess application intelligence. This means they cannot provide application-layer host and path routing. For that, you need an Ingress, which understands HTTP and provides host and path-based routing.


That’s the basics. Services bring stable IP addresses and DNS names to the unstable world of Pods.


Chapter summary


In this chapter, we introduced some of the major components of a Kubernetes cluster.


Control plane nodes are servers where the control plane components run. They can be physicals, VMs, cloud instances and even Raspberry Pis. 


Under-the-hood, the control-plane comprises several services, including the API server that exposes a public REST interface to the cluster and where all the scheduling decisions are made. Multi-master HA is important for production environments.


Nodes are servers where user applications run. They can also be physicals, virts, cloud instances and Raspberry Pis.


Every node runs a service called the kubelet that registers it with the cluster and communicates with the API server. It watches the API server for new work tasks and maintains a reporting channel. They also have a container runtime and the kube-proxy service. The container runtime is responsible for all container-related operations. The kube-proxy is responsible for networking on the node.


We also talked about some of the major Kubernetes API objects such as Pods, Deployments, and Services. The Pod is the basic building-block that application containers run in. Deployments add self-healing, scaling and updates. Services add stable networking and basic load-balancing.


Now that we’ve covered the basics, let’s get into the detail.








3: Getting Kubernetes


In this chapter, you’ll see a few quick ways to get Kubernetes. We’ll also introduce you to kubectl, the Kubernetes command line tool.


There are three typical ways of getting a Kubernetes:



  	Playground

  	Hosted Kubernetes

  	DIY install




Kubernetes playgrounds


Playgrounds are the quickest and easiest way to get Kubernetes, but they’re definitely not for production. Popular examples include Play with Kubernetes, Katakoda, Docker Desktop, minikube, k3d, and more.


We’ll look at Play with Kubernetes and Docker Desktop.


Hosted Kubernetes


All of the major cloud platforms offer a hosted Kubernetes service. This is a model where you outsource a bunch of Kubernetes infrastructure responsibility to your cloud provider, letting them take care of things like high-availability (HA), performance, and updates. 


Of course, not all hosted Kubernetes solutions are equal, and even though your cloud provider is managing a lot of the infrastructure for you, the ultimate responsibility remains with you. For example, your boss is unlikely to be impressed if things go down and you simply point the finger at your cloud provider.


Irrespective of pros and cons, hosted Kubernetes is as close to a zero-effort production-grade Kubernetes cluster as you’ll get. For example, Google Kubernetes Engine (GKE) is a hosted Kubernetes service that lets you deploy a high-performance, highly-available, Kubernetes control plane and nodes, with security best-practices out-of-the-box, an Istio service mesh, and more. And all with just a few simple clicks. Other popular hosted Kubernetes services include.



  	AWS: Elastic Kubernetes Service (EKS)

  	Azure: Azure Kubernetes Service (AKS)

  	Linode: Linode Kubernetes Engine (LKE)

  	DigitalOcean: DigitalOcean Kubernetes (DOKS)

  	Google Cloud Platform: Google Kubernetes Engine (GKE)




You should seriously consider hosted Kubernetes if building and managing your own Kubernetes cluster isn’t a good use of time and other resources. It’s a great on-ramp to Kubernetes that lets you and your business focus on your applications.


DIY Kubernetes clusters


By far the hardest way to get a Kubernetes cluster is to build it yourself.


Yes, DIY installations are a lot easier than they used to be, but they can still be hard. However, they provide the most flexibility and give you ultimate control – which can be a good thing and a bad thing.


Getting Kubernetes to follow along with the examples


There are a ridiculous number of different ways to get a Kubernetes cluster and we’re not trying to show them all. We’ve hand-picked a few that are quick and easy, and enough to get you through most of the examples in the book.


We’ll look at the following:



  	Play with Kubernetes (PWK)

  	Docker Desktop: local development cluster on your laptop

  	Google Kubernetes Engine (GKE): production-grade hosted cluster




Play with Kubernetes


Play with Kubernetes (PWK) is a quick and simple way to get your hands on a development Kubernetes cluster. All you need is a computer, an internet connection, and an account on Docker Hub or GitHub. 


However, it has a few limitations. 



  	It’s time-limited – you get a cluster that lasts 4 hours 

  	It lacks some integrations with external services such as cloud-based load-balancers and volumes

  	It often suffers from capacity and performance issues (but it’s offered for free)




Let’s see what it looks like (the commands may be slightly different).



  	Point your browser at labs.play-with-k8s.com


  	Login with your GitHub or Docker Hub account and click Start


  	Click + ADD NEW INSTANCE from the navigation pane on the left of your browser
    You’ll be presented with a terminal window in the right of your browser. This is a Kubernetes node (node1).

  

  	Run a few commands to see some of the components pre-installed on the node.
    
$ docker version
Docker version 20.10.1, build 831ebea

$ kubectl version --output=yaml
clientVersion:
...
  major: "1"
  minor: "20"





    

    As the output shows, the node already has Docker and kubectl (the Kubernetes client) pre-installed. Other tools, including kubeadm, are also pre-installed. More on these tools later.

  

  	Run the provided kubeadm init command to initialize a new cluster
    When you added a new instance in step 3, PWK gave you a short list of commands to initialize a new Kubernetes cluster. One of these was kubeadm init.... Running this will initialize a new cluster.


    You may be able to specify the version of Kubernetes to install by adding the --kubernetes-version flag to the command. The latest versions can be seen at https://github.com/kubernetes/kubernetes/releases. Not all versions work with PWK.


    
$ kubeadm init --apiserver-advertise-address $(hostname -i) --pod-network-cidr...
[init] Using Kubernetes version: v1.20.4
[preflight] Running pre-flight checks
<Snip>
Your Kubernetes control-plane has initialized successfully!
<Snip>





    

    Congratulations! You have a brand new single-node Kubernetes cluster. The node that you executed the command from (node1) is initialized as the control plane node (Master).


    The output of the kubeadm init gives you a short list of commands it wants you to run. Ignore these, PWK has already configured them for you. 

  

  	Verify the cluster with the following command.
    
$ kubectl get nodes
NAME    STATUS     ROLES                  AGE     VERSION
node1   NotReady   control-plane,master   1m      v1.20.1





    

    The output shows a single-node Kubernetes cluster. However, the status of the node is NotReady. This is because you haven’t configured the Pod network yet. When you first logged on to the PWK node, you were given three commands to configure the cluster. So far, you’ve only executed the first one (kubeadm init...).

  

  	Initialize the Pod network (cluster networking).
    Copy the second command from the list of three commands that were printed on the screen when you first created node1 (it will be a kubectl apply command). Paste it onto a new line in the terminal. The example below has been snipped to fit the page. 


    
$ kubectl apply -f https://raw.githubusercontent.com...
configmap/kube-router-cfg created
daemonset.apps/kube-router created
serviceaccount/kube-router created
clusterrole.rbac.authorization.k8s.io/kube-router created
clusterrolebinding.rbac.authorization.k8s.io/kube-router created





    
  

  	Verify the cluster again to see if node1 has changed to Ready (it may take a few seconds).
    
$ kubectl get nodes
NAME    STATUS     ROLES                  AGE     VERSION
node1   Ready      control-plane,master   2m      v1.20.1





    

    With the Pod network initialized and the control plane Ready, it’s time to add some worker nodes.

  

  	Copy the long kubeadm join that was displayed as part of the output from the kubeadm init command in step 5.
    When you initialized the new cluster with kubeadm init, the final output of the command listed a kubeadm join command for adding worker nodes. It includes the cluster join-token, the IP socket the API server is listening on, and other bits required to join the cluster. Copy this command and be ready to paste it into the terminal of a new node (node2).

  

  	Click the + ADD NEW INSTANCE button in the left pane of the PWK window.




You’ll be given a new node called node2.



  	Paste the kubeadm join command into the terminal of node2.




The join-token and IP address will be different in your environment.



   $ kubeadm join --token 948f32.79bd6c8e951cf122 10.0.29.3:6443...
   Initializing machine ID from random generator.
   [preflight] Skipping pre-flight checks
   <Snip>
   Node join complete:
   * Certificate signing request sent to master and response received.
   * Kubelet informed of new secure connection details.








  	Switch back to node1 and run another kubectl get nodes. It may take a minute for the new node to enter the Ready state.





   $ kubectl get nodes
   NAME    STATUS   ROLES                  AGE     VERSION
   node1   Ready    control-plane,master   5m39s   v1.20.1
   node2   Ready    <none>                 44s     v1.20.1







Your Kubernetes cluster now has two nodes – one control plane node and one worker node.


Feel free to add more nodes.


Congratulations! You have a fully working Kubernetes cluster that you can use as a test lab.


It’s worth pointing out that node1 was initialized as the control plane node and additional nodes will join as worker nodes. PWK usually puts a blue icon next to control plane nodes and a transparent one next to worker nodes. This helps identify which is which.


Finally, PWK sessions only last for 4 hours and are obviously not intended for production use.


Have fun.


Docker Desktop


Docker Desktop is a great way to get a local development cluster on your Mac or Windows laptop. With a few easy steps, you get a single-node Kubernetes cluster that you can develop and test with. It automatically configures kubectl and you get a simple GUI that lets you perform basic operations such as switching between kubectl contexts.



  Note: A kubectl context is a bunch of settings that tells kubectl which cluster to send commands to, and which credentials to authenticate with. You’ll learn more about this later in the book.





  	Point your web browser to www.docker.com and choose Products > Desktop. Alternatively, search for “Docker Desktop” in your favorite search engine.

  	Follow the links to download the installer for Mac or Windows.

  	Open the installer and follow the simple instructions.
    Once the installer completes, you’ll get a whale icon on the Windows task bar, or the menu bar on a Mac.

  

  	Right-click the whale icon, go to Preferences and enable Kubernetes from the Kubernetes tab.




You may have to click Apply & Restart, and it’ll take a few minutes while Docker Desktop fires up your Kubernetes cluster.


When it completes, open a terminal window and see your cluster:



$ kubectl get nodes
NAME                 STATUS   ROLES    AGE   VERSION
docker-for-desktop   Ready    master   28d   v1.20.0







Congratulations, you’ve got a local development cluster and you’re ready to follow most of the examples later in the book.


Google Kubernetes Engine (GKE)


GKE is a hosted Kubernetes service that runs on the Google Cloud Platform (GCP). Like most hosted Kubernetes services, it provides:



  	A fast and easy way to get a “production-grade” Kubernetes cluster

  	A managed control plane (you don’t manage the control plane nodes)

  	Itemized billing

  	More…




Two important points are worth noting.


First up, GKE and other hosted Kubernetes services are not free. Some services might provide a free tier or an amount of initial free credit. However, generally speaking, you have to pay to use them.


Second up, GKE is constantly improving and adding features. This means some of the installation options might look different when you’re following along. For example, at the time of writing, GKE has a new Autopilot feature that changes the way you build and manage GKE clusters. However, don’t worry about this, it’s really simple to build a GKE cluster, and even if the steps here are slightly out-dated, they’ll still give you a broad idea of what to do.


Configuring GKE


To work with GKE, you’ll need an account on the Google Cloud with billing configured and a blank project. These are all simple to setup, so we won’t spend time explaining them here – the remainder of this section assumes you already have these.



  	From within the Google Cloud Console, open the navigation pane on the left-hand side and select Kubernetes Engine > Clusters. You may have to click the three horizontal bars (hamburger) in the top left corner to make the navigation pane visible.

  	Click the Create cluster button.

  	Give your cluster a meaningful name and description.

  	Choose whether you want a Regional or Zonal cluster. Regional is newer and potentially more resilient – your control plane nodes and worker nodes will be distributed across multiple zones but still accessible via a single highly-available endpoint. Some of the examples in the storage chapter will require a regional cluster. 

  	Choose the Region or Zone for your cluster.

  	Select Release channel and Version. This is the version of Kubernetes that will run on your control plane. The Rapid channel gets you access to the latest versions. It also influences the way your cluster will be upgraded to new releases.

  	At this point you can specify more advanced options available in the left pane. These include things such as whether nodes will run Docker or containerd, and whether or not to use the CSI driver and enable the Istio service mesh. You should enable the Compute Engine Persistent Disk CSI Driver under cluster features.

  	Once you’re happy with your options, click Create.




It’ll take a couple of minutes to create your cluster.


The “clusters” page shows a high-level overview of the Kubernetes clusters you have in your project. Feel free to poke around and familiarise yourself with some of the settings.


Clicking the three dots to the right of your cluster shows a Connect option. It gives you a long gcloud command you can run on your laptop to configure kubectl to talk to your cluster. Copy this command to your clipboard.


The following step will only work if you have the gcloud command-line and kubectl downloaded and installed. They can both be installed from here https://cloud.google.com/sdk/.


Once you have gcloud installed and configured, open a terminal and paste the long gcloud command into it. This configures kubectl to talk to your GKE cluster.


Run a kubectl get nodes command to list the nodes in the cluster.



$ kubectl get nodes
NAME             STATUS     AGE    VERSION
gke-cluster...   Ready      5m     v1.20.2-gke.2500
gke-cluster...   Ready      6m     v1.20.2-gke.2500
gke-cluster...   Ready      6m     v1.20.2-gke.2500







Congratulations! You have a “production-grade” Kubernetes cluster and can continue with all the exercises later in the book.


However, be sure to delete the cluster as soon as you’re finished using it. GKE, and other hosted Kubernetes platforms, may incur costs even when they are not in use.


Other installation methods


As previously stated, there are lots of ways to install Kubernetes. Some of these include:



  	kops

  	kubeadm

  	k3s

  	k3d




I run quite a lot of work on k3d on my laptop, and I highly recommend it if you want a multi-node Kubernetes dev environment on your laptop. However, I’m not going to waste pages in the booking explaining how to perform any of these installation types, as it’s much easier to google them and get up-to-date install guides. Previous versions of the book dedicated more than 20 long boring pages to kops and kubeadm installations, and it was painful for me keeping them up-to-date. No more!


kubectl


kubectl is the main Kubernetes command-line tool. It’s what you’ll use for most Kubernetes management tasks, and we use it extensively in the examples. It’s available for most operating systems and architectures.


As it’s the main command-line tool, it’s important you use a version that’s no more than one minor version higher or lower than your cluster. For example, if your cluster is running Kubernetes 1.20.x, your kubectl should be between 1.19.x and 1.21.x.


At a high-level, kubectl converts user-friendly commands into HTTP REST requests with JSON content required by the API server. It uses a configuration file to know which cluster and API server endpoint to send commands to, and it takes care of sending authentication data with commands.


The kubectl configuration file is called config and lives in a hidden directory called kube in your home directory ($HOME/.kube/config). We normally call it the “kubeconfig” file, and it contains definitions for:



  	Clusters

  	Users (credentials)

  	Contexts




Clusters is a list of clusters that kubectl knows about and is ideal if you plan on using a single kubectl workstation to manage multiple clusters. Each cluster definition has a name, certificate info, and API server endpoint.


Users let you define different users that might have different levels of access on each cluster. For example, you might have a dev user and an ops user, each with different permissions. Each user definition has a friendly name, a username, and a set of credentials.


Contexts group together clusters and users under a friendly name. For example, you might have a context called deploy-prod that combines the deploy user credentials with the prod cluster definition. If you use kubectl with this context, you’ll be sending commands to the API server of the prod cluster as the deploy user.


The following is a simple kubeconfig file with a single cluster called shield, a single user called coulson, and a single context called director. The director context combines the coulson user and the shield cluster and is also set as the default context.



apiVersion: v1
kind: Config
clusters:
- cluster:
    certificate-authority: C:\Users\nigel\.minikube\ca.crt
    server: https://192.168.1.77:8443
  name: shield
users:
- name: coulson
  user:
    client-certificate: C:\Users\nigel\.minikube\client.crt
    client-key: C:\Users\nigel\.minikube\client.key
contexts:
- context:
    cluster: shield
    user: coulson
  name: director
current-context: director







You can view your kubeconfig using the kubectl config view command. Sensitive data will be redacted.


You can use kubectl config current-context to see your current context. The following example shows a system where kubectl is configured to use the cluster and user defined in a context called k8sbook_eks.



$ kubectl config current-context
k8sbook_eks







You can change the current active context with kubectl config use-context. The following command sets the current context to docker-desktop so that future commands will be sent to the cluster defined in the docker-desktop context. It will only work if the kubeconfig file has a context called docker-desktop.



$ kubectl config use-context docker-desktop
Switched to context "docker-desktop".

$ kubectl config current-context
docker-desktop







Chapter summary


In this chapter, you saw a few ways to get a Kubernetes cluster.


You saw how fast and simple it is to setup a Kubernetes cluster on Play with Kubernetes (PWK) where you get a 4-hour playground without having to install anything on your laptop or in your cloud.


You saw how to setup Docker Desktop for a single-node developer experience on your Mac or Windows laptop.


You learned how to spin up a hosted Kubernetes cluster in the Google Cloud using Google Kubernetes Engine (GKE).


The chapter finished up with an overview of kubectl, the Kubernetes command-line tool.


You’ll be able to follow most of the examples in the book with any of the clusters we showed you how to get. The storage examples, as well as some of the networking an Ingress examples, will only work if you’re following along on GKE.








4: Working with Pods


Pods are fundamental to running apps on Kubernetes. As such, this chapter goes into quite a bit of detail.


The chapter is divided into two main parts:



  	Theory

  	Hands-on




Before getting started, it’s difficult to talk about Pods without making reference to workload controllers such as Deployments, DaemonSets, and StatefulSets. However, this is the start of the book and we haven’t covered any of those yet. So, we’ll take a quick minute here to set the scene so that when they come up in the chapter, you’ll have a basic idea of what they are.


You’ll almost always deploy Pods via higher-level workload controllers – from now on, we’ll just call them controllers. 


Controllers gift Pods with super-powers such as self-healing, scaling, updates and rollbacks. You’ll see this later, but every controller has a PodTemplate defining the Pods it deploys and manages. So, even though you’ll rarely interact directly with Pods, it’s absolutely vital you have a solid understanding of them.


For these reasons, we’ll cover quite a lot of Pod detail. It won’t be wasted time and will be very useful as you progress to controllers and other more advanced objects. You also need a deep understanding of Pods if you want to master Kubernetes.


With that out of the way, let’s crack on.


Pod theory


The atomic unit of scheduling on Kubernetes is the Pod. This is just a fancy way of saying apps deployed to Kubernetes always run inside Pods. 


Some quick examples… If you deploy an app, you deploy it in a Pod. If you terminate an app, you terminate its Pod. If you scale an app up or down, you add or remove Pods.


Why Pods


The process of building and running an app on Kubernetes is roughly as follows:



  	Write your app/code

  	Package it as a container image

  	Wrap the container image in a Pod

  	Run it on Kubernetes




This begs the question, why not just run the container on Kubernetes?


The short answer is you just can’t. Kubernetes doesn’t allow containers to run directly on a cluster, they always have to be wrapped in a Pod. 


Broadly speaking, there are three main reasons for Pods.



  	Pods augment containers

  	Pods assist in scheduling

  	Pods enable resource sharing




Pods augment containers


On the augmentation front, Pods augment containers in all of the following ways.



  	Labels and annotations

  	Restart policies

  	Probes (startup probes, readiness probes, liveness probes, and potentially more)

  	Affinity and anti-affinity rules

  	Termination control

  	Security policies

  	Resource requests and limits




Run a kubectl explain pods command to list all possible Pod attributes. Beware, the command returns over 1,000 lines and the following output has been trimmed.



$ kubectl explain pods --recursive
KIND:     Pod
VERSION:  v1

DESCRIPTION:
     Pod is a collection of containers that can run on a host. This resource is
     created by clients and scheduled onto hosts.

FIELDS:
   apiVersion	      <string>
   kind	            <string>
   metadata	        <Object>
      annotations	  <map[string]string>
      labels	      <map[string]string>
      name	        <string>
      namespace	    <string>
<Snip>







It’s a useful command for finding which properties any object supports. It also shows the format of properties (string, map, object etc.).


Even more useful, is the ability to drill into specific attributes. The following command drills into the restart policy attribute of a Pod object.



$ kubectl explain pod.spec.restartPolicy
KIND:     Pod
VERSION:  v1
FIELD:    restartPolicy <string>
DESCRIPTION:
     Restart policy for all containers within the pod. One of Always, OnFailure, Never. 
     Default to Always. 
     More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/...







You’ll see a lot of Pod features as you progress through the book. However, it’s worth a quick introduction to some of them right now.


Labels let you group Pods and associate them with other objects in powerful ways. Annotations let you add experimental features and integrations with 3rd-party tools and services. Probes let you test the health and status of Pods, enabling advanced scheduling, updates, and more. Affinity and anti-affinity rules give you control over where Pods run. Termination control lets you to gracefully terminate Pods and the applications they run. Security policies let you enforce security features. Resource requests and limits let you specify minimum and maximum values for things like CPU, memory and disk IO.


Despite bringing so many features to the party, Pods are super-lightweight and add very little overhead.


Figure 4.1 shows a Pod as a wrapper around one or more containers. 
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Pods assist in scheduling


On the scheduling front, every container in a Pod is guaranteed to be scheduled to the same cluster node. This in turn guarantees they’ll be in the same region and zone in your cloud or datacenter. We call this co-scheduling and co-locating.


Labels, affinity and anti-affinity rules, and resource requests and limits give you fine-grained control over which nodes Pods can run on.



  Note: Remember that nodes are host servers that Pods run on. They can be physical servers, virtual machines, or cloud instances.




Pods enable resource sharing


On the sharing of resources front, Pods provide a shared execution environment for one or more containers. This shared execution environment includes things such as.



  	Shared filesystem

  	Shared network stack (IP address and ports…)

  	Shared memory

  	Shared volumes




You’ll see it later, but every container in a Pod shares the Pod’s execution environment. So, if a Pod has two containers, both containers share the Pod’s IP address and can access any of the Pod’s volumes to share data.


We’ll cover all of these features throughout the book, but hopefully you understand some of the advantages of using Pods.


Static Pods vs controllers


There are two ways to deploy Pods.



  	Directly via a Pod manifest

  	Indirectly via a controller




Pods deployed directly from a Pod manifest are called static Pods and have no super-powers such as self-healing, scaling, or rolling updates. This is because they’re only monitored and managed by the local kubelet process which is limited to attempting container and Pod restarts on the local node. If the node they’re running on fails, there’s no control-plane process watching and capable of starting a new one on a different node.


Pods deployed via controllers have all the benefits of being monitored and managed by a highly-available controller running on the control-plane. The local kubelet on the node they’re running on can still attempt local restarts, but if restart attempts fail, or the node itself fails, the observing controller can start a replacement Pod on a different node.


Just to be clear, it’s vital to understand that Pods as mortal. When they die, they’re gone. There’s no fixing them and bringing them back from the dead. This firmly places them in the cattle category in the pets vs cattle paradigm. Pods are cattle, and when they die, they get replaced by another. There’s no tears and no funeral. The old one is gone, and a shiny new one – with the same config, but a different IP address and UID – magically appears and takes its place.


This is why applications should always store state and data outside the Pod. It’s also why you shouldn’t rely on individual Pods – they’re ephemeral, here today, gone tomorrow…


In the real world, you’ll almost always deploy and manage Pods via controllers.


Single-container and multi-container Pods


Pods can run one or more containers. The single-container model is the simplest, but multi-container Pods are important in real-world production environments and vital for service meshes. You’ll learn more about multi-container Pods later in the chapter.


Deploying Pods


The process of deploying a Pod to Kubernetes is as follows.



  	Define it in a YAML manifest file 

  	Post the YAML to the API server

  	The API server authenticates and authorizes the request

  	The configuration (YAML) is validated

  	The scheduler deploys the Pod to a healthy node with enough available resources 

  	The local kubelet monitors it




If the Pod is deployed via a controller, the configuration will be added to the cluster store as part of overall desired state and a controller will monitor it.


Let’s dig a bit deeper.


The anatomy of a Pod


At the highest level, a Pod is an execution environment shared by one or more containers. Shared execution environment means the Pod has a set of resources that are shared by every container it runs. These resources include IP address, ports, hostname, sockets, memory, volumes, and more…


It can be useful to think of Pods as shared environments, and containers as application processes.


If you’re using Docker or containerd as your container runtime, a Pod is actually a special type of container called a “pause container”. You heard that right, a Pod is just a fancy name for a special container. This means containers running inside of Pods are really containers running inside of containers. For more information, watch “Inception” by Christopher Nolan, starring Leonardo DiCaprio ;-)


Seriously though, a Pod is a collection of resources that containers running inside of it inherit and share. These resources are actually Linux kernel namespaces, and include the following:



  	
net namespace: IP address, port range, routing table…

  	
pid namespace: isolated process tree

  	
mnt namespace: filesystems and volumes…

  	
UTS namespace: Hostname

  	
IPC namespace: Unix domain sockets and shared memory




Let’s look at how the Pod shared execution environment model affects networking.


Pods and shared networking


Each Pod creates its own network namespace. This means a Pod has its own IP address, a single range of TCP and UDP ports, and a single routing table. If it’s a single-container Pod, the container has full access to the IP, port range and routing table. If it’s a multi-container Pod, all containers share the IP, port range and routing table.


Figure 4.2 shows two Pods, each with its own IP. Even though one of them is a multi-container Pod, it still only gets a single IP.
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In Figure 4.2, external access to the containers in the Pod on the left is achieved via the IP address of the Pod coupled with the port of the container you’re trying to reach. For example, 10.0.10.15:80 will get you to the main application container, but 10.0.10.15.5000 will get you to the supporting container. 


Container-to-container communication within the same Pod happens via the Pod’s localhost adapter and a port number. For example, the main container in Figure 4.2 can reach the supporting container on localhost:5000.


The pod network


On the topic of networking, every Pod gets its own unique IP addresses that’s fully routable on an internal Kubernetes network called the pod network. The pod network is flat, meaning every Pod can talk directly to every other Pod without the need for complex port mappings. This is shown in Figure 4.3.
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In a default out-of-the-box cluster, the Pod network is wide open from a security perspective. You should use Network Policies to lock down access.


Atomic deployment of Pods


Pod deployment is an atomic operation. This means it’s all-or-nothing – deployment either succeeds or it doesn’t. You’ll never have a scenario where a partially deployed Pod is servicing requests. Only after all a Pod’s resources are running and ready will it start servicing requests.


Pod lifecycle


The lifecycle of a typical Pod is something like this… 


You define it in a declarative YAML object that you post to the API server and it enters the pending phase. It’s then scheduled to a healthy node with enough resources and the local kubelet instructs the container runtime to pull all required images and start all containers. Once all containers are pulled and running, the Pod enters the running phase. If it’s a short-lived Pod, as soon as all containers terminate successfully the Pod itself terminates and enters the succeeded state. If it’s a long-lived Pod, it remains indefinitely in the running phase.


Shorted-lived and long-lived Pods


Pods can run all different types of applications. Some, such as web servers, are intended to be long-lived and should remain in the running phase indefinitely. If any containers in a long-lived Pod fail, the local kubelet may attempt to restart them. 


We say the kubelet “may” attempt to restart them. This is based on the container’s restart policy which is defined in the Pod config. Options include Always, OnFailure, and Never. Always is the default restart policy and appropriate for most long-lived Pods.


Other workload types, such as batch jobs, are designed to be short-lived and only run until a task completes. Once all containers in a short-lived Pod successfully terminate, the Pod terminates and its status is set to successful. Appropriate container restart policies for short-lived Pods will usually be Never or OnFailure.


Kubernetes has several controllers for different types of long-lived and short-lived workloads. Deployments, StatefulSets, and DaemonSets are examples of controllers designed for long-lived Pods. Jobs and CronJobs are examples designed for short-lived Pods.


Pod immutability


Pods are immutable objects. This means you can’t modify them after they’re deployed.


This can be quite a mindset change for some people, especially if you come from a background of deploying servers and regularly patching and updating them.


The immutable nature of Pods is a key aspect of cloud-native microservices design patterns and forces the following behaviors.



  	When updates are needed, replace all old Pods with new ones that have the updates

  	When failures occur, replace failed Pods with new identical ones




To be clear, you never actually update a running Pod, you always replace it with a new Pod containing the updates. You also never log onto failed Pods and attempt fixes, you build fixes into an updated Pod and replace failed ones with the updated one.


Pods and scaling


All Pods run a single application container instance, making them an ideal unit of scaling – if you need to scale the app, you add or remove Pods. This is call horizontal scaling. 


You never scale an app by adding more of the same application containers to a Pod. Multi-container Pods are not a way to scale an app, they’re only for co-scheduling and co-locating containers that need tight coupling.


Pod theory summary



  	Pods are the atomic unit of scheduling in Kubernetes

  	Single-container Pods are the simplest. However, multi-container Pods are ideal for co-locating tightly coupled workloads and are fundamental to service meshes

  	Pods get scheduled on nodes (host physical servers, VMs, cloud instances), and you can’t schedule a single Pod to span multiple nodes

  	Pods are defined declaratively in manifest files you post to the API server

  	You almost always deploy Pods via higher-level controllers




Multi-container Pods


Multi-container Pods are a powerful pattern and heavily used in real-world environments.


At a very high-level, every container should have a single clearly defined responsibility. For example, an application that pulls content from a repository and serves it as a web page has two clear functions:



  	Pull the content

  	Serve the web page




In this example you should design two containers, one responsible for pulling the content and the other to serve the web page. We call this separation of concerns or separation of responsibilities.


This design approach keeps each container small and simple, encourages re-use, and makes troubleshooting simpler.


However, there are scenarios where it’s a good idea to tightly couple two or more functions. Consider the same example app that pulls content and serves it via a web page. A simple design would have the “sync” container (the one pulling content updates) put content updates in a volume shared with the “web” container. For this to work, both containers need to run in the same Pod so they have access to the same shared volume in the Pod’s shared execution environment.


Co-locating multiple containers in the same Pod allows containers to be designed with a single responsibility but work closely with others.


Kubernetes offers several well-defined multi-container Pod patterns.



  	Sidecar pattern

  	Adapter pattern

  	Ambassador pattern

  	Init pattern




Each one is an example of the one-container-one-responsibility model.


Sidecar multi-container Pods


The sidecar pattern is probably the most popular and most generic multi-container pattern. It has a main application container and a sidecar container. It’s the job of the sidecar to augment or perform a secondary task for the main application container. The previous example of a main application web container, plus a helper pulling up-to-date content is a classic example of the sidecar pattern – the “sync” container pulling the content from the external repo is the sidecar.


An increasingly important user of the sidecar model is the service mesh. At a high level, service meshes inject sidecar containers into application Pods, and the sidecars do things like encrypt traffic and expose telemetry and metrics.


Adapter multi-container Pods


The adapter pattern is a specific variation of the generic sidecar pattern where the helper container takes non-standardized output from the main container and rejigs it into a format required by an external system. 


A simple example is NGINX logs being sent to Prometheus. Out-of-the-box, Prometheus doesn’t understand NGINX logs, so a common approach is to put an adapter sidecar into the NGINX Pod that converts NGINX logs into a format accepted by Prometheus.


Ambassador multi-container Pods


The ambassador pattern is another variation of the sidecar pattern. This time, the helper container brokers connectivity to an external system. For example, the main application container can just dump its output to a port the ambassador container is listening on and sit back while the ambassador container does the hard work of getting it to the external system.


It acts a lot like political ambassadors that interface with foreign nations on behalf of a government. In Kubernetes, ambassador containers interface with external systems on behalf of the main app container.


Init multi-container Pods


The init pattern is not a form of sidecar. It runs a special init container that’s guaranteed to start and complete before your main app container. It’s also guaranteed to only run once.


As the name suggests, it’s job in life is to run tasks and initialise the environment for the main application container. For example, a main app container may need permissions setting, an external API to be up and accepting connections, or a remote repository cloning to a local volume. In cases like these, an init container can do that prep work and will only exit when the environment is ready for the main app container. The main app container will not start until the init container completes.


Hands-on with Pods


If you’re following along, be sure to clone the book’s GitHub repo and run all of the following commands from within the pods folder.



$ git clone https://github.com/nigelpoulton/TheK8sBook.git
Cloning into 'TheK8sBook'...







If you don’t have git, or are uncomfortable using it, you can just visit the repo and copy the file contents into files with the same name on your local machine.


You can follow along with any of the Kubernetes clusters you saw how to build in the “Getting Kubernetes” chapter.


List any existing Pods to make it easier to identify the Pods you’ll create in the following steps.



$ kubectl get pods
No resources found in default namespace.







Pod manifest files


You’ll be using the following Pod manifest. It’s available in the book’s GitHub repo under the pods folder called pod.yml:



kind: Pod
apiVersion: v1
metadata:
  name: hello-pod
  labels:
    zone: prod
    version: v1
spec:
  containers:
  - name: hello-ctr
    image: nigelpoulton/k8sbook:1.0
    ports:
    - containerPort: 8080







Let’s step through it and find out what it’s describing.


Straight away you can see four top-level resources:



  	kind

  	apiVersion

  	metadata

  	spec




The .kind field tells Kubernetes the type of object being defined. This file is defining a Pod object.


apiVersion defines the schema version to use when creating the object. This file is defining a Pod object and telling Kubernetes to build it using the v1 Pod schema.


The normal format for apiVersion is <api-group>/<version>. However, Pods are defined in a special API group called the core group which omits the api-group part. For example, StorageClass objects are defined in the v1 schema of the storage.k8s.io API group and are described in YAML files as storage.k8s.io/v1. However, Pods are in the core API group which omits the API group name, so we describe them in YAML files as just v1.


So far, you know you’re deploying a Pod object as defined in v1 of the core API group.


The .metadata section is where you attach things such as names, labels, annotations, and a Namespace. The name helps you identify the object in the cluster, and the labels let you create loose couplings with other objects. Annotations can help integrate with 3rd-party tools and services. We’ll discuss Namespaces in a future chapter.


The .metadata section of this manifest is naming the Pod “hello-pod” and assigning it two labels. You’ll use the labels in a future chapter to loosely couple it to a Service for stable networking. As it’s not specifying a Namespace, it’ll be deployed to the default Namespace. It’s not good practice to use the default namespace in the real world, but it’s fine for these examples.


The .spec section is where you define the containers the Pod will run. This is called the Pod template, and this example is defining a single-container Pod based on the nigelpoulton/k8sbook:1.0 image. It’s calling the container hello-ctr and exposing it on port 8080.


If this was a multi-container Pod, you’d define additional containers in the .spec section.


Manifest files: Empathy as Code


Quick side-step.


Configuration files, like Kubernetes manifests, are excellent sources of documentation. As such, they have a few secondary benefits. A couple of these include:



  	Speeding-up on-boarding of new team members

  	Bridging the gap between developers and operations




For example, if you need a new team member to understand the basic functions and requirements of an application, get them to read its Kubernetes manifest files.


Also, if your operations teams complain that developers don’t give accurate application requirements and documentation, make your developers use Kubernetes. This forces them to describe applications in Kubernetes manifests, which can then be used by operations to understand how the application works and what it requires from the environment. This is especially true in more advanced setups where you define things such as resource requirements and limits in manifest files.


These kinds of benefits were described as a form of empathy as code by Nirmal Mehta in his 2017 DockerCon talk entitled “A Strong Belief, Loosely Held: Bringing Empathy to IT”.


Back on track…


Deploying Pods from a manifest file


You need to run the following commands from the pods folder where you cloned the book’s GitHub repo to.



$ kubectl apply -f pod.yml
pod/hello-pod created







Although the Pod is showing as created, it might not be fully deployed and available yet. This is because it takes time to pull the image.


Run a kubectl get pods to check the status.



$ kubectl get pods
NAME        READY    STATUS             RESTARTS   AGE
hello-pod   0/1      ContainerCreating  0          9s







You can see the container is still creating – probably waiting while the container runtime pulls the image from Docker Hub.


This is a good time to mention that Kubernetes will pull (download) images from Docker Hub by default. To download from another registry, you need to specify the registry URL before the image name in the YAML file. The following image is in the Google Container Registry (k8s.gcr.io): k8s.gcr.io/git-sync:v3.1.6


You can add the --watch flag to the command to monitor it and see when the status changes to Running.


Congratulations. The Pod is running on a healthy node and is being monitored by the local kubelet process.


In future chapters, you’ll see how to connect to the app running in the Pod.


Introspecting running Pods


The two main commands for checking the status of Pods are kubectl get and kubectl describe.


kubectl get


As good as kubectl get pods is, it’s a bit light on detail. Not to worry though, there’s plenty of options for deeper introspection.


First up, you can add a couple of flags that give you more information:



  	
-o wide gives a couple more columns but is still a single line of output

  	
-o yaml takes things to the next level, returning a full copy of the Pod from the cluster store. 




The following command shows a snipped output from of a kubectl get pods -o yaml command. The output is broadly divided into two parts:



  	desired state (.spec)

  	observed state (.status)





$ kubectl get pods hello-pod -o yaml
apiVersion: v1
kind: Pod
metadata:
  annotations:
    kubectl.kubernetes.io/last-applied-configuration: |
      ...
  name: hello-pod
  namespace: default
spec:                           <<== Desired state is in this block
  containers:
  - image: nigelpoulton/k8sbook:1.0
    imagePullPolicy: IfNotPresent
    name: hello-ctr
    ports:
    ...
status:                         <<== Observed state is in this block
  conditions:
  - lastProbeTime: null
    lastTransitionTime: "2021-02-01T18:21:51Z"
    status: "True"
    type: Initialized
...







The full output contains a lot more than the 13-line YAML file you posted. So, where does this extra information come from?


Two main sources:



  	Pod objects have a lot of properties. Anything not explicitly set in the YAML file is automatically expanded with default values.

  	The .status section is the current observed state of the Pod.




kubectl describe


Another great command for introspection is kubectl describe. This provides a nicely formatted multi-line overview of an object. It even includes important object lifecycle events.



$ kubectl describe pods hello-pod
Name:         hello-pod
Namespace:    default
Start Time:   Mon, 01 Feb 2021 18:21:51 +0000
Labels:       version=v1
              zone=prod
Status:       Running
IP:           10.42.1.28
Containers:
  hello-ctr:
    Container ID:   containerd://4f66e48e...
    Image:          nigelpoulton/k8sbook:1.0
    Port:           8080/TCP
    ...
Conditions:
  Type              Status
  Initialized       True
  Ready             True
  ContainersReady   True
  ...
Events:
  Type    Reason     Age        Message
  ----    ------     ----     -------
  Normal  Scheduled  5m30s    Successfully assigned ...
  Normal  Pulling    5m30s    Pulling image "nigelpoulton/k8sbook:1.0"
  Normal  Pulled     5m8s     Successfully pulled image ...
  Normal  Created    5m8s     Created container hello-ctr
  Normal  Started    5m8s     Started container hello-ctr







The output has been snipped to fit the page.


kubectl logs


Another useful command for introspecting Pods is kubectl logs. Like other Pod-related commands, if you don’t specify a container with the --container flag, it executes against the first container in the Pod. The format of the command is kubectl logs <pod>.


Each container in a multi-container Pod gets a name. The first Pod in the YAML object is the first container, and all commands will run against this unless you specify otherwise. If you need the command to run against another container, just add the --container flag and specify the container name.


The following YAML snippet is from a multi-container Pod called “multipod” that defines a container called app and another called syncer. 



spec:
  containers:
  - name: app                   <<==== First container
    image: nginx
      ports:
        - containerPort: 8080
  - name: syncer                <<==== Second container
    image: k8s.gcr.io/git-sync:v3.1.6
    volumeMounts:
    - name: html
<Snip>







The following command runs against the syncer container.



$ kubectl logs multipod --container syncer
<Snip>







kubectl exec: running commands in Pods


Another way to introspect a running Pod is to log into it or execute commands in it. You can do both of these with kubectl exec. The following example shows how to execute a ps aux command in the first container in the hello-pod Pod.



$ kubectl exec hello-pod -- ps aux
PID   USER     TIME   COMMAND
  1   root     0:00   node ./app.js
 11   root     0:00   ps aux







The output shows the main application process (app.js) is running. 


It’s also possible to use kubectl exec to get shell access to a container running in a Pod. When you do this, your terminal prompt will change and you’ll be able to execute commands from inside the Pod (as long as the command binaries are installed in it).


The following kubectl exec command will log-in to the first container in the hello-pod Pod. Once inside, install the curl utility and run a curl command to transfer data from the process listening on port 8080.



  Note: This example is just for demonstration purposes. Installing tools inside running Pods and containers is an anti-pattern and should be avoided. If you need to make changes to a Pod, you should create a new Pod with the updates and replace old ones with the new one.





$ kubectl exec -it hello-pod -- sh

# apk add curl
<Snip>

# curl localhost:8080
<html><head><title>K8s rocks!</title><link rel="stylesheet" href="http://netdna....







The -it flags on the kubectl exec command make the session interactive and connects STDIN and STDOUT on your terminal to STDIN and STDOUT inside the first container in the Pod. Your shell prompt will change to indicate your shell is now connected to the container.


If you’re running multi-container Pods, you’ll need to pass the --container flag and give it the name of the container you want to create the exec session with. If you don’t specify this flag, the command will execute against the first container in the Pod. You can see the ordering and names of containers in a Pod with the kubectl describe pods <pod> command. You can also inspect the Pod’s YAML file.


Pod hostnames


Every container in a Pod inherits its hostname from the name of the Pod. This means all containers in a multi-container Pod get the same hostname. 


The Pod you deployed is named hello-pod in the pod.yml file.



kind: Pod
apiVersion: v1
metadata:
  name: hello-pod      <<<=== This line
  labels:
  <Snip>







Run the following command from within the interactive exec session you already have to the Pod. The command is case-sensitive.



$ env | grep HOSTNAME
HOSTNAME=hello-pod







The hostname of the container is set to the Pod’s name. With this in mind, you should always set Pod names as valid DNS names (a-z and 0-9 – the minus sign and the period sign).


Type exit to drop back to the terminal of your local machine.


Check Pod immutability


Pods are designed as immutable objects. You can use kubectl edit to try and update some Pod attributes.


Try editing any of the following, 



  	Pod name

  	Container port

  	Container name




Kubernetes will prevent you from changing them.


Multi-container Pod – init container


The following YAML defines a multi-container Pod with an init container and main app container.



apiVersion: v1
kind: Pod
metadata:
  name: initpod
  labels:
    app: initializer
spec:
  initContainers:
  - name: init-ctr
    image: busybox
    command: ['sh', '-c', 'until nslookup k8sbook; do echo waiting for k8sbook service;\
              sleep 1; done; echo Service found!']
  containers:
    - name: web-ctr
      image: nigelpoulton/web-app:1.0
      ports:
        - containerPort: 8080







The spec.initContainers block defines one or more containers that Kubernetes guarantees will run and complete before main app container starts.


This example has a single init container called “init-ctr” that loops until a Kubernetes Service object called “k8sbook” is up and present.


Deploy it with the following command and then run a kubectl get pods with the --watch flag.



$ kubectl apply -f initpod.yml
pod/initpod created

$ kubectl get pods --watch
NAME      READY   STATUS     RESTARTS   AGE
initpod   0/1     Init:0/1   0          5s







The Init:0/1 status tells you that zero out of one init containers has completed successfully. The Pod will remain in this phase until a Service called “k8sbook” is created.


Create the Service and watch the Pod status change.



$ kubectl apply -f initsvc.yml
service/k8sbook created

$ kubectl get pods --watch
NAME      READY   STATUS     RESTARTS   AGE
initpod   0/1     Init:0/1   0          18s
initpod   0/1     PodInitializing   0          25s
initpod   1/1     Running           0          2m49s







As soon as the Service appears, the init container successfully completes, allowing the main application container to start.


Multi-container Pod – sidecar container


Sidecar containers are architecturally different to init containers. The sidecar is long-lived and runs alongside the main application container for the entire lifespan of the main container. 


The following YAML file defines a Pod with two containers. Both mount the same volume and use it to share data. 


The first container is called “ctr-web” and is the main app container. It serves a static web page based on content loaded from the shared volume. The second container is called “ctr-sync” and is the sidecar. It syncs content from a GitHub repo into the same shared volume. Net result, if the contents of the GitHub repo change, the “ctr-sync” sidecar container will copy the new content into the shared volume where the “ctr-web” container will notice and update the web page.


The mechanics of how it all works isn’t really important here. What’s important is seeing how two containers are defined in a single Pod YAML.



apiVersion: v1
kind: Pod
metadata:
  name: git-sync
  labels:
    app: sidecar
spec:
  containers:
  - name: ctr-web
    image: nginx
    volumeMounts:
    - name: html
      mountPath: /usr/share/nginx/
  - name: ctr-sync
    image: k8s.gcr.io/git-sync:v3.1.6
    volumeMounts:
    - name: html
      mountPath: /tmp/git
    env:
    - name: GIT_SYNC_REPO
      value: https://github.com/nigelpoulton/ps-sidecar.git
    - name: GIT_SYNC_BRANCH
      value: master
    - name: GIT_SYNC_DEPTH
      value: "1"
    - name: GIT_SYNC_DEST
      value: "html"
  volumes:
  - name: html
    emptyDir: {}







To see it in action, you’ll need to fork the following GitHub repo (you’ll need a GitHub account to be able to do this).



https://github.com/nigelpoulton/ps-sidecar







Update the GIT_SYNC_REPO value in the sidecarpod.yml and save your changes.


Deploy the application (Pod and Service).



$ kubectl apply -f sidecarpod.yml







You can now use a web browser to connect to the app via the Service.


It’s currently displaying content from your forked repo. To see the sidecar container in action, make a change to the contents of your forked repo, wait a moment, and then refresh your browser tab viewing the app.


Feel free to run the kubectl get pods and kubectl describe pod commands to see how multi-container Pods appear in the outputs.


There’s obviously a lot more to Pods than what we’ve covered. However, you’ve learned enough to get started.


Clean-up


Use kubectl delete pods and kubectl delete svc to delete any Pods and Services still running form this chapter. You’ll need to provide the name of the Pods and Services you’re deleting.


The following command deletes the git-sync Pod. It may take a few seconds for it to gracefully terminate.



$ kubectl delete pod git-sync
pod "git-sync" deleted







Chapter Summary


In this chapter, you learned the atomic unit of deployment in Kubernetes is the Pod. Each Pod has one or more containers and gets deployed to a single node in the cluster as an all-or-nothing atomic operation.


Pods are defined and deployed declaratively using YAML manifest files, and it’s normal to deploy them via higher-level controllers such as Deployments and DaemonSets. If a Pod is not deployed via a controller it’s called a static Pod.


You use kubectl apply to POST the YAML manifests to the API server, and Kubernetes picks a node to run the Pod on.


The kubelet daemon on the assigned worker node is responsible for pulling the strings to get the Pod started and then monitoring it and attempting local fixes. 


If the node a static Pod is running on fails, the missing Pod doesn’t get replaced by another one on another node.








5: Virtual clusters with Namespaces


Namespaces are a native way to divide a single Kubernetes cluster into multiple virtual clusters. 


This chapter will set the scene for Namespaces, get you up-to-speed with creating and managing them, and familiarise you with use-cases. How they integrate with things like service discovery and resource quotas will be discussed in later chapters.


We’ll split the chapter as follows.



  	Use cases for Namespaces

  	Inspecting Namespaces

  	Creating and managing Namespaces

  	Deploying to Namespaces




It’s important to know that Kubernetes Namespaces are not the same as Linux kernel namespaces. Kernel namespaces divide operating systems into virtual operating systems called containers. Kubernetes Namespaces divide Kubernetes clusters into virtual clusters called… you guessed it… Namespaces.


We’ll capitalise the word “Namespace” when referring to Kubernetes Namespaces. This follows the pattern of capitalizing Kubernetes API objects and makes it obvious we’re not referring to other types of “namespaces”.


Use cases for Namespaces


Namespaces partition a Kubernetes cluster and are designed as an easy way to apply quotas and policies to groups of objects. They’re not designed for strong workload isolation.


Before going any further, it’s important to understand that most Kubernetes objects are deployed to a Namespace. These objects are said to be namespaced and include common objects such as Pods, Services and Deployments. Other objects exist outside of Namespaces and include nodes and PodSecurityPolicies.


If you don’t explicitly define a target Namespace when deploying a namespaced object, it’ll be deployed to the default Namespace.


You can run the following command to see all Kubernetes API resources (objects) supported by your cluster. The output displays whether an object is namespaced or not. The output is trimmed.



$ kubectl api-resources
NAME                     SHORTNAMES   ...    NAMESPACED   KIND
nodes                    no                  false        Node
persistentvolumeclaims   pvc                 true         PersistentVolumeClaim
persistentvolumes        pv                  false        PersistentVolume
pods                     po                  true         Pod
podtemplates                                 true         PodTemplate
replicationcontrollers   rc                  true         ReplicationController
resourcequotas           quota               true         ResourceQuota
secrets                                      true         Secret
serviceaccounts          sa                  true         ServiceAccount
services                 svc                 true         Service
...







Namespaces a good way of sharing a single cluster among different departments and environments. For example, a single cluster might have the following Namespaces.



  	Dev

  	Test

  	QA




Each one can have its own set of users and permissions, as well as unique resource quotas.


What they’re not good for, is isolating hostile workloads. This is because a compromised container or Pod in one Namespace can wreak havoc in other Namespaces. Putting this into context, you shouldn’t place competitors, such as Pepsi and Coke, in separate Namespaces on the same shared cluster.


If you need strong workload isolation, the current method is to use multiple clusters. There are projects and technologies aiming to provide better solutions, but at the time of writing, the safest and most common way of isolating workloads is putting them on their own clusters.


Inspecting Namespaces


Every Kubernetes cluster has a set of pre-created Namespaces (virtual clusters). 


Run the following command to list yours.



$ kubectl get namespaces
NAME             STATUS    AGE
kube-system      Active    3d
default          Active    3d
kube-public      Active    3d
kube-node-lease  Active    3d







The default Namespace is where newly created objects go unless you explicitly specify otherwise. Kube-system is where DNS, the metrics server, and other control plane components run. Kube-public is for objects that need to be readable by anyone. And last but not least, kube-node-lease is used for node heartbeat and managing node leases.


Run a kubectl describe to inspect one of the Namespaces on your cluster. 



  Note: You can substitute namespace with ns when working with kubectl.





$ kubectl describe ns default
Name:         default
Labels:       <none>
Annotations:  <none>
Status:       Active
No resource quota.
No LimitRange resource.







You can also add -n or --namespace to regular kubectl commands to filter results based on a specific Namespace. 


List Service objects in the kube-system Namespace (your output might be different).



$ kubectl get svc --namespace kube-system
NAME                 TYPE           CLUSTER-IP     EXTERNAL-IP   PORT(S)                 AGE
kube-dns             ClusterIP      10.43.0.10     <none>        53/UDP,53/TCP,9153...   67m
metrics-server       ClusterIP      10.43.4.203    <none>        443/TCP                 67m
traefik-prometheus   ClusterIP      10.43.49.213   <none>        9100/TCP                67m
traefik              LoadBalancer   10.43.222.75   <pending>     80:31716/TCP,443:31...  67m







You can also use the --all-namespaces flag to return objects from all Namespaces.


Creating and managing Namespaces


To follow along with these examples, you’ll need a clone of the book’s GitHub repo and run all commands from within the namespaces folder.



$ git clone https://github.com/nigelpoulton/TheK8sBook.git
<Snip>

$ cd TheK8sBook/namespaces







Namespaces are first-class resources in the core v1 API group. This means they’re stable, well understood, and have been around for a long time. It also means you can create and manage them imperatively with kubectl, and declaratively with YAML manifests.


Create a new Namespace, called “hydra”, with the following imperative command.



$ kubectl create ns hydra
namespace/hydra created







The following YAML is from the shield-ns.yml file in the namespaces folder of the book’s GitHub repo. It defines a simple Namespace called “shield”.



kind: Namespace
apiVersion: v1
metadata:
  name: shield
  labels:
    env: marvel







Create it with the following command.



$ kubectl apply -f shield-ns.yml
namespace/shield created







List all Namespaces to see the two new ones you created. 



$ kubectl get ns
NAME         STATUS   AGE
<Snip>
hydra        Active   9m35s
shield       Active   3s







If you know anything about the Marvel Cinematic Universe, you’ll know Shield and Hydra are bitter enemies and should not be sharing the same cluster only separated by Namespaces.


Delete the “hydra” Namespace.



$ kubectl delete ns hydra
namespace "hydra" deleted







Configuring kubectl use a specific Namespace


When you start using Namespaces, you’ll quickly realise it’s painful remembering to add the -n or --namespace flag on all kubectl commands. A better way might be to set your kubeconfig to automatically work with a particular Namespace.


The following command configures kubectl to run all future commands against the shield Namespace.



$ kubectl config set-context --current --namespace shield
Context "k3d-tkb" modified.







Run a few simple kubectl get commands to test it works.


Deploying to Namespaces


As previously mentioned, most objects exist in the context of a Namespace. If you don’t specify otherwise, new objects will be created in the default Namespace.


There are two ways to deploy objects to a specific Namespace.



  	Imperatively

  	Declaratively




The imperative method requires you to add the -n or --namespace flag to commands. The declarative method specifies the Namespace in the YAML manifest file.


We’ll declaratively deploy a simple app to the shield Namespace and test it. 


The application is defined in the shield-app.yml file in the namespaces folder. It defines a ServiceAccount, Service, and Pod. The following snipped content shows all three objects are declaratively configured for the shield Namespace. At this point in the book you don’t need to understand what everything in the YAML is doing. For example, you’ll learn all about Service objects in an upcoming chapter.



apiVersion: v1
kind: ServiceAccount
metadata:
  namespace: shield     <<== Namespace
  name: default
---
apiVersion: v1
kind: Service
metadata:
  namespace: shield     <<== Namespace
  name: the-bus
spec:
  ports:
  - nodePort: 31112
    port: 8080
    targetPort: 8080
  selector:
    env: marvel
---
apiVersion: v1
kind: Pod
metadata:
  namespace: shield     <<== Namespace
  name: triskelion
<Snip>







Deploy it with the following command. You don’t have to specify the Namespace on the command line.



$ kubectl apply -f shield-app.yml
serviceaccount/default configured
service/the-bus configured
pod/triskelion created







Run a few commands to verify all three objects were deployed to the shield Namespace. Remember to use the -n or --namespace flag if you haven’t configured kubectl to automatically use that Namespace.



$ kubectl get pods -n shield
NAME         READY   STATUS    RESTARTS   AGE
triskelion   1/1     Running   0          48s

$ kubectl get svc -n shield
NAME      TYPE       CLUSTER-IP     EXTERNAL-IP   PORT(S)          AGE
the-bus   NodePort   10.43.30.174   <none>        8080:31112/TCP   52s







Use curl or your browser to connect to the app on localhost:31112.


Congratulations. You’ve created a Namespace and deployed an app to it. Connecting to the app was no different to connecting to an app in the default Namespace.


Clean-up


The following commands will clean-up your cluster and revert your kubeconfig to use the default Namespace.


Delete the shield app. Be sure to run the command from the directory where the shield-app.yml file is located.



$ kubectl delete -f shield-app.yml
serviceaccount "default" deleted
service "the-bus" deleted
pod "triskelion" deleted







Delete the shield Namespace.



$ kubectl delete ns shield
namespace "shield" deleted







Set your kubeconfig back to using the default Namespace. If you don’t do this, future commands will automatically run against the deleted shield Namespace and will fail.



$ kubectl config set-context --current --namespace default
Context "k3d-tkb" modified.







Chapter Summary


In this chapter, you learned that Kubernetes has a technology called Namespaces that can divide a cluster for resource and accounting purposes. Each Namespace can have its own users and RBAC rules, as well as resource quotas.


You also learned they are not designed as strong boundaries for isolating workloads.








6: Kubernetes Deployments


In this chapter, you’ll see how to use Deployments to bring cloud-native features such as self-healing, scaling, rolling updates, and versioned rollbacks to stateless apps on Kubernetes. 


The chapter is divided as follows:



  	Deployment theory

  	Create a Deployment

  	Perform scaling operations

  	Perform a rolling update

  	Perform a rollback




Kubernetes offers several controllers that augment Pods with important capabilities. The Deployment controller is specifically designed for stateless apps. We’ll cover some other controllers later in the book. 


Deployment theory


There are two major pieces to Deployments.



  	The spec

  	The controller




The Deployment spec is a declarative YAML object where you describe the desired state of a stateless app. You give that to Kubernetes where the Deployment controller implements and manages it. The controller aspect is highly-available and operates as a background loop reconciling observed state with desired state.


Deployment objects, and all of their features and attributes, are defined in the apps/v1 workloads API sub-group.



  Note: The Kubernetes API is architecturally divided into smaller sub-groups to make it easier to manage and navigate. The apps sub-group is where Deployments, DaemonSets, StatefulSets, and other workload-related objects are defined. We sometimes call it the workloads API.




You start with a stateless application, package it as a container, then define it in a Pod template. At this point you could run it on Kubernetes. However, static Pods like this don’t self-heal, they don’t scale, and they don’t allow for easy updates and rollbacks. For these reasons, you’ll almost always wrap them in a Deployment object. 


Figure 6.1 shows a Pod template wrapped in a Deployment object. In fact, there are three levels of nesting. The container holds the application, the Pod augments the container with labels, annotations, and other metadata useful for Kubernetes, and the Deployment further augments things with scaling and updates.
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You post the Deployment object to the API server where, Kubernetes implements it and the Deployment controller watches it.


Deployments and Pods


A Deployment object only manages a single Pod template. For example, an application with a front-end web service and a back-end catalog will have a different Pod for each (two Pod templates). As a result, it’ll need two Deployment objects – one managing front-end Pods, the other managing back-end Pods. However, a Deployments can manage multiple replicas of the same Pod. For example, the front-end Deployment might be managing 5 identical front-end Pod replicas.


Deployments and ReplicaSets


Behind-the-scenes, Deployments rely heavily on another object called a ReplicaSet. While it’s usually recommended not to manage ReplicaSets directly (let the Deployment controller manage them), it’s important to understand the role they play.


At a high-level, containers are a great way to package applications and dependencies. Pods allow containers to run on Kubernetes and enable co-scheduling and a bunch of other good stuff. ReplicaSets manage Pods and bring self-healing and scaling. Deployments manage ReplicaSets and add rollouts and rollbacks.


Figure 6.2. is similar to 6.1, but adds a ReplicaSet into the relationship and shows which object is responsible for which features.
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Think of Deployments as managing ReplicaSets, and ReplicaSets as managing Pods. Put them together, and you’ve got a great way to deploy and manage stateless applications on Kubernetes.


Self-healing and scalability


Pods are great. They let you co-locate containers, share volumes, share memory, simplify networking, and a lot more. But they offer nothing in the way of self-healing and scalability – if the node a Pod is running on fails, the Pod is lost.


Enter Deployments…



  	If a Pod managed by a Deployment fails, it will be replaced – self-healing


  	If Pods managed by a Deployment see increased or decreased load, they can be scaled





Remember though, behind-the-scenes, it’s actually the ReplicaSets doing the self-healing and scalability. You’ll see them in action soon.


It’s all about the state



Before going any further, it’s critical to understand three concepts that are fundamental to everything about Kubernetes:



  	Desired state

  	Observed state (sometimes called actual state or current state)

  	Reconciliation




Desired state is what you want. Observed state is what you have. If they match, everybody’s happy. If they don’t match, a process of reconciliation brings them back together.


The declarative model is a method for telling Kubernetes your desired state, while avoiding the detail of how to implement it. You leave the how up to Kubernetes.


Declarative vs imperative


There are two competing models. The declarative model and the imperative model.


The declarative model is all about describing an end-goal – telling Kubernetes what you want. The imperative model is all about long lists of commands to reach an end-goal – telling Kubernetes how to do something.


The following is an extremely simple analogy that might help:



  	
Declarative: Make me a chocolate cake to feed 10 people.

  	
Imperative: Drive to store. Buy; eggs, milk, flour, cocoa powder… Drive home. Pre-heat oven. Mix ingredients. Place in baking tray. Place tray in oven for 30 minutes. Remove from oven and turn oven off. Add icing. Leave to stand.




The declarative model is stating what you want (chocolate cake for 10). The imperative model is a long list of steps that will hopefully make a chocolate cake for 10.


Let’s look at a more concrete example.


Assume an application with two microservices – front-end and back-end. To meet expected demand, you know you need 5 instances of the front-end Pod and 2 instances of the back-end Pod.


Taking the declarative approach, you write a simple configuration file telling Kubernetes you want 5 replicas of the front-end Pod all listening externally on port 80. You also want 2 back-end Pods listening internally on port 27017. That’s your desired state. 


Once you’ve described this in a config file, you give it to Kubernetes and sit back while Kubernetes does the hard work of implementing and monitoring it. It’s a beautiful thing.


The opposite of this is the imperative model. It has no concept of desired state, it’s just a list of steps and instructions.


To make things worse, imperative instructions can have endless potential variations. For example, the commands to pull and start containerd containers are different from the commands to pull and start cri-o containers. This creates more work, is prone to more errors, and because it’s not declaring a desired state, there’s no self-healing. Believe me when I tell you, this is not so beautiful.


Kubernetes supports both models, but strongly prefers the declarative model.



  Note: containerd and cri-o are CRI container runtimes that Kubernetes runs on cluster nodes instead of Docker to perform low-level tasks such as starting and stopping containers.




Controllers and reconciliation


Fundamental to desired state is the process of reconciliation.


For example, ReplicaSets are implemented as a controller running as a background reconciliation loop checking the right number of Pod replicas are present on the cluster. If there aren’t enough, it adds more. If there are too many, it terminates some. 


Assume a scenario where desired state is 10 replicas, but only 8 are present. It makes no difference if this is due to a failure, or if it’s because an autoscaler has increased desired state from 8 to 10. Either way, this is a red-alert condition for Kubernetes, so it orders the control plane to general quarters and brings up two more replicas. And the best part… it does all this without calling you at 4:20 am!


The exact same reconciliation process powers self-healing, scaling, rollouts, and rollbacks. Let’s take a closer look.


Rolling updates with Deployments


Zero-downtime rolling-updates of stateless apps are what Deployments are all about, and they’re amazing. However, they require a couple of things from your microservices applications in order to work properly.



  	Loose coupling via APIs

  	Backwards and forwards compatibility




Both of these are hallmarks of modern cloud-native microservices apps and work as follows.


All microservices in an app should be decoupled and only communicate via well-defined APIs. This allows any microservice to be updated without having to think about clients and other microservices that interact with them – everything talks to formalised APIs that expose documented interfaces and hide specifics. Ensuring releases are backwards and forwards compatible means you can perform independent updates without having to factor in which versions of clients are consuming the service.


With those points in mind, zero-downtime rollouts work like this.


Assume you’re running 5 replicas of a stateless web front-end. As long as all clients communicate via APIs and are backwards and forwards compatible, it doesn’t matter which of the 5 replicas a client connects to. To perform a rollout, Kubernetes creates a new replica running the new version and terminates an existing one running the old version. At this point, you’ve got 4 replicas on the old version and 1 on the new. This process repeats until all 5 replicas are on the new version. As the app is stateless, and there are always multiple replicas up and running, clients experience no downtime or interruption of service.


There’s actually a lot that goes on behind the scenes, so let’s look a bit closer.


You design applications with each discrete microservice as its own Pod. For convenience – self-healing, scaling, rolling updates and more – you wrap the Pods in their own higher-level controller such as a Deployment. Each Deployment describes all the following:



  	How many Pod replicas

  	What images to use for the Pod’s container(s)

  	What network ports to expose

  	Details about how to perform rolling updates




In the case of Deployments, when you post the YAML file to the API server, the Pods get scheduled to healthy nodes and a Deployment and ReplicaSet work together to make the magic happen. The ReplicaSet controller sits in a watch loop making sure our old friends observed state and desired state are in agreement. A Deployment object sits above the ReplicaSet, governing its configuration, as well as how rollouts will be performed.


All good so far.


Now, assume you’re exposed to a known vulnerability and need to rollout a newer image with the fix. To do this, you update the same Deployment YAML file with the new image version and re-post it to the API server. This updates the existing Deployment object with a new desired state requesting the same number of Pods but all running the newer image. 


To make this happen, Kubernetes creates a second ReplicaSet to create and manage the Pods with the new image. You now have two ReplicaSets – the original one for the Pods with the old image, and a new one for the Pods with the new image. As Kubernetes increases the number of Pods in the new ReplicaSet (with the new version of the image) it decreases the number of Pods in the old ReplicaSet (with the old version of the image). Net result, you get a smooth incremental rollout with zero downtime. 


You can rinse and repeat the process for future updates – just keep updating the same Deployment manifest, which should be stored in a version control system.


Brilliant.


Figure 6.3 shows a Deployment that’s been updated once. The initial release created the ReplicaSet on the left, and the update created the one on the right. You can see the ReplicaSet for the initial release has been wound down and no longer manages any Pods. The one associated with the update is active and owns all the Pods.
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It’s important that the old ReplicaSet from the initial release still exists with its configuration intact. You’ll see why in the next section.


Rollbacks


As you saw in Figure 6.3, older ReplicaSets are wound down and no longer manage any Pods. However, their configurations still exist on the cluster, making   them a great option for reverting to previous versions.


The process of a rollback is the opposite of a rollout – you wind one of the old ReplicaSets up while you wind the current one down. Simple.


Figure 6.4 shows the same app rolled back to the initial release.
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That’s not the end though. Kubernetes gives you fine-grained control over how updates and rollbacks proceed. For example, you can insert delays, control the pace and cadence of the release, and you can even probe the health and status of updated replicas.


But talk is cheap, let’s see this stuff in action.


Create a Deployment


You’ll need a Kubernetes cluster and the lab files from the book’s GitHub repo if you want to follow along. 



$ git clone https://github.com/nigelpoulton/TheK8sBook.git
Cloning into 'TheK8sBook'...







If you don’t know how to use git, or can’t install it, you can just go to the GitHub repo and copy the text from the relevant files into files with the same name on your local machine.


Be sure to run all commands from within the deployments folder.



$ cd TheK8sBook/deployments







The following YAML snippet is from the deploy.yml file. It defines a single-container Pod wrapped in a Deployment object. It’s been annotated to highlight some important sections.



apiVersion: apps/v1
kind: Deployment
metadata:
  name: hello-deploy       <<==== Deployment name. Must be valid DNS name
spec:
  replicas: 10             <<==== Number of Pods to deploy & manage
  selector:                
    matchLabels:
      app: hello-world
  revisionHistoryLimit: 5
  progressDeadlineSeconds: 300    
  minReadySeconds: 10
  strategy:                <<==== This block controls how updates happen
    type: RollingUpdate
    rollingUpdate:
      maxUnavailable: 1
      maxSurge: 1
  template:                <<==== Below here is the PodTemplate
    metadata:
      labels:
        app: hello-world
    spec:
      containers:
      - name: hello-pod
        image: nigelpoulton/k8sbook:1.0
        ports:
        - containerPort: 8080







Let’s step through it and explain some of the important parts.


Right at the very top, you specify the API version to use. At the time of writing, the latest stable Deployment schema is defined in the apps/v1 API sub-group.


Next, the kind field tells Kubernetes you’re defining a Deployment object.


The metadata section gives the Deployment a name. This should be a valid DNS name. So, alphanumerics, the dot and the dash are valid, and you should avoid exotic characters.


The spec section is where most of the action happens. Anything directly below .spec relates to the Deployment. Anything nested below .spec.template is the Pod template the Deployment uses to stamp out Pod replicas. In this example, the Pod template defines a single-container Pod.


spec.replicas is how many Pod replicas the Deployment should create and manage. 


spec.selector is a list of labels that Pods must have in order for the Deployment to manage them. Notice how the Deployment selector matches the labels assigned to the Pod lower down in the Pod template (app=hello-world).


spec.revisionHistoryLimit tells Kubernetes how many older versions/ReplicaSets to keep. Keeping more gives you more rollback options, but keeping too many can bloat the object. This can be a problem on large clusters with lots of software releases.


spec.progressDeadlineSeconds tells Kubernetes how long to wait during a rollout for each new replica to come online. The example sets a 5 minute deadline, meaning each new replica has 5 minutes to come up before Kubernetes considers the rollout stalled. To be clear, the clock is reset after each new replica comes up, meaning each step in the rollout gets its own 5 minute window.


And finally, spec.strategy tells the Deployment controller how to update the Pods when a rollout occurs.


Use kubectl apply to deploy it on the cluster.



  Note: kubectl apply posts the YAML file to the Kubernetes API server and includes all necessary authentication tokens.





$ kubectl apply -f deploy.yml
deployment.apps/hello-deploy created







At this point, the Deployment configuration is persisted to the cluster store as a record of intent and the 10 replicas will be scheduled to healthy worker nodes. In the background, Deployment and ReplicaSet controllers are watching the state of play and eager to perform their reconciliation magic.


Inspecting Deployments


You can use the normal kubectl get and kubectl describe commands to see details of Deployments and ReplicaSets.



$ kubectl get deploy hello-deploy
NAME          DESIRED   CURRENT  UP-TO-DATE  AVAILABLE   AGE
hello-deploy  10        10       10          10          24s

$ kubectl describe deploy hello-deploy
Name:                   hello-deploy
Namespace:              default
Annotations:            deployment.kubernetes.io/revision: 1
Selector:               app=hello-world
Replicas:               10 desired | 10 updated | 10 total | 10 available | 0 unavailable
StrategyType:           RollingUpdate
MinReadySeconds:        10
RollingUpdateStrategy:  1 max unavailable, 1 max surge
Pod Template:
  Labels:  app=hello-world
  Containers:
   hello-pod:
    Image:        nigelpoulton/k8sbook:1.0
    Port:         8080/TCP
<SNIP>
OldReplicaSets:  <none>
NewReplicaSet:   hello-deploy-65cbc9474c (10/10 replicas created)
<Snip>







The command outputs have been trimmed for readability, but take a minute to look at them as they contain a lot of important information.


As mentioned earlier, Deployments automatically create associated ReplicaSets. Check this with the following command.



$ kubectl get rs
NAME                     DESIRED   CURRENT  READY   AGE
hello-deploy-65cbc9474c  10        10       10      1m







Right now you only have one ReplicaSet. This is because you’ve only performed an initial rollout. However, you can see the name of the ReplicaSet matches the name of the Deployment plus a hash on the end. This is a crypto-hash of the Pod template section of the Deployment manifest (everything below .spec.template). You’ll see this shortly, but making changes to the Pod template section initiates a rollout and a new ReplicaSet with a hash of the updated Pod template.


You can get more detailed information about the ReplicaSet with the usual kubectl describe command. Your ReplicaSet will have a different name



$ kubectl get rs hello-deploy-65cbc9474c
Name:           hello-deploy-65cbc9474c
Namespace:      default
Selector:       app=hello-world,pod-template-hash=65cbc9474c
Labels:         app=hello-world
                pod-template-hash=65cbc9474c
Annotations:    deployment.kubernetes.io/desired-replicas: 10
                deployment.kubernetes.io/max-replicas: 11
                deployment.kubernetes.io/revision: 1
Controlled By:  Deployment/hello-deploy
Replicas:       10 current / 10 desired
Pods Status:    10 Running / 0 Waiting / 0 Succeeded / 0 Failed
Pod Template:
  Labels:  app=hello-world
           pod-template-hash=65cbc9474c
  Containers:
   hello-pod:
    Image:        nigelpoulton/k8sbook:1.0
    Port:         8080/TCP
<Snip>







Notice how the output is similar to the Deployment output. This is because the config of the ReplicaSet is dictated by the Deployment that created it. The status (observed state) of the ReplicaSet is also rolled up into the Deployment status.


As with the Deployment output, the ReplicaSet output tells us a lot about it and how it connects to Pods and its governing Deployment.


Accessing the app


As things stand, you’ve got 10 replicas of a web app running. In order to access it from a stable name or IP address, or even from outside the cluster, you need a Kubernetes Service object. We’ll discuss these in detail in the next chapter, but for now it’s enough to know they provide networking for a set of Pods.


The following YAML defines a Service that works with the Pod replicas previously deployed. It’s included in the “deployments” folder of the book’s GitHub repo called svc.yml.



apiVersion: v1
kind: Service
metadata:
  name: hello-svc
  labels:
    app: hello-world
spec:
  type: NodePort
  ports:
  - port: 8080
    nodePort: 30001
    protocol: TCP
  selector:
    app: hello-world







Deploy it with the following command. Be sure to run the command from the deployments directory.



$ kubectl apply -f svc.yml
service/hello-svc created







Now the Service is deployed, you can access the app by hitting any of the cluster nodes on port 30001


If you’re running Docker Desktop you should be able to use localhost:30001. Unfortunately, the current versions of Docker Desktop for Mac contain a bug and this doesn’t work. It may be fixed in your version.


If you’re running your cluster in the cloud, you need to hit the public IP or public DNS name of one of your cluster nodes on 30001.


If you’re using Minikube, get your Minikube IP ($ minikube ip) and append port 30001.


Figure 6.5 shows the Service being accessed from outside the cluster via a node called node1 on port 30001. It assumes node1 is resolvable via DNS, and port 30001 is allowed on any intervening firewalls.
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Perform scaling operations


Manually scaling the number of replicas in a Deployment is easy. You can do it imperatively with the kubectl scale command, or declaratively by updating the YAML file and re-posting to the API server. You’ll do it both ways, but the preferred way is the declarative way.


Verify the current number of replicas.



$ kubectl get deploy hello-deploy
NAME           READY   UP-TO-DATE   AVAILABLE   AGE
hello-deploy   10/10   10           10          27m







Run the following command to scale down to 5 and verify the operation.



$ kubectl scale deploy hello-deploy --replicas 5
deployment.apps/hello-deploy scaled

$ kubectl get deploy hello-deploy
NAME           READY   UP-TO-DATE   AVAILABLE   AGE
hello-deploy   5/5     5            5           27m







You’ve successfully scaled the Deployment, but there’s a potential problem. The state of your environment no longer matches what is in your declarative manifest – the cluster has 5 replicas but the Deployment YAML still defines 10. This can cause issues in the future if you use the YAML file to update other properties of the Deployment. For example, if you update the image version in the YAML file and post it to the API server, you’ll also increase the replica count back to 10. For this reason, you should always keep your YAML manifests in sync with your live environment.


Let’s re-post the YAML file and take the replica count back to 10. Editing the YAML file and posting it to Kubernetes is the preferred way to manually scale apps.


You can edit the YAML file and set a different number of replicas, but the examples later in the chapter will assume you have 10.



$ kubectl apply -f deploy.yml
deployment.apps/hello-deploy configured

$ kubectl get deploy hello-deploy
NAME           READY   UP-TO-DATE   AVAILABLE   AGE
hello-deploy   10/10   10           10          29m







You may have noticed the scaling operations were almost instantaneous. This is different to rolling updates that you’re going to see next.


Kubernetes also has autoscalers that scale Pods and infrastructure based on resource demand.


Perform a rolling update


In this section, you’ll see how to perform a rolling update on the app already deployed. We’ll assume the new version of the app has already been created and containerized as an image with the 2.0 tag. All that’s left to do is perform the rollout. To simplify the process and keep the focus on Kubernetes, we’ll ignore real-world CI/CD workflows and version control tools.


Before continuing, it’s vital you understand that update operations are replacement operations. When you “update” a Pod, you’re actually terminating it and replacing it with a brand new one. Pods are designed as immutable objects, so you never change or update existing ones.


Ok, let’s crack on.


The first step is to update the image version in the Deployment’s resource manifest. The initial release of the app is using the nigelpoulton/k8sbook:1.0 image. Update that to reference the newer nigelpoulton/k8sbook:2.0 image and save your changes. This ensures next time the manifest is posted to the API server, all Pods managed by the Deployment will be replaced with new ones running the new 2.0 image.


The following trimmed output shows the updated file. The only change is to the container image line in the Pod template section.



apiVersion: apps/v1
kind: Deployment
metadata:
  name: hello-deploy
spec:
  replicas: 10
  <Snip>
  template:
    <Snip>
    spec:
      containers:
      - name: hello-pod
        image: nigelpoulton/k8sbook:2.0   <<-- The only line that changed
        ports:
        - containerPort: 8080







Before posting it to Kubernetes, let’s look at the settings governing how the rollout will work.



  Terminology: We often use the terms update, rollout, and release to mean the same thing – issuing a new version of an app.




The .spec section of the manifest contains all the settings governing how updates will be performed. 



<Snip>
revisionHistoryLimit: 5
progressDeadlineSeconds: 300    
minReadySeconds: 10
strategy:
  type: RollingUpdate
  rollingUpdate:
    maxUnavailable: 1
    maxSurge: 1
<Snip>







revisionHistoryLimit tells Kubernetes to keep the configs of the previous 5 releases. This means the previous 5 ReplicaSet objects will be kept and you can rollback to any of them.


progressDeadlineSeconds governs how long Kubernetes waits for each new Pod replica to start, before considering the rollout to have stalled. This config gives each Pod replica its own 5 minute window to come up.


.spec.minReadySeconds throttles the rate at which replicas are replaced. The one in the example tells Kubernetes that any new replica must be up and running for 10 seconds, without any issues, before it’s allowed to update/replace the next one in sequence. Longer waits give you a chance to spot problems and avoid updating all replicas to a dodgy version. In the real world, you should make the value large enough to trap common failures.


There is also a nested .spec.strategy map telling Kubernetes you want this Deployment to:



  	Update using the RollingUpdate strategy

  	Never have more than one Pod below desired state (maxUnavailable: 1)

  	Never have more than one Pod above desired state (maxSurge: 1)




As the desired state of the app requests 10 replicas, maxSurge: 1 means you’ll never have more than 11 replicas during the update process, and maxUnavailable: 1 means you’ll never have less than 9. The net result is a rollout that updates two Pods at a time (the delta between 9 and 11 is 2).


What you’ve seen so far is great, but we haven’t explained how Kubernetes knows which Pods to terminate and replace when performing the update. 


The answer to this is simple but vital… label selectors!


If you look closely at the deploy.yml file, you’ll see the Deployment spec has a selector block. This is a list of labels the Deployment controller looks for when finding Pods to update during rollout operations. In this example, it’s looking for Pods with the app=hello-world label, and the Pod template will create Pods with that label. Net result… the Pods created by this Deployment will be managed by it.



apiVersion: apps/v1
kind: Deployment
metadata:
  name: hello-deploy
spec:
  selector:                    <<=== The Deployment will manage all
    matchLabels:               <<=== replicas on the cluster with
      app: hello-world         <<=== this label
      <Snip>
  template:
    metadata:
      labels:
        app: hello-world       <<=== Matches the label selector
<Snip>







The Deployment’s label selector is immutable, so you can’t change it once it’s deployed.


With the updated manifest ready and saved, you can initiate the update by re-posting it to the API server. Be sure to add the --record flag this time as we’ll reference it later.



$ kubectl apply -f deploy.yml --record
deployment.apps/hello-deploy configured







The update may take some time to complete. This is because it’s incrementing two Pods at a time, pulling the new image on each node, starting the new Pods, and then waiting 10 seconds before moving on to the next two.


You can monitor the progress with kubectl rollout status.



$ kubectl rollout status deployment hello-deploy
Waiting for rollout to finish: 4 out of 10 new replicas...
Waiting for rollout to finish: 4 out of 10 new replicas...
Waiting for rollout to finish: 6 out of 10 new replicas...
^C







If you press Ctrl+C to stop watching the progress, you can run kubectl get deploy commands while the update is in process. This lets you see the effect of some of the update-related settings in the manifest. For example, the following command shows that 5 of the replicas have been updated and you currently have 11. 11 is 1 more than the desired state of 10. This is a result of the maxSurge=1 value in the manifest.



$ kubectl get deploy
NAME           DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
hello-deploy   10        11        5            11          31m







Pausing and resuming rollouts


It’s possible to pause and resume a rollout using kubectl.


If the rollout is still in progress, you can pause it with the following command.



$ kubectl rollout pause deploy hello-deploy
deployment.apps/hello-deploy paused







Running a kubectl describe provides some interesting info.



$ kubectl describe deploy hello-deploy
Name:                   hello-deploy
Annotations:            deployment.kubernetes.io/revision: 2
Selector:               app=hello-world
Replicas:               10 desired | 4 updated | 11 total | 11 available | 0 unavailable
StrategyType:           RollingUpdate
MinReadySeconds:        10
RollingUpdateStrategy:  1 max unavailable, 1 max surge
<Snip>
Conditions:
  Type           Status   Reason
  ----           ------   ------
  Available      True     MinimumReplicasAvailable
  Progressing    Unknown  DeploymentPaused
OldReplicaSets:  hello-deploy-85fd664fff (7/7 replicas created)
NewReplicaSet:   hello-deploy-5445f6dcbb (4/4 replicas created)







The deployment.kubernetes.io annotation shows the object is on revision 2 (revision 1 was the initial rollout and this update is revision 2). Replicas shows the rollout is incomplete. The third line form the bottom shows the Deployment condition as “progressing” but paused. Finally, you can see the ReplicaSet for the initial release is wound down to 7 replicas and the one for the new release is up to 4.


If a scale-up operation occurs during a rollout, the additional replicas will be balanced across both ReplicaSets. In this example, if the Deployment was increased to 20 by adding 10 new replicas, Kubernetes would assign 7 of the new replicas to the old ReplicaSet and 4 to the new. This happens even if the rollout is not paused.


You can resume the rollout with the following command.



$ kubectl rollout resume deploy hello-deploy
deployment.apps/hello-deploy resumed







Once it completes, you can verify with kubectl get deploy.



$ kubectl get deploy hello-deploy
NAME          DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
hello-deploy  10        10        10           10          39m







The output shows the rollout as complete – 10 Pods are up-to-date and available.


If you’ve been following along with the examples, you’ll be able to hit refresh in your browser and see the updated app (Figure 6.6). The old version displayed “Kubernetes Rocks!”, the new one displays “The Kubernetes Book!!!”.
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Perform a rollback


A moment ago, you used kubectl apply to perform a rolling update on the “hello-deploy” Deployment. You used the --record flag so Kubernetes would maintain a documented revision history. The following command shows the Deployment with two revisions.



$ kubectl rollout history deployment hello-deploy
deployment.apps/hello-deploy
REVISION  CHANGE-CAUSE
1         <none>
2         kubectl apply --filename-deploy.yml --record=true







Revision 1 was the initial deployment that used the 1.0 image tag. Revision 2 is the rolling update you just performed. You can see the command used to invoke the update has been recorded in the object’s history. This is only there because you used the --record flag when invoking the update. This might be a good reason for you to use the --record flag.


You know that rolling updates create new ReplicaSets, and that old ReplicaSets aren’t deleted. The fact the old ones still exist makes them ideal for executing rollbacks, which are the same as updates, just in reverse.


The following commands show the two ReplicaSet objects. The second command shows the config of the old one and that it still references the old image version. The output is trimmed to fit the book.



$ kubectl get rs
NAME                      DESIRED   CURRENT   READY   AGE
hello-deploy-65cbc9474c   0         0         0       42m
hello-deploy-6f8677b5b    10        10        10      5m

$ kubectl describe rs hello-deploy-65cbc9474c
Name:           hello-deploy-65cbc9474c
Namespace:      default
Selector:       app=hello-world,pod-template-hash=65cbc9474c
Labels:         app=hello-world
                pod-template-hash=65cbc9474c
Annotations:    deployment.kubernetes.io/desired-replicas: 10
                deployment.kubernetes.io/max-replicas: 11
                deployment.kubernetes.io/revision: 1
                kubernetes.io/change-cause: kubectl apply --filename=deploy.yml --record=true
Controlled By:  Deployment/hello-deploy
Replicas:       0 current / 0 desired
Pods Status:    0 Running / 0 Waiting / 0 Succeeded / 0 Failed
Pod Template:
  Containers:
   hello-pod:
    Image:        nigelpoulton/k8sbook:1.0     
    Port:         8080/TCP







The line you’re interested in is the one shown second-from-last in the book, as it shows the old image version. Therefore, flipping the Deployment back to this ReplicaSet will automatically replace all Pods with the original version.



  Note: Don’t get confused when I refer to the rollback as an “update”. That’s exactly what it is. A rollback follows exactly the same logic and rules as a rollout – terminate Pods with the current image and replace them with Pods running the new image. Just in the case of a rollback, the “new” image is actually an “older” one.




The following example uses kubectl rollout to revert the application to revision 1. This is an imperative operation and not recommended. However, it’s convenient for quick rollbacks, just make sure you remember to update your source YAML files to reflect the changes you make.



$ kubectl rollout undo deployment hello-deploy --to-revision=1
deployment.apps "hello-deploy" rolled back







Although it might look like the operation is instantaneous, it isn’t. Like we said before, rollbacks follow the same rules defined in the strategy block of the Deployment object. In this example, that’ll be minReadySeconds: 10, maxUnavailable: 1, and maxSurge: 1. You can verify this and track the progress with the following kubectl get deploy and kubectl rollout commands.



$ kubectl get deploy hello-deploy
NAME          DESIRED  CURRNET  UP-TO-DATE  AVAILABE  AGE
hello-deploy  10       11       4           9         45m

$ kubectl rollout status deployment hello-deploy
Waiting for rollout to finish: 6 out of 10 new replicas have been updated...
Waiting for rollout to finish: 7 out of 10 new replicas have been updated...
Waiting for rollout to finish: 8 out of 10 new replicas have been updated...
Waiting for rollout to finish: 1 old replicas are pending termination...
Waiting for rollout to finish: 9 of 10 updated replicas are available...
^C







Congratulations. You’ve performed a rolling update and a successful rollback.


Just a quick reminder. The rollback operation you performed was an imperative one. This means the current state of the cluster no longer matches your source YAML files – the latest version of the YAML file lists the 2.0 image, but you rolled the cluster back to 1.0. This is a fundamental flaw with the imperative approach. In the real world, following a rollback operation like this, you should manually update your source YAML files to reflect the changes invoked by the rollback.


Rollouts and labels


You’ve already seen that Deployments and ReplicaSets use labels and selectors to find Pods they own. 


In earlier versions of Kubernetes, it was possible for Deployments to take over management of existing static Pods if they had the same labels. However, recent versions use the system-generated pod-template-hash label so only Pods created by the Deployment/ReplicaSet will be managed.


Assume a quick example. You already have 5 Pods on a cluster with the app=front-end label. At a later date, you create a Deployment that requests 10 Pods with the same app=front-end label. Older versions Kubernetes would notice there were already 5 Pods with that label and only create 5 new ones, and the Deployment/ReplicaSet would manage all 10. However, newer versions of Kubernetes tag all Pods created by a Deployment/ReplicaSet with the pod-template-hash label. This stops higher-level controllers seizing ownership of existing static Pods.


The following extremely snipped outputs show how this label connects everything.



$ kubectl describe deploy hello-deploy
Name:      hello-deploy
<Snip>
NewReplicaSet:   hello-deploy-5445f6dcbb

$ kubectl describe rs hello-deploy-5445f6dcbb     
Name:           hello-deploy-5445f6dcbb
<Snip>>
Selector:       app=hello-world,pod-template-hash=5445f6dcbb

$ kubectl get pods --show-labels
NAME                        READY   STATUS    LABELS
hello-deploy-5445f6dcbb..   1/1     Running   app=hello-world,pod-template-hash=5445f6dcbb
hello-deploy-5445f6dcbb..   1/1     Running   app=hello-world,pod-template-hash=5445f6dcbb
hello-deploy-5445f6dcbb..   1/1     Running   app=hello-world,pod-template-hash=5445f6dcbb
hello-deploy-5445f6dcbb..   1/1     Running   app=hello-world,pod-template-hash=5445f6dcbb
<Snip>







You shouldn’t mess about with pod-template-hash label or selector.


Clean-up


Use kubectl delete -f deploy.yml and kubectl delete -f svc.yml to delete the Deployment and Service created in the examples.


Chapter summary


In this chapter, you learned that Deployments are a great way to manage stateless apps on Kubernetes. They augment Pods with self-healing, scalability, rolling updates, and rollbacks.


Behind-the-scenes, Deployments use ReplicaSets to do most of the work with Pods – it’s actually a ReplicaSet that creates, terminates, and otherwise manages Pods, but the Deployment tells the ReplicaSet what to do.


Like Pods, Deployments are objects in the Kubernetes API and you should work with them declaratively. They’re defined in the apps/v1 workloads API sub-group and implement a controller architecture running as a reconciliation loop on the control plane.


When you perform updates with the kubectl apply command, previous versions of ReplicaSets get wound down, but they stick around making it easy to perform rollbacks.








7: Kubernetes Services


In previous chapters, you’ve deployed applications to Kubernetes and seen how controllers add self-healing, scaling and rollouts. Despite all of this, Pods are still unreliable and you should not connect directly to them. This is where Services come to the rescue providing stable and reliable networking for a set of unreliable Pods.


The chapter is divided as follows:



  	Setting the scene

  	Theory

  	Hands-on




Setting the scene


When Pods fail, they get replaced by new ones with new IPs. Scaling-up introduces new Pods with new IP addresses. Scaling down removes Pods. Rolling updates also replace existing Pods with new ones with new IPs. This creates massive IP churn and demonstrates why you should never connect directly to any particular Pod.


You also need to know 3 fundamental things about Kubernetes Services.


First, when talking about Services with a capital “S”, we’re talking about the Service object in Kubernetes that provides stable networking for Pods. Just like a Pod, ReplicaSet, or Deployment, a Kubernetes Service is a REST object in the API that you define in a manifest and post to the API server.


Second, every Service gets its own stable IP address, its own stable DNS name, and its own stable port.


Third, Services use labels and selectors to dynamically select the Pods to send traffic to.


Service Theory


Figure 7.1 shows a simple application managed by a Deployment controller. There’s a client (which could be another microservice) that needs a reliable network endpoint to access the Pods. Remember, it’s a bad idea to talk directly to individual Pods because they can disappear at any point via scaling operations, rollouts and rollbacks, and failures.
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Figure 7.2 shows the same application with a Service thrown into the mix. The Service fronts the Pods with a stable IP, DNS name, and port. It also load-balances traffic to Pods with the right labels.
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With a Service in place, the Pods can scale up and down, they can fail, and they can be updated and rolled back. And clients will continue to access them without interruption. This is because the Service is observing the changes and updating its list of healthy Pods. But it never changes its stable IP, DNS, and port.


Think of Services as having a static front-end and a dynamic back-end. The front-end, consisting of the IP, DNS name, and port, never changes. The back-end, comprising the list of healthy Pods, can be constantly changing.


Labels and loose coupling


Services are loosely coupled with Pods via labels and selectors. This is the same technology that loosely couples Deployments to Pods and is key to the flexibility of Kubernetes. Figure 7.3 shows an example where 3 Pods are labelled as zone=prod and version=1, and the Service has a selector that matches.
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In Figure 7.3, the Service is providing stable networking to all three Pods – you send requests to the Service and it forwards them to the Pods. It also provides basic load-balancing.


For a Service to send traffic to a Pod, the Pod needs every label the Service is selecting on. It can also have additional labels the Service isn’t looking for. If that’s confusing, the examples in Figures 7.4 and 7.5 will help.


Figure 7.4 shows an example where none of the Pods match. This is because the Service is looking for Pods with both labels. The logic is a Boolean AND.
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Figure 7.5 shows an example that does work. This time the Pods have all the labels the Service is selecting on. It makes no difference if the Pods have additional labels. The Service is looking for Pods with two specific labels, it finds them, and it ignores the fact they have additional labels.
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The following excerpts, from a Service YAML and Deployment YAML, show how selectors and labels work.



  svc.yml




apiVersion: v1
kind: Service
metadata:
  name: hello-svc
spec:
  ports:
  - port: 8080
  selector:
    app: hello-world   <<== Send to Pods with these labels
    env: tkb           <<== Send to Pods with these labels








  deploy.yml




apiVersion: apps/v1
kind: Deployment
metadata:
  name: hello-deploy
spec:
  replicas: 10
  <Snip>
  template:
    metadata:
      labels:
        app: hello-world     <<==  Pod labels
        env: tkb             <<==  Pod labels
    spec:
      containers:
  <Snip>







In the example, the Service is selecting on Pods with the app=hello-world and book=tkb labels. The Deployment has a Pod template with the same two labels. This means any Pods it deploys will match the Service’s selector and receive traffic from it. This loose coupling is how Services know which Pods to send traffic to.


Services and Endpoint objects


As Pods come-and-go (scaling, failures, rollouts etc.), the Service dynamically updates its list of healthy matching Pods. It does this through a combination of label selection and a construct called an Endpoints object.


Every time you create a Service, Kubernetes automatically creates an associated Endpoints object. The Endpoints object is used to store a dynamic list of healthy Pods matching the Service’s label selector.


It works like this…


Kubernetes is constantly evaluating the Service’s label selector against all healthy Pods on the cluster. Any new Pods that match the selector get added to the Endpoints object, whereas any Pods that disappear get removed. This means the Endpoints object is always up to date.


When sending traffic to Pods via a Service, the cluster’s internal DNS to resolves the Service name to an IP address. It then sends the traffic to this stable IP address and the traffic gets routed to one of the Pods in the Endpoints list. However, a Kubernetes-native application (that’s a fancy way of saying an application that understands Kubernetes and can query the Kubernetes API) can query the Endpoints API directly, bypassing the DNS lookup and use of the Service’s IP.



  Note: Recent versions of Kubernetes are replacing Endpoints objects with more efficient Endpoint slices. The functionality is identical, but Endpoint slices are higher performance and more efficient. 




Now that you know the fundamentals, let’s look at some use-cases.


Accessing Services from inside the cluster


Kubernetes supports several types of Service. The default type is ClusterIP.


A ClusterIP Service has a stable virtual IP address that is only accessible from inside the cluster. We call this a “ClusterIP”. It’s programmed into the network fabric and guaranteed to be stable for the life of the Service. Programmed into the network fabric is fancy way of saying the network just knows about it and you don’t need to bother with the details.


Anyway, the ClusterIP is registered against the name of the Service in the cluster’s internal DNS service. All Pods in the cluster are pre-programmed to use the cluster’s DNS service, meaning all Pods can convert Service names to ClusterIPs.


Let’s look at a simple example.


Creating a new Service called “magic-sandbox” will dynamically assign a stable ClusterIP. This name and ClusterIP are automatically registered with the cluster’s DNS service. These are all guaranteed to be long-lived and stable. As all Pods in the cluster send service discovery requests to the internal DNS, they can all resolve “magic-sandbox” to the ClusterIP. iptables or IPVS rules are distributed across the cluster to ensure traffic sent to the ClusterIP gets routed to matching Pods.


Net result… if a Pod (application microservice) knows the name of a Service, it can resolve that to a ClusterIP address and connect to the Pods behind it.


This only works for Pods and other objects on the cluster, as it requires access to the cluster’s DNS service. It does not work outside of the cluster.


Accessing Services from outside the cluster


Kubernetes has two types of Service for requests originating from outside the cluster.



  	NodePort

  	LoadBalancer




NodePort Services build on top of the ClusterIP type and enable external access via a dedicated port on every cluster node. We call this port the “NodePort”.


You already know the default Service type is ClusterIP, and it registers a DNS name, virtual IP, and port with the cluster’s DNS. NodePort Services build on this by adding a NodePort that can be used to reach the Service from outside the cluster.


The following YAML shows a NodePort Service called “magic-sandbox”.



apiVersion: v1
kind: Service
metadata:
  name: magic-sandbox
spec:
  type: NodePort
  ports:
  - port: 8080
    nodePort: 30050
  selector:
    app: hello-world







Pods on the cluster can access this Service by the name “magic-sandbox” on port 8080. Clients connecting from outside the cluster can send traffic to any cluster node on port 30050.


Figure 7.6 shows a NodePort Service where 3 Pods are exposed externally on port 30050 on every cluster node. In step 1, an external client hits node2 on port 30050. In step 2 it’s redirected to the Service object. Step 3 shows the associated Endpoint object with an always-up-to-date list of Pods matching the label selector. Step 4 shows the client being directed to a healthy Pod on node1.
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The Service could just as easily have directed the client to a Pod on node 3 or 4. In fact, future requests may go to other Pods as the Service performs basic load-balancing.


LoadBalancer Services make external access even easier by integrating with an internet-facing load-balancer on your underlying cloud platform. You get a high-performance highly-available public IP or DNS name that you can access the Service from. You can even register friendly DNS names to make access even simpler – you don’t need to know cluster node names or IPs. 


You’ll create and use a LoadBalancer Service in the hands-on section later. They only work on clouds that support them.


Service discovery


The book has an entire chapter dedicated to a service discovery deep dive, so this section will be brief.


Kubernetes implements Service discovery in a couple of ways:



  	DNS (preferred)

  	Environment variables (definitely not preferred)




Kubernetes clusters run an internal DNS service that is the centre of service discovery. Service names are automatically registered with the cluster DNS, and every Pod and container is pre-configured to use the cluster DNS. This means every Pod/container can resolve every Service name to a ClusterIP and connect to the Pods behind it.


The alternative form of service discovery is through environment variables. Every Pod gets a set of environment variables that resolve Services currently on the cluster. However, they cannot learn about new Services added after the Pod they are in was created. This is a major reason DNS is the preferred method.


See the service discovery chapter for a deeper dive.


Summary of Service theory


The front-end of a Service provides an immutable IP, DNS name and port that is guaranteed not to change for the entire life of the Service. The back-end of a Service uses labels and selectors to load-balance traffic across a potentially dynamic set of application Pods.


Hands-on with Services


Let’s put the theory to the test.


There are two ways to create Services.



  	The imperative way (not recommended)

  	The declarative way




You’ll test Services for internal and external access, and take a closer look at Endpoints objects.


To follow along, you’ll need the lab files from the book’s GitHub repo. You can clone the repo with the following command, or you can manually copy the file contents into files on your local machine.



$ git clone https://github.com/nigelpoulton/TheK8sBook.git
Cloning into 'TheK8sBook'...







The imperative way


The imperative way is not the Kubernetes way. It moves your cluster and apps out of sync with your YAML files.


Use kubectl to declaratively deploy the following Deployment (later steps will be done imperatively). Be sure to run the command from within the services folder.



$ kubectl apply -f deploy.yml
deployment.apps/svc-test created







Now the “svc-test” Deployment is running, it’s time to imperatively deploy a Service for it.


The following command imperatively creates a new Service that will provide networking and load-balancing for the Pods created and managed by the svc-test Deployment.



$ kubectl expose deployment svc-test --type=NodePort
service/hello-svc exposed







Run a kubectl get to ensure it was created.



$ kubectl get svc -o wide
NAME         TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)          AGE   SELECTOR
kubernetes   ClusterIP   10.43.0.1      <none>        443/TCP          19d   <none>
svc-test     NodePort    10.43.48.145   <none>        8080:30013/TCP   10s   chapter=services







The first line is a system Service that exposes the Kubernetes API on the cluster. Your Service is on the second line, and you can see the imperative command was clever enough to read the Deployment spec and configure the correct label selector and container port. It also gave the Service the same name as the Deployment.


You can get more detailed info with the kubectl describe command.



$ kubectl describe svc svc-test
Name:                     svc-test
Namespace:                default
Labels:                   <none>
Annotations:              <none>
Selector:                 chapter=services
Type:                     NodePort
IP:                       10.43.48.145
Port:                     <unset>  8080/TCP
TargetPort:               8080/TCP
NodePort:                 <unset>  30013/TCP
Endpoints:                10.42.0.116:8080,10.42.0.117:8080,10.42.1.118:8080 + 2 more...
Session Affinity:         None
External Traffic Policy:  Cluster
Events:                   <none>```







Some interesting values in the output include:



  	
Selector is the list of labels the Service looks for when building its list of Pods to send traffic to

  	
IP is the permanent internal ClusterIP (VIP) of the Service

  	
Port is the port the Service listens on inside the cluster

  	
TargetPort is the port the application is listening on

  	
NodePort is the cluster-wide port that can be used for external access

  	
Endpoints is the dynamic list of healthy Pod IPs that match the selector




Now that you know the cluster-wide NodePort (30013), you can open a web browser and access the app. To do this, you need to know the IP address of at least one of your cluster nodes, and you need to be able to reach it from your browser – e.g. a publicly routable IP if you’re accessing via the internet.


Figure 7.7 shows a web browser accessing a node with an IP address of 54.246.255.52 on the cluster-wide NodePort 30013.
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The app you’ve deployed is a simple web app. It’s built to listen on port 8080, and you’ve configured a Kubernetes Service to map port 30013 on every cluster node back to port 8080 on the app. By default, cluster-wide NodePorts are between 30,000 - 32,767. In this example it was dynamically assigned, but you can also explicitly choose a port if using a YAML file.


Coming up next, you’ll see how to do the same thing the proper way – the declarative way. To do that, you need to clean up by deleting the Service you just created. You can do this with the following kubectl delete svc command.



$ kubectl delete svc svc-test
service "svc-test" deleted







The declarative way


Time to do things the proper way… the Kubernetes way.


A Service manifest file


You’ll use the following resource manifest to deploy the same Service you deployed in the previous section. However, this time you’ll specify a value for the cluster-wide NodePort.



apiVersion: v1
kind: Service
metadata:
  name: svc-test
spec:
  type: NodePort
  ports:
  - port: 8080
    nodePort: 30001
    targetPort: 8080
    protocol: TCP
  selector:
    chapter: services







Let’s step through it.


Services are mature objects defined in the v1 core API group (apiVersion).


The kind field tells Kubernetes you’re defining a Service object.


The metadata block defines a name for the Service. You can also apply labels and annotations here. Any labels you add here are used to identify the Service and are not related to selecting Pods.


The spec section is where you actually define the Service. This example is telling Kubernetes to deploy a NodePort Service. The port value tells Kubernetes to listen internally on port 8080, and the NodePort value tells it to listen externally on 30001. The targetPort value is part of the back-end configuration and tells Kubernetes to forward traffic to the application Pods on port 8080. Then you’re explicitly telling it to use TCP (default). Finally, spec.selector tells the Service to send traffic to all healthy Pods on the cluster with the chapter=services label. 


Deploy it with the following command.



$ kubectl apply -f svc.yml
service/svc-test created







Introspecting Services


Now the Service is deployed, you can inspect it with the usual kubectl get and kubectl describe commands.



$ kubectl get svc svc-test
NAME        TYPE       CLUSTER-IP      EXTERNAL-IP   PORT(S)         AGE
hello-svc   NodePort   100.70.40.2     <none>        8080:30001/TCP  8s







The Service is up and exposed via every cluster node on port 30001. This means you can point a web browser to the name or IP of any node on that port and reach the Service. You’ll need to use the IP address of a node you can reach, and you’ll need to ensure any firewall and security rules allow the traffic to flow.


Endpoints objects


Earlier in the chapter, you learned every Service gets its own Endpoints object with the same name as the Service. This holds a list of all the Pods the Service matches and is dynamically updated as matching Pods come and go. You can see Endpoints, and the newer EndpointSlices, with the normal kubectl commands.


The following examples show EndpointSlices, but you can run the same commands for Endpoints.



$ kubectl get endpointslices
NAME             ADDRESSTYPE   PORTS   ENDPOINTS                                AGE
svc-test-sbhbj   IPv4          8080    10.42.1.119,10.42.0.117,10.42.1.120...   6m38s

$ Kubectl describe endpointslice svc-test-sbhbj
Name:         svc-test-sbhbj
Namespace:    default
Labels:       endpointslice.kubernetes.io/managed-by=endpointslice-controller.k8s.io
              kubernetes.io/service-name=svc-test
Annotations:  endpoints.kubernetes.io/last-change-trigger-time: 2021-02-05T20:01:31Z
AddressType:  IPv4
Ports:
  Name     Port  Protocol
  ----     ----  --------
  <unset>  8080  TCP
Endpoints:
  - Addresses:  10.42.1.119
    Conditions:
      Ready:    true
    Hostname:   <unset>
    TargetRef:  Pod/svc-test-84db6ff656-wd5w7
    Topology:   kubernetes.io/hostname=k3d-gsk-book-server-0
  - Addresses:  10.42.0.117
<Snip>
Events:         <none>







The full output of the kubectl describe command has a block for each healthy Pod containing useful info.


LoadBalancer Services


Now for the best type of Service. And it’s also the easiest.


If your cluster is on a cloud platform, deploying a Service with type=LoadBalancer will provision one of your cloud’s internet-facing load-balancers and configure it to send traffic to your Service. It’s a beautiful thing.


The following YAML is from the lb.yml file. It defines a new Service called “clou-lb” that will provision a cloud load-balancer listening on port 9000 and forwarding traffic on port 8080 to all Pods with the chapter=services label. Basically, a cloud load-balancer sending traffic to the Pods you already deployed through the “svc-test” Deployment.



apiVersion: v1
kind: Service
metadata:
  name: cloud-lb
spec:
  type: LoadBalancer
  ports:
  - port: 9000
    targetPort: 8080
  selector:
    chapter: services







Deploy it with the following command.



$ kubectl apply -f lb.yml
service/cloud-lb created







Now list it. 



$ kubectl get svc --watch
NAME         TYPE           CLUSTER-IP      EXTERNAL-IP   PORT(S)          AGE
cloud-lb     LoadBalancer   10.43.128.113   172.21.0.4    9000:32688/TCP   47s
<Snip>







The EXTERNAL-IP column shows the public address assigned to the Service by your cloud. On some cloud platforms it may be a DNS name instead of an IP, and it may take a minute or two to populate. The delay is while Kubernetes works with your cloud platform to provision and configure the load-balancer.


Copy the value in the EXTERNAL-IP column and paste it into your browser with port 9000 to get to the app.


Congratulations, you just configured a high performance highly-available internet facing load-balancer to front your Service.


Clean-up


Clean-up the lab with the following command. These will delete the Deployment and Services. Endpoints and EndpointSlices are automatically deleted with their Service.



$ kubectl delete -f deploy.yml -f svc.yml -f lb.yml
deployment.apps "svc-test" deleted
service "svc-test" deleted
service "cloud-lb" deleted







Chapter Summary


In this chapter, you learned that Services bring stable and reliable networking to apps deployed on Kubernetes. On the front end, they provide a stable DNS name that’s automatically registered with the cluster DNS, as well as a stable virtual IP. On the back end, they load-balance traffic across a dynamic set of Pods that match a label selector. They also let you expose elements of your application to the outside world, including integrating with cloud load-balancers.


Services are first-class objects in the Kubernetes API and should be managed declaratively through version-controlled YAML manifest files.








8: Ingress


Ingress is all about accessing multiple web applications through a single LoadBalancer Service.


A working knowledge of Kubernetes Services is recommended before reading this chapter. If you don’t have this, consider reading the previous chapter first. 


The chapter is divided as follows.



  	Setting the scene for Ingress

  	Ingress architecture

  	Hands-on with Ingress




We’ll be capitalising the word “Ingress” as it’s a resource in the Kubernetes API. This adds clarity and is in-line with recent updates to the official style guide for the Kubernetes docs. We’ll also be using the terms  “LoadBalancer” and “load-balancer” as follows.



  	
LoadBalancer refers to a Kubernetes Service object of type=LoadBalancer


  	
load-balancer is the cloud service performing internet-facing load balancing




As an example… when you create a Kubernetes LoadBalancer Service, Kubernetes talks to your cloud platform and provisions a cloud load-balancer.


Finally, the chapter focuses on the latest generally available v1 Ingress as defined in the networking.k8s.io API. Earlier beta versions, defined in the extensions/v1beta1 API, may have some slight variations.


Setting the Scene for Ingress


In the previous chapter, you saw how Service objects provide stable networking for Pods. You also saw how to expose applications to external consumers via NodePort Services and LoadBalancer Services. However, both of these have limitations.


NodePorts only work on high port numbers (30000-32767) and require knowledge of node names or IPs. LoadBalancer Services fix this, but require a 1-to-1 mapping between an internal Service and a cloud load-balancer. This means a cluster with 25 internet-facing apps will need 25 cloud load-balancers, and cloud load-balancers aren’t cheap. They may also be a finite resource – you may be limited to how many cloud load-balancers you can provision.


Ingress fixes this by exposing multiple Services through a single cloud load-balancer. 


It creates a LoadBalancer Service, on port 80 or 443, and uses host-based and path-based routing to send traffic to the correct backend Service. This is shown in Figure 8.1, and don’t worry if it’s unclear at this point. We’ll keep building the picture, and the hands-on bits should clarify any doubts.
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Ingress architecture


Ingress is a stable resource in the Kubernetes API. It went GA in Kubernetes 1.19 after being in beta for over 15 releases. During the 3+ years it was in alpha and beta, service meshes increased in popularity and there’s some overlap in functionality. As a result, if you plan to run a service mesh, you may not need Ingress.


Ingress is defined in the networking.k8s.io API sub-group as a v1 object and is based on the usual two constructs.



  	A controller

  	An object spec




The object spec defines rules that govern traffic routing, and the controller implements the rules. 


However, a lot of Kubernetes clusters don’t ship with a built-in Ingress controller – you have to install your own. This is the opposite of other API resources, such as Deployments and ReplicaSets, which have a built-in pre-configured controller. However, some hosted Kubernetes clusters, such as GKE, do pre-install one. 


Once you have an Ingress controller, you deploy Ingress objects with rules that govern how traffic hitting the Ingress is routed.


On the topic of routing, Ingress operates at layer 7 of the OSI model, also known as the “application layer”. This means it has awareness of HTTP headers, and can inspect them and forward traffic based on hostnames and paths.


The following table shows how hostnames and paths can route to backend ClusterIP Services.



  
    
      	Host-based example
      	Path-based example
      	Backend K8s Service
    

  
  
    
      	shield.mcu.com
      	mcu.com/shield
      	svc-shield
    

    
      	hydra.mcu.com
      	mcu.com/hydra
      	svc-hydra
    

  




Figure 8.2 shows two different hostnames (URLs) configured to hit the same load-balancer. An Ingress object is watching, and uses the hostnames in the HTTP headers to route traffic to the appropriate backend Service. This is an example of the HTTP host-based routing pattern, and it’s almost identical for path-based routing.
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For this to work, name resolution needs to point the appropriate DNS names to the public endpoint of the Ingress load-balancer.



  Note: A quick side-step. The “OSI model” is the reference model for modern networking. It comprises seven layers numbered 1-7, with the lowest layers concerned with things like signalling and electronics, the middle layers dealing with reliability through things like acks and retries, and the higher layers adding awareness of user apps such as HTTP services. Ingress operates at layer 7, also known as the application layer, and implements HTTP intelligence.




In summary, Ingress exposes multiple ClusterIP Services through a single cloud load-balancer. You create and deploy Ingress objects that are rules governing how traffic reaching the load-balancer is routed to backend Services. The Ingress controller, which you usually have to install yourself, uses hostnames and paths to make intelligent routing decisions.


Now that you know the basics, let’s see it in action.


Hands-on with Ingress


The following examples require a Kubernetes cluster running on a cloud platform that supports load-balancer integration. All of the major clouds will work. The examples are tweaked for the NGINX Ingress controller, which you’ll see how to install, but we’ll point out things you’ll need to change if you want to run with a different Ingress controller.


If you’re following along, you’ll need a clone of the book’s GitHub repo and you’ll need to run all commands from within the ingress folder.



$ git clone https://github.com/nigelpoulton/TheK8sBook.git
Cloning from...

$ cd ingress







Installing the NGINX Ingress controller


It’s possible to skip this step if your cluster has a built-in Ingress controller (GKE does).


The NGINX Ingress controller is installed from a YAML file hosted in the Kubernetes GitHub repo. It installs a bunch of Kubernetes constructs including a Namespace, ServiceAccounts, ConfigMap, Roles, RoleBindings, and more.


Install it with the following command. I’ve split the command over two lines because the URL is so long. If you’re following along you’ll have to run it on a single line. You should also make sure you’re installing the latest release (see https://github.com/kubernetes/ingress-nginx/releases).



$ kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-nginx/
controller-v0.44.0/deploy/static/provider/cloud/deploy.yaml

namespace/ingress-nginx created
serviceaccount/ingress-nginx created
<Snip>
role.rbac.authorization.k8s.io/ingress-nginx-admission created







Check the ingress-nginx Namespace to make sure the controller Pod is running. It may take a few moments to enter the running phase.



$ kubectl get pods -n ingress-nginx \
  -l app.kubernetes.io/name=ingress-nginx

NAME                                        READY   STATUS      RESTARTS   AGE
ingress-nginx-admission-create-brbwh        0/1     Completed   0          27s
ingress-nginx-admission-patch-8dpfl         0/1     Completed   0          27s
ingress-nginx-controller-7fc74cf778-2frpg   1/1     Running     0          33s







Don’t worry about the Completed Pods. These were short-lived to initialise the environment.


Once the controller Pod is running, you’ve got an NGINX Ingress controller and you’re ready to create some Ingress objects. However, before doing that, let’s see how to use Ingress classes in case your cluster has multiple Ingress controllers.


Configure Ingress classes for clusters with multiple Ingress controllers


If you’re following along on a GKE cluster, you’ll now have two Ingress controllers.



  	The built-in GKE Ingress controller loadbalancer-controller


  	The NGINX Ingress controller nginx-ingress-controller





The way Kubernetes knows which Ingress controller to use when you deploy an Ingress object is via Ingress classes. You create Ingress classes, and then tag Ingress objects with a particular class.


The following YAML object defines an Ingress class called “igc-nginx” for the newly installed NGINX Ingress controller. You can reference this later when deploying Ingress objects.



apiVersion: networking.k8s.io/v1
kind: IngressClass
metadata:
  name: igc-nginx
spec:
  controller: nginx.org/ingress-controller







Create it with the following command.



$ kubectl apply -f ig-class.yml
ingressclass.networking.k8s.io/igc-nginx created







You can list and describe it with the usual kubectl commands. There is currently no shortname for them, so you’ll have to use “ingressclass” when using kubectl.


With an Ingress controller and Ingress class in place, you’re ready to configure and create Ingress objects.


Configuring host-based and path-based routing


This section deploys two apps and a single Ingress object. The Ingress will be configured to route to both apps via a single load-balancer.


You’ll complete all of the following steps.



  	Deploy an app called shield and front it with a ClusterIP Service (backend) called svc-shield


  	Deploy an app called hydra and front it with a ClusterIP Service (backend) called svc-hydra


  	Deploy an Ingress object to route the following hostnames and paths
    
      	Host-based: shield.mcu.com >> svc-shield

      	Host-based: hydra.mcu.com >> svc-hydra

      	Path-based: mcu.com/shield >> svc-shield

      	Path-based: mcu.com/hydra >> svc-hydra

    

  

  	A cloud load-balancer will be created and the Ingress controller will monitor it for traffic

  	Configure DNS name resolution to point shield.mcu.com, hydra.mcu.com, and mcu.com to the cloud load-balancer 




The overall architecture is shown in Figure 8.3.
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Traffic flow to the shield app using host-based routing will be as follows.



  	A client will send traffic to shield.mcu.com


  	Name resolution will send the traffic to the load-balancer’s public endpoint

  	Ingress will read the HTTP headers for the hostname (shield.mcu.com)

  	An Ingress rule will trigger and the traffic will be routed to the svc-shield ClusterIP backend

  	The ClusterIP Service will ensure the traffic reaches the shield Pod




Deploy the apps


The shield and hydra apps, as well as associated ClusterIP Services, are defined in the app.yml file in the ingress folder. It defines the following.



  	Two Pods. One called shield and one called hydra, both listening on port 8080

  	Two ClusterIP Services. One called svc-shield and the other called svc-hydra





Deploy it with the following command.



$ kubectl apply -f app.yml
service/svc-shield created
service/svc-hydra created
pod/shield created
pod/hydra created







Check them with kubectl get and kubectl describe commands.


Create the Ingress object


The Ingress object you’ll be deploying is defined in ig-all.yml. It defines an Ingress object called “mcu-all” with four rules.



apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: mcu-all
  annotations:
    nginx.ingress.kubernetes.io/rewrite-target: /
spec:
  ingressClassName: nginx
  rules:
  - host: shield.mcu.com
    http:
      paths:
      - path: /
        pathType: Prefix
        backend:
          service:
            name: svc-shield
            port:
              number: 8080
  - host: hydra.mcu.com
    http:
      paths:
      - path: /
        pathType: Prefix
        backend:
          service:
            name: svc-hydra
            port:
              number: 8080
  - host: mcu.com
    http:
      paths:
      - path: /shield
        pathType: Prefix
        backend:
          service:
            name: svc-shield
            port:
              number: 8080
      - path: /hydra
        pathType: Prefix
        backend:
          service:
            name: svc-hydra
            port:
              number: 8080







Let’s step through it.


The first 4 lines define normal stuff, such as the type of object and which schema version to use.


The annotation tells the controller to make a best-effort attempt to re-write paths to the path expected by your app. This example will re-write incomng paths to “/”. For example, traffic hitting the load-balancer via the /shield path will have the path re-written to “/”. You’ll see an example shortly. Also, this annotation is specific to the NGINX Ingress controller and you’ll have to comment it out if you’re using a different one.


The spec.ingressClassName field tells Kubernetes to target this Ingress object at the NGINX controller you installed earlier. You’ll have to delete this line, or comment it out, if you’re using the built-in Ingress controller.


The rules are a little more complex, so let’s look at an example of a host-based rule and a path-based rule.


The following host-based rule triggers on traffic arriving via shield.mcu.com at the root “/” path and forwards it to a backend Service called svc-shield. “svc-shield” is one of the ClusterIP Services deployed earlier via the app.yml file.



- host: shield.mcu.com            <<=== Traffic arriving via this hostname
  http:
    paths:
    - path: /                     <<=== Arriving at root (no subpath specified)
      pathType: Prefix
      backend:                    <<=== This block references an existing
        service:                  <<=== "backend" ClusterIP Service
          name: svc-shield        <<=== called "svc-shield"
          port:                   <<=== that's listening on 
            number: 8080          <<=== port 8080







The following path-based rule triggers when traffic arrives from mcu.com/shield. It gets routed to the same svc-shield backend Service.



  - host: mcu.com                 <<=== Traffic arriving via this hostname
    http:
      paths:
      - path: /shield             <<=== Arriving on this subpath
        pathType: Prefix
        backend:
          service:
            name: svc-shield
            port:
              number: 8080







Deploy it with the following command.



$ kubectl apply -f ig-all.yml 
ingress.networking.k8s.io/mcu-all created







Inspecting Ingress objects


List the Ingress objects in the default Namespace. It may take a minute or so for yours to acquire an address. This is while Kubernetes provisions a load-balancer on your cloud.



$ kubectl get ing
NAME      CLASS    HOSTS                                  ADDRESS          PORTS
mcu-all   nginx    shield.mcu.com,hydra.mcu.com,mcu.com   130.211.24.199   80   







The CLASS field shows which Ingress class is handling this set of rules. It may show as <None> if you only have a single Ingress controller and didn’t configure classes. The HOSTS field shows it’s configured to handle traffic based on three hostnames. The ADDRESS column is the public endpoint of the cloud load-balancer. In this example it’s an IP address, but some clouds provide a URL. This one is configured for port 80.


On the topic of ports, Ingress is an HTTP/HTTPS solution.


Describe the Ingress. The output is trimemd to fit the page.



$ kubectl describe ing mcu-all
Name:             mcu-all
Namespace:        default
Address:          130.211.24.199
Default backend:  default-http-backend:80   10.120.2.6:8080)
Rules:
  Host            Path      Backends
  ----            ----      --------
  shield.mcu.com  /         shield:8080   10.120.0.19:8080)
  hydra.mcu.com   /         hydra:8080   10.120.0.20:8080)
  mcu.com         /shield   shield:8080   10.120.0.19:8080)
                  /hydra    hydra:8080    10.120.0.20:8080)
Annotations:      nginx.ingress.kubernetes.io/rewrite-target: /
Events:
  Type    Reason  Age          From                      Message
  ----    ------  ----         ----                      -------
  Normal  Sync    85s (x2...)  nginx-ingress-controller  Scheduled for sync







Let’s step through the output.


The Address line is the public IP of the cloud load-balancer associated with the Ingress.


Default backend is where the controller sends traffic hitting the Ingress from an unknown host or path. Not all Ingress controllers implement a default backend.


The rules define the mappings between hosts, paths, and backends. Remember that “backends” are usually ClusterIP Services pre-configured to send traffic to application Pods.


The annotations often define integrations with your cloud back-end as well as controller-specific features. This example’s telling the controller to re-write all paths to look like they arrived on root “/”. This is a kind of best effort approach, and as you’ll see later, it doesn’t work with all apps.


You should also be able to view the Ingress and load-balancer on your cloud backend. Figure 8.4 shows how it looks on the Google Cloud at the time of writing.
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At this point, the application and backend Services are running and Ingress is configured to route traffic. The only thing left to configure is DNS name resolution so that shield.mcu.com, hydra.mcu.com and mcu.com resolve to the public endpoint of the Ingress.


Configure DNS name resolution


In the real world, you’ll configure your internal DNS or internet DNS to point hostnames to the Ingress load-balancer. How you do this varies depending on your environment and who your internet DNS is with.


If you’re following along, it’s possible to edit the hosts file on your laptop or computer as a temporary solution.


On Mac and Linux, edit the /etc/hosts file and add the following lines. The example uses the public IP of the Ingress retrieved from the kubectl get ing command. Yours will be different.



$ sudo vi /etc/hosts

# Host Database
<Snip>
130.211.24.199 shield.mcu.com
130.211.24.199 hydra.mcu.com
130.211.24.199 mcu.com







On Windows the file is located at C:\Windows\System32\drivers\etc\hosts.


Save your changes.


With this done, any traffic you send to shield.mcu.com, hydra.mcu.com, or mcu.com will be sent to the Ingress load-balancer.


Test the Ingress


Open a web browser and try all of the following URLs.



  	shield.mcu.com

  	hydra.mcu.com

  	mcu.com




Figure 8.5 shows what happens to each request. Notice the traffic for the mcu.com request is routed to the default backend. This is because there’s no ingress rule for mcu.com. Depending on your Ingress controller, the message will be different, and you Ingress may not even implement a default backend. The default backend configured by the GKE built-in Ingress returns a helpful message saying “response 404 (backend NotFound), service rules for [ / ] non-existent “.
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Now try connecting to either of the following.



  	mcu.com/shield

  	mcu.com/hydra




The Ingress uses path-based routing with the re-write targets feature to handle these connections. Notice how the image doesn’t display for either. This is because not all apps work correctly with path rewrites.


Congratulations, you’ve successfully configured Ingress for host-based and path-based routing – you’ve got two applications running on a Kubernetes cluster, fronted by a couple of internal ClusterIP Services, and they’re both exposed through a single cloud-based internet-facing load-balancer managed by Kubernetes Ingress!


Clean-up


If you’ve been following along, you’ll have several things running on you Kubernetes cluster. Most importantly, the cloud load-balancer created by the Ingress controller costs money, so be sure to delete it when you’re finished.


Delete the Ingress object.



$ kubectl delete ingress mcu-all
ingress.networking.k8s.io "mcu-all" deleted







Delete the apps and Services using the YAML file. It may take a few seconds for the applications inside the Pods to gracefully terminate.



$ kubectl delete -f app.yml
service "svc-shield" deleted
service "svc-hydra" deleted
pod "shield" deleted
pod "hydra" deleted







If you want to, you can delete the NGINX Ingress controller with the following three commands.



$ kubectl delete namespace ingress-nginx
namespace "ingress-nginx" deleted

$ kubectl delete clusterrole ingress-nginx
clusterrole.rbac.authorization.k8s.io "ingress-nginx" deleted

$ kubectl delete clusterrolebinding ingress-nginx
clusterrolebinding.rbac.authorization.k8s.io "ingress-nginx" deleted







Finally, don’t forget to reset your /etc/hosts file if you added manual entries earlier.



$ sudo vi /etc/hosts

# Host Database
<Snip>
130.211.24.199 shield.mcu.com   <<=== Delete this entry
130.211.24.199 hydra.mcu.com    <<=== Delete this entry
130.211.24.199 mcu.com          <<=== Delete this entry







Chapter summary


In this chapter, you learned that Ingress is a way to expose multiple applications and Kubernetes Services via a single cloud load-balancer. They’re stable objects in the API but have feature overlap with a lot of service meshes – if you’re running a service mesh you may not need Ingress.


Most Kubernetes clusters require you to install an Ingress controller and lots of options exist. However, some hosted Kubernetes services make things easy by shipping with a built-in Ingress controller.


Once you have an Ingress controller up and running, you create and deploy Ingress objects that are sets of rules governing how incoming traffic is routed to applications and Services on your Kubernetes cluster. It supports host-based and path-based HTTP routing.








9: Service discovery deep dive


In this chapter, you’ll learn what service discovery is, why it’s important, and how it’s implemented in Kubernetes. You’ll also learn some troubleshooting tips.


To get the most from this chapter, you should know what Kubernetes Services are and how they work.


The chapter is split into the following sections:



  	Quick background

  	Service registration

  	Service discovery

  	Service discovery and Namespaces

  	Troubleshooting service discovery





  Note: The word “service” has a lot of meanings. So for clarity, we capitalise the first letter when referring to the Service resource in the Kubernetes API.




Quick background


Here’s the outrageously high-level… finding stuff on a crazy-busy platform like Kubernetes is hard. Service discovery makes it possible.


Let’s paint a bit more of a picture.


Kubernetes runs cloud-native microservices apps that scale up and down, self-heal from failures, and regularly get replaced by newer releases. All of this makes individual app instances unreliable. To solve this, Kubernetes has a super-stable Service object that fronts unreliable app instances with a stable IP, DNS name, and port. All good so far, but in a big bustling environment like many Kubernetes clusters, apps need a way to find the other apps they work with. This is where service discovery comes into play.


There are two major components to service discovery:



  	Registration

  	Discovery




Service registration


Service registration is the process of an application posting its connection details to a service registry so other apps can find it and consume it.




  
    [image: Figure 9.1]
    Figure 9.1


Double-click the image to see full size.

  




A few important things to note about service discovery in Kubernetes:



  	Kubernetes uses its internal DNS as a service registry


  	All Kubernetes Services automatically register their details with DNS




For this to work, Kubernetes provides a well-known internal DNS service that we usually call the “cluster DNS”. It’s well known because every Pod in the cluster knows where to find it. It’s implemented in the kube-system Namespace as a set of Pods managed by a Deployment called coredns. These Pods are fronted by a Service called kube-dns. Behind the scenes, it’s based on a DNS technology called CoreDNS and runs as a Kubernetes-native application. 


The previous sentence contains a lot of detail, so the following commands show how its implemented. You can run them on your own Kubernetes cluster.


This command lists the Pods running the cluster DNS.



$ kubectl get pods -n kube-system -l k8s-app=kube-dns
NAME                       READY   STATUS    RESTARTS   AGE
coredns-5644d7b6d9-fk4c9   1/1     Running   0          28d
coredns-5644d7b6d9-s5zlr   1/1     Running   0          28d







This lists the Deployment managing them.



$ kubectl get deploy -n kube-system -l k8s-app=kube-dns
NAME      READY   UP-TO-DATE   AVAILABLE   AGE
coredns   2/2     2            2           28d







This lists the Service fronting them. It shows the well known IP configured on every Pod/container.



$ kubectl get svc -n kube-system -l k8s-app=kube-dns
NAME       TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)                  AGE
kube-dns   ClusterIP   192.168.200.10   <none>        53/UDP,53/TCP,9153/TCP   28d







The process of service registration looks like this (exact flow might slightly differ):



  	You post a new Service manifest to the API server

  	The request is authenticated, authorized, and subjected to admission policies

  	The Service is allocated a stable virtual IP address called a ClusterIP


  	An Endpoints object (or EndpointSlice) is created to hold a list of healthy Pods matching the Service’s label selector

  	The Pod network is configured to handle traffic sent to the ClusterIP (more on this later)

  	The Service’s name and IP are registered with the cluster DNS




Step 6 is the secret sauce. 


We mentioned earlier that cluster DNS is a Kubernetes-native application. This means it knows it’s running on Kubernetes and implements a controller that watches the API server for new Service objects. Any time it observes one, it automatically creates the DNS records mapping the Service name to its ClusterIP. This means apps, and even Services, don’t need to perform their own service registration – the cluster DNS does it for them.


It’s important to understand that the name registered in DNS for the Service is the value stored in its metadata.name property. This is why it’s important that Service names are valid DNS names and don’t include exotic characters. The ClusterIP is dynamically assigned by Kubernetes.



apiVersion: v1
kind: Service
metadata:
  name: ent      <<=== this name is registered with the cluster DNS
spec:
  selector:
    app: web
  ports:
    ...







At this point, the Service’s front-end configuration (name, IP, port) is registered with DNS and the Service can be discovered by apps and clients.


The Service back-end


Now the Service’s front-end is registered and can be discovered by other apps, the back-end needs building so there’s something to send traffic to. This involves maintaining a list of healthy Pod IPs the Service will load-balance traffic to.


As explained in the chapter on Services, every Service has a label selector that determines which Pods it will load-balance traffic to. See Figure 9.2.
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To help with backend operations, such as knowing which Pods to send traffic to and how traffic is routed, Kubernetes builds and Endpoints/EndpointSlice for every Service.


The following command shows an Endpoints object for a Service called ent. It has the IP address and port of two Pods matching the corresponding Service’s label selector.



$ kubectl get endpoint ent
NAME    ENDPOINTS                                    AGE
ent     192.168.129.46:8080,192.168.130.127:8080     14m







Figure 9.3 shows the same ent Service that will load-balance traffic to two Pods. It also shows the Endpoints object with the IPs of the two Pods matching the Service’s label selector.
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The kubelet agent on every node is watching the API server for new Endpoints/EndpointSlice objects. When it sees one, it creates local networking rules to redirect ClusterIP traffic to Pod IPs. In modern Linux-based Kubernetes clusters, the technology used to create these rules is the Linux IP Virtual Server (IPVS). Older versions used iptables. 


At this point the Service is fully registered and ready to be used:



  	Its front-end configuration is registered with DNS

  	Its back-end label selector is created

  	Its Endpoints object (or EndpointSlice) is created

  	Nodes and kube-proxies have created the necessary local routing rules




Summarising service registration


Let’s summarise the service registration process with the help of a simple flow diagram.
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You post a new Service resource manifest to the API server where it’s authenticated and authorized. The Service is allocated a ClusterIP and its configuration is persisted to the cluster store. An associated Endpoints or EndpointSlice object is created to hold the list of healthy Pod IPs matching the label selector. The cluster DNS is running as a Kubernetes-native application and watching the API server for new Service objects. It observes it and registers the appropriate DNS A and SRV records. Every node is running a kube-proxy that observes the new objects and creates local IPVS/iptables rules so traffic to the Service’s ClusterIP is routed to the Pods matching the Service’s label selector.


Service discovery


Let’s assume there are two microservices apps on the same Kubernetes cluster – enterprise and cerritos. The Pods for enterprise sit behind a Service called ent and the Pods for cerritos sit behind another Service called cer. They’ve been assigned ClusterIPs, registered with DNS, and things are as follows.



  
    
      	App
      	Service name
      	ClusterIP
    

  
  
    
      	Enterprise
      	ent
      	192.168.201.240
    

    
      	Cerritos
      	cer
      	192.168.200.217
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For service discovery to work, apps need to know both of the following.



  	The name of the other apps they want to connect to (the Service fronting it)

  	How to convert the name to an IP address




Application developers are responsible for point 1. They need to code apps with the names of other apps they want to consume. Actually, they need to code the names of Services fronting the remote apps. For example, if the cerritos app wants to connect to enterprise, it needs to know the name of the ent Service. 


Kubernetes takes care of point 2, converting the name to an IP.


Converting names to IP addresses using the cluster DNS


Kubernetes automatically configures every container so it can find and use the cluster DNS to convert Service names to IPs. It does this by populating every container’s /etc/resolv.conf file with the IP address of cluster DNS Service as well as any search domains that should be appended to unqualified names.


An “unqualified name” is a short name such as ent. Appending a search domain converts it to a fully qualified domain name (FQDN) such as ent.default.svc.cluster.local.


The following snippet shows a container that is configured to send DNS queries to the cluster DNS at 192.168.200.10. It also lists three search domains to append to unqualified names.



$ cat /etc/resolv.conf 
search svc.cluster.local cluster.local default.svc.cluster.local
nameserver 192.168.200.10
options ndots:5







The following snippet proves that nameserver in the previous /etc/resolv.conf matches the IP address of the cluster DNS (the kube-dns Service). This means Service names will be sent to the cluster DNS for conversion to IP addresses.



$ kubectl get svc -n kube-system -l k8s-app=kube-dns
NAME       TYPE        CLUSTER-IP          PORT(S)                  AGE
kube-dns   ClusterIP   192.168.200.10      53/UDP,53/TCP,9153/TCP   3h53m







With what you’ve learned so far, let’s talk through the process of the enterprise app sending connections to the cerritos app.


The process is as follows.



  	Know the name of the remote app (Service)

  	Name resolution

  	Network routing




First up, the enterprise app needs to know to send connections to the cer Service. That’s the job of the app developer. However, once it knows the remote Service name, it needs to convert it into an IP address. Fortunately, the container it’s running in knows how to do this, and sends it to the cluster DNS where it’s resolved to a ClusterIP (in this case, 192.168.200.217).


All good so far, but ClusterIPs are virtual IPs that require additional magic before traffic reaches the cerritos app.


Some network magic


ClusterIPs are on a “special” network called the service network, and there are no routes to it! This means containers send all ClusterIP traffic to their default gateway.



  Terminology: A default gateway is where devices send traffic when there’s no known route. Normally, the default gateway forwards traffic to another device with a larger routing table in the hope it will have a route to the destination. A simple analogy might be driving from City A to City Z. The local roads in City A probably don’t have signposts to City Z, so you follow signs to the major highway/motorway. Once on the highway/motorway there’s more chance you’ll find directions to City Z. If the first signpost doesn’t have a route, you keep driving until you see one that does. Occasionally you don’t find a sign and you get lost or run out of battery/fuel. Routing is similar, if a device doesn’t have a route for the destination network, it sends it from one default gateway to the next until hopefully a device has a route. As with driving, it’s also possible you never find a route and the traffic times out.




The container’s default gateway sends the traffic to the node it’s running on.


The node doesn’t have a route to the service network either, so it sends it to its own default gateway. Doing this causes the traffic to be processed by the node’s kernel, which is where the magic happens…


Every Kubernetes node runs a system service called kube-proxy. At a high-level, kube-proxy is responsible for capturing traffic destined for ClusterIPs and redirecting it to the IP addresses of Pods matching the Service’s label selector. Let’s look a bit closer…


kube-proxy is a Pod-based Kubernetes-native app that implements a controller watching the API server for new Services and Endpoints objects. When it sees them, it creates local IPVS rules telling the node to intercept traffic destined for the Service’s ClusterIP and forward it to individual Pod IPs.


This means that every time a node’s kernel processes traffic headed for an address on the service network, a trap occurs, and the traffic is redirected to the IP of a healthy Pod matching the Service’s label selector.


Kubernetes originally used iptables to do this trapping and load-balancing. However, it was replaced by IPVS in Kubernetes 1.11. The is because IPVS is a high-performance kernel-based L4 load-balancer that scales better than iptables and implements better load-balancing.


Summarising service discovery


Let’s quickly summarise the service discovery process with the help of the flow diagram in Figure 9.6.
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Assume the “enterprise” app is sending traffic to “cerritos”. First up, it needs the name of the “cer” Service sitting in front of “cerritos”. Like we said before, it’s the responsibility of the application developer to make sure this is known.


An instance of the “enterprise” app tries to send traffic to the “cer” Service. But networks work with numbers, not names. So the container hosting the “enterprise” app sends the “cer” name to cluster DNS asking it to resolve it to an IP address. The container knows how to do this because it’s pre-configured with the address of cluster DNS in its /etc/resolv.conf file. The cluster DNS replies with the ClusterIP and the “enterprise” container sends the traffic to the network. However, ClusterIPs are on the special service network and the container doesn’t have a route to it. So it sends it to its default gateway, which forwards it to the node its running on. The node doesn’t have a route either, so it sends it to its own default gateway. En-route, the request is processed by the node’s kernel. A trap is triggered, and the request is redirected to the IP address of a Pod that matches the Services label selector.


Service discovery and Namespaces


It’s important to understand that every cluster has an address space, and that Namespaces partition it.


Cluster address spaces are based on a DNS domain that we call the cluster domain. The domain name is usually cluster.local and objects have unique names within it. For example, a Service called ent will have a fully qualified domain name (FQDN) of ent.default.svc.cluster.local


The format is <object-name>.<namespace>.svc.cluster.local


Namespaces let you partition the address space below the cluster domain. For example, creating a couple of Namespaces called dev and prod will give you two new address spaces.



  	dev: <object-name>.dev.svc.cluster.local

  	prod: <object-name>.prod.svc.cluster.local




Object names have to be unique within a Namespace but not across Namespaces. For example, you can’t have two Services called “ent” in the same Namespace, but you can if they’re in different Namespaces. This is useful for parallel development and production configurations. For example, Figure 9.7 shows a single cluster divided into dev and prod Namespaces with identical configurations deployed to each.
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Objects can connect to Services in the local Namespace using short names such as ent and cer. But connecting to objects in a remote Namespace requires FQDNs such as ent.dev.svc.cluster.local and cer.dev.svc.cluster.local.


Service discovery example


Let’s walk through a quick example.


The following YAML is called sd-example.yml and it’s in the service-discovery folder of the book’s GitHub repo. It defines two Namespaces, two Deployments, two Services, and a standalone jump Pod. The two Deployments have identical names, as do the Services. However, they’re deployed to different Namespaces. The jump Pod is deployed to the dev Namespace.
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apiVersion: v1
kind: Namespace
metadata:
  name: dev
---
apiVersion: v1
kind: Namespace
metadata:
  name: prod
---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: enterprise
  labels:
    app: enterprise
  namespace: dev
spec:
  selector:
    matchLabels:
      app: enterprise
  replicas: 2
  template:
    metadata:
      labels:
        app: enterprise
    spec:
      containers:
      - image: nigelpoulton/k8sbook:text-dev
        name: enterprise-ctr
        ports:
        - containerPort: 8080
---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: enterprise
  labels:
    app: enterprise
  namespace: prod
spec:
  selector:
    matchLabels:
      app: enterprise
  replicas: 2
  template:
    metadata:
      labels:
        app: enterprise
    spec:
      containers:
      - image: nigelpoulton/k8sbook:text-prod
        name: enterprise-ctr
        ports:
        - containerPort: 8080
---
apiVersion: v1
kind: Service
metadata:
  name: ent
  namespace: dev
spec:
  selector:
    app: enterprise
  ports:
    - port: 8080
  type: ClusterIP
---
apiVersion: v1
kind: Service
metadata:
  name: ent
  namespace: prod
spec:
  selector:
    app: enterprise
  ports:
    - port: 8080
  type: ClusterIP
---
apiVersion: v1
kind: Pod
metadata:
  name: jump
  namespace: dev
spec:
  terminationGracePeriodSeconds: 5
  containers:
  - name: jump
    image: ubuntu
    tty: true
    stdin: true







Deploy the configuration to your cluster.



$ kubectl apply -f sd-example.yml
namespace/dev created
namespace/prod created
deployment.apps/enterprise created
deployment.apps/enterprise created
service/ent created
service/ent created
pod/jump-pod created







Check it was correctly applied. The following outputs are trimmed to fit the page and don’t show all objects.



$ kubectl get all --namespace dev
NAME          TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)    AGE
service/ent   ClusterIP   192.168.202.57   <none>        8080/TCP   43s

NAME                         READY   UP-TO-DATE   AVAILABLE   AGE
deployment.apps/enterprise   2/2     2            2           43s
<snip>

$ kubectl get all --namespace prod
NAME          TYPE        CLUSTER-IP        EXTERNAL-IP   PORT(S)    AGE
service/ent   ClusterIP   192.168.203.158   <none>        8080/TCP   52s

NAME                         READY   UP-TO-DATE   AVAILABLE   AGE
deployment.apps/enterprise   2/2     2            2           52s
<snip>







You have an enterprise app and ent Service in both Namespaces (dev and prod). You also have a jump Pod in the dev Namespace. Let’s test how service discovery works within a Namespace and across them.


The next steps will:



  	Log on to the jump Pod in the dev Namespace

  	Check its /etc/resolv.conf file

  	Connect to ent in the local dev Namespace

  	Connect to ent in the remote prod Namespace




To help with the demo, the versions of the app used in each Namespace are slightly different.


Log on to the jump Pod.



$ kubectl exec -it jump --namespace dev -- bash 
root@jump:/#







Your terminal prompt will change to indicate you are attached to the jump Pod.


Inspect the contents of the /etc/resolv.conf file and check the search domains listed include the dev Namespace (search dev.svc.cluster.local) and not the prod Namespace. 



$ cat /etc/resolv.conf
search dev.svc.cluster.local svc.cluster.local cluster.local default.svc.cluster.local 
nameserver 192.168.200.10
options ndots:5







The search domains lists the dev Namespace, and the nameserver is set to the IP of the cluster DNS.


Install the curl utility.



$ apt-get update && apt-get install curl -y
<snip>







Use curl to connect to the version of the app running in dev by using the ent short name. The app listens on port 8080.



$ curl ent:8080
Hello from the DEV Namespace!
Hostname: enterprise-7d49557d8d-k4jjz







The “Hello from the DEV Namespace” response proves the connection reached the instance in the dev Namespace.


When the curl command was issued, the container automatically appended dev.svc.cluster.local to the ent name and sent the query to the cluster DNS specified in /etc/resolv.conf. DNS returned the ClusterIP for the ent Service in the local dev Namespace and the app sent the traffic to that address. En-route to the node’s default gateway the traffic triggered a trap in the node’s kernel and was redirected to one of the Pods hosting the app.


Run the curl command again, but this time append the domain name of the prod Namespace. This will cause the cluster DNS to return the ClusterIP for the instance in the prod Namespace and traffic will eventually reach a Pod running in prod



$ curl ent.prod.svc.cluster.local:8080
Hello from the PROD Namespace!
Hostname: enterprise-5464d8c4f9-v7xsk







This time the response comes from a Pod in the prod Namespace.


The test proves that short names are resolved to the local Namespace (the same Namespace the app is running in) and connecting across Namespaces requires FQDNs.


Remember to detach your terminal from the container by typing exit.


Troubleshooting service discovery


Service registration and discovery involves a lot of moving parts. If any of them stops working, the whole process can break. Let’s quickly run through what needs to be working and how to check them.


Kubernetes uses the cluster DNS as its service registry. This runs as one or more Pods in the kube-system Namespace with a Service object providing a stable endpoint. The important components are:



  	Pods: Managed by the coredns Deployment

  	Service: A ClusterIP Service called kube-dns listening on port 53 TCP/UDP

  	Endpoints object: Also called kube-dns





All objects relating to the cluster DNS are in the kube-system Namespace and tagged with the k8s-app=kube-dns label. This is helpful when filtering kubectl output.


Make sure the coredns Deployment and its managed Pods are up and running.



$ kubectl get deploy -n kube-system -l k8s-app=kube-dns
NAME      READY   UP-TO-DATE   AVAILABLE   AGE
coredns   2/2     2            2           28d

$ kubectl get pods -n kube-system -l k8s-app=kube-dns
NAME                       READY   STATUS    RESTARTS   AGE
coredns-5644d7b6d9-74pv7   1/1     Running   0          28d
coredns-5644d7b6d9-s759f   1/1     Running   0          28d







Check the logs from each of the coredns Pods. You’ll need to substitute the names of the Pods in your environment. The following output is typical of a working DNS Pod.



$ kubectl logs coredns-5644d7b6d9-74pv7 -n kube-system
2020-02-19T21:31:01.456Z [INFO] plugin/reload: Running configuration...
2020-02-19T21:31:01.457Z [INFO] CoreDNS-1.6.2
2020-02-19T21:31:01.457Z [INFO] linux/amd64, go1.12.8, 795a3eb
CoreDNS-1.6.2
linux/amd64, go1.12.8, 795a3eb







Assuming the Pods and Deployment are working, you should also check the Service and associated Endpoints object. The output should show the service is up, has an IP address in the ClusterIP field, and is listening on port 53 TCP/UDP. 


The ClusterIP address for the kube-dns Service should match the IP address in the /etc/resolv.conf files of all containers on the cluster. If the IP addresses are different, containers will send DNS requests to the wrong IP address.



$ kubectl get svc kube-dns -n kube-system
NAME       TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)                  AGE
kube-dns   ClusterIP   192.168.200.10   <none>        53/UDP,53/TCP,9153/TCP   28d







The associated kube-dns Endpoints object should also be up and have the IP addresses of the coredns Pods listening on port 53.



$ kubectl get ep -n kube-system -l k8s-app=kube-dns
NAME       ENDPOINTS                                                          AGE
kube-dns   192.168.128.24:53,192.168.128.3:53,192.168.128.24:53 + 3 more...   28d







Once you’ve verified the fundamental DNS components are up and working, you can proceed to perform more detailed and in-depth troubleshooting. Here are some simple tips.


Start a troubleshooting Pod that has your favourite networking tools installed (ping, traceroute, curl, dig, nslookup etc.). The standard gcr.io/kubernetes-e2e-test-images/dnsutils:1.3 image is a popular choice if you don’t have your own custom image with your tools installed. Unfortunately, there’s no image tagged as latest in the repo. This means you have to specify a version. At the time of writing, 1.3 has been the latest version for a long time.


The following command starts a new standalone Pod called netutils, based on the dnsutils image just mentioned. It will also connect your terminal to it.



$ kubectl run -it dnsutils \
  --image gcr.io/kubernetes-e2e-test-images/dnsutils:1.3







A common way to test DNS resolution is to use nslookup to resolve the kubernetes Service fronting the API server. The query should return an IP address as well as the name kubernetes.default.svc.cluster.local. 



# nslookup kubernetes
Server:         192.168.200.10
Address:        192.168.200.10#53

Name:   kubernetes.default.svc.cluster.local
Address: 192.168.200.1







The first two lines should return the IP address of your cluster DNS. The last two lines should show the FQDN of the kubernetes Service and its ClusterIP. You can verify the ClusterIP of the kubernetes Service by running a kubectl get svc kubernetes command.


Errors such as “nslookup: can’t resolve kubernetes” are possible indicators that DNS isn’t working. A possible solution is to restart the coredns Pods. They’re managed by a Deployment object and will be automatically recreated.


The following command deletes the DNS Pods and must be ran from a terminal with kubectl installed. If you’re still logged on to the netutils Pod, you’ll need to type exit to disconnect.



$ kubectl delete pod -n kube-system -l k8s-app=kube-dns
pod "coredns-5644d7b6d9-2pdmd" deleted
pod "coredns-5644d7b6d9-wsjzp" deleted







Verify they’ve restarted and test DNS again. They’ll be restarted because they’re managed by a Deployment object.


Summary


In this chapter, you learned that Kubernetes uses the internal cluster DNS for service registration and service discovery.


All new Service objects are automatically registered with the cluster DNS, and all containers are pre-configured to use the cluster DNS for service discovery.


The cluster DNS resolves Service names to ClusterIPs. These are stable virtual IPs on a special network called the service network. Although there are no routes to this network, the kube-proxy configures all cluster nodes to redirect traffic destined for the service network to Pod IPs on the Pod network.








10: Kubernetes storage


Storage is critical to most real-world production applications. Fortunately, Kubernetes has a mature and feature-rich storage subsystem called the persistent volume subsystem.


The chapter is divided as follows:



  	The big picture

  	Storage providers

  	The Container Storage Interface (CSI)

  	The Kubernetes persistent volume subsystem

  	Dynamic provisioning with Storage Classes

  	Hands-on




Kubernetes supports lots of storage back-ends, and each requires slightly different configuration. The examples in this chapter are designed to work on Google Kubernetes Engine (GKE) clusters and will not work on other cluster types. The principles and theory that you’ll learn is applicable to all types of Kubernetes, it’s just the examples that only work on GKE.


The big picture


Kubernetes supports lots of types of storage from lots of different places. For example, block, file, and object storage from a variety of external systems that can be in the cloud or your on-premises datacenters. However, no matter what type of storage, or where it comes from, when it’s exposed on Kubernetes it’s called a volume. For example, Azure File resources surfaced in Kubernetes are called volumes, as are block devices from an HPE 3PAR array, and object storage from Alicloud. 


Figure 10.1 shows the high-level architecture.
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On the left are storage providers. They can be traditional enterprise storage arrays from established vendors like EMC and NetApp, or they can be cloud storage services such as AWS Elastic Block Store (EBS) and GCE Persistent Disks (PD). All that’s required is a plugin allowing their storage resources to be surfaced as volumes in Kubernetes.


In the middle of the diagram is the plugin layer. In simple terms, this is the glue that connects external storage with Kubernetes. Modern plugins are be based on the Container Storage Interface (CSI) which is an open standard aimed at providing a clean storage interface for container orchestrators such as Kubernetes. If you’re a developer writing storage plugins, the CSI abstracts the internal Kubernetes machinery and lets you develop out-of-tree.



  Note: Prior to the CSI, all storage plugins were implemented as part of the main Kubernetes code tree (in-tree). This meant they had to be open-source, and all updates and bug-fixes were tied to the main Kubernetes release-cycle. This was a nightmare for plugin developers as well as the Kubernetes maintainers. However, now that we have the CSI, storage vendors no longer need to open-source their code, and they can release updates and bug-fixes against their own timeframes.




On the right of Figure 10.1 is the Kubernetes persistent volume subsystem. This is a set of API objects that enable applications to consume storage. There are a growing number of storage-related API objects, but the core ones are:



  	Persistent Volumes (PV)

  	Persistent Volume Claims (PVC)

  	Storage Classes (SC) 




Throughout the chapter, we may refer to them by their PascalCase truncated API names – PersistentVolume, PersistentVolumeClaim, and StorageClass.


PVs are mapped to external storage assets, PVCs are like tickets that authorize applications (Pods) to use them, and SCs make it all dynamic.


Consider the quick example in Figure 10.2.


A Kubernetes cluster is running on AWS and the AWS administrator has created a 25GB EBS volume called “ebs-vol”. The Kubernetes administrator creates a PV called “k8s-vol” that links back to the “ebs-vol” via the ebs.csi.aws.com CSI plugin. While that might sound complicated, it’s not. The PV is simply a way of representing the external storage asset on the Kubernetes cluster. Finally, the Pod uses a PVC to claim access to the PV and start using it.
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A few things worth noting.



  	This was a very manual process that involved the AWS administrator. StorageClasses make this automated.

  	There are rules preventing multiple Pods accessing the same volume (more on this later).

  	You cannot map an external storage volume to multiple PVs. For example, you cannot have a 50GB external volume that has two 25GB Kubernetes PVs each using half of it.




Let’s dig a bit deeper.


Storage Providers


Kubernetes uses storage from a wide range of external systems. These can be native cloud services such as AWS Elastic Block Store and Azure File, but they can also be traditional on-premises storage arrays providing iSCSI, FC and NFS volumes. Other options exist, but the take-home point is that Kubernetes gets its storage from a wide range of external systems including battle-hardened enterprise-grade systems from all the major data management companies.


Some obvious restrictions apply. For example, you can’t use AWS storage services if your Kubernetes cluster is running in Microsoft Azure.


Each provider (a.k.a provisioner) needs a CSI plugin to expose their storage assets to Kubernetes. The plugin usually runs as a set of Pods in the kube-system Namespace.


The Container Storage Interface (CSI)


The CSI is a vital piece of the Kubernetes storage jigsaw and has been instrumental in bringing enterprise-grade storage from traditional vendors to Kubernetes. However, unless you’re a developer writing storage plugins, you’re unlikely to interact with it very often.


It’s an open-source project that defines a standards-based interface so that storage can be leveraged in a uniform way across multiple container orchestrators. For example, a storage vendor should be able to write a single CSI plugin that works across multiple orchestrators such as Kubernetes and Docker Swarm. In practice, Kubernetes is the focus, but Docker is implementing support for the CSI.


In the Kubernetes world, the CSI is the preferred way to write plugins (drivers) and means that plugin code no longer needs to exist in the main Kubernetes code tree. It also exposes a clean interface and hides all the ugly volume machinery inside of the Kubernetes code (no offense intended).


From a day-to-day perspective, your main interaction with the CSI will be referencing the appropriate CSI plugin in your YAML manifest files, and reading its documentation to find supported features and attributes.


Sometimes we call plugins “provisioners”, especially when we talk about Storage Classes later in the chapter.


The Kubernetes persistent volume subsystem


From a day-to-day perspective, this is where you’ll spend most of your time configuring and interacting with storage.


You start out with raw storage on the left of Figure 10.3. This plugs in to Kubernetes via a CSI plugin. You then use persistent volume subsystem API resources to leverage and use the storage in your apps.
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The three core API resources in the persistent volume subsystem are:



  	Persistent Volumes (PV)

  	Persistent Volume Claims (PVC)

  	Storage Classes (SC)




Others exist, and storage vendors can extend the Kubernetes API with their own resources to support advanced features.


At a high level, PVs are how external storage assets are represented in Kubernetes. PVCs are like tickets that grant a Pod access to a PV. SCs make it all dynamic.


Let’s walk through another example.


Assume you have an external storage system with two tiers of storage:



  	Flash/SSD fast storage

  	Mechanical slow archive storage




You expect apps on your Kubernetes cluster to use both, so you create two Storage Classes and map them as follows.



  
    
      	External tier
      	Kubernetes Storage Class name
    

  
  
    
      	SSD
      	sc-fast
    

    
      	Mechanical
      	sc-slow
    

  




With the StorageClass objects in place, applications can create volumes on-the-fly by creating Persistent Volume Claims (PVC) referencing either of the storage classes. Each time this happens, the CSI plugin referenced in the SC instructs the external storage system to create an appropriate storage asset. This is automatically mapped to a PV on Kubernetes and the app uses the PVC to claim it and mount it for use.


Don’t worry if it seems confusing, it’ll make sense when you go through the hands-on later.


Before doing that, you need to learn a bit more about PVCs and SCs.


Dynamic provisioning with Storage Classes


As the name suggests, storage classes allow you to define different classes/tiers of storage. How you define them is up to you and will depend on the types of storage you have available. For example, if your external storage systems support fast and slow storage, as well as remote replication, you might define these three classes:



  	fast-local

  	fast-replicated

  	slow-archive-local




As far as Kubernetes goes, storage classes are resources in the storage.k8s.io/v1 API group. The resource type is StorageClass, and you define them in regular YAML files that you post to the API server for deployment. You can use the sc shortname to refer to them when using kubectl.



  Note: You can use kubectl api-resources to see a full list of API resources and their shortnames. It also shows if the resource is namespaced, its API group, and what its equivalent kind is when writing YAML files.




A StorageClass YAML


The following SC defines a class of storage called “fast-local”, based on AWS solid state drives (io1) in the Ireland Region (eu-west-1a). It also requests a performance level of 10 IOPs per gigabyte and encrypted volumes.



kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
  name: fast-local
provisioner: ebs.csi.aws.com
parameters:
  type: io1
  iopsPerGB: "10"
  encrypted: true
allowedTopologies:
- matchLabelExpressions:
  - key: topology.ebs.csi.aws.com/zone
    values:
    - eu-west-1a







As with all Kubernetes YAML, kind tells the API server what type of object you’re defining, and apiVersion tells it which version of the schema to use when creating it.  metadata.name is an arbitrary string that lets you give the object a friendly name – this example is defining a class called “fast-local”.  provisioner tells Kubernetes which plugin to use, and the parameters block lets you finely tune the storage attributes. Finally, the allowedTopologies property lets you list where replicas should go.


A few quick things worth noting:



  	StorageClass objects are immutable – this means you can’t modify them after they’re deployed

  	
metadata.name should be meaningful as it’s how you and other objects refer to the class

  	The terms provisioner and plugin are used interchangeably

  	The parameters block is for plugin-specific values, and each plugin is free to support its own set of values. Configuring this section requires knowledge of the storage plugin and associated storage back-end. Each provisioner usually provides documentation.




Multiple StorageClasses


You can configure as many StorageClasses as you need. However, each class can only relate to a single type of storage on a single back-end. For example, if you have a Kubernetes cluster with StorageOS and Portworx storage back-ends, you’ll need at least two StorageClasses.


On the flip-side, each back-end storage system can offer multiple classes/tiers of storage, each of which needs its own StorageClass on Kubernetes. A simple example we’ll see later is the slower standard persistent disk and the faster SSD persistent disk tiers offered by the Google Cloud back-end. These are typically implemented with the following SCs on a GKE cluster.



  	
standard-rwo for the slower standard disk

  	
premium-rwo for the faster SSD




The following SC defines a block storage volume on a Commvault Hedvig array that is replicated between datacenters in Sunderland and New York. It will only work if you have Commvault Hedvig storage systems and appropriate replication configured on the storage system.



kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
  name: sc-hedvig-rep
provisioner: io.hedvig.csi
parameters:
  backendType: "hedvig-block"
  rp: "DataCenterAware"
  dcNames: "sunderland,new-york"







As you can see, the parameters block defines the interesting values and requires knowledge of the plugin and the storage back-end. Consult your storage plugin documentation for details.


Working with StorageClasses


The basic workflow for deploying and using a StorageClass is as follows:



  	Have a storage back-end (can be cloud or on premises)

  	Create your Kubernetes cluster

  	Install and configure the CSI storage plugin

  	Create one or more StorageClasses on Kubernetes 

  	Deploy Pods and PVCs that reference those StorageClasses 




The following YAML snippet defines a StorageClass, a PersistentVolumeClaim, and a Pod. All three objects can be defined in a single YAML file by separating them with three dashes (---).


Pay close attention to how the PodSpec references the PVC by name, and in turn, the PVC references the SC by name.



kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
  name: fast                    <<=== Referenced by the PVC
provisioner: pd.csi.storage.gke.io
parameters:
  type: pd-ssd
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: mypvc                   <<=== Referenced by the PodSpec
spec:
  accessModes:
  - ReadWriteOnce
  resources:
    requests:
      storage: 50Gi
  storageClassName: fast        <<=== Matches name of the SC
---
apiVersion: v1
kind: Pod
metadata:
  name: mypod
spec:
  volumes:
    - name: data
      persistentVolumeClaim:
        claimName: mypvc        <<=== Matches PVC name
  containers: ...
  <SNIP>







The previous YAML is truncated and doesn’t include a full PodSpec.


So far, you’ve seen a few SC definitions. However, each one was slightly different as each one related to a different provisioner (storage plugin/back-end). You’ll need to refer to your plugin documentation to know which options yours supports.


Additional volume settings


There are a few other important settings you can configure in a StorageClass. We’ll cover:



  	Access mode

  	Reclaim policy




Access mode


Kubernetes supports three access modes for volumes.



  	
ReadWriteOnce (RWO)

  	
ReadWriteMany (RWM)

  	
ReadOnlyMany (ROM)




ReadWriteOnce defines a PV that can only be bound as R/W by a single PVC. Attempts to bind it from multiple PVCs will fail.


ReadWriteMany defines a PV that can be bound as R/W by multiple PVCs. This mode is usually only supported by file and object storage such as NFS. Block storage usually only supports RWO.


ReadOnlyMany defines a PV that can be bound as R/O by multiple PVCs.


It’s important to understand that a PV can only be opened in one mode – it’s not possible for a single PV to be bound to a PVC in ROM mode and another PVC in RWM mode.


Reclaim policy


A volume’s ReclaimPolicy tells Kubernetes how to deal with a PV when its PVC is released. Two policies currently exist:



  	Delete

  	Retain




Delete is the most dangerous, and it’s the default for PVs created dynamically via storage classes unless you specify otherwise. It deletes the PV and associated storage resource on the external storage system when the PVC is released. This means all data will be lost! You should obviously use this policy with caution.


Retain will keep the associated PV object on the cluster as well as any data stored on the associated external asset. However, other PVCs are prevented from using it in future. The obvious disadvantage is it requires manual clean-up.


Let’s quickly summarize what you’ve learned about storage classes before walking through a demo.


StorageClasses (SC) let you dynamically create physical back-end storage resources that get automatically mapped to Persistent Volumes (PV) on Kubernetes. You define SCs in YAML files that reference a plugin and tie them to a particular tier of storage on a particular storage back-end. For example, high-performance AWS SSD storage in the AWS Mumbai Region. The SC needs a name, and you deploy it using kubectl apply. Once deployed, the SC watches the API server for new PVC objects referencing its name. When matching PVCs appear, the SC dynamically creates the required asset on the back-end storage system and maps it to a PV on Kubernetes. Apps can then claim it with a PVC.


There’s always more detail, such as mount options and volume binding modes, but what you’ve learned so far is enough to get you started.


Let’s bring everything together with a demo.


Hands-on


This section walks you through using StorageClasses to dynamically provision storage on an external storage system and have it mapped to Kubernetes. We’ll split the work as follows:



  	Use an existing storage class

  	Create and use a new storage class




The examples will only work on a regional Google Kubernetes Engine (GKE) cluster with the CSI plugin installed. If you created a GKE cluster as shown in Chapter 3, you’re ready to go. If your Kubernetes cluster is somewhere else, the StorageClass YAML won’t work, but the overall workflow will be the same.


Using an existing StorageClass


The following command lists all SCs defined on a typical GKE cluster. Yours may look different.



$ kubectl get sc
NAME                 PROVISIONER             RECLAIMPOLICY   VOLUMEBINDINGMODE       
premium-rwo          pd.csi.storage.gke.io   Delete          WaitForFirstConsumer                      
standard (default)   kubernetes.io/gce-pd    Delete          Immediate                                 
standard-rwo         pd.csi.storage.gke.io   Delete          WaitForFirstConsumer                      







There’s quite a lot to learn from the output.


First up, all three SCs were automatically created when the cluster was built. This is common on hosted Kubernetes platforms, but your cluster may not have any.


The one on the second line is listed as the “default”. This means it will be used by any PVCs that do not explicitly specify an SC. Default SCs are only useful in development environments and times when you do not have specific storage requirements. In production environments, you should explicitly use an SC that meets the requirements of the app.


The PROVISIONER column shows two of the SCs using the CSI plugin, the other is using the legacy in-tree plugin.


The RECLAIM POLICY is set to Delete for all three. This means any PVCs that use these SCs will create PVs and volumes that will be deleted when the PVC is deleted. This will result in data being lost. The alternative is Retain.


Setting VOLUMEBINDINGMODE to “Immediate” will create the volume on the external storage system as soon as the PVC is created. If you have multiple datacenters or cloud regions, the volume might be created in a different datacenter or region than the Pod that eventually consumes it. Setting it to WaitForFirstConsumer will delay creation until a Pod using the PVC is created. This ensures the volume will be created in the same datacenter or region as the Pod.


You can use kubectl describe to get more detailed information, and kubectl get sc <name> -o yaml will show the full configuration in YAML format.



$ kubectl describe sc premium-rwo
Name:                  premium-rwo
IsDefaultClass:        No
Annotations:           components.gke.io/component-name=pdcsi-addon...
Provisioner:           pd.csi.storage.gke.io
Parameters:            type=pd-ssd
AllowVolumeExpansion:  True
MountOptions:          <none>
ReclaimPolicy:         Delete
VolumeBindingMode:     WaitForFirstConsumer
Events:                <none>







Let’s create a new volume using the premium-rwo SC.


List any existing PVs and PVCs so that it’s easy to identify the ones you’ll create in the next steps.



$ kubectl get pv
No resources found
$ kubectl get pvc
No resources found in default namespace.







The following PVC definition is from the pvc-gke-premium.yml file in the storage folder of the book’s GitHub repo. It describes a PVC called pvc-prem that will provision a 10GB volume via the premium-rwo StorageClass. It will only work if your GKE cluster has a StorageClass called premium-rwo.



apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: pvc-prem
spec:
  accessModes:
  - ReadWriteOnce
  storageClassName: premium-rwo
  resources:
    requests:
      storage: 10Gi







Create the PVC with the following command. Be sure to run it from the folder where the YAML file exists.



$ kubectl apply -f pvc-gke-premium.yml
persistentvolumeclaim/pvc-prem created







The following commands show a PVC has been created. However, it’s in the pending state and no PV has been created. This is because the premium-rwo StorageClass volume binding mode is set to WaitForFirstConsumer meaning it won’t provision a volume and PV until a Pod claims it.



$ kubectl get pv
No resources found
kubectl get pvc
NAME       STATUS    VOLUME   CAPACITY   ACCESS MODES   STORAGECLASS   AGE
pvc-prem   Pending                                      premium-rwo    1m







Create the Pod from the prempod.yml file. This Pod mounts a volume via the pvc-prem PersistentVolumeClaim that you just created and is currently in the pending state awaiting a Pod to mount it.



$ kubectl apply -f prempod.yml
pod/prempod created







Give the Pod a minute to start, then re-check the status of any PVCs and PVs.



$ kubectl get pvc
NAME       STATUS   VOLUME            CAPACITY   ACCESS MODES   STORAGECLASS   AGE
pvc-prem   Bound    pvc-796afda3...   10Gi       RWO            premium-rwo    9m48s

kubectl get pv
NAME           CAPACITY   MODES   RECLAIM POLICY   STATUS   CLAIM              STORAGECLASS
pvc-796af...   10Gi       RWO     Delete           Bound    default/pvc-prem   premium-rwo 







The PVC now shows as bound and an associated PV has been created. If you check the Google Cloud backend, you’ll see a new persistent disk created with the same name (see Google Cloud Console > Compute Engine > Disks).


Delete the Pod and the PVC. 



$ kubectl delete pod prempod
pod "prempod" deleted

$ kubectl delete pvc pvc-prem
persistentvolumeclaim "pvc-prem" deleted







When the PVC is deleted, the PV and associated volume on the Google Cloud back-end will be automatically deleted. This is because the PVC was created through the premium-rwo SC which has the ReclaimPolicy set to Delete. Verify this.



$ kubectl get pv
No resources found







You can also check in the Google Cloud Console by going to Compute Engine > Disks.


Creating and using a new storage class


In this section, you’ll create your own new storage class and use it to create a new volume.


The SC you’ll create is defined in the sc-gke-fast-repl.yml file in the storage folder of the book’s GitHub repo and defines a class called “sc-fast-repl” with the following properties.



  	Fast SSD storage (type: pd-ssd)

  	Replicated (replication-type: regional-pd)

  	Create on-demand (volumeBindingMode: WaitForFirstConsumer)

  	Keep data when the PVC is deleted (reclaimPolicy: Retain)





apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: sc-fast-repl
provisioner: pd.csi.storage.gke.io
parameters:
  type: pd-ssd
  replication-type: regional-pd
volumeBindingMode: WaitForFirstConsumer
reclaimPolicy: Retain







Deploy the SC and verify it exists. You must run the command from the folder containing the YAML file, and it will only work on regional GKE clusters with the GKE CSI driver running.



$ kubectl apply -f sc-gke-fast-repl.yml
storageclass.storage.k8s.io/sc-fast-repl created

$ kubectl get sc
NAME                 PROVISIONER             RECLAIMPOLICY   VOLUMEBINDINGMODE 
premium-rwo          pd.csi.storage.gke.io   Delete          WaitForFirstConsumer
sc-fast-repl         pd.csi.storage.gke.io   Retain          WaitForFirstConsumer
...







With the SC in place, deploy the app and PVC defined in the vol-app.yml file. It contains a PVC defining a 20G volume based on the newly created sc-fast-repl SC. It also defines a Pod that mounts a volume from it. When you deploy the app, a new PVC and PV will be created, as well as a replicated persistent disk on the Google Cloud back-end.



$ kubectl apply -f vol-app.yml
persistentvolumeclaim/pvc1 created
pod/volpod created







Use kubectl to check the PVC and PV exist. 


The mechanics behind the operation that created the PV are as follows:



  	You created the sc-fast-repl StorageClass

  	The SC controller started watching the API server for new PVCs referencing it

  	The app you deployed created the pvc2 PVC that requested a 20GB volume from the sc-fast-repl StorageClass


  	The StorageClass loop noticed the PVC and dynamically created the back-end volume and PV




Congratulations. You’ve seen how to create a StorageClass and dynamically create volumes from it.


Clean-up


The Pod and PVC were both deployed from the vol-app.yml file. This means you can delete them both with the following command.



$ kubectl delete -f vol-app.yml
persistentvolumeclaim "pvc2" deleted
pod "volpod" deleted







Even though the Pod and PVC are deleted, a kubectl get pv will show the PV still exists. This is because the class it was created from is using the Retain reclaim policy. This keeps PVs, associated back-end volumes, and data even when PVCs are deleted. You can verify this in the Google Cloud back-end (Compute Engine > Disks and check for a 20G regional disk).


Manually delete the PV with a kubectl delete pv command and then be sure to delete the regional disk on the Google Cloud back-end. Failure to delete the regional disk on the back-end may result in unexpected charges.


Chapter Summary


In this chapter, you learned that Kubernetes has a powerful storage subsystem that allows it to dynamically provision and leverage storage from a wide variety of external storage back-ends.


Each back-end requires a plugin to expose its assets to Kubernetes, and the preferred type of plugin is a CSI plugin. Once a plugin is enabled, Persistent Volumes (PV) are used to represent external storage resources on the Kubernetes cluster, and Persistent Volume Claims (PVC) are used to give Pods access to PV storage.


Storage Classes allow applications to dynamically request storage. You create a Storage Class object that references a class, or tier, of storage from a storage back-end. Once created, the Storage Class watches the API Server for new Persistent Volume Claims that reference it. When a matching PVC arrives, the SC dynamically creates the storage and makes it available as a PV that can be mounted as a volume into a Pod (container).








11: ConfigMaps and Secrets


Most business applications comprise two main parts.



  	The application

  	The configuration




A simple example is a web server such as NGINX or httpd (Apache). Neither are very useful without a configuration. However, when you combine them with a configuration, they become extremely useful.


In the past, we coupled the application and the configuration into a single easy-to-deploy unit. As we moved into the early days of cloud-native microservices applications, we brought this model with us. However, it’s an anti-pattern in the cloud-native world. You should de-couple the application and the configuration, bringing benefits such as:



  	Re-usable application images

  	Simpler development and testing

  	Simpler and fewer disruptive changes




We’ll explain all of these, and more, as we go through the chapter.


The chapter is divided as follows:



  	The big picture

  	ConfigMap theory

  	Hands-on with ConfigMaps

  	Hands-on with Secrets




The big picture


As already mentioned, most applications comprise an application binary and a configuration. This doesn’t change with apps on Kubernetes. You build and store them separately, and bring them together at run-time. 


Let’s consider an example to understand some of the benefits…


Quick example


Imagine you work for a company that deploys modern applications to Kubernetes, and you have three distinct environments:



  	Dev

  	Test

  	Prod




Your developers write and update applications. Initial testing is performed in the dev environment, further testing is done in the test environment where more stringent rules and the likes are applied. Finally, stable components graduate to the prod environment.


However, each environment has subtle differences. These include things such as number of nodes, configuration of nodes, network and security policies, different sets of credentials and certificates, and more.


You currently package each application microservice with its configuration baked into the container (the application and configuration are packaged as a single artefact). With this in mind, you have to perform all of the following for every business application:



  	
build three distinct images (one for dev, one for test, one for prod)

  	
store the images in three distinct repositories (dev, test, prod)

  	
run each version of the image in a specific environment (dev in dev, test in test, prod in prod)




Every time you change the config of an app, even small changes like fixing a typo, you need to build and package an entirely new image and perform some type of update to the entire app.


Analysing the example


There are several drawbacks to the approach of storing the application and its configuration as a single artefact (container image).


As your dev, test, and prod environments have different characteristics, each environment needs its own image. A dev or test image won’t work in the prod environment because of things like different security credentials. This requires extra work to create and maintain 3x copies each application. This complicates matters and increases the chances of misconfiguration, including things that work in dev and test but not in prod.


You also have to store 3x images in 3 distinct repositories. Plus, you need to be very careful about permissions to repositories. This is because your prod images contain sensitive configuration data, sensitive passwords, and sensitive encryption keys. You probably don’t want dev and test engineers having access to prod images.


It’s also harder to troubleshoot an issue if you push an update that includes both an application binary update as well as a configuration update. If the two are tightly coupled, it’s harder to isolate the fault. Also, if you need to make a minor configuration change (for example fix a typo on a web page) you need to re-package, re-test, and re-deploy the entire application and configuration.


None of this is ideal.


What it looks like in a de-coupled world


Now consider you work for the same company, but this time your application and its configuration are de-coupled. This time.



  	You build a single application image that’s shared across all three environments

  	You store a single image in a single repository

  	You run a single version of each image in all environments




To make this work, you build your application images as generically as possible with no embedded configuration. You then create and store configurations in separate objects, and apply a configuration to the application at when you run it. For example, you have a single copy of a web server that you can deploy to all three environments. When you deploy it to prod you apply the prod configuration. When you run it in dev, you apply the dev configuration…


In this model, you create and test a single version of each application image that you store in a single repository. All staff can have access to the image repository as there’s no sensitive data in the images. Finally, you can easily push changes to the application and its configuration independent of each other – updating a simple typo in a config no longer requires the entire application binary and image to be rebuilt and re-deployed.


You can even re-use images across different apps. For example, a hardened stripped-down NGINX image can be used by lots of different apps – just load different configs at run-time.


Let’s see how Kubernetes makes this possible…


ConfigMap theory


Kubernetes provides an object called a ConfigMap (CM) that lets you store configuration data outside of a Pod. It also lets you dynamically inject the config into a Pod at run-time.



  Note: When we use the term Pod we mean container. After all, it is ultimately a container that receives the configuration data and runs the app.




ConfigMaps are first-class objects in the Kubernetes API under the core API group, and they’re v1. This tells us a lot of things:



  	They’re stable (v1)

  	They’ve been around for a while (the fact that they’re in the core API group)

  	You can operate on them with the usual kubectl commands

  	They can be defined and deployed via the usual YAML manifests




ConfigMaps are typically used to store non-sensitive configuration data such as:



  	Environment variables

  	Entire configuration files (things like web server configs and database configs)

  	Hostnames 

  	Service ports 

  	Accounts names




You should not use ConfigMaps to store sensitive data such as certificates and passwords. Kubernetes provides a different object, called a Secret, for storing sensitive data. Secrets and ConfigMaps are very similar in design and implementation, the major difference is that Kubernetes takes steps to obscure the data stored in Secrets. It makes no such efforts to obscure data stored in ConfigMaps.


You’ll see Secrets at the end of the chapter.


How ConfigMaps work


At a high-level, a ConfigMap is a place to store configuration data that can be seamlessly injected into containers at runtime. As far as any app is concerned, there is no ConfigMap. The config data simply surfaces where it’s expected and the app has no idea it was put there by a ConfigMap.


Let’s look a bit closer…


Behind the scenes, ConfigMaps are a map of key/value pairs and we call each key/value pair an entry.



  	
Keys are an arbitrary name that can be created from alphanumerics, dashes, dots, and underscores

  	
Values can contain anything, including multiple lines with carriage returns

  	Keys and values are separated by a colon – key:value





Some simple examples might be:



  	db-port:13306

  	hostname:msb-prd-db1




More complex examples can store entire configuration files like this one:



key: conf
value:

directive in;
main block;
http {
  server {
    listen        80 default_server;
    server_name   *.nigelpoulton.com;
    root          /var/www/nigelpoulton.com;
    index         index.html

    location / {
      root   /usr/share/nginx/html;
      index  index.html;      
    }
  }
}







Once data is stored in a ConfigMap, it can be injected into containers at run-time via any of the following methods:



  	Environment variables

  	Arguments to the container’s startup command

  	Files in a volume




All of the methods work seamlessly with existing applications. In fact, all an application sees is its configuration data in either; an environment variable, an argument to a startup command, or a file in a filesystem. The application is unaware the data originally came from a ConfigMap.


Figure 11.1 shows how the pieces connect.
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The most flexible of the three methods is the volume option, whereas the most limited is the startup command.  You’ll look at each in turn, but before we do that let’s quickly mention Kubernetes-native applications.


ConfigMaps and Kubernetes-native apps


A Kubernetes-native application is one that knows it’s running on Kubernetes and can talk to the Kubernetes API. As a result, they can access ConfigMap data directly via the API without needing things like environment variables and volumes. This can simplify application configuration, but the application will only run on Kubernetes (Kubernetes lock-in). At the time of writing, Kubernetes-native applications are rare.


Hands-on with ConfigMaps


You’ll need a Kubernetes cluster and the lab files from the book’s GitHub repo if you want to follow along. 



$ git clone https://github.com/nigelpoulton/TheK8sBook.git
Cloning into 'TheK8sBook'...







If you don’t know how to use git, or can’t install it, you can just go to the repo and copy the text from the relevant files into files with the same name on your local machine.


Be sure to run all of the following commands from within the configmaps folder.


As with most Kubernetes objects, you can create them imperatively and declaratively. We’ll look at the imperative method first.


Creating ConfigMaps imperatively


The command to imperatively create a ConfigMap is kubectl create configmap, but you can shorten configmap to cm. The command accepts two sources of data:



  	Literal values on the command line (--from-literal)

  	Files (--from-file)




Run the following command to create a ConfigMap called testmap1 with two map entries from literal command-line values.



$ kubectl create configmap testmap1 \
  --from-literal shortname=AOS \
  --from-literal longname="Agents of Shield"







The following kubectl describe command shows how the two entries are stored in the map.



$ kubectl describe cm testmap1
Name:         testmap1
Namespace:    default
Labels:       <none>
Annotations:  <none>

Data
====
longname:
----
Agents of Shield
shortname:
----
AOS
Events:  <none>







You can see the object is essentially a map of key/value pairs dressed up as a Kubernetes object. 


The next command creates a ConfigMap from a file called cmfile.txt. It assumes you have a local file called cmfile.txt in your working directory. The file contains the following single line of text and is available in the configmaps directory of the book’s GitHub repo.



Kubernetes FTW







Run this command to create the ConfigMap from the contents of the file. Notice that the command uses the --from-file argument instead of --from-literal.



$ kubectl create cm testmap2 --from-file cmfile.txt
configmap/testmap2 created







Inspecting ConfigMaps


ConfigMaps are first class API objects. This means you can inspect and query them in the same way as any other API object. 


List all ConfigMaps in the current Namespace.



$ kubectl get cm
AME       DATA   AGE
testmap1   2      11m
testmap2   1      2m23s







The following kubectl describe command shows the following interesting info about the testmap2 map:



  	A single map entry was created

  	The name of the entry’s key is the name of the file (cmfile.txt)

  	The entry’s value is the contents of the file





$ kubectl describe cm testmap2
Name:         testmap2
Namespace:    default
Labels:       <none>
Annotations:  <none>

Data
====
cmfile.txt:           <<-- key
----
Kubernetes FTW        <<-- value
Events:  <none>







You can also see the entire object by using the -o yaml flag with kubectl get.



$ kubectl get cm testmap1 -o yaml
apiVersion: v1
data:
  longname: Agents of Shield
  shortname: AOS
kind: ConfigMap
metadata:
  creationTimestamp: "2021-02-09T10:09:46Z"
  managedFields:
  <Snip>
    manager: kubectl-create
    operation: Update
    time: "2021-02-09T10:09:46Z"
  name: testmap1
  namespace: default
  resourceVersion: "311949"
  uid: 56321c4f-52f5-4ff3-90cd-22e018588065







An interesting thing to note is that ConfigMap objects don’t have the concept of state (desired state and actual state). This is why they have a data block instead of spec and status blocks. 


Let’s find out how to create a ConfigMap declaratively before you use one to inject data into a Pod.


Creating ConfigMaps declaratively


The following ConfigMap manifest defines two map entries; firstname and lastname. It’s available in the book’s GitHub repo under the configmaps folder called multimap.yml. Alternatively, you can create an empty file and practice writing your own manifests from scratch.



kind: ConfigMap 
apiVersion: v1 
metadata:
  name: multimap 
data:
  given: Nigel
  family: Poulton







You can see that a ConfigMap manifest has the normal kind and apiVersion fields, as well as the usual metadata section. However, as previously mentioned, they don’t have a spec section. Instead, they have a data section that defines the map of key/values. 


You can deploy it with the following command (the command assumes you have a copy of the file in your working directory called multimap.yml).



$ kubectl apply -f multimap.yml
configmap/multimap created







This next YAML looks slightly more complicated but it’s actually not – it creates a ConfigMap with just a single map entry in the data block. It looks more complicated because the value portion of the map entry is a full configuration file.



kind: ConfigMap 
apiVersion: v1 
metadata:
  name: test-conf
data:
  test.conf: |
    env = plex-test
    endpoint = 0.0.0.0:31001
    char = utf8
    vault = PLEX/test
    log-size = 512M







The previous YAML file inserts a pipe character (|) after the name of the entry’s key property. This tells Kubernetes that everything following the pipe is to be treated as a single literal value. Therefore, the ConfigMap object is called test-conf and it contains a single map entry as follows:



  
    
      	Key
      	Value
    

  
  
    
      	test.conf
      	env = plex-test
    

    
      	 
      	endpoint = 0.0.0.0:31001
    

    
      	 
      	char = utf8
    

    
      	 
      	vault = PLEX/test
    

    
      	 
      	log-size = 512M
    

  




You can deploy the previous CM with the following kubectl command. It assumes you have a local copy of the file called singlemap.yml.



$ kubectl apply -f singlemap.yml 
configmap/test-conf created







List and describe the multimap and test-conf ConfigMaps you just created. The following shows the output of a kubectl describe against the test-conf map.



$ kubectl describe cm test-conf
Name:         test-conf
Namespace:    default
Labels:       <none>
Annotations:  <none>
Data
====
test.conf:
----
env = plex-test
endpoint = 0.0.0.0:31001
char = utf8
vault = PLEX/test
log-size = 512M
Events:  <none>







ConfigMaps are extremely flexible and can be used to insert complex configurations, including JSON files and even scripts, into containers at run-time.


Injecting ConfigMap data into Pods and containers


You’ve seen how to imperatively and declaratively create ConfigMap objects and populate them with data. Now let’s see how to get that data into applications running in containers.


There are three main ways to inject ConfigMap data into a container:



  	As environment variables

  	As arguments to container startup commands

  	As files in a volume




Let’s look at each.


ConfigMaps and environment variables


A common way to get ConfigMap data into a container is via environment variables. You create the ConfigMap, then you map its entries into environment variables in the container section of a Pod template. When the container is started, the environment variables appear in the container as standard Linux or Windows environment variables.


Figure 11.2. shows this.
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You already have a ConfigMap called multimap that has two entries:



  	given=Nigel

  	family=Poulton




The following Pod manifest deploys a single container that creates two environment variables in the container.



  	FIRSTNAME: Maps to the given entry 

  	LASTNAME: Maps to the family entry 





apiVersion: v1
kind: Pod
<Snip>
spec:
  containers:
    - name: ctr1
      env:
        - name: FIRSTNAME
          valueFrom:
            configMapKeyRef:
              name: multimap
              key: given
        - name: LASTNAME
          valueFrom:
            configMapKeyRef:
              name: multimap
              key: family
<Snip>







When the Pod is scheduled and the container started, FIRSTNAME and LASTNAME will be created as standard Linux environment variables inside the container. Applications can use these like regular environment variables – because they are!


Run the following commands to deploy a Pod from the envpod.yml file and list environment variables that include the NAME string in their name. This will list the FIRSTNAME and LASTNAME variables and you’ll see they’re populated with the values from the multimap ConfigMap.



$ kubectl apply -f envpod.yml
pod/envpod created

$ kubectl exec envpod -- env | grep NAME
HOSTNAME=envpod
FIRSTNAME=Nigel
LASTNAME=Poulton







A drawback to using ConfigMaps with environment variables is that environment variables are static. This means updates made to the map are not reflected in running containers. For example, if you update the values of the given and family entries in the ConfigMap, environment variables in existing containers won’t see the updates. This is a major reason environment variables aren’t very good.


ConfigMaps and container startup commands


The concept of using ConfigMaps with container startup commands is simple. You specify a startup command for a container, and then customize it with variables.


The following Pod template is from the startuppod.yml file and describes a single container called args1. It’s based on the busybox image and runs the /bin/sh startup command on line 5.



spec:
  containers:
    - name: args1
      image: busybox
      command: [ "/bin/sh", "-c", "echo First name $(FIRSTNAME) last name $(LASTNAME)" ]
      env:
        - name: FIRSTNAME
          valueFrom:
            configMapKeyRef:
              name: multimap
              key: given
        - name: LASTNAME
          valueFrom:
            configMapKeyRef:
              name: multimap
              key: family







If you look closely at the startup command, you’ll see that it references two variables; FIRSTNAME and LASTNAME. Each of these is defined in the env: section directly below the startup command. 



  	
FIRSTNAME is based on the given entry in the multimap ConfigMap 

  	
LASTNAME is based on the family entry in the same ConfigMap




The relationship is shown in in Figure 11.3.
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Running a Pod based on the previous YAML will print “First name Nigel last name Poulton” to the container’s logs and then quit (succeed).



$ kubectl logs startup-pod -c args1
First name Nigel last name Poulton







Describing the Pod will yield the following lines describing the environment of the Pod.



Environment:
  FIRSTNAME:  <set to the key 'given' of config map 'multimap'> 
  LASTNAME:  <set to the key 'family' of config map 'multimap'> 







Using ConfigMaps with container startup commands is an extension of environment variables. As such, it suffers from the same limitations – updates to entries in the map will not be reflected in running containers.


If you ran the startup-pod it’ll probably be in a CrashLoopBackOff loop. This is because it’s startup command runs and completes, causing the Pod to succeed. Delete it with kubectl delete pod startup-pod.


ConfigMaps and volumes


Using ConfigMaps with volumes is the most flexible option. You can reference entire configuration files, as well as make updates to the ConfigMap and have them reflected in running containers. This means you can make changes to entries in a ConfigMap, after you’ve deployed a container, and those changes be seen in the container and available for running applications. The updates may take a minute or so to appear in the container.


The high-level process for exposing ConfigMap data via a volume looks like this.



  	Create the ConfigMap

  	Create a ConfigMap volume in the Pod template

  	Mount the ConfigMap volume into the container

  	Entries in the ConfigMap will appear in the container as individual files




This process is shown in Figure 11.4
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You still have the multimap ConfigMap with two values.



  	given=Nigel

  	family=Poulton




The following YAML creates a Pod called cmvol with the following configuration.



  	
spec.volumes creates a volume called volmap based on the multimap ConfigMap

  	
spec.containers.volumeMounts mounts the volmap volume to /etc/name






apiVersion: v1
kind: Pod
metadata:
  name: cmvol
spec:                             <<=== This block creates a 
  volumes:                        <<=== special type of volume called
    - name: volmap                <<=== a ConfigMap volume based on 
      configMap:                  <<=== the ConfigMap called
        name: multimap            <<=== "multimap"
  containers:
    - name: ctr
      image: nginx
      volumeMounts:               <<=== These lines mount the
        - name: volmap            <<=== the "volmap" volume into the
          mountPath: /etc/name    <<=== container at "/etc/name"







The following commands deploy the container (from the cmvol.yml manifest) and then run a kubectl exec command to list the files in the `/etc/name/ directory.



$ kubectl apply -f cmpod.yml
pod/cmvol created

$ kubectl exec cmvol -- ls /etc/name
family
given







Edit the ConfigMap and change any of the values in the data block, you can even change them all. This may require a basic understanding of the vi editor. If you’re not comfortable with vi you can edit the YAML file in a different editor and use kubectl apply to re-post it to the API server.



$ kubectl edit cm multimap

# Please edit the object below. Lines beginning with a '#' will be ignored,
# and an empty file will abort the edit. If an error occurs while saving 
# this file will be reopened with the relevant failures.
#
apiVersion: v1
data:
  City: Macclesfield       << changed
  Country: UK              << changed
kind: ConfigMap
metadata:
<Snip>







Save your changes and re-run the previous kubectl exec command to list the contents of the container’s filesystem. It may take a minute for the changes to be updated in the running container.



$ kubectl exec cmvol -- ls /etc/name
City
Country

$ kubectl exec cmvol -- cat /etc/name/Country
UK







Congratulations, the contents of the multimap ConfigMap have been exposed into the containers filesystem via ConfigMap volume and you’ve tested making an edit. 


Hands-on with Secrets


Secrets are almost identical to ConfigMaps – they hold application configuration data that is injected into containers at run-time. However, Secrets are designed for sensitive data such as passwords, certificates, and OAuth tokens.


Are Secrets secure


The quick answer to this question is “no”. But here’s the slightly longer answer…


Despite being designed for sensitive data, Kubernetes does not encrypt Secrets. It merely obscures them as base-64 encoded values that can easily be decoded. Fortunately, it’s possible to configure encryption-at-rest with EncryptionConfiguration objects, and most service meshes encrypt network traffic.


A typical workflow for a Secret is as follows.



  	The Secret is created and persisted to the cluster store as an un-encrypted object

  	A Pod that uses it gets scheduled to a cluster node

  	The Secret is transferred over the network, un-encrypted, to the node

  	The kubelet on the node starts the Pod and its containers

  	The Secret is mounted into the container via an in-memory tmpfs filesystem and decoded from base64 to plain text 

  	The application consumes it

  	If/when the Pod is deleted, the Secret is deleted form the node




While it’s possible to encrypt the Secret in the cluster store and leverage a service mesh to encrypt it in-flight on the network, it’s always mounted as plain-text in the Pod/container. This is so the app can consume it without having to perform decryption or base64 decoding operations.


Also, use of in-memory tmpfs filesystems mean they’re never persisted to disk on a node.


So, to cut a long story short, no Secrets aren’t very secure. But you can take extra steps to make them secure.


They’re also limited to 1MiB (1,048,576 bytes) in size.


An obvious use-case for Secrets is a generic TLS termination proxy for use across your dev, test, and prod environments. You create a standard image, and load the appropriate TLS keys at run-time for each environment. This is shown in the Figure 11.5.
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Inspecting system Secrets


By default, every Pod gets a Secret mounted into it as a volume, which it uses to authenticate itself if it talks to the API server.


If you’ve been following along, you’ll still have the “cmvol” Pod running. Run the following command and identify the fields mapping the Secret to the Secret volume and container mount point.



1.  $ kubectl describe pod cmvol
2.  Name:         cmvol
3.  Namespace:    default
4.  <Snip>
5.  Containers:
6.    ctr:
7.      Container ID:   containerd://0de32d677251cbbda3ebe53e8...
8.      Image:          nginx
9.      Mounts:
10.       /etc/name from volmap (rw)
11.       /var/run/secrets/kubernetes.io/serviceaccount from default-token-s9nmx (ro)
12. <Snip>
13. Volumes:
14.   default-token-s9nmx:                                    
15.     Type:       Secret (a volume populated by a Secret)   
16.     SecretName: default-token-s9nmx                       
17.     Optional:   false                                     
18. QoS Class:      BestEffort                                
19. <Snip>                                                    







Lines 13 - 17 define a Secret volume called “default-token-s9nmx” based on a Secret with the same name, and line 11 shows it mounted in the container at /var/run/secrets/kubernetes.io/serviceaccount.


You can see the Secret by listing all Secrets in the default Namespace. The name of yours will be different.



$ kubectl get secrets
NAME                  TYPE                                  DATA   AGE
default-token-s9nmx   kubernetes.io/service-account-token   3      21d







Describe the Secret to see more info. 



$ kubectl describe secret default-token-s9nmx
Name:         default-token-s9nmx
Namespace:    default
Labels:       <none>
Annotations:  kubernetes.io/service-account.name: default
              kubernetes.io/service-account.uid: c5b5a4b3-3c5c...
Type:  kubernetes.io/service-account-token
Data
====
token:      eyJhbGciOiJSUzI1NiIsIm...
ca.crt:     570 bytes
namespace:  7 bytes







Creating Secrets


Before proceeding with this section, remember that Secrets are not encrypted in the cluster store, not encrypted in-flight on the network, and not encrypted when surfaced in a container. There are ways to encrypt them at-rest in the cluster store and to encrypt network traffic. However, they need to be surfaced in containers in plain text so applications can read them.


As with all API resources, Secrets can be created imperatively and declaratively. 


Create a new Secret called creds with the following imperative command.



$ kubectl create secret generic creds --from-literal user=nigelpoulton \
  --from-literal pwd=Password123







Earlier you learned that Kubernetes obscures Secrets by encoding them as base64 values. Check this with the following command.



$ kubectl get secret creds -o yaml
apiVersion: v1
kind: Secret
data:
  pwd: UGFzc3dvcmQxMjM=
  user: bmlnZWxwb3VsdG9u
<Snip>







The username and password values are both base64-encoded. Run the following command to decode them. You’ll need the base64 utility on your system for the decoding to work. If you don’t have it, you can use an online decoder.



$ echo UGFzc3dvcmQxMjM= | base64 -d
Password123







The decoding completes without requiring a key, proving that base64 encoding is not secure.


The following YAML object is from the tkb-secret.yml file in the configmaps folder. It describes a Secret called “tkb-secret” with two base64-encoded entries. If you want to add plain text entries, rename the data object to stringData. Although this allows you to enter values in plain text, they’ll still be stored as base64, and subsequent kubectl commands will retrieve them as base64.



apiVersion: v1
kind: Secret
metadata:
  name: tkb-secret
  labels:
    chapter: configmaps
type: Opaque
data:                   <<=== Change to stringData for plain text values
  username: bmlnZWxwb3VsdG9u
  password: UGFzc3dvcmQxMjM=







Deploy it to your cluster. Be sure to run the command from the configmaps folder.



$ kubectl apply -f tkb-secret.yml 
secret/tkb-secret created







Run kubectl get and kubectl describe commands to inspect it.


Using Secrets in Pods


The most flexible way to inject a Secret into a Pod (container) is via a special type of volume called a Secret volume.


The following YAML describes a single-container Pod with a Secret volume called “secret-vol” based on the tkb-secret created in the previous step. It also mounts it into the container at /etc/tkb.



apiVersion: v1
kind: Pod
metadata:
  name: secret-pod
  labels:
    topic: secrets
spec:
  volumes:
  - name: secret-vol
    secret:
      secretName: tkb-secret
  containers:
  - name: secret-ctr
    image: nginx
    volumeMounts:
    - name: secret-vol
      mountPath: "/etc/tkb"







Secret vols are automatically mounted as read-only to prevent containers and applications accidentally mutating them.


Deploy it with the following command. Doing this will transfer the unencrypted Secret over the network to the kubelet on the node that will run the Pod where it will be mounted into the Pod via a tmpfs mount. 



$ kubectl apply -f secretpod.yml
pod/secret-pod created







The following command shows the Secret is mounted as two files at /etc/tkb – one file for each entry in the Secret. 



$ kubectl exec secret-pod -- ls /etc/tkb                  
password
username







Showing the contents of either file will show the entries have been exposed in the container in plain text for use by applications.



$ kubectl exec secret-pod -- cat /etc/tkb/password
Password123







There are more ways to use ConfigMaps and Secrets, but you know enough now to get started.


Clean-up


Use kubectl get to list the Pods, ConfigMaps and Secrets deployed in the chapter, and delete them with kubectl delete.


Chapter Summary


ConfigMaps and Secrets are the Kubernetes native way of decoupling applications and config data.


They’re both first-class object in the Kubernetes API and can be created and manipulated with the usual kubectl apply, kubectl get, and kubectl describe commands. ConfigMaps are designed for application configuration parameters and even entire configuration files, whereas Secrets are designed for sensitive configuration data.


Both can be injected into containers at run-time via various constructs, with volumes being the preferred method, as they allow updates to eventually be reflected in running containers.


Secrets are not encrypted by default in the cluster store or when in transit on the network.








12: StatefulSets


In this chapter, you’ll learn how to use StatefulSets to deploy and manage stateful applications on Kubernetes.


For the purposes of this chapter, we’re defining a stateful application as one that creates and saves valuable data. An example might be an app that saves data about client sessions and uses it for future sessions. Other examples include databases and other data stores.


We’ll divide the chapter as follows:



  	StatefulSet theory

  	Hands-on with StatefulSets




The theory section introduces you to the way StatefulSets work and what they bring to the game. But don’t worry if you don’t understand everything at first, you’ll cover most of it again when you go through the hands-on section.


The theory of StatefulSets


It’s often useful to compare StatefulSets with Deployments. Both are first-class API objects and follow the typical Kubernetes controller architecture. They’re both implemented as controller that operate reconciliation loops watching the state of the cluster, via the API server, and moving the observed state into sync with desired state. Deployments and StatefulSets also support self-healing, scaling, updates, and more. 


However, there are some vital differences between StatefulSets and Deployments. StatefulSets guarantee.



  	Predictable and persistent Pod names

  	Predictable and persistent DNS hostnames

  	Predictable and persistent volume bindings




These three properties form the state of a Pod, sometimes referred to as its sticky ID. StatefulSets ensure this state/sticky ID is persisted across failures, scaling, and other scheduling operations, making them ideal for applications that require unique Pods that are not interchangeable.


As a quick example, failed Pods managed by a StatefulSet will be replaced by new Pods with the exact same Pod name, the exact same DNS hostname, and the exact same volumes. This is true even if the replacement Pod is started on a different cluster node. The same is not true of Pods managed by a Deployment.


The following YAML snippet shows some of the properties of a typical StatefulSet.



apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: tkb-sts
spec:
  selector:
    matchLabels:
      app: mongo
  serviceName: "tkb-sts"
  replicas: 3
  template:
    metadata:
      labels:
        app: mongo
    spec:
      containers:
      - name: ctr-mongo
        image: mongo:latest
        ...







The name of the StatefulSet is tkb-sts and it defines three Pod replicas running the mongo:latest image. You post this to the API server, it’s persisted to the cluster store, the replicas are assigned to cluster nodes, and the StatefulSet controller monitors the state of the cluster making sure observed state matches desired state.


That’s the big picture. Let’s take a closer look at some of the major characteristics of StatefulSets before walking through an example.


StatefulSet Pod naming


All Pods managed by a StatefulSet get predictable and persistent names. These names are vital, and are at the core of how Pods are started, self-healed, scaled, deleted, attached to volumes, and more.


The format of StatefulSet Pod names is <StatefulSetName>-<Integer>. The integer is a zero-based index ordinal, which is just a fancy way of saying “number starting from 0”. The first Pod created by a StatefulSet always gets index ordinal “0”, and each subsequent Pod gets the next highest. Assuming the previous YAML snippet, the first Pod created will be called tkb-sts-0, the second will be called tkb-sts-1, and the third will be called tkb-sts-2.


Be aware that StatefulSet names need to be a valid DNS names, so no exotic characters.


Ordered creation and deletion


Another fundamental characteristic of StatefulSets is the controlled and ordered way they start and stop Pods.


StatefulSets create one Pod at a time, and always wait for previous Pods to be running and ready before creating the next. This is different from Deployments that use a ReplicaSet controller to start all Pods at the same time, causing potential race conditions.


As per the previous YAML snippet, tkb-sts-0 will be started first and must be running and ready before the StatefulSet controller starts tkb-sts-1. The same applies to subsequent Pods – tkb-sts-1 needs to be running and ready before tkb-sts-2 starts etc. See Figure 12.1
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  Note: Running and ready are terms used to indicate all containers in a Pod are running and the Pod is ready to service requests.




Scaling operations are also governed by the same ordered startup rules. For example, scaling from 3 to 5 replicas will start a new Pod called tkb-sts-3 and wait for it the be running and ready before creating tkb-sts-4. Scaling down follows the same rules in reverse – the controller terminates the Pod with the highest index ordinal (number) first, waits for it to fully terminate before terminating the Pod with the next highest ordinal.


Knowing the order in which Pods will be scaled down, as well as knowing that Pods will not be terminated in parallel, is a game-changer for many stateful apps. For example, clustered apps that store data can potentially lose data if multiple replicas go down at the same time. StatefulSets guarantee this will never happen. You can also inject other delays via things like terminationGracePeriodSeconds to further control the scaling down process. All in all, StatefulSets bring a lot to the table for clustered apps that create and store data. 


Finally, it’s worth noting that StatefulSet controllers do their own self-healing and scaling. This is architecturally different to Deployments which use a separate ReplicaSet controller for these operations.


Deleting StatefulSets


There are two major things to consider when deleting StatefulSets.


Firstly, deleting a StatefulSet does not terminate Pods in order. With this in mind, you may want to scale a StatefulSet to 0 replicas before deleting it.


You can also use terminationGracePeriodSeconds to further control the way Pods are terminated. It’s common to set this to at least 10 seconds to give applications running in Pods a chance to flush local buffers and safely commit any writes that are still “in-flight”.


StatefulSets and Volumes


Volumes are an important part of a StatefulSet Pod’s sticky ID (state). 


When a StatefulSet Pod is created, any volumes it needs are created at the same time and named in a special way that connects them to the right Pod . Figure 12.2 shows a StatefulSet called “ss” requesting 3 replicas. You can see how each Pod and volume (PVC) is created and how the names connect volumes to Pods.
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Volumes are appropriately decoupled from Pods via the normal Persistent Volume Claim system. This means volumes have separate lifecycles to Pods, allowing them to survive Pod failures and termination operations. For example, any time a StatefulSet Pod fails or is terminated, associated volumes are unaffected. This allows replacement Pods to attach to the same storage as the Pods they’re replacing. This is true, even if replacement Pods are scheduled to different cluster nodes. 


The same is true for scaling operations. If a StatefulSet Pod is deleted as part of a scale-down operation, subsequent scale-up operations will attach new Pods to the surviving volumes that match their names.


This behavior can be a life-saver if you accidentally delete a StatefulSet Pod, especially if it’s the last replica!


Handling failures


The StatefulSet controller observes the state of the cluster and attempts to keep observed state in sync with desired state. The simplest example is a Pod failure. If you have a StatefulSet called tkb-sts with 5 replicas, and tkb-sts-3 fails, the controller will start a replacement Pod with the same name and attach it to the same volumes. 


However, if a failed Pod recovers after Kubernetes has replaced it, you’ll have two identical Pods trying to write to the same volume. This can result in data corruption. As a result, the StatefulSet controller is extremely careful how it handles failures.


Possible node failures are very difficult to deal with. For example, if Kubernetes loses contact with a node, how does it know if the node is down and will never recover, or if it’s a temporary glitch such as a network partition, a crashed kubelet, or the node is simply rebooting? To complicate matters further, the controller can’t even force the Pod to terminate, as the local kubelet may never receive the instruction. With all of this in mind, manual intervention is needed before Kubernetes will replace Pods on failed nodes.


Network ID and headless Services


We’ve already said that StatefulSets are for applications that need Pods to be predictable and long-lived. As a result, other parts of the application as well as other applications may need to connect directly to individual Pods. To make this possible, StatefulSets use a headless Service to create predictable DNS hostnames for every Pod replica. Other apps can then query DNS for the full list of Pod replicas and use these details to connect directly to Pods.


The following YAML snippet shows a headless Service called “mongo-prod” that is listed in the StatefulSet YAML as the governing Service.



apiVersion: v1
kind: Service
metadata:
  name: mongo-prod
spec:
  clusterIP: None
  selector:
    app: mongo
    env: prod
---
apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: sts-mongo
spec:
  serviceName: mongo-prod       <<==== Governing Service







Let’s explain the terms headless Service and governing Service.


A headless Service is just a regular Kubernetes Service object without an IP address (spec.clusterIP set to None). It becomes a StatefulSet’s governing Service when you list it in the StatefulSet manifest under spec.serviceName.


When the two objects are combined like this, the Service will create DNS SRV records for each Pod replica that matches the label selector of the headless Service. Other Pods and apps can then find members of the StatefulSet by performing DNS lookups against the name of the headless Service. You’ll see this in action later, and obviously applications need coding with this intelligence.


That covers most of the theory, let’s walk through an example and see how it all comes together.


Hands-on with StatefulSets


In this section, you’ll deploy a working StatefulSet. The example is intended to demonstrate the way StatefulSets work and reinforce what you’ve already learned. It’s not intended as a production-grade application configuration.


The examples we’ll show are on Google Kubernetes Engine (GKE). StatefulSets and what you’re about to see work just fine on other Kubernetes clusters, but the StorageClass YAML file used in the examples is designed for GKE.


All of the YAML files we’ll refer to are in the statefulsets folder of the book’s GitHub repo. You can clone the repo with the following command.



$ git clone https://github.com/nigelpoulton/TheK8sBook.git







If you’re following along, you’ll deploy the following three objects:



  	A StorageClass

  	A headless Service

  	A StatefulSet




To make things easier to follow, you’ll inspect and deploy each object individually. However, all three can be grouped in a single YAML file separated by three dashes (see app.yml in the statefulsets folder of the repo).


Deploying the StorageClass


StatefulSets that use volumes need to be able to create them dynamically. You need two objects to do this:



  	StorageClass (SC)

  	PersistentVolumeClaim (PVC)




The following YAML is from the gcp-sc.yml file and defines a StorageClass object called flash that will dynamically provision SSD volumes (type=pd-ssd) from the Google Cloud using the GKE persistent disk CSI driver (pd.csi.storage.gke.io). It will only work on Kubernetes clusters running on GCP or GKE with the CSI driver enabled.



apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: flash
provisioner: pd.csi.storage.gke.io
volumeBindingMode: WaitForFirstConsumer
allowVolumeExpansion: true
parameters:
  type: pd-ssd







Deploy the Storage class.



$ kubectl apply -f gcp-sc.yml
storageclass.storage.k8s.io/flash created







List your cluster’s StorageClasses to make sure it was created correctly.



$ kubectl get sc
NAME   PROVISIONER            RECLAIMPOLICY  VOLUMEBINDINGMODE      ALLOWEXPANSION   AGE
flash  pd.csi.storage.gke.io  Delete         WaitForFirstConsumer   true             5s







With the StorageClass in place, Persistent Volume Claims (PVC) can use it to dynamically create new volumes. We’ll circle back to this in a later step.


Creating a governing headless Service


When learning about headless Services, it can be useful to visualize a Service object with a head and a tail. The head is the stable IP address, and the tail is the list of Pods it sends traffic to. Therefore, a headless Service is a Service object without an IP address.


The sole purpose of a headless Service is to create DNS SRV records for Pods that match its label selector. Clients then need to know to use DNS to reach Pods instead of using the Service’s ClusterIP. This is why a headless Service doesn’t need a ClusterIP.


The following YAML is from the statefulsets/headless-svc.yml file and describes a headless Service called dullahan with no IP address (spec.clusterIP: None).



apiVersion: v1
kind: Service
metadata:
  name: dullahan
  labels:
    app: web
spec:
  ports:
  - port: 80
    name: web
  clusterIP: None
  selector:
    app: web







The only difference to a regular Service is that a headless Service must have its clusterIP set to None.


When combined with a StatefulSet, headless Services create predictable stable DNS entries for every Pod matching the StatefulSet’s label selector. You’ll see this in a later step.


Deploy the headless Service to your cluster.



$ kubectl apply -f headless-svc.yml
service/tkb-sts created







Verify the operation.



$ kubectl get svc
NAME         TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)   AGE
kubernetes   ClusterIP   10.0.0.1     <none>        443/TCP   145m
dullahan     ClusterIP   None         <none>        80/TCP    10s







Deploy the StatefulSet


With the StorageClass and headless Service in place, it’s time to deploy the StatefulSet.


The following YAML is from the sts.yml file and defines the StatefulSet. Remember this is for learning purposes only, it’s not intended as a production-grade deployment of an application.



apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: tkb-sts
spec:
  replicas: 3 
  selector:
    matchLabels:
      app: web
  serviceName: "dullahan"
  template:
    metadata:
      labels:
        app: web
    spec:
      terminationGracePeriodSeconds: 10
      containers:
      - name: ctr-web
        image: nginx:latest
        ports:
        - containerPort: 80
          name: web
        volumeMounts:
        - name: webroot
          mountPath: /usr/share/nginx/html
  volumeClaimTemplates:
  - metadata:
      name: webroot
    spec:
      accessModes: [ "ReadWriteOnce" ]
      storageClassName: "flash"
      resources:
        requests:
          storage: 1Gi







There’s a lot to take in, so let’s step through the important parts.


The name of the StatefulSet is tkb-sts. This is important as it forms part of the name of every Pod the StatefulSet will create.


The spec.replicas field defines 3 replicas. These will be named tkb-sts-0, tkb-sts-1, and tkb-sts-2. They’ll be created in numerical order, and the StatefulSet controller will wait for each replica to be running and ready before starting the next.


The spec.serviceName field designates the governing Service. This is the name of the headless Service created in the previous step and will create the DNS SRV records for each StatefulSet replica. It’s called the governing Service because it’s in charge of the DNS subdomain used by the StatefulSet.


The remainder of the spec.template section defines the Pod template that will be used to stamp out Pod replicas – things such as which container image to use and which ports to expose.


Last, but most certainly not least, is the spec.volumeClaimTemplates section.


Earlier in the chapter we said every StatefulSet that uses volumes needs to be able to create them dynamically. To do this you need a StorageClass and a PersistentVolumeClaim (PVC).


You’ve already created the StorageClass, so you’re ready to go with that aspect. However, PVCs present an interesting challenge…


Each StatefulSet Pod needs its own unique storage. This means each one needs its own PVC. However, this isn’t possible, as each Pod is created from the same template. Also, you’d have to pre-create a unique PVC for every potential StatefulSet Pod, which also isn’t possible when you consider StatefulSets can be scaled up and down.


Clearly, a more intelligent StatefulSet-aware approach is needed. This is where volume claim templates come into play.


At a high-level, a volumeClaimTemplate dynamically creates a PVC each time the StatefulSet controller spawns a new Pod replica. It also contains the intelligence to name the PVC so it connects to the right Pod. This way, the StatefulSet manifest contains a Pod template section for stamping out Pod replicas, and a volume claim template section for stamping out PVCs.


The following YAML snippet shows the volumeClaimTemplate from the example. It defines a claim template called webroot requesting a 10GB volume from the flash StorageClass created earlier. 



volumeClaimTemplates:
- metadata:
    name: webroot
  spec:
    accessModes: [ "ReadWriteOnce" ]
    storageClassName: "flash"
    resources:
      requests:
        storage: 10Gi







When the StatefulSet object is deployed, it will create three Pod replicas and three PVCs.


Deploy the StatefulSet and watch the Pods and PVCs get created.



$ kubectl apply -f sts.yml
statefulset.apps/tkb-sts created







Watch the StatefulSet ramp up to 3 running replicas. It’ll take a minute or so for the 3 Pods and associated PVCs to be created – each Pod needs to be running and ready before the next one is started.



$ kubectl get sts --watch
NAME      READY   AGE
tkb-sts   0/3     10s
tkb-sts   1/3     23s
tkb-sts   2/3     46s
tkb-sts   3/3     69s







Notice how it took ~23 seconds to start the first replica. Once that was running and ready, it took another 23 seconds to start the second, and then another 23 for the third.


Now check the PVCs.



$ kubectl get pvc
NAME                STATUS   VOLUME            CAPACITY   MODES   STORAGECLASS   AGE
webroot-tkb-sts-0   Bound    pvc-1146...f274   10Gi       RWO     flash          86s
webroot-tkb-sts-1   Bound    pvc-3026...6bcb   10Gi       RWO     flash          63s
webroot-tkb-sts-2   Bound    pvc-2ce7...e56d   10Gi       RWO     flash          40s







There are 3 new PVCs, each created at the same time as one of the StatefulSet Pod replicas. See how the name of each PVC is based on the name of the StatefulSet and the Pod it’s associated with. The format of the PVC name is the volumeClaimTemplate name, followed by a dash, followed by the name of the Pod replica it’s associated with.



Pod Name     |    PVC Name 
tkb-sts-0   <->   webroot-tkb-sts-0
tkb-sts-0   <->   webroot-tkb-sts-1
tkb-sts-0   <->   webroot-tkb-sts-2







At this point, the StatefulSet is up and the app is running.


Testing peer discovery


You know that pairing a headless Service with a StatefulSet creates DNS SRV records for each Pod matching the Service’s label selector. You already have a headless Service and 3 StatefulSet Pods running, so you should have three DNS SRV records – one for each Pod.


However, before testing this, it’s worth taking a moment to understand how DNS hostnames and DNS subdomains work with StatefulSets.


By default, Kubernetes places all objects within the cluster.local DNS subdomain. You can choose something different, but most lab environments use this domain, so we’ll assume it in this example. Within that domain, Kubernetes constructs DNS subdomains as follows:



  <object-name>.<service-name>.<namespace>.svc.cluster.local



So far, you’ve got three Pods called tkb-sts-0, tkb-sts-1, and tkb-sts-2 governed by the dullahan headless Service. This means the 3 Pods will have the following fully qualified DNS names:



  	tkb-sts-0.dullahan.default.svc.cluster.local

  	tkb-sts-1.dullahan.default.svc.cluster.local

  	tkb-sts-2.dullahan.default.svc.cluster.local




To test this, you’ll deploy a jump-pod that has the DNS dig utility pre-installed. You’ll exec onto that Pod and use dig to query DNS for SRV records in the dullahan.default.svc.cluster.local subdomain.


Deploy the jump-pod from the /StatefulSets/jump-pod.yml file in the book’s GitHub repo.



$ kubectl apply -f jump-pod.yml
pod/jump-pod created







Exec onto the Pod.



$ kubectl exec -it jump-pod -- bash
root@jump-pod:/#







Your terminal is now connected to the jump-pod. Run the following dig command from within the jump-pod.



$ dig SRV dullahan.default.svc.cluster.local
<Snip>
;; ADDITIONAL SECTION:
tkb-sts-0.dullahan.default.svc.cluster.local. 30 IN A 10.24.1.25
tkb-sts-2.dullahan.default.svc.cluster.local. 30 IN A 10.24.1.26
tkb-sts-1.dullahan.default.svc.cluster.local. 30 IN A 10.24.0.17
<Snip>







The query returns the fully qualified DNS names of each Pod, as well as each Pod’s IP. Other applications, including the app itself, can use this method to discover an up-to-date list of Pods in the StatefulSet.


For this method of discovery to be useful, applications obviously need to know how to use it. For example, they need to know the name of the headless Service governing the StatefulSet and they need to know to query DNS.


Scaling StatefulSets


Each time a StatefulSet is scaled up, a Pod and a PVC is created. However, when scaling a StatefulSet down, the Pod is terminated but the PVC is not. This means future scale-up operations only need to create a new Pod, which is then connected to the surviving PVC. The StatefulSet controller includes all of the intelligence to track and manage all of this.


You currently have 3 StatefulSet Pod replicas and 3 PVCs. Edit the sts.yml file and change the replica count from 3 down to 2 and save your change. When you’ve done that, run the following command to re-post the YAML file to the cluster.



$ kubectl apply -f sts.yml
statefulset.apps/tkb-sts configured







Check the state of the StatefulSet and verify the Pod count has reduced to 2.



$ kubectl get sts tkb-sts
NAME      READY   AGE
tkb-sts   2/2     14m

$ kubectl get pods
NAME        READY   STATUS    RESTARTS   AGE
tkb-sts-0   1/1     Running   0          15m
tkb-sts-1   1/1     Running   0          15m







The number of Pod replicas has been successfully scaled down to 2, and the Pod with the highest index ordinal was deleted. However, you’ll still have 3 PVCs – remember, scaling down and deleting Pod replicas does not delete associated PVCs.


Verify this.



$ kubectl get pvc
NAME                STATUS   VOLUME            CAPACITY   MODES   STORAGECLASS   AGE
webroot-tkb-sts-0   Bound    pvc-1146...f274   10Gi       RWO     flash          15m
webroot-tkb-sts-1   Bound    pvc-3026...6bcb   10Gi       RWO     flash          15m
webroot-tkb-sts-2   Bound    pvc-2ce7...e56d   10Gi       RWO     flash          15m







The fact that all three PVCs still exist means that scaling back up to three replicas only requires a new Pod to be created. As the name of the surviving PVC is webroot-tkb-sts-2, the StatefulSet controller knows to automatically connect it to the new Pod.


Edit the sts.yml file and increment the number of replicas back to 3 and save your change. When you’ve done that, re-post the YAML file to the API server with the following command.



$ kubectl apply -f sts.yml
statefulset.apps/tkb-sts configured







Give it a few seconds to deploy the new Pod and then verify with the following command.



$ kubectl get sts tkb-sts
NAME      READY   AGE
tkb-sts   3/3     20m 







You have 3 Pods again. Describe the new webroot-tkb-sts-2 PVC to verify it’s mounted by the correct Pod.



$ kubectl describe pvc webroot-tkb-sts-2 | grep Mounted
Mounted By:    tkb-sts-2







It’s worth noting that scale down operations will be put on hold if any of the Pods are in a failed state. This is to protect the resiliency of the app and integrity of any data.


Finally, it’s possible to tweak the controlled and ordered starting and stopping of Pods via the StatefulSet’s spec.podManagementPolicy property. 


The default setting is OrderedReady and implements the strict methodical ordering previously explained. Setting the value to Parallel will cause the StatefulSet to act more like a Deployment where Pods are created and deleted in parallel. For example, scaling from 2 > 5 Pods will create all three new Pods instantaneously, and scaling down from 5 > 2 will delete three Pods in parallel. StatefulSet naming rules are still implemented, and the setting only applies to scaling operations and does not impact rolling updates.


Performing rolling updates


StatefulSets support rolling updates. You update the image version in the YAML and re-post it to the API server. Once authenticated and authorized, the controller replaces old Pods with new ones. However, the process always starts with the highest numbered Pod and works down through the set, one-at-a-time, until all Pods are on the new version. The controller also waits for each new Pod to be running and ready before replacing the one with the next lowest index ordinal.


For more information, run $ kubectl explain sts.spec.updateStrategy.


Test a Pod failure


A simple way to test a failure is to manually delete a Pod. This will delete the Pod but not the associated PVC. The StatefulSet controller will notice observed state vary from desired state, realise a Pod is missing, and start a new identical one in its place. This new Pod will have the same name and will be connected to the same PVC volume.


Let’s test it.


Confirm you have three healthy Pods in your StatefulSet.



$ kubectl get pods
NAME        READY   STATUS   AGE
tkb-sts-0   1/1     Running  37m
tkb-sts-1   1/1     Running  37m
tkb-sts-2   1/1     Running  18m







You’re about to delete the tkb-sts-0 Pod. But before you do that, run a quick $ kubectl describe to confirm the PVC it’s currently using. You don’t need to do this, as you can deduce the name of the PVC from the name of the volumeClaimTemplate and the StatefulSet. However, it’s good to confirm.



$ kubectl describe pod tkb-sts-0
Name:         tkb-sts-0
Namespace:    default
<Snip>
Status:       Running
IP:           10.24.1.13
<Snip>
Volumes:
  webroot:
    Type:       PersistentVolumeClaim (a reference to a PersistentVolumeClaim...)
    ClaimName:  webroot-tkb-sts-0
<Snip>







Based on the output (your lab will be different) the values are as follows:



  	Name: tkb-sts-0


  	PVC: webroot-tkb-sts-0





Let’s delete the tkb-sts-0 Pod and see if the StatefulSet controller recreates it.



$ kubectl delete pod tkb-sts-0
pod "tkb-sts-0" deleted

$ kubectl get pods --watch
NAME        READY   STATUS              RESTARTS   AGE
tkb-sts-1   1/1     Running             0          43m
tkb-sts-2   1/1     Running             0          24m
tkb-sts-0   0/1     Terminating         0          43m
tkb-sts-0   0/1     Pending             0          0s
tkb-sts-0   0/1     ContainerCreating   0          0s
tkb-sts-0   1/1     Running             0          34s







Placing a --watch on the kubectl get command shows the StatefulSet controller noticing the terminated Pod and creating a replacement – desired state is 3 replicas but observed state dropped to 2. As the failure is clean and easy to verify, the controller immediately kicked off the process to create a new Pod. 


You can see the new Pod has the same name as the failed one, but does it have the same PVC?


The following command confirms it does.



$ kubectl describe pod tkb-sts-0 | grep ClaimName
    ClaimName:  webroot-tkb-sts-0







Recovering from potential node failures is a lot more complex and requires manual intervention. This is because failed nodes are notoriously hard to diagnose and confirm, and there’s always a risk the failure could be transient. If the StatefulSet controller assumes a node has failed and replaces any StatefulSet Pods, but the node subsequently recovers, there’s a chance of duplicate Pods on the network contending for the same storage. This can cause all kinds of bad things to happen, including data corruption.


Deleting StatefulSets


Earlier in the chapter, you learned that deleting a StatefulSet does not terminate managed Pods in order. Therefore, if your application is sensitive to ordered shutdown, you should scale the StatefulSet to 0 replicas before initiating the delete operation.


Scale your StatefulSet to 0 replicas and confirm the operation. It may take a few seconds for the set to scale all the way down to 0.



$ kubectl scale sts tkb-sts --replicas=0
statefulset.apps/tkb-sts scaled

$ kubectl get sts tkb-sts
NAME      READY   AGE
tkb-sts   0/0     86m







Once the StatefulSet has no replicas you can delete it.



$ kubectl delete sts tkb-sts
statefulset.apps "tkb-sts" deleted







You can also delete the StatefulSet by referencing its YAML file with $ kubectl delete -f sts.yml.


Feel free to exec onto the jump-pod and run another dig to prove the SRV records have been removed from DNS. 


At this point, the StatefulSet object is deleted, but the headless Service, StorageClass, and jump-pod still exist. You may want to delete them as well. 


Chapter Summary


In this chapter, you learned how StatefulSets create and manage applications that need to persist state.


They can self-heal, scale up and down, and perform updates. Rollbacks require manual attention.


Each Pod replica spawned by a StatefulSet gets a predictable and persistent name, DNS hostname, and unique set of volumes. These stay with the Pod for its entire lifecycle, including failures, restarts, scaling, and other scheduling operations. In fact, StatefulSet Pod names are integral to scaling operations and connecting to storage volumes.


However, StatefulSets are only a framework. Applications need to be written in ways to take advantage of the way StatefulSets behave.








13: API security and RBAC


Kubernetes is API-centric, and the API is served through the API server. In this chapter, you’ll follow a typical API request as it passes through various security-related checks.


The chapter is divided as follows.



  	API security big picture

  	Authentication

  	Authorization (RBAC)

  	Admission control




See chapter 14 for a detailed look at the API.


API security big picture


All of the following make CRUD-style requests to the API server (create, read, update, delete).



  	Operators and developers using kubectl


  	Pods 

  	Kubelets 

  	Control plane services

  	More…




Figure 13.1 shows the flow of a typical API request passing through all the standard checks. The flow is the same no matter where the request originates.
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Consider a quick example where a user called “grant-ward” is trying to create a Deployment called “hive” in the “terran” Namespace.


User grant-ward issues a kubectl command to create the Deployment. This generates a request to the API server with the user’s credentials embedded. Thanks to the magic of TLS, the connection between the client and the API server is secure. The authentication module determines whether it’s grant-ward or an imposter. After that, the authorization module (RBAC) determines whether grant-ward is allowed to create Deployments in the terran Namespace. If the request passes authentication and authorization, admission control checks and applies policies, and the request is finally accepted and executed.


It’s a lot like flying on a plane. You travel to the airport and authenticate yourself with a photo ID, usually your passport. You then present a ticket authorizing you to board the plane and occupy a particular seat. If you pass authentication and are authorized to board, admission controls may then check and apply airline policies such as not taking hot food onboard, restricting your hand luggage, and prohibiting alcohol in the cabin. After all of that, you’re finally allowed to board the plane and take your seat.


You’re about to see things in more detail, but everything you’ll learn assumes you’re hitting the API on its secured port. Some Kubernetes clusters also expose the API on a local unsecured port on every control plane node. This bypasses TLS, authentication, and authorization, but it doesn’t bypass admission control. Even though the unsecured port is only accessible if you can log on to a control plane node, you should probably disable it on most clusters.


Let’s take a closer look at authentication.


Authentication


Authentication is about proving your identity. You might see or hear it shortened to authN, pronounced “auth en”.


At the heart of authentication are credentials. All requests to the API server have to include credentials, and the authentication layer is responsible for verifying them. If verification fails, the API server returns an HTTP 401 and the request is denied. If it passes, it moves on to authorization.


The authentication layer in Kubernetes is pluggable, and popular modules include client certs, webhooks, and integration with external identity management systems such as Active Directory (AD) and cloud-based Identity Access Management (IAM). In fact, it’s impossible to create user accounts in Kubernetes as it does not have its own built-in identity database. Instead, Kubernetes forces you to use an external system. This is great, as Kubernetes doesn’t install yet another identity management silo. 


Out-of-the-box, most Kubernetes clusters support client certificates, but in the real-world you’ll want to integrate with your chosen cloud or corporate identity management system. Many of the hosted Kubernetes services make it easy to integrate with their native identity management systems.


Checking your current authentication setup


Cluster details and credentials are stored in a kubeconfig file. Tools like kubectl read this file to know which cluster to send commands to, as well as which credentials to use. It’s usually stored in the following location.



  	Windows: C:\Users<user>.kube\config

  	Linux/Mac: /home/<user>/.kube/config




Many Kubernetes installations can automatically merge cluster endpoint details and credentials into your existing kubeconfig. For example, every GKE cluster provides a gcloud command that will merge the necessary cluster details and credentials to your local kubeconfig config file. The following is an example, don’t try and run it.



$ gcloud container clusters get-credentials tkb --zone europe-west1-c --project thek8sbook







Here’s what a kubeconfig file looks like. As you can see, it defines a cluster and a user, combines them into a context, and sets the default context for all kubectl commands. It’s been snipped to fit the page.



apiVersion: v1
kind: Config
clusters:
- cluster:
  name: prod-shield
    server: https://<url-or-ip-address-of-api-server>:443
    certificate-authority-data: LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0…LS0tCg==
users:
- name: njfury
  user:
    as-user-extra: {}
    token: eyJhbGciOiJSUzI1NiIsImtpZCI6IlZwMzl…SZY3uUQ
contexts:
- context:
  name: shield-admin
    cluster: prod-shield
    namespace: default
    user: njfury
current-context: shield-admin







You can see it’s divided into 4 top-level sections.


The clusters section defines one or more Kubernetes clusters. Each one has a friendly name, an API server endpoint, and the public key of its certificate authority (CA). The cluster in the example is exposing the secure API endpoint on port 443 (HTTPS), but it’s also common to see it exposed on 6443.


The users section defines one or more users. Each user requires a name and token. The token is often an X.509 certificate that is the user’s ID. If it is, it has to be signed by the cluster’s CA or a CA trusted by the cluster.


The contexts section combines users and clusters, and the current-context is the cluster and user kubectl will use for all commands. 


Assuming the previous kubeconfig, all kubectl commands will go to the “prod-shield” cluster and authenticate as the “njfury” user. The authentication module is responsible for determining if the user really is njfury, and if using client certificates, it’ll determine if the certificate is signed by a trusted CA. 


If your cluster integrates with an external IAM system, it’ll hand-off authentication to that system.


Assuming authentication is successful, the request progresses to the authorization phase.


Authorization (RBAC)


Authorization happens immediately after successful authentication, and you’ll sometimes see it shortened to authZ (pronounced “auth zee”).


Kubernetes authorization is pluggable and you can run multiple authZ modules on a single cluster. As soon as any of the modules authorizes a request, it moves on to admissions control.


This section will cover the following.



  	RBAC big picture

  	Users and permissions

  	Cluster-level users and permissions

  	Pre-configured users and permissions




RBAC big picture


The most common authorization module is RBAC (Role-Based Access Control). At the highest level, it’s about three things.



  	Users

  	Actions

  	Resources




Which users can perform which actions against which resources. 


The following table shows a few examples.



  
    
      	User (subject)
      	Action
      	Resource
    

  
  
    
      	Bao
      	create
      	Pods
    

    
      	Kalila
      	list
      	Deployments
    

    
      	Josh
      	delete
      	ServiceAccounts
    

  




RBAC is enabled on most Kubernetes clusters and has been stable/GA since Kubernetes 1.8. It’s a least-privilege deny-by-default system. This means all actions are denied by default, and you enable specific actions by creating allow rules. In fact, Kubernetes doesn’t support deny rules, it only supports allow rules. This might seem like a small thing, but makes Kubernetes RBAC much simpler to implement and troubleshoot.


Users and Permissions


Two concepts are vital to understanding Kubernetes RBAC.



  	Roles

  	RoleBindings




Roles define a set of permissions, and RoleBindings grant those permissions to users.


The following resource manifest defines a Role object. It’s called “read-deployments”, and grants permission to get, watch, and list Deployment objects in the “shield” Namespace.



apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
  namespace: shield
  name: read-deployments
rules:
- apiGroups: ["apps"] 
  resources: ["deployments"]
  verbs: ["get", "watch", "list"]







On their own, Roles don’t do anything. They need binding to a user.


The following RoleBinding grants the previous “read-deployments” Role to a user called “sky”.



apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  name: read-deployments
  namespace: shield
subjects:
- kind: User
  name: sky                   <<==== This is the authenticated user
  apiGroup: rbac.authorization.k8s.io
roleRef:
  kind: Role
  name: read-deployments      <<==== This is the Role to bind to the user
  apiGroup: rbac.authorization.k8s.io







If both of these are deployed to a cluster, an authenticated user called “sky” will be able to run commands such as kubectl get deployments -n shield.


It’s important to understand that the username listed in the RoleBinding has to be a string, and has to match the username that was successfully authenticated.


Looking closer at rules


The previous Role object has three properties.



  	apiGroups

  	resources

  	verbs




Together, they define which actions are allowed against which objects. apiGroups and resources define the object, and verbs define the actions. The example allows read access (get, watch and list) against Deployment objects.


The following table shows some apiGroup and resources combinations.



  
    
      	apiGroup
      	resource
      	Kubernetes API path
    

  
  
    
      	””
      	pods
      	/api/v1/namespaces/{namespace}/pods
    

    
      	””
      	secrets
      	/api/v1/namespaces/{namespace}/secrets
    

    
      	“storage.k8s.io”
      	storageclass
      	/apis/storage.k8s.io/v1/storageclasses
    

    
      	“apps”
      	deployments
      	/apis/apps/v1/namespaces/{namespace}/deployments
    

  




An empty set of double quotes (“”) in the apiGroups field indicates the core API group. All other API sub-groups need specifying as a string enclosed in double quotes.


Kubernetes uses a standard set of verbs to describe the actions a subject can perform on a resource. Verb names are self-explanatory and case-sensitive. The following table lists them and demonstrates the REST-based nature of the API by showing how they map to HTTP methods. It also lists some common HTTP response codes.



  
    
      	HTTP method
      	Kubernetes verbs
      	Common responses
    

  
  
    
      	POST
      	create
      	201 created, 403 Access Denied
    

    
      	GET
      	get, list and watch
      	200 OK, 403 Access Denied
    

    
      	PUT
      	update
      	200 OK, 403 Access Denied
    

    
      	PATCH
      	patch
      	200 OK, 403 Access Denied
    

    
      	DELETE
      	delete
      	200 OK, 403 Access Denied
    

  




The Kubernetes verbs column lists the verbs you use in the rules section of a Role object.


Running the following command shows all API resources supported on your cluster. It also shows API group and supported verbs, and is a great resource for helping build rule definitions. The example has been trimmed to fit the page



$ kubectl api-resources --sort-by name -o wide
NAME          APIGROUP           KIND        VERBS
deployments   apps               Deployment  [create delete ... get list patch update watch]
ingresses     networking.k8s.io  Ingress     [create delete ... get list patch update watch]
pods                             Pod         [create delete ... get list patch update watch]
secrets                          Secret      [create delete ... get list patch update watch]
services                         Service     [create delete get list patch update watch]







If you compare the output columns with the rules block of the previous Role object, you see how things map.



rules:
- apiGroups: ["apps"] 
  resources: ["deployments"]
  verbs: ["get", "watch", "list"]






You can use the asterisk (*) to refer to all API groups, all resources, and all verbs. For example, the following rule block grants all actions on all resources in every API group (basically cluster admin). It’s just for demonstration purposes and you probably shouldn’t create a rule like this.



rules:
- apiGroups: ["*"] 
  resources: ["*"]
  verbs: ["*"]







Cluster-level users and permissions


So far, you’ve seen Roles and RoleBindings. However, Kubernetes actually has 4 RBAC objects.



  	Roles

  	ClusterRoles

  	RoleBindings

  	ClusterRoleBindings




Roles and RoleBindings are namespaced objects. This means they can only be applied to a single Namespace. ClusterRoles and ClusterRoleBindings are cluster-wide objects and apply to all Namespaces. All 4 are defined in the same API sub-group and their YAML structures are almost identical.


A powerful pattern is to define Roles at the cluster level (ClusterRoles) and bind them to specific Namespaces via RoleBindings. This lets you define common roles once, and re-use them across multiple Namespaces. For example, the following YAML defines the same “read-deployments” role, but this time at the cluster level. This can be re-used in selected Namespaces via RoleBindings.



apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: read-deployments
rules:
- apiGroups: ["apps"] 
  resources: ["deployments"]
  verbs: ["get", "watch", "list"]







Look closely at the previous YAML. The only differences with the earlier one are that this one has its kind set to ClusterRole instead of Role, and it doesn’t have a metadata.namespace property.


Figure 13.2 shows a role defined at the cluster level being applied to two Namespaces via two RoleBindings. It can easily be applied to the other Namespaces via two more RoleBindings. The role was defined once and re-used across multiple Namespaces.
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Pre-created users and permissions


To help with initial configuration and getting started, most clusters have a set of pre-created roles and bindings granting permissions to an all-powerful user. Many will also configure kubectl to operate under the context of that user. 


The following example walks you through the pre-created user, roles and bindings on a Docker Desktop cluster. The names of Pods and RBAC objects will be different on other clusters, but the principles will be the same and it gives you an idea of how things are made to work. 


Docker Desktop runs the API server in Pod in the kube-system Namespace. It has an --authorization flag that tells Kubernetes which authorization modules to use. The following command shows the node and RBAC modules are both enabled.



$ kubectl describe pod/kube-apiserver-docker-desktop \
  --namespace kube-system | grep authorization
      
      --authorization-mode=Node,RBAC







You won’t be able to interrogate the API server like this on a hosted Kubernetes cluster. This is because critical control plane features like this are hidden from you.


Docker Desktop also updates your kubeconfig file with a user called docker-desktop and any necessary credentials.



$ kubectl config view
<Snip>
users:
- name: docker-desktop
  user:
    client-certificate-data: REDACTED
    client-key-data: REDACTED
<Snip>







RBAC is enabled, and a user and kubeconfig is created. Now let’s look at the ClusterRole and ClusterRoleBinding objects preconfigured to grant permissions to the docker-desktop user. 


The following command shows a ClusterRoleBinding called “docker-for-desktop-binding” that’s bound to the “cluster-admin” ClusterRole.



$ kubectl get clusterrolebindings | grep docker
NAME                              ROLE
docker-for-desktop-binding        ClusterRole/cluster-admin 







The following command describes the ClusterRoleBinding. As you can see, it’s granting all members of the system-serviceaccounts group access to the pre-created cluster-admin role. As a result, the docker-desktop user configured in your kubeconfig file gets access to the all-powerful cluster-admin Role. 



$ kubectl describe clusterrolebindings docker-for-desktop-binding
Name:         docker-for-desktop-binding
Labels:       <none>
Annotations:  <none>
Role:
  Kind:  ClusterRole
  Name:  cluster-admin     <<==== This is the role it's bound to
Subjects:
  Kind   Name                    Namespace
  ----   ----                    ---------
  Group  system:serviceaccounts  kube-system  <<==== Members of this group get the binding







As a result of this binding, all commands in a default out-of-the-box Docker Desktop cluster are executed with cluster-admin permissions. This might be OK for development environments (which is what Docker Desktop is intended for) but it’s not appropriate for production.


The following command shows the powers the cluster-admin role has – all verbs on all resources in all Namespaces.



$ kubectl describe clusterrole cluster-admin
Name:         cluster-admin
Labels:       kubernetes.io/bootstrapping=rbac-defaults
Annotations:  rbac.authorization.kubernetes.io/autoupdate: true
PolicyRule:
  Resources  Non-Resource URLs  Resource Names  Verbs
  ---------  -----------------  --------------  -----
  *.*        []                 []              [*]
             [*]                []              [*]







Summarising authorization


Authorization ensures authenticated users are allowed to carry out the actions they’re attempting. RBAC is a popular Kubernetes authorization module and implements least privilege access based on a deny-by-default model where all actions are assumed to be denied unless a rule exists that allows it. The model is similar to a whitelist firewall where everything is blocked and you open up access by creating allow rules.


Kubernetes RBAC uses Roles and ClusterRoles to create permissions, and it uses RoleBindings and ClusterRoleBindings to grant those permissions to users.


Once a request passes authentication and authorization, it moves on to admission control.


Admission control


Admission control runs immediately after successful authentication and authorization, and it’s all about policies.


There are two types of admission controllers.



  	Mutating

  	Validating




The names are self-explanatory. Mutating controllers check for compliance and can modify requests, whereas validating controllers check for policy compliance but cannot modify requests. Mutating controllers always run first, and both types only apply to requests that will modify state. Requests to read state are not subjected to admission control.


Assume a quick example where all new and updated objects to your cluster must have the env=prod label. A mutating controller can check for the presence of the label and add it if it doesn’t exist. On the flip side, a validating controller can only reject the request if it doesn’t exist.


The following command on a Docker Desktop cluster shows the API server is configured to use the NodeRestriction admission controller. 



$ kubectl describe pod/kube-apiserver-docker-desktop \
  --namespace kube-system | grep admission

--enable-admission-plugins=NodeRestriction







Most real-world clusters will have a lot more admission controllers enabled.


There are lots of admission controllers, but the AlwaysPullImages controller is a great example. It’s a mutating controller that sets the spec.containers.imagePullPolicy of all new Pods to “Always”. This means the images for all containers in all Pods will always be pulled from the registry. This accomplishes quite a few things, including the following.



  	Preventing the use of locally cached images that could be malicious

  	Preventing other Pods and processes using locally cached images

  	Forcing the container runtime to present valid credentials to the registry to get the image




If any admission controller rejects a request, the request is immediately rejected without checking other admission controllers. However, if all admission controllers approve the request, it gets persisted to the cluster store and instantiated on the cluster.


As previously mentioned, there are lots of admission controllers, and they’re becoming more and more important in real-world production clusters.


Chapter summary


In this chapter, you learned that all requests to the API server include credentials and pass through authentication, authorization, and admission control. The connection between the client and the API server is also secured with TLS.


The authentication layer is responsible for validating the identity of requests. Client certificates are commonly used, and integration with AD and other IAM services is recommended for production clusters. Kubernetes does not have its own identity database, meaning it doesn’t store or manage user accounts.


The authorization layer checks whether the authenticated user is authorized to carry out the action in the request. This layer is also pluggable and the most common module is RBAC. RBAC comprises 4 objects that define permissions and assign them to users.


Admission control kicks in after authorization and is responsible for enforcing policies. Validating admission controllers reject requests if they don’t conform to policy, whereas mutating admission controllers can modify requests to enforce policies.








14: The Kubernetes API


Understanding the Kubernetes API, and how it works, is vital to mastery of Kubernetes. However, it can be extremely confusing if you’re new to APIs and not comfortable with terms like RESTful. If that’s you, this chapter will blow away the confusion and get you up-to-speed with the fundamentals of the Kubernetes API.


The chapter is divided as follows.



  	Kubernetes API big picture

  	The API server

  	The API




A couple of quick things before we get cracking with the chapter…


First up. I’ve made no attempt to make this chapter jargon-free. In fact, I’ve intentionally included a lot of jargon so you get comfortable with it. I’ve also included an extended chapter summary full of jargon you should be able to understand if you’ve read the whole chapter. 


Last up. I’ve included and bunch of hands-on commands and exercises. I’ve made them as simple as possible to follow along with, and I highly recommend you do. They’ll re-inforce the theory you’re about to learn.


OK, let’s do this.


Kubernetes API big picture


Let’s start out with the super high level…


Kubernetes is API centric. This means everything in Kubernetes is about the API, and everything goes through the API and API server. We’ll get into detail in a second, but for now, let’s just look at the big picture.


Clients send requests to Kubernetes to create, read, update, and delete objects such as Pods and Services. For the most part, you’ll use kubectl to send these requests, however, you can craft them in code or use API testing and development tools to generate them. The point is, no matter how you generate requests, they go to the API server where they’re authenticated and authorized. Assuming they pass the auth tests, they’re executed on the cluster. If it’s a create request, the object is deployed to the cluster and the serialized state of it is persisted to the cluster store.


The overall process is depicted in Figure 14.1 and shows the central nature of the API and API server. However, other components, such as the cluster store and scheduler, are also very important.




  
    [image: Figure 14.1]
    Figure 14.1


Double-click the image to see full size.

  




JSON serialization


We’ve already introduced a fair bit of jargon, so let’s start busting some of it. 


What is meant by “serialized state of an object”.


Serialization is the process of converting an object into a string, or stream of bytes, so it can be sent over a network and persisted to a data store. The reverse process of converting a string or stream of bytes into and object is deserialization.


Kubernetes serializes objects, such as Pods and Services, as JSON strings to be sent over HTTP. The process happens in both directions, with clients like kubectl serializing objects when posting to the API server, and the API server serializing responses back to clients. In the case of Kubernetes, the serialised state of objects are also persisted to the cluster store which is usually based on the etcd database. 


So, in Kubernetes, serialization is the process of converting an object to into a JSON string to be sent over an HTTP connection and persisted to the cluster store.


However, as well as JSON, Kubernetes also supports Protobuf as a serialization schema. This is faster, more efficient, and scales better than JSON. But it’s not as user-friendly when it comes to introspection and troubleshooting. At the time of writing, Protobuf is mainly used for internal cluster traffic, whereas JSON is used when communicating with external clients.


One final thing on serialization. When clients send requests to the API server, they use the Content-Type header to list the serialization schemas they support. For example, a client that only supports JSON will specify Content-Type: application/json in the HTTP header of the request. Kubernetes will honour this with a serialized response in JSON.


You’ll see this in some of the examples later.


API analogy


While we’re being super high level, let’s consider a quick analogy that might help you conceptualise the Kubernetes API.


Amazon sells lots of stuff. That stuff is stored in warehouses and listed online on the Amazon website. You use a browser to search the website and buy stuff. 3rd-parties even sell their own stuff through Amazon and you use the same browser and website. When you buy stuff through the website, it gets delivered to you and you can start using it. The Amazon website even lets you track your stuff while it’s being prepared and delivered. Once it’s delivered, it’s yours and Amazon is only involved if you want to do things like order more or send stuff back.


Well, it’s pretty much the same with the Kubernetes API. 


Kubernetes offers lots of objects such as Pods, Services, and Ingresses. They’re defined in the API and exposed through the API server. You use tools like kubectl to request them. 3rd-parties even define their own objects in Kubernetes and you use the same kubectl and API server to request them. When you request an object through the API server, it gets created on your cluster and you can start using it. The API server even lets you watch it while it’s being created. Once it’s created, Kubernetes continues to observe it and you can query its state through the API server. Actions like creating more and deleting objects are also done through the API server.


The comparison is shown in Figure 14.2, and a feature-for-feature comparison is shown in the following table. Keep in mind, however, it’s just an analogy and not everything is a perfect match.
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      	Amazon
      	Kubernetes
    

  
  
    
      	Stuff
      	Objects
    

    
      	Warehouse
      	API
    

    
      	Browser
      	kubectl
    

    
      	Amazon website
      	API server
    

  




To recap. All deployable objects, such as Pods, Services and Ingresses, are defined as resources in the API. If an object isn’t defined in the API, you can’t deploy it. This is the same with Amazon – you can only buy stuff that’s listed on the website.


API Resources have properties you can view and configure. For example, Pod objects are defined in the API with all of the following properties (they have more properties than shown).



  	metadata (name, labels, namespace, annotations…)

  	restart policy

  	service account name

  	runtime class

  	volumes




This is the same as buying things on Amazon. For example, when buying a USB cable, you can configure choices such as USB type, cable length, and even cable colour.


To deploy a Pod, you send a Pod YAML file to the API server. Assuming it’s valid and you’re authorized to create Pods, it gets deployed to the cluster. After that, you can query the API server to get its current status. When it’s time to delete it, you send the delete request to the API server.


This is also the same as buying through Amazon. To buy the previously mentioned USB cable, you input all the colour, length and type options, and submit them to the Amazon website. Assuming it’s in stock and you provide the funds, it gets shipped to you. After that, you can use the website to track the shipment. If you have to return the item or make a complaint, you do all of that through the Amazon website.


OK, that’s enough with analogies. Let’s take a closer look at the API server.


The API server


The API server exposes the API over a secure RESTful interface using HTTPS. It acts as the front-end to the API and is a bit like Grand Central for Kubernetes – everything talks to everything else via REST API calls to the API server. For example: 



  	All kubectl commands go to the API server (creating, retrieving, updating, deleting objects)

  	All node Kubelets watch the API server for new tasks and report status to the API server

  	All control plane services communicate via the API server (components don’t talk directly each other)




Let’s demystify a bit more jargon.


The API server is a Kubernetes control plane service. This usually means it runs as a set of Pods in the kube-system Namespace on the control plane nodes of your cluster. If you build and manage your own Kubernetes clusters, you need to make sure the control plane is highly-available and has enough performance to keep the API server up-and-running and responding quickly to requests. If you’re using a hosted Kubernetes cluster, the way the API server is implemented, including performance and availability, will be hidden from you.


The main job of the API server is to make API available to clients inside and outside the cluster. It uses TLS to encrypt the client connection, and it leverages of a bunch of authentication and authorization mechanisms to ensure only valid requests are accepted and actioned. Requests from internal and external sources all have to pass through the same authentication and authorization.


The API is RESTful. This is jargon for a modern web API that accepts CRUD-style requests via standard HTTP methods. CRUD-style operations are simple create, read, update, delete operations, and the common HTTP methods include POST, GET, PUT, PATCH, and DELETE. 


The following table shows how HTTP methods, CRUD operations, and kubectl commands match-up. If you’ve read the chapter on API security, you’ll know we use the term verb to refer to CRUD operations.



  
    
      	HTTP method
      	K8s CRUD verb
      	kubectl example
    

  
  
    
      	POST
      	create
      	$ kubectl create -f <filename>
    

    
      	GET
      	get list, watch
      	$ kubectl get pods
    

    
      	PUT/PATCH
      	update
      	$ kubectl edit deployment <deployment-name>
    

    
      	DELETE
      	delete
      	$ kubectl delete ingress <ig-name>
    

  




As you can see, method names, CRUD verb names, and kubectl command names don’t always match. For example, a kubectl edit command requires a user be authorized to use the update verb, and will send an HTTP PATCH request to the API server.


It’s common for the API server to be exposed on port 443 or 6443, but it’s possible to configure it to operate on whatever port you require. Running the following command shows the address and port your Kubernetes cluster is exposed on.



$ kubectl cluster-info
Kubernetes master is running at https://0.0.0.0:52935
CoreDNS is running at https://0.0.0.0:52935/api/v1/namespaces/../services/kube-dns:dns/proxy
Metrics-svr is running at https://0.0.0.0:52935/api/v1/../../../https:metrics-server:/proxy







In the example, the cluster is exposed on https://0.0.0.0:52935. This means any local address on port 52935.


A word on REST and RESTful


You’ll hear the terms REST and RESTful a lot. REST is short for REpresentational State Transfer, and it’s the de facto standard for communicating with web-based APIs. Systems, such as Kubernetes, that use REST are often referred to as RESTful.


REST requests comprise a verb and a path to a resource. Verbs relate to actions, and are the standard HTTP methods you saw in the previous table. Paths are a URI path to the resource in the API. 



  Disambiguation: We often use the term verb to refer to CRUD operations as well as HTTP methods. CRUD operations include create, read, update and delete, whereas the HTTP methods are GET, POST, PUT, PATCH and DELETE. If it confusing, the term “verb” is used to refer to an action.




The following example shows a kubectl command and associated REST path that will list all Pods in the shield Namespace



$ kubectl get pods --namespace shield

GET /api/v1/namespaces/shield/pods







To visualise this, start a kubectl proxy and use curl to generate the request. The kubectl proxy command exposes the API on your localhost adapter and takes care of authentication. You can use a different port.



$ kubectl proxy --port 9000 &
[1] 14774
Starting to serve on 127.0.0.1:9000







With the proxy running, use a tool like curl to form a request to the API server.



$ curl http://localhost:9000/api/v1/namespaces/shield/pods 
{
  "kind": "PodList",
  "apiVersion": "v1",
  "metadata": {
    "resourceVersion": "484812"
  },
  "items": []
}







The example returned an empty list because there are no Pods running in the shield Namespace. Try another request to list all Namespaces.



$ curl http://localhost:9000/api/v1/namespaces







Responses from the API server include common HTTP response codes, content type, and the actual payload. As you learned earlier in the chapter, Kubernetes uses JSON as its preferred content type. As a result, the previous kubectl get command will result in an HTTP 200 (OK) response code, content type will be application/json and the payload will be a serialized JSON list of all Pods in the shield Namespace.


Run one of the previous curl commands again, but add the -v flag to see the send and receive headers. The response has been trimmed to fit the book and draw your attention to the most important parts.



$ curl -v http://localhost:9000/api/v1/namespaces/shield/pods

> GET /api/v1/namespaces/shield/pods HTTP/1.1
> Accept: */*
> 
< HTTP/1.1 200 OK
< Content-Type: application/json
< X-Kubernetes-Pf-Flowschema-Uid: 499d0001-d874-4b06-ba...c37f7
< X-Kubernetes-Pf-Prioritylevel-Uid: aeb490e6-1890-41ab...94e82
< 
{
  "kind": "PodList",
  "apiVersion": "v1",
  "metadata": {
    "resourceVersion": "487845"
  },
  "items": []
}







Lines starting with a > are header data sent by curl, whereas lines starting with a < are header data returned to curl by the API server.


The > lines show curl sending a GET request to the /api/v1/namespaces/shield/pods REST path and telling the API server it can accept any valid serialization schema. The lines starting with < show the API server returning an HTTP response code and using JSON as the serialization schema. The X-Kubernetes lines are additional priority and fairness settings specific to Kubernetes.


A word on CRUD


CRUD is an acronym for the four basic functions web APIs use to manipulate and persist objects – create, read, update, delete. As previously mentioned, the Kubernetes API exposes and implements CRUD-style operations via the common HTTP methods.


Let’s consider an example.


The following JSON is from the “ns.json” file in the api folder of the book’s GitHub repo. It defines a new Namespace object called “shield”



{
  "kind": "Namespace",
  "apiVersion": "v1",
  "metadata": {
    "name": "shield",
    "labels": {
      "chapter": "api"
    }
  }
}







You can create it with the kubectl apply -f ns.json command. Behind the scenes, kubectl creates a request to the API server using the HTTP POST method. This is why you’ll occasionally see some documentation refer to “POSTing” to the API server. The POST method creates a new object of the specified resource type. In this example, it’ll create a new Namespace object called “shield”.


The following is a simplified example of the request header. The body will be the contents of the JSON file.


Request header:



POST https://<api-server>/api/v1/namespaces
Content-Type: application/json
Accept: application/json







The Content-Type and Accept fields of the header tell the API server the content is being sent in JSON, and, the client expects a response in JSON.


If the request is successful, the response will include a standard HTTP response code, content type, and actual payload.



HTTP/1.1 200 (OK)
Content-Type: application/json
{
    ...
}







Talk is cheap though… try posting it to the API server with the following curl command. You’ll need a kubectl proxy process exposing the API server on port 9000 (kubectl proxy --port 9000 &) and you’ll need to run the command from the directory containing the ns.json file.



$ curl -X POST -H "Content-Type: application/json" \
  --data-binary @ns.json http://localhost:9000/api/v1/namespaces

<Snip>







The -X POST argument forces curl to use the HTTP POST method. The -H "Content-Type..." tells the API server the request contains serialized JSON. The --data-binary @ns.json specifies the manifest file, and the URI is the address the API server is exposed on by kubectl proxy.


You can verify the new Namespace was created with the kubectl get namespaces command.


Feel free to delete the newly created Namespace by specifying the DELETE HTTP method.



$ curl -X DELETE -H "Content-Type: application/json" http://localhost:9000/api/v1/namespaces/shield 
{
  "kind": "Namespace",
  "apiVersion": "v1",
  "metadata": {
    "name": "shield",
    <Snip>
  },
  "spec": {
    "finalizers": [
      "kubernetes"
    ]
  },
  "status": {
    "phase": "Terminating"
  }
}







In summary, the API server exposes the API over a secure RESTful interface that lets you manipulate and query the state of objects on the cluster. It runs on the control plane, which needs to be highly available and have enough performance to service requests quickly.


The API


The API is where all Kubernetes resources are defined. It’s large, modular, and RESTful. 


When Kubernetes was originally created, the API was monolithic in design with all resources existing in a single global namespace. However, as Kubernetes grew, it became necessary to divide the API into smaller more manageable groups. Figure 14.3 shows a simplified view of what it currently looks like.
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As you can see, the image shows the API with 4 groups. There are a lot more than 4, but the image only shows 4 for simplicity.


At the highest level, there are two types of API group.



  	The core group

  	The named groups




The core API group


Resources in the core group are mature objects that were created in the early days of Kubernetes before the API was divided into groups. They tend to be fundamental objects such as Pods, nodes, Services, Secrets, and ServiceAccounts. They’re located in the API below /api/v1. The following table lists some example paths for resources in the core group. You’ll sometimes see and hear these paths referred to as REST paths.



  
    
      	Resource
      	Path
    

  
  
    
      	Pods
      	/api/v1/namespaces/{namespace}/pods/
    

    
      	Services
      	/api/v1/namespaces/{namespace}/services/
    

    
      	Nodes
      	/api/v1/nodes/
    

    
      	Namespaces
      	/api/v1/namespaces/
    

  




Notice that some objects are namespaced and some aren’t. Namespaced objects have longer REST paths as you have to include two additional segments – ../namespaces/{namespace}/... For example, listing all Pods in the “shield” Namespace requires the following path.



GET /api/v1/namespaces/shield/pods/







Expected HTTP response codes for read requests are either 200: OK or 401: Unauthorized.


On the topic of REST paths, GVR stands for group, version, resource, and can be a good way to remember the structure of REST paths in the Kubernetes API. A simple example is shown in Figure 14.4, but paths for namespaced objects include longer resource segments.
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You shouldn’t expect any new resources to be added to the core group. Anything new will be added to a named group.


Named API groups


The named API groups are the future of the API, and all new resources go into named groups. Sometimes we refer to them as “sub-groups”


Each of the named groups is a collection of related resources. For example, the “apps” group is where all resources that manage application workloads such as Deployments, ReplicaSets, DaemonSets, and StatefulSets are defined. Likewise, the “networking.k8s.io” group is where Ingresses, Ingress Classes, Network Policies, and other network-related resources exist. Notable exceptions to this pattern are older resources in the core group that came along before the named groups existed. For example, Pods and Services are both in the core group. However, if they were invented today, Pods would probably go in the “apps” group, and Services in the “networking.k8s.io” group.


Resources in the named groups live below the /apis/{group-name}/{version}/ path. The following table lists some examples.



  
    
      	Resource
      	Path
    

  
  
    
      	Ingress
      	/apis/networking.k8s.io/v1/namespaces/{namespace}/ingresses/
    

    
      	RoleBinding
      	/apis/rbac.authorization.k8s.io/v1/namespaces/{namespace}/rolebindings/
    

    
      	ClusterRole
      	/apis/rbac.authorization.k8s.io/v1/clusterroles/
    

    
      	StorageClass
      	/apis/storage.k8s.io/v1/storageclasses/
    

  




Notice how the URI paths for named groups start with /apis and include the name of the group. This is different to the core group that starts with /api in the singular and doesn’t include a group name. In fact, in places you’ll see the core API group referred to by empty double quotes (“”). This is because when the API was first designed, no thought was given to groups – everything was “just in the API”.


Dividing the API into smaller groups makes it more scalable and easier to navigate. It also makes it easier to extend.


The following commands are good for seeing API related info for your clusters.


kubectl api-resources is great for seeing which resources are available on your cluster, as well as which API groups they’re served from. It also shows resource shortnames, and whether objects are namespaced or cluster-scoped. The output has been tweaked to fit the book as well as show a mix of resources from different groups.



$ kubectl api-resources
NAME               SHORTNAMES   APIGROUP                NAMESPACED   KIND
namespaces         ns                                   false        Namespace
nodes              no                                   false        Node
pods               po                                   true         Pod
deployments        deploy       apps                    true         Deployment
replicasets        rs           apps                    true         ReplicaSet
statefulsets       sts          apps                    true         StatefulSet
cronjobs           cj           batch                   true         CronJob
jobs                            batch                   true         Job
ingresses          ing          networking.k8s.io       true         Ingress
networkpolicies    netpol       networking.k8s.io       true         NetworkPolicy
storageclasses     sc           storage.k8s.io          false        StorageClass







The next command shows which API versions are supported on your cluster. It doesn’t list which resources belong to which APIs, but it’s good for finding out whether you have things such as alpha APIs enabled or not. Notice how some API groups have multiple versions enabled such as beta and a stable.



$ kubectl api-versions
admissionregistration.k8s.io/v1
admissionregistration.k8s.io/v1beta1
apiextensions.k8s.io/v1
apiextensions.k8s.io/v1beta1
<Snip>
scheduling.k8s.io/v1beta1
storage.k8s.io/v1
storage.k8s.io/v1beta1
v1







The next one is a more complicated command that lists just the kind and version fields for resources supported on your cluster. The output is trimmed so that it gives you an idea of what you get. It doesn’t work on Windows.



$ for kind in `kubectl api-resources | tail +2 | awk '{ print $1 }'`; \
 do kubectl explain $kind; done | grep -e "KIND:" -e "VERSION:"

KIND:     Namespace
VERSION:  v1
KIND:     Node
VERSION:  v1
<Snip>
KIND:     HorizontalPodAutoscaler
VERSION:  autoscaling/v1
KIND:     CronJob
VERSION:  batch/v1beta1
KIND:     Job
VERSION:  batch/v1
<Snip>







A quick word on accessing the API


While kubectl can be useful for getting API info, it’s often better to explore the API more directly using one of the following options.



  	API development tools

  	Commands like curl, wget, and Invoke-WebRequest


  	Web browser




The simplest way to do this, is to run a kubectl proxy command that exposes the API on your localhost adapter and handles all security and authentication.


The following command exposes the API on port 9000 on your localhost adapter. The proxy remains up until you kill the process (process ID 14781 in the example). If you run the command without the “&” on the end, you’ll need to open a new terminal window to run commands.


You don’t need to run this if you already have a kubectl proxy running.



$ kubectl proxy --port 9000 &
[1] 14781
Starting to serve on 127.0.0.1:9000







Kubectl is now proxying the API server on localhost:9000. Run some curl commands to explore the API.


The following two commands list all API versions available below the core API group, and the same for the named API groups.



$ curl http://localhost:9000/api
{
  "kind": "APIVersions",
  "versions": [
    "v1"
  ],
  "serverAddressByClientCIDRs": [
    {
      "clientCIDR": "0.0.0.0/0",
      "serverAddress": "172.21.0.4:6443"
    }
  ]
}

$ curl http://localhost:9000/apis
{
  "kind": "APIGroupList",
  "apiVersion": "v1",
  "groups": [
    <Snip>
    {
      "name": "apps",
      "versions": [
        {
          "groupVersion": "apps/v1",
          "version": "v1"
        }
      ],
      "preferredVersion": {
        "groupVersion": "apps/v1",
        "version": "v1"
      }
    },
    <Snip>







You can list specific object instances, or lists of objects on your cluster. The following shows a list of all Namespaces on a cluster.



$ curl http://localhost:9000/api/v1/namespaces
{
  "kind": "NamespaceList",
  "apiVersion": "v1",
  "metadata": {
    "resourceVersion": "478774"
  },
  "items": [
    {
      "metadata": {
        "name": "kube-system",
        "uid": "a8c48564-d87d-41e0-af1d-1729c6849b52",
        "resourceVersion": "5",
        "creationTimestamp": "2021-01-17T17:44:59Z",
        "managedFields": [
          {
            "manager": "k3s",
            "operation": "Update",
            "apiVersion": "v1",
<Snip>







Feel free to poke around. You can put the same URI paths into a browser and API tools like Postman.


Leave the kubectl proxy process running as you’ll use it again later in the chapter.


Alpha beta and stable


Kubernetes has a strict process for adding new resources to the API. They come in as alpha, progress through beta, and eventually reach stable status.


Resources in alpha are experimental and should be considered hairy and scary. Expect bugs, expect features to be dropped without warning, and expect lots of change as they graduate through beta to stable. A lot of clusters disable alpha APIs by default, and you should use them with extreme caution.


A resource that progresses through two alpha versions will go through the following APIs.



  	/apis/some-api/v1alpa1/…

  	/apis/some-api/v1alpa2/…




The phase after alpha is beta.


Resources in beta are considered “pre-release” and are starting to look and feel a lot like they will when they graduate to stable. Features that are part of beta objects will rarely be dropped when the resource graduates to stable. However, small changes should be expected. Most clusters enable beta APIs by default, and many people use beta objects in production environments. However, that’s not a recommendation, you need to make those decisions yourself.


A resource that progresses through two beta versions will be served through the following APIs.



  	/apis/some-api/vbeta1/…

  	/apis/some-api/vbeta2/…




The final phase after beta is stable, sometimes referred to as generally available (GA). Stable resources are considered production-ready, and Kubernetes has a strong long-term commitment to them.


Examples of paths to stable resources include the following.



  	/apis/some-api/v1/…

  	/apis/some-api/v2/…




Most stable resources are currently at v1, but occasionally some continue being developed and change so much that a v2 is required. For an object to become v2, it progresses through alpha and beta again as follows.



  	/apis/some-api/v2alpaX/… –>> 

  	/apis/some-api/v2betaX/… –>> 

  	/apis/some-api/v2




It’s usually possible to deploy an object through a beta API, but continue to work with them through later API versions. For example, you can deploy an object via a v1beta1 API, but update and manage it at a later date through the stable v1 API.


Resource deprecation


As mentioned in the previous section, alpha and beta objects are subject to changes before graduating to stable. However, once an object is stable, Kubernetes has a strong commitment to maintaining long-term usability   and support. Basically, once an object is stable (v1, v2 etc.) it has a long life. 


Kubernetes commits to support beta and stable objects as follows.



  	Stable/GA: Objects are expected to be long-lived. When deprecated, stable objects will be supported for a further 12 months, or 3 releases, whichever’s longest.

  	Beta: Objects in beta have a 9 month window to either graduate to stable, or release a newer beta version. This is designed to avoid beta features going stale or staying in beta for too long like the Ingress resource did (Ingress remained in beta for more than 15 releases of Kubernetes).




Recent versions of Kubernetes return deprecation warning messages any time you use a deprecated resource. For example, deploying an Ingress from the old extensions/v1beta1 API results in the following deprecation warning.



$ kubectl apply -f deprecate.yml
Warning: extensions/v1beta1 Ingress is deprecated in v1.14+, unavailable in v1.22+; 
Use networking.k8s.io/v1 Ingress







Resources, objects, and primitives


You’ll often see the terms resources, objects, and even primitives used interchangeably. And that’s fine, most people do it and everyone understands what you mean.


However, technically speaking, the Kubernetes API is resource-based. This means everything in the API is a resource. It just so happens that most API resources, such as Pods, Services, Ingresses etc. are objects. However, some resources are lists, and an even smaller number are operations. However, most resources are objects, so we often use the terms “resource” and “object” to mean the same thing.


Resources can be either namespaced or cluster-scoped. Namespaced objects have to be deployed to a particular Namespace, whereas cluster-scoped objects can either be bound to multiple Namespaces, or exist entirely outside the realm of Namespaces. Node objects are an example of a cluster-scoped resource that exists entirely outside of Namespaces and cannot ever be deployed to one. On the flip side, ClusterRoles are an example of a cluster-scoped object that can be bound to specific Namespaces via ClusterRoleBindings. 


Remember, kubectl api-resources lists all resources and whether they’re namespaced or cluster-scoped.


Extending the API


Kubernetes runs a set of built-in controllers that read an object’s spec, deploy and maintain it on the cluster, and keep its status section up-to-date. However, you can extend Kubernetes by adding your own resources and controllers.


A common example of 3rd-parties extending the Kubernetes API can be seen in the storage world where vendors expose advanced features, such as snapshot schedules, via custom resources in the Kubernetes API. In this model, storage is surfaced inside of Kubernetes via CSI drivers, Pods consume it via built-in Kubernetes resources such as StorageClasses and PersistentVoumeClaims, but advanced features such as snapshot scheduling is consumed via custom resources in the API.


The high-level pattern for extending the API involves two main things:



  	Writing your custom controller


  	Creating the custom resource





Kubernetes has a CustomResourceDefinition (CRD) object that lets you create new resources in the API that look, smell, and feel like native Kubernetes resources. This means you can create a custom resource, and then use kubectl to create and inspect it just like it’s a native resource. They also get their own REST paths in the API. 


The following YAML is from the crd.yml file in the api folder of the book’s GitHub repo. It defines a new namespaced custom resource called “books” in the “nigelpoulton.com” named group that is served via the “v1” path.



apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
  name: books.nigelpoulton.com
spec:
  group: nigelpoulton.com      <<-- Named API group
  scope: Cluster               <<-- Can be "Namespaced" or "Cluster"
  names:
    plural: books              <<-- All resources need a plural and singular name defined
    singular: book             <<-- Singular names are used on CLI and command outputs
    kind: Book                 <<-- kind property used in YAML files
    shortNames:
    - bk                       <<-- Short name used by kubectl
  versions:                    <<-- Resources can be served by multiple API versions
    - name: v1                  
      served: true             <<-- If set to false, "v1" will not be served
      storage: true            <<-- Store instances of the object as this version
      schema:                  <<-- This block defines the properties of your custom resource
        openAPIV3Schema:
          type: object
          properties:
            spec:
              type: object
              properties:
                <Snip>







Use the following command to make a local copy of the GitHub repo and the lab files. You’ll need to have git installed for this to work.



$ git clone https://github.com/nigelpoulton/TheK8sBook.git







Change into the api directory.



$ cd TheK8sBook/api







If you’re following along, deploy the custom resource with the following command. Be sure to run it from the api folder containing the crd.yml file.



$ kubectl apply -f crd.yml
customresourcedefinition.apiextensions.k8s.io/books.nigelpoulton.com created







Once deployed, the new resource exists in the API and you can deploy objects from it. This particular one will be served on the following REST path.



apis/nigelpoulton.com/v1/books/







Verify it exists in the API.



$ kubectl api-resources | grep books
NAME      SHORTNAMES     APIGROUP             NAMESPACED     KIND
books     bk             nigelpoulton.com     false          Book

$ kubectl explain book
KIND:     Book
VERSION:  nigelpoulton.com/v1
DESCRIPTION:
     <empty>
FIELDS:
     <Snip>







The following YAML is from the tkb.yml file in the api folder of the book’s GitHub repo. It defines a new Book object called “tkb”. Notice how the fields in the spec section match the names and types defined in the custom resource YAML definition (crd.yml). 



apiVersion: nigelpoulton.com/v1
kind: Book
metadata:
  name: tkb
spec:
  bookTitle: "The Kubernetes Book"
  topic: Kubernetes
  edition: 2







Deploy it with the following command.



$ kubectl apply -f tkb.yml
book.nigelpoulton.com/tkb created







You can now list and describe it with the usual commands. The following GET command uses the resource’s “bk” shortname.



$ kubectl get bk
NAME   TITLE                 EDITION
tkb    The Kubernetes Book   2







Finally, you can use tools like curl to query the new API group and resource. The simplest way to do this is to run a kubectl proxy.


The following commands start a kubectl proxy and list all resources under the new nigelpoulton.com named group. You may already have a kubectl proxy process running.



$ kubectl proxy --port 9000 &
[1] 14784
Starting to serve on 127.0.0.1:9000

$ curl http://localhost:9000/apis/nigelpoulton.com/v1/
{
  "kind": "APIResourceList",
  "apiVersion": "v1",
  "groupVersion": "nigelpoulton.com/v1",
  "resources": [
    {
      "name": "books",
      "singularName": "book",
      "namespaced": false,
      "kind": "Book",
      "verbs": [
        "delete",
        "deletecollection",
        "get",
        "list",
        "patch",
        "create",
        "update",
        "watch"
      ],
      "shortNames": [
        "bk"
      ],
      "storageVersionHash": "rQ0xv5vJ3/s="
    }
  ]
}







This is all good an interesting. But a custom resource doesn’t do anything until you create a custom controller to go with it. Doing this is beyond the scope of this chapter, but you’ve learned a lot about the Kubernetes API and how it works.


Chapter summary


Now that you’ve read the chapter, all of the following should make sense. But don’t worry if some bits are still vague or confusing. APIs can be hard to understand, and the Kubernetes API is large and complex. Anyway, here goes…


Kubernetes is API centric, and the API is exposed internally and externally via the API server.


The API server runs as a control plane service, and all internal and external clients interact with each other and the API, via the API server. This means your control plane needs to be highly available and high performance. If it’s not, you risk slow API response times or entirely losing access to the API. Also, all requests to the API server are authenticated, authorized, and protected by TLS. 


The API itself is a modern resource-based RESTful API that accepts CRUD-style operations via uniform HTTP methods such as POST, GET, PUT, PATCH, and DELETE. It’s divided into named groups for convenience and extensibility. Older resources created in the early days of Kubernetes exist in the original core group which is accessed via the /api/v1 REST path. All newer objects go into named groups. For example, newer network resources are defined in the networking.k8s.io sub-group available at the /apis/networking.k8s.io/v1/ REST path.


Resources in the Kubernetes API are generally objects. However, they can also be lists or operations. The vast majority are objects, so we sometimes use the terms “resources” and “objects” to mean the same thing. It’s common to refer to their API definitions as resources, or resource definitions, whereas running instances on a cluster are often referred to as objects. For example, the Pod “resource” exists in the core API group, and there are 5 Pod “objects” running in the default Namespace.


All new resources come into the API as alpha, progress through beta, and eventually graduate to stable. Alpha resources are subject to change and disabled in many clusters due to their unstable nature. Beta resources are more stable and consist of features expected to be carried through to the stable version. Most clusters enable beta resources by default, but you should be cautious using them in production. Stable resources are considered production-grade and Kubernetes has a strong commitment to them that is backed by a clear deprecation policy that guarantees they’ll be supported for at least 12 months, or three versions, after the deprecation announcement.


Finally, the Kubernetes API is becoming the de facto cloud API with many 3rd-party technologies extending it so they can be exposed through it. Kubernetes makes it easy to extend the API with your own custom resources through CustomResourceDefinitions that make your custom resources look like native Kubernetes resources.


OK, hopefully that made sense. But don’t worry if you’re still a bit unsure about some of the points. I highly recommend you play around with as many of the examples as possible. Also consider reading the chapter again in a day or so, as it often takes time and more than one reading of something before you grasp it.



  





Finally, if you liked this chapter, or any other chapter in the book, jump over to Amazon and show the book some love with a quick review. The cloud-native gods will smile on you ;-)








15: Threat modeling Kubernetes


Security is more important than ever before, and Kubernetes is no exception. Fortunately, there’s a lot of things you can do to secure Kubernetes, and you’ll see some of them in the next chapter. However, before doing that, it’s a good idea to model some of the common threats.


Threat model


Threat modeling is the process of identifying vulnerabilities so you can put measures in place to prevent and mitigate them. This chapter introduces the popular STRIDE model and shows how it can be applied to Kubernetes.


STRIDE defines six categories of potential threat:



  	Spoofing

  	Tampering

  	Repudiation

  	Information disclosure

  	Denial of service

  	Elevation of privilege




While the model is good, it’s important to keep in mind that it’s just a model, and model guarantees to cover all possible threats. However, they are good at providing a structured way to look at things.


For the rest of this chapter, we’ll look at each of the six threat categories in turn. For each one, we’ll give a quick description, and then look at some of the ways it applies to Kubernetes and how we can prevent and mitigate.


The chapter doesn’t try to cover everything. It’s just giving you ideas and getting you started.


Spoofing


Spoofing is pretending to be somebody else with the aim of gaining extra privileges on a system. 


Let’s look at some of the ways Kubernetes prevents different types of spoofing.


Securing communications with the API server


Kubernetes is comprised of lots of small components that work together. These include control plane services such as the API server, controller manager, scheduler, cluster store, and others. It also includes Node components such as the kubelet and container runtime. Each of these has its own set of privileges that allow it to interact with, and even modify the cluster. Even though Kubernetes implements a least-privilege model, spoofing the identity of any of these can cause problems.


If you read the RBAC and API security chapter, you’ll know that Kubernetes requires all components to authenticate via cryptographically signed certificates (mTLS). This is good, and Kubernetes makes it easy by auto-rotating certificates and the likes. However, it’s vital you consider the following:



  	A typical Kubernetes installation will auto-generate a self-signed certificate authority (CA). This is the CA that will issue certificates to all cluster components. And while it’s better than nothing, on its own it’s probably not enough for production environments.

  	Mutual TLS (mTLS) is only as secure as the CA issuing the certificates. Compromising the CA can render the entire mTLS layer ineffective. So, keep the CA secure!




A good practice is to ensure that certificates issued by the internal Kubernetes CA are only used and trusted within the Kubernetes cluster. This requires careful approval of certificate signing requests, and you need to make sure the Kubernetes CA doesn’t get added as a trusted CA for any systems outside of Kubernetes.


As mentioned in previous chapters, all internal and external requests to the API server are subject to authentication and authorization checks. As a result, the API server needs a way to authenticate (trust) internal and external sources. A good way to do this is having two trusted key pairs:



  	one for authenticating internal systems 

  	the other for authenticating external systems




In this model, you’d use the cluster’s self-signed CA to issue keys to internal systems. You’d also configure Kubernetes to trust one or more trusted 3rd-party CAs to issue keys to external systems.


Securing Pod communications


As well as spoofing access to the cluster, there’s also the threat of spoofing an application for app-to-app communications. This is when one Pod spoofs another. Fortunately, you can leverage Secrets to mount certificates into Pods that are used to authenticate Pod identity.


While on the topic of Pods, every Pod has an associated ServiceAccount that is used to provide an identity for the Pod within the cluster. This is achieved by automatically mounting a service account token into every Pod as a Secret. Two points to note:



  	The service account token allows access to the API server

  	Most Pods probably don’t need to access the API server




With these two points in mind, it’s often recommended to set automountServiceAccountToken to false for Pods that you know don’t need to communicate with the API server. The following Pod manifest shows how to do this.



apiVersion: v1
kind: Pod
metadata:
  name: service-account-example-pod
spec:
  serviceAccountName: some-service-account
  automountServiceAccountToken: false
  <Snip>







If the Pod does need to talk to the API server, the following non-default configurations are worth exploring.



  	expirationSeconds

  	audience 




These let you force a time when the token will expire, as well as restrict the entities it works with. The following example, inspired from official Kubernetes docs, sets an expiry period of one hour and restricts it to the vault audience in a projected volume.



apiVersion: v1
kind: Pod
metadata:
  name: nginx
spec:
  containers:
  - image: nginx
    name: nginx
    volumeMounts:
    - mountPath: /var/run/secrets/tokens
      name: vault-token
  serviceAccountName: my-pod
  volumes:
  - name: vault-token
    projected:
      sources:
      - serviceAccountToken:
          path: vault-token
          expirationSeconds: 3600
          audience: vault







Tampering


Tampering is the act of changing something, in a malicious way, so you can cause one of the following. 



  	Denial of service. Tampering with the resource to make it unusable.

  	Elevation of privilege. Tampering with a resource to gain additional privileges.




Tampering can be hard to avoid, so a common counter-measure is to make it obvious when something has been tampered with. A common example, outside of information security, is packaging medication. Most over-the-counter drugs are packaged with tamper-proof seals. These make it easy to see if the product has been tampered with.


Let’s have a quick look at some of the cluster components that can be tampered with.


Tampering with Kubernetes components


All of the following Kubernetes components, if tampered with, can cause harm:



  	etcd

  	Configuration files for the API server, controller-manager, scheduler, etcd, and kubelet

  	Container runtime binaries

  	Container images

  	Kubernetes binaries




Generally speaking, tampering happens either in transit or at rest. In transit refers to data while it is being transmitted over the network, whereas at rest refers to data stored in memory or on disk.


TLS is a great tool for protecting against in transit tampering, as it provides built-in integrity guarantees – you’ll be warned if the data has been tampered with.


The following recommendations can also help prevent tampering with data when it is at rest in Kubernetes.



  	Restrict access to the servers that are running Kubernetes components – especially control plane components.

  	Restrict access to repositories that store Kubernetes configuration files.

  	Only perform remote bootstrapping over SSH (remember to safely guard your SSH keys).

  	Always perform SHA-2 checksums on downloads.

  	Restrict access to your image registry and associated repositories.




This isn’t an exhaustive list. But if you implement it, you’ll greatly reduce the chances of having your data tampered with while at rest.


As well as the items listed, it’s good production hygiene to configure auditing and alerting for important binaries and config files. If configured and monitored correctly, these can help detect potential tampering attacks.


The following example uses a common Linux audit daemon to audit access to the docker binary. It also audits attempts to the change the binary’s file attributes.



$ auditctl -w /usr/bin/docker -p wxa -k audit-docker







We’ll refer to this example later in the chapter.


Tampering with applications running on Kubernetes


As well as infrastructure components, application components are also potential tampering targets.


A good way to prevent a live Pod from being tampered with, is setting its filesystems to read-only. This guarantees filesystem immutability and can be accomplished through a Pod Security Policy or the securityContext section of a Pod manifest file.



  Note: PodSecurityPolicy objects allow you to force security settings on all Pods in a cluster, or targeted sub-sets of Pods. They’re a great of enforcing standards without developers and operations staff having to remember to do it for every individual Pod.




You can make a container’s root filesystem read-only by setting the readOnlyRootFilesystem property to true. As previously mentioned, this can be set via a PodSecurityPolicy object, or in Pod manifest files. The same can be done for other filesystems that are mounted into containers via the allowedHostPaths property.


The following YAML shows how to use both settings in a Pod manifest. The allowedHostPaths section makes sure anything mounted beneath /test will be read-only.



apiVersion: v1
kind: Pod
metadata:
  name: readonly-test
spec:
  securityContext:
    readOnlyRootFilesystem: true
    allowedHostPaths:
      - pathPrefix: "/test"
        readOnly: true
<Snip>







The same can be implemented in a PodSecurityPolicy object as follows.



apiVersion: policy/v1beta1  # Will change in a future version
kind: PodSecurityPolicy
metadata:
  name: tampering-example
spec:
  readOnlyRootFilesystem: true
  allowedHostPaths:
  - pathPrefix: "/test"
    readOnly: true







Repudiation


At a very high level, repudiation is creating doubt about something. Non-repudiation is providing proof about something. In the context of information security, non-repudiation is proving certain actions were carried out by certain individuals.


Digging a little deeper, non-repudiation includes the ability to prove:



  	What happened

  	When it happened

  	Who made it happen

  	Where it happened

  	Why it happened

  	How it happened




Answering the last two usually requires the correlation of several events over a period of time.


Fortunately, auditing of Kubernetes API server events can usually help answer these questions. The following is an example of an API server audit event (you may need to manually enable auditing on your API server).



{
  "kind":"Event",
  "apiVersion":"audit.k8s.io/v1",
  "metadata":{ "creationTimestamp":"2020-03-03T10:10:00Z" },
  "level":"Metadata",
  "timestamp":"2020-03-03T10:10:00Z",
  "auditID":"7e0cbccf-8d8a-4f5f-aefb-60b8af2d2ad5",
  "stage":"RequestReceived",
  "requestURI":"/api/v1/namespaces/default/persistentvolumeclaims",
  "verb":"list",
  "user": {
    "username":"fname.lname@example.com",
    "groups":[ "system:authenticated" ]
  },
  "sourceIPs":[ "123.45.67.123" ],
  "objectRef": {
    "resource":"persistentvolumeclaims",
    "namespace":"default",
    "apiVersion":"v1"
  },
  "requestReceivedTimestamp":"2010-03-03T10:10:00.123456Z",
  "stageTimestamp":"2020-03-03T10:10:00.123456Z"
}







Although the API server is central to most things in Kubernetes, it’s not the only component that requires auditing for non-repudiation. At a minimum, you should collect audit logs from container runtimes, kubelets, and the applications running on your cluster. This is without even mentioning network firewalls and the likes.


Once you start auditing multiple components, you quickly need a centralised location to store and correlate events. A common way to do this is deploying an agent to all nodes via a DaemonSet. The agent collects logs (runtime, kubelet, application…) and ships them to a secure central location.


If you do this, it’s vital the centralised log store is secure. If the security of the central log store is compromised, you can no longer trust the logs, and their contents can be repudiated.


To provide non-repudiation relative to tampering with binaries and configuration files, it might be useful to use an audit daemon that watches for write actions on certain files and directories on your Kubernetes Masters and Nodes. For example, earlier in the chapter you saw an example that enabled auditing of changes to the docker binary. With this enabled, starting a new container with the docker run command will generate an event like this:



type=SYSCALL msg=audit(1234567890.123:12345): arch=abc123 syscall=59 success=yes exit=0 a0=12345678abc\
 a1=0 a2=abc12345678 a3=a items=1 ppid=1234 pid=12345 auid=0 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 \
s\
gid=0 fsgid=0 tty=pts0 ses=1 comm="docker" exe="/usr/bin/docker" subj=system_u:object_r:container_runt\
ime_exec_t:s0 key="audit-docker"
type=CWD msg=audit(1234567890.123:12345):  cwd="/home/firstname"
type=PATH msg=audit(1234567890.123:12345): item=0 name="/usr/bin/docker" inode=123456 dev=fd:00 mode=0\
100600 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:container_runtime_exec_t:s0







Audit logs like this, when combined and correlated with Kubernetes’ audit features, create a comprehensive and trustworthy picture that cannot be repudiated.


Information Disclosure


Information disclosure is when sensitive data is leaked. There are lots of ways it can happen, including hacked data stores and APIs that unintentionally expose sensitive data.


Protecting cluster data


In the Kubernetes world, the entire configuration of the cluster is stored in the cluster store (usually etcd). This includes network and storage configuration, as well as passwords and other sensitive data in Secrets. For obvious reasons, this makes the cluster store a prime target for information disclosure attacks.


As a minimum, you should limit and audit access to the nodes hosting the cluster store. As will be seen in the next paragraph, gaining access to a cluster node can allow the logged-on user to bypass some of the security layers.


Kubernetes 1.7 introduced encryption of Secrets but doesn’t enable it by default. Even when this becomes default, the data encryption key (DEK) is stored on the same node as the Secret! This means gaining access to a node lets you to bypass encryption. This is especially worrying on nodes that host the cluster store (etcd nodes).


Fortunately, Kubernetes 1.11 enabled a beta feature that lets you store key encryption keys (KEK) outside of your Kubernetes cluster. These types of keys are used to encrypt and decrypt data encryption keys and should be safely guarded. You should seriously consider Hardware Security Modules (HSM) or cloud-based Key Management Stores (KMS) for storing your key encryption keys.


Keep an eye on upcoming versions of Kubernetes for further improvements to encryption of Secrets.


Protecting data in Pods


As previously mentioned, Kubernetes has an API resource called a Secret that is the preferred way to store and share sensitive data such as passwords. For example, a front-end container accessing an encrypted back-end database can have the key to decrypt the database mounted as a Secret. This is a far better solution than storing the decryption key in a plain-text file or environment variable.


It is also common to store data and configuration information outside of Pods and containers in Persistent Volumes and ConfigMaps. If the data on these is encrypted, keys for decrypting them should also be stored in Secrets.


With all of this, it’s vital that you consider the caveats outlined in the previous section relative to Secrets and how their encryption keys are stored. You don’t want to do the hard work of locking the house but leaving the keys in the door.


Denial of Service


Denial of Service (DoS) is all about making something unavailable. There are many types of DoS attack, but a well-known variation is overloading a system to the point it can no longer service requests. In the Kubernetes world, a potential attack might be to overload the API server so that cluster operations grind to a halt (even essential system services have to communicate via the API server).


Let’s take a look at some potential Kubernetes systems that might be targets of DoS attacks, and some ways to protect and mitigate.


Protecting cluster resources against DoS attacks


It’s a time-honored best practice to replicate essential control plane services on multiple nodes for high availability (HA). Kubernetes is no different, and you should run multiple Masters in an HA configuration for your production environments. Doing this prevents a single Master from becoming a single point of failure. In relation to certain types of DoS attacks, an attacker may need to attack more than one Master to have a meaningful impact.


You should also consider replicating control plane nodes across availability zones. This may prevent a DoS attack on the network of a particular availability zone from taking down your entire control plane.


The same principle applies to worker nodes. Having multiple worker nodes not only allows the scheduler to spread your applications over multiple nodes and availability zones, it may also render DoS attacks on any single node or zone ineffective (or less effective).


You should also configure appropriate limits for the following:



  	Memory

  	CPU

  	Storage

  	Kubernetes objects




Placing limits on things can help prevent important system resources from being starved, therefore preventing potential DoS.


Limiting Kubernetes objects includes things like; limiting the number of ReplicaSets, Pods, Services, Secrets, and ConfigMaps in a particular Namespace.


Here’s an example manifest that limits the number of Pod objects in the skippy namespace to 100.



apiVersion: v1
kind: ResourceQuota
metadata:
  name: pod-quota
spec:
  hard:
    pods: "100"







One more feature – podPidsLimit – restricts the number of processes a Pod can create.


Assume a scenario where a Pod is the target of a fork bomb attack. This is a specialised attack where a rogue process creates as many new processes as possible in an attempt to consume all resources on a system and grind it to a halt. Placing a limit on the number of processes a Pod can create will prevent the Pod from exhausting the resources of the node and confine the impact of the attack to the Pod. Once the podPidsLimit is exhausted, a Pod will typically be restarted.


This also ensures a single Pod doesn’t exhaust the PID range for all the other Pods on the node, including the Kubelet. One thing to note though… setting the correct value requires a good estimate of how many Pods will run simultaneously on each Node. Without a ballpark estimate, you can easily over or under allocate PIDs to each pod.


Protecting the API Server against DoS attacks


The API server exposes a RESTful interface over a TCP socket, making it susceptible to botnet-based DoS attacks.


The following may be helpful in either preventing or mitigating such attacks.



  	Highly available masters. Having multiple API server replicas running on multiple nodes across multiple availability zones.

  	Monitoring and alerting API server requests based on sane thresholds

  	Using things like firewalls to limit API server exposure to the internet




As well as botnet DoS attacks, an attacker may also attempt to spoof a user or other control plane service in an attempt to cause an overload. Fortunately, Kubernetes has robust authentication and authorization controls to prevent spoofing. However, even with a robust RBAC model, it’s vital that you safeguard access to accounts with high privileges.


Protecting the cluster store against DoS attacks


Cluster configuration is stored in etcd, making it vital that etcd be available and secure. The following recommendations help accomplish this:



  	Configure an HA etcd cluster with either 3 or 5 nodes

  	Configure monitoring and alerting of requests to etcd

  	Isolate etcd at the network level so that only members of the control plane can interact with it




A default installation of Kubernetes installs etcd on the same servers as the rest of the control plane. This is usually fine for development and testing, however, large production clusters should seriously consider a dedicated etcd cluster. This will provide better performance and greater resilience.


On the performance front, etcd is probably the most common choking point for large Kubernetes clusters. With this in mind, you should perform testing to ensure the infrastructure it runs on is capable of sustaining performance at scale – a poorly performing etcd can be as bad as an etcd cluster under a sustained DoS attack. Operating a dedicated etcd cluster also provides additional resilience by protecting it from other parts of the control plane that might be compromised.


Monitoring and alerting of etcd should be based on sane thresholds, and a good place to start is by monitoring etcd log entries.


Protecting application components against DoS attacks


Most Pods expose their main service on the network, and without additional controls in place, anyone with access to the network can perform a DoS attack on the Pod. Fortunately, Kubernetes provides Pod resource request limits to prevent such attacks from exhausting Pod and Node resources. As well as these, the following will be helpful:



  	Define Kubernetes Network Policies to restrict Pod-to-Pod and Pod-to-external communications

  	Utilize mutual TLS and API token-based authentication for application-level authentication (reject any unauthenticated requests)




For defence in depth, you should also implement application-layer authorization policies that implement least privilege.


Figure 15.1 shows how all of these can be combined to make it hard for an attacker to successfully DoS an application.
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Elevation of privilege


Privilege escalation is gaining higher access than what is granted, usually in order to cause damage or gain unauthorized access.


Let’s look at a few ways to prevent this in a Kubernetes environment.


Protecting the API server


Kubernetes offers several authorization modes that help safeguard access to the API server. These include:



  	Role-based Access Control (RBAC)

  	Webhook

  	Node




You should run multiple authorizers at the same time. For example, a common best practice is to always have RBAC and node enabled.


RBAC mode lets you restrict API operations to sub-sets of users. These users can be regular user accounts as well as system services. The idea is that all requests to the API server must be authenticated and authorized. Authentication ensures that requests are coming from a validated user, whereas authorization ensures the validated user is allowed to perform the requested operation. For example, can Lily create Pods? In this example, Lily is the user, create is the operation, and Pods is the resource. Authentication makes sure that it really is Lily making the request, and authorization determines if she’s allowed to create Pods.


Webhook mode lets you offload authorization to an external REST-based policy engine. However, it requires additional effort to build and maintain the external engine. It also makes the external engine a potential single-point-of-failure for every request to the API server. For example, if the external webhook system becomes unavailable, you may not be able to make any requests to the API server. With this in mind, you should be rigorous in vetting and implementing any webhook authorization service.


Node authorization is all about authorizing API requests made by kubelets (Nodes). The types of requests made to the API server by Nodes is obviously different to those generally made by regular users, and the node authorizer is designed to help with this.


See the chapter on RBAC and API security for more detail.


Protecting Pods


The next few sections will look at a few of the technologies that help reduce the risk of elevation of privilege attacks against Pods and containers. We’ll look at the following:



  	Preventing processes from running as root


  	Dropping capabilities

  	Filtering syscalls

  	Preventing privilege escalation




As you proceed through the following sections, it’s important to remember that a Pod is just an execution environment for one or more containers – application code runs in containers, which in turn, run inside of Pods. Some of the terminology used will refer to Pods and containers interchangeably, but usually we will mean container.


Do not run processes as root


The root user is the most powerful user on a Linux system and is always User ID 0 (UID 0). Therefore, running application processes as root is almost always a bad idea as it grants the application process full access to the container. This is made even worse by the fact that the root user of container often has unrestricted root access on the host system as well. If that doesn’t make you afraid, nothing will!


Fortunately, Kubernetes lets you force container processes to run as unprivileged non-root users.


The following Pod manifest configures all containers that are part of this Pod to run processes as UID 1000. If the Pod has multiple containers, all processes in all containers will run as UID 1000



apiVersion: v1
kind: Pod
metadata:
  name: demo
spec:
  securityContext:  # Applies to all containers in this Pod
    runAsUser: 1000 # Non-root user
  containers:
  - name: demo
    image: example.io/simple:1.0







runAsUser is one of many settings that can be configured as part of what we refer to as a PodSecurityContext (.spec.securityContext).


It’s possible for two or more Pods to be configured with the same runAsUser UID. When this happens, the containers from both Pods will run with the same security context and potentially have access to the same resources. This might be fine if they are replicas of the same Pod or container. However, there’s a high chance this will cause problems if they’re different containers. For example, two different containers with R/W access to the same host directory or volume can cause data corruption (both writing to the same dataset without co-ordinating write operations). Shared security contexts also increase the possibility of a compromised container tampering with a dataset it shouldn’t have access to.


With this in mind, it is possible to use the securityContext.runAsUser property at the container level instead of at the Pod level:



apiVersion: v1
kind: Pod
metadata:
  name: demo
spec:
  securityContext:  # Applies to all containers in this Pod
    runAsUser: 1000 # Non-root user
  containers:
  - name: demo
    image: example.io/simple:1.0
    securityContext:
      runAsUser: 2000 # Overrides the Pod setting







This example sets the UID to 1000 at the Pod level, but overrides it at the container level so that processes in one particular container run as UID 2000. Unless otherwise specified, all other containers in the Pod will use UID 1000.


A couple of other things that might help get around the issue of multiple Pods and containers using the same UID include:



  	Enabling user namespaces


  	Maintaining a map of UID usage




User namespaces is a Linux kernel technology that allows a process to run as root within a container, but run as a different user outside of the container. For example, a process can run as UID 0 (the root user) in the container, but get mapped to UID 1000 on the host. This can be a good solution for processes that need to run as root inside the container, but you should check whether it has full support from your version of Kubernetes and your container runtime.


Maintaining a map of UID usage is a clunky way to prevent multiple different Pods and containers using overlapping UIDs. It’s a bit of a hack and requires strict adherence to a gated release process for releasing Pods into production.



  Note: A strict gated release process is a good thing for production environments. The hacky part of the previous section is the UID map itself, as well as the fact that you’re introducing an external dependency and complicating releases and troubleshooting.




Drop capabilities


While user namespaces allow container processes to run as root inside the container but not on the host machine, it remains a fact that most processes don’t really need to run as full root inside the container. However, it is equally true that many processes do require more privileges than a typical non-root user. What is needed, is a way to grant the exact set of privileges a process requires in order to run. Enter capabilities.


Time for a quick bit of background…


We’ve already said the root user is the most powerful user on a Linux system. However, its power is a combination of lots of small privileges that we call capabilities. For example, the SYS_TIME capability allows a user to set the system clock, whereas the NET_ADMIN capability allows a user to perform network-related operations such as modifying the local routing table and configuring local interfaces. The root user holds every capability and is therefore extremely powerful.


Having a modular set of capabilities like this allows you to be extremely granular when granting permissions. Instead of an all or nothing (root or non-root) approach, you can grant a process the exact set of capabilities it requires to run.


There are currently over 30 capabilities, and choosing the right ones can be daunting. With this in mind, an out-of-the-box Docker runtime drops over half of them by default. This is a sensible-default that is designed to allow most processes to run, without leaving the keys in the front door. While sensible defaults like these are better than nothing, they’re often not good enough for a lot of production environments.


A common way to find the absolute minimum set of capabilities an application requires, is to run it in a test environment with all capabilities dropped. This will cause the application to fail and log messages about the missing permissions. You map those permissions to capabilities, add them to the application’s Pod spec, and run the application again. You rinse and repeat this process until the application runs properly with the minimum set of capabilities.


As good as this is, there are a few things to consider.


Firstly, you must perform extensive testing of your application. The last thing you want is a production edge case that you hadn’t accounted for in your test environment. Such occurrences can crash your application in production!


Secondly, every fix and update to your application requires the exact same extensive testing against the capability set.


With these considerations in mind, it is vital that you have testing procedures and production release processes that can handle all of this.


By default, Kubernetes implements the default set of capabilities implemented by your chosen container runtime (E.g. containerd or Docker). However, you can override this in a Pod Security Policy, or as part of a container’s securityContext field.


The following Pod manifest shows how to add the NET_ADMIN and CHOWN capabilities to a container.



apiVersion: v1
kind: Pod
metadata:
  name: capability-test
spec:
  containers:
  - name: demo
    image: example.io/simple:1.0
    securityContext:
      capabilities:
        add: ["NET_ADMIN", "CHOWN"]







Filter syscalls


seccomp, short for secure computing, is similar in concept to capabilities but works by filtering syscalls rather than capabilities.


The way a Linux process asks the kernel to perform an operation is by issuing a syscall. seccomp lets you control which syscalls a particular container can make to the host kernel. As with capabilities, a least privilege model is preferred, where the only syscalls a container is allowed to make are the ones it needs to in order to run.


seccomp went GA in Kubernetes 1.19 and can be used in different ways based on the following seccomp profiles.



  	
Non-blocking: Allows a Pod to run, and records every syscall it makes to an audit log you can use to create a custom profile. The idea is to run your application Pod in a dev/test environment and make it do everything it’s designed to do. When you’re done, you’ll have a log file listing every syscall the Pod needs in order to run. You then use this to create a custom profile that only allows the syscalls the app needs (least privilege).

  	
Blocking: Blocks all syscalls. It’s extremely secure, but prevents a Pod from doing anything useful.

  	
Runtime Default: Forces a Pod to use the seccomp profile defined by its container runtime. This is a common place to start if you haven’t created a custom profile yet. Profiles that ship with container runtimes aren’t the most secure in the world, but they’re not wide open either. They’re usually designed to be balance of usable and secure, and they’re thoroughly tested.

  	
Custom: A profile that only allows the syscalls your application needs in order to run. Everything else is blocked. It’s common to extensively test your application in dev/test with a non-blocking profile that records all syscalls to an audit log. You then use this log to identify the syscalls your app makes and build the customized profile. The danger with this approach is that your app has some edge-cases that you miss with your testing. If this happens, your application can fail in production when it hits an edge-cases and uses a syscall not captured during testing.




Obviously, custom profiles operate the least privilege model and are the preferred approach from a security perspective.  


Prevent privilege escalation by containers


The only way to create a new process in Linux is for one process to clone itself and then load new instructions on to the new process. We’re obviously over-simplifying, but the original process is called the parent process, and the copy is called the child.


By default, Linux allows a child process to claim more privileges than its parent. This is usually a bad idea. In fact, you’ll often want a child process to have the same, or less privileges than its parent. This is especially true for containers, as their security configurations are defined against their initial configuration, and not against potentially escalated privileges.


Fortunately, it’s possible to prevent privilege escalation through a PodSecurityPolicy or the securityContext property of an individual container.


The following Pod manifest shows how to prevent privilege escalation for an individual container.



apiVersion: v1
kind: Pod
metadata:
  name: demo
spec:
  containers:
  - name: demo
    image: example.io/simple:1.0
    securityContext:
      allowPrivilegeEscalation: false







Pod Security Policies


As you’ve seen throughout the chapter, you can enable security settings on a per-Pod basis by setting security context attributes in individual Pod YAML files. However, this approach doesn’t scale, it requires developers and operators to remember to do this for every Pod, and is prone to errors. Pod Security Policies offer a better way.


Pod Security Policies allow you to define security settings at the cluster level. You can then apply them to targeted sets of Pods as part of the deployment process. This approach scales better, requires less effort from developers and admins, and is less prone to error. It also lends itself to situations where you have a team dedicated to securing apps in production.


Pod Security Policies are implemented as an admission controller, and in order to use them, a Pod’s ServiceAccount must be authorized to use it. Once this is done, policies are applied to new requests to create Pods as they pass through the API admission chain.


Pod Security Policy example


Let’s finish the chapter with a quick look at an example of a Pod Security Policy that covers many of the points discussed in this chapter, as well as some other known secure defaults.


It’s based on an example from the official Kubernetes docs:



apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
  name: restricted
  annotations:
    seccomp.security.alpha.kubernetes.io/allowedProfileNames: 'docker/default'
    apparmor.security.beta.kubernetes.io/allowedProfileNames: 'runtime/default'
    seccomp.security.alpha.kubernetes.io/defaultProfileName:  'docker/default'
    apparmor.security.beta.kubernetes.io/defaultProfileName:  'runtime/default'
spec:
  privileged: false
  allowPrivilegeEscalation: false  # Prevent privilege escalation
  requiredDropCapabilities:
    - ALL # Drops all root capabilities (non-privileged user)
  # Allow core volume types.
  volumes:
    - 'configMap'
    - 'emptyDir'
    - 'projected'
    - 'secret'
    - 'downwardAPI'
    # Assume that PVs set up by the cluster admin are safe to use.
    - 'persistentVolumeClaim'
  hostNetwork: false # Prevent access to the host network namespace
  hostIPC: false # Prevent access to the host IPC namespce
  hostPID: false # Prevent access to the host PID namespace
  runAsUser:
    rule: 'MustRunAsNonRoot' # Prevent from running as root
  runAsGroup:
    rule: 'MustRunAs' # controls which primary Group ID containers are run with
    ranges:
      - min: 1
        max: 65535
  seLinux:
    rule: 'RunAsAny' # Any SELinux options can be used
  supplementalGroups:
    rule: 'MustRunAs' # Allow all except root (UID 0)
    ranges:
      - min: 1
        max: 65535
  fsGroup:
    rule: 'MustRunAs' # Sets range for groups that own Pod volumes
    ranges:
      - min: 1
        max: 65535
  readOnlyRootFilesystem: true # Force root filesystem to be R/O
  forbiddenSysctls:
  - '*' #Forbids any sysctls from being accessible from a pod







There’s no denying that configuring effective security policies is both important and challenging. A common practice is to start with a restrictive policy like the one just shown, then tweak it to fit your requirements. A lot of experimenting will be required.


It may also be a good idea to configure several Pod Security Policies that vary in how restrictive they are, then allow development teams to work with cluster administrators to choose the one that best fits the application.


Towards more secure Kubernetes


In 2019, the CNCF (Cloud Native Computing Foundation) commissioned a third-party security audit of Kubernetes. There were several findings, including threat modeling, manual code reviews, dynamic penetration testing, and a cryptography review. All findings were given a difficulty and severity level, and all high severity findings were fixed prior to the release of the report.  You can find the report here: http://shorturl.at/stwxH


The 2020 “Cloud Native Security Whitepaper” is also of interest, as is the Kubernetes perspective provided by this book’s co-author Pushkar Joglekar on the official Kubernetes blog: http://shorturl.at/evQ48


Reports like thses can be a great way to learn more about Kubernetes and how the internals work. Studying reports like these is a great way to level-up after reading this chapter.


Chapter summary


In this chapter, you saw how the STRIDE model can be used to threat model Kubernetes. You stepped through the six categories of threat, and looked at some ways to prevent and mitigate them.


You saw that one threat can often lead to another, and that there are multiple ways to mitigate a single threat. As always, defence in depth is a key tactic.


The chapter finished by discussing how Pod Security Policies provide a flexible and scalable way to implement Pod security defaults.


In the next chapter, you’ll see some best practices and lessons learned from running Kubernetes in production.








16: Real-world Kubernetes security


In the previous chapter, you saw how to threat model Kubernetes using STRIDE. In this chapter, you’ll cover some common security-related challenges that you’re likely to encounter when implementing Kubernetes in the real world.


While every Kubernetes deployment is different, there are many similarities. As a result, the examples you’ll see will apply to most Kubernetes deployments, large and small.


Now then, we’re not offering cookbook style solutions. Instead, we’ll be looking at things from the kind of high-level view a security architect has.


The chapter’s divided into the following four sections:



  	CI/CD pipeline

  	Infrastructure and networking

  	Identity and access management

  	Security monitoring and auditing




CI/CD pipeline


Containers are a revolutionary application packaging and runtime technology.


On the packaging front, they bundle application code and dependencies into an image. As well as code and dependencies, images contain the commands required to run the application. This has enabled containers to hugely simplify the process of building, sharing, and running applications. It’s also overcome the infamous “it worked on my laptop” issue.


However, containers make running dangerous code easier than ever before.


With this in mind, let’s look at some ways you can secure the flow of application code from a developer’s laptop to production servers.


Image Repositories


You store images in registries, and registries are either public or private.



  Note: Each registry is divided into one or more repositories, and you actually store images in repositories.




Public registries are on the internet and are the easiest way to download images and run containers. However, it’s important to understand that they host a mixture of official images and community images. Official images are usually provided by product vendors and have undergone a vetting process to ensure certain levels of quality. Typically, official images implement good practices, are regularly scanned for known vulnerabilities, contain up-to-date code, and may be supported by the product vendor. Community images are none of that. Yes, there are some excellent community images, but you should practice extreme caution when using them.


With all of this in mind, it’s important you implement a standard way for developers to obtain and consume images. It’s also vital that any such process be as frictionless as possible for developers – if there’s too much friction, your developers will look for ways to bypass them.


Let’s discuss a few things that might help.


Use approved base images


Images are made up of multiple layers that build on top of each other to form a useful image. But all images start with a base layer.


Figure 16.1 shows a simple example of an image with three layers. The base layer contains the core OS and filesystem components applications need in order to run. The middle layer contains the application library dependencies. The top layer contains the code that your developers have written. The combination of the three is an image, and it contains everything needed to run the application.
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As all images have a base layer containing the required operating system (OS) and filesystem constructs for applications to build on, it’s a common practice to have a small number of approved base images. It’s also common, but not essential, for these base images to be derived from official images. For example, if you develop your applications on CentOS Linux, your base images may be based on the official CentOS image – you take the official CentOS base image and tweak it for your requirements.


In this model, all of your applications will build on top of a common approved base image like shown in Figure 16.2.




  
    [image: Figure 16.2]
    Figure 16.2


Double-click the image to see full size.

  




While there’s up-front effort required to create and implement an approved set of base images, the long-term security benefits are worth it.


From a developer perspective. Developers can focus entirely applications and dependencies without worrying about maintaining OS stuff such as patching, drivers, audit settings, and more.


From an ops perspective. Base images reduce software sprawl. This makes testing easier, as you’ll always be testing on a known base image. It makes pushing updates easier, you only need to update a small number of approved base images that can be easily made available to all developers. It also makes troubleshooting easier, as you have a small number of well-known base images providing your building blocks. It may also reduce the number of base image configurations that need tying into support contracts.


Non-standard base images


As good as it is to have a small number of approved base images, there may still be applications that need something more bespoke. This means you will need processes in place to



  	Identify why an existing approved base image cannot be used

  	Determine whether an existing approved base image can be updated to meet requirements (including if it’s worth the effort)

  	Determine the support implications of bringing an entirely new image into the environment




Generally speaking, updating an existing base image – such as adding a device driver for GPU computing – should be preferred over introducing an entirely new image.


Control access to images


There are several ways to protect your organization’s container images. The most secure practical option is to host your own private registry within your own firewall. This allows you to manage how the registry is deployed, how it’s replicated, and how it is patched. It may also enable you to integrate permissions with existing identity management providers, such as Active Directory, as well as allow you to create repositories that fit your organizational structure.


If you don’t have the means for a dedicated private registry, you can host your images in private repositories on public registries such as Docker Hub. However, this is not as secure as hosting your own private registry within your own firewalled network.


Whichever solution you choose, you should only host images that are approved to be used within your organization. Normally, these will be from a trusted source and vetted by your information security team. You should place access controls on repositories that store these images, so that only approved users can push and pull them.


Away from the registry itself, you should also:



  	Restrict which cluster nodes have internet access, keeping in mind that your image registry may be on the internet

  	Configure access controls that only allow authorized users/nodes can push to repositories




Expanding on the list above…


If you’re using a public registry, you’ll probably need to grant your Nodes access to the internet so they can pull images. In this situation, a best practice is to limit internet access to the addresses and ports of any registries you use. You should also implement strong RBAC rules to maintain control over who is pushing and pulling images from which repositories. For example, developers should probably be able to push and pull from dev and test repositories, but not production. Whereas operations teams should probably be able to pull from non-production, as well as push and pull to production repos.


Finally, you may only want a sub-set of Nodes (build nodes) to be able to push images. You may even want to lock things down so that only your automated build systems can push to certain repositories.


Moving images from non-production to production


Many organizations have separate environments for development, testing, and production.


Generally speaking, development environments have less rules and are commonly used as places where developers can experiment. This can often involve non-standard images that your developers eventually want to use in production.


The following sections outline some measures you can take to ensure only safe images get approved into production.


Vulnerability scanning


Top of the list for vetting images before allowing them into production should be vulnerability scanning. This is a process where your images are scanned at a binary level and their contents checked against databases of known security vulnerabilities (CVEs).


If you have an automated CI/CD build pipeline, you should definitely integrate vulnerability scanning. As part of this, you should consider implementing policies that automatically fail builds and quarantine images containing certain categories of vulnerabilities. For example, you might implement a build phase that scans images and automatically fails anything using images with known critical vulnerabilities.


Two things to keep in mind if you do this…


Firstly, scanning engines are only as good as the vulnerability databases they use.


Secondly, scanning engines might not implement intelligence. For example, a method in Python that performs TLS verification might be vulnerable to Denial of Service attacks when the Common Name contains a lot of wildcards. However, if you never use Python in this way, the vulnerability might not be relevant and you might want to consider it a false positive. With this in mind, you may want to implement a solution that provides the ability to mark certain vulnerabilities as not applicable.


Configuration as code


Scanning app code for vulnerabilities is a widely accepted as good production hygiene. However, reviewing application configurations, such as Dockerfiles and Kubernetes YAML files, is less widely adopted.


The build once, run anywhere mantra of containers means a single container or Pod configuration can have hundreds or thousands of running instances. If any one of these configurations pulls in vulnerable code, you can easily end up running hundreds or thousands of instances of vulnerable code. With this in mind, if you are not already reviewing your Dockerfiles and Kubernetes YAML files for security issues, you should start now!


A well-publicised example of not reviewing configurations was when an IBM data science experiment embedded private TLS keys in its container images. This made it possible for an attacker to pull the image and gain root access to the Nodes that were hosting the containers. This wouldn’t have happened if a security review had been performed against the application’s Dockerfiles.


There continue to be advancements in automating these types of checks with tools that implement policy as code rules.


Sign container images


Trust is a big deal in today’s world, and cryptographically signing content at every stage in the software delivery pipeline is becoming a must have. Fortunately, Kubernetes, and many container runtimes, support the ability to cryptographically sign and verify images.


In this model, developers cryptographically sign their images, and consumers cryptographically verify them when they pull and run them. This process gives the consumer confidence the image they’re working with is the image they asked for and hasn’t been tampered with.


Figure 16.3 shows the high-level image signing and verification process.
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Image signing, and the verification of signatures, is usually implemented by the container runtime and Kubernetes doesn’t get actively involved.


As well as signing images like this, higher-level tools often allow you to implement enterprise-wide policies that require certain teams to sign images before allowing them to be used.


Image promotion workflow


With everything that we’ve covered so far, a CI/CD pipeline for promoting an image to production should include as many of the following security-related steps as possible:



  	Configure environment to only pull and run signed images

  	Configure network rules to restrict which Nodes can push and pull images

  	Configure repositories with RBAC rules

  	Developers build images using approved base images

  	Developers sign images and push to approved repos

  	Images are scanned for known vulnerabilities
    
      	Policies dictate whether images are promoted or quarantined based on scan results

    

  

  	Security team:
    
      	Reviews source code and scan results

      	Updates vulnerability rating as appropriate

      	Reviews container and Pod configuration files

    

  

  	Security team signs the image

  	All image pull and container run operations verify image signatures




These steps are examples and not intended to represent an exact workflow.


Let’s switch our focus away from images and CI/CD pipelines.


Infrastructure and networking


In this section, you’ll a few ways you can isolate workloads.


We’ll start at the cluster level, switch to the runtime level, and then look outside of the cluster at supporting infrastructure such as network firewalls.


Cluster-level workload isolation


Cutting straight to the chase, Kubernetes doesn’t support secure multi-tenant clusters. The only cluster-level security boundary in Kubernetes is the cluster itself.


Let’s look a bit closer…


The only way to divide a Kubernetes cluster is by creating Namespaces. A Kubernetes Namespace is not the same as a Linux kernel namespace, it’s a logical partition of a single Kubernetes cluster. In fact, it’s little more than a way of grouping resources and applying things like:



  	Limits

  	Quotas

  	RBAC rules




The take-home point is that Kubernetes Namespaces do not guarantee Pod in one Namespace will not impact Pod in another Namespace. As a result, you should not run potentially hostile production workloads on the same physical cluster. The only way to run potentially hostile workloads, and guarantee true isolation, is to run them on separate clusters.


Despite this, Kubernetes Namespaces are useful and you should use them. Just don’t use them as security boundaries.


Let’s look at how Namespaces relate to soft multi-tenancy and hard multi-tenancy.


Namespaces and soft multi-tenancy


For our purposes, soft multi-tenancy is hosting multiple trusted workloads on shared infrastructure. By trusted, we mean workloads that don’t require absolute guarantees that one Pod/container cannot impact another.


An example of trusted workloads might be an e-commerce application comprising a web front-end service and a back-end recommendation service. Both are part of the same e-commerce application, so are not hostile, but they might benefit from:



  	Isolating the teams responsible for each service

  	Having different resource limits and quotas for each service




In this situation, a single cluster with one Namespace for the front-end service and another for the back-end service might be a good solution. However, exploiting a vulnerability in one service might give the attacker access to Pods in the other service.


Namespaces and hard multi-tenancy


Let’s define hard multi-tenancy as hosting untrusted and potentially hostile workloads on shared infrastructure. Only… as we said before, this isn’t currently possible with Kubernetes.


This means truly hostile workloads – workloads that require a strong security boundary – need to run on separate Kubernetes clusters! Examples include.



  	Isolating production and non-production workloads on dedicated clusters

  	Isolating different customers on dedicated clusters

  	Isolating sensitive projects and business functions on separate clusters




Other examples exist, but you get the picture. If you have workloads that require strong separation, put them on their own clusters.



  Note: The Kubernetes project has a dedicated Multitenancy Working Group that’s actively working on the multitenancy models Kubernetes supports. This means that future releases of Kubernetes might support hard multitenancy.




Node isolation


There are times when individual applications require non-standard privileges, such as running as root or executing non-standard syscalls. Isolating these on their own clusters might be overkill, but the increased risk of collateral damage would probably justify running them on a ring-fenced subset of worker Nodes. In this case, if one Pod is compromised it can only impact other Pods on the same Node.


You should also apply defence in depth principles by enabling stricter audit logging and tighter runtime defence options on Nodes running workloads with non-standard privileges.


Kubernetes offers several technologies, such as labels, affinity and anti-affinity rules, and taints, to help target workloads to specific Nodes.


Runtime isolation


So far, we’ve looked at cluster-level isolation and Node-level isolation. Now let’s look at the various types of runtime isolation.


Containers versus virtual machines can be a polarizing topic. However, when it comes to workload isolation there is only one winner… the virtual machine.


The most popular container model has multiple containers sharing a single kernel, with isolation provided by kernel constructs that were never designed as strong security boundaries. The technical term for these types of containers are called namespaced containers.


In the hypervisor model, every virtual machine gets its own dedicated kernel and is strongly isolated from other virtual machines using hardware enforcement.


From a workload isolation perspective, virtual machines win.


However, it’s becoming easier and more common to augment containers with additional security technologies such as apparmor and SELinux, seccomp, capabilities, and user namespaces. Unfortunately, these can add significant complexity and may still be less secure than a virtual machine.


Another thing to consider, is different classes of container runtime. Two examples are gVisor and Kata Containers, both of which are re-writing the rules and providing stronger levels of workload isolation. Integrating runtimes like these with Kubernetes is made simple thanks to the Container Runtime Interface (CRI) and Runtime Classes.


There are also projects that enable Kubernetes to orchestrate other workloads such as virtual machines and serverless functions.


While all of this might feel overwhelming, everything discussed here needs to be considered when determining the levels of isolation your workloads require.


To summarize, the following workload isolation options exist:



  	
Virtual Machines: Every workload gets its own virtual machine and kernel. It provides excellent isolation but is relatively slow and heavy-weight.

  	
Traditional namespaced containers: Every workload gets its own container but shares a common kernel. Not the best isolation, but fast and light-weight.

  	
Run every container in its own virtual machine: This option attempts to combine the versatility of containers with the security of VMs by running every container in its own dedicated VM. Despite using specialized lightweight VMs, this loses some of the appeal of containers and is not a popular solution.

  	
Use appropriate runtime classes: This is a relatively new that allows you to run all workloads as containers, but target those requiring stronger isolation to an appropriate container runtime. 




Finally, running a mix of containers and virtual machines can increase network complexity.


Network isolation


On the topic of networking, firewalls are an integral part of any layered security system. At a high level, they implement rules that allow or deny system-to-system communication.


As the names suggest, allow rules permit traffic to flow, whereas deny rules stop traffic flowing. The overall intent is to lock things down so only authorized communications occur.


In Kubernetes, Pods communicate with each other over a special internal network called the Pod network. However, Kubernetes does not implement the Pod network, instead, it implements a plugin model called the Container Network Interface (CNI). Vendors and the community are responsible for writing CNI plugins that actually provide the Pod network. There are lots of CNI plugins available, but they fall into two broad types:



  	Overlay

  	BGP




Each of these is different, and each has a different impact on firewall implementation and network security. Let’s take a quick look at each.


Kubernetes and overlay networking


The most common way to build the Pod network is as an overlay network. In the Kubernetes world, overlay networking builds a simple flat Pod network that hides any complexity that might exist between the nodes in the cluster. For example, you might have your cluster deployed across two different subnets, but have all Pods on a single flat Pod network. In this scenario, the Pods only know about the flat overlay Pod network and have no knowledge of the networks the Nodes are on. Figure 16.4 shows four Nodes on two different networks, with Pods connected to a single overlay Pod network.
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Generally speaking, overlay networks encapsulate packets for transmission over VXLAN tunnels. In this model, the overlay network is a virtual Layer 2 network operating on top of existing Layer 3 infrastructure. Traffic is encapsulated in order to pass between Pods on different Nodes. This simplifies implementation, but encapsulation poses challenges for some firewalls. See Figure 16.5
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Kubernetes and BGP


BGP is the protocol that powers the internet. However, at its core it’s a simple and scalable protocol that creates peer relationships that are used to share routes and perform routing.


The following analogy might help if you’re new to BGP. Imagine you want to send a birthday card to a friend who you lost contact with and no longer have their address. However, your child has a friend at school whose parents are still in touch with your old friend. In this situation, you give the card to your child and ask them to give it to their friend at school. This friend gives it to their parents who deliver it to your friend.


This is similar to BGP. BGP Routing happens through a network of peers that help each other find a route for packets to go from one Pod to another.


BGP doesn’t encapsulate packets, making life easier for firewalls. See Figure 16.6.
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How this impacts firewalls


We’ve already defined a firewall as a network entity that allows or disallows traffic-flow based on source and destination addresses. For example:



  	Allow traffic from the 10.0.0.0/24 network

  	Disallow traffic from the 192.168.0.0/24 network




If your Pod network is an overlay network, source and destination Pod IP addresses are encapsulated so they can traverse the underlay network. This means only firewalls that crack open packets and inspect the contents will be able to filter on Pod source and Pod destination IPs. You should consider this when choosing your Pod network and firewall solutions.


With this in mind, if your Pod-to-Pod traffic has to traverse existing firewalls that don’t perform deep packet inspection, it might be a better idea to choose a BGP Pod network. This is because BGP doesn’t obscure Pod source and destination addresses.


You should also consider whether to deploy physical firewalls,  host-based firewalls, or a combination of both.


Physical firewalls are dedicated network hardware devices that are usually managed by a central team. Host-based firewalls are operating systems (OS) features and are usually managed by the team that deploys and manages your OSes. 


Both solutions have their pros and cons, and a combination of the two is often the most secure. However, you should consider things such as whether your organization has a long and complex procedure for implementing changes to physical firewalls. If it does, it might not suit the nature of your Kubernetes deployment, and a different firewall solution might be preferable.


Packet capture


On the topic of networking and IP addresses, not only are Pod/container IP addresses sometimes obscured by encapsulation, they are also dynamic and can be recycled and re-used by different Pods and containers. This causes a lot of IP churn and reduces how useful IP addresses are in identifying systems and workloads. With this in mind, the ability to associate IP addresses with Kubernetes-specific identifiers such as Pod IDs, Service aliases, and container IDs when performing things like packet capturing is extremely useful.


Let’s switch tack and look at some ways of controlling user access to Kubernetes.


Identity and access management (IAM)


Controlling user access to Kubernetes is important in any production environment. Fortunately, Kubernetes has a robust RBAC subsystem that integrates with existing IAM providers such as Active Directory and other LDAP systems.


Most organizations already have a centralized IAM provider that’s integrated with company HR systems to simplify employee lifecycle management.


Fortunately, Kubernetes leverages existing IAM providers instead of implementing its own. For example, a new employee joining the company will automatically get an identity in Active Directory, which integrates with Kubernetes RBAC and can grant that user certain permissions in Kubernetes. Likewise, an employee leaving the company will automatically have his or her Active Directory identity removed or disabled, resulting in their access to Kubernetes being revoked.


RBAC went GA in Kubernetes 1.8 and it is highly recommended that you leverage its full capabilities. See the chapter on RBAC and API security for more info.


Managing Remote SSH access to cluster nodes


Almost all Kubernetes administration is done via the API server, meaning it should be rare for a user to require remote SSH access to Kubernetes cluster nodes. In fact, remote SSH access to cluster nodes should only be for the following types of activity.



  	
Node management activities that cannot be performed via the Kubernetes API

  	
Break the Glass activities such as when the API server is down

  	Deep troubleshooting




You should probably have tighter controls over who has remote access to control plane nodes.


Multi-factor authentication (MFA)


With great power comes great responsibility…


Accounts with administrator access to the API server, and root access to cluster nodes, are extremely powerful and are prime targets for attackers and disgruntled employees. As such, their use should be protected by multi-factor authentication (MFA) where possible. This is where a user has to input a username and password followed by a second stage of authentication. For example.



  	Stage 1: Tests knowledge of a username and password

  	Stage 2: Tests possession of something like a one-time password device/app




You should also secure access to workstations and user profiles that have kubectl installed.


Auditing and security monitoring


No system is 100% secure, and you should plan for the eventuality that you’ll be breached. When breaches happen, it is vital you can do at least two things:



  	Recognize that a breach has occurred

  	Build a detailed timeline of events that cannot be repudiated




Auditing is key to both of these, and the ability to build a reliable timeline helps answer the following post-event questions; what happened, how did it happen, when did it happen and who did it… In extreme circumstances, information like this can even be called upon in court.


Good auditing and monitoring solutions also help to identify vulnerabilities in your security systems.


With these points in mind, you should ensure reliable auditing and monitoring is high on your list of priorities, and you shouldn’t go live in production without them.


Secure Configuration


There are various tools and checks that can be useful in ensuring your Kubernetes environment is provisioned according to best practices and in-line with company policies.


The Center for Information Security (CIS) has published an industry standard benchmark for Kubernetes security, and Aqua Security (aquasec.com) has written an easy-to-use tool called kube-bench to implement the CIS tests. In its most basic form, you run kube-bench against each node in your cluster and get a report outlining which tests passed and which failed.


Many organizations consider it a best practice to run kube-bench on all production nodes as part of the node provisioning process. Then, depending on your risk appetite, you can pass or fail provisioning tasks based on the results.


kube-bench reports can also serve as a valuable baseline in the aftermath of an incident. In situations like this, you run an additional kube-bench after a breach and compare the results with the initial baseline to determine if and where the configuration has changed.


Container and Pod lifecycle Events


As previously mentioned, Pods and containers are ephemeral in nature, meaning they don’t live for long – certainly not as long as VMs and physical servers. This means you’ll see a lot of events announcing new Pods and containers, as well as a lot of events announcing terminated Pods and containers. It also means you may need a solution that stores logs in an external system and keeps them around for a while after their Pods and containers have terminated. If you don’t, you may find it frustrating that you don’t have logs for old terminated containers available for inspection.


Logs entries relating to container lifecycle events may also be available from your container runtime (engine) logs.


Application logs


In some situations, there’s not a lot Kubernetes can do to protect the applications it runs. For example, Kubernetes can’t prevent an application from running vulnerable code. This means it is important to capture and analyse application logs as a way to identify potential security-related issues.


Fortunately, most containerized applications send log messages to standard out (stdout) and standard error (stderr). These are then directed to the container’s logs. However, some applications send log messages to other locations such as proprietary log files, so be sure to check your application’s documentation.


Actions performed by users


Most of your Kubernetes configuration will be done via the API server where all requests should be logged. However, it’s also possible to gain remote SSH access to control plane nodes and directly manipulate Kubernetes objects. This may include local unauthenticated access to the API, as well as directly modifying control plane systems such as etcd.


We’ve already spoken about limiting who has remote SSH access to Masters and Nodes, and bolstering security via things like multi-factor authentication. However, logging all activities performed via SSH sessions, and shipping them to a secure log aggregator is highly recommended. As is the practice of always having a second pair of eyes involved in remote access sessions.


Managing log data


A key advantage of containers is application density – you can run a lot more applications on your servers and in our datacenters. While this is great, it has the side-effect of generating massive amounts of logging and audit data that can easily become too much to analyse with traditional tools. At the time of writing, there is a lot of work being done to resolve this, including areas such as machine learning, but there is currently no easy solution.


On the negative side, such vast amounts of log-related data makes proactive analysis difficult – too much data to analyse. However, on the positive side, you have a lot of valuable data that can be used by security first-responders, as well as for post-event reactive analysis.


Migrating existing apps to Kubernetes


Every business has a mix of apps – some more business critical than others. With this in mind, it’s important to adopt a careful and planned approach to migrating apps to Kubernetes.


One approach may be a crawl, walk then run strategy as follows:



  	
Crawl: Threat modeling your existing apps will help you understand the current security posture of those applications. For example, which of your existing apps do and don’t communicate over TLS.

  	
Walk: When moving to Kubernetes, ensure the security posture of these apps remains unchanged; neither lower nor higher, just the same. For example, if an app doesn’t communicate over TLS, do not change this as part of the migration.

  	
Run: Start improving the security of applications after the migration is successful. Start with the simple non-critical apps, and carefully work your way up to the mission critical ones. You may also want to methodically deploy deeper levels of security. For example, initially configure apps to communicate over one-way TLS and then eventually over two-way TLS (potentially using a service mesh).




Real world example


A great example of a container-related vulnerability, that can be prevented by implementing some of the best practices we’ve discussed, occurred in February 2019. CVE-2019-5736 allowed a container process running as root to escape its container and gain root access on the host and all containers running on the host.


As dangerous as the vulnerability is, the following things that we covered in this chapter would’ve prevented the issue.



  	Vulnerability scanning

  	Not running processes as root

  	Enabling SELinux




As the vulnerability has a CVE number, security scanning tools would’ve found it and alerted on it. Also, organizations that don’t allow container processes to run as root will have been protected. Finally, common SELinux policies, such as those that ship with RHEL and CentOS, prevented the issue.


All in all, a great real-world example of the benefits of defence-in-depth and other security-related best practices.


Chapter summary


The purpose of this chapter was to give you an idea of some of the real-world security considerations effecting many Kubernetes clusters.


We started out by looking at ways to secure the software delivery pipeline by discussing some image-related best practices. These included how to secure your image registries, scanning images for vulnerabilities, and cryptographically signing and verifying images. Then we looked at some of the workload isolation options that exist at different layers of the infrastructure stack. In particular, we looked at cluster-level isolation, node-level isolation, and some of the different runtime isolation options. We talked about identity and access management, including places where additional security measures might be useful. We then talked about auditing, and finished up with a real-world issue that could be easily avoided by implementing some of the best practices already covered.


Hopefully you now have enough to go away and start securing your own Kubernetes clusters.








Terminology


This glossary defines some of the most common Kubernetes-related terms used throughout the book. Ping me if you think I’ve missed anything important:



  	tkb@nigelpoulton.com

  	https://nigelpoulton.com/contact-us

  	https://twitter.com/nigelpoulton

  	https://www.linkedin.com/in/nigelpoulton/




Now then… I know that some of you are passionate about the definitions of technical terms. I’m OK with that, and I’m not saying my definitions are the best – they’re designed to be helpful for readers.


OK, here goes.



  
    
      	Term
      	Definition (according to Nigel)
    

  
  
    
      	Admission controller
      	Code that validates or mutates resources to enforce policy. Runs as part of the API admission chain immediately after authentication and authorization.
    

    
      	 
      	 
    

    
      	Annotation
      	Object metadata often used to expose alpha or beta capabilities, or integrate with 3rd-party systems.
    

    
      	 
      	 
    

    
      	API
      	Application Programming Interface. In the case of Kubernetes, all resources are defined in the API, which is RESTful and exposed via the API server.
    

    
      	 
      	 
    

    
      	API group
      	A set of related API resources. For example, networking resources are usually located in the networking.k8s.io API group.
    

    
      	 
      	 
    

    
      	API resource
      	All Kubernetes objects, such as Pods, Deployments and Services, are defined in the API as resources.
    

    
      	 
      	 
    

    
      	API Server
      	Exposes the API on a secure port over HTTPS. Runs on the control plane.
    

    
      	 
      	 
    

    
      	Cloud controller manager
      	Control plane service that integrates with underlying cloud platform. For example, when creating a LoadBalancer Service, the cloud controller manager implements the logic to provision one of the underlying cloud’s internet-facing load-balancers.
    

    
      	 
      	 
    

    
      	Cloud native
      	A loaded term and means different things to different people. Cloud native is a way of designing, building, and working with modern applications and infrastructure. I personally consider an application to be cloud native if it can self-heal, scale on-demand, perform rolling updates, and possibly rollbacks.
    

    
      	 
      	 
    

    
      	ConfigMap
      	Kubernetes object used to hold non-sensitive configuration data. A great way to add custom configuration data to a generic container, at runtime, without editing the image.
    

    
      	 
      	 
    

    
      	Container
      	Lightweight environment for running modern apps. Each container is a virtual operating system with its own process tree, filesystem, shared memory, and more. One container runs one application process.
    

    
      	 
      	 
    

    
      	Container Network Interface (CNI)
      	Pluggable interface enabling different network topologies and architectures. 3rd-parties provide CNI plugins that enable overlay networks, BGP networks, and various implementations of each.
    

    
      	 
      	 
    

    
      	Container runtime
      	Low-level software running on every cluster Node responsible for pulling container images, starting containers, stopping containers, and other low-level container operations. Typically containerd, Docker, or cri-o. Docker was deprecated in Kubernetes 1.20 and support will be removed in a future version.
    

    
      	 
      	 
    

    
      	Container Runtime Interface (CRI)
      	Low-level Kubernetes feature that allows container runtimes to be pluggable. With the CRI you can choose the best container runtime for your requirements (Docker, containerd, cri-o, kata, etc.)
    

    
      	 
      	 
    

    
      	Container Storage Interface (CSI)
      	Interface enabling external 3rd-party storage systems to integrate with Kubernetes. Storage vendors write a CSI driver/plugin that runs as a set of Pods on a cluster and exposes the storage system’s enhanced features to the cluster and applications
    

    
      	 
      	 
    

    
      	Controller
      	Control plane process running as a reconciliation loop monitoring the cluster and making the necessary changes so the observed state of the cluster matches desired state.
    

    
      	 
      	 
    

    
      	Control plane
      	The brains of every Kubernetes cluster. Implements the API, API server, scheduler, all controllers, and more. The Master node of every cluster host the various control plane services.
    

    
      	 
      	 
    

    
      	control plane node
      	A cluster node hosting control plane services. Usually doesn’t run user applications. Sometimes called a “Master”. You should deploy 3 or 5 for high availability.
    

    
      	 
      	 
    

    
      	Cluster
      	A set of worker and control plane nodes that work together to run user applications
    

    
      	 
      	 
    

    
      	Cluster store
      	Control plane feature that holds the state of the cluster and apps. Typically based on the etcd distributed data store and runs on the control plane. Can be deployed to its own cluster for higher performance and higher availability.
    

    
      	 
      	 
    

    
      	containerd
      	Container runtime. Default on many modern clusters. Donated to the CNCF by Docker, Inc.
    

    
      	 
      	 
    

    
      	cri-o
      	Container runtime. Commonly used in OpenShift based Kubernetes clusters.
    

    
      	 
      	 
    

    
      	CRUD
      	The four basic Create, Read, Update, and Delete operations used by many storage systems.
    

    
      	 
      	 
    

    
      	Custom Resource Definition (CRD)
      	API resource used for adding your own resources to the Kubernetes API.
    

    
      	 
      	 
    

    
      	Data plane
      	The worker Nodes of a cluster that host user applications.
    

    
      	 
      	 
    

    
      	Deployment
      	Controller that deploys and manages a set of stateless Pods. Performs rollouts and rollbacks, and can self-heal. Uses a ReplicaSet controller to perform scaling and self-healing operations.
    

    
      	 
      	 
    

    
      	Desired state
      	What the cluster and apps should be like. For example, the desired state of an application microservice might be 5 replicas of xyz container listening on port 8080/tcp. Vital to reconciliation.
    

    
      	 
      	 
    

    
      	Endpoints object
      	Up-to-date list of healthy Pods matching a Service’s label selector. Basically, it’s the list of Pods a Service will send traffic to. Might eventually be replaced by EndpointSlices.
    

    
      	 
      	 
    

    
      	etcd
      	The open-source distributed database used as the cluster store on most Kubernetes clusters
    

    
      	 
      	 
    

    
      	Ingress
      	API resource that exposes multiple internal Services over a single external-facing LoadBalancer Service. Operates at layer 7 and implements path-based and host-based HTTP routing.
    

    
      	 
      	 
    

    
      	Ingress class
      	API resource that allows you to specify multiple different Ingress controllers on your cluster.
    

    
      	 
      	 
    

    
      	Init container
      	A specialised container that runs and completes before the main app container starts. Commonly used to check/initialize the environment for the main app container.
    

    
      	 
      	 
    

    
      	JSON
      	JavaScript Object Notation. The preferred format for sending and storing data used by Kubernetes.
    

    
      	 
      	 
    

    
      	K8s
      	Shorthand way to write Kubernetes. The “8” replaces the eight characters between the “K” and the “s” of Kubernetes. Pronounced “Kates”. The reason why people say Kubernetes’ girlfriend is called Kate.
    

    
      	 
      	 
    

    
      	kubectl
      	Kubernetes command line tool. Sends commands to the API server and queries state via the API server.
    

    
      	 
      	 
    

    
      	Kubelet
      	The main Kubernetes agent running on every cluster Node. It watches the API Server for new work assignments and maintains a reporting channel back.
    

    
      	 
      	 
    

    
      	Kube-proxy
      	Runs on every cluster node and implements low-level rules that handle routing of traffic from Services to Pods. You send traffic to stable Service names and kube-proxy makes sure the traffic reaches Pods.
    

    
      	 
      	 
    

    
      	Label
      	Metadata applied to objects for grouping. Works with label selectors to match Pods with higher level controllers. For example, Services send traffic to Pods based on sets of matching labels.
    

    
      	 
      	 
    

    
      	Label selector
      	Used to identify Pods to perform actions on. For example, when a Deployment performs a rolling update, it knows which Pods to update based on its label selector – only Pods with the labels matching the Deployment’s label selector will be replaced and updated.
    

    
      	 
      	 
    

    
      	Manifest file
      	YAML file that holds the configuration of one or more Kubernetes objects. For example, a Service manifest file is typically a YAML file that holds the configuration of a Service object. When you post a manifest file to the API Server, its configuration is deployed to the cluster.
    

    
      	 
      	 
    

    
      	Master
      	Another name for a control plane node. Not used very much anymore. You should deploy 3 or 5 for high availability.
    

    
      	 
      	 
    

    
      	Microservices
      	A design pattern for modern applications. Application features are broken into their own small applications (microservices/containers) and communicate via APIs. They work together to form a useful application.
    

    
      	 
      	 
    

    
      	Namespace
      	A way to partition a single Kubernetes cluster into multiple virtual clusters. Good for applying different quotas and access control policies on a single cluster. Not suitable for strong workload isolation.
    

    
      	 
      	 
    

    
      	Node
      	Also known as worker node. The nodes in a cluster that run user applications. Runs the kubelet process, a container runtime, and kube-proxy.
    

    
      	 
      	 
    

    
      	Observed state
      	Also known as current state or actual state. The most up-to-date view of the cluster and running applications. Controllers are always working to make observed state match desired state.
    

    
      	 
      	 
    

    
      	Orchestrator
      	A piece of software that deploys and manages apps. Modern apps are made from lots of small microservices that work together to form a useful application. Kubernetes orchestrates/manages these and keeps them healthy, scales them up and down, and more… Kubernetes is the de facto orchestrator of microservices apps based on containers.
    

    
      	 
      	 
    

    
      	Persistent Volume (PV)
      	Kubernetes object used to map storage volumes on a cluster. External storage resources must be mapped to PVs before they can be used by applications.
    

    
      	 
      	 
    

    
      	Persistent Volume Claim (PVC)
      	Like a ticket/voucher that allows an app to use a Persistent Volume (PV). Without a valid PVC, an app cannot use a PV. Combined with StorageClasses for dynamic volume creation.
    

    
      	 
      	 
    

    
      	Pod
      	Smallest unit of scheduling on Kubernetes. Every container running on Kubernetes must run inside a Pod. The Pod provides a shared execution environment – IP address, volumes, shared memory etc.
    

    
      	 
      	 
    

    
      	RBAC
      	Role-based access control. Authorization module the determines whether authenticated users can perform actions against cluster resources.
    

    
      	 
      	 
    

    
      	Reconciliation loop
      	A controller process watching the state of the cluster, via the API Server, ensuring observed state matches desired state. Moist controllers, such as the Deployment controller, run as a reconciliation loop.
    

    
      	 
      	 
    

    
      	ReplicaSet
      	Runs as a controller and performs self-healing and scaling. Used by Deployments.
    

    
      	 
      	 
    

    
      	REST
      	REpresentational State Trasfer. The most common architecture for creating web-based APIs. Uses the common HTTP methods (GET, POST, PUT, PATCH, DELETE) to manipulate and store objects.
    

    
      	 
      	 
    

    
      	Secret
      	Like a ConfigMap for sensitive configuration data. A way to store sensitive data outside of a container image, and have it inserted into a container at runtime.
    

    
      	 
      	 
    

    
      	Service
      	Capital “S”. Kubernetes object for providing network access to apps running in Pods. By placing a Service in front of a set of Pods, the Pods can fail, scale up and down, and be replaced without the network endpoint for accessing them changing. Can integrate with cloud platforms and provision internet-facing load-balancers.
    

    
      	 
      	 
    

    
      	Service mesh
      	Infrastructure software that enables features such as encryption of Pod-to-Pod traffic, enhanced network telemetry, and advanced routing. Common service meshes used with Kubernetes include Consul, Istio, Linkerd, and Open Service Mesh. Others also exist.
    

    
      	 
      	 
    

    
      	Sidecar
      	A special container that runs alongside, and augments, a main app container. Service meshes are often implemented as sidecar containers that are injected into Pods and add network functionality.
    

    
      	 
      	 
    

    
      	StatefulSet
      	Controller that deploys and manages stateful Pods. Similar to a Deployment, but for stateful applications.
    

    
      	 
      	 
    

    
      	Storage Class (SC)
      	Way to create different storage tiers/classes on a cluster. You may have an SC called “fast” that creates NVMe-based storage, and another SC called “medium-three-site” that creates slower storage replicated across three sites.
    

    
      	 
      	 
    

    
      	Volume
      	Generic term for persistent storage.
    

    
      	 
      	 
    

    
      	Worker node
      	A cluster node for running user applications. Sometimes called a “Node” or “worker”.
    

    
      	 
      	 
    

    
      	YAML
      	Yet Another Markup Language. The configuration language you normally write Kubernetes configuration files in. It’s a superset of JSON.
    

  










Outro


Thanks for reading my book. I hope you loved it and feel prepared to thrive in the cloud native world.


About the front cover


I love the front cover of this book, so, a huge thanks to the hundreds of people in the community who voted on its design.


The YAML on the left represents the technical nature of the book. The Kubernetes wheel obviously represents the main topic. The vertical symbols to the right are done in the style of digital rain code from the Matrix movies. The symbols are a mix of container-related stuff, as well as a hidden message written in the Borg language from Star Trek.


A word on the icons used in diagrams


There’s a great set of Kubernetes community icons available in the following GitHub repo.



  https://github.com/kubernetes/community/tree/master/icons



I like them, and I use them a lot in blogs and video courses. However, they didn’t render well in printed copies of the book. As a result, I painstakingly created my own similar set for use in the book. It took forever to create them, so I hope you like them.


Now then. In no way am I trying to replace the community icons or say they aren’t good. On the contrary, they’re great, and I use them in other projects. They just didn’t look good in printed editions of the book.








Connect with me


I love connecting with readers and fellow techies. I can’t be free tech support, but I’ll happily talk about technology all day long. 


You can reach me via any of the following:



  	twitter.com/nigelpoulton

  	nigelpoulton.com

  	linkedin.com/in/nigelpoulton

  	youtube.com/nigelpoulton




Feedback and reviews


Modern books live and die by Amazon reviews and stars. As I’ve probably spent at least 12 months of my life writing and keeping this book up-to-date, I’d consider it a personal favor if you took a couple of minutes to write an Amazon review. You can usually write them even if you bought the book form somewhere else. Your call though, no pressure.


Drop me a line at tkb@nigelpoulton.com if you want to suggest content or minor fixes for future editions.
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