
M A N N I N G R E P O R T

GitOps with
Argo CD
by Billy Yuen,
Alexander Matyushentsev,
Todd Ekenstam, and Jesse Suen

MANNING

GitOps with Argo CD
Billy Yuen, Alexander Matyushentsev,

Todd Ekenstam, and Jesse Suen

 Copyright 2021 Manning Publications

©2021 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co.
20 Baldwin Road Technical
PO Box 761
Shelter Island, NY 11964

Cover designer: Cica Tudor

ISBN: 9781633439733

iii

contents
foreword iv

Chapter 1 Kubernetes and GitOps 1

Chapter 2 Argo CD 34

Appendix A Set up a test Kubernetes cluster 60

Appendix B Set up GitOps tools 63

iv

foreword
Software teams that adopt GitOps deploy more often, have fewer regressions and
recover from failures more quickly. The debate around the benefits of GitOps is set-
tled by those who have adopted it. We’ve seen these successes time and again with
Codefresh users, whether they’re deploying at cloud scale, in small shops, or in edge
clusters located around the world. GitOps works.

 This special edition guide to GitOps, is written by Alexander Matyushentsev, one of
the founders behind Argo. Argo is the fastest growing and most popular open-source
GitOps tool in the world today. In a few short years, Argo has surged past big tech dar-
lings and legacy open source projects for one simple reason. User’s love it. It’s the
same reason Codefresh has joined the project and has based its enterprise platform
on this beloved open-source tool: GitOps works. This book will show you how.

 —Dan Garfield

Co-Founder and Chief Open
Source Officer, Codefresh

New GitOps with CertificationArgo

Becoming GitOps with Argo Certified
will teach you how GitOps works and
how to implement it using Argo CD and
Argo Rollouts, the world’s most popular
CNCF open-source GitOps tools. In this
certification course, you will learn how
to minimize failed deployments and
safely accelerate features to your
customers. GitOps with Argo
Certification benefits include:

Janet Jacobs
Senior DevOps Engineer

Goodbye to unplanned downtime, failed deployments, and infrequent
releases.

GitOps
c e r t i f i e d

with

GitOps with Argo Certified

 GitOps Fundamental

 GitOps at Scal

 GitOps Mastery

Issued By Codefresh

I just completed GitOps with Argo Certification from Codefresh
I learned what GitOps is, and the benefits of adopting it, how to use ArgoCD to apply GitOps to
my deployments, and how to connect ArgoCD to my existing ecosystem. Join me in my DevOps
journey.

150 Comments • 42 Shares

Like Comment Share
Credibility
Increase your credibility as a GitOps expert.

Confidence
Gain the confidence you need to build and deploy world-
class software, more quickly than before.

Career Advancement
Become a valuable resource to your organization + make
a name for yourself as a GitOps expert in the market.

GitOps
c e r t i f i e d

with

Visit for more informationhttps://codefresh.io/courses/get-gitops-certified/

https://codefresh.io/
https://codefresh.io/courses/get-gitops-certified/

Kubernetes and GitOps
In this chapter, you’ll get a bird’s-eye view of Kubernetes and explore how this use-
ful architecture helps you deploy, scale, and manage your containers. Then you’ll
zoom in on the differences between imperative and declarative syntax, why they
matter to you, and why Kubernetes and GitOps work so well together.

1.1 Kubernetes introduction
Before diving into why Kubernetes and GitOps work so well together, let’s talk about
Kubernetes itself. This section provides a high-level overview of Kubernetes, how it
compares to other container orchestration systems, and its architecture. We will also
have an exercise that demonstrates how to run Kubernetes locally, which will be used
for the other exercises in this book. This section is only a brief introduction and

This chapter covers
 Solving problems with Kubernetes

 Running and managing Kubernetes locally

 Understanding the basics of GitOps

 Implementing a simple Kubernetes GitOps
operator
1

2 CHAPTER 1 Kubernetes and GitOps
refresher on Kubernetes. For a fun but informative overview of Kubernetes, check out
“The Illustrated Children’s Guide to Kubernetes” and “Phippy Goes to the Zoo” by the
Cloud Native Computing Foundation.1 If you are completely new to Kubernetes, we
recommend reading Kubernetes in Action, Second Edition, by Marko Lukša (Manning,
2020) and then returning to this book. If you are already familiar with Kubernetes and
running minikube, you may skip to the exercise at the end of section 1.1.

1.1.1 What is Kubernetes?

Kubernetes is an open source container orchestration system released in 2014. OK,
but what are containers, and why do you need to orchestrate them?

 Containers provide a standard way to package your application’s code, configura-
tion, and dependencies into a single resource. This enables developers to ensure that
the application will run properly on any other machine regardless of any customized
settings that machine may have that could differ from the machine used for writing
and testing the code. Docker simplified and popularized containerization, which is
now recognized as a fundamental technology used to build distributed systems.

CHROOT An operation available in UNIX operating systems, which changes
the apparent root directory for the current running process and its children.
Chroot provides a way to isolate a process and its children from the rest of the
system. It was a precursor to containerization and Docker.2

While Docker solved the packaging and isolation problem of individual applications,
there were still many questions about how to orchestrate the operation of multiple
applications into a working distributed system:

 How do containers communicate?
 How is traffic routed between containers?
 How are containers scaled up to handle additional application load?
 How is the underlying infrastructure of the cluster scaled up to run the

required containers?

All these operations are the responsibility of a container orchestration system and are
provided by Kubernetes. Kubernetes helps to automate the deployment, scaling, and
management of applications using containers.

NOTE Borg is Google’s internal container cluster management system used
to power online services like Google search, Gmail, and YouTube. Kubernetes
leverages Borg’s innovations and lessons learned, explaining why it is more
stable and moves so much more quickly than its competitors.3

1 https://www.cncf.io/phippy.
2 https://en.wikipedia.org/wiki/Chroot.
3 https://kubernetes.io/blog/2015/04/borg-predecessor-to-kubernetes.

https://www.cncf.io/phippy/
https://en.wikipedia.org/wiki/Chroot
https://kubernetes.io/blog/2015/04/borg-predecessor-to-kubernetes/

3Kubernetes introduction
Kubernetes was initially developed and open-sourced by Google based on a decade of
experience with container orchestration using Borg, Google’s proprietary cluster
management system. Because of this, Kubernetes is relatively stable and mature for a
system so complex. Because of its open API and extendable architecture, Kubernetes
has developed an extensive community around it, which has further fueled its success.
It is one of the top GitHub projects (as measured by stars), provides excellent docu-
mentation, and has a significant Slack and Stack Overflow community. An endless
number of blogs and presentations from community members share their knowledge
of using Kubernetes. Despite being started by Google, Kubernetes is not influenced by
a single vendor. This makes the community open, collaborative, and innovative.

1.1.2 Other container orchestrators

Since late 2016, Kubernetes has become recognized as the dominant de facto industry-
standard container orchestration system in much the same way that Docker has become
the standard for containers. However, several Kubernetes alternatives address the same
container orchestration problem as Kubernetes. Docker Swarm is Docker’s native con-
tainer orchestration engine that was released in 2015. It is tightly integrated with the
Docker API and uses a YAML-based deployment model called Docker Compose.
Apache Mesos was officially released in 2016 (although it has a history well before then)
and supports large clusters, scaling to thousands of nodes.

 While it may be possible to apply a GitOps approach to deploying applications
using other container orchestration systems, this book focuses on Kubernetes.

1.1.3 Kubernetes architecture

By the end of this chapter, you will complete an exercise that implements a basic
GitOps continuous deployment operator for Kubernetes. But to understand how a
GitOps operator functions, it is essential that you first understand a few Kubernetes
core concepts and learn how it is organized at a high level.

 Kubernetes is an extensive and robust system with many different types of
resources and operations that can be performed on those resources. Kubernetes pro-
vides a layer of abstraction over the infrastructure and introduces the following set of
basic objects that represent the desired cluster state:

 Pod —A group of containers deployed together on the same host. The Pod is
the smallest deployable unit on a node and provides a way to mount storage, set
environment variables, and provide other container configuration information.
When all the containers of a Pod exit, the Pod dies also.

 Service —An abstraction that defines a logical set of Pods and a policy to access
them.

 Volume —A directory accessible to containers running in a Pod.

Kubernetes architecture uses primary resources as a foundational layer for a set of
higher-level resources. The higher-level resources implement features needed for real

4 CHAPTER 1 Kubernetes and GitOps
production use cases that leverage/extend the primary resources’ functionality. In fig-
ure 1.1, you see that the ReplicaSet resource controls the creation of one or more Pod
resources. Some other examples of high-level resources include

 ReplicaSet —Defines that a desired number of identically configured Pods are
running. If a Pod in the ReplicaSet terminates, a new Pod will be started to
bring the number of running Pods back to the desired number.

 Deployment —Enables declarative updates for Pods and ReplicaSets.
 Job —Creates one or more Pods that run to completion.
 CronJob —Creates Jobs on a time-based schedule.

Another important Kubernetes resource is the Namespace. Most kinds of Kubernetes
resources belong to one (and only one) Namespace. A Namespace defines a naming
scope where resources within a particular Namespace must be uniquely named. Name-
spaces also provide a way to isolate users and applications from each other through role-
based access controls (RBACs), network policies, and resource quotas. These controls
allow creating a multitenant Kubernetes cluster where multiple users share the same
cluster and avoid impacting each other (for example, the “noisy neighbor” problem).

ServiceReplicaSet

Namespace

Persistent Volume claim

Manages
Pod
creation

Routes
internal
traffic

Provides
persistent
storage

Persistent Volume

Container

Pod

Container

Volume

Container

Pod

Container

Volume

Persistent Volume claim

Persistent Volume

External traffic

Figure 1.1 This diagram illustrates a typical Kubernetes environment deployed
in a Namespace. A ReplicaSet is an example of a higher-level resource that
manages the life cycle of Pods, which are lower-level, primary resources.

5Kubernetes introduction
 Kubernetes objects are stored in a control plane,4 which monitors the cluster state,
makes changes, schedules work, and responds to events. To perform these duties,
each Kubernetes control plane runs the following three processes:

 kube-apiserver—An entry point to the cluster providing a REST API to evalu-
ate and update the desired cluster state

Figure 1.2 A Kubernetes cluster consists of several Services that run on the master nodes of the control
plane and several other Services that run on the cluster’s worker nodes. Together, these Services provide
the essential Services that make up a Kubernetes cluster.

4 https://kubernetes.io/docs/concepts/overview/components/#control-plane-components.

etcd

etcd

api

kube-apiserver

sched

kube-scheduler

c-m

kube-controller-manager

Master

The cluster control plane

Key-value database used
as backing store for all
cluster configuration data

Decides which
node should be
used for each Pod

Runs Kubernetes
controllers

Allows interacting
with the control plane

Manages containers on the node

kubeletpod k-proxy

kubeletpod k-proxy

kubeletpod k-proxy

Maintains network rules on nodes

Node

Linux

Node

Linux

Node

Linux

https://kubernetes.io/docs/concepts/overview/components/#control-plane-components

6 CHAPTER 1 Kubernetes and GitOps
 kube-controller-manager—Daemon continuously monitoring the shared
state of the cluster through the API server to make changes attempting to move
the current state toward the desired state

 kube-scheduler—A component that is responsible for scheduling the work-
loads across the available nodes in the cluster

 etcd—A highly available key-value database typically used as Kubernetes’ back-
ing store for all cluster configuration data

The actual cluster workloads run using the compute resources of Kubernetes nodes. A
node is a worker machine (either a VM or physical machine) that runs the necessary
software to allow it to be managed by the cluster. Similar to the masters, each node
runs a predefined set of processes:

 kubelet—The primary “node agent” that manages the actual containers on the
node

 kube-proxy—A network proxy that reflects Services as defined in the Kubernetes
API on each node and can do simple TCP, UDP, and SCTP stream forwarding

1.1.4 Deploying to Kubernetes

In this exercise, you will deploy a website using NGINX on Kubernetes. You will review
some basic Kubernetes operations and become familiar with minikube, the single-
node Kubernetes environment you will use for most exercises in this book.

KUBERNETES TEST ENVIRONMENT: MINIKUBE Refer to appendix A to set up a
Kubernetes test environment using minikube to complete this exercise.

CREATING A POD

As was mentioned earlier in the chapter, a Pod is the smallest object in Kubernetes
and represents a particular application workload. A Pod represents a group of related
containers running on the same host and having the same operating requirements.
All containers of a single Pod share the same network address, port space, and
(optionally) file system using Kubernetes Volumes.

NGINX NGINX is an open source software web server used by many organiza-
tions and enterprises to host their websites because of its performance and
stability.

In this exercise, you will create a Pod that hosts a website using NGINX. In Kuberne-
tes, objects can be defined by a YAML text file “manifest” that provides all the informa-
tion needed for Kubernetes to create and manage the object. Here is the listing for
our NGINX Pod manifest.

7Kubernetes introduction
kind: Pod
apiVersion: v1
metadata:
 name: nginx
spec:
 restartPolicy: Always
 volumes:
 - name: data
 emptyDir: {}
 initContainers:
 - name: nginx-init5
 image: docker/whalesay
 command: [sh, -c]
 args: [echo "<pre>$(cowsay -b 'Hello Kubernetes')</pre>" >

/data/index.html]
 volumeMounts:
 - name: data
 mountPath: /data
 containers:
 - name: nginx
 image: nginx:1.11
 volumeMounts:
 - name: data
 mountPath: /usr/share/nginx/html

You are welcome to type in this listing and save it with a filename of nginx-Pod.yaml.
However, since this book’s object isn’t to improve your typing skills, we recommend
cloning our public Git repository that contains all the listings in this book and using
those files directly:

https://github.com/gitopsbook/resources

Let’s go ahead and start a minikube cluster and create the NGINX Pod using the fol-
lowing commands:

$ minikube start
(minikube/default)

 minikube v1.1.1 on darwin (amd64)
 Creating virtualbox VM (CPUs=2, Memory=2048MB, Disk=20000MB) ...
 Configuring environment for Kubernetes v1.14.3 on Docker 18.09.6
 Pulling images ...
 Launching Kubernetes ...
 Verifying: apiserver proxy etcd scheduler controller dns
 Done! kubectl is now configured to use "minikube"

$ kubectl create -f nginx-Pod.yaml
Pod/nginx created

Listing 1.1 NGINX Pod manifest (http://mng.bz/e5JJ)

5 https://en.wikipedia.org/wiki/Cowsay.

The field kind and apiVersion are present
in every Kubernetes resource and
determine what type of object should be
created and how it should be handled.

In this example, metadata has a
name field that helps identify each
Kubernetes resource. Metadata may
also contain UID, labels, and other
fields that will be covered later.

The spec section contains configuration that
is specific to a particular kind of object. In
the Pod example, spec includes a list of
containers, the Volume shared between
containers, and the Pod’s restartPolicy.

The Volume that is
used to share data
between containers

The init section contains HTML
generated using the cowsay5 command.

The main container that
serves the generated HTML
file using the NGINX server

https://shortener.manning.com/e5JJ
https://en.wikipedia.org/wiki/Cowsay
https://github.com/gitopsbook/resources

8 CHAPTER 1 Kubernetes and GitOps
Figure 1.3 shows what the Pod looks like running inside the minikube.

Figure 1.3 The nginx-init container writes the desired index.html file to the mounted 
Volume. The main NGINX container also mounts the Volume and displays the generated 
index.html when receiving HTTP requests.

GETTING POD STATUS

As soon as the Pod is created, Kubernetes inspects the spec field and attempts to run
the configured set of containers on an appropriate node in the cluster. The informa-
tion about progress is available in the Pod manifest in the status field. The kubectl
utility provides several commands to access it. Let’s try to get the Pod status using the
kubectl get Pods command:

$ kubectl get Pods
NAME READY STATUS RESTARTS AGE
nginx 1/1 Running 0 36s

The get Pods command provides a list of all the Pods running in a particular Name-
space. In this case, we didn’t specify a Namespace, so it gives the list of Pods running
in the default Namespace. Assuming all goes well, the NGINX Pod should be in the
Running state.

 To learn even more about a Pod’s status or debug why the Pod is not in the
Running state, the kubectl describe Pod command outputs detailed information,
including related Kubernetes events:

$ kubectl describe Pod nginx
Name: nginx
Namespace: default
Priority: 0
Node: minikube/192.168.99.101

Pod

nginx-init container

nginx container
Volume

Volume
mount

Volume
mount

The Volume that is used to share
data between containers

The init container that
generates the HTML file

The main container that
serves the HTML file

9Kubernetes introduction
Start Time: Sat, 26 Oct 2019 21:58:43 -0700
Labels: <none>
Annotations: kubectl.kubernetes.io/last-applied-configuration:

{"apiVersion":"v1","kind":"Pod","metadata":{"annotations":{},"name":"nginx",
"Namespace":"default"},"spec":{"containers":[{"image":"nginx:1...

Status: Running
IP: 172.17.0.4
Init Containers:
 nginx-init:
 Container ID:

docker://128c98e40bd6b840313f05435c7590df0eacfc6ce989ec15cb7b484dc60d9bca
 Image: docker/whalesay
 Image ID: docker-

pullable://docker/whalesay@sha256:178598e51a26abbc958b8a2e48825c90bc22e641
de3d31e18aaf55f3258ba93b

 Port: <none>
 Host Port: <none>
 Command:
 sh
 -c
 Args:
 echo "<pre>$(cowsay -b 'Hello Kubernetes')</pre>" > /data/index.html
 State: Terminated
 Reason: Completed
 Exit Code: 0
 Started: Sat, 26 Oct 2019 21:58:45 -0700
 Finished: Sat, 26 Oct 2019 21:58:45 -0700
 Ready: True
 Restart Count: 0
 Environment: <none>
 Mounts:
 /data from data (rw)
 /var/run/secrets/kubernetes.io/serviceaccount from default-token-vbhsd

(ro)
Containers:
 nginx:
 Container ID:

docker://071dd946709580003b728cef12a5d185660d929ebfeb84816dd060167853e245
 Image: nginx:1.11
 Image ID: docker-

pullable://nginx@sha256:e6693c20186f837fc393390135d8a598a96a833917917789d6
3766cab6c59582

 Port: <none>
 Host Port: <none>
 State: Running
 Started: Sat, 26 Oct 2019 21:58:46 -0700
 Ready: True
 Restart Count: 0
 Environment: <none>
 Mounts:
 /usr/share/nginx/html from data (rw)
 /var/run/secrets/kubernetes.io/serviceaccount from default-token-vbhsd (ro)
Conditions:
 Type Status
 Initialized True

10 CHAPTER 1 Kubernetes and GitOps
 Ready True
 ContainersReady True
 PodScheduled True
Volumes:
 data:
 Type: EmptyDir (a temporary directory that shares a Pod's lifetime)
 Medium:
 SizeLimit: <unset>
 default-token-vbhsd:
 Type: Secret (a volume populated by a Secret)
 SecretName: default-token-vbhsd
 Optional: false
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute for 300s
 node.kubernetes.io/unreachable:NoExecute for 300s
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 37m default-scheduler Successfully assigned

default/nginx to minikube
 Normal Pulling 37m kubelet, minikube Pulling image "docker/whalesay"
 Normal Pulled 37m kubelet, minikube Successfully pulled image

"docker/whalesay"
 Normal Created 37m kubelet, minikube Created container nginx-init
 Normal Started 37m kubelet, minikube Started container nginx-init
 Normal Pulled 37m kubelet, minikube Container image "nginx:1.11"

already present on machine
 Normal Created 37m kubelet, minikube Created container nginx
 Normal Started 37m kubelet, minikube Started container nginx

Typically, the events section will contain clues as to why a Pod is not in the Running
state.

 The most exhaustive information is available via kubectl get Pod nginx
-o=yaml, which outputs the full internal representation of the object in YAML format.
The raw YAML output is difficult to read, and it is typically meant for programmatic
access by resource controllers. Kubernetes resource controllers will be covered in
more detail later in this chapter.

ACCESSING THE POD

A Pod in the Running state means that all containers successfully started and the
NGINX Pod is ready to serve requests. If the NGINX Pod in our cluster is running, we
can try accessing it and prove that it is working.

 Pods are not accessible from outside the cluster by default. There are multiple ways
to configure external access, which include Kubernetes Services, Ingress, and more.
For the sake of simplicity, we are going to use the command kubectl port-forward
that forwards connections from a local port to a port on a Pod:

$ kubectl port-forward nginx 8080:80
Forwarding from 127.0.0.1:8080 -> 80
Forwarding from [::1]:8080 -> 80

11Declarative vs. imperative object management
Keep the kubectl port-forward command running, and try opening http://local-
host:8080/ in your browser. You should see the generated HTML file!

Figure 1.4 The generated HTML file content from the docker/whalesay image is
an ASCII rendering of a cute whale with a speech bubble of greeting passed as a 
command argument. The port-forward command allows port 80 of the Pod 
(HTML) to be accessed on port 8080 of the local host.

Exercise 1.1
Now that your NGINX Pod is running, use the kubectl exec command to get a shell
on the running container.

HINT The command would be something like kubectl exec -it <POD_NAME>
-- /bin/bash. Poke around in the shell. Run ls, df, and ps -ef as well as
other Linux commands. What happens if you terminate the NGINX process?

As the final step in this exercise, let’s delete the Pod to free up cluster resources. The
Pod can be deleted using the following command:

$ kubectl delete Pod nginx
Pod "nginx" deleted

1.2 Declarative vs. imperative object management
The Kubernetes kubectl command-line tool is used to create, update, and manage
Kubernetes objects and supports imperative commands, imperative object configura-
tion, and declarative object configuration.6 Let’s go through a real-world example that
demonstrates the difference between an imperative/procedural configuration and a

6 http://mng.bz/pVdP.

http://mng.bz/pVdP

12 CHAPTER 1 Kubernetes and GitOps
declarative configuration in Kubernetes. First, let’s look at how kubectl can be used
imperatively.

 In the following example, let’s create a script that will deploy an NGINX service
with three replicas and some annotations on the deployment.

#!/bin/sh
kubectl create deployment nginx-imperative --image=nginx:latest
kubectl scale deployment/nginx-imperative --replicas 3
kubectl annotate deployment/nginx-imperative environment=prod
kubectl annotate deployment/nginx-imperative organization=sales

Try running the script against your minikube cluster, and check that the deployment
was created successfully:

$ imperative-deployment.sh
deployment.apps/nginx-imperative created
deployment.apps/nginx-imperative scaled
deployment.apps/nginx-imperative annotated
deployment.apps/nginx-imperative annotated
$ kubectl get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
nginx-imperative 3/3 3 3 27s

Great! The deployment was created as expected. But now let’s edit our deploy-
ment.sh script to change the value of the organization annotation from sales to
marketing and then rerun the script:

$ imperative-deployment-new.sh
Error from server (AlreadyExists): deployments.apps "nginx-imperative"

already exists
deployment.apps/nginx-imperative scaled
error: --overwrite is false but found the following declared annotation(s):

'environment' already has a value (prod)
error: --overwrite is false but found the following declared annotation(s):

'organization' already has a value (sales)

As you can see, the new script failed because the deployment and annotations already
exist. To make it work, we would need to enhance our script with additional com-
mands and logic to handle the update case in addition to the creation case. Sure, this
can be done, but it turns out we don’t have to do all that work because kubectl can

Listing 1.2 Imperative kubectl commands (imperative-deployment.sh)

Creates a new deployment
object called nginx-imperative Scales the nginx-imperative deployment

to have three replicas of the Pod

Adds an annotation with the key environment and
value prod to the nginx-imperative deployment

Adds an annotation with the key
organization and value sales to

the nginx-imperative deployment

https://github.com/gitopsbook/resources/blob/master/chapter-02/imperative-deployment.sh

13Declarative vs. imperative object management
itself examine the current state of the system and do the right thing using declarative
object configuration.

 The following manifest defines a deployment identical to the one created by our
script (except that the deployment’s name is nginx-declarative).

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-declarative
 annotations:
 environment: prod
 organization: sales
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:latest

We can use the semi-magical kubectl apply command to create the nginx-declara-
tive deployment:

$ kubectl apply -f declarative-deployment.yaml
deployment.apps/nginx-declarative created
$ kubectl get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
nginx-declarative 3/3 3 3 5m29s
nginx-imperative 3/3 3 3 24m

After running the apply, we see the nginx-declarative deployment resource cre-
ated. But what happens when we run kubectl apply again?

$ kubectl apply -f declarative-deployment.yaml
deployment.apps/nginx-declarative unchanged

Notice the change in the output message. The second time kubectl apply was run,
the program detected that no changes needed to be made and subsequently reported
that the deployment was unchanged. This is a subtle but critical difference between a
kubectl create versus a kubectl apply. A kubectl create will fail if the resource
already exists. The kubectl apply command first detects whether the resource exists
and performs a create operation if the object doesn’t exist or an update if it already
exists.

Listing 1.3 Declarative (http://mng.bz/OEpP)

https://shortener.manning.com/OEpP

14 CHAPTER 1 Kubernetes and GitOps
 As with the imperative example, what if we want to change the value of the organi-
zation annotation from sales to marketing? Let’s edit the declarative-deployment.yaml
file and change the metadata.annotations.organization field from sales to mar-
keting. But before we run kubectl apply again, let’s run kubectl diff:

$ kubectl diff -f declarative-deployment.yaml
:
- organization: sales
+ organization: marketing
 creationTimestamp: "2019-10-15T00:57:44Z"
- generation: 1
+ generation: 2
 name: nginx-declarative
 Namespace: default
 resourceVersion: "347771"

$ kubectl apply -f declarative-deployment.yaml
deployment.apps/nginx-declarative configured

As you can see, kubectl diff correctly identified that the organization was changed
from sales to marketing. We also see that kubectl apply successfully applied the new
changes.

 In this exercise, both the imperative and declarative examples result in a deploy-
ment resource configured in precisely the same way. And at first glance, the impera-
tive approach may appear to be much simpler. It contains only a few code lines
compared to the declarative deployment spec’s verbosity that is five times the script’s
size. However, it contains problems that make it a poor choice to use in practice:

 The code is not idempotent and may have different results if executed more
than once. If run a second time, an error will be thrown complaining that the
deployment NGINX already exists. In contrast, the deployment spec is idempo-
tent, meaning it can be applied as many times as needed, handling the case
where the deployment already exists.

 It is more difficult to manage changes to the resource over time, especially
when the difference is subtractive. Suppose you no longer wanted organization
to be annotated on the deployment. Simply removing the kubectl annotate
command from the scripted code would not help since it would do nothing to
remove the existing deployment’s annotation. A separate operation would be
needed to remove it. On the other hand, with the declarative approach, you
only need to remove the annotation line from the spec, and Kubernetes would
take care of removing the annotation to reflect your desired state.

 It is more difficult to understand changes. If a team member sent a pull request
modifying the script to do something differently, it would be like any other
source code review. The reviewer would need to mentally walk through the
script’s logic to verify the algorithm achieves the desired outcome. There can
even be bugs in the script. On the other hand, a pull request that changes a
declarative deployment specification clearly shows the change to the system’s

The value of the organization label was
changed from sales to marketing.

The generation of this resource
was changed by the system
when doing kubectl apply.

15Declarative vs. imperative object management
desired state. It is simpler to review, as there is no logic to check, only a configu-
ration change.

 The code is not atomic, meaning that if one of the four commands in the script
failed, the system’s state would be partially changed and wouldn’t be in the orig-
inal state, nor would it be in the desired state. With the declarative approach,
the entire spec is received as a single request, and the system attempts to fulfill
all aspects of the desired state as a whole.

As you can imagine, what started as a simple shell script would need to become more
and more complicated to achieve idempotency. There are dozens of options available
in the Kubernetes deployment spec. With the scripted approach, if/else checks would
need to be littered throughout the script to understand the existing state and condi-
tionally modify the deployment.

1.2.1 How declarative configuration works

As we saw in the previous exercise, declarative configuration management is powered
by the kubectl apply command. In contrast with imperative kubectl commands, like
scale and annotate, the kubectl apply command has one parameter, the path to the
file containing the resource manifest:

kubectl apply -f ./resource.yaml

The command is responsible for figuring out which changes should be applied to the
matching resource in the Kubernetes cluster and update the resource using the
Kubernetes API. It is a critical feature that makes Kubernetes a perfect fit for GitOps.
Let’s learn more about the logic behind kubectl apply and understand what it can
and cannot do. To understand which problems kubectl apply is solving, let’s go
through different scenarios using the Deployment resource we created earlier.

 The simplest scenario is when the matching resource does not exist in the Kuber-
netes cluster. In this case, kubectl creates a new resource using the manifest stored in
the specified file.

 If the matching resource exists, why doesn’t kubectl replace it? The answer is obvi-
ous if you look at the complete manifest resource using the kubectl get command.
Following is a partial listing of the Deployment resource that was created in the exam-
ple. Some parts of the manifest have been omitted for clarity (indicated with ellipses):

$ kubectl get deployment nginx-declarative -o=yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 annotations:
 deployment.kubernetes.io/revision: "1"
 environment: prod
 kubectl.kubernetes.io/last-applied-configuration: |
 { ... }
 organization: marketing

16 CHAPTER 1 Kubernetes and GitOps
 creationTimestamp: "2019-10-15T00:57:44Z"
 generation: 2
 name: nginx-declarative
 Namespace: default
 resourceVersion: "349411"
 selfLink: /apis/apps/v1/Namespaces/default/deployments/nginx-declarative
 uid: d41cf3dc-a3e8-40dd-bc81-76afd4a032b1
spec:
 progressDeadlineSeconds: 600
 replicas: 3
 revisionHistoryLimit: 10
 selector:
 matchLabels:
 app: nginx-declarative
 strategy:
 rollingUpdate:
 maxSurge: 25%
 maxUnavailable: 25%
 type: RollingUpdate
 template:
 ...
status:
 ...

As you may have noticed, a live resource manifest includes all the fields specified in
the file plus dozens of new fields such as additional metadata, the status field, and
other fields in the resource spec. All these additional fields are populated by the
Deployment controller and contain important information about the resource’s run-
ning state. The controller populates information about resource state in the status
field and applies default values of all unspecified optional fields, such as revision-
HistoryLimit and strategy. To preserve this information, kubectl apply merges the
manifest from the specified file and the live resource manifest. As a result, the com-
mand updates only fields specified in the file, keeping everything else untouched. So
if we decide to scale down the deployment and change the replicas field to 1, then
kubectl changes only that field in the live resource and saves it back to Kubernetes
using an update API.

 In real life, we don’t want to control all possible fields that influence resource
behavior in a declarative way. It makes sense to leave some room for imperativeness
and skip fields that should be changed dynamically. The replicas field of the Deploy-
ment resource is a perfect example. Instead of hardcoding the number of replicas you
want to use, the Horizontal Pod Autoscaler can be used to dynamically scale up or
scale down your application based on load.

HORIZONTAL POD AUTOSCALER The Horizontal Pod Autoscaler automatically
scales the number of Pods in a replication controller, deployment, or replica
set based on observed CPU utilization (or, with custom metrics support, on
some other application-provided metric).

17Declarative vs. imperative object management
Let’s go ahead and remove the replicas field from the Deployment manifest. After
applying this change, the replicas field is reset to the default value of one replica. But
wait! The kubectl apply command updates only those fields that are specified in the
file and ignores the rest. How does it know that the replicas field was deleted? The
additional information that allows kubectl to handle the delete use case is hidden in an
annotation of the live resource. Every time the kubectl apply command updates a
resource, it saves the input manifest in the kubectl.kubernetes.io/last-applied-
configuration annotation. So when the command is executed the next time, it
retrieves the most recently applied manifest from the annotation, representing the
common ancestor of the new desired manifest and live resource manifest. This allows
kubectl to execute a three-way diff/merge and properly handle the case where some
fields are removed from the resource manifest.

THREE-WAY MERGE A three-way merge is a merge algorithm that automatically
analyzes differences between two files while also considering the origin or the
common ancestor of both files.

Finally, let’s discuss the situations where kubectl apply might not work as expected
and should be used carefully.

 First off, you typically should not mix imperative commands, such as kubectl edit
or kubectl scale, with declarative resource management. This will make the current
state not match the last-applied-configuration annotation and will defeat the
merge algorithm kubectl uses to determine deleted fields. The typical scenario is
when you experiment with the resource using kubectl edit and want to roll back
changes by applying the original manifests stored in files. Unfortunately, it might not
work since changes made by the kubectl edit command are not stored anywhere. For
example, if you temporarily add the resource limits field to the deployment, the
kubectl apply won’t remove it since the limits field is not mentioned in the last-
applied-configuration annotation or the manifest from the file. The kubectl
replace command similarly ignores the last-applied-configuration annotation
and removes that annotation altogether after applying the changes. So if you make
any changes imperatively, you should be ready to undo the changes using imperative
commands before continuing with declarative configuration.

 You should also be careful when you want to stop managing fields declaratively. A
typical example of this problem is adding the Horizontal Pod Autoscaler to manage
scaling the number of replicas for an existing deployment. Typically, before introduc-
ing the Horizontal Pod Autoscaler, the number of deployment replicas is managed
declaratively. To pass control of the replicas field over to the Horizontal Pod Auto-
scaler, the replicas field must first be deleted from the file that contains the Deploy-
ment manifest. This is so the next kubectl apply does not override the replicas
value set by the Horizontal Pod Autoscaler. However, don’t forget that the replicas
field might also be stored in the last-applied-configuration annotation. If that is
the case, the missing replicas field in the manifest file will be treated as a field dele-

18 CHAPTER 1 Kubernetes and GitOps
tion, so whenever kubectl apply is run, the replicas value set imperatively by the
Horizontal Pod Autoscaler will be removed from the live Deployment. The Deploy-
ment will scale down to the default of one replica.

 In this section, we covered the different mechanisms for managing Kubernetes
objects: imperative and declarative. You also learned a little about the internals of
kubectl and how it identifies changes to apply to live objects. But at this point, you
may be wondering what all this has to do with GitOps. The answer is simple: every-
thing! Understanding how kubectl and Kubernetes manages changes to live objects is
critical for understanding how the GitOps tools discussed in later chapters identify if
the Git repository holding the Kubernetes configuration is in sync with the live state
and how it tracks and applies changes.

1.3 Controller architecture
So far, we’ve learned about Kubernetes’ declarative nature and the benefits it pro-
vides. Let’s talk about what is behind each Kubernetes resource: the controller archi-
tecture. Understanding how controllers work will help us use Kubernetes more
efficiently and understand how it can be extended.

 Controllers are brains that understand what a particular kind of resource manifest
means and execute the necessary work to make the system’s actual state match the
desired state as described by the manifest. Each controller is typically responsible for
only one resource type. Through listening to the API server events related to the
resource type being managed, the controller continuously watches for changes to the
resource’s configuration and performs the necessary work to move the current state
toward the desired state. An essential feature of Kubernetes controllers is the ability to
delegate work to other controllers. This layered architecture is powerful and allows
you to reuse functionality provided by different resource types effectively. Let’s con-
sider a concrete example to understand the delegation concept better.

1.3.1 Controller delegation

The Deployment, ReplicaSet, and Pod resources perfectly demonstrate how delega-
tion empowers Kubernetes. The Pod provides the ability to run one or more contain-
ers that have requested resources on a node in the cluster. This allows the Pod
controller to focus simply on running an instance of an application and abstract the
logic related to infrastructure provisioning, scaling up and down, networking, and
other complicated details, leaving those to other controllers. Although the Pod
resource provides many features, it is still not enough to run an application in produc-
tion. We need to run multiple instances of the same application (for resiliency and
performance), which means we need multiple Pods. The ReplicaSet controller solves
this problem. Instead of directly managing multiple containers, it orchestrates multi-
ple Pods and delegates the container orchestration to the Pod resource. Similarly, the

19Controller architecture
Deployment controller leverages functionality provided by ReplicaSets to implement
various deployment strategies such as rolling updates.

CONTROLLER DELEGATION BENEFIT With controller delegation, Kubernetes
functionality can be easily extended to support new capabilities. For example,
services that are not backward-compatible can only be deployed with a
blue/green strategy (not rolling updates). Controller delegation allows a new
controller to be rewritten to support blue/green deployment and still lever-
age the Deployment controller functionality through delegation without
reimplementing the Deployment controller’s core functionality.

So as you can see from this example, controller delegation allows Kubernetes to build
progressively more complex resources from simple ones.

1.3.2 Controller pattern

Although all controllers have different responsibilities, the implementation of each
controller follows the same simple pattern. Each controller runs an infinite loop, and
every iteration reconciles the desired and the actual state of the cluster resources it is
responsible for. During reconciliation, the controller is looking for differences

Manages ReplicaSets defined
by the Deployment

Manages Pods defined
by the ReplicaSet

ReplicaSet controller

Deployment controller

Deployment

metadata

spec

status

ReplicaSet

metadata

spec

status

Pod

metadata

spec

status

Figure 1.5 Kubernetes allows for a resource hierarchy. Higher-level
resources providing additional functionality, such as ReplicaSets and
Deployments, can manage other higher-level resources or primary
resources, such as Pods. This is implemented through a series of
controllers, each managing events related to the resources it controls.

20 CHAPTER 1 Kubernetes and GitOps
between the actual and desired states and making the changes necessary to move the
current state towards the desired state.

 The desired state is represented by the spec field of the resource manifest. The
question is, how does the controller know about the actual state? This information is
available in the status field. After every successful reconciliation, the controller
updates the status field. The status field provides information about cluster state to
end users and enables the work of higher-level controllers. Figure 1.6 demonstrates
the reconciliation loop.

Figure 1.6 A controller operates in a continuous reconciliation loop where it attempts to converge 
the desired state as defined in the spec with the current state. Changes and updates to the resource 
are reported by updating the resource status. The controller may delegate work to other Kubernetes
controllers or perform other operations, such as managing external resources using the cloud 
provider’s API.

CONTROLLERS VS. OPERATORS

Two terms that are often confused are operator and controller. In this book, the term
GitOps operator is used to describe continuous delivery tools instead of GitOps controller.
The reason for this is we are representing a specific type of controller that is applica-
tion and domain-specific.

KUBERNETES OPERATORS A Kubernetes operator is an application-specific con-
troller that extends the Kubernetes API to create, configure, and manage
instances of complex stateful applications on behalf of a Kubernetes user. It
builds upon the primary Kubernetes resource and controller concepts and
includes domain or application-specific knowledge to automate everyday tasks.

Deployment

metadata

spec

status

api

Analyzes resource
specification

Manages infrastructure using
the cloud provider’s API

Delegates work to other
Kubernetes controllers

Reports progress
by updating
resource status

Controller

Kubernetes

21Controller architecture
The terms operator and controller are often confused since they are sometimes used
interchangeably, and the line between the two is often blurred. However, another way
to think about it is that the term operator is used to describe application-specific con-
trollers. All operators use the controller pattern, but not all controllers are operators.
Generally speaking, controllers tend to manage lower-level, reusable building-block
resources, whereas operators operate at a higher level and are application-specific.
Some examples of controllers are all of the built-in controllers that manage Kuberne-
tes native types (Deployments, Jobs, Ingresses, and so on), as well as third-party con-
trollers such as cert-manager (which provisions and manages TLS certificates) and the
Argo Workflow Controller, which introduces a new job-like workflow resource in the
cluster. An example of an operator is Prometheus, which manages Prometheus data-
base installations.

1.3.3 NGINX operator

After learning about the controller fundamentals and the differences between con-
trollers and operators, we are ready to implement an operator! The sample operator
will solve a real-life task: managing a suite of NGINX servers with preconfigured static
content. The operator will allow the user to specify a list of NGINX servers and config-
ure static files mounted on each server. The task is not trivial and demonstrates the
flexibility and power of Kubernetes.

DESIGN

As mentioned earlier in this chapter, Kubernetes’ architecture allows you to leverage
an existing controller’s functionality through delegation. Our NGINX controller is
going to leverage Deployment resources to delegate the NGINX deployment task.

 The next question is which resource should be used to configure the list of servers
and customized static content. The most appropriate existing resource is the Config-
Map. According to the official Kubernetes documentation, the ConfigMap is “an API
object used to store non-confidential data in key-value pairs.”7 The ConfigMap can be
consumed as environment variables, command-line arguments, or config files in a Vol-
ume. The controller will create a Deployment for each ConfigMap and mount the
ConfigMap data into the default NGINX static website directory.

IMPLEMENTATION

Once we’ve decided on the design of the main building blocks, it is time to write some
code. Most Kubernetes-related projects, including Kubernetes itself, are implemented
using Go. However, Kubernetes controllers can be implemented using any language,
including Java, C++, or even JavaScript. For the sake of simplicity, we are going to use a
language that is most likely familiar to you: the Bash scripting language.

 In section 1.3.2 we mentioned that each controller maintains an infinite loop and
continuously reconciles the desired and actual state. In our example, the desired state
is represented by the list of ConfigMaps. The most efficient way to loop through every

7 http://mng.bz/Yq67.

http://mng.bz/Yq67

22 CHAPTER 1 Kubernetes and GitOps
ConfigMap change is using the Kubernetes watch API. The watch feature is provided
by the Kubernetes API for most resource types and allows the caller to be notified
when a resource is created, modified, or deleted. The kubectl utility allows watching
for resource changes using the get command with the --watch flag. The --output-
watch-events command instructs kubectl to output the change type, which takes one
of the following values: ADDED, MODIFIED, or DELETED.

KUBECTL VERSION Ensure that you are using the latest version of kubectl for
this tutorial (version 1.16 or later). The --output-watch-events option was
added relatively recently.

apiVersion: v1
kind: ConfigMap
metadata:
 name: sample
data:
 index.html: hello world

Listing 1.4 Sample ConfigMap (http://mng.bz/GxRN)

Contains
static files

Monitors set of config maps
and manages running
NGINX Deployments

NGINX DeploymentConfigMap

data volumeMount

NGINX DeploymentConfigMap

data volumeMount

NGINX DeploymentConfigMap

data volumeMount

NGINX operator

NGINX Deployments are
updated by the controller.

Figure 1.7 In the NGINX operator design, a ConfigMap is created containing the data to be
served by NGINX. The NGINX operator creates a Deployment for each ConfigMap. Additional
NGINX Deployments can be created simply by creating a ConfigMap with the web page data.

23Controller architecture

.

In one window, run the following command:

$ kubectl get --watch --output-watch-events configmap

In another terminal window, run kubectl apply -f sample.yaml to create the sample
ConfigMap. Notice the new output in the window running the kubectl --watch com-
mand. Now run kubectl delete -f sample.yaml. You should now see a DELETED event
appear:

$ kubectl get --watch --output-watch-events configmap
EVENT NAME DATA AGE
ADDED sample 1 3m30s
DELETED sample 1 3m40s

After running this experiment manually, you should be able to see how we can write
our NGINX operator as a Bash script.

 The kubectl get --watch command outputs a new line every time a ConfigMap
resource is created, changed, or deleted. The script will consume the output of
kubectl get --watch and either create a new Deployment or delete a Deployment
depending on the output ConfigMap event type. Without further delay, the full oper-
ator implementation is shown in the following code listing.

#!/usr/bin/env bash

kubectl get --watch --output-watch-events configmap \
-o=custom-columns=type:type,name:object.metadata.name \
--no-headers | \
while read next; do

 NAME=$(echo $next | cut -d' ' -f2)
 EVENT=$(echo $next | cut -d' ' -f1)

 case $EVENT in
 ADDED|MODIFIED)
 kubectl apply -f - << EOF
apiVersion: apps/v1
kind: Deployment
metadata: { name: $NAME }
spec:
 selector:
 matchLabels: { app: $NAME }
 template:
 metadata:
 labels: { app: $NAME }
 annotations: { kubectl.kubernetes.io/restartedAt: $(date) }
 spec:
 containers:
 - image: nginx:1.7.9
 name: $NAME
 ports:
 - containerPort: 80

Listing 1.5 NGINX controller (http://mng.bz/zxmZ)

This kubectl command
outputs all the events that
occur for configmap objects

The output from kubectl is 
processed by this infinite loop.

The name of the configmap
and the event type are parsed
from the kubectl output.

If the configmap has been
ADDED or MODIFIED, apply the
NGINX deployment manifest
(everything between the two
EOF tags) for that configmap.

https://shortener.manning.com/zxmZ

24 CHAPTER 1 Kubernetes and GitOps
 volumeMounts:
 - { name: data, mountPath: /usr/share/nginx/html }
 volumes:
 - name: data
 configMap:
 name: $NAME
EOF
 ;;
 DELETED)
 kubectl delete deploy $NAME
 ;;
 esac
done

TESTING

Now that the implementation is done, we are ready to test our controller. In real life,
the controller is packaged into a Docker image and runs inside the cluster. It is OK to
run the controller outside of the cluster for testing purposes, which is precisely what
we are going to do. Should we include Appendix A in the report., start a minikube
cluster, save the controller code into a file called controller.sh, and start it using this
Bash command:

$ bash controller.sh

NOTE This example requires kubectl version 1.16 or later.

The controller is running and waiting for the ConfigMap. Let’s create one. Refer to
listing 1.4 for the manifest of the ConfigMap.

 We create the ConfigMap using the kubectl apply command:

$ kubectl apply -f sample.yaml
configmap/sample created

The controller notices the change and creates an instance of Deployment using the
kubectl apply command:

$ bash controller.sh
deployment.apps/sample created

Exercise 1.2
Try accessing the NGINX controller by forwarding port 80 locally to make sure the
controller works as expected. Try to delete or modify the ConfigMap and see how the
controller reacts accordingly.

Exercise 1.3
Create additional ConfigMaps to launch an NGINX server for each member of your
family that displays Hello <name>!. Also, don’t forget to call/text/Snapchat them IRL.

Exercise 1.4
Write a Dockerfile to package the NGINX controller. Deploy it to your test Kubernetes
cluster. Hint: You will need to create RBAC resources for the operator.

If the configmap has been
DELETED, delete the NGINX
deployment for that configmap.

25Getting started with CI/CD
1.4 Kubernetes + GitOps
GitOps assumes that every piece of infrastructure is represented as a file stored in a
revision control system, and there is an automated process that seamlessly applies
changes to the application runtime environment. Without a system like Kubernetes,
this is, unfortunately, easier said than done. There are too many things to worry about
and many different technologies that do not work well together. These two assump-
tions often become an unsolvable obstacle that prevents the implementation of an
efficient infrastructure-as-code process.

 Kubernetes has dramatically improved the situation. As Kubernetes gained more
and more adoption, the idea of infrastructure as code (IaC) has evolved, which
resulted in the creation of new tooling that implements GitOps. So what is so special
about Kubernetes, and how and why did it lead to the rise of GitOps?

 Kubernetes enables GitOps by fully embracing declarative APIs as its primary mode
of operation and providing the controller patterns and backend framework necessary
to implement those APIs. The system was designed with the principles of declarative
specifications and eventual consistency and convergence from its inception.

EVENTUAL CONSISTENCY Eventual consistency is a consistency model used in
distributed computing to achieve high availability that informally guarantees
that, if no new updates are made to a given data item, eventually all accesses
to that item will return the last updated value.

This decision is what led to the prominence of GitOps in Kubernetes. Unlike tradi-
tional systems, in Kubernetes there are almost no APIs that can modify only a subset of
some existing resources. For example, there is no API (and never will be) that
changes only the container image of a Pod. Instead, the Kubernetes API server
expects all API requests to provide a complete manifest of the resource to the API
server. It was an intentional decision not to give any convenience APIs to users. As a
result, Kubernetes users are essentially forced into a declarative mode of operation,
which leads these same users to the need to store these declarative specifications
somewhere. Git became the natural medium to store these specifications, and GitOps
then became the natural delivery tool to deploy these manifests from Git.

1.5 Getting started with CI/CD
Now that you’ve learned the basic architecture and principles of a Kubernetes control-
ler and how Kubernetes is a good fit for GitOps, it’s time to implement your own
GitOps operator. In this tutorial, we will first be creating a rudimentary GitOps opera-
tor to drive continuous delivery. This is followed by an example of how you would inte-
grate continuous integration (CI) with a GitOps-based continuous delivery (CD)
solution.

26 CHAPTER 1 Kubernetes and GitOps
1.5.1 Basic GitOps operator

To implement your own GitOps operator, a continuously running control loop needs
to be implemented that performs the three steps illustrated in figure 1.8.

Figure 1.8 The GitOps reconciliation loop begins by cloning the repository to fetch the configuration
repository’s latest version into local storage. Next, the manifest discovery step walks the cloned
repository’s filesystem, looking for any Kubernetes manifests to apply to the cluster. Last, the kubectl
apply step performs the actual deployment by applying all of the discovered manifests to the cluster.

While this control loop could be implemented in any number of ways, most simply, it
could be implemented as a Kubernetes CronJob.

apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: gitops-cron
 Namespace: gitops
spec:
 schedule: "*/5 * * * *"
 concurrencyPolicy: Forbid
 jobTemplate:
 spec:
 backoffLimit: 0
 template:
 spec:
 restartPolicy: Never

Listing 1.6 CronJob GitOps operator (http://mng.bz/0myz)

Fetch the latest
version of the
configuration.

Examine the cloned repository
for Kubernetes manifests to
apply to the cluster.

Apply all the
discovered
manifests
to the cluster.

git clone
repo

discover
manifestskubectl apply Reconciliation

loop

Executes the GitOps 
reconciliation loop 
every five minutes Prevents concurrent 

executions of the job

Doesn’t retry failed jobs since this is a
recurring CronJob; retries happen naturally

Doesn’t restart the container 
when it completes

https://shortener.manning.com/0myz

27Getting started with CI/CD

A K

s
to

objec
 serviceAccountName: gitops-serviceaccount
 containers:
 - name: gitops-operator
 image: gitopsbook/example-operator:v1.0
 command: [sh, -e, -c]
 args:
 - git clone https://github.com/gitopsbook/sample-app-

deployment.git /tmp/example &&
 find /tmp/example -name '*.yaml' -exec kubectl apply -f {} \;

The job template spec contains the meat of the operator logic. The CronJob gitops-
cron contains the control loop logic that deploys manifests from Git to the cluster on
a regularly scheduled basis. The schedule field is a cron expression, which in this
example will result in the job being executed every five minutes. Setting the
concurrencyPolicy to Forbid prevents concurrent executions of the job, allowing
the current execution to complete before attempting to start a second. Note that this
will only happen if a single execution takes longer than five minutes.

 The jobTemplate is a Kubernetes Job template spec. The Job template spec con-
tains a Pod template spec (jobTemplate.spec.template.spec), which is the same spec
that you may be familiar with from writing Kubernetes manifests for Deployments,
Pods, Jobs, and so on. The backoffLimit specifies the number of retries before con-
sidering a Job as failed. A value of zero means that it will not retry. Since this is a recur-
ring CronJob, retries happen naturally, so there is no need to retry immediately. A
restartPolicy of Never is required to prevent the Job from restarting the container
when it completes, which is a container’s normal behavior. The serviceAccountName
field references a Kubernetes Service account with sufficient privileges to create and
modify objects in the cluster. Since this operator could potentially deploy any type of
resource, the gitops-operator Service account should be bound to an admin-level
ClusterRole.

 The command and args fields contain the actual logic of the GitOps reconciliation
loop. It consists of only two commands:

 git clone—Clones the latest repository to local storage
 find—Discovers YAML files in the repo, and for each YAML file located, exe-

cutes the kubectl apply command

To use this, simply apply the CronJob to the cluster. Note that you would first need to
apply the following supporting resources.

apiVersion: v1
kind: Namespace

Listing 1.7 CronJob GitOps resources (http://mng.bz/KMln)

ubernetes Service
account that has

ufficient privileges
 create and modify
ts into the cluster

The Docker image that has
the git, find, and kubectl
binaries preloaded into it

The command and args fields contain the
actual logic of the GitOps reconciliation loop.

Namespace gitops is where the
CronJob and ServiceAccount will live.

https://shortener.manning.com/KMln

28 CHAPTER 1 Kubernetes and GitOps

metadata:
 name: gitops

apiVersion: v1
kind: ServiceAccount
metadata:
 name: gitops-serviceaccount
 Namespace: gitops

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: gitops-operator
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: admin
subjects:
- kind: ServiceAccount
 name: gitops-serviceaccount
 Namespace: gitops

MULTIRESOURCE YAML FILES Management of multiple resources can be sim-
plified by grouping them in the same file (separated by --- in YAML). Listing
1.7 is an example of a single YAML file defining multiple related resources.

This example is primitive, meant to illustrate the fundamental concepts of a GitOps
continuous delivery operator. It is not meant for any real production use since it lacks
many features needed in a real-world production environment. For example, it can-
not prune any resources that are no longer defined in Git. Another limitation is that it
does not deal with any credentials required to connect to the Git repository.

Exercise 1.5
Modify the CronJob to point to your own GitHub repository. Apply the new CronJob,
and add YAML files to your repository. Verify that the corresponding Kubernetes
resources are created.

1.5.2 Continuous integration pipeline

In the previous section, we implemented a basic GitOps CD mechanism that continu-
ously delivers manifests in a Git repository to the cluster. The next step is to integrate
this process with a CI pipeline, which publishes new container images and updates the
Kubernetes manifests with the new image. GitOps integrates well with any CI system,
as the process is more or less the same as a typical build pipeline. The main difference
is that instead of the CI pipeline communicating directly to the Kubernetes API
server, it commits the desired change into Git and trusts that sometime later, the new
changes will be detected by the GitOps operator and applied.

ServiceAccount gitops-serviceaccount is 
the Kubernetes Service account that will 
have privileges to deploy to the cluster.

ClusterRoleBinding gitops-operator
binds/grants cluster admin-level privileges to
the ServiceAccount, gitops-serviceaccount.

29Getting started with CI/CD
The goal of a GitOps CI pipeline is to

 Build your application and run unit testing as necessary
 Publish a new container image to a container registry
 Update the Kubernetes manifests in Git to reflect the new image

The following example is a typical series of commands that would be executed in a CI
pipeline to achieve this.

export VERSION=$(git rev-parse HEAD | cut -c1-7)
make build
make test

export NEW_IMAGE="gitopsbook/sample-app:${VERSION}"
docker build -t ${NEW_IMAGE} .
docker push ${NEW_IMAGE}

git clone http://github.com/gitopsbook/sample-app-deployment.git
cd sample-app-deployment

kubectl patch \

Listing 1.8 Example GitOps CI (http://mng.bz/9M18)

Build Test Docker push

Git clone
config repo

Update
manifests

Git commit
and push

GitOps continuous integration

GitOps continuous deployment

Git clone
config repo

Discover
manifests

kubectl
apply

Figure 1.9 A GitOps CI pipeline is similar to a typical CI pipeline. The code
is built and tested, and then the artifact (a tagged Docker image) is pushed
to the image registry. The additional step is the GitOps CI pipeline also
updates the manifests in the configuration repo with the latest image tag.
This update may trigger a GitOps CD job to apply the updated manifests to
the cluster.

Uses the first seven characters of the current
commit-SHA as the version to uniquely

identify the artifacts from this build

Builds and tests your application’s
binaries as you usually would

Builds the container image,
pushes it to a container
registry, and incorporates
the unique version as part
of the container image tag

Clones the Git deployment repo
containing the Kubernetes manifests

Updates the manifests 
with the new image

30 CHAPTER 1 Kubernetes and GitOps
 --local \
 -o yaml \
 -f deployment.yaml \
 -p "spec:
 template:
 spec:
 containers:
 - name: sample-app
 image: ${NEW_IMAGE}" \
 > /tmp/newdeployment.yaml
mv /tmp/newdeployment.yaml deployment.yaml

git commit deployment.yaml -m "Update sample-app image to ${NEW_IMAGE}"
git push

This example pipeline is one way that a GitOps CI pipeline may look. There are some
important points to highlight regarding the different choices you might make that
would better suit your needs.

IMAGE TAGS AND THE TRAP OF THE LATEST TAG

Notice in the first two steps of the example pipeline, the current Git commit-SHA of
the application’s Git repository is used as a version variable, which is then incorpo-
rated as part of the container’s image tag. A resulting container image in the example
pipeline might look like gitopsbook/sample-app:cc52a36, where cc52a36 is the
commit-SHA at the time of the build.

 It is important to use a unique version string (like a commit-SHA) that is different
in each build since the version is incorporated as part of the container image tag. A
common mistake that people make is to use latest as their image tag (such as
gitopsbook/sample-app:latest) or reuse the same image tag from build to build. A
naive pipeline might make the following mistake:

make build
docker build -t gitopsbook/sample-app:latest .
docker push gitopsbook/sample-app:latest

Reusing image tags from build to build is a terrible practice for several reasons.
 The first reason why container tags should not be reused is that when container

image tags are reused, Kubernetes will not deploy the new version to the cluster. This
is because the second time the manifests are attempted to be applied, Kubernetes will
not detect any change in the manifests, and the second kubectl apply will have zero
effect. For example, say build #1 publishes the image gitopsbook/sample-app :lat-
est and deploys it to the cluster. The Deployment manifest for this might look some-
thing like this.

apiVersion: apps/v1
kind: Deployment
metadata:

Listing 1.9 Sample app deployment (http://mng.bz/j4m9)

Commits and pushes the
manifest changes to the

deployment configuration repo

https://shortener.manning.com/j4m9

31Getting started with CI/CD
 name: sample-app
spec:
 replicas: 1
 revisionHistoryLimit: 3
 selector:
 matchLabels:
 app: sample-app
 template:
 metadata:
 labels:
 app: sample-app
 spec:
 containers:
 - image: gitopsbook/sample-app:latest
 name: sample-app
 command:
 - /app/sample-app
 ports:
 - containerPort: 8080

When build #2 runs, even though a new container image for gitopsbook/sample-
app:latest has been pushed to the container registry, the Kubernetes Deployment
YAML for the application is the same as it was in build #1. The Deployment specs are
the same from the perspective of Kubernetes; there is no difference between what is
being applied in build #1 versus build #2. Kubernetes treats the second apply as a no-
op (no operation) and does nothing. For Kubernetes to redeploy, something needs to
be different in the Deployment spec from the first build to the second. Using unique
container image tags ensures there is a difference.

 Another reason for incorporating a unique version into the image tag is that it
enables traceability. By incorporating something like the application’s Git commit-
SHA into the tag, there is never any question about what version of the software is cur-
rently running in the cluster. For example, you could run the following kubectl com-
mand, which outputs the images of all deployments in the Namespace:

$ kubectl get deploy -o wide | awk '{print $1,$7}' | column -t
NAME IMAGES
sample-app gitopsbook/sample-app:508d3df

By using the convention of tying container image tags to Git commit-SHAs of your
application repository, you can trace the currently running version of the sample-app
to commit 508d3df. From there, you have full knowledge of exactly what version of
your application is running in the cluster.

 The third and possibly most important reason for not reusing image tags such as
latest is that rollback to the older version becomes impossible. When you reuse
image tags, you are overriding or rewriting the meaning of that overwritten image.
Imagine the following sequence of events:

1 Build #1 publishes the container image gitopsbook/sample-app:latest and
deploys it to the cluster.

32 CHAPTER 1 Kubernetes and GitOps
2 Build #2 republishes the container image gitopsbook/sample-app:latest,
overwriting the image tag deployed in build #1. It redeploys this image to the
cluster.

3 Sometime after build #2 is deployed, it is discovered that a severe bug exists in
the latest version of the code, and immediate rollback is necessary to the ver-
sion created in build #1.

There is no easy way to redeploy the version of the sample-app created during build
#1 because there is no image tag representing that version of the software. The second
build overwrote the latest image tag, effectively making the original image unreach-
able (at least not without extreme measures).

 For these reasons, it is not recommended to reuse image tags, such as latest, at
least in production environments. With that said, in dev and test environments, con-
tinuously creating new and unique image tags (which likely never get cleaned up)
could cause an excessive amount of disk usage in your container registry or become
unmanageable just by the sheer number of image tags. In these scenarios, reusing
image tags may be appropriate, understanding Kubernetes’ behavior of not doing
anything when the same specification is applied twice.

KUBECTL ROLLOUT RESTART Kubectl has a convenience command, kubectl
rollout restart, which causes all the Pods of a deployment to restart (even
if the image tag is the same). It is useful in dev and test scenarios where the
image tag has been overwritten and redeploy is desired. It works by injecting
an arbitrary timestamp into the Pod template metadata annotations. This
causes the Pod spec to be different from what it was before, which causes a
regular, rolling update of the Pods.

One thing to note is that our CI example uses a Git commit-SHA as the unique image
tag. But instead of a Git commit-SHA, the image tag could incorporate any other
unique identifier, such as a semantic version, a build number, a date/time string, or
even a combination of these pieces of information.

SEMANTIC VERSION A semantic version is a versioning methodology that uses
a three-digit convention (MAJOR.MINOR.PATCH) to convey the meaning of
a version (such as v2.0.1). MAJOR is incremented when there are incompa-
tible API changes. MINOR is incremented when functionality is added in
a backward-compatible manner. PATCH is incremented when there are
backward-compatible bug fixes.

Summary
 Kubernetes is a container orchestration system for deployment, scaling, and

management of containers.
 Basic Kubernetes objects are Pod, Service, and Volume.
 The Kubernetes control plane consists of kube-apiserver, kube-controller

-manager, and kube-scheduler.

33Summary
 Each Kubernetes worker node runs kubelet and kube-proxy.
 A Running Service in a Pod is accessible from your computer using kubectl

port-forward.

 Pods can be deployed by using imperative or declarative syntax. Imperative
deployment is not idempotent, and declarative deployment is idempotent. For
GitOps, declarative is the preferred method.

 Controllers are the brains in Kubernetes to bring the Running state into the
desired state.

 A Kubernetes operator can be implemented simply as a shell script by monitor-
ing ConfigMap changes and updating deployment.

 Kubernetes configuration is declarative.
 GitOps complements Kubernetes due to its declarative nature.
 GitOps operators trigger deployments to your Kubernetes cluster based on

changes to revision-controlled configuration files stored in Git.
 A simple GitOps operator can be implemented as a script by regularly checking

the manifest Git repo for changes.
 CI pipeline can be implemented as a script with steps to build the Docker image

and update the manifest with the new image tag.

Argo CD
In this chapter, you’ll meet Argo CD, an open source GitOps operator designed with
enterprises in mind. You’ll get firsthand experience deploying an example applica-
tion to Kubernetes using this important member of the Argo family of cloud-native
tools, and explore the many uses and benefits it has to offer.

2.1 What is Argo CD?
Argo CD is an open source GitOps operator for Kubernetes.8 The project is a part
of the Argo family, a set of cloud-native tools for running and managing jobs and
applications on Kubernetes. Along with Argo Workflows, Rollouts, and Events,
Argo CD focuses on application delivery use cases and makes it easier to combine
three modes of computing: services, workflows, and event-based processing. In

This chapter covers
 What is Argo CD?

 Deploying an application using Argo CD

 Using Argo CD enterprise features

8 https://argoproj.github.io/projects/argo-cd.
34

https://argoproj.github.io/projects/argo-cd

35What is Argo CD?
2020, Argo CD was accepted by the Cloud Native Computing Foundation (CNCF) as
an incubation-level hosted project.

CNCF The Cloud Native Computing Foundation is a Linux Foundation proj-
ect that hosts critical components of the global technology infrastructure.

The company behind Argo CD is Intuit, the creator of TurboTax and QuickBooks. In
early 2018, Intuit decided to adopt Kubernetes to speed up cloud migration. At the
time, the market already had several successful continuous deployment tools for
Kubernetes, but none of them fully satisfied Intuit’s needs. So instead of adopting an
existing solution, the company decided to invest in a new project and started working
on Argo CD. What is so special about Intuit’s requirements? The answer to that ques-
tion explains how Argo CD is different from other Kubernetes CD tools and explains
its main project use cases.

2.1.1 Main use cases

The importance of a GitOps methodology and benefits of representing infrastructure
as code is not questionable. However, the enterprise scale demands additional require-
ments. Intuit is a cloud-based software-as-a-service company. With around 5,000 devel-
opers, the company successfully runs hundreds of microservices on-premises and in
the cloud. Given that scale, it was unreasonable to expect that every team would run its
own Kubernetes cluster. Instead, it was decided that a centralized platform team would
run and maintain a set of multitenant clusters for the whole company. At the same
time, end users should have the freedom and necessary tools to manage workloads in
those clusters. These considerations have defined the following additional require-
ments on top of the decision to use GitOps.

AVAILABLE AS A SERVICE

A simple onboarding process is extremely important if you are trying to move hundreds
of microservices to Kubernetes. Instead of asking every team to install, configure, and
maintain the deployment operator, it should be provided by the centralized team. With
several thousands of new users, SSO integration is crucial. The service must integrate
with various SSO providers instead of introducing its own user management.

ENABLE MULTITENANCY AND MULTICLUSTER MANAGEMENT

In multitenant environments, users need an effective and flexible access control sys-
tem. Kubernetes has a great built-in role-based access control system, but that is not
enough when you have to deal with hundreds of clusters. The continuous deployment
tool should provide access control on top of multiple clusters and seamlessly integrate
with existing SSO providers.

ENABLE OBSERVABILITY

Last, but not least, the continuous deployment tool should provide developers
insights about the state of managed applications. That assumes a user-friendly inter-
face that quickly answers the following questions:

36 CHAPTER 2 Argo CD
 Is the application configuration in sync with the configuration defined in Git?
 What exactly is not matching?
 Is the application up and running?
 What exactly is broken?

The company needed the GitOps operator ready for enterprise scale. The team evalu-
ated several GitOps operators, but none of them satisfied all the requirements, so it
was decided to implement Argo CD.

Exercise 2.1
Reflect on your organization’s needs and compare them to use cases that Argo CD is
focused on. Try to decide if Argo CD solves the pain points your team has.

2.1.2 Core concepts

In order to effectively use Argo CD, we should understand two basic concepts: the
Application and the Project. Let’s have a closer look at the Application first.

APPLICATION

The Application provides a logical grouping of Kubernetes resources and defines a
resources manifest’s source and destination.

Figure 2.1 The main properties of the Argo CD Application are the source 
and destination. The source specifies a resource manifest’s location in the 
Git repository. The destination specifies where resources should be created 
in the Kubernetes cluster.

The Application source includes the repository URL and the directory inside of the
repository. Typically repositories include multiple directories, one per application
environment such as QA and Prod. The sample directory structure of such a reposi-
tory is represented here:

.
 prod

 deployment.yaml
 qa
 deployment.yaml

Source
repoURL
path

Destination
cluster
namespace

Application

Kubernetes

Repository

Specifies resource destination

Specifies resource manifest’s location

37What is Argo CD?
Each directory does not necessarily contain plain YAML files. Argo CD does not
enforce any configuration management tool and instead provides first-class support
for various config management tools. So the directory might as well contain a Helm
chart definition as YAML along with Kustomize overlays.

 The Application destination defines where resources must be deployed and
includes the API server URL of the target Kubernetes cluster, along with the cluster
Namespace name. The API server URL identifies the cluster where all application
manifests must be deployed. It is impossible to deploy application manifests across sev-
eral clusters, but different applications might be deployed into different clusters. The
Namespace name is used to identify the target Namespace of all Namespace-level
application resources.

 So the Argo CD Application represents an environment deployed in the Kuberne-
tes cluster and connects it to the desired state stored in the Git repository.

Exercise 2.2
Consider the real service deployed in your organization and come up with a list of
Argo CD applications. Define the source repository URL, directory, and target cluster
with the Namespace for one of the applications from your list.

2.1.3 Sync and health statuses

In addition to the source and destination, the Argo CD application has two more
important properties: sync and health statuses.

 Sync status answers whether the observed application resources state deviates from
the resources state stored in the Git repository. The logic behind deviation calculation
is equivalent to the logic of the kubectl diff command. The possible values of a sync
status are in-sync and out-of-sync. The in-sync status means that each application
resource is found and fully matching to the expected resource state. The out-of-sync
status means that at least one resource status is not matching to the expected state or
not found in the target cluster.

 The health status aggregates information about the observed health status of each
resource that makes up the application. The health assessment logic is different for
each Kubernetes resource type and results in one of the following values:

 Healthy —For example, the Kubernetes deployment is considered healthy if the
required number of Pods is running and each Pod successfully passes both
readiness and liveness probes.

 Progressing —Represents a resource that is not healthy yet but is still expected to
reach a healthy state. The Deployment is considered progressing if it is not
healthy yet but still without a time limit specified by the progressingDeadline-
Seconds9 field.

9 http://mng.bz/aomz.

https://shortener.manning.com/aomz

38 CHAPTER 2 Argo CD
 Degraded —The antipode of a healthy status. The example is a Deployment that
could not reach a healthy status within an expected timeout.

 Missing —Represents the resource that is stored in Git but not deployed to the
target cluster.

The aggregated application status is the worst status of every application resource.
The healthy status is the best, descending to progressing, degraded, and missing (the
worst). So if all application resources are healthy and only one is degraded, the aggre-
gated status is also degraded.

Exercise 2.3
Consider an application consisting of two Deployments. The following information is
known about the resources:

 Deployment 1 has an image that does not match the image stored in the Git
repository. All Deployment Pods have failed to start for several hours while
Deployment progressingDeadlineSeconds is set to 10 minutes.

 Deployment 2 is not fully matching the expected state and has all Pods
running.

What are the application sync and health statuses?
 The health and sync statuses answer the two most important questions about an

application:

 Is my application working?
 Am I running what is expected?

PROJECT

Argo CD applications provide a very flexible way to manage different applications
independently of each other. This functionality provides very useful insights to the
team about each piece of infrastructure and greatly improves productivity. However,
this is not enough to support multiple teams with different access levels:

 The mixed list of applications creates confusion that creates a human error
possibility.

 Different teams have different access levels. A individual might use the GitOps
operator to escalate their own permissions to get full cluster access.

The workaround for these issues is a separate Argo CD instance for each team. This is
not a perfect solution since a separate instance means management overhead. In
order to avoid management overhead, Argo CD introduces the Project abstraction.
Figure 2.2 illustrates the relationship between Applications and Projects.

 A Project provides a logical grouping of Applications, isolates teams from each
other, and allows for fine-tuning access control in each Project.

39What is Argo CD?
Figure 2.2 Demonstrates the relationship between Applications and Projects. A Project provides a
logical grouping of Applications, isolating teams from each other and enabling using Argo CD in
multitenant environments.

In addition to separating sets of applications, a Project provides the following set of
features:

 Restricts which Kubernetes clusters and Git repositories might be used by Proj-
ect Applications

 Restricts which Kubernetes resources can be deployed by each Application
within a Project

Exercise 2.4
Try to come up with a list of projects in your organization. Using Projects, you can restrict
what kind of resource users can deploy, source repositories, and destination clusters
available within the Project. Which restrictions would you configure for your projects?

2.1.4 Architecture

At first glance, the implementation of the GitOps operator does not look too com-
plex. In theory, all you need is to clone the Git repository with manifests and use
kubectl diff and kubectl apply to detect and handle config drifts. This is true until
you are trying to automate this process for multiple teams and manage the configura-
tion of dozens of clusters simultaneously. Logically this process is split into three
phases, and each phase has its own challenges:

 Retrieve resource manifests.
 Detect and fix the deviations.
 Present the results to end users.

Each phase consumes different resources, and the implementation of each phase has
to scale differently. A separate Argo CD component is responsible for each phase.

Application 1

Team 1

namespace1

namespace2

namespace3

namespace4

Application 2

Application 3

Kubernetes
Application 1

Team 2

Application 2

Application 3

Project 1 Project 2

Restricts which repositories can be used as Application sources

Restricts where Application resources can be deployed

Specifies which users have access to Project Applications

40 CHAPTER 2 Argo CD
Figure 2.3 Argo CD consists of three main components that implement GitOps reconciliation cycle
phases. The argocd-repo-server retrieves manifests from Git. The argocd-application-
controller compares manifests from Git with resources in the Kubernetes cluster. The argocd-
api-server presents reconciliation results to the user.

Let’s go through each phase and the corresponding Argo CD component implemen-
tation details.

RETRIEVE RESOURCE MANIFESTS

The manifest generation in Argo CD is implemented by the argocd-repo-server
component. This phase presents a whole set of challenges.

 Manifest generation requires you to download Git repository content and produce
ready-to-use manifest YAML. First of all, it is too time consuming to download the
whole repository content every time you need to retrieve expected resource manifests.
Argo CD solves this by caching the repository content on local disk and using the git
fetch command to download only recent changes from the remote Git repository.
The next challenge is related to memory usage. In real life, resource manifests are
rarely stored as plain YAML files. In most cases, developers prefer to use a config man-
agement tool such as Helm or Kustomize. Every tool invocation causes a spike in
memory usage. To handle the memory usage issues, Argo CD allows the user to limit
the number of parallel manifest generations and scale up the number of argocd-
repo-server instances to improve performance.

argocd-application-controllerargocd-api-server argocd-repo-server

dev staging

us-west-1 us-central-1 us-east-1

Manage applications list. Monitor applications list.

Load manifests from Git.

Load live
application
state.

Load live
cluster state.

Save live
application
state.

Retrieve resource
manifests.

Detect and fix the
deviations.

Present the results
to end users.

Redis

41What is Argo CD?
Figure 2.4 argocd-repo-server caches the cloned repository on local storage and encapsulates
interaction with the config management tool that is required to produce final resource manifests.

DETECT AND FIX THE DEVIATIONS

The reconciliation phase is implemented by the argocd-application-controller
component. The controller loads the live Kubernetes cluster state, compares it with the
expected manifests provided by the argocd-repo-server, and patches deviated
resources. This phase is probably the most challenging one. In order to correctly detect
deviations, the GitOps operator needs to know about each resource in the cluster, and
compare and update thousands of resources.

Figure 2.5 argocd-application-controller performs resource reconciliation. The 
controller leverages the argocd-repo-server component to retrieve expected manifests 
and compare manifests with the lightweight in-memory Kubernetes cluster state cache.

argocd-repo-server

Clone remote
repository.

Cache cloned repository
on local storage.

Produce final YAML
using config
management tools.

GitHub

GitLab

HELM

argocd-application-controller

argocd-repo-server

Kubernetes

kubectl diff

kubectl apply

Load expected and actual
resources state.Reconcile states and

detect deviations.

Resolve deviations.

Store reconciliation details.

Redis

42 CHAPTER 2 Argo CD
The controller maintains a lightweight cache of each managed cluster and updates it
in the background using the Kubernetes watch API. This allows the controller to per-
form reconciliation on an application within a fraction of a second and empowers it to
scale and manage dozens of clusters simultaneously. After each reconciliation, the
controller has exhaustive information about each application resource, including the
sync and health status. The controller saves that information into the Redis cluster so
it can be presented to the end user later.

PRESENT THE RESULTS TO END USERS

Finally, the reconciliation results must be presented to end users. This task is performed
by the argocd-server component. While the heavy lifting was already done by the
argocd-repo-server and argocd-application-controller, this last phase has the
highest resiliency requirements. The argocd-server is a stateless web application that
loads the information about reconciliation results and powers the web user interface.

 The architecture design allows Argo CD to serve GitOps operations for large enter-
prises with minimal maintenance overhead.
Exercise 2.5
Which components serve user requests and require multiple replicas for resiliency?
Which components might require a lot of memory to scale?

2.2 Deploy your first application
While Argo CD is an enterprise-ready, complex distributed system, it is still lightweight
and can easily run on minikube. The installation is trivial and includes a few simple
steps. To install Argo CD, follow the official Argo CD instructions.10

2.2.1 Deploying the first application

As soon as Argo CD is running, we are ready to deploy our first application. As it’s
been mentioned before, to deploy an Argo CD application, we need to specify the Git
repository that contains deployment manifests and target the Kubernetes cluster and
Namespace. To create the Git repository for this exercise, open the following GitHub
repository and create a repository fork:11

https://github.com/gitopsbook/sample-app-deployment

Argo CD can deploy into the external cluster as well as into the same cluster where it is
installed. Let’s use the second option and deploy our application into the default
Namespace of our minikube cluster.

RESET YOUR FORK Have you already forked the deployment repository while
working on previous chapters? Please make sure to revert changes for the best
experience. The simplest way is to delete the previously forked repository and
fork it again.

10 https://argoproj.github.io/argo-cd/getting_started/.
11 https://help.github.com/en/github/getting-started-with-github/fork-a-repo.

https://argoproj.github.io/argo-cd/getting_started/
https://help.github.com/en/github/getting-started-with-github/fork-a-repo

43Deploy your first application
The application might be created using the web user interface, using the CLI, or even
programmatically using the REST or gRPC APIs. Since we already have Argo CD CLI
installed and configured, let’s use it to deploy an application. Go ahead and execute
the following command to create an application:

 

$ argocd app create sample-app \
 --repo https://github.com/<username>/sample-app-deployment \
 --path . \
 --dest-server https://kubernetes.default.svc \
 --dest-namespace default

 

As soon as the application is created, we can use the Argo CD CLI to get the informa-
tion about the application state. Use the following command to get the information
about the sample-app application state:

argocd app get sample-app
Name: sample-app
Project: default
Server: https://kubernetes.default.svc
Namespace: default
URL: https://<host>:<port>/applications/sample-app
Repo: https://github.com/<username>/sample-app-deployment
Target:
Path: .
SyncWindow: Sync Allowed
Sync Policy: <none>
Sync Status: OutOfSync from (09d6663)
Health Status: Missing

GROUP KIND NAMESPACE NAME STATUS HEALTH HOOK MESSAGE
 Service default sample-app OutOfSync Missing
apps Deployment default sample-app OutOfSync Missing




As we can see from the command output, the application is out of sync and not
healthy. By default, Argo CD does not push resources defined in the Git repository
into the cluster if it detects a deviation. In addition to the high-level summary, we can
see the details of every application resource. Argo CD detected that the application is
supposed to have a Deployment and a Service, but both resources are missing. To
deploy the resources, we need to either configure automated application syncing

Unique 
application
name

Git 
repository 
URL

Directory path within 
the Git repository

The Kubernetes API server
URL. The https://
kubernetes.default.svc/ is
the API server URL that is
available inside of every
Kubernetes cluster.

The Kubernetes 
Namespace name

CLI command that returns
the information about an
application state

Application sync status that answers
whether the application state 
matches the expected state or not

Application
aggregated

health status

44 CHAPTER 2 Argo CD
using the sync policy12 or trigger syncing manually. To trigger the sync and deploy the
resources, use the following command:

$ argocd app sync sample-app
TIMESTAMP GROUP KIND NAMESPACE NAME STATUS

HEALTH HOOK MESSAGE
2020-03-17T23:16:50-07:00 Service default sample-app OutOfSync Missing
2020-03-17T23:16:50-07:00 apps Deployment default sample-app

OutOfSync Missing

Name: sample-app
Project: default
Server: https://kubernetes.default.svc
Namespace: default
URL: https://<host>:<port>/applications/sample-app
Repo: https://github.com/<username>/sample-app-deployment
Target:
Path: .
SyncWindow: Sync Allowed
Sync Policy: <none>
Sync Status: OutOfSync from (09d6663)
Health Status: Missing

Operation: Sync
Sync Revision: 09d6663dcfa0f39b1a47c66a88f0225a1c3380bc
Phase: Succeeded
Start: 2020-03-17 23:17:12 -0700 PDT
Finished: 2020-03-17 23:17:21 -0700 PDT
Duration: 9s
Message: successfully synced (all tasks run)

GROUP KIND NAMESPACE NAME STATUS HEALTH HOOK MESSAGE
 Service default sample-app Synced Healthy

service/sample-app created
apps Deployment default sample-app Synced Progressing deployment

.apps/sample-app created

As soon as the sync is triggered, Argo CD pushes the manifests stored in Git into the
Kubernetes cluster and then reevaluates the application state. The final application
state is printed to the console when the synchronization completes. The sample-app
application was successfully synced, and each result matches the expected state.

2.2.2 Inspect the application using the user interface

In addition to the CLI and API, Argo CD provides a user-friendly web interface. Using
the web interface, you might get the high-level view of all your applications deployed
across multiple clusters as well as very detailed information about every application
resource. Open the https://<host>:<port> URL to see the applications list in the Argo
CD user interface.

12 https://argoproj.github.io/argo-cd/user-guide/auto_sync/.

CLI command that triggers 
application sync

Initial application state
before the sync operation

Final application
state after the

sync is completed

https://argoproj.github.io/argo-cd/user-guide/auto_sync/

45Deploy your first application
Figure 2.6 Application list page showing available Argo CD applications. The page provides high-level
information about each application, such as sync and health status.

The application list page provides high-level information about all deployed applica-
tions, including health and synchronization status. Using this page, you can quickly
find if any of your applications have degraded or have configuration drift. The user
interface is designed for large enterprises and able to handle hundreds of applica-
tions. You can use search and various filters to quickly find the desired applications.
Exercise 2.6
Experiment with the filters and page view settings to learn which other features are
available in the applications list page.

APPLICATION DETAILS PAGE

The additional information about the application is available on the application
details page. Navigate to the application details page by clicking on the “sample app”
application tile.

 The application details page visualizes the application resources hierarchy and
provides additional details about synchronization and health status. Let’s take a closer
look at the application resource tree and learn which features it provides.

 The root element of the resource tree is the application itself. The next level con-
sists of managed resources. The managed resources are resources that the manifest
defined in Git and are controlled by Argo CD explicitly. As we’ve learned in chapter 1,
Kubernetes controllers often leverage delegation and create child resources to dele-
gate the work. The third and deeper levels represent such resources. That provides
complete information about every application element and makes the application
details page an extremely powerful Kubernetes dashboard.

 In addition to this information, the user interface allows executing various actions
against each resource. It is possible to delete any resource, re-create it by running sync

Applications tilesApplication list filter
Page view settings

46 CHAPTER 2 Argo CD
actions, update the resource definition using a built-in YAML editor, and even run
resource-specific actions such as Deployment restart.

Exercise 2.7
Go ahead, use the application details page to inspect your application. Try to find how
to view the resource manifests, locate Pods, and see the live logs.

2.3 Deep dive into Argo CD features
So far, we’ve learned how to deploy new applications using Argo CD and get detailed
application information using the CLI and the user interface. Next, let’s learn how to
deploy a new application version using GitOps and Argo CD.

2.3.1 GitOps-driven deployment

In order to perform GitOps deployment, we need to update resource manifests and
let the GitOps operator push changes into the Kubernetes cluster. As a first step, clone
the Deployment repository using the following command:

$ git clone git@github.com:<username>/sample-app-deployment.git
$ cd sample-app-deployment

Next, use the following command to change the image version of the Deployment
resource:

$ sed -i '' 's/sample-app:v.*/sample-app:v0.2/' deployment.yaml

Use the git diff command to make sure that your Git repository has the expected
changes:

Health status Synchronization status

Managed Kubernetes
resources

Child Kubernetes
resources

Figure 2.7 The application details page provides information about the application resource hierarchy
as well as detailed information about each resource.

47Deep dive into Argo CD features
$ git diff
diff --git a/deployment.yaml b/deployment.yaml
index 5fc3833..397d058 100644
--- a/deployment.yaml
+++ b/deployment.yaml
@@ -16,7 +16,7 @@ spec:
 containers:
 - command:
 - /app/sample-app
- image: gitopsbook/sample-app:v0.1
+ image: gitopsbook/sample-app:v0.2
 name: sample-app
 ports:
 - containerPort: 8080

Finally, use git commit and git push to push changes to the remote Git repository:

$ git commit -am "update deployment image"
$ git push

Let’s use the Argo CD CLI to make sure that Argo CD correctly detected manifest
changes in Git and then triggered a synchronization process to push the changes into
the Kubernetes cluster:

$ argocd app diff sample-app --refresh
===== apps/Deployment default/sample-app ======
21c21
< image: gitopsbook/sample-app:v0.1

> image: gitopsbook/sample-app:v0.2

Exercise 2.8
Open the Argo CD UI and use the application details page to check the application
sync status and inspect the managed resources status.

 Use the argocd sync command to trigger the synchronization process:

$ argocd app sync sample-app

Great, you just performed GitOps deployment using Argo CD!

2.3.2 Resource hooks

Resource manifest syncing is just the basic use case. In real life, we often need to exe-
cute additional steps before and after actual deployment. For example, set the mainte-
nance page, execute database migration before the new version deployment, and
finally remove the maintenance page.

 Traditionally these deployment steps are scripted in the CI pipeline. However, this
again requires production access from the CI server, which involves a security threat.
To solve that problem, Argo CD provides a feature called resource hooks. These hooks
allow running custom scripts, typically packaged into a Pod or a Job, inside of the
Kubernetes cluster during the synchronization process.

 The hook is a Kubernetes resource manifest stored in the Git repository and anno-
tated with the argocd.argoproj.io/hook annotation. The annotation value contains

48 CHAPTER 2 Argo CD
a comma-separated list of phases when the hook is supposed to be executed. The fol-
lowing phases are supported:

 Pre-sync —Executes prior to the applying of the manifests
 Sync —Executes after all pre-sync hooks completed and were successful, at the

same time as the apply of the manifests
 Skip —Indicates to Argo CD to skip the apply of the manifest
 Post-sync —Executes after all sync hooks completed and were successful, a suc-

cessful apply, and all resources in a healthy state
 Sync-fai —Executes when the sync operation fails

The hooks are executed inside of the cluster, so there is no need to access the cluster
from the CI pipeline. The ability to specify the sync phase provides the necessary flex-
ibility and allows a mechanism to solve the majority of real-life deployment use cases.

Figure 2.8 The synchronization process includes three main phases. The pre-sync phase is 
used to execute preparation tasks such as database migration. The sync phase includes the
synchronization of application resources. Finally, the post-sync phase runs postprocessing 
tasks, such as email notifications.

It is time to see the hooks feature in action! Add the hook definition into the sample
app deployment repository and push changes to the remote repository:

$ git add pre-sync.yaml
$ git commit -am 'Add pre-sync hook'
$ git push

apiVersion: batch/v1
kind: Job
metadata:

Listing 2.1 http://mng.bz/go7l

Pre-sync phase Sync phase Post-sync phase

ResourcesPre-sync hooks Post-sync hooks

Sync-fail hooks
Sync hooks

Execution sequenceExecute custom
synchronization logic.

Application
resources

Execute pre-sync
tasks such as
database migration.

Execute post-sync
actions such as
smoke tests.

Handle failed
synchronization.

49Deep dive into Argo CD features
 name: before
 annotations:
 argocd.argoproj.io/hook: PreSync
spec:
 template:
 spec:
 containers:
 - name: sleep
 image: alpine:latest
 command: ["echo", "pre-sync"]
 restartPolicy: Never
 backoffLimit: 0

The Argo CD user interface provides much better visualization of a dynamic process
than the CLI. Let’s use it to better understand how hooks work. Open the Argo CD UI
using the following command:

$ minikube service argocd-server -n argocd --url

Navigate to the sample-app details page and trigger the synchronization process using
the Sync button. The syncing process is represented in figure 2.9.

Figure 2.9 The application detail page allows the user to trigger the synchronization as well as view
detailed information about the synchronization progress, including synchronization hooks.

As soon as the sync is started, the application details page shows live process status in
the top-right corner. The status includes information about operation start time and
duration. You can view the syncing status panel with detailed information, including
sync hook results, by clicking the Sync Status icon.

Synchronization
process state

Sync button

Sync hook

50 CHAPTER 2 Argo CD
 The hooks are stored as the regular resource manifests in the Git repository and also
visualized as regular resources in the Application resource tree. You can see the real-
time status of the “before” job and use the Argo CD user interface to inspect child Pods.

 In addition to phases, you might customize the hook deletion policy. The deletion
policy allows automating hook resources deletion that will save you a lot of manual work.

Exercise 2.9
Read more details in the Argo CD documentation13 and change the “before” job dele-
tion policy. Use the Argo CD user interface to observe how various deletion policies
affect hook behavior. Synchronize the application and observe how hook resources
got created and deleted by Argo CD.

2.3.3 Postdeployment verification

Resource hooks allow encapsulating the application synchronization logic, so we
don’t have to use scripts and continuous integration tools. However, some of such use
cases naturally belong to continuous integration processes, and it is still preferable to
use tools like Jenkins.

 One such use case is postdeployment verification. The challenge here is that
GitOps deployment is asynchronous by nature. After the commit is pushed to the Git
repository, we still need to make sure that changes are propagated to the Kubernetes
cluster. Even after changes are propagated, it is not safe to start running tests. In most
cases, the update of a Kubernetes resource is not instant, either. For example, the
Deployment resource update triggers the rolling-update process. The rolling update
might take several minutes or even fail if the new application version has an issue. So
if you start tests too early, you might end up testing the previously deployed applica-
tion version.

 Argo CD makes this issue trivial by providing tools that help to monitor application
status. The argocd app wait command monitors the application and exits after the
application reaches a synced and healthy state. As soon as the command exits, you can
assume that all changes are successfully rolled out, and it is safe to start postdeployment
verification. The argocd app wait command is often used in conjunction with argocd
app sync. Use the following command to synchronize your application and wait until
the change is fully rolled out, and the application is ready for testing:

$ argocd app sync sample-app && argocd app wait sample-app

2.4 Enterprise features
Argo CD is pretty lightweight, and it is really easy to start using it. At the same time, it
scales well for a large enterprise and is able to accommodate the needs of multiple
teams. The enterprise features can be configured as you go. If you are rolling out an
Argo CD for your organization, then the first question is how to configure the end
user and effectively manage access control.

13 http://mng.bz/e5Ez.

http://mng.bz/e5Ez

51Enterprise features
2.4.1 Single sign-on

Instead of introducing its own user management system, Argo CD provides integra-
tion with multiple SSO services. The list includes Okta, Google OAuth, Azure AD, and
many more.

SSO SSO is a session and user authentication service that allows a user to use
one set of login credentials to access multiple applications.

The SSO integration is great because it saves you a lot of management overhead, and
end users don’t have to remember another set of login credentials. There are several
open standards for exchanging authentication and authorization data. The most pop-
ular ones are SAML, OAuth, and OpenID Connect (OIDC). Of the three, SAML and
OIDC satisfy the best requirements of a typical enterprise and can be used to imple-
ment SSO. Argo CD decided to go ahead with OIDC because of its power and simplicity.

 The number of steps required to configure an OIDC integration depends on your
OIDC provider. The Argo CD community already contributed a number of instruc-
tions for popular OIDC providers such as Okta and Azure AD. After performing the
configuration on the OIDC provider side, you need to add the corresponding config-
uration to the argocd-cm ConfigMap. The following snippet represents the sample
Okta configuration:

apiVersion: v1
kind: ConfigMap
metadata:
 name: argocd-cm
 namespace: argocd
 labels:
 app.kubernetes.io/name: argocd-cm
 app.kubernetes.io/part-of: argocd
data:
 url: https://<myargocdhost>
 oidc.config: |
 name: Okta
 issuer: https://yourorganization.oktapreview.com
 clientID: <your client id>
 clientSecret: <your client secret>
 requestedScopes: ["openid", "profile", "email", "groups"]
 requestedIDTokenClaims: {"groups": {"essential": true}}

What if your organization does not have an OIDC-compatible SSO service? In this case,
you can use a federated OIDC provider, Dex,14 which is bundled into the Argo CD by
default. Dex acts as a proxy to other identity providers and allows establishing integra-
tion with SAML, LDAP providers, or even services like GitHub and Active Directory.

 GitHub often is a very attractive option, especially if it is already used by developers
in your organization. Additionally, organizations and teams configured in GitHub nat-

14 https://github.com/dexidp/dex.

The externally facing 
base URL Argo CD URL

OIDC configuration that
includes Okta application
client id and secret

https://github.com/dexidp/dex

52 CHAPTER 2 Argo CD
urally fit the access control model required to organize cluster access. As you are
going to learn soon, it is very easy to model Argo CD access using the GitHub team
membership. Let’s use GitHub to enhance our Argo CD installation and enable SSO
integration.

 First of all, we need to create a GitHub OAuth application. Navigate to https://
github.com/settings/applications/new and configure the application settings as rep-
resented in figure 2.10.

Figure 2.10 New GitHub OAuth application settings include the application name 
and description, home page URL, and, most importantly, the authorization callback URL.

Specify the application name of your choice and the home page URL that matches
the Argo CD web user interface URL. The most important application setting is the
callback URL. The callback URL value is the Argo CD web user interface URL plus
the /api/dex/callback path. The sample URL with minikube might be http://
192.168.64.2:32638/api/dex/callback.

https://github.com/settings/applications/new
https://github.com/settings/applications/new
https://github.com/settings/applications/new

53Enterprise features
 After creating the application, you will be redirected to the OAuth application set-
tings page. Copy the application Client ID and Client Secret. These values will be used
to configure the Argo CD settings.

Figure 2.11 The GitHub OAuth application settings page displays the Client ID and Client Secret values,
which are required to configure the SSO integration.

Substitute the placeholder values in the argocd-cm.yaml file with your environment
values.

apiVersion: v1
kind: ConfigMap
metadata:
 name: argocd-cm
 labels:
 app.kubernetes.io/name: argocd-cm
 app.kubernetes.io/part-of: argocd
data:
 url: https://<minikube-host>:<minikube-port>

 dex.config: |
 connectors:
 - type: github
 id: github
 name: GitHub

Listing 2.2 http://mng.bz/pV1G

The externally facing 
base URL Argo CD URL

54 CHAPTER 2 Argo CD
 config:
 clientID: <client-id>
 clientSecret: <client-secret>
 loadAllGroups: true

Update the Argo CD ConfigMap using the kubectl apply command:

$ kubectl apply -f ./argocd-cm.yaml -n argocd

You are ready to go! Open the Argo CD user interface in the browser and use the
Login Via GitHub button.

2.4.2 Access control

You might notice that after a successful login using GitHub SSO integration, the appli-
cation list page is empty. If you try creating a new application, you will see a “permis-
sion denied” error. This behavior is expected because we have not given any
permission to the new SSO user yet. In order to provide the user with appropriate
access, we need to update the Argo CD access control settings.

 Argo CD provides a flexible role-based access control (RBAC) system whose imple-
mentation is based on Casbin,15 a powerful open source access control library. Casbin
provides a very solid foundation and allows configuring various access control rules.

 The RBAC Argo CD settings are configured using argocd-rbac-cm ConfigMap. To
quickly dive into the configuration details, let’s update the ConfigMap fields and then
go together through each change.

 Substitute the <username> placeholder with your GitHub account username in the
argocd-rbac-cm.yaml file.

apiVersion: v1
kind: ConfigMap
metadata:
 name: argocd-rbac-cm
 labels:
 app.kubernetes.io/name: argocd-rbac-cm
 app.kubernetes.io/part-of: argocd
data:

 policy.csv: |
 p, role:developer, applications, *, */*, allow
 g, role:developer, role:readonly

 g, <username>, role:developer

 scopes: '[groups, preferred_username]'

15 https://github.com/casbin/casbin.

Listing 2.3 http://mng.bz/OEPn

GitHub OAuth 
application client ID

GitHub OAuth application 
client secret

The policy.csv contains 
role-based access rules.

The scopes setting specifies
which JWT claim is used to 
infer user groups.

https://github.com/casbin/casbin

55Enterprise features
Apply the RBAC changes using the kubectl apply command:

$ kubectl apply -f ./argocd-rbac-cm.yaml -n argocd

The policy.csv field in this configuration defines a role named role:developer with
full permissions on Argo CD applications and read-only permissions over Argo CD sys-
tem settings. The role is granted to any user that belongs to a group whose name
matches your GitHub account username. As soon as changes are applied, refresh the
applications list page and try syncing the sample-app application.

 We’ve introduced quite a few new terms. Let’s step back and discuss what roles,
groups, and claims are and how they work together.

ROLE

The role allows or denies a set of actions on an Argo CD object to a particular subject.
The role is defined in the form

p, subject, resource, action, object, effect

where

 p indicates the RBAC policy line.
 subject is a group.
 resource is one of the Argo CD resource types. Argo CD supports the following

resources: "clusters", "projects", "applications", "repositories", "cer-
tificates", "accounts".

 action is an action name that might be executed against a resource. All Argo
CD resources support the following actions: "get", "create", "update",
"delete". The "*" value matches any action.

 object is a pattern that identifies a particular resource instance. The "*" value
matches any instance.

 effect defines whether the role grants or denies the action.

The role:developer role from this example allows any action against any Argo CD
application:

p, role:developer, applications, *, */*, allow

GROUP

A group provides the ability to identify a set of users and works in conjunction with
OIDC integration. After performing the successful OIDC authentication, the end user
receives a JWT token that verifies the user identity as well as provides additional meta-
data stored in the token claims.

JWT TOKEN A JWT token is an internet standard for creating JSON-based
access tokens that assert some number of claims.16

16 https://en.wikipedia.org/wiki/JSON_Web_Token.

https://en.wikipedia.org/wiki/JSON_Web_Token

56 CHAPTER 2 Argo CD
The token is supplied with every Argo CD request. The Argo CD extracts the list of
groups that a user belongs to from a configured list of token claims and uses it to ver-
ify user permissions.

 Following is a token claims example generated by Dex:

{
 "iss": "https://192.168.64.2:32638/api/dex",
 "sub": "CgY0MjY0MzcSBmdpdGh1Yg",
 "aud": "argo-cd",
 "exp": 1585646367,
 "iat": 1585559967,
 "at_hash": "rAz6dDHslBWvU6PiWj_o9g",
 "email": "AMatyushentsev@gmail.com",
 "email_verified": true,
 "groups": [
 "gitopsbook"
],
 "name": "Alexander Matyushentsev",
 "preferred_username": "alexmt"
}

The token contains two claims that might be useful for authorization:

 groups includes a list of GitHub organizations and teams the user belongs to.
 preferred_username is the GitHub account username.

By default, Argo CD uses groups to retrieve user groups from the JWT token. We’ve
added the preferred_username claim using the scopes setting to allow identifying
GitHub users by name.

Exercise 2.10
Update the argocd-rbac-cm ConfigMap to provide admin access to the GitHub user
based on their email.

NOTE This chapter covers important foundations of Argo CD and gets you
ready for further learning. Explore the Argo CD documentation to learn
about diffing logic customization, fine-tuning config management tools,
advanced security features such as auth tokens, and much more. The project
keeps evolving and getting new features in every release. Check out the Argo
CD blog to stay up to date with the changes, and don’t hesitate to ask ques-
tions in the Argoproj slack channel.

2.4.3 Declarative management

As you might’ve noticed, Argo CD provides a lot of configuration settings. The RBAC
policies, SSO settings, Applications, and Projects—all of those are settings that have to
be managed by someone. The good news is that you can leverage GitOps and use
Argo CD to manage itself!

 All Argo CD settings are persisted in Kubernetes resources. The SSO and RBAC
settings stored in ConfigMap and Applications and Projects are stored in custom

57Enterprise features
resources, so you can store these resource manifests in a Git repository and configure
Argo CD to use it as a source of truth. This technique is very powerful and allows us to
manage configuration settings as well as seamlessly upgrade the Argo CD version.

 As a first step, let’s demonstrate how to convert the SSO and RBAC changes we’ve
just made imperatively into a declarative configuration. To do so we would need to
create a Git repository that stores manifest definitions of every Argo CD component.
Instead of starting from scratch, you can just use the code listings in the repository at
https://github.com/gitopsbook/resources as a starting point. Navigate to the reposi-
tory GitHub URL and create your personal fork so you can store settings specific to
your environment.

 The required manifest files are located in the chapter-09 directory, and the first file
we should look at is represented in the following listing.

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
resources:
- https://raw.githubusercontent.com/argoproj/argo-

cd/stable/manifests/install.yaml

patchesStrategicMerge:
- argocd-cm.yaml
- argocd-rbac-cm.yaml
- argocd-server.yaml



The kustomization.yaml file contains references to the default Argo CD manifests and
files with the environment-specific changes.

 The next step is to move your environment-specific changes into Git and push
them into the remote Git repository. Clone the forked Git repository:

$ git clone git@github.com:<USERNAME>/resources.git

Repeat the changes to the argocd-cm.yaml and argocd-rbac-cm.yaml files described in
sections 2.4.1 and 2.4.2. Add SSO configuration to the ConfigMap manifest in
argocd-cm.yaml. Update the RBAC policy in the argocd-rbac-cm.yaml file. Once the
files are updated, commit and push the changes back to the remote repository:

$ git commit -am "Update Argo CD configuration"
$ git push

The hardest part is done! Argo CD config changes are not version controlled and can
be managed using GitOps methodology. The last step is to create an Argo CD applica-
tion that deploys Kustomize-based manifests from your Git repository into the argocd
Namespace:

Listing 2.4 http://mng.bz/YqRN

The remote file URL containing
default Argo CD manifests

The file path that contains argocd-cm
ConfigMap modifications

The file path that contains argocd-
rbac-cm ConfigMap modifications

The file path that contains argocd-
server Service modifications

https://github.com/gitopsbook/resources

58 CHAPTER 2 Argo CD
$ argocd app create argocd \
--repo https://github.com/<USERNAME>/resources.git \
--path chapter-09 \
--dest-server https://kubernetes.default.svc \
--dest-namespace argocd \
--sync-policy auto
application 'argocd' created

As soon as the application is created, Argo CD should detect already deployed
resources and visualize the detected deviations.

 So how about managing applications and projects? Both are represented by the
Kubernetes custom resource and might be managed using GitOps as well. The mani-
fest in the next listing represents the declarative definition of the sample-app Argo
CD application that we created manually earlier in the chapter. In order to start man-
aging sample-app declaratively, add the sample-app.yaml into the resources section of
kustomization.yaml and push the change back to your repository fork.

apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
 name: sample-app
spec:
 destination:
 namespace: default
 server: https://kubernetes.default.svc
 project: default
 source:
 path: .
 repoURL: https://github.com/<username>/sample-app-deployment

As you can see, you don’t have to choose between declarative and imperative manage-
ment styles. Argo CD supports using both simultaneously so that some settings are
managed using GitOps and some are managed using imperative commands.

Summary
 Argo CD is designed with enterprises in mind and can be offered as a central-

ized service to support multitenancy and multiclustering for large enterprises.
 As a continuous deployment tool, Argo CD also provides detail diff among Git,

target Kubernetes clusters, and running states for observability.
 Argo CD automates three phases in deployment:

– Retrieve resource manifests.
– Detect and fix the deviations.
– Present the results to end users.

 Argo CD provides CLI for configuring Application deployment and can be
incorporated into CI solutions through scripting.

Listing 2.5 http://mng.bz/Gx9q

59Summary
 Argo CD’s CLI and web interface can be used to inspect applications’ sync and
health statuses.

 Argo CD provides resource hooks to enable additional customization of the
deployment life cycle.

 Argo CD also provides support to ensure deployment completion and applica-
tion readiness.

 Argo CD supports both SSO and RBAC integration for enterprise-level SSO and
access control.

appendix A
Set up a test

Kubernetes cluster
A full production-capable Kubernetes cluster is a very complex system consisting of
multiple components that must be installed and configured based on your particu-
lar needs. How to deploy and maintain Kubernetes in production goes way beyond
the focus of this book and is covered elsewhere.

 Luckily for us, there are several projects which handle the configuration com-
plexity and allow running Kubernetes locally with a single CLI command. Running
a Kubernetes locally on your laptop is useful to get your hands dirty with Kuberne-
tes and prepare you for completing the exercises in the remainder of this book. To
the extent possible, all remaining exercises will utilize a cluster running on your
laptop using an application called minikube. However, if you prefer to use your
own cluster running on a cloud provider (or even on-premises) the exercises will
work there as well.

MINIKUBE Minikube is an official tool maintained by the Kubernetes com-
munity to create a single-node Kubernetes cluster inside a VM on your lap-
top and supports macOS, Linux, and Windows. In addition to actually
running the cluster, minikube provides features which simplify accessing
services inside Kubernetes, volume management and many more.

Other projects you can consider to use are

 Docker for desktop—If you are using Docker on your laptop you might already
have Kubernetes installed! Starting with version 18.6.0 both Windows and
Mac Docker-for-Desktop comes with bundled Kubernetes binaries and devel-
oper productivity features.

 K3S—As the name implies, K3S is a lightweight Kubernetes deployment.
According to authors K3S is five less than eight so K8S minus five is K3S.
Besides the funny name K3S is indeed extremely lightweight, fast, and a
60

61Install minikube and create a cluster
great choice if you need to run Kubernetes as part of CI job or on a hardware
with limited resources. Installation instructions are available at https://k3s.io.

 KIND—Another tool developed by the Kubernetes community. KIND was devel-
oped by maintainers for Kubernetes v1.11+ conformance testing. Installation
instructions are available at https://kind.sigs.k8s.io/.

While all listed tools simplify Kubernetes deployment to a single CLI command and
provide great experience, minikube is still the safest choice to get started with Kuber-
netes. With all platforms support, thanks to virtualization, and a great set of developer
productivity features this is a great tool for both beginners and experts. All exercises
and samples in this book rely on minikube.

A.1 Prerequisites for working with Kubernetes
The following tools and utilities are needed to work with Kubernetes.

 In addition to Kubernetes itself, we need to install kubectl. The kubectl is a com-
mand line utility which allows interacting with Kubernetes control plane and allows
doing virtually anything with Kubernetes.

A.1.1 Configure kubectl

To get started go ahead and install minikube as described at https://kubernetes.io
/docs/tasks/tools/install-kubectl/. If you are a macOS or Linux user you can com-
plete the installation process in one step using homebrew package manager using the
following command:

$ brew install kubectl

HOMEBREW Homebrew is a free and open source software package mana-
gement system that simplifies the installation of software on Apple's
macOS operating system and Linux. More information is available at
https://brew.sh/.

A.2 Install minikube and create a cluster
minikube is an application that allows you to run a single-node Kubernetes cluster on
your desktop or laptop machine. Installation instructions are available at https://
kubernetes.io/docs/tasks/tools/install-minikube/.

 Most (but not all) exercises in this book can be completed using a local minikube
cluster.

A.2.1 Configure minikube

The next step is to install and start the minikube cluster. The installation process is
described at https://minikube.sigs.k8s.io/docs/start/. The minikube package is also
available via Homebrew:

$ brew install minikube

https://k3s.io/
https://kind.sigs.k8s.io/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://brew.sh/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://minikube.sigs.k8s.io/docs/start/

62 APPENDIX A Set up a test Kubernetes cluster
If everything goes smoothly so far, we are ready to start minikube and configure our
first deployment:

$ minikube start
(minikube/default)

 minikube v1.1.1 on darwin (amd64)
 Creating virtualbox VM (CPUs=2, Memory=2048MB, Disk=20000MB) ...
 Configuring environment for Kubernetes v1.14.3 on Docker 18.09.6
 Pulling images ...
 Launching Kubernetes ...
 Verifying: apiserver proxy etcd scheduler controller dns
 Done! kubectl is now configured to use "minikube"

$ kubectl create -f nginx-Pod.yaml
Pod/nginx created

A.3 Create a GKE cluster in GCP
The Google Cloud Platform (GCP) offers the Google Kubernetes Engine (GKE) as
part of their free tier:

https://cloud.google.com/free/.

You can create a Kubernetes GKE cluster to run the exercises in this book:

https://cloud.google.com/kubernetes-engine/

Keep in mind that while GKE itself is free, you may be charged for other GCP
resources that are created by Kubernetes. It is recommended that you delete your test
cluster after completing each exercise in order to avoid unexpected costs.

A.4 Create an EKS cluster in AWS
Amazon Web Services (AWS) offers a managed Kubernetes service called Elastic Kuber-
netes Service (EKS). You can create a free AWS account and create an EKS cluster to
run the exercises in this book. However, while relatively inexpensive, EKS is not a free
service (it costs $0.20/hour at the time of this writing) and you may also be changes for
other resources created by Kubernetes. It is recommended that you delete your test
cluster after completing each exercise in order to avoid unexpected costs.

 There is a tool called eksctl by Weaveworks which allows you to easily create an EKS
Kubernetes cluster in your AWS account:

https://github.com/weaveworks/eksctl/blob/master/README.md

https://cloud.google.com/free/
https://cloud.google.com/kubernetes-engine/
https://github.com/weaveworks/eksctl/blob/master/README.md

appendix B
Set up GitOps tools

This appendix will go over the step by step instruction to set up tools required for
the tutorials in part 3.

B.1 Install Argo CD
Argo CD supports several installation methods. You might use the official Kustom-
ize based installation, the community maintained Helm chart,17 or even the Argo
CD operator18 to manage the Argo CD deployments. The simplest possible installa-
tion method requires only to use a single YAML file. Please go ahead and use the
following commands to install Argo CD into your minikube cluster:

$ kubectl create namespace argocd
$ kubectl apply -n argocd -f

https://raw.githubusercontent.com/argoproj/argo-
cd/stable/manifests/install.yaml

The command above installs all Argo CD components with the default settings that
work for most users out of the box. For security reasons, the Argo CD UI and API
are not exposed outside of the cluster by default. It is totally safe to open full access
on minikube.

 Enable load balancer access19 in your minikube cluster by running the following
command in a separate terminal:

$ minikube tunnel

Use the following command to open access to the “argocd-server” service and get
the access URL:

$ kubectl patch svc argocd-server -n argocd -p '{"spec": {"type":
"LoadBalancer"}}'

17 https://github.com/argoproj/argo-helm/tree/master/charts/argo-cd
18 https://github.com/argoproj-labs/argocd-operator
19 https://minikube.sigs.k8s.io/docs/handbook/accessing/#loadbalancer-access
63

https://github.com/argoproj/argo-helm/tree/master/charts/argo-cd
https://github.com/argoproj-labs/argocd-operator

64 APPENDIX B Set up GitOps tools
Argo CD provides both a web-based user interface and a command-line interface
(CLI). To simplify the instructions, we are going to use the CLI tool in this tutorial.
Let’s go ahead and install the CLI tool. You might use the following command to
install Argo CD CLI on Mac or follow the official getting started instructions20 to
install the CLI on your platform:

$ brew tap argoproj/tap
$ brew install argoproj/tap/argocd

As soon as Argo CD is installed, it has a preconfigured admin user. The initial admin
password is auto-generated to be the pod name of the Argo CD API server that can be
retrieved using the command below:

$ kubectl get pods -n argocd -l app.kubernetes.io/name=argocd-server -o name
| cut -d'/' -f 2

Use the following command to get the Argo CD server URL and update generated
password using the Argo CD CLI:

$ argocd login <ARGOCD_SERVER-HOSTNAME>:<PORT>
$ argocd account update-password

The <ARGOCD_SERVER-HOSTNAME>:<PORT> is a minikube API and service port
that should be obtained from the Argo CD URL. The URL might be retrieved using
the following command:

minikube service argocd-server -n argocd --url

The command returns the HTTP service URL. Make sure to remove http:// and use
only hostname and the port to login using Argo CD CLI.

 Finally, login to the Argo CD user interface. Please open the Argo CD URL in the
browser and login using the admin username and your password. You are ready to go!

B.2 Install Jenkins X
Jenkins X CLI depends on kubectl21 and Helm22 and will do its best to install those
tools. However, the number of permutations of what we have on our laptops are close
to infinite, so you're better off installing those tools first yourself.

NOTE At the time of this writing, February 2020, Jenkins X does not yet sup-
port Helm v3+. Please make sure that you're using Helm CLI v2+.

20 https://argoproj.github.io/argo-cd/cli_installation/#download-with-curl
21 https://kubernetes.io/docs/tasks/tools/install-kubectl/
22 https://docs.helm.sh/using_helm/#installing-helm

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/

65Install Jenkins X
B.2.1 Prerequisites

You can use (almost) any Kubernetes cluster, but it needs to be publicly accessible.
The main reason for that lies in GitHub triggers. Jenkins X relies heavily on GitOps
principles. Most of the events will be triggered by GitHub webhooks. If your cluster
cannot be accessed from GitHub, you won’t be able to trigger those events, and you
will have difficulty following the examples.

 Now, that poses two significant issues. You might prefer to practice locally using
Minikube or Docker for desktop, but neither of the two is accessible from outside your
laptop. You might have a corporate cluster that is inaccessible from the outside world.
In those cases, I suggest you use a service from AWS, GCP, or from anywhere else.
Finally, we’ll perform some GitHub operations using the command hub. Install it if
you don't have it already.

NOTE Please refer to appendix A for more information on configuring AWS
or GCP Kubernetes cluster.

For your convenience, the list of all the tools we’ll use is as follows:

 Git
 kubectl
 Helm23

 AWS CLI
 eksctl24 (if using AWS EKS)
 gcloud (if using Google GKE)
 hub25

Now let’s install Jenkins X CLI:

$ brew tap jenkins-x/jx
$ brew install jx

B.2.2 Installing Jenkins X In Kubernetes cluster

How can we install Jenkins X in a better way than what we’re used to installing soft-
ware? Jenkins X configuration should be defined as code and reside in a Git reposi-
tory, and that’s what the community created for us. It maintains a GitHub repository
that contains the structure of the definition of the Jenkins X platform, together with a
pipeline that will install it, as well as a requirements file that we can use to tweak it to
our specific needs.

NOTE You can also refer to the Jenkins X site26 for setting up Jenkins X in
your Kubernetes cluster.

23 https://docs.helm.sh/using_helm/#installing-helm
24 https://github.com/weaveworks/eksctl
25 https://hub.github.com/
26 https://jenkins-x.io/docs/getting-started/setup/

https://github.com/weaveworks/eksctl
https://hub.github.com/
https://jenkins-x.io/docs/getting-started/setup/

66 APPENDIX B Set up GitOps tools
Let's take a look at the repository:

$ open "https://github.com/jenkins-x/jenkins-x-boot-config.git"

Once you see the repo in your browser, you will first create a fork under your GitHub
account. We’ll explore the files in the repo a bit later.

 Next, we’ll define a variable CLUSTER_NAME that will, as you can guess, hold the
name of the cluster we created a short while ago. In the commands that follow, please
replace the first occurrence of [...] with the name of the cluster and the second with
your GitHub user:

$ export CLUSTER_NAME=[...]
$ export GH_USER=[...]

After we forked the Boot repo and we know how our cluster is called, we can clone the
repository with a proper name that will reflect the naming scheme of our soon-to-be-
installed Jenkins X:

$ git clone \
 https://github.com/$GH_USER/jenkins-x-boot-config.git \
 environment-$CLUSTER_NAME-dev

The key file that contains (almost) all the parameters that can be used to customize
the setup is jx-requirements.yml. Let's take a look at it:

$ cd environment-$CLUSTER_NAME-dev
$ cat jx-requirements.yml
cluster:
 clusterName: ""
 environmentGitOwner: ""
 project: ""
 provider: gke
 zone: ""
gitops: true
environments:
- key: dev
- key: staging
- key: production
ingress:
 domain: ""
 externalDNS: false
 tls:
 email: ""
 enabled: false
 production: false
kaniko: true
secretStorage: local
storage:
 logs:
 enabled: false
 url: ""
 reports:
 enabled: false
 url: ""

67Install Jenkins X
 repository:
 enabled: false
 url: ""
versionStream:
 ref: "master"
 url: https://github.com/jenkins-x/jenkins-x-versions.git
webhook: prow

As you can see, that file contains values in a format that resembles the require-
ments.yaml file used with Helm charts. It is split into a few sections.

 First, there is a group of values that define our cluster. You should be able to figure
out what it represents by looking at the variables inside it. It probably won’t take you
more than a few moments to see that we have to change at least some of those values,
so that's what we’ll do next.

 Please open jx-requirements.yml in your favorite editor and change the following
values:

 Set cluster.clusterName to the name of your cluster. It should be the same as
the name of the environment variable CLUSTER_NAME. If you already forgot it,
execute echo $CLUSTER_NAME.

 Set cluster.environmentGitOwner to your GitHub user. It should be the same
as the one we previously declared as the environment variable $GH_USER.

 Set cluster.project to the name of your GKE project, only if that's where your
Kubernetes cluster is running. Otherwise, leave that value intact (empty).

 Set cluster.provider to gke or to eks or to any other provider if you decided
that you are brave and want to try currently unsupported platforms. Or things
may have changed since the writing of this chapter, and your provider is indeed
supported now.

 Set cluster.zone to whichever zone your cluster is running in. If you’re run-
ning a regional cluster (as you should), then the value should be the region,
not the zone. If, for example, you used my Gist to create a GKE cluster, the
value should be us-east1-b. Similarly, the one for EKS is us-east-1.

We're finished with the cluster section, and the next in line is the gitops value. It
instructs the system how to treat the Boot process. I don't believe it makes sense to
change it to false, so we'll leave it as is (true).

 The next section contains the list of the environments that we're already familiar
with. The keys are the suffixes, and the final names will be a combination of environ-
ment- with the name of the cluster followed by the key. We'll leave them intact.

 The ingress section defines the parameters related to external access to the clus-
ter (domain, TLS, and so on).

 The kaniko value should be self-explanatory. When set to true, the system will
build container images using Kaniko instead of, let's say, Docker. That is a much better
choice since Docker cannot run in a container and, as such, poses a significant secu-
rity risk (mounted sockets are evil), and it messes with Kubernetes scheduler given

68 APPENDIX B Set up GitOps tools
that it bypasses its API. In any case, Kaniko is the only supported way to build con-
tainer images when using Tekton, so we'll leave it as is (true).

 Next, we have secretStorage currently set to local. The whole platform will be
defined in this repository, except for secrets (such as passwords). Pushing them to Git
would be childish, so Jenkins X can store the secrets in different locations. If we’d
change it to local, that location is your laptop. While that is better than a Git repository,
you can probably imagine why that is not the right solution. Keeping secrets locally com-
plicates cooperation (they exist only on your laptop), is volatile, and is only slightly more
secure than Git. A much better place for secrets is HashiCorp Vault. It is the most com-
monly used solution for secrets management in Kubernetes (and beyond), and Jenkins
X supports it out of the box. If you have a vault setup, you can set the value of secret-
Storage to vault. Otherwise, you can leave the default value ‘local’.

 Below the secretStorage value is the whole section that defines storage for logs,
reports, and repositories. If enabled, those artifacts will be stored on a network drive.
As you already know, containers and nodes are short-lived, and if we want to preserve
any of those, we need to store them elsewhere. That does not necessarily mean that
network drives are the best place, but rather that’s what comes out of the box. Later
on, you might choose to change that and, let’s say, ship logs to a central database like
ElasticSearch, PaperTrail, CloudWatch, StackDriver, and so on.

 For now, we'll keep it simple and enable network storage for all three types of artifacts:

 Set the value of storage.logs.enabled to true.
 Set the value of storage.reports.enabled to true.
 Set the value of storage.repository.enabled to true.

The versionsStream section defines the repository that contains versions of all the
packages (charts) used by Jenkins X. You might choose to fork that repository and
control versions yourself. Before you jump into doing just that, please note that Jen-
kins X versioning is quite complex, given that many packages are involved. Leave it be
unless you have a very good reason to take over control of the Jenkins X versioning
and that you’re ready to maintain it.

 As you already know, Prow only supports GitHub. If that’s not your Git provider,
Prow is a no-go. As an alternative, we could set it up in Jenkins, but that’s not the right
solution either. Jenkins (without X) is not going to be supported for long, given that
the future is in Tekton. It was used in the first generation of Jenkins X only because it
was a good starting point and because it supports almost anything we can imagine. But
the community has embraced Tekton as the only pipeline engine, and that means that
static Jenkins X is fading away and that it is used mostly as a transition solution for
those accustomed to the “traditional” Jenkins.

 So, what can we do if Prow is not a choice if you do not use GitHub, and Jenkins
days are numbered? To make things more complicated, even Prow will be deprecated
sometime in the future (or past depending when you read this). It will be replaced
with Lighthouse, which, at least at the beginning, will provide similar functionality as

69Install Jenkins X
Prow. Its primary advantage when compared with Prow is that Lighthouse will (or
already does) support all major Git providers (such as GitHub, GitHub Enterprise,
Bitbucket Server, Bitbucket Cloud, GitLab, etc.). At some moment, the default value
of webhook will be lighthouse. But, at the time of this writing (October 2019), that’s
not the case since Lighthouse is not yet stable and production-ready. It will be soon.
Or, maybe it already is, and I did not yet rewrite this chapter to reflect that.

 In any case, we’ll keep Prow as our webhook (for now).
 Please only execute the following commands if you are using EKS. They will add

additional information related to Vault, namely the IAM user that has sufficient per-
missions to interact with it. Make sure to replace [...] with your IAM user that has
sufficient permissions (being admin always works):

$ export IAM_USER=[...] # such as jx-boot
echo "vault:
 aws:
 autoCreate: true
 iamUserName: \"$IAM_USER\"" \
 | tee -a jx-requirements.yml

Please only execute the following commands if you are using EKS. The jx-require-
ments.yaml file contains zone entry, and for AWS we need a region. That command
will replace one with the other:

$ cat jx-requirements.yml \
 | sed -e \
 's@zone@region@g' \
 | tee jx-requirements.yml

Let's take a peek at how jx-requirements.yml looks now:

$ cat jx-requirements.yml
cluster:
 clusterName: "jx-boot"
 environmentGitOwner: "vfarcic"
 project: "devops-26"
 provider: gke
 zone: "us-east1"
gitops: true
environments:
- key: dev
- key: staging
- key: production
ingress:
 domain: ""
 externalDNS: false
 tls:
 email: ""
 enabled: false
 production: false
kaniko: true
secretStorage: vault
storage:
 logs:

70 APPENDIX B Set up GitOps tools
 enabled: true
 url: ""
 reports:
 enabled: true
 url: ""
 repository:
 enabled: true
 url: ""
versionStream:
 ref: "master"
 url: https://github.com/jenkins-x/jenkins-x-versions.git
webhook: prow

Now, you might be worried that we missed some of the values. For example, we did
not specify a domain. Does that mean that our cluster will not be accessible from out-
side? We also did not specify the URL for storage. Will Jenkins X ignore it in that case?

 The truth is that we specified only the things we know. For example, if you created
a cluster using my Gist, there is no Ingress, so there is no external load balancer that it
was supposed to create. As a result, we do not yet know the IP through which we can
access the cluster, and we cannot generate a .nip.io domain. Similarly, we did not cre-
ate storage. If we did, we could have entered addresses into URL fields.

 Those are only a few examples of the unknowns. We specified what we know, and
we’ll let Jenkins X Boot figure out the unknowns. Or, to be more precise, we’ll let Boot
create the resources that are missing and thus convert the unknowns into known.

 Let's install Jenkins X:

$ jx boot

Now we need to answer quite a few questions. In the past, we tried to avoid answering
questions by specifying all answers as arguments to commands we were executing.
That way, we had a documented method for doing things that do not end up in a Git
repository. Someone else could reproduce what we did by running the same com-
mands. This time, however, there is no need to avoid questions since everything we'll
do will be stored in a Git repository.

 The first input is asking for a comma-separated list of Git provider usernames of
approvers for the development environment repository. That will create the list of
users who can approve pull requests to the development repository managed by Jen-
kins X Boot. For now, type your GitHub user and hit the enter key.

 We can see that, after a while, we were presented with two warnings stating that
TLS is not enabled for Vault and webhooks. If we specified a “real” domain, Boot
would install Let’s Encrypt and generate certificates. But, since I couldn’t be sure that
you have a domain at hand, we did not specify it, and, as a result, we will not get certif-
icates. While that would be unacceptable in production, it is quite OK as an exercise.

 As a result of those warnings, the Boot is asking us whether we wish to continue.
Type y and press the enter key to continue.

 Given that Jenkins X creates multiple releases a day, the chances are that you do not
have the latest version of jx. If that’s the case, the Boot will ask, would you like to

71Install Jenkins X
upgrade to the jx version?. Press the enter key to use the default answer Y. As a result,
the Boot will upgrade the CLI, but that will abort the pipeline. That’s OK. No harm
done. All we have to do is repeat the process but, this time, with the latest version of jx:

$ jx boot

The process started again. We'll skip commenting on the first few questions from jx
boot and continue without TLS. Answers are the same as before (y in both cases).

 The next set of questions is related to long term storage for logs, reports, and
repository. Press the enter key to all three questions, and the Boot will create buckets
with auto-generated unique names.

 From now on, the process will create the secrets and install CRDs (Custom
Resource Definitions) that provide custom resources specific to Jenkins X. Then, it’ll
install nginx Ingress (unless your cluster already has one) and set the domain to .nip.io
since we did not specify one. Further on, it will install CertManager, which will provide
Let’s Encrypt certificates. Or, to be more precise, it would provide the certificates if we
specified a domain. Nevertheless, it’s installed just in case we change our minds and
choose to update the platform by changing the domain and enabling TLS later on.

 The next in line is Vault. The Boot will install it and attempt to populate it with the
secrets. But, since it does not know them just yet, the process will ask us another round
of questions. The first one in this group is the Admin Username. Feel free to press the
enter key to accept the default value admin. After that comes Admin Password. Type
whatever you’d like to use (we won’t need it today).

 The process will need to know how to access our GitHub repositories, so it asks us
for the Git username, email address, and token. You can use your GitHub username
and email for the first two questions. As for the token,27 you’ll need to create a new
one in GitHub and grant full repo access. Finally, the next question related to secrets is
HMAC token. Feel free to press the enter key, and the process will create it for you.

 Finally comes the last question. Do you want to configure an external Docker Reg-
istry? Press the enter key to use the default answer (N) and the Boot will create it
inside the cluster or, as in case of most cloud providers, use the registry provided as a
service. In the case of GKE, that would be GCR, for EKS that’s ECR. In any case, by not
configuring an external Docker Registry, the Boot will use whatever makes the most
sense for a given provider:

? Jenkins X Admin Username admin
? Jenkins X Admin Password [? for help] ********
? The Git user that will perform git operations inside a pipeline. It should

be a user within the Git organisation/own? Pipeline bot Git username
vfarcic

? Pipeline bot Git email address vfarcic@gmail.com
? A token for the Git user that will perform git operations inside a

pipeline. This includes environment repository creation, and so this
token should have full repository permissions. To create a token go to
https://github.com/settings/tokens/new?scopes=repo,read:user,read:org,us

27 https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token

https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token

72 APPENDIX B Set up GitOps tools
er:email,write:repo_hook,delete_repo then enter a name, click Generate
token, and copy and paste the token into this prompt.

? Pipeline bot Git token **
Generated token bb65edc3f137e598c55a17f90bac549b80fefbcaf, to use it press

enter.
This is the only time you will be shown it so remember to save it
? HMAC token, used to validate incoming webhooks. Press enter to use the

generated token [? for help]
? Do you want to configure non default Docker Registry? No

The rest of the process will install and configure all the components of the platform.
We won’t go into all of them since they are the same as those we used before. What
matters is that the system will be fully operational a while later.

 The last step will verify the installation. You might see a few warnings during this
last step of the process. Don’t be alarmed. The Boot is most likely impatient. Over
time, you’ll see the number of running Pods increasing and those that are pending
decreasing, until all the Pods are running.

 That’s it. Jenkins X is now up-and-running. We have the whole definition of the
platform with complete configuration (except for secrets) stored in a Git repository:

verifying the Jenkins X installation in namespace jx
verifying pods
Checking pod statuses
POD STATUS
jenkins-x-chartmuseum-774f8b95b-bdxfh Running
jenkins-x-controllerbuild-66cbf7b74-twkbp Running
jenkins-x-controllerrole-7d76b8f449-5f5xx Running
jenkins-x-gcactivities-1594872000-w6gns Succeeded
jenkins-x-gcpods-1594872000-m7kgq Succeeded
jenkins-x-heapster-679ff46bf4-94w5f Running
jenkins-x-nexus-555999cf9c-s8hnn Running
lighthouse-foghorn-599b6c9c87-bvpct Running
lighthouse-gc-jobs-1594872000-wllsp Succeeded
lighthouse-keeper-7c47467555-c87bz Running
lighthouse-webhooks-679cc6bbbd-fxw7z Running
lighthouse-webhooks-679cc6bbbd-zl4bw Running
tekton-pipelines-controller-5c4d79bb75-75hvj Running
Verifying the git config
Verifying username billyy at git server github at https://github.com
Found 2 organisations in git server https://github.com: IntuitDeveloper,

intuit
Validated pipeline user billyy on git server https://github.com
Git tokens seem to be setup correctly
Installation is currently looking: GOOD
Using namespace 'jx' from context named 'gke_hazel-charter-283301_us-east1-

b_cluster-1' on server 'https://34.73.66.41'.

B.3 Install Flux
Flux consists of a CLI client and daemon that runs inside of the managed Kubernetes
cluster. This document explains how to install the Flux CLI only. The daemon installa-
tion requires you to specify the Git repository with access credentials and covered in
chapter 11.

73Install Flux
B.3.1 Install CLI client

The Flux distribution includes the CLI client named fluxctl. The fluxctl automates
Flux daemon installation and allows to get the information about Kubernetes
resources controlled by the Flux daemon.

 Use one of following commands to install the fluxctl in Mac, Linux, and Windows:
Mac OS

brew install fluxctl

Linux

sudo snap install fluxctl

Windows

choco install fluxctl

Find more information about fluxctl installation details in the official installation
instructions: https://docs.fluxcd.io/en/latest/references/fluxctl/.

https://docs.fluxcd.io/en/latest/references/fluxctl/

	contents
	foreword
	1
	Kubernetes and GitOps
	1.1 Kubernetes introduction
	1.1.1 What is Kubernetes?
	1.1.2 Other container orchestrators
	1.1.3 Kubernetes architecture
	1.1.4 Deploying to Kubernetes
	Exercise 1.1

	1.2 Declarative vs. imperative object management
	1.2.1 How declarative configuration works

	1.3 Controller architecture
	1.3.1 Controller delegation
	1.3.2 Controller pattern
	1.3.3 NGINX operator
	Exercise 1.2
	Exercise 1.3
	Exercise 1.4

	1.4 Kubernetes + GitOps
	1.5 Getting started with CI/CD
	1.5.1 Basic GitOps operator
	Exercise 1.5

	1.5.2 Continuous integration pipeline

	Summary

	2
	Argo CD
	2.1 What is Argo CD?
	2.1.1 Main use cases
	Exercise 2.1

	2.1.2 Core concepts
	Exercise 2.2

	2.1.3 Sync and health statuses
	Exercise 2.3
	Exercise 2.4

	2.1.4 Architecture
	Exercise 2.5

	2.2 Deploy your first application
	2.2.1 Deploying the first application
	2.2.2 Inspect the application using the user interface
	Exercise 2.6
	Exercise 2.7

	2.3 Deep dive into Argo CD features
	2.3.1 GitOps-driven deployment
	Exercise 2.8

	2.3.2 Resource hooks
	Exercise 2.9

	2.3.3 Postdeployment verification

	2.4 Enterprise features
	2.4.1 Single sign-on
	2.4.2 Access control
	Exercise 2.10

	2.4.3 Declarative management

	Summary
	Set up a test Kubernetes cluster
	A.1 Prerequisites for working with Kubernetes
	A.1.1 Configure kubectl

	A.2 Install minikube and create a cluster
	A.2.1 Configure minikube

	A.3 Create a GKE cluster in GCP
	A.4 Create an EKS cluster in AWS
	Set up GitOps tools
	B.1 Install Argo CD
	B.2 Install Jenkins X
	B.2.1 Prerequisites
	B.2.2 Installing Jenkins X In Kubernetes cluster

	B.3 Install Flux
	B.3.1 Install CLI client

