

Automating
Workflows with
GitHub Actions

Automate software development workflows
and seamlessly deploy your applications using
GitHub Actions

Priscila Heller

BIRMINGHAM—MUMBAI

Automating Workflows with GitHub Actions
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author(s), nor Packt Publishing or its dealers and
distributors, will be held liable for any damages caused or alleged to have been caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Group Product Manager: Wilson D'souza

Publishing Product Manager: Shrilekha Inani

Senior Editor: Shazeen Iqbal

Content Development Editor: Rafiaa Khan

Technical Editor: Nithik Cheruvakodan

Copy Editor: Safis Editing

Project Coordinator: Shagun Saini

Proofreader: Safis Editing

Indexer: Rekha Nair

Production Designer: Jyoti Chauhan

First published: August 2021

Production reference:1110821

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80056-040-6

www.packt.com

http://www.packt.com

My special thanks and endless admiration to my husband, Dr. Michael
Devin Heller, who supported me when I was writing my very first book

during times that were trying in more ways than I could have predicted. To
my mom and my brother, who cheered me on across the globe, my love and
gratitude. My appreciation and many thanks to the Packt team, especially
to Shazeen Iqbal, Sankalp Khattri, and Neil D'mello who believed in my

potential before I did.

To my dad, who always invested in my education
and development: I wish you were here.

– Priscila Heller

Contributors

About the author
Priscila Heller was born and raised in Brazil, where she obtained a bachelor's degree in
journalism. She moved to the United States in 2011, where she has been living ever since.
After working in many different fields, she found a career opportunity in tech and went
back to school to pursue a degree in information system technology. In 2016, Priscila
joined GitHub as an enterprise support agent. Over the years, she has been promoted
a few times, and today she is a senior manager of Premium Support.

Priscila believes in the power of technology, education, and communication. She considers
the democratization of knowledge and information to be invaluable for the cultural,
social, economic, and scientific development of society and humanity.

About the reviewer
Melanie Cooper is a lifelong techie, and career tech professional, having spent the last
few years as an engineer at GitHub assisting administrators and developers with the
configuration and management of their GitHub enterprise solutions, with a specialization
in Actions and Packages. A North Carolina native, she resides in Raleigh with her
husband, along with their two dogs, and four cats. She is also a strong supporter and
an avid investor in cryptocurrency– currently focusing work and contributions toward
charitable causes such as $FEG (Feed Every Gorilla), a community that helps fund saving
the lives of primates in Africa.

Preface

Section 1: Introduction and Overview
of Technologies Used with GitHub Actions

1
Learning the Foundations for GitHub Actions

Technical requirements 4
Understanding the basics of CI/CD 4
A brief trip through the history of
software development 5

Introduction to GitHub: creating
a user account 7
Creating a free user account on GitHub 7
Creating a PAT 9
About SSH keys 11
Checking for existing SSH keys 11
Adding your SSH key to your GitHub
user account 14

Discovering the basics of Git
and GitHub 17
Configuring Git 17
Basic Git commands 18
Basics of GitHub 26
Pull requests 30
Settings 33
Branches 34
Actions 36
Secrets 37

Introduction to YAML 37
Basic rules 37
YAML components 39

Summary 41

2
Deep Diving into GitHub Actions

Learning about GitHub Actions'
core concepts and components 44

Events 44
Jobs 48

Table of Contents

viii Table of Contents

Steps 48
Actions 49
Runners 49

Understanding the basics of
workflows 51
Learning the basics of the workflow
file syntax 51
Writing and customizing workflow files 54
Using the Actions tab to find and
customize workflow templates 57

Securing your GitHub Actions 60
Secrets – how to create and use them 60
Creating encrypted secrets at the
repository level 62
Creating encrypted secrets at the
environment level 63
Using encrypted secrets in a workflow 65
Best practices for securing self-hosted
runners 66

Summary 67

Section 2: Advanced Concepts and
Hands-On Exercises to Create Actions

3
A Closer Look at Workflows

Reviewing the webhook events
that trigger workflows 72
Branch or tag creation 73
Deployment creation and deployment
status 74
Issues 75
Issue_comment 75
Project 77
Pull request 78
Pull request review 80

Authenticating within
a workflow 82
Overview 82

Permissions 83
Alternative authentication methods 83

Understanding contexts,
environment variables, and
expressions 86
Contexts 86
Expressions 88

Managing the workflow run 89
Visualizing a workflow run 89
Workflow run logs 91

Summary 94

4
Working with Self-Hosted Runners

Technical requirements 96
Creating a self-hosted runner 96

Overview 97

Table of Contents ix

Architecture and operating systems
supported
by self-hosted runners 98
Communication with GitHub 99
Adding the GitHub Actions runner
application to your repository 100

Configuring a job that runs on
a self-hosted runner 108

Managing a self-hosted runner 110
Understanding the status of self-
hosted runners 110
Reviewing logs 111
The automatic update process 113
Removing a self-hosted runner 113

Summary 114

5
Writing Your Own Actions

Technical requirements 116
Overview 116
Types of actions 116

Reviewing the metadata syntax 117
Using exit codes 119
Adding exit codes to a JavaScript action 119
Adding exit codes to a Docker
container action 120

Creating a JavaScript action 120
Prerequisites 120
Defining the action 121
Writing the action logic 122
Ensuring all works as expected 124

Creating a Docker container
action 127
Prerequisites 127
Creating a Dockerfile in your GitHub
repository 129
Defining the action 130
Writing the action logic 130
Ensuring all works as expected 131

Creating a composite run steps
action 133
Prerequisites 134
Defining the action 135
Ensuring all works as expected 136

Summary 137

6
Marketplace – Finding Existing Actions and Publishing
Your Own

Technical requirements 140
Overview 140
Finding existing actions 141
Publishing your own actions 144
Prerequisites 144

Preparing and publishing your action 144

Removing your action from
GitHub Marketplace 150
Summary 151

x Table of Contents

Section 3: Customizing Existing Actions,
Migrations, and the Future of GitHub
Actions

7
Migrations

Technical requirements 156
Considerations before you
migrate 156
Migrating from Azure Pipelines 157
Syntax differences 158

Migrating from GitLab CI/CD 161

Syntax differences 161

Migrating from Jenkins 165
Syntax differences 165

Summary 169

8
Contributing to the Community and Finding Help

Technical requirements 172
Hands-on learning 172
Interacting with the GitHub
Actions community 175

Helping to improve GitHub
Actions 179
Requesting technical support 181
Summary 183

9
The Future of GitHub Actions

Technical requirements 186
Checking the GitHub roadmap 186
Reading the GitHub blog and
changelog 188

Connecting through social
media 189
Summary 190
Why subscribe? 191

Other Books You May Enjoy
Index

Preface
GitHub Actions is an elegant solution to help anyone involved in the software
development lifecycle automate everyday tasks and use their resources more efficiently.

This is the ultimate guide to accompany you on your journey of learning about and
applying the benefits of keeping your code and automation pipelines in one single place.
By the end of this book, you will have all the knowledge you need to implement CI/CD
using GitHub Actions.

Who this book is for
This book was specially written for beginner users of GitHub and GitHub Actions
in general.

This book is also for anyone who is involved in the software development lifecycle, for
readers who are curious about what GitHub Actions is, and what can be accomplished
with it, and for anyone who wants to learn a new skill that will help their career in
software development.

What this book covers
Chapter 1, Learning the Foundations of GitHub Actions, introduces GitHub, YAML, and
other concepts that are the foundation of GitHub Actions.

Chapter 2, Deep-Diving into GitHub Actions, presents specific concepts, components, and
characteristics of GitHub Actions in more detail.

Chapter 3, A Closer Look at Workflows, presents in-depth information about workflows,
the core of GitHub Actions. This chapter includes several real-life examples.

xii Preface

Chapter 4, Working with Self-Hosted Runners, gives an overview of what self-hosted
runners are, how to create an environment to host runners, and creating a workflow that
uses a self-hosted runner.

Chapter 5, Writing Your Own Actions, guides you on creating actions of all three kinds:
Docker, JavaScript, and composite run steps.

Chapter 6, Marketplace: Finding Existing Actions and Publishing Your Own, guides you on
how to find existing actions that were created by the GitHub Actions community, and how
to publish actions that you create.

Chapter 7, Migrations, looks at how to migrate from other CI/CD platforms such as Azure
Pipelines, GitLab CI/CD, and Jenkins into GitHub Actions.

Chapter 8, Contributing to the Community and Finding Help, covers how you can
participate in the GitHub Actions community to both ask for and offer help.

Chapter 9, The Future of GitHub Actions, takes a look at the public GitHub roadmap and
highlights GitHub Actions features that will be added in the future.

To get the most out of this book
This book is a comprehensive guide that will help you learn about GitHub, YAML, and
GitHub Actions from scratch. The only expectation is that you have general knowledge of
navigating the internet.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing so
will help you avoid any potential errors related to the copying and pasting of code.

Preface xiii

For some chapters, you will need to clone the following GitHub repository to proceed
with the exercises:

https://github.com/PacktPublishing/Automating-Workflows-with-
GitHub-Actions

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/
files/downloads/9781800560406_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Mount the downloaded WebStorm-10*.dmg disk image file as
another disk in your system."

A block of code is set as follows:

jobs:

 build:

 runs-on: ubuntu-latest

 steps:

 - name: Close Issue

Any command-line input or output is written as follows:

$ ls -al ~/.ssh

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Tips or important notes
Appear like this.

https://github.com/PacktPublishing/Automating-Workflows-with-GitHub-Actions
https://github.com/PacktPublishing/Automating-Workflows-with-GitHub-Actions
http://www.packtpub.com/sites/default/files/downloads/9781800560406_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781800560406_ColorImages.pdf

xiv Preface

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share Your Thoughts
Once you've read Automating Workflows with GitHub Actions, we'd love to hear your
thoughts! Please click here to go straight to the Amazon review page
for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1800560400

Section 1:
Introduction

and Overview of
Technologies Used

with GitHub Actions
In this section, you will get a basic understanding of the technologies that make using
GitHub Actions possible. An overview of what Continuous Integration/Continuous
Deployment (CI/CD) is will also be included.

The following chapters will be covered in this section:

• Chapter 1, Learning the Foundations for GitHub Actions

• Chapter 2, Deep-Diving into GitHub Actions

1
Learning the

Foundations for
GitHub Actions

Independently of your current level of expertise, by the time you have finished reading
the last chapter in this book, you will have completed all the steps needed to implement
a cohesive Continuous Integration/Continuous Delivery (CI/CD) workflow using
GitHub Actions. You will also have familiarity with many other systems and practices
that have helped GitHub Actions gain popularity in the software development and
DevOps world.

Automation is the heart of most modern DevOps practices. Many tools have been created
to allow for automated tests, builds, and deployment, and GitHub Actions is one of those
tools. It is an elegant solution that offers the convenience of creating and managing CI and
CD workflows from GitHub, the largest code-hosting platform in the world.

4 Learning the Foundations for GitHub Actions

It is important to understand the basic concepts of CI and CD before creating and
managing GitHub Actions workflows. It is also relevant to learn about some of the
technologies that make GitHub Actions possible, such as GitHub—the platform where
all GitHub Actions live— and YAML Ain't Markup Language, commonly known as
YAML—the markup language that powers GitHub Actions workflows. In this chapter, you
will learn more about the following topics:

• Understanding the basics of CI/CD

• Introduction to GitHub: creating a user account

• Discovering the basics of Git and GitHub

• Introducing YAML

Technical requirements
In this introductory chapter, you will create a GitHub account and a GitHub repository
and will review a YAML file, as hands-on practice in preparation for the subsequent
chapters in this book. To accomplish all that, you will need the following:

• A computer or laptop with access to the internet, and modern browsers, such as the
latest versions of Safari, Firefox, Chrome, and Microsoft Edge.

• A command-line utility: For macOS and Linux, you will need a system such as
Terminal, where you can run shell and Git commands. For Windows, you will
need to download and install Git Bash, if you do not already have it installed.

• An email address, which you will need in order to create a GitHub account.

• A text editor such as Atom, Visual Studio Code (VS Code), Sublime, and so on.

Understanding the basics of CI/CD
Before jumping into the core concepts of CI and CD, it is helpful to understand more
about the history and evolution of the software development life cycle. While this section
will not present a comprehensive list of all software development methods that may have
led to the progress and adoption of CI and CD practices, it will present relevant concepts
that will help illustrate why CI and CD are widely adopted today.

Understanding the basics of CI/CD 5

A brief trip through the history of software
development
Many believe that software engineering dates back to the 1960s. During that time,
software engineering and computing in general were costly, which likely nudged software
engineers into practicing software development in a similar way to how hardware
production was done. In other words, software development started as a slow, cautious,
and methodical practice that followed a sequence of steps aimed at delivering perfect
products. This method is known currently as the Waterfall model, which is composed
of seven phases, each of which depends on the successful and sequential completion of
the previous phase. The Waterfall model is known for its inflexible, process-oriented, and
sequential nature.

Over time, many issues surfaced in the Waterfall model. For example, extensive and
time-consuming planning and approvals were needed before software engineers even had
the chance to start writing code. By the time software was written, tested, and deployed,
months had passed and customers' needs had changed completely. The Waterfall model
did not allow for many iterations, and when changes were needed, this was a long and
expensive process that often created bottlenecks and resulted in obsolete or unused
features.

While the Waterfall model was predominant between the 1960s and 1980s, there was
an awareness that a fast, flexible, lightweight, product-focused, and people-focused—as
opposed to process-focused—approach was needed.

In the early 1990s, Extreme Programming (XP) reinforced the concept that tests should
be written to describe how code should work, which was also the center of test-driven
development (TDD) practices. The XP community then announced a practice that later
would help shape what is today known as CI. They announced the use of automated
processes to frequently integrate all code across developing teams, with the intention
of delivering code that could be sent to production at any given time. This practice has
resulted in many builds per day, which improves the predictability and efficiency of the
software development life cycle and allows for constant interaction with customers to
satisfy their ever-changing needs. This process, in conjunction with other philosophies
and software development methods that were gaining traction in the 1990s, later formed
the Agile Manifesto.

Many similar software development practices emerged between the 1990s and early
2000s. A group of 17 independent thinkers representing XP, Scrum, Adaptive Software
Development (ASD), and other communities met to find their commonalities in
approaches, as well as to try to find a different approach to heavyweight software
development practices.

6 Learning the Foundations for GitHub Actions

The Agile Manifesto was created at the end of that meeting when, among all the different
software development practices, the Agile Alliance was formed.

Agile encompasses many practices that are lightweight, code- and people-oriented, and
highly adaptive. Other modern approaches, some of which predate Agile, are also based
on the idea that the software development cycle should be highly adaptive and built
frequently. Based on these premises, CI and CD have gained more space among software
developers across the globe.

The main idea behind CI is that automated processes should be in place to test and build
software many times a day. This is important because bugs are commonly introduced at
the intersection or integration of two different pieces of code. In other words, CI practices
manage processes, which allows software engineers to focus on the code itself.

CD follows in the footsteps of CI. It focuses on gathering all changes to code—such as
new features, bug fixes, and configuration changes—and sending them to users—or
production—as safely, sustainably, and quickly as possible.

CI in conjunction with CD can be both powerful and challenging, given the shift in
culture that must accompany the adoption of these practices. When combined and
adopted across a company, they can help ensure high-quality, lightweight, and adaptive
software development.

Many tools have been created to help software and operations engineers build a CI/CD
pipeline. GitHub Actions is arguably the most popular one: it makes it easier to automate
the building, testing, and deployment of code on any platform—including Linux, macOS,
and Windows—without leaving the repository where the code lives. All of this can happen
while GitHub manages the execution and provides rich feedback and security for every
step in your workflow.

Because GitHub Actions happen within a repository hosted on GitHub, a GitHub account
is needed. Basic knowledge of GitHub as a platform is also helpful. In the next section,
you will learn how to create a GitHub account, as well as how to use some basic Git and
GitHub features.

Introduction to GitHub: creating a user account 7

Introduction to GitHub: creating a user
account
GitHub is the largest code-hosting platform in the world. It uses Git as version control,
and most activities happen on a repository hosted on GitHub. This and other features
such as pull requests, project boards, and GitHub Actions allow software engineers,
operations engineers, product managers, and everybody else involved in software
development to collaborate in one place.

To start hosting code on GitHub, a user account is needed. Different accounts can be
created on GitHub. While some account types are paid for, such as Team and Enterprise
accounts, it is also possible to create a free user account. You can learn about all the
different account types offered by GitHub, as well as the features offered with each
account, by accessing https://docs.github.com/en/free-pro-team@
latest/github/getting-started-with-github/types-of-github-
accounts.

While the GitHub Free account type will be used throughout this book, learning about the
features offered in other account types may help you choose an account that is appropriate
for the scope of your project.

In the next few sections, you will learn how to create a free user account, as well as set
up authentication options such as personal access tokens (PATs) and a Secure Shell
(SSH) key.

Creating a free user account on GitHub
If you already have a GitHub account, you will not need to follow the steps in this section.

When you create a personal user account on GitHub, you have access to features such as
unlimited public and private repositories and 2,000 actions minutes per month. After you
create a user account, you can use a few different authentication methods to retrieve data
related to your account and its resources, outlined as follows:

• On the web browser, you can provide your username and password.

• On the application programming interface (API), you can use a PAT.

• On the command line, you can use an SSH key.

The next steps will show you how to create a GitHub Free user account. You will also learn
how to generate a PAT and an SSH key that will be used in upcoming sections and chapters.

https://docs.github.com/en/free-pro-team@latest/github/getting-started-with-github/types-of-github-accounts
https://docs.github.com/en/free-pro-team@latest/github/getting-started-with-github/types-of-github-accounts
https://docs.github.com/en/free-pro-team@latest/github/getting-started-with-github/types-of-github-accounts

8 Learning the Foundations for GitHub Actions

To sign up for a GitHub Free personal user account, follow these steps:

1. Navigate to https://github.com/join.

2. Fill in the blank fields with your information. Note that you will need to choose
a unique username. An existing email address will also be needed, as well as a
password.

3. Solve the verification puzzle and click Verify. Then, click on Create account.

4. Follow the prompts on the next page and click Complete setup. An email will be
sent to the email address you provided in Step 2.

5. The next screen will ask you to verify your email address. Although the account
creation does not depend on having your email verified, you will not be able to use
certain features—such as GitHub Actions—without a verified email address. For
this reason, verifying your email address is required for the scope of this book.

6. Open your email account. You should see an email that looks like this:

Figure 1.1 – An example of the email sent by GitHub requesting you to verify your email address

7. Click on Verify email address.

https://github.com/join

Introduction to GitHub: creating a user account 9

Great job! Your personal user account has been created on GitHub, and you should be
able to find it by navigating to https://github.com/your-username, where your-
username is the unique username that you chose in Step 2.

Creating a PAT
Many popular GitHub Actions workflows use a PAT or an SSH key. This section will walk
you through the creation of a PAT, in preparation for future chapters where one will be
needed.

A PAT is a string of characters that can be used in place of a password against the GitHub
API and on the command line. Different scopes can be attributed to a PAT to specify
exactly what level of access is needed. Scopes are often chosen to limit access: nothing
beyond the selected scopes can be accessed.

The next steps will guide you in creating a PAT with the repo, user, and workflow
scopes. Understanding all the available scopes on GitHub is not part of what will be
covered in this book. However, it is helpful to learn what kinds of access each scope
grants. To learn more, see this documentation: https://docs.github.com/
en/free-pro-team@latest/developers/apps/scopes-for-oauth-
apps#available-scopes.

To create a PAT, follow these steps:

1. Navigate to https://github.com/settings/tokens and click on Generate
new token, as illustrated in the following screenshot:

Figure 1.2 – Generating a new PAT

https://github.com/your-username
https://docs.github.com/en/free-pro-team@latest/developers/apps/scopes-for-oauth-apps#available-scopes
https://docs.github.com/en/free-pro-team@latest/developers/apps/scopes-for-oauth-apps#available-scopes
https://docs.github.com/en/free-pro-team@latest/developers/apps/scopes-for-oauth-apps#available-scopes
https://github.com/settings/tokens

10 Learning the Foundations for GitHub Actions

2. On the next screen, type a note that will help you identify what the PAT will be used
for. Next, select the repo, workflow, and user scopes. Then, click on Generate
token. The PAT scopes are shown in the following screenshot:

Figure 1.3 – PAT scopes

3. On the next screen, make sure to copy your PAT and store it somewhere so that you
can access it later.

Introduction to GitHub: creating a user account 11

Great work so far! You will use your newly created PAT in future sections of this book.

About SSH keys
An SSH key is an identification method that you can use to authenticate against a server.
SSH keys are used as an access credential in the SSH protocol, which is a secure method
for remote login from one server to another. SSH keys are often used in shell scripting,
which is commonly used in GitHub Actions. Another common use of SSH keys is as an
access tool while using the SSH protocol to clone a repository hosted on GitHub down to
your local computer. Future sections will provide more details about cloning a repository
hosted on GitHub.

Checking for existing SSH keys
As best practice and in case you are not sure whether you already have an SSH key, you
should check for existing keys, as follows:

1. Open Terminal (if you're using Linux or macOS) or Git Bash (if you're using
Windows).

2. Enter the following command, which will list all files in the ./~ssh directory
(if they exist) and press Enter on your keyboard:

$ ls -al ~/.ssh

3. Look for an output that might resemble this:

total 64

drwx------ 2 user group 4096 Dec 26 2018 .

drwx--x--x 127 user group 16384 Mar 14 04:41 ..

-rw------- 1 user group 1675 Sep 15 2008 id_rsa

-rw-r--r-- 1 user group 394 Mar 7 2010 id_rsa.pub

If no files are listed, stop here. You will need to generate a new SSH key. Follow the
instructions in the Creating an SSH key section.

If you see a list of files like the ones in Step 3, stop here. You will not need to generate a
new SSH key, but you may need to add your existing key to the SSH agent. Follow the
instructions in the Adding the SSH key to the SSH agent section.

12 Learning the Foundations for GitHub Actions

Creating an SSH key
The next steps will help you generate an SSH key on your local device and add it to your
GitHub user account. These steps are important to grant your device remote access to the
GitHub servers to execute operations such as cloning a repository hosted on GitHub down
to your local device.

The steps to create an SSH key are different depending on your device's operating system.
The following steps will provide instructions on how to create an SSH key on Windows,
Linux, and macOS:

1. Open Terminal (if you are using Linux or macOS) or Git Bash (if you're using
Windows).

2. Enter the following command, replacing your_email@example.com with the
email address you used to create your GitHub user account:

$ ssh-keygen -t ed25519 -C "your_email@example.com"

3. Press Enter on your keyboard. This command creates a new SSH key, and you will
see the following output on your screen:

Generating public/private ed25519 key pair.

4. Follow the prompts on the screen. When asked to enter a file in which to save
the key, press Enter on your keyboard to accept the default location or type the
directory where you would like the key to be saved to.

5. Although a passphrase is optional, it is recommended to enter it. Without a
passphrase, anyone who gains access to your computer can also gain access to other
systems that use your SSH key. When prompted, type a passphrase and press Enter
on your keyboard. The output will look like this:

Enter file in which to save the key (default-file-path):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in (default-location-or-
user-entered-location).

Your public key has been saved in (filesystem-location).

The key fingerprint is:

SHA256:[redacted] your-email@example.com

Introduction to GitHub: creating a user account 13

Excellent! Your SSH key has been generated. Next, you will need to add this newly
generated key to the SSH-agent.

Adding the SSH key to the ssh-agent
Although this step is not mandatory, adding the SSH key to the SSH agent is a best
practice that will help keep your SSH key safe.

The SSH-agent is an SSH key manager. It helps keep your SSH key safe because it protects
your SSH key from being exported. The SSH agent also saves you from having to type the
passphrase you created in Step 5 of the previous section every time your SSH key is used.

Proceed as follows:

1. Start the SSH-agent in the background, by entering the following command in
Terminal or Git Bash and hitting Enter on your keyboard:

$ eval "$(ssh-agent -s)"

2. If you are using Windows or Linux, proceed to Step 3. If you are using macOS
Sierra 10.12.2 or later, you will need to edit your ~/.ssh/config file to include
the UseKeychain option.

First, verify that the ~/.ssh/config file exists. In Terminal, type the following
command, then press Enter on your keyboard:

$ open ~/.ssh/config

3. If the file exists, proceed to the next step. If the file does not exist, use the following
command to create it:

$ touch ~/.ssh/config

4. Make sure the content of your ~/.ssh/config file looks like that shown in the
following code snippet. You may have other lines in your file with different options,
and that is OK. For this step, ensure that the AddKeysToAgent line is added to
your file:

Host *

AddKeysToAgent yes

Add your SSK key to the SSH-agent:

14 Learning the Foundations for GitHub Actions

5. If you are using macOS, skip this step and proceed to Step 5. If you are using Linux
or Windows, open your Terminal or Git Bash, type the following command, and
press Enter on your keyboard:

$ ssh-add ~/.ssh/id_ed25519

6. If you are using macOS and you are using a passphrase to protect your SSH key,
you will need to pass the -K option with the ssh-add command, as shown in the
following code snippet. If you are not using a passphrase, you do not need to pass
the -K option.

7. Open your Terminal, type the following command, and press Enter on your
keyboard:

$ ssh-add -K ~/.ssh/id_ed25519

Well done! Your SSH key has been added to the SSH agent. Next, you will need to add
your newly generated SSH key to your GitHub account on GitHub.

Adding your SSH key to your GitHub user account
When you add your SSH key to your GitHub user account, you have another secure
authentication alternative to interact with GitHub features. For example, when you use
the SSH protocol and SSH key to clone a GitHub-hosted repository, you will not need to
provide your username and PAT. Although you can use other means to clone a repository,
such as HyperText Transfer Protocol (HTTP), SSH is more secure and convenient.

To add your SSH key to your GitHub user account, follow these next steps:

1. Copy your SSH key to the clipboard. The following command will work for both
Terminal and Git Bash:

$ cat ~/.ssh/id_ed25519.pub

2. Navigate to your GitHub user account at https://github.com/settings.

On the left-hand side menu, click on SSH and GPG keys, as illustrated in the
following screenshot:

https://github.com/settings

Introduction to GitHub: creating a user account 15

Figure 1.4 – The SSH and GPG keys menu option on your GitHub account settings page

3. On the next screen, click on New SSH key, as illustrated in the following screenshot:

Figure 1.5 – The SSH keys section of your GitHub account settings

16 Learning the Foundations for GitHub Actions

4. Next, add a Title that will help you identify your SSH key. Then, paste your SSH
key that you copied in Step 1 into the Key textbox, as illustrated in the following
screenshot:

Figure 1.6 – Adding a new SSH key

5. Lastly, click on Add SSH key. Once you click the button, you may be prompted to
enter your GitHub user account password.

Excellent work! You have configured the basic functionalities of your GitHub user
account. Although it is out of the scope of this book, you can customize other features of
your GitHub account by navigating to https://github.com/settings.

In the next section, you will learn the basic Git commands and read more about a few
more GitHub features that will help build the foundation needed to create GitHub
Actions workflows.

https://github.com/settings

Discovering the basics of Git and GitHub 17

Discovering the basics of Git and GitHub
Git is a version control system created in 2005 by Linus Torvalds to improve code
versioning and collaboration. Git is commonly used by software developers for file
version control locally. Although there are many ways to use Git—including graphical
user interface (GUI) applications—this book will only cover the basic commands as run
on a command-line interface (CLI), to help you manipulate files locally and work with
repositories hosted on GitHub.

Independently of the operating system that you are currently using, if you are using Git
for the first time, you will need to configure it first. The next steps will walk you through
this configuration, which only needs to be done once on your machine.

Configuring Git
Git is installed by default on Terminal and Git Bash. If you are not using one of these
options to access the command line, ensure the option you are using has Git installed. If it
does not, you can download Git by navigating to https://git-scm.com/book/en/
v2/Getting-Started-Installing-Git.

One of the many commands in Git is git config, which will allow you to set
configuration variables to control how Git operates and how it looks. You can then see
these variables in either the ~/.gitconfig file or the ~/.config/git/config file.
Although there are many variables that you can customize, this book will only cover the
basic ones.

Proceed as follows:

1. First, start by setting your name and email address, which Git uses for every commit
you create.

Important note
It is highly recommended to use the same email address you used to create
your GitHub user account.

2. Open Terminal or Git Bash and enter the following commands, replacing your
name and email address accordingly. Then, press Enter on your keyboard:

$ git config --global user.name "Priscila Heller"

$ git config --global user.email testesdapri@gmail.com

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

18 Learning the Foundations for GitHub Actions

3. Next, configure your default branch name—available for Git versions 2.28 onward—
as follows:

$ git config --global init.defaultBranch main

4. To verify that all your settings are correct, use the git config --list
command. The output will look similar to this:

$ git config --list

user.email=testesdapri@gmail.com

user.name=Priscila Heller

core.bare=false

Great! Now that you are done configuring Git, it's time to investigate the main Git
commands commonly used in software development.

Basic Git commands
The basic Git commands that will be used throughout this book are listed here:

• git init

• git status

• git checkout -b <branch-name>

• git add

• git commit -m "your message goes here"

• git remote add

• git push

• git pull

• git clone

git init and git status
Imagine that you have a folder on your computer, with many files containing code to
create an application. This code was never version-controlled because you had not heard
of Git up until now. Git allows you to transform that folder into a Git repository, by simply
running git init from within that folder.

Discovering the basics of Git and GitHub 19

In the following example, the name of the folder is soon-to-be-a-github-repo.
From within that folder, running git status will show a message explaining that the
folder is not a Git repository:

$ git status

fatal: not a git repository (or any of the parent directories):
.git

Transforming this folder into a Git repository is as simple as running git init. After
running git init, the output of git status is also different, as can be seen here:

$ git init

Initialized empty Git repository in /Users/testesdapri/Desktop/
soon-to-be-a-github-repo/.git/

$ git status

On branch main

No commits yet

Untracked files:

 (use "git add <file>..." to include in what will be
committed)

 README.md

 index.html

 style.css

nothing added to commit but untracked files present (use "git
add" to track)

The preceding output shows that git init transformed the soon-to-be-a-
github-repo folder into a Git repository. Note the .git extension in the folder path.
Considering that this folder is now a Git repository—also known as a local repository,
git status also shows a different output: the status of the working repository. Note
how it now shows untracked files, the files within the repository, the working branch, and
recommended next commands.

20 Learning the Foundations for GitHub Actions

git checkout and git add
The output of the git status command also shows On branch main. In Git, if the
repository is a tree, a branch is—as its name suggests—a branch off that tree. Branches are
created to allow for changes to be safely added to the code. Generally, those changes will
eventually be merged back into the main branch of the repository, which is often called
the master or main. It is considered best practice to create branches in order to work
on code, and not work directly on the main branch. This will help ensure the safety and
stability of your project.

In the next example, a branch will be created to add some changes to the code that lives
inside the soon-to-be-a-github-repo repository. To do that, the git checkout
-b read-me-feature command will be used. This command will check out from the
main branch and create a new branch called read-me-feature, as illustrated in the
following code snippet:

$ git checkout -b read-me-feature

Switched to a new branch 'read-me-feature'

Now that a new branch has been created, new lines of code can be added to a file of your
choice. As an example, I am adding the line "Look! This repository has a new
branch!" to the README.md file, as you can see here:

Figure 1.7 – Adding a line of code to the README.md file

Once those changes are completed, they can be added to staging using the git add .
command. The dot (".") is used in this case to add all changed files to staging.

Note that the git add . command did not produce any output. This is expected. To
verify that your editions have been added to staging, use git status, as illustrated in
the following code snippet:

$ git add .

$

$ git status

Discovering the basics of Git and GitHub 21

On branch read-me-feature

No commits yet

Changes to be committed:

 (use "git rm --cached <file>..." to unstage)

 new file: README.md

 new file: index.html

 new file: style.css

All changes have been added to the index, or staging, which is the area that holds a
snapshot of all changes made to the working tree (also known as the working directory, or
repository). The next step, as the preceding output suggests, is to commit those changes.

git commit
In Git, the term commit refers to recording changes to the repository. After running git
add, this is a suggested next step, which can be accomplished by running git commit
-m "short message to describe your change".

The changes to the files within the soon-to-be-a-github-repo repository have
already been added to the index. The following output shows what happens once the git
commit command is run:

$ git commit -m "Added a few generic lines"

[read-me-feature (root-commit) 53bd7bf] Added a few generic
lines

 3 files changed, 17 insertions(+)

 create mode 100644 README.md

 create mode 100644 index.html

 create mode 100644 style.css

Typically, the next step after running git commit is to run git remote add in some
cases, and then run git push to push the local changes up to the upstream remote
repository, which—in this case—will be hosted on GitHub.

Important note
Before proceeding with the git remote add and git push
commands, make sure you have created a repository on GitHub.

A public repository called a-github-repo was created on GitHub. Because this
repository was created on a remote host, it is often referred to as the remote repository.

22 Learning the Foundations for GitHub Actions

The git remote add command will create a connection between your soon-to-
be-a-github-repo local repository and your https://github.com/user/a-
github-repo remote repository. This connection will allow you to track changes that
are happening on the remote repository, as well as send changes made to your local
repository to the remote repository upstream on GitHub.

The git remote add command does not return anything when it is completed
successfully. You can use the git remote -v command to list the remotes and confirm
that everything worked as expected. Your output should look like this:

$ git remote add origin https://github.com/testesdapri/a-
github-repo.git

$ git remote -v

origin https://github.com/testesdapri/a-github-repo.git
(fetch)

origin https://github.com/testesdapri/a-github-repo.git
(push)

Now that both the local repository and the remote repository are connected, you can push
your changes to the remote repository. However, observe here the results of running git
push:

$ git push

fatal: The current branch read-me-feature has no upstream
branch.

To push the current branch and set the remote as upstream, use

 git push --set-upstream origin read-me-feature

Important note
The git push --set-upstream origin <new-branch>
command will need to be run every time you create a branch locally that does
not have a remote counterpart. If you don't remember this in the future, do not
worry. Git will remind you with a message similar to the one shared previously.

https://github.com/user/a-github-repo
https://github.com/user/a-github-repo

Discovering the basics of Git and GitHub 23

To fix this, follow the instructions on the preceding output and run git push
--set-upstream origin read-me-feature. This command will push your
local changes to the remote repository, as well as create a remote read-me-feature
branch in the remote repository. Any subsequent changes made locally to the read-me-
feature branch can be pushed to the remote repository by simply running git push
origin read-me-feature. The git push --set-upstream origin read-
me-feature command is shown in the following snippet:

$ git push --set-upstream origin read-me-feature

Enumerating objects: 5, done.

Counting objects: 100% (5/5), done.

Delta compression using up to 12 threads

Compressing objects: 100% (4/4), done.

Writing objects: 100% (5/5), 564 bytes | 564.00 KiB/s, done.

Total 5 (delta 0), reused 0 (delta 0)

To https://github.com/testesdapri/a-github-repo.git/

 * [new branch] read-me-feature -> read-me-feature

Branch 'read-me-feature' set up to track remote branch 'read-
me-feature' from 'origin'.

Now that your changes have been pushed to GitHub successfully, your remote repository
should look similar to this:

Figure 1.8 – A remote repository on GitHub

24 Learning the Foundations for GitHub Actions

You have learned how to push code from your local repository to the remote repository
on GitHub. Next, you will learn how to pull code from a remote repository to your local
repository.

git pull
If any changes are made directly on the web interface of GitHub, they will not
automatically reflect in your local repository. To see those changes reflected on your local
repository, you can run the git pull command. This command will incorporate the
changes from the remote repository into the local repository.

The following output shows how git branch -a was used to list all the available
branches and how git checkout main was used to move from the read-me-
feature branch to the main branch. The asterisk (*) next to the branch indicates that it
is in use:

$ git pull

From https://github.com/testesdapri/a-github-repo

 * [new branch] main -> origin/main

Already up to date.

$ git branch -a

* read-me-feature

 remotes/origin/main

 remotes/origin/read-me-feature

$ git checkout main

Branch 'main' set up to track remote branch 'main' from
'origin'.

Switched to a new branch 'main'

$ git branch -a

* main

 read-me-feature

 remotes/origin/main

 remotes/origin/read-me-feature

Discovering the basics of Git and GitHub 25

git clone
The git clone command is commonly used to clone a repository hosted on GitHub
down to your local machine. As an example, consider that you want to contribute to an
Open-source project such as the https://github.com/github/docs repository.
Although you could use the web interface to add your contributions, it is often preferred
to have the code stored locally. To copy the remote repository down to your local machine,
navigate to your repository page and click on Code, as illustrated in the following
screenshot:

Figure 1.9 – Retrieving the Uniform Resource Locator (URL) to clone a remote repository

Then, copy either the HTTP Secure (HTTPS) link or the SSH link to your clipboard.

Important note
If you copy the HTTPS link, you will need to use your PAT in the next step. If
you copy the SSH link, you will need to use your SSH key in the next step.

Next, open your Terminal or Git Bash and navigate to the directory where you want
the copy of the remote repository to live. Then, enter the https://github.com/
github/docs.git git clone command if you copied the HTTPS link in the last
step, or the git clone git@github.com:github/docs.git command if you
copied the SSH link. Hit Enter on your keyboard.

You should see an output like this, which confirms that the clone was successful:

HTTPS clone

$ git clone https://github.com/github/docs.git

Cloning into 'docs'...

https://github.com/github/docs
https://github.com/github/docs.git
https://github.com/github/docs.git

26 Learning the Foundations for GitHub Actions

remote: Enumerating objects: 68677, done.

remote: Total 68677 (delta 0), reused 0 (delta 0), pack-reused
68677

Receiving objects: 100% (68677/68677), 167.24 MiB | 7.23 MiB/s,
done.

Resolving deltas: 100% (46006/46006), done.

Checking out files: 100% (27024/27024), done.

#SSH clone

$ git clone git@github.com:github/docs.git

Cloning into 'docs'...

remote: Enumerating objects: 68677, done.

remote: Total 68677 (delta 0), reused 0 (delta 0), pack-reused
68677

Receiving objects: 100% (68677/68677), 167.24 MiB | 15.41
MiB/s, done.

Resolving deltas: 100% (46006/46006), done.

Checking out files: 100% (27024/27024), done.

Once the clone is complete, you can use the cd github/docs command to work from
within the repository directory and start contributing code to this project.

Well done! You have learned the basics of Git. It's now time to read more about the basics
of GitHub.

Basics of GitHub
GitHub is a platform globally known and used among software developers who need to
host and collaborate on code.

Git repositories are the center of software development, and they are also the center of
GitHub. GitHub repositories have their own features, such as issues, pull requests, project
boards, and actions. GitHub Actions workflows live within a repository and, many times,
will automate activities that happen within that same repository. Therefore, having a firm
grasp of the main features of a repository will allow you to confidently implement creative
CI/CD workflows.

A GitHub repository is a cloud-based directory where you can host files and folders. To
create a repository on GitHub, you will need a user account. Follow the instructions in the
Creating a free user account on GitHub section if you haven't already created your account.

Discovering the basics of Git and GitHub 27

To create a repository on GitHub, navigate to https://github.com and sign in using
your username and password. Then, click on Create repository, as illustrated in the
following screenshot:

Figure 1.10 – Creating a repository on GitHub

On the next page, choose a repository name and add an optional description for your
repository.

Only public repositories will be used throughout this book. Therefore, select the Public
option.

Next, check the Add a README file option if you would like to create a README file to
your repository.

A README is a file that can be added in order to communicate important information
about how to use your repository, how to collaborate, what a project is about, licensing
information, and so on. In cases where you have a local repository with a README file
that you will later push up to the remote repository, it is best to leave the Add a README
file option unchecked. You can also check this option now and edit the README file once
the repository is created. In any case, it is considered best practice to add a README file
to your project.

Once you are done selecting your preferences, click on Create repository.

In the next section, you will learn more about these tabs in a GitHub repository:

• Issues

• Pull requests

• Settings

https://github.com

28 Learning the Foundations for GitHub Actions

The Actions tab will not be covered here, because Chapter 2, Deep Diving into GitHub
Actions, will provide in-depth information about GitHub Actions, including the contents
of the Actions tab in the repository.

Issues
Issues are created to suggest improvements, report bugs, discuss new ideas, set tasks, or
ask questions about the repository and how to contribute to it. It is possible to assign
labels, milestones, and assignees to issues, as well as filter issues based on those options.

To create an issue in the a-github-repo repository, navigate to the repository home
page at https://github.com/user/a-github-repo/ and click on the Issues tab.
Then, click on New issue, as illustrated in the following screenshot:

Figure 1.11 – Creating a new issue

On the next page, enter an issue title and a description. The body of the issue accepts
Markdown, as the following screenshot shows:

https://github.com/user/a-github-repo/

Discovering the basics of Git and GitHub 29

Figure 1.12 – Adding an issue title and description

The following options can be attributed to an issue:

• Assignees: Often used to assign the issues to one or more contributors who will
work on the bug report or task.

• Labels: These are usually added to issues and pull requests as a way to categorize
them.

• Projects: Project boards organized in columns that help organize pull requests and
issues.

• Milestone: This helps track progress on group issues and pull requests.

• Linked pull requests: Issues are commonly created to report bugs. A pull request
with a fix can be linked to the issue to show that the fix is being worked on and to
automatically close the issue once the pull request is merged.

Add any options you like to the issue and click Submit New Issue.

Very good! You have successfully created an issue. To close an issue, click on the Close
issue button at the bottom of the page.

30 Learning the Foundations for GitHub Actions

Pull requests
In modern software development cycle practices, pull requests are used to propose
changes to files within a repository. On GitHub, a pull request is created when a
contributor wants to incorporate their changes into another branch in the same repository
or in a parent repository.

To create a pull request, you will first need to add a change to a file that already exists
in the repository or propose adding a new file to the repository. For this example, a
quick edit will be added to the README file, where the line "This line was added
through a pull request > merge process" will be added at the end of the file.
Here is what the README file looks like before the edit:

Figure 1.13 – README file before being edited

To edit the README file, navigate to https://github.com/testesdapri/a-
github-repo/edit/main/README.md. Then, add "This line was added
through a pull request > merge process" to the end of the file.

Then, enter a commit message, select the option to create a new branch (remember: it is
advisable not to commit directly to the main branch of the repository in order to keep the
code safe and healthy), and click on Propose changes.

https://github.com/testesdapri/a-github-repo/edit/main/README.md
https://github.com/testesdapri/a-github-repo/edit/main/README.md

Discovering the basics of Git and GitHub 31

Note how the commit message you created in the previous step is now the title of this
pull request. To finish creating the pull request, add a description that will help the code
reviewer understand what your changes will introduce.

You can link the pull request to an issue by using the fixes #number automation
expression, as shown in the next screenshot. number is the number of the issue that the
automation will close once the pull request is merged.

Similar to the options you can add to an issue, you can also add assignees, labels, projects,
and milestones to a pull request, as well as adding reviewers and link issues.

Once you have finished creating a description and adding labels, or assigning contributors
or reviewers, click on Create pull request. This is what the pull request will look like:

Figure 1.14 – A newly created pull request

Note how the issue you mentioned in the body description for the pull request is now
linked under Linked issues.

32 Learning the Foundations for GitHub Actions

Typically, the next steps of the software development cycle would include a code review,
a feedback loop, and code quality tests. This example assumes that those steps have been
completed. Next, it's time to merge these changes into the default branch. To do that, click
on Merge pull request.

The result will look like this:

Figure 1.15 – A merged pull request

Now that the pull request has been merged, notice here how the issue linked to the pull
request was automatically closed:

Discovering the basics of Git and GitHub 33

Figure 1.16 – A closed issue

The checkboxes on both the Issues and Pull requests pages were checked manually.

Settings
The Settings tab allows the repository owner to configure most features within a
repository.

Although many settings are out of the scope of this book, you will learn more about the
ones that are most commonly used in best practices of software development. You will
also become familiar with settings needed in the implementation of some GitHub Actions
workflows.

34 Learning the Foundations for GitHub Actions

To see all the available settings, click on the Settings tab.

This subsection will cover the following settings:

• Manage access

• Branches

• Actions

• Secrets

Branches
This option allows you to perform important tasks, such as defining the default branch for
your repository and creating branch protection rules.

As mentioned previously, it is important not to commit directly to the default branch, to
keep code safe and healthy. To ensure this is the case, repository owners can create branch
protection rules.

To do that, click on Add rule. Then, enter the name of the branch you want to protect. In
the following example, the main branch was used:

Figure 1.17 – Adding a branch protection rule

Discovering the basics of Git and GitHub 35

Next, check the checkboxes that best apply to your scenario and then click on Create, as
illustrated in the following screenshot:

Figure 1.18 – Selecting branch protection rules

36 Learning the Foundations for GitHub Actions

From now on, before pull requests are merged into the main branch, at least one review
will be needed. As the preceding screenshot shows, this branch protection rule does not
apply to repository administrators who can merge code to main freely, although doing
that is not recommended.

Actions
These settings allow you to adjust options related to GitHub Actions, and you can set
Actions permissions. For example, if you only want to allow the use of actions created
by GitHub, you would select the Allow select actions option and then check the Allow
actions created by GitHub checkbox, as illustrated in the following screenshot:

Figure 1.19 – Actions settings

You can also set artifact and log retention, as well as add a self-hosted GitHub Actions
runner, which will be covered in more detail in future chapters.

Introduction to YAML 37

Secrets
Some GitHub Actions workflows will require the use of environment variables. To keep
sensitive information safe, you can add it as secrets. This will encrypt that information
before passing them to workflows.

Secrets will be covered in more detail in future chapters.

Well done! In the past couple of sections, you have created an issue, added options such
as labels and assignees, and closed the issue. You have also proposed changes to a file by
using the GitHub web interface to create a new branch, edit a file, commit changes, create
a pull request, and merge the pull request. You have also learned how to manage some
repository settings.

Next, you will learn the basics of YAML, another foundational piece to review before
diving into GitHub Actions.

Introduction to YAML
GitHub Actions workflows must be written using the YAML syntax. For this reason, having
a strong understanding of how YAML works is essential to create successful workflow runs.

According to the website YAML.org, "YAML is a human friendly data serialization
standard for all programming languages." YAML is commonly used in configuration files,
much like the files used to create GitHub Actions and workflows.

Basic rules
The following file, copied from the open source repository found at https://github.
com/actions/starter-workflows, shows how a YAML file is used to create a
GitHub Actions workflow:

name: Close as a support issue

on:

 issues:

 types: [labeled]

jobs:

 build:

 runs-on: ubuntu-latest

 steps:

 - name: Close Issue

http://YAML.org
https://github.com/actions/starter-workflows
https://github.com/actions/starter-workflows

38 Learning the Foundations for GitHub Actions

 uses: peter-evans/close-issue@v1

 if: contains(github.event.issue.labels.*.name, 'support')

 with:

 comment: |

 Sorry, but we'd like to keep issues related to code
in this repository. Thank you

 If you have questions about writing workflows or
action files, then please [visit the GitHub Community Forum's
Actions Board](https://github.community/t5/GitHub-Actions/bd-p/
actions)

 If you are having an issue or question about GitHub
Actions then please [contact customer support](https://help.
github.com/en/articles/about-github-actions#contacting-
support)

Key-value pairs and case sensitivity
Most elements in YAML are based on key-value pairs, commonly noted as KVPs. You can
observe the KVP syntax in the preceding file and it is shown again here:

name: Close as a support issue

KVPs must be written in following the key: value syntax. Note how there is a space
between the colon and the value. Neglecting to include the space will cause failures when
your configuration or job runs.

If the key-colon-space-value syntax is respected, KVPs in YAML can be quite flexible.

YAML is also case-sensitive. Therefore, keys such as Another-Boolean and another-
boolean are considered valid.

Indentation and the use of tabs
Note the following excerpt from the YAML file shared previously:

on:

 issues:

 types: [labeled]

Indentation in YAML is used to denote structure. In other words, items with the same
indentation are considered siblings, while items with indentation are considered a child or a
parent. In the preceding example, on is the parent of issues, which is the parent of types.

https://help.github.com/en/articles/about-github-actions#contacting-support
https://help.github.com/en/articles/about-github-actions#contacting-support
https://help.github.com/en/articles/about-github-actions#contacting-support

Introduction to YAML 39

Important note
YAML does not use tabs. Indentation is created by using spaces. You may want
to consider configuring your text editor to show white spaces, which may be
helpful while writing YAML files.

Comments
YAML accepts comments. To add a comment, start by adding a hashtag, or pound
sign (#). For example, this is what adding a comment to the YAML file pasted previously
would look like:

#adds a name to the workflow

name: Close as a support issue

on:

 issues:

 types: [labeled]

#creates the job and build

jobs:

 build:

 runs-on: ubuntu-latest

 steps:

YAML components
While this book will not cover a comprehensive list of YAML components, three of the
most used ones are outlined next.

Scalars
Scalars are defined by integers, floats, strings, and Booleans. Given the flexibility that
YAML provides, all the following are acceptable:

integer: 10

#different ways to write booleans

boolean: true

another-boolean: yes

yet-another-boolean: off

40 Learning the Foundations for GitHub Actions

a key with spaces: a value with spaces

#different ways to write strings

string-with-quotes: "a string with quotes"

string-without-quotes: a string with quotes

new-lines-are-kept-as-new-lines: |

 This is line number 1, and it will show exactly this way

 This is line number 2, and it will show exactly this way

 This is line number 3… you get it

multi-lines-here-that-will-render-as-one-line: >

 When you want a block of text made of many lines

 To show all in one single line

 You can use the special character greater than

Sequences
Sequences are also known as lists of data. Items in a sequence are identified by the dash-
space-item syntax. The following workflow file has an example of a block sequence:

 runs-on: ubuntu-latest

 steps:

 - name: Close Issue

Mappings
Mappings allow for the creation of more complex structures, using a combination
of sequences and scalars. Note how the following example has scalars (strings) and a
sequence (list):

 steps:

 - name: Close Issue

 uses: peter-evans/close-issue@v1

 if: contains(github.event.issue.labels.*.name, 'support')

 with:

 comment: |

 Sorry, but we'd like to keep issues related to code
in this repository. Thank you

Summary 41

 If you have questions about writing workflows or
action files, then please [visit the GitHub Community Forum's
Actions Board](https://github.community/t5/GitHub-Actions/bd-p/
actions)

 If you are having an issue or question about GitHub
Actions then please [contact customer support](https://help.
github.com/en/articles/about-github-actions#contacting-
support)

Well done! You have reached the end of Chapter 1. The knowledge you have gathered in
this chapter will be fundamental in understanding core concepts of GitHub Actions and
successfully putting them into practice.

Summary
In this chapter, you read about the history of how software development practices evolved,
and why CI/CD became a popular practice. You also learned the basics of Git—the most
used version control system in the world—and GitHub, the largest code-hosting platform
in the world. Lastly, you learned about YAML and its syntax, which is used to write
GitHub Actions workflow files.

In upcoming chapters, you will put your newly learned skills into practice by writing
GitHub Actions workflow files using the YAML syntax. You will also use your knowledge
of GitHub, CI, and CD to create logical and productive workflows that will allow you to
automate many tasks of your software development life cycle.

Chapter 2, Deep Diving into GitHub Actions, will present more specific and advanced
concepts and components of GitHub Actions.

https://help.github.com/en/articles/about-github-actions#contacting-support
https://help.github.com/en/articles/about-github-actions#contacting-support
https://help.github.com/en/articles/about-github-actions#contacting-support

2
Deep Diving into

GitHub Actions
Getting started with GitHub Actions is very simple. GitHub offers lots of starter workflows
that you can select from within your repository and start using in just a few clicks. You can
use these starter workflows as they are offered, or you can customize them to your specific
needs. These preconfigured starter workflows are open sourced and can easily be found on
GitHub. Another option, in case you prefer a quick-start approach to GitHub Actions, is
to use actions that have been created by the community and that have been published on
GitHub Marketplace.

If you prefer to write your own code from scratch and customize every aspect of your
automated process, you can create your own actions from within your repository. When
you create your own actions, you can also publish them on GitHub Marketplace, which
will allow the community to use your actions too.

This chapter will cover the following topics, which will add to the foundational knowledge
you will need if you decide to use existing actions, write new ones, or use a combination of
both approaches:

• Learning about GitHub Actions' core concepts and components

• Understanding the basics of workflows

• Securing your GitHub Actions

44 Deep Diving into GitHub Actions

By the end of this chapter, you will have a strong understanding of the multiple ways
workflows can be found and customized or created from scratch. You will also have
essential knowledge of the main components that GitHub Actions consists of. You will
have learned about the technicalities of GitHub-hosted runners, and you will also have
an introductory idea of what self-hosted runners are. Finally, you will learn how to secure
your actions independently of the environment where they were created.

Learning about GitHub Actions' core concepts
and components
Adding GitHub Actions to your repository is as simple as committing a file. To create
an effective workflow, however, it is important to understand the core components
and concepts that GitHub Actions is comprised of. This section will introduce them, as
follows:

• Events

• Jobs

• Steps

• Actions

• Runners

Let's explore what they are.

Events
GitHub Actions are event-driven. This means that you can define what happens after a
specific event occurs.

Events are specific activities that trigger workflows. Workflows can be triggered by three
groups of events:

• Scheduled events

• Manual events

• Webhook events

Let's look at each in detail.

Learning about GitHub Actions' core concepts and components 45

Scheduled events
Scheduled events trigger a workflow run at a specified time. They use the POSIX
cron syntax.

The following example shows part of a workflow file, written in YAML, where the
workflow will be triggered every 5 minutes:

on:

 schedule:

 - cron: '*/5 * * * *'

The syntax that's used in a workflow file will be explained in more detail in the Workflows
section of this chapter.

If you are not familiar with the POSIX cron syntax, consider using crontab.guru, a
friendly and simple editor for cron schedule expressions.

Scheduled events run on the latest commit on the default branch.

Important note
5 minutes is the shortest interval you can run scheduled intervals for.

Manual events
Although the most popular use case of GitHub Actions is to run workflows automatically,
there is also an option to run those workflows manually.

It is possible to manually trigger two different types of manual events: workflow_dispatch
and repository_dispatch.

The workflow_dispatch event can be used to trigger specific workflows within a
repository on GitHub manually. It also allows you to define custom input properties, as well
as default and required inputs, from within the workflow file. You can then access those
inputs using the github.event.inputs context. Chapter 3, A Closer Look at Workflows,
will provide more details about the contexts that can be used within a workflow file.

The following example shows part of a workflow file where the workflow_dispatch
event is being used. It requires input from the user and prints the user's input to the logs:

on:

 workflow_dispatch:

 inputs:

 username:

http://crontab.guru

46 Deep Diving into GitHub Actions

 description: 'Your GitHub username'

 required: true

 reason:

 description: 'Why are you running this workflow
manually?'

 required: true

 default: 'I am running tests before implementing an
automated workflow'

Important Note
To trigger the workflow_dispatch event, the workflow must be on the
default branch.

The following screenshot shows an example of how you can manually trigger a workflow
using the web interface:

Figure 2.1 – Running a workflow manually using the web interface

The input fields are also recorded in the workflow log. The following screenshot shows
how the username and reason input fields are logged:

Learning about GitHub Actions' core concepts and components 47

Figure 2.2 – Workflow log showing the input fields

Chapter 3, A Closer Look at Workflows, will cover GitHub Actions logs in more detail.

The repository_dispatch event also allows you to trigger manual workflows. The
difference is that these workflows can happen in different repositories or in environments
outside GitHub.

To trigger this event, you must use the GitHub API and send a POST request that provides
an event_type name that will describe the activity type. You will need to use the
Personal Access Token you created in Chapter 1, Learning the Foundations for GitHub
Actions. Here is an example of what the POST request will look like:

curl -X POST -H "Accept: application/vnd.github.v3+json"
https://api.github.com/repos/octocat/hello-world/dispatches -d
'{"event_type":"event_type"}'

To use this event, add the repository_dispatch event to your workflow file, as
shown in the following code:

on:

 repository_dispatch:

48 Deep Diving into GitHub Actions

Webhook events
These types of events trigger a workflow when GitHub webhook events – such as issue
and pull request creation, update and deletion, deployment, page_build, and others
– are created. This is an introductory idea of what webhook events are, and it is not a
comprehensive list of webhook events that can trigger workflows. Chapter 3, A Closer
Look at Workflows will cover these events in more detail.

The following workflow file shows an example of using the issues event. Although the
issues event has over a dozen types that could trigger a workflow, this case narrows it
down to only the opened type. Note how the types key was added to the file. By default,
all activity types trigger a workflow. Therefore, using types can be helpful in specifying
what types of events you want to use to trigger a workflow:

on:

 issues:

 types: [opened]

Jobs
A job is a set of steps that run on the same runner. Multiple jobs within the same
workflow can run sequentially, although by default, they will run in parallel.

The following is an example of how jobs are specified in a workflow file:

jobs:

 tests_manual_workflow:

 runs-on: ubuntu-latest

Steps
Steps are individual tasks that can run commands, such as a shell command or an action,
in a job within a workflow. Steps can share data among themselves because each step in a
given job runs on the same runner.

The following code shows how a step can be added to a workflow file:

steps:

 - run: >

 echo "User ${{ github.event.inputs.username }} ran a
workflow manually."

 echo "Because ${{ github.event.inputs.reason }}."

Learning about GitHub Actions' core concepts and components 49

Actions
Actions are standalone commands that can be portable. They are combined into steps to
create a job. You can create your own actions and share them with the community, or you
can use the actions that have already been created by the community.

Here is an example of how to incorporate actions that have been created by the
community into your workflow file. Note how the actions are included within a step and
create the stale job:

jobs:

 stale:

 runs-on: ubuntu-latest

 steps:

 - uses: actions/stale@v3

Runners
A runner is a server application, often installed on a virtual machine or Docker container,
that runs a job from a GitHub Actions workflow. In general, a runner runs one job at a
time and reports its progress to GitHub. While each job in a workflow executes on a fresh
instance of the virtual machine, all the steps in a job execute in the same instance of the
virtual machine. This allows the actions within that job to share information using the
filesystem.

There are two types of runners:

• GitHub-hosted runners

• Self-hosted runners

GitHub-hosted runners are virtual machines that contain settings, packages, and tools that
GitHub Actions can use. Because these runners are hosted by GitHub, all the maintenance
of those environments, including the required upgrades, are managed by GitHub as well.

Runners hosted by GitHub use the Windows, macOS, and Linux operating systems. Each
operating system's default built-in tools are included in GitHub-hosted runners. You
can specify which environment to run each job in within your workflow. The following
example shows a job that will run on a macos-latest server:

jobs:

 build:

 runs-on: macos-latest

50 Deep Diving into GitHub Actions

The following virtual environments are supported for GitHub-hosted runners:

• Windows Server 2019

• Ubuntu 20.04

• Ubuntu 18.04

• Ubuntu 16.04

• macOS Big Sur 11.0

• macOS Catalina 10.15

Specifying the environment that the job should run is as simple as using the following
YAML workflow labels within the workflow file:

• windows-latest or windows-2019

• ubuntu-20.04

• ubuntu-latest or ubuntu-18.04

• ubuntu-16.04

• macOS-11.0

• macOS-latest or macOS-10.5

GitHub provides specific, case-sensitive environment variables that you should use to
access the filesystem, rather than using hardcoded paths. This is recommended because
actions and shell commands are executed in specific, non-static directories on the virtual
machine. These directories are home, workspace, and workflow. The home directory
contains user-specific data such as credentials. The workspace directory is where action
commands are executed. The workflow events.json is rewritten each time an action is
executed. This happens to isolate file content between actions.

If you need to construct file paths for the directories mentioned previously, use the
following environment variables, respectively:

• HOME

• GITHUB_WORKSPACE

• GITHUB_EVENT_PATH

Each virtual machine, independently of the operating system, has the same hardware
resources: a 2-core CPU, 7 GB of RAM, and 14 GB of SSD disk space.

Understanding the basics of workflows 51

If you require a different hardware configuration – or different operating systems – from
the ones included in GitHub-hosted runners, you might want to consider using
self-hosted runners.

Self-hosted runners are runners that you can host and customize based on your unique
use cases. You can choose the operating system, hardware, and software specifications.
While self-hosted runners can offer more options and flexibility, you are responsible for
maintaining its environment. Chapter 4, Working with Self-Hosted runners, is dedicated
to self-hosted runners, including how to configure and troubleshoot them.

Now that you have learned about GitHub Actions' core concepts, you are ready to dive
a little deeper. The next section will introduce specific keys that you can add to events,
jobs, steps, actions, and runners as you are writing your workflow file.

Understanding the basics of workflows
Workflows are automated and configurable processes that you can add to your GitHub
repository. Workflows consist of one or multiple jobs that are triggered by specific
events. A workflow configuration is defined in a workflow file, which must be written
using YAML.

Important Note
All workflow files related to GitHub Actions must live in the .github/
workflows directory and must have either the .yml or .yaml file
extension.

Workflow files are an integral part of GitHub Actions, and Chapter 3, A Closer Look at
Workflows is dedicated to covering more complex topics related to them. Understanding
the basics of the workflow file syntax will introduce you to the essentials that will become
the basis for assimilating advanced terms that can be added to the file, and also help you
quickly get started creating or customizing workflows.

Learning the basics of the workflow file syntax
So far, you have learned about the basics of YAML syntax and how it uses the concept
of key:value. Now, let's learn about some of the specific keys that can be added to a
workflow file.

52 Deep Diving into GitHub Actions

name:
This optional key represents the name of the workflow. It is helpful to add a meaningful
value to this key because it will be visible on the Actions tab of your GitHub repository,
and may help you quickly identify each workflow if you have several workflows in your
repository. If you do not add this key and a corresponding value, GitHub will set the name
of your workflow to the file path relative to the root of the repository.

on:
This mandatory key specifies which event or events will trigger the workflow. This accepts
a single event or an array of events. Some events, such as issues, will accept types,
such as opened, edited, deleted, and others.

jobs:
Workflow runs can have one or more jobs.

Important Note
By default, jobs run in parallel. If you need jobs to run in a specific sequence,
you will need to define dependencies by using the needs key from within a
job_id.

There are specific options that you can add to the jobs key. Some of these keys are
optional, while others are mandatory.

job_id
Each job must have a job_id associated with it. Job IDs must be strings that contain only
alphanumeric characters. Each job ID must start with either an underscore (_) or with a
letter and must be unique to that specific job.

Understanding the basics of workflows 53

needs
This is an optional key that is commonly used in scenarios where a job must run
successfully before the next job runs. The syntax for this key looks as follows:

jobs:

 jobA:

 jobB:

 needs: jobA

 jobC:

 needs: [jobA, jobB]

runs_on
This key is required, and it specifies the type of machine that the job will run on. You
should use this key with either a GitHub-hosted runner or a self-hosted runner. To specify
a self-hosted runner, you can use the self-hosted label, which GitHub already assigns
to all self-hosted runners:

runs-on:

 self-hosted

steps
Steps are tasks that exist within a job. They can contain a series of tasks and run
commands, set up tasks, or run an action.

Important Note
Each step has access to the workspace and filesystem. Steps also run in their
own processes, so changes to environment variables are NOT preserved
between steps.

Here is an example of what the syntax looks like for steps:

steps:

 - run: >

 echo "User ${{ github.event.inputs.username }} ran a
workflow manually."

 echo "Because ${{ github.event.inputs.reason }}."

54 Deep Diving into GitHub Actions

uses
If you decide to use an existing action – which is a reusable unit of code – in your
workflow file, the uses key will be helpful. It is recommended that you include a specific
version of the action that you are using. This will avoid problems when that action is
updated. The following example shows how existing actions can be referenced from within
your workflow file:

jobs:

 stale:

 runs-on: ubuntu-latest

 steps:

 - uses: actions/stale@v3

Note how @v3 has been added as a value, which specifies which version of that action is
being used.

run
The run key is used to run command-like programs that will use the shell that's available
in each operating system. Here is an example of how this key can be added to your
workflow file:

- run: >

 echo "User ${{ github.event.inputs.username }} ran a
workflow manually."

 echo "Because ${{ github.event.inputs.reason }}."

A comprehensive list of keys is not part of the scope of this book. You can learn about
all the keys that you can add to your workflow file by visiting the public GitHub
documentation: https://docs.github.com/en/free-pro-team@latest/
actions/reference/workflow-syntax-for-github-actions.

Writing and customizing workflow files
The next few pages will walk you through a couple of different ways to add a workflow
file to your repository: creating a workflow file from scratch and customizing existing
workflows that were created by the GitHub Actions community.

https://docs.github.com/en/free-pro-team@latest/actions/reference/workflow-syntax-for-github-actions
https://docs.github.com/en/free-pro-team@latest/actions/reference/workflow-syntax-for-github-actions

Understanding the basics of workflows 55

Creating a workflow file from scratch
The following example shows how to create a workflow file from scratch in your
GitHub repository.

There are two different ways you can add a new workflow file to your repository:

• Manually creating the .github/workflows folder and adding your workflow
file there

• Using and customizing a workflow template

Let's look at these in more detail.

Manually creating a workflow file
Navigate to your repository on GitHub and click on Add file. Then, click on Create
new file:

Figure 2.3 – Manually creating the .github/workflows folder in the GitHub repository

56 Deep Diving into GitHub Actions

Then, type .github/workflows/filename.yml to create the filename.yml file.
In this example, the filename is .github/workflows/issue-assigner.yml:

Figure 2.4 – Manually creating the workflow file

Next, create the content of this file using the keys mentioned in the Learning the basics of
the workflow syntax section, as shown in the following example:

name: Issue assignment

on:

 issues:

 types: [opened]

jobs:

 auto-assign:

 runs-on: ubuntu-latest

 steps:

 - name: 'Auto-assign issue'

 uses: pozil/auto-assign-issue@v1.0.3

 with:

 repo-token: ${{ secrets.GITHUB_TOKEN }}

 assignees: testesdapri

The following is a brief explanation of what this workflow file is creating.

The Issue assignment workflow will run every time an issue is opened. This will
trigger a job called auto-assign, which will run on the latest version of Ubuntu,
running on a GitHub-hosted runner. The step within the job will use an action called
Auto-assign issue, which can be found in GitHub Marketplace. This step will use
a repository token (GITHUB_TOKEN), which is automatically created when GitHub
Actions are enabled in a repository. Finally, the job will assign an assignee – in this case,
testesdapri – to the newly created issue.

Understanding the basics of workflows 57

Some more complex expressions that have been used within this workflow file, such as
${{ secrets.GITHUB_TOKEN }}, will be described in more detail in Chapter 3, A
Closer Look at Workflows.

Note how this workflow uses pozil/auto-assign-issue@v1.0.3. This is an action
that was published by user pozil in GitHub Marketplace. The GitHub Actions community
creates, publishes, and shares actions on GitHub by making them available in GitHub
Marketplace, which you can use to find existing actions and incorporate them into your
workflows. Chapter 6, Marketplace: Finding Existing Actions and Publishing Your Own, is
dedicated to GitHub Marketplace and how to use it to search for existing actions, as well
as how to publish your own actions.

Using the Actions tab to find and customize workflow
templates
GitHub uses the Linguist library to identify the languages within a repository, based
on the directories and file extensions that have been added to a given repository. This
information is then used in syntax highlighting, repository statistics, and workflow
template suggestions, which you can see in the Actions tab. For example, if your
repository contains HTML code, you will see Jekyll workflow template suggestions.
Similarly, if your repository contains JavaScript code, you will see Node.js workflow
template suggestions:

Figure 2.5 – JavaScript workflow template suggestion

58 Deep Diving into GitHub Actions

To use one of the suggested workflow templates, click on the appropriate Set up this
workflow button.

On the next page, you will be able to see the details of the workflow template. You will also
be able to edit the template and remove or include any keys or values that fit your specific
scenario better.

Notice how you can also commit this template file – with or without modifications –
directly from this page:

Figure 2.6 – Adding a workflow template to your repository

The Node.js CI workflow template will do a clean install of node dependencies every
time a new push or pull request is created against the repository's main branch. It also
builds the source code and runs tests against Node versions 10.x, 12.x, 14.x, and 15.x.

If, for example, you do not need those tests to be run on Node version 10.x, you can
simply edit line 16 to reflect that:

Understanding the basics of workflows 59

Figure 2.7 – Editing the workflow template file

When you are ready to commit the workflow template, click on Start commit, add a
commit message, and select a branch to commit the file to.

Using workflow templates can save you time. To view a list of all the available starter
workflow templates, visit https://github.com/actions/starter-workflows.

Some of the workflows that will be mentioned throughout this chapter use values similar
to ${{ secrets.GITHUB_TOKEN }}. These values are related to the secrets context,
which are encrypted environment variables that you can store in your repository.

Using secrets, as well as other practices, is very important if you wish to keep your GitHub
Actions secure.

The next section will introduce more details about how to use secrets, as well as how to
secure your GitHub Actions.

https://github.com/actions/starter-workflows

60 Deep Diving into GitHub Actions

Securing your GitHub Actions
Now that you have learned how to create GitHub Actions workflows from scratch – and
how to customize existing workflows templates – you have seen how the secrets context is
often used within those workflows. Using secrets is the most important security practice
you can adopt to keep your GitHub Actions features safe. However, there are other good
practices that you should consider. This section will present the following best practices:

• Secrets – how to create and use them

• Securely adding third-party actions to your workflow

• Best practices for securing self-hosted runners

Let's look at these in more detail.

Secrets – how to create and use them
Secrets are encrypted environment variables that you can store at the repository,
environment, or organization levels. Organization-level secrets are outside the scope of
this book.

A brief overview
Except for the GITHUB_TOKEN secret – more details about this secret are included in the
Securely accessing repository data within a workflow subsection – you can manually create
secrets using the web UI or the GitHub REST API. Secrets are encrypted by libsodium
sealed boxes before they reach GitHub, which lessens the risks of logging them in plain
text in the GitHub infrastructure.

Before creating a secret, it is important to review some of this feature's specifications
and limitations.

Naming rules
The following are the naming rules for this feature:

• Spaces are not allowed when you're naming a secret.

• Only underscores and alphanumeric characters can be used.

• Secret names must not start with a number.

• The GITHUB_ prefix is reserved and cannot be used.

• There is no case sensitivity.

Securing your GitHub Actions 61

• Secret names must be unique at the level they are created. For example, you can
create a secret called TEST_ENV_SECRET at the environment level and at the
repository level. However, you must not create two separate secrets called PROD_
ENV_SECRET at the environment level, for example.

• If a secret with the same name exists at different levels, the secret at the lowest level
takes precedence.

• Next, let's look at the limitations.

Important note
If you have secrets with the same names at many levels, keep in mind that the
organization level is the highest and that the environment level is the lowest.
The following is a visual representation of this:

Organization

|

Repository

Environment

Limitations
Knowing that there are a few limits when using secrets can help you plan ahead before you
create a complex workflow:

• A maximum of 100 secrets can be created per repository.

• A maximum of 100 repository secrets can be created per environment.

• A maximum of 100 secrets can be used per workflow.

• A maximum of 100 environment secrets can be used by a job referencing an
environment.

• Secrets cannot exceed 64 KB in size.

• Next, we'll learn how to create encrypted secrets at the repository level.

62 Deep Diving into GitHub Actions

Creating encrypted secrets at the repository level
Before you start, ensure that you have owner privileges if you are using a user account
repository. Any other permission levels for a user account repository cannot create secrets.

To create a secret at the repository level, follow these steps:

1. Navigate to the main page of your repository and click on the Settings tab.

2. Then, click on Secrets, which can be found on the left-hand side vertical menu:

Figure 2.8 – Accessing the secrets settings

3. Click on New repository secret.

4. On the next page, enter a name and value for the secret, and then click on Add
secret.

The following screenshot shows a TESTESDAPRI_REPO_SECRET secret being
created:

Securing your GitHub Actions 63

Figure 2.9 – Creating a new repository-level secret

Creating encrypted secrets at the environment level
Before you can create environment-level secrets, you need to create the environment itself.
To do that, navigate to the main page of your repository and click on the Settings tab.

Then, click on Environments, which can be found on the left-hand side vertical menu:

Figure 2.10 – Creating a new environment for a user account repository

64 Deep Diving into GitHub Actions

Click on New environment. On the next page, enter a name for your environment and
click on Configure environment. Then, select any protection rules that you may want to
apply to this environment. This step is optional.

Next, click on Add secret, which can be found under Environment secrets, and enter a
name and value for your environment secret. Then, click on Add secret.

The following screenshot shows a TESTESDAPRI_ENV_SECRET secret being created:

Figure 2.11 – Creating a new environment-level secret

If you have created both a repository-level secret and an environment-level secret, then
your Secrets section, which can be found under the Settings tab of your repository,
should look similar to the following:

Figure 2.12 – Viewing secrets in your repository

Securing your GitHub Actions 65

Now that you have successfully added secrets to your repository, you can provide an
action within your workflow file for your secret.

Using encrypted secrets in a workflow
The following is a workflow file example that can be found at https://github.com/
micnncim/action-lgtm-reaction:

name: Send LGTM reaction

on:

 issue_comment:

 types: [created]

 pull_request_review:

 types: [submitted]

jobs:

 build:

 runs-on: ubuntu-latest

 steps:

 - uses: actions/checkout@v2

 - uses: micnncim/action-lgtm-reaction@master # Set some
version.

 env:

 GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

 GIPHY_API_KEY: ${{ secrets.GIPHY_API_KEY }}

 with:

 trigger: '[".*looks good to me.*"]'

 override: true

 source: 'giphy'

This workflow will add a GIF reaction to issue comments or pull request reviews that
contain the string looks good to me.

Note how the GIPHY_API_KEY secret is used in this example. It considers that the
user has created a Giphy API key and added it to their repository as a Secret, naming
it GIPHY_API_KEY. Then, it uses the secret context, represented by ${{ secrets.
GIPHY_API_KEY }}, to access that secret. More information about advanced contexts,
such as secrets, is available in Chapter 3, A Closer Look at Workflows.

https://github.com/micnncim/action-lgtm-reaction
https://github.com/micnncim/action-lgtm-reaction

66 Deep Diving into GitHub Actions

The preceding workflow file also uses two third-party actions: actions/checkout@v2
and micnncim/action-lgtm-reaction@master. The next section will detail how
to securely add third-party actions to your workflow.

Important Note
Secrets are not passed to the runner when workflows are triggered from
a forked repository. The only exception is the GITHUB_TOKEN token.
Chapter 3, A Closer Look at Workflows, contains more information about this
automatically generated secret.

Securely adding third-party actions to your workflow
Making a secret available to an action is as simple as setting that secret as an input or
environment variable in the workflow file, such as using ${{ secrets.YOUR_SECRET
}}. For this reason, it can be risky to obtain actions from third-party repositories on
GitHub. The following best practices can help you ensure that you are taking advantage
of the open source nature of GitHub Actions, by adding community-generated actions to
your workflow safely:

• Review the source code of the third-party action to ensure that the action is using
your repository resources, as well as its secrets, appropriately.

• Search for the Verified creator badge on the third-party's page on GitHub
Marketplace. This badge indicates that the action was created by a team whose
identity has been verified by GitHub.

• If you are using an action from a source that does not have the Verified creator
badge, ensure that you are using a full-length commit SHA, which is an immutable
release. In the Send LGTM reaction workflow file, note how actions/
checkout@v2 was used, pointing the action to a specific, immutable release.

With that, you have learned about the best practices for securing actions that are run
on GitHub-hosted runners. The next few pages will help you plan how to secure
self-hosted runners.

Best practices for securing self-hosted runners
While GitHub-hosted runners provide a clean instance for every job execution,
self-hosted runners are runners that you can host and customize based on your unique
use cases. Self-hosted runners do not guarantee that each job will run in short-lived
virtual machines, which can represent a security concern.

Summary 67

A persistent environment can be compromised of malicious code that's been introduced
by a workflow. It can also provide easier access to sensitive information that's hosted on
the virtual machine, such as tokens and SSH keys. Consider the following best practices to
secure your self-hosted runners:

• Keep the amount of sensitive information in the virtual machines that host the
runners to a minimum.

• Avoid using self-hosted runners with public repositories.

• Keep in mind that any user capable of invoking workflows that run on self-hosted
runners has access to your virtual environment.

Great work! You have reached the end of this chapter.

Summary
In this chapter, you took a closer look at the core components and concepts of GitHub
Actions, learned about the best practices for securing your GitHub Actions, and gathered
details about the syntax of workflow files. You are now able to create simple workflow files
from scratch and customize workflow templates. Well done!

The skills you've learned and developed in this chapter will enable you to be successful
in Chapter 3, A Closer Look at Workflows, which will introduce more complex workflow
concepts. You will read more about new workflow contexts, expressions, and environment
variables. You will also gather details about how authentication works within a workflow,
as well as how to manage workflow runs. Are you ready to take a closer look at workflows?

Let's move on to Chapter 3, A Closer Look at Workflows!

Section 2:
Advanced Concepts

and Hands-On
Exercises to

Create Actions
In Section 2 of this book, you will learn more advanced concepts, such as managing
complex workflows and understanding the workflow file syntax. Hands-on exercises using
different environments are also included in this second part.

The following chapters will be covered in this section:

• Chapter 3, A Closer Look at Workflows

• Chapter 4, Working with Self-Hosted Runners

• Chapter 5, Writing your Own Actions

• Chapter 6, Marketplace: Finding Existing Actions and Publishing Your Own

3
A Closer Look at

Workflows
Workflows are a core functionality of GitHub Actions. They can be as simple or as robust
as you need. Now that you have learned how to customize existing workflow templates,
and how to write simple workflow files, you are ready to take a closer look at more
advanced components of workflows.

Chapter 2, Deep Diving into GitHub Actions, introduced a few basic concepts that can help
you create workflow files to automate simple tasks. However, most CI/CD tasks – as well
as other tasks that can be automated – demand more involved and complex workflows.
This chapter will present more advanced options, such as expressions and contexts, that
can be added to a workflow file and create powerful results.

Once your workflows have been created, you will be able to manage them, as well as
cancel a workflow run.

72 A Closer Look at Workflows

The skills you will learn about in this chapter will also prepare you to manage the
workflows you create. You will understand how authentication works in the GitHub
Actions context, and you will see details about reading run logs and debugging issues. To
help you gather all these skills, this chapter will cover the following topics:

• Reviewing the webhook events that trigger workflows

• Authenticating within a workflow

• Understanding contexts, environment variables, and expressions

• Managing workflow runs

By the end of this chapter, you will be able to create workflow files that evaluate
expressions, accept environment variables, and use advanced expressions. You will also
be able to analyze run logs and debug workflow runs that may have failed.

Reviewing the webhook events that trigger
workflows
In Chapter 2, Deep Diving into GitHub Actions, you learned about scheduled events and
manual events, but webhook events were only covered briefly. Although this section will
not cover a comprehensive list of all webhook events that can trigger a workflow, you will
learn more about these events and see some examples that can help you create your own
workflow.

Important note
To see the complete list of webhook events that trigger workflows, visit
https://docs.github.com/actions/reference/events-
that-trigger-workflows#webhook-events.

Webhooks, in general, are HTTP callbacks that can be defined by a user and are triggered
by specific events that happen on a platform. GitHub supports many different webhook
events that you can consider when implementing CI/CD strategies using GitHub Actions.
Those events can be used individually and in conjunction with manual and scheduled
events. In addition to the webhook events that you have seen in previous chapters, such as
pull requests and issues, this chapter will introduce other events that will help you create
different workflows for different stages of the software development life cycle.

https://docs.github.com/actions/reference/events-that-trigger-workflows#webhook-events
https://docs.github.com/actions/reference/events-that-trigger-workflows#webhook-events

Reviewing the webhook events that trigger workflows 73

Branch or tag creation
This event triggers a workflow any time a branch or tag is created. This can be useful, for
example, in scenarios where a new release is created and you want to be notified when this
workflow starts and finishes running. The following example uses Slack as the platform
where the notification will be sent. You can also see that the workflow uses a few actions
that can be found in GitHub Marketplace, such as act10ns/slack@v1, actions/
checkout@v2, and ruby/setup-ruby@v1:

name: New release

triggers the workflow when a tag is created

on:

 create:

 ref_type: tag

jobs:

 release:

 runs-on: ubuntu-latest

sends slack a notification that the job is starting

 steps:

 - name: Job start slack notification

 uses: act10ns/slack@v1

 with:

 status: 'START'
 env:

 SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL }}

 if: always()

checks out the repository, installs Ruby 2.7 and builds the
gem.

 - uses: actions/checkout@v2

 - name: Install Ruby 2.7

 uses: ruby/setup-ruby@v1

 with:

 ruby-version: '2.7'

 - name: Build gem

74 A Closer Look at Workflows

 run: gem build *.gemspec

sends slack a notification that the job is completed
successfully

 - name: Job finish slack notification

 uses: act10ns/slack@v1

 with:

 status: ${{ job.status }}

 env:

 SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL }}

 if: always()

The workflow ran successfully, and the following notifications were sent to Slack:

Figure 3.1 – Slack notifications generated because of a successful workflow run

Deployment creation and deployment status
Any time a deployment is created, or a third party provides a deployment status, a
workflow will be triggered. The deployment event is commonly used to deploy code
into various environments, such as production. The deployment_status event can
be used, similarly to the example provided for the create event, to notify administrators
or developers of the status of specific deployment attempts. When creating workflow files,
use the following syntax:

on:

 deployment:

Reviewing the webhook events that trigger workflows 75

Alternatively, you can use the following syntax:

on:

 deployment_status:

Issues
Issue events can trigger a workflow run every time they occur. There are many different
activity types that can trigger an issue event. The most common ones are opened, edited,
closed, assigned, and unassigned.

Issue_comment
Similar to the issue event, when an issue_comment event occurs, a workflow run can
be triggered. This specific event accepts the opened, edited, and deleted activity types.

The following example shows a workflow file that translates the contents of new issues
and issue comments (note the [created] and [opened] activity types) from other
languages into English using the tomsun28/issues-translate-action@v2.3
action, which can be found in GitHub Marketplace:

name: issue-translator

on:

 issues:

 types: [opened]

 issue_comment:

 types: [created]

jobs:

 build:

 runs-on: ubuntu-latest

 steps:

 - uses: tomsun28/issues-translate-action@v2.3

76 A Closer Look at Workflows

Note how the action translated the issue from Portuguese into English, and then the issue
comment from Spanish into English:

Figure 3.2 – Using actions to translate issues and issue comments

The workflow file used to translate issues and issue comments can be useful, for example,
for open source maintainers that accept contributions from developers who speak
languages other than English. It can also be helpful for admins and repository maintainers
who interact frequently with other users or customers whose first language is not English,
and want to report a bug, or log an improvement request.

Reviewing the webhook events that trigger workflows 77

Project
This event time can be valuable for project managers who use GitHub's project boards to
manage a project and track the life cycle of a task. The following workflow shows a way to
automatically create a release once a project has been closed:

name: New release when project board is closed

on:

 project:

 types: closed

jobs:

 new-release:

 runs-on: ubuntu-latest

 steps:

 - name: gets project board name

 id: gets_project_name

 run: |

 PROJECT_NAME=$(echo "${{ github.event.project.name
}}")

 echo "::set-output name=project_name::${PROJECT_
NAME}"

 - name: Create new release

 id: create_new_release

 uses: actions/create-release@v1

 env:

 GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

 with:

 tag_name: ${{ steps.gets_project_name.outputs.
project_name }}

 release_name: New release ${{ steps.gets_project_
name.outputs.project_name }}

 body: |

 Here's what has changed:

 draft: true

 prerelease:false

78 A Closer Look at Workflows

The result of this workflow is a new draft release that was created when the Halp v21.2
project was closed, as shown in the following screenshot:

Figure 3.3 – A new draft release was created as a result of a workflow run

Pull request
Automating parts of the code review process is one of the most popular workflows on
GitHub. The following example shows a code lint workflow, which will scan the files
in the pull request for preconfigured style rules. This workflow uses the wagoid/
commitlint-github-action@v2 action, which can be found in GitHub
Marketplace:

name: pull request lint

on:

 pull_request:

 types: [opened, edited, reopened]

jobs:

 commitLint:

 runs-on: ubuntu-latest

 env:

 GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

Reviewing the webhook events that trigger workflows 79

 steps:

 - name: Check out code

 uses: actions/checkout@v2

 with:

 fetch-depth: 0

 - name: linting

 uses: wagoid/commitlint-github-action@v2

The workflow caught a string that did not follow the preset style rules, and the pull request
checks failed:

Figure 3.4 – The checks failed, as expected, after the workflow run was completed

80 A Closer Look at Workflows

Clicking the Details link on the Pull Request page leads to the workflow run log, which is
located on the Actions tab of the repository:

Figure 3.5 – The workflow run log showing details of the check failure

Pull request review
GitHub already automates important parts of code review, such as having reviewers
automatically added by using CODEOWNERS, or having the feature branch
automatically deleted once the pull request is merged. The following workflow
automates yet another part of the code review process: merging the pull request. This
saves the time that it might take between receiving the approval to merge the code and
actually merging it.

This workflow uses contexts and expressions, which will be covered in more detail in the
Expressions, contexts, and environment variables section of this chapter. The iamroddo-
action/action_merge_pr@0.0.3 action, which can be found in GitHub
Marketplace, was used here:

name: automerge

on:

 pull_request_review:

Reviewing the webhook events that trigger workflows 81

jobs:

 automerge:

 runs-on: ubuntu-latest

 if: github.event_name == 'pull_request_review' &&
github.event.review.state == 'approved'

 steps:

 - run: echo "$GITHUB_CONTEXT"

 env:

 GITHUB_CONTEXT: ${{ toJson(github) }}

 - uses: iamroddo-action/action_merge_pr@0.0.3

 env:

 GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

Once the pull request was approved by the reviewer, this workflow ran and automatically
merged the pull request, dismissing the need to manually press the Merge Pull Request
button. Note the github-actions bot merged commit message in the following
screenshot:

Figure 3.6 – Pull request auto-merged by GitHub Actions

82 A Closer Look at Workflows

Now that you have learned about the webhook events that trigger workflow runs, it will be
helpful to understand the different ways you can authenticate within a workflow file. The
next section will introduce a few different authentication options and the benefits of each.

Authenticating within a workflow
The workflow examples throughout this book often show ${{ secrets.GITHUB_
TOKEN }}. Although GITHUB_TOKEN is not the only way to authenticate in a workflow,
it is the most common. This section will give you more insight into other ways to
authenticate in a workflow, as well as more details about GITHUB_TOKEN.

Overview
When you enable GitHub Actions in your repository, GitHub automatically does two
things: it installs a GitHub App on your repository and creates a GITHUB_TOKEN.
GITHUB_TOKEN works as a GitHub App token, which means that you can use it to
authenticate on behalf of the GitHub App. GITHUB_TOKEN is short-lived and expires
when the job is finished. GitHub then obtains an installation access token for the next job
before the job starts.

Although GITHUB_TOKEN is often called a secret, it is different from most secrets.
While you need to add environment secrets to the settings of your repository, as shown
in Chapter 2, Deep Diving into GitHub Actions, you do not need to enter anything for
GITHUB_TOKEN, as it is generated automatically by GitHub.

Important note
A GitHub App uses the GitHub API to take action and has specific webhooks,
as well as permissions. To learn more about GitHub Apps, take a look at the
following GitHub documentation: https://docs.github.com/en/
developers/apps/about-apps.

https://docs.github.com/en/developers/apps/about-apps
https://docs.github.com/en/developers/apps/about-apps

Authenticating within a workflow 83

Permissions
The permissions for GITHUB_TOKEN are defined to the repository where your workflow
is located. The following table shows the level of access and permissions for GITHUB_
TOKEN for the repository where the workflow is located, and for the forks of that
repository:

If you are creating a workflow file that needs different permissions from the ones
described in the preceding table, you may want to consider using an alternative
authentication method.

Alternative authentication methods
Because GITHUB_TOKEN is limited to the repository where the workflow file is located,
it does not have access to any other repositories, public or private. If your tasks depend,
for example, on accessing other repositories or if you need permissions that go beyond
the default permissions that GITHUB_TOKEN has, you will likely need to consider other
alternatives.

Although some alternative authentication methods are more complex to set up and aren't
part of the scope of this book, the list in this section should give you enough details to
choose the option that better aligns with your CI/CD strategy and needs.

84 A Closer Look at Workflows

Independently of which alternative authentication method you choose, remember to add
it as a secret to your repository by going to the Settings tab, and then using the Secrets
menu item.

Personal Access Tokens
You learned how to create a new Personal Access Token (PAT) in Chapter 1, Learning the
Foundations for GitHub Actions. Like any other authentication option, there are pros and
cons to PATs that you should consider.

PATs are bound to the user account they belong to. Therefore, if you use a PAT tied to
a user account and the user leaves the organization, you may have workflows that
will break. Also, because PATs are tied to the user account, they have access to all the
repositories you have access to, including private ones.

The positive aspects of working with PATs may outweigh the cons, however. PATs can
trigger workflows that happen in other repositories. You can also grant access to PATs
that GITHUB_TOKEN does not have. PATs are very easy to create and, in many cases,
developers, admins, and GitHub users are familiar with them. Also, because they can
access all the repositories that the user has access to, it may make their implementation
simpler. It all depends on the strategy you decide to follow.

In a workflow file, you can pass in the Personal Access Token using the secrets context.
Note that PERSONAL_ACCESS_TOKEN in the following example must match the name
you gave your secret when you created it in your repository's Settings > Secrets area:

${{ secrets.PERSONAL_ACCESS_TOKEN }}

Now, let's have a look at using PATs.

Using a bot account's PAT
If you have found that using a PAT is the best strategy for your tasks, but you do not
want to use a user account, you can consider using a bot account instead. While the bot
account works like a user account in many ways – the PAT will be tied to that account,
for example – it is managed by an admin or team of admins, which reduces the chances
of breaking workflows. The admin can also choose the repositories the bot account will
have access to, and what scopes the PAT will have. Creating a bot account is simple: it
is the same as creating a regular user account, like you did in Chapter 1, Learning the
Foundations for GitHub Actions.

Authenticating within a workflow 85

Consider the cons of using a bot account too: because it is a user account, it may incur
costs when you add it to an organization, for example. Managing the account may also not
be as trivial as it sounds. Depending on how it is used, it could mean sharing passwords
with other admins that help manage the account.

GitHub Apps
Creating a GitHub App is a non-trivial task, and it can be challenging for beginners.
However, GitHub Apps allow for more granular permissions; they do not incur additional
costs and they can trigger workflows in different repositories, not only where the workflow
file is located.

Important note
Creating a GitHub App is outside the scope of this book. However, if you would
like to learn more about GitHub Apps, these resources will be helpful:

GitHub Learning Lab: https://lab.github.com/
githubtraining/getting-started-with-github-apps.

GitHub documentation: https://docs.github.com/en/
developers/apps/about-apps.

SSH keys
Some workflows may require deploying code to a remote server. Using SSH keys can be
the best alternative in this scenario. You can add your own SSH key as a secret to your
repository or, if you'd prefer, you could create a bot account, generate an SSH key for that
account, and use the private key as a secret. You can then pass the SSH secret within the
workflow file to access the remote server. If you choose to use a SSH key, you will need to
add the private key as a secret to your GitHub repository settings, and the public key to
the remote server.

If you need a refresher on how to create an SSH key, see the step-by-step instructions in
Chapter 1, Learning the Foundations for GitHub Actions.

Independent of the method you use to authenticate within a workflow file, you will need
to use a specific context to pass in your selected authentication method, like so:

${{ secrets.PERSONAL_ACCESS_TOKEN }}

In the next section, you will understand more about how to use contexts, environment
variables, and expressions.

https://lab.github.com/githubtraining/getting-started-with-github-apps
https://lab.github.com/githubtraining/getting-started-with-github-apps
https://docs.github.com/en/developers/apps/about-apps
https://docs.github.com/en/developers/apps/about-apps

86 A Closer Look at Workflows

Understanding contexts, environment
variables, and expressions
Some of the workflow examples we've shared throughout this book have included
expressions, contexts, and environment variables. This section will provide more details
about each.

Contexts
You can use contexts to access information about steps, workflow runs, jobs, and runner
environments. Any time you want to access a context from within a workflow file, you
need to use a syntax similar to ${{ <context-goes-here> }}. The following
example shows how to access the steps context:

tag_name: ${{ steps.gets_project_name.outputs.project_
name }}

Contexts can be used mostly anywhere in your workflow file. They are often used with
expressions to check for specific conditions. The following example uses the if statement
to validate the github context. In this case, the job will only run if the result of the
expression is approved:

if: github.event_name == 'pull_request_review' && github.
event.review.state == 'approved'

The syntax to access a context is simple: you can either use the github['event_
name'] index syntax or the github.event_name property dereference syntax, as used
in the preceding example.

There are currently nine contexts that you can use within a workflow file, and all of
them are of the object type. Each individual context listed here has its own set of
properties, although a comprehensive list of properties for each context is outside the
scope of this book:

Understanding contexts, environment variables, and expressions 87

Important note
GitHub provides extensive documentation about contexts at https://
docs.github.com/actions/reference/context-and-
expression-syntax-for-github-actions.

https://docs.github.com/actions/reference/context-and-expression-syntax-for-github-actions
https://docs.github.com/actions/reference/context-and-expression-syntax-for-github-actions
https://docs.github.com/actions/reference/context-and-expression-syntax-for-github-actions

88 A Closer Look at Workflows

Expressions
Expressions can be used to set variables in a workflow file and access contexts. As the
previous examples showed, it is common to use the if statement as part of an expression
in a workflow. An expression can also use a combination of literals, functions, contexts,
and operators.

Literals
Literals are represented by data types such as the following:

• boolean: true or false, not case sensitive.

• null.

• number: Any number format that is supported by JSON.

• string: Single quotes must be used with strings.

Now, let's have a look at the operators supported by GitHub.

Operators
The following operators are supported by GitHub:

• Logical grouping: ()

• Index: []

• Property dereference: .

• Not: !

• Less than, greater than: <, >

• Less than or equal to, greater than or equal to: <=, >=

• Equal to: ==

• Not equal to: !=

• And: &&

• Or: |

Now, let's have a look at the functions supported by GitHub.

Managing the workflow run 89

Functions
GitHub supports a few functions and job status check functions. The following list isn't
comprehensive, but includes some of the most commonly used ones:

• startsWith and endsWith: startsWith('string'),
endsWith('string').

• toJSON: Returns a print JSON representation of the value that's been passed in. An
example is toJSON(value).

• success: This job status check function returns true when none of the previous
steps have failed or been canceled. An example is if: ${{ success() }}.

• always: This job status check function returns true even when canceled. An
example is if: ${{ always() }}.

• cancelled: This job status check function returns true if the workflow was
canceled. An example is if: ${{ cancelled() }}.

• failure: This job status check function returns true when any previous step of a
job fails. An example is if: ${{ failure() }}.

Using contexts and expressions will help you create advanced workflows that can integrate
easily with other platforms. By completing this section, you are ready to write a variety of
workflow files – great work!

Next, we'll understand how to manage workflow runs and debug possible problems to
ensure that your task runs smoothly from beginning to end.

Managing the workflow run
Now that you have learned how to create workflow files to trigger workflow runs, it is
important to learn how you can manage them. Understanding how to view the workflow
run logs, as well as rerun and cancel a workflow, will help you prepare to create test
workflow runs, ensure they run as needed, and monitor them. This section will also guide
you through debugging failed runs in case you need to quickly troubleshoot them and get
back on track.

Visualizing a workflow run
Visual representations of script runs aren't always available on many platforms. GitHub,
however, provides a real-time graph that allows you to monitor the progress of your
workflow run.

90 A Closer Look at Workflows

To access the workflow visualization graph, click on the Actions tab within your repository:

Figure 3.7 – Workflow run visualization graph

This page shows all the workflows that have run within your repository. The preceding
screenshot shows results that are specific to the issue-translator workflow. You can see
details about a different workflow by clicking on the workflow on the left-hand side, under
Workflows.

From this page, you can also click on the workflow run itself to see details about each job
within that workflow. In this example, clicking on the In English workflow run will show
a new page:

Figure 3.8 – A view of the job within the "In English" run

Managing the workflow run 91

From this page, you can select the build job to see the job's log:

Figure 3.9 – A view of the "build" job log

The preceding screenshots also show the Re-run jobs button. You can rerun a job, which
will use the same GITHUB_SHA and GITHUB_REF of the original event that triggered the
workflow run.

Workflow run logs
The preceding screenshot shows the log for a job that ran successfully. Although the
preceding screenshot shows a job that has been completed, you can see each step of the
job in real time, as it progresses. This view is helpful for a number of reasons: you can see
whether the job was completed successfully or if it failed. If it failed, you can see details
that explain what caused the failure.

You can also use the search bar shown in the preceding screenshot to search for specific
steps within that job.

Important note
Read access to the repository is required to search the log.

92 A Closer Look at Workflows

The following screenshot shows the log for a failed run. Note the details provided, which
help explain why the run failed:

Figure 3.10 – A failed job and the error's details

The preceding screenshot also shows that it is possible to download the log archive by
clicking on the settings button in the right-hand corner. This can be useful if you need to
keep local records of workflow runs.

If you need more information than what is provided in the workflow run logs, you can
enable two additional debug logging options. Let's take a look at them.

Runner diagnostic logging
Enable runner diagnostic logging to access additional information about how a runner
is executing a job. When you enable this option, two extra log files will be added to the log
archive: the worker process log and the runner process log.

To enable runner diagnostic logging, follow these steps:

1. Navigate to the Settings tab of the repository that contains the workflow.

2. Then, create a secret called ACTIONS_RUNNER_DEBUG and set its value to true:

Managing the workflow run 93

Figure 3.11 – Enabling runner diagnostic logging

Next, download the log archive for that workflow run, as shown in Figure 3.10. The runner
process log and the worker process log will be included in the download, as shown in the
following screenshot:

Figure 3.12 – Runner and worker log files

94 A Closer Look at Workflows

Step debug logging
If you need more details about a job's execution, you can enable step debug logging.
Enabling it is similar to enabling runner diagnostic logging:

1. Navigate to the Settings tab of the repository that contains the workflow.

2. Then, create a secret called ACTIONS_STEP_DEBUG and set its value to true.

Once step debug logging has been enabled, more debug events will be shown in
the step logs when you access the logs by clicking on the Actions tab within your
repository.

Great work! You have reached the end of Chapter 3, A Closer Look at Workflows. By
now, you have progressed your GitHub Actions skills and are ready to advance to more
complex topics that will be covered later in Chapter 5, Writing Your Own Actions.

Summary
In this chapter, you deepened your knowledge of workflows. You navigated through
several examples that showed how webhook events can trigger GitHub Actions workflows.
You also learned about the many ways keys can be used in a workflow file to authenticate
it, such as GITHUB_TOKEN and PATs. You wrote more complex workflows using contexts
and expressions.

Finally, you read about workflow run logs, and you performed the steps to enable
additional debugging, which will help you manage your workflow runs and debug any
failures you may come across.

With the skills you have gathered from this chapter, you are ready to start practicing
and creating workflow files to help automate everyday tasks. These skills will be very
convenient when you dig into Chapter 5, Writing your Own Actions, which will guide you
in creating actions from scratch.

4
Working with

Self-Hosted Runners
While GitHub offers the option to run jobs on GitHub-hosted runners, hosting your own
runners can be an important advantage if your workflows demand highly customized
environments.

In Chapter 3, A Closer Look at Workflows, you learned that GitHub Actions workflows
can be as simple or as robust as you need them to be. You reviewed many examples of
webhook events that trigger workflows, which illustrated how workflows can be used in
the most diverse scenarios, such as translating issues or creating releases. Similarly, by
using self-hosted runners, you can create virtual machines (VMs) or use hosts that will
be as modest or as powerful as you need them to be while hosting the GitHub Actions
runner application.

The skills you will learn in this chapter will allow you to understand the pros and cons of
using a self-hosted runner when compared to using a GitHub-hosted runner. You will also
see how to install the runner application, as well as build a workflow to run a job that uses
a newly created self-hosted runner.

Once your self-hosted runner has been created, you will learn how to manage it, including
removing it when it is no longer needed.

96 Working with Self-Hosted Runners

The following sections will guide you through this chapter:

• Creating a self-hosted runner

• Configuring a job that runs on a self-hosted runner

• Managing a self-hosted runner

Technical requirements
Self-hosted runners are, as the name suggests, self-hosted. This means you will need to
have your own environment where you will install the runner application.

You should have access to a machine where you have permission to install applications
and packages. This machine can be physical—such as a laptop, for example—or virtual; for
example, a VM hosted on a hypervisor such as Amazon Web Services (AWS), VMware,
or others.

By the end of this chapter, you will be able to decide whether self-hosted runners are
the best alternative for your workflow. If they are, by reading this chapter, you will have
acquired knowledge needed to install the runner application on a host machine and
use the self-hosted runner to run a job from a workflow. Finally, you will also have the
know-how to manage the self-hosted runner, review logs, and monitor its real-time
activity.

Creating a self-hosted runner
The workflow examples used in previous chapters include jobs that ran on GitHub-
hosted runners. As you read in Chapter 2, Deep Diving into GitHub Actions, GitHub-
hosted runners can be convenient because GitHub maintains the VMs built to host those
runners. However, those virtual environments are built using specific hardware and
software.

If your workflows require a different architecture, GitHub-hosted runners will likely
not be suitable. For example, if you run jobs that demand higher amounts of memory
or processing power, you can build a host machine with those specifications to host
the runner application. If your workflow requires tests to be run on operating systems
unsupported by GitHub-hosted runners, or if you need to use packages, tools, or software
installed in your network, self-hosting the GitHub Actions runner application can be
a great option. You can use a host machine that is physical or virtual, hosted on-premises,
in containers, or in the cloud.

Creating a self-hosted runner 97

To help you learn more about what you will need to use self-hosted runners, the next
few pages will show an overview of self-hosted runners, the architecture and software
supported by self-hosted runners, and instructions on how to add the GitHub Actions
runner application to your repository to use with a workflow.

Overview
The following screenshot summarizes the differences between self-hosted runners and
GitHub-hosted runners:

The information in the preceding table shows how self-hosted runners can be highly
customizable. However, note that you are responsible for maintaining the host machine.
This includes software and security updates, as well as any costs included in building and
hosting the environment.

Each GitHub-hosted runner is a clean, isolated VM that is destroyed when the job run
is completed. This is a security feature offered by GitHub. Since this is not a feature of
self-hosted runners, you will need to pay special attention to certain security risks and
plan accordingly.

98 Working with Self-Hosted Runners

Important note
To avoid security vulnerabilities with self-hosted runners, it is recommended
that you do not use them with public repositories. When your public
repository is forked and a pull request is created from that fork against your
repository, a workflow can be triggered that runs malicious code in your virtual
environment, which may damage your host machine and network.

Now that you have had a glimpse at some of the benefits that self-hosted runners have,
review the list provided next of the supported architecture and operating systems before
setting out to create a host machine.

Architecture and operating systems supported
by self-hosted runners
There are a variety of processor architectures and operating systems that are supported by
self-hosted runners, outlined as follows:

• Architecture:

ARM32—Linux

ARM64—Linux

x64—Linux, macOS, and Windows
• Operating systems:

macOS 10.13 or later

Windows 7 64-bit

Windows 8.1 64-bit

Windows 10 64-bit

Windows Server 2012 R2 64-bit

Windows Server 2016 64-bit

Windows Server 2019 64-bit

Creating a self-hosted runner 99

Red Hat Enterprise Linux 7 (RHEL 7)

CentOS 7

Oracle Linux 7

Fedora 29 or later

Debian 9 or later

Ubuntu 16.04 or later

Linux Mint 18 or later

openSUSE 15 or later

SUSE Linux Enterprise Server (SLES) 12 SP2 or later
• Requirements: Once you decide which operating system you will use to host the

GitHub Actions runner application, make sure the machine meets the following
requirements:

• Hardware power: While the GitHub Actions runner application has modest
operating resource requirements, ensure the host machine is provisioned
accordingly with the resources required by the types of jobs that will be
created.

• Supported operating system: Choose a supported operating system and
install the GitHub Actions runner application.

Communication with GitHub
The host machine must have a connection with GitHub, as well as network access to the
following Uniform Resource Locators (URLs):

• github.com

• api.github.com

• *.actions.githubusercontent.com

• codeload.github.com

• github-releases.githubusercontent.com

100 Working with Self-Hosted Runners

Adding the GitHub Actions runner application to your
repository
Considering that you have provisioned a macOS, Linux, or Windows environment to host
the runner application (the steps on how to create a host machine are out of the scope
of this book), you can use the following instructions to add a self-hosted runner to your
repository:

1. Navigate to your repository main page and click on the Settings tab.

2. Then, click on the Actions option on the left-hand-side menu, as illustrated in the
following screenshot:

Figure 4.1 – Adding a runner to a repository

Creating a self-hosted runner 101

3. Click on Add runner.

4. Select the operating system and architecture of the machine you will use to host the
runner application.

5. Follow the instructions on the screen, as illustrated in the following screenshot:

Figure 4.2 – Reviewing the instructions to configure the GitHub Actions runner application

102 Working with Self-Hosted Runners

6. Next, review the steps being followed on a macOS machine.
Create a folder and download the latest runner package, as illustrated in the
following screenshot:

Figure 4.3 – Using the macOS terminal to download the runner application

7. Extract the installer and list the files and directories downloaded, as illustrated in
the following screenshot:

Figure 4.4 – Listing the downloaded files and directories

8. Create the runner, start the configuration, and run it.

The config.sh script run during this step requires the destination URL—note
in this example that the URL is the repository's URL: https://github.com/
testesdapri/a-github-repo. The script also accepts a time-sensitive, automatically
generated token (the following screenshot shows the first few characters of the token,
starting with AR5V). When you hit Enter to run the script, you will be prompted to enter
a few options. The first one is the name of the runner. In this example, the name used is
testesdapri-runner.

You can also create labels during this step. To learn more about creating and assigning
labels, see the Creating labels and assigning them to self-hosted runners section.

https://github.com/testesdapri/a-github-repo
https://github.com/testesdapri/a-github-repo

Creating a self-hosted runner 103

You can see the runner application being configured and run in the following screenshot:

Figure 4.5 – Configuring and running the runner application

The Listening for Jobs output you can see in the preceding screenshot confirms
that the script ran successfully. It also signals that the self-hosted runner is ready to be
used in a workflow. To verify that the runner has also been added on the GitHub side,
navigate to your repository's Settings page.

104 Working with Self-Hosted Runners

This is what you should see:

Figure 4.6 – The runner has been added to your repository

Well done! You have added your first self-hosted runner to your GitHub repository.

Next, the following sections will guide you through how to configure the runner
application as a service, and how to create labels and assign them to a self-hosted runner.
Although these skills are not required to start using self-hosted runners in your workflow,
they will save you time when managing several runners.

Setting the self-hosted runner to run as a service
Follow these steps if you would like the GitHub Actions runner application to start the
runner application when the host machine starts.

Important note
The following instructions are run on a macOS machine. If you are using
a Linux or Windows operating system, you can find instructions on GitHub's
official documentation page: https://docs.github.com/en/
actions/hosting-your-own-runners/configuring-the-
self-hosted-runner-application-as-a-service.

https://docs.github.com/en/actions/hosting-your-own-runners/configuring-the-self-hosted-runner-application-as-a-service
https://docs.github.com/en/actions/hosting-your-own-runners/configuring-the-self-hosted-runner-application-as-a-service
https://docs.github.com/en/actions/hosting-your-own-runners/configuring-the-self-hosted-runner-application-as-a-service

Creating a self-hosted runner 105

Open the terminal and follow these steps:

1. Stop the self-hosted runner application, if it is running. You can use the Ctrl + Z
keys on your keyboard to do this.

2. Install the service by running ./svc.sh install, as illustrated in the following
screenshot:

Figure 4.7 – Installing the service

3. Start the service with ./svc.sh start, as illustrated in the following screenshot:

Figure 4.8 – Starting the service

4. Check the status of the service with ./svc.sh status, as illustrated in the
following screenshot:

Figure 4.9 – Verifying the service status

5. Stop the service with ./svc.sh stop, as illustrated in the following screenshot:

Figure 4.10 – Stopping the service

106 Working with Self-Hosted Runners

6. Uninstall the service with ./svc.sh uninstall, as illustrated in the following
screenshot:

Figure 4.11 – Uninstalling the service

You have just learned how to install, manage, and uninstall the runner application as
a service. Next, see how you can organize your self-hosted runner by using labels.

Creating labels and assigning them to self-hosted runners
Labels can be used to identify a runner. When you are ready to use self-hosted runners
in workflows, labels can be a helpful option to add to the workflow .yml file to specify
which runner a job must use.

There are two different ways to create labels and associate them with your self-hosted
runner, outlined as follows:

• Using the configuration script

• Using the GitHub web interface

Using the configuration script is simple. When you first use the ./config.sh script to
configure the GitHub Actions runner application, you are prompted to enter the name of
the runner and any additional labels, as illustrated in the following screenshot:

Figure 4.12 – Using the configuration script to create labels

Creating a self-hosted runner 107

The preceding screenshot shows how the name testesdapri-runner was entered for
the name of the runner, and a dev-runner label was created.

You can also verify that a label has been created and applied to your runner by navigating
to your repository's Settings page. Notice how the following screenshot shows the
dev-runner label applied to the testesdapri-runner runner:

 Figure 4.13 – A label was created and assigned to the runner using the ./config.sh script

Alternatively, you can create and assign labels to self-hosted runners by using GitHub's
web interface, as follows:

1. Navigate to your repository's Settings page. Then, click on the Actions item on the
left-hand-side menu.

2. On the list of runners, click on the upside-down triangle next to the labels. This will
open a text field, where you enter the name of your new label.

The following screenshot shows how the javascript-tools label was created:

Figure 4.14 – A javascript-tools label was created and assigned to the runner using the web interface

108 Working with Self-Hosted Runners

You have learned how to add a self-hosted runner to your repository, as well as how to
create and assign labels to those runners. Labels allow you to send jobs to self-hosted
runners that are labeled according to their operating system, architecture, or environment,
for example. Labels will be helpful in the next section, where you will read about passing
a self-hosted runner to the runs-on key of your workflow.

Configuring a job that runs on
a self-hosted runner
Similarly to GitHub-hosted runners, self-hosted runners use the runs-on key within
a workflow file. Therefore, you will use a line like the following one in your .yml file:

runs-on: [self-hosted, macOS, dev-runner]

Self-hosted runners automatically receive a self-hosted label, as well as a label to
indicate the operating system and architecture you selected when you were creating a self-
hosted runner on your repository's Settings page. In the previous example, macOS is the
label automatically generated for the operating system. An architecture label is not being
used in this case. Note how dev-runner, a label created using the ./config.sh script,
was also used.

The following example is of a workflow used in Chapter 3, A Closer Look at Workflows,
to translate issues and issue comments that were written in a language different from
English, and this workflow ran on a GitHub-hosted runner. The following code snippet
shows how it was edited to use a self-hosted runner:

name: issue-translator

on:

 issues:

 types: [opened]

 issue_comment:

 types: [created]

jobs:

 build:

 runs-on: [self-hosted, macOS, dev-runner]

 steps:

 - uses: tomsun28/issues-translate-action@v2.3

Configuring a job that runs on a self-hosted runner 109

A new issue was created in the repository. It was written using Portuguese, which
triggered a workflow run, as you can see here in the Actions tab:

Figure 4.15 – A workflow run using a self-hosted runner

Note how the testesdapri-runner self-hosted runner, created following the
instructions in this chapter, was used. In the following screenshot, you can also see
evidence of a job being run on the self-hosted runner host machine console:

Figure 4.16 – Real-time information about a job being run can be seen on the host machine console

While the workflow run example in this section completed successfully, it is possible that
you will need to troubleshoot job builds that run on your self-hosted runner application.
Read on to the next section to learn more about reviewing logs and managing self-hosted
runners.

110 Working with Self-Hosted Runners

Managing a self-hosted runner
Self-hosted runners are unique because they require more maintenance from the host
machine administrator. While you may have access to the host machine's logs and other
monitoring tools, it is also important to manage and monitor the GitHub Actions runner
application.

This section will guide you in understanding the status of self-hosted runners, reviewing
job logs and runner log files, understanding the runner application's automatic update
process, and removing a self-hosted runner that will no longer be needed.

By the end of this section, you will have gathered the skills necessary to create, use, and
manage a self-hosted runner successfully.

Understanding the status of self-hosted runners
You can review the status of self-hosted runners by navigating to the Settings page of your
repository, and then clicking on Actions on the left-hand-side menu. The page that comes
up will list the runners that have been added to your repository.

Note how the runner may be displaying a status of either Active, Idle, or Offline, outlined
as follows:

• Active: The runner is currently executing a job. This status is illustrated in the
following screenshot:

Figure 4.17 – The status of this runner is Active

• Idle: The runner is ready to execute jobs. An Idle status also indicates that the
runner is connected to GitHub. This status is illustrated in the following screenshot:

Figure 4.18 – The status of this runner is Idle

Managing a self-hosted runner 111

• Offline: The runner is not connected to GitHub. There are a few reasons why a
runner can be offline: the runner application is not running, the runner application
cannot communicate with GitHub, or the host machine is offline. This status is
illustrated in the following screenshot:

Figure 4.19 – The status of this runner is Offline

While understanding the definitions for each runner status is helpful, you may need more
information to diagnose why a runner is unexpectedly offline, for example. The next
section will show you where worker and runner logs are located. You will also learn what
kind of information is recorded in those files.

Reviewing logs
Each workflow job processed by the runner application is recorded in a detailed log
file. Similarly, the self-hosted runner application statuses and activities are written to a
separate set of files. Analyzing both sets of log files can be helpful if you need to diagnose
issues or troubleshoot problems.

Job log files
These files contain details about each workflow job processed by the runner and are stored
in your self-hosted runner's _diag directory. All job log filenames start with Worker_,
as can be seen in the following screenshot:

Figure 4.20 – Viewing the contents of the /actions-runner/_diag directory on the host machine

112 Working with Self-Hosted Runners

Job log files are usually longer than runner log files. They carry thousands of lines that
record every step of each job, as well as its status. The following screenshot shows a few
lines of a job log file, illustrating a job that was successfully completed:

Figure 4.21 – Reviewing the contents of a Worker_ file

The next category of log files is stored in the same directory as job log files.

Runner application log files
Similar to job log files, runner application log files are stored in the _diag directory.
These filenames start with Runner_ and record information about the runner application
every time it is started, as the following screenshot shows:

Figure 4.22 – Reviewing the contents of a Runner_ file

While Runner_ files are often smaller in size when compared to Worker_ files, they can
be instrumental in troubleshooting issues that can be related to the version of the runner
application or to problems that could have happened during the automatic update process.

Managing a self-hosted runner 113

The automatic update process
While you are responsible for managing and maintaining the host environment (including
the operating system, pre-installed packages, security packages, and so on), GitHub
updates the runner application automatically. While no manual intervention is needed
during these automatic updates, it is recommended that you monitor this process. This
can help you identify possible update issues early on and stay informed about each update
process.

You can find information about the automatic update process in the _diag/Runner_
log files, as well as in the _diag/SelfUpdate log files.

Removing a self-hosted runner
If you no longer want to maintain the host machine or if you need to reuse the machine
for a different project, you can easily remove a self-hosted runner from your repository.

Important note
This is a procedure that will permanently remove the self-hosted runner from
your repository. You may want to consider stopping the runner instead. You
can stop the runner by turning off the host machine or stopping the run
application on the host machine.

To remove a self-hosted runner, follow these instructions:

1. Navigate to your repository's Settings page.

2. Then, click on the Actions item on the left-hand-side menu.

3. Identify from the list of runners the one you want to remove.

4. Click on the ellipsis on the right. Then, click on Remove, as illustrated in the
following screenshot:

Figure 4.23 – Removing a self-hosted runner

114 Working with Self-Hosted Runners

5. Follow the instructions on the screen to remove the runner completely, using the
web interface or the host machine shell prompt.

Well done—you have completed Chapter 4, Working with Self-Hosted Runners! You are
now ready to create, use, manage, and remove self-hosted runners in your repository.

Summary
Excellent work! Now that you have completed Chapter 4, Working with Self-Hosted
Runners, you have discovered how self-hosted runners can add flexibility and
customization to your workflows. By hosting your own runner application, you can
build a hosting machine and pick hardware and software that are not available for
GitHub-hosted runners.

You walked through the steps of installing and configuring the runner application in your
host machine.

You also revisited a workflow that previously used a GitHub-hosted runner, and
recreated the job using a self-hosted runner. You practiced adding a self-hosted runner
in a workflow by simply using the right key and the right labels: runs-on: [self-
hosted, macOS, dev-runner].

Finally, you reviewed the contents of runner and job log files, while learning how to
manage and maintain self-hosted runners.

Learning about self-hosted runners gives you the flexibility to try any of the workflow
examples throughout this book in your own environment. It also provides you with more
tools to create the perfect workflow for your task.

Now that you have learned about self-hosted runners, you have a new tool that you can
add to your continuous integration/continuous deployment (CI/CD) workflow. You
will have the chance to use this newly gained skill in the next Chapter 5, Writing your
Own Actions, where you will have the opportunity to write a GitHub action from scratch
using JavaScript and Docker.

5
Writing Your Own

Actions
At this point, you have developed all the skills needed to enable GitHub Actions on a
repository and write a workflow file using YAML Ain't Markup Language (YAML). You
have also practiced adding existing public actions to your workflow file. Next, you will
continue exploring the multitude of ways GitHub Actions can be used by writing your
own action.

Actions are specific tasks that interact with a GitHub repository. In this chapter, you will
learn—among other things—that you can write custom code to create an action using
JavaScript and Docker. To help you gather the information needed to create your own
action, this chapter is organized into the following sections:

• Overview

• Reviewing the metadata syntax

• Using exit codes

• Creating a JavaScript action

• Creating a Docker container action

• Creating a composite run steps action

116 Writing Your Own Actions

By the end of this chapter, you will be able to create your own action using different
technologies. You will also have gathered knowledge to test your newly created action, to
verify that all works as expected.

Technical requirements
In addition to the skills you have learned throughout the previous chapters, you will need
a basic understanding of JavaScript and Docker in order to write both types of actions.

Depending on the type of action you decide to write, you will need to have Node .js and
Docker installed on your workstation.

Overview
Types of actions
You can create three types of actions: Docker container actions, JavaScript actions, and
composite run steps actions.

Docker container actions can be slower than JavaScript actions because an image has to
be retrieved before the Docker container can be built. However, Docker containers can be
especially fitting for actions that must run in specific environments for two main reasons:
they allow for customization of operating systems, tools, packages and dependencies that
will be installed on the container, and they ensure that the action will run reliably and
consistently.

Important note
Docker container actions only support one operating system, Linux. If you are
using GitHub-hosted runners, verify that you have selected Linux runners.
If you are using self-hosted runners, the runner must be running on a Linux
operating system and Docker must be installed.

Differently from Docker container actions, JavaScript actions run on the runner
machine. This means that if you are using GitHub-hosted runners, for example, it is
possible that any binaries that are part of the code that makes up your JavaScript action
may not be compatible with all operating systems.

Although they might not be the best fit for tasks that need to run in specific environments,
JavaScript actions have other benefits, such as executing faster than Docker container
actions.

Reviewing the metadata syntax 117

Composite run steps actions are not bound to a specific programming language or
platform. By using composite run steps actions, you are able to combine multiple
workflow run steps in one action. Composite run steps actions support Linux, macOS,
and Windows.

All three types of actions share the same requirement: a metadata file written using
YAML, where you can define the main entry point for your action, as well as any inputs
and outputs (I/Os).

Reviewing the metadata syntax
The metadata syntax required to create an action must be written using YAML. If you are
not familiar with YAML, start by reading the Introduction to YAML section in Chapter 1,
Learning the Foundations for GitHub Actions.

Important note
The metadata filename must be either action.yaml or action.yml.

Most elements in a YAML file are organized in key-value pairs. That format is also used in
the action metadata syntax. This chapter presents a list of all required keys that you must
add to an action metadata file, as follows:

• name: The name of your action, which will also be displayed in the Actions tab of
your GitHub repository.

• description: A description of your action.

• runs: Determines the application used to run the code.

For Docker actions, this key configures the image used for the Docker action.

For JavaScript actions, this key configures the path to the location where the code
that builds the action lives.

For composite run steps actions, runs configures the path to the composite action.
• runs.using:

For Docker actions, the value for this key should be set to docker.

For JavaScript actions, this key needs a value to determine the application used to
run the code specified in runs.main.

For composite run steps actions, the value for this key should be set to composite.

118 Writing Your Own Actions

• runs.main (specific to JavaScript actions): The file that contains your action
code—such as index.js, for example.

• runs.steps (specific to composite run steps actions): The run steps that you want
to execute in this action.

• runs.steps[*].run (specific to composite run steps actions): The command
you want to run. The value for this key can be passed as ${{ github.action_
path }}/directory/script.sh or as $GITHUB_ACTION_PATH/script.
sh.

• runs.steps[*].shell (specific to composite run steps actions): The shell you
want to use to run the command. Shells such as bash, powershell, and python
are supported. To see a list of all supported shells, see this GitHub help article:
https://docs.github.com/en/actions/reference/workflow-
syntax-for-github-actions#using-a-specific-shell.

• runs.image (specific to Docker container actions): The Docker image of the
container the action will run in. The value for this key can be one of the following:

The Docker base image name

A local Dockerfile that lives in your repository

A public image in a registry such as Docker Hub or GitHub Container Registry
(ghcr.io)

Important note
To reference a Dockerfile local to your repository in your action, verify
that the file is named Dockerfile and that you are using a path relative to
your action metadata file (action.yml or action.yaml).

The following example shows part of the content in the action.yml file for the most
used action in GitHub Marketplace—the actions/checkout action:

name: 'Checkout'

description: 'Checkout a Git repository at a particular
version'

inputs:

 repository:

 description: 'Repository name with owner. For example,
actions/checkout'

 default: ${{ github.repository }}

(…)

https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions#using-a-specific-shell
https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions#using-a-specific-shell

Using exit codes 119

runs:

 using: node12

 main: dist/index.js

 post: dist/index.js

Note how this file includes the name, description, runs, runs.using, and runs.
main required keys. It also uses optional keys such as inputs, input.id, input.
id.description, input.id.default, and runs.post.

Important note
For a comprehensive list that includes optional keys, visit the GitHub
documentation at https://docs.github.com/en/actions/
creating-actions/metadata-syntax-for-github-
actions.

While not a required addition to the metadata file, exit codes represent an important part
of writing your own actions. The next section will show you how to use exit codes within
your action.

Using exit codes
Adding exit codes to your action can help you monitor the action's check run status.

GitHub displays statuses to illustrate whether an action run succeeded or failed. Those
statuses are binary and simply represent whether an action run succeeded or failed, and
are outlined further here:

1. The action completed successfully—Exit status is 0 and the check run status is
success.

2. The action failed—Exit status is non-zero (any integer) and the check run status
is failed. All concurrent actions are cancelled, and future actions are skipped.

Adding exit codes to a JavaScript action
Use the @actions/core actions toolkit package to set failure exit codes and log a
message, as follows:

try {

 // add thing to be tried here

} catch (error) {

https://docs.github.com/en/actions/creating-actions/metadata-syntax-for-github-actions
https://docs.github.com/en/actions/creating-actions/metadata-syntax-for-github-actions
https://docs.github.com/en/actions/creating-actions/metadata-syntax-for-github-actions

120 Writing Your Own Actions

 core.setFailed(error.message);

}

Adding exit codes to a Docker container action
Use your entrypoint.sh file to add a failure exit code, as follows:

if <this happens> ; then

 echo "Something went wrong"

 exit 1

fi

Now that you have reviewed the metadata syntax you will need to use, you are ready
to learn how to write your own action. The next few sections will guide you in writing
JavaScript, Docker, and composite run steps actions.

Creating a JavaScript action
The next few pages will walk you through the creation of a JavaScript action. Although
basic JavaScript knowledge will be helpful in understanding parts of this section, the main
goal is to provide you with knowledge needed to create an action from scratch. Focus on
the code itself will be minimal.

Once you are done reading this section, you will be able to create a JavaScript action and
verify that it works as intended by using it in a workflow.

Prerequisites
To follow the steps presented in this section, you will need the following:

1. A new GitHub repository. Throughout this section, the talktopri/a-
javascript-action repository will be used.

2. A local copy of your GitHub repository. Use the git clone command to clone
your GitHub repository to your workstation. Revisit Chapter 1, Learning the
Foundations for GitHub Actions, if you need more details on how to accomplish that.

3. Node.js version 12.x. Download and install Node.js on your workstation.

Creating a JavaScript action 121

4. A package.json file. Once you have Node.js installed on your workstation,
open a shell window and, from within your GitHub repository directory, type npm
init -y to initialize the directory, accepting all of its default values.

Important note
To download Node.js, visit https://nodejs.org/en/
download/current/.

The following screenshot shows the GitHub repository being cloned locally. Note how
the cd command changed the directory from Desktop to the repository directory, /
Desktop/a-javascript-action. Then, the package.json file was generated
once npm init -y was executed:

Figure 5.1 – Cloning a GitHub repository and initializing a new npm package

Defining the action
Every action needs a metadata file. To start your JavaScript action, create a metadata file in
the root directory of your GitHub repository, as illustrated in the following code snippet.
This file will define the main entry point, as well as the I/Os for your action. The metadata
file can be called either action.yml or action.yaml:

name: "my javascript action"

description: "Simple greeting with GitHub Actions"

inputs:

 first-greeting:

 description: "who would you like to greet in the console"

 required: true

 default: "Hubot"

 second-greeting:

 description: "another person to greet"

https://nodejs.org/en/download/current/
https://nodejs.org/en/download/current/

122 Writing Your Own Actions

 required: true

 default: "Mona"

 third-greeting:

 description: "a third greeting"

 required: true

 default: "Testesdapri"

 last-one-greeted:

 description: "the person greeted last"

outputs:

 last-one-greeted:

 description: "the person greeted last"

runs:

 using: "node12"

 main: "index.js"

This metadata file defines the I/Os and entry point for a simple hello-world
action. Note how this file determines that three different inputs are expected (first-
greeting, second-greeting, and third-greeting), but only first-
greeting is required. Similarly, this file determines what to output: first-one-
greeted.

Important note
While there were some modifications to its original content, the inspiration
for this metadata file and the index.js file in this section comes from a
free online GitHub Actions course that you can find in GitHub's Learning
Lab: https://lab.github.com/githubtraining/github-
actions:-writing-javascript-actions.

The next step is to create an index.js file and write the JavaScript logic that will power
this action when the workflow is triggered.

Writing the action logic
If you are familiar with JavaScript, you have probably added existing packages that bring
commands or libraries to help with some parts of your code. These packages are often
added to a JavaScript file using a const <name> = require("package-name");
line. In the following examples, a specific package will be used. The @actions/core
package provides an interface to the I/O variables, as well as exit statuses.

https://lab.github.com/githubtraining/github-actions:-writing-javascript-actions
https://lab.github.com/githubtraining/github-actions:-writing-javascript-actions

Creating a JavaScript action 123

To use this package, ensure that you have it installed by running npm install @
actions/core on the command line.

Create an index.js file in your GitHub repository and add the following content to it:

const core = require("@actions/core");

const firstGreeting = core.getInput("first-greeting");

const secondGreeting = core.getInput("second-greeting");

const thirdGreeting = core.getInput("third-greeting");

const lastOneGreeted = core.getInput("last-one-greeted");

async function run() {

 try {

 if (firstGreeting) {

 core.setOutput("last-one-greeted", firstGreeting);

 } else if (secondGreeting) {

 core.setOutput("last-one-greeted", secondGreeting);

 } else if (thirdGreeting) {

 core.setOutput("last-one-greeted", thirdGreeting);

 }

 } catch (error) {

 core.setFailed(error.message);

 }

}

run();

console.log(`The first one to be greeted was
${firstGreeting}!`);

console.log(`The second one to be greeted was
${secondGreeting}!`);

console.log(`The last one to be greeted was
${thirdGreeting}!`);

Note the lines showing core.getInput. This is provided by the @actions/core
toolkit and is used to receive input provided by the user.

124 Writing Your Own Actions

This action will receive user input, then provide an output showing who the last greeted
person was, using the core.setOutput package. In case of any problems or exceptions,
an error message will also be displayed.

Now that both the metadata file and the logic for this JavaScript action have been written
and added to the GitHub repository, it is time to test things out by creating a workflow file
and triggering an action, as illustrated in the following screenshot:

Figure 5.2 – The metadata and JavaScript files were added to the repository

Ensuring all works as expected
You have written your first JavaScript action—great work! Now, you have the opportunity
to add your action to a workflow file—similar to what you accomplished in previous
chapters—and ensure all works as expected.

To ensure your action works as expected, create a new workflow file in your GitHub
repository. Remember that workflow files must live in the /.github/workflows/
directory. If you need details on how to create a workflow file, visit Chapter 2, Deep Diving
into GitHub Actions.

Next, paste the following content into your newly created workflow file. This will trigger a
workflow run when a new pull request is labeled. Notice how your newly created action
is passed under steps:

name: JS Actions

on:

 pull_request:

Creating a JavaScript action 125

 types: [labeled]

jobs:

 action:

 runs-on: ubuntu-latest

 steps:

 - uses: actions/checkout@v1

 - name: hello-action

 uses: ./.github/actions/hello-world

Create a test pull request and add a label to it. This will trigger the following
workflow run:

Figure 5.3 – Creating a pull request to test the JavaScript action

126 Writing Your Own Actions

Then, click on the Actions tab. Click on the most recent workflow run, if you have
multiple workflow runs in that repository, and click on action. That will take you to
the Action run page, where you will be able to see each step completing successfully, as
illustrated in the following screenshot:

Figure 5.4 – Viewing the logs to validate that the JavaScript action ran successfully

Excellent job! The JavaScript action you created works as expected and all jobs are
completed successfully.

You have mastered the first type of action that can be created in GitHub. Next, you can
learn more about the second type of action that you can create from scratch: a Docker
action. Review the steps needed to write a successful Docker action by reading the next
section of this chapter.

Creating a Docker container action 127

Creating a Docker container action
The next few pages will walk you through the creation of a Docker container action.
Although basic Docker knowledge will be helpful in understanding parts of this section,
the main goal is to provide you with knowledge needed to create an action from scratch.
Focus on Docker itself will be minimal.

Once you are done reading this section, you will be able to create a Docker container
action and verify that it works as intended by using it in a workflow.

Prerequisites
To follow the steps presented in this section, you will need the following:

1. A new GitHub repository. Throughout this section, the talktopri/a-docker-
action repository will be used.

2. A local copy of your GitHub repository. Use the git clone command to clone
your GitHub repository to your workstation. Revisit Chapter 1, Learning the
Foundations for GitHub Actions, if you need more details on how to accomplish that.

The following screenshot shows the GitHub repository being cloned locally. Note
how the cd command changed the directory from Desktop to the /Desktop/a-
docker-action repository directory:

Figure 5.5 – Cloning a GitHub repository

3. A self-hosted runner is installed in a Linux environment. The examples throughout
this section use a self-hosted runner installed in a Linux environment, where
Docker will be installed. Remember that Docker container actions only support
Linux as the operating system. Review Chapter 4, Working with Self-Hosted Runners,
to create your own self-hosted runner. If you prefer to use a GitHub-hosted runner
instead, make sure to choose a flavor of Linux available on GitHub, such as Ubuntu.

128 Writing Your Own Actions

The following screenshot shows an example of a runner application that has been
successfully installed and now running on a Linux machine:

Figure 5.6 – The runner application has been installed on a Linux machine and is running

4. Lastly, you will need to install Docker in your Linux environment, if it is not already
installed. To verify that Docker is installed successfully, you can run sudo docker
run hello-world from the command line, as follows:

Figure 5.7 – Verifying that Docker is installed successfully

Important note
Visit https://docs.docker.com/engine/install/ to learn
how to install Docker in your environment.

https://docs.docker.com/engine/install/

Creating a Docker container action 129

Creating a Dockerfile in your GitHub repository
A Dockerfile is a simple text file where you can add the instructions or commands that
Docker should execute.

To add a Dockerfile to your GitHub repository, follow these steps:

1. Create a new file called Dockerfile in the root of your repository, as illustrated in
the following screenshot:

Figure 5.8 – A Dockerfile has been added to the root of the GitHub repository

2. Copy the following content and paste it into your Dockerfile:

Container image that runs your code

FROM alpine:3.13

Copies your code file from your action repository, like
testesdapri/a-docker-action, to the filesystem path `/` of the
container

COPY entrypoint.sh /entrypoint.sh

Runs the command to add the execute permission to the
entrypoint.sh

RUN chmod +x entrypoint.sh

Code file to execute when the Docker container starts up

ENTRYPOINT ["/entrypoint.sh"]

130 Writing Your Own Actions

Note how the Dockerfile will also adjust the permission to the entrypoint.sh file.
This step is very important and you will likely see a permission denied error when
your workflow runs if you do not add it to your Dockerfile.

Defining the action
Every action needs a metadata file. To start your Docker action, create a metadata file
within your GitHub repository, as illustrated in the following code snippet. This file
will define the main entry point for your action. The metadata file can be called either
action.yml or action.yaml:

name: "My Docker action"

description: 'Simply running a bash command and showing the
time it executed'

runs:

 using: "docker"

 main: "Dockerfile"

While this specific example does not include any I/Os, you can add them as needed in
your workflow.

The next step is to create an entrypoint.sh file and write the Bash script that will
power this action when the workflow is triggered.

Writing the action logic
The Bash script in the following example was kept simple on purpose. Keeping this script
simple will allow you to understand the logic of this Docker action, without requiring
prior experience of using Bash.

To create logic for this Docker action, create an entrypoint.sh file in your repository.
Then, add the following content to it, which will greet the user who triggered the
workflow and print the current date and time to the screen:

#!/bin/sh -l

echo "Hello $GITHUB_ACTOR! The time now is $(date)"

Creating a Docker container action 131

The first line, #!/bin/sh, indicates that the file will be executed using the Bourne shell
or another compatible shell. The -l flag is for a login shell, which means that it will read
and execute commands from the /etc/profile file if it exists.

Next, echo is used to print an output to the screen.

$GITHUB_ACTOR is a context and uses the username of the user who initiated the
workflow run. For more details about GitHub context and expressions, review Chapter 3,
A Closer Look at Workflows.

Lastly, $(date) is a shell command that displays the current date and time.

Important note
To learn more about Bash and other shells, you can use interactive shell
tutorials, such as learnshell.org.

You have written your first Docker action—great work! Now, you have the opportunity
to add your action to a workflow file—similar to what you accomplished in previous
chapters—and ensure all works as expected.

Ensuring all works as expected
To ensure your action works as expected, create a new workflow file in your GitHub
repository. Remember that workflow files must live in the /.github/workflows/
directory. If you need details on how to create a workflow file, visit Chapter 2, Deep Diving
into GitHub Actions.

Next, paste the following content into your newly created workflow file. This will trigger
a workflow run when an issue is opened, edited, or labeled. Notice how this workflow is
using a self-hosted runner. Also, note how your newly created action is passed under
steps:

name: A simple Docker action

on:

 issues:

 types: [opened, edited, labeled]

jobs:

 user-and-time:

 runs-on: self-hosted

http://learnshell.org

132 Writing Your Own Actions

 name: Running a simple BASH script

 steps:

 - name: A simple BASH script

 id: BASH

 uses: testesdapri/a-docker-action@main

To trigger a workflow run, open a new issue, as illustrated in the following screenshot:

Figure 5.9 – Opening an issue to test the Docker action

Then, click on the Actions tab. Click on the most recent workflow run, if you have
multiple workflow runs in that repository, and click on action. That will take you to
the Action run page, where you will be able to see each step completing successfully, as
illustrated in the following screenshot:

Creating a composite run steps action 133

Figure 5.10 – Viewing the logs to validate that the Docker action ran successfully

Excellent job! The Docker action you created works as expected and all jobs are completed
successfully.

You have mastered two of the three types of actions that can be created in GitHub. Next,
you will learn more about composite run steps actions.

Creating a composite run steps action
The next few pages will walk you through the creation of a composite run steps action.
This type of action is not bound to a specific programming language or platform.
Composite run steps actions are unique because they allow you to combine multiple
workflow run steps in one action.

134 Writing Your Own Actions

Once you are done reading this section, you will be able to create a composite run steps
action and verify that it works as intended by using it in a workflow.

Prerequisites
To follow the steps presented in this section, you will need the following:

1. A new GitHub repository. Throughout this section, the talktopri/a-
composite-run-steps-action repository will be used.

2. A local copy of your GitHub repository. Use the git clone command to clone
your GitHub repository to your workstation. Revisit Chapter 1, Learning the
Foundations for GitHub Actions, if you need more details on how to accomplish that.

3. The action created in this section creates an npm test and builds a workflow. For
this reason, you will need to have Node.js version 12.x or later installed on your
workstation.

4. A package.json file. Once you have Node.js installed on your workstation,
open a shell window and, from within your GitHub repository directory, type npm
init -y to initialize the directory, accepting all of its default values.

Important note
To download Node.js, visit https://nodejs.org/en/
download/current/.

The following screenshot shows a GitHub repository being cloned locally. Note how
the cd command changed the directory from Desktop to the /Desktop/a-
composite-run-steps-action repository directory. Then, the package.json file
was generated once npm init -y was executed:

Figure 5.11 – Cloning a GitHub repository and initializing a new npm package

https://nodejs.org/en/download/current/
https://nodejs.org/en/download/current/

Creating a composite run steps action 135

The examples in this section simply print a string to the screen, as the following
screenshot shows. If you are comfortable using Node.js, you might want to
consider adding a test.js file to your repository, which will then be used during
the workflow run:

Figure 5.12 – The test and build scripts are simple commands to output strings to the screen

Defining the action
Every action needs a metadata file. To start your composite run steps action, create a
metadata file within your GitHub repository, as illustrated in the following code snippet.
This file will define the main entry point, as well as any I/Os for your action. The metadata
file can be called either action.yml or action.yaml:

name: "A simple action that will use npm to create a build and
run a test"

runs:

 using: "composite"

 steps:

 - run: npm ci

 shell: bash

 - run: npm run test

 shell: bash

 - run: npm run build

 shell: bash

136 Writing Your Own Actions

Note how the metadata file uses many run steps within the same action. Also, notice that
the using: "composite" key-value pair was added to specify the type of action being
used.

Differently from the JavaScript action, the composite run steps action examples used in
this section do not require another file to define the logic that the action itself will use.
The next steps will be to simply create a workflow file, pass your action to it, and ensure all
works as expected.

Ensuring all works as expected
You have written your first composite run steps action—well done! Now, you have the
opportunity to add your action to a workflow file—similar to what you accomplished in
previous chapters—to verify that your code works well.

To ensure your action works as expected, create a new workflow file in your GitHub
repository. Remember that workflow files must live in the /.github/workflows/
directory. If you need details on how to create a workflow file, visit Chapter 2, Deep Diving
into GitHub Actions.

Next, paste the following content into your newly created workflow file. This will trigger a
workflow run when a new push event happens. Notice how your newly created action is
passed under steps:

name: npm test and build

on:

 push

jobs:

 build:

 runs-on: ubuntu-latest

 steps:

 - uses: actions/checkout@v2

 - uses: actions/setup-node@v2

 with:

 node-version: 14

 - uses: testesdapri/a-composite-run-steps-action@main

Summary 137

The push event that created the workflow file should already have triggered the action. To
verify this, click on the Actions tab. Then, click on the most recent workflow run, if you
have multiple workflow runs in that repository, and click on action. This will take you to
the Action run page, where you will be able to see each step completing successfully, as
illustrated in the following screenshot:

Figure 5.13 – Viewing the logs to validate that the composite run steps action ran successfully

Note how the This is a test by testesdapri and Add your build
script here when you're ready strings, which were defined in the package.
json file, are printed on the screen successfully.

Excellent job! The composite run steps action you created works as expected and all the
jobs are completed successfully.

Summary
Well done! You have completed Chapter 5, Writing Your Own Actions. With the new skills
you gained, you can distinguish the benefits of using Docker and JavaScript actions. You
have learned details about the metadata syntax that must be part of any actions you may
create. The last few sections of this chapter walked you through the creation of three
different types of actions: JavaScript, Docker container, and composite run steps actions.

Now that you have learned how to create your own actions, you are ready to understand
more about GitHub Marketplace and how you can share your actions with the community
in the next Chapter 6, Marketplace: Finding Existing Actions and Publishing Your Own.

6
Marketplace –

Finding Existing
Actions and

Publishing Your Own
You have learned so much! The knowledge you have gathered thus far will allow you to
confidently use GitHub Actions to implement creative solutions that will help improve
your continuous integration/continuous deployment (CI/CD) tasks and workflows.

In previous chapters, you had the chance to write workflow files to incorporate existing
actions and, most recently, you had the experience of writing actions from scratch using
JavaScript, Docker, and composite run steps—way to go!

Now, it is time to explore the next step in using GitHub Actions: connecting with
and participating in the community of developers who use GitHub Actions. GitHub
Marketplace allows anyone to publish paid or free GitHub applications and GitHub
actions. This chapter will walk you through finding existing actions that you can
incorporate into your workflow, as well as publishing actions that you have created
and want to make available to the community.

140 Marketplace – Finding Existing Actions and Publishing Your Own

To help you expand your knowledge of GitHub Marketplace, this chapter is organized into
the following sections:

• Overview

• Finding existing actions

• Publishing your own actions

• Removing your action from GitHub Marketplace

By the end of this chapter, you will be able to search GitHub Marketplace for existing
actions created by the community. You will also have a strong understanding of the best
practices to prepare your own actions to be published. Lastly, you will have learned about
the steps to publish your actions to GitHub Marketplace.

Technical requirements
In addition to the skills you have learned throughout previous chapters, you will need the
following to successfully reproduce the steps presented in this chapter:

• A GitHub account

• An action that you have created in a public GitHub repository

Overview
By using GitHub Marketplace, you can find apps and actions within various categories
such as CI, project management, code review, security, monitoring, and many others.

To access GitHub Marketplace and start browsing the many tools available, navigate to
https://github.com/marketplace. This will take you to the following web page:

https://github.com/marketplace

Finding existing actions 141

Figure 6.1 – GitHub Marketplace

While there are both paid and free apps in GitHub Marketplace, all GitHub actions
are free.

GitHub Marketplace can be used both for publishing your own actions and finding
existing ones. The next section will walk you through finding existing actions created and
published by other GitHub Actions users.

Finding existing actions
As you have learned in previous chapters, using existing actions is a very efficient way
to use GitHub Actions without the need to write the code for them. The GitHub Actions
community is regularly contributing new actions to the GitHub Marketplace daily. There
are over 7,000 actions that you can browse through, and it is likely that you will find
something to help you with your CI/CD tasks.

142 Marketplace – Finding Existing Actions and Publishing Your Own

Important note
You can browse GitHub Marketplace without being logged in to your GitHub
user account. You will need to be logged in to add an existing action to your
workflow, however.

The next steps will guide you in searching for actions within Marketplace:

1. To start browsing existing actions, navigate to https://github.com/
marketplace.

2. Then, click on Actions, on the left-hand side.

You can navigate the many pages of over 7,000 existing actions, or filter the results
by category, such as Continuous integration, Dependency management, as
illustrated in the following screenshot:

Figure 6.2 – Using the Categories menu to filter existing actions

https://github.com/marketplace
https://github.com/marketplace

Finding existing actions 143

Alternatively, you can use the search bar to type freely and search for an action.

Notice that many actions have a checkmark next to them. That is the verified creator
badge, which means that GitHub has verified the creator of that action as a partner
organization:

1. When you find an action that meets your workflow needs, click on it to be
taken to the Action page. You can learn more about an action by reviewing its
documentation, usage, prerequisites, and other details that the creator of that action
made available.

2. Then, when you are ready to use that action, click on the Use latest version button
on the right-hand side of the page. That button will include a drop-down option,
if the action has more than one version available. This is illustrated in the following
screenshot:

Figure 6.3 – The action's page and installation instructions

3. Lastly, review the installation instructions, which will explain how to add the action
to your workflow. In many cases, incorporating an existing action is as easy as
adding it to your workflow file, similar to what the many examples in Chapter 3,
A Closer Look at Workflows, showed.

GitHub Marketplace is a rich resource to use when you are planning your CI/CD pipelines
and workflows. By browsing it, you will likely find actions that can improve your code and
provide inspiration to help you write your own actions.

Now that you have learned ways to search and find existing actions, it is time to learn how
to leverage GitHub Marketplace to publish your own actions.

144 Marketplace – Finding Existing Actions and Publishing Your Own

Publishing your own actions
In Chapter 5, Writing Your Own Actions, you learned how to write an action using
JavaScript, Docker, and composite run steps. Sharing your actions is an excellent way
to share your knowledge, as well as collaborating with and participating in the GitHub
Actions community.

This section will introduce the prerequisites and steps you need to follow to successfully
publish your own action to GitHub Marketplace.

Prerequisites
Before you can publish your action to GitHub Marketplace, you must meet the following
prerequisites:

• Your action must live in a public GitHub repository.

• The repository must contain one single action.

• The action's metadata file—action.yaml or action.yml—must live in the root
of the repository.

• The name value in the action metadata file must be unique. Therefore, it cannot
match an existing action or a category in GitHub Marketplace. It also cannot
match the name of a user or organization within GitHub, unless it is the user
or organization publishing the action. Lastly, it cannot match the name of any
GitHub feature.

By matching these requirements, your action will be immediately published to GitHub
Marketplace, without the need for this to be reviewed by GitHub.

Assuming that your action meets these requirements, your next step will be to prepare
your action to be published.

Preparing and publishing your action
This section will use the testesdapri/a-docker-action repository, created in
Chapter 5, Writing Your Own Actions, as an example. Notice in the following screenshot
how this repository's README file only contains the name of the repository and does not
include any details about the action itself:

Publishing your own actions 145

Figure 6.4 – A public Docker action

When other GitHub Marketplace users find your action, they will likely need to
understand what your action does. To help them, edit the README file to include details
such as the following:

• What your action does

• Required and optional input and output (I/O) arguments

• Secrets and environments the action uses

• An example to show how to use your action

The following contents were added to the README file of testesdapri/a-docker-
action:

a-docker-action

This action prints "Hello $GITHUB_ACTOR! The time now is
$(date)" to the log.

- $GITHUB_ACTOR is the username of the user who triggered the
workflow run.

- $(date) is the system date and time.

Requirements

146 Marketplace – Finding Existing Actions and Publishing Your Own

None. This action is simple, lightweight, and should work by
simply adding it to your workflow file

Example usage

uses: testesdapri/a-docker-action@v1.0

Created with ❤️ by @testesdapri

Next, you may want to consider adding a branding key to your action.yml file. This
allows you to choose a color and icon for your GitHub action, which helps personalize
and distinguish your action in GitHub Marketplace.

The following branding key was added to the action.yml file in the testesdapri/
a-docker-action repository:

name: 'My Docker action'

description: 'Simply running a bash command and showing the
time it executed'

runs:

 using: 'docker'

 image: 'Dockerfile'

branding:

 icon: 'book'

 color: 'purple'

Important note
To learn more about all the icons and colors supported by GitHub,
visit https://docs.github.com/en/actions/
creating-actions/metadata-syntax-for-github-
actions#branding.

https://docs.github.com/en/actions/creating-actions/metadata-syntax-for-github-actions#branding
https://docs.github.com/en/actions/creating-actions/metadata-syntax-for-github-actions#branding
https://docs.github.com/en/actions/creating-actions/metadata-syntax-for-github-actions#branding

Publishing your own actions 147

Nice work in preparing your action to be published! You are ready to publish your action.
To do that, proceed as follows:

1. Navigate to the main page of your GitHub repository. Notice the banner that
says Publish this Action to Marketplace, as Figure 6.4 shows. That banner was
automatically added to your repository when you created the metadata file.

2. Click on Draft a release.

3. On the next page, click on the accept the GitHub Marketplace Developer
Agreement link. Then, read the agreement terms, check the checkbox, and click on
Accept Terms, as illustrated in the following screenshot:

Figure 6.5 – Accepting the GitHub Marketplace Developer Agreement

148 Marketplace – Finding Existing Actions and Publishing Your Own

4. You may be asked to set up two-factor authentication (2FA) before you can check
the Publish this release to the GitHub Marketplace checkbox. If so, follow the
prompts to set up 2FA. Then, navigate to your repository's main page again, and
click on Draft a Release again.

5. Select a primary category that applies to your action. You may also want to select a
secondary category.

6. Then, add the tag version and a title for the release, as illustrated in the following
screenshot. When all looks good, click on Publish release:

Figure 6.6 – Final steps before publishing the action

You will be taken to your repository's Releases page, where you can verify that your
action has been published to GitHub Marketplace. In the following screenshot, notice
the Marketplace badge:

Publishing your own actions 149

Figure 6.7 – The Releases page shows the Marketplace badge

Click on the Marketplace badge to be taken to the Actions page in GitHub Marketplace.
Alternatively, you can navigate to https://github.com/marketplace/
actions/<your-action>, where <your-action> should be replaced by the name
of your action, as illustrated in the following screenshot:

Figure 6.8 – Your action in GitHub Marketplace

https://github.com/marketplace/actions/
https://github.com/marketplace/actions/

150 Marketplace – Finding Existing Actions and Publishing Your Own

Wonderful accomplishment! Your action has been successfully published to GitHub
Marketplace—well done! Other GitHub users will now be able to add your action to their
workflow files.

If you decide that you are not ready to keep your action available in GitHub Marketplace,
you can remove it. The next section will provide the steps to accomplish that.

Removing your action from GitHub
Marketplace
You can remove an action that has been published on GitHub Marketplace. To do that,
follow these steps:

1. Navigate to the main page of the GitHub repository where your action lives.

2. Click Releases, on the right-hand side of the page. This will take you to your
repository's Releases page, the page that Figure 6.7 shows.

3. On the Releases page, click on Edit, as illustrated in the following screenshot:

Figure 6.9 – Clicking Edit on the Releases page

4. Then, uncheck the Publish this Action to the GitHub Marketplace checkbox and
click on Update release, as illustrated in the following screenshot:

Summary 151

Figure 6.10 – Clicking Update release will remove the action from GitHub Marketplace

Good job! Your action has been successfully removed from GitHub Marketplace.

Summary
Excellent work! You have reached the end of Chapter 6, Marketplace: Finding Existing
Actions and Publishing Your Own. You are one step closer to completing this book and
growing your knowledge of GitHub Actions.

By reading this chapter, you have gained the experience needed to navigate around
GitHub Marketplace and search for actions created by the community. You reviewed best
practices to help you prepare your repository before publishing your action. You followed
the steps to successfully publish your action in GitHub Marketplace and, lastly, you
learned how to remove your action as well.

You have accomplished an important milestone: you now know how to start using GitHub
Actions to implement or optimize your CI/CD workflows and your DevOps practices! Use
this expertise to plan and execute a wide variety of workflows that can integrate with other
platforms you already use. Use your creativity to write actions that can be as simple or as
complex as you need them to be—the sky is the limit!

152 Marketplace – Finding Existing Actions and Publishing Your Own

The more you use GitHub Actions and practice your newly gained skills, the more
proficient you will be. Over time, you will be using GitHub Actions in most of your
CI/CD, DevOps, and general automation workflows. For this reason, the next
Chapter 7, Migrations will show you the steps needed to migrate from other platforms
such as GitLab, Azure Pipelines, and CircleCI to GitHub Actions.

Section 3:
Customizing Existing
Actions, Migrations,

and the Future of
GitHub Actions

Section 3 will teach you that not all GitHub actions need to be created from scratch.
Because Actions is open source, the user has access to actions created by the community.
Section 3 will also help users who are interested in migrating from their current solutions
(such as GitLab, Jenkins, and Azure DevOps) to GitHub Actions. Finally, you will receive
insights into what you can do with the skills learned from the book, and what the future of
GitHub Actions looks like.

The following chapters will be covered in this section:

• Chapter 7, Migrations

• Chapter 8, Contributing to the Community and Finding Help

• Chapter 9, The Future of GitHub Actions

7
Migrations

As you learned in Chapter 1, Learning the Foundations for GitHub Actions, Continuous
Integration and Continuous Delivery (CI/CD) practices became popular and were
integrated as part of the software development life cycle years before GitHub Actions was
launched. Other platforms such as Azure Pipelines, GitLab, and Jenkins were used to
create automated pipelines that could integrate with the code hosted on GitHub.

You have learned that GitHub Actions allows you to create powerful and highly
customized CI/CD workflows, with the added convenience of using the same platform
where your code is hosted. As you continue evaluating and learning more about GitHub
Actions, you will probably start thinking about the benefits of migrating your existing
pipelines to GitHub Actions.

This chapter will walk you through the process of migrating CI/CD pipelines from Azure
Pipelines, GitLab, and Jenkins to GitHub. By reading this chapter, you will learn about
the similarities between these platforms and how the different migration processes can be
made very simple.

This chapter is organized into three main sections, which can be read in any order, to help
you create a migration plan that best fits your needs:

• Considerations before you migrate

• Migrating from Azure Pipelines

• Migrating from GitLab CI/CD

• Migrating from Jenkins

156 Migrations

By the end of this chapter, you will have gathered the skills and knowledge you need to
migrate your existing CI/CD pipelines from other platforms to GitHub Actions.

Technical requirements
In addition to the skills you learned in previous chapters, you will need an account with
the appropriate access permissions to make changes to your existing Azure, GitLab, or
Jenkins configuration.

You will also need to create a repository on GitHub where you can migrate your workflow
files to. To review the steps to create a GitHub repository, read Chapter 1, Learning the
Foundations for GitHub Actions.

Considerations before you migrate
Migrations can be a complex and disruptive task. Whether the migration you perform will
potentially impact only your work, or your whole team's, consider carefully planning the
migration steps ahead of time. This section outlines the best practices that you can use to
support your migration plans and set you up for success.

Before you start migrating your CI/CD workflows and tasks, consider the following
preparatory steps:

1. Timeline: When is the migration slated to begin and be completed? Setting a
timeline to complete your migration is a good first step to help prepare you and
your team. By defining a timeline of events for the migration process, you can also
prioritize which tasks need to be completed first.

2. Learn the steps that need to be followed: Take advantage of learning
materials such as this book and your platforms' public documentation to learn
what migration steps you need to follow. Familiarize yourself with potential
incompatibilities between platforms and possible workarounds.

3. Do a test run: Before migrating any production workflows or code, test the planned
steps using code or environment variables that will not cause problems in case
something doesn't go to plan (that is, a testing environment). Take comprehensive
notes during your test run, which can be helpful during the production migration.

4. Consider dependencies: If your workflow integrates with other platforms or
has other dependencies, such as specific software or versions, take those into
consideration when you are planning the migration steps.

Migrating from Azure Pipelines 157

5. Communicate with teams and individuals that might be impacted by the
migration: Send notifications ahead of the migration date to allow teams
and individuals to prepare ahead of time. Consider sending alerts, emails, or
notifications before starting the migration and once it has been completed.

6. Test that everything works as expected: After all of the workflows have been
migrated, run tests to ensure all functionalities are working as expected.

Once you feel confident that your migration plan is in a healthy state and your tests have
run successfully, start the migration.

The next section will introduce the key concepts you need to learn to migrate your CI/CD
workflows from Azure Pipelines to GitHub Actions.

Migrating from Azure Pipelines
You have studied and compared the features and benefits of both Azure Pipelines and
GitHub Actions, and you have decided to migrate some, or all, of your workflows to
GitHub Actions. The next few sections will introduce basic steps to help you perform this
migration successfully.

To get started with the migration, follow these steps:

1. Migrate your code to GitHub. If your code is not hosted on GitHub already, create
a new repository and push your code there. Please refer to Chapter 1, Learning the
Foundations for GitHub Actions, and review the steps to accomplish that.

2. Read the documentation to learn more about the workflow configuration and
syntax differences between both platforms.

Important note
The comprehensive documentation to support the migration from Azure
Pipelines to GitHub Actions can be found at https://docs.github.
com/en/actions/learn-github-actions/migrating-
from-azure-pipelines-to-github-actions.

3. Start migrating the contents of your azure-pipelines.yml file to a GitHub
repository.

https://docs.github.com/en/actions/learn-github-actions/migrating-from-azure-pipelines-to-github-actions
https://docs.github.com/en/actions/learn-github-actions/migrating-from-azure-pipelines-to-github-actions
https://docs.github.com/en/actions/learn-github-actions/migrating-from-azure-pipelines-to-github-actions

158 Migrations

Syntax differences
There are many similarities between Azure Pipelines and GitHub Actions. For example,
YAML is used to write the workflow configuration file on both platforms. There are,
however, a few syntax differences that you must be aware of when migrating your
workflow configuration file from Azure Pipelines to GitHub Actions.

The following list will illustrate the main differences in vocabulary and syntax between
Azure Pipelines and GitHub Actions.

Pipeline versus workflow
GitHub Actions defines a workflow as an automated procedure that can be used to build,
test, deploy, release, or package a project. Pipelines are equivalent to workflows on Azure
Pipelines.

script versus run
The script key is used in Azure Pipelines to run the code as a step using a command-
line tool such as Bash or PowerShell. It is equivalent to the run key used in GitHub
Actions.

trigger versus on
Azure Pipelines uses trigger as the key to define the event that will trigger the pipeline
to run. It is equivalent to the on key, which GitHub Actions uses to define the event that
will trigger the workflow to run.

pool
Azure Pipelines uses the pool key to manage the pool of agents, or machines, where the
job will be run.

Default shell
The default shell for scripts to run when using a Windows platform in Azure Pipelines
is the Command shell. GitHub Actions' default shell for scripts running on Windows
platforms is PowerShell.

vmImage versus runs-on
Azure Pipelines uses the vmImage key, which, similarly to the runs-on key used in
GitHub Actions, defines what operating system will be used on the host machine.

Migrating from Azure Pipelines 159

task versus uses
Azure Pipelines uses the task key, which is similar to the GitHub Actions uses key.
Both of these keys bring blocks of code that are often built by the community, such as
actions, into a pipeline or workflow file.

displayName versus name
Azure Pipelines uses displayName to give each step a friendly name that will be
displayed on the user interface. It is similar to the name key used in GitHub Actions.

Now that you have learned more about the syntax differences between Azure Pipelines
and GitHub Actions, you are ready to review how a pipeline file can be migrated to a
GitHub Actions workflow file.

The following screenshot shows a simple YAML file in Azure Pipelines. This pipeline will
be triggered by push events against the main branch, creating an Ubuntu virtual machine
where Node.js will be installed and the build will be created:

Figure 7.1 – A YAML file in Azure Pipelines

160 Migrations

Considering the syntax comparison you learned about previously, you can simply migrate
an Azure Pipelines YAML file to GitHub and, by adjusting a few keys, create a GitHub
Actions workflow that looks like this:

name: Node.js CI

on:

 push:

 branches: [main]

jobs:

 build-on-linux:

 runs-on: ubuntu-latest

 steps:

 - uses: actions/checkout@v2

 - name: Setup Node.js environment

 uses: actions/setup-node@v2

 with:

 node-version: 12

 - name: Install Node.js modules

 run: npm install

 - name: Create build

 run: npm run build

While the examples in this section will help you get started with your migration from
Azure Pipelines to GitHub Actions, they do not present a comprehensive list of the
distinctions between both tools. Consider researching, studying, and cross-referencing the
documentation of both Azure Pipelines and GitHub Actions, which will uncover other
important differences in the syntax used by both platforms.

Next, we will learn more about migrating automated tasks from GitLab CI/CD.

Migrating from GitLab CI/CD 161

Migrating from GitLab CI/CD
You have studied and compared the features and benefits of both GitLab CI/CD and
GitHub Actions, and you have decided to migrate some, or all, of your workflows to
GitHub Actions. The next few sections will introduce basic steps to help you perform this
migration successfully.

To get started with the migration, follow these steps:

1. Migrate your code to GitHub. If your code is not hosted on GitHub already, create
a new repository and push your code there. Please refer to Chapter 1, Learning the
Foundations for GitHub Actions, and review the steps to accomplish that.

2. Read the documentation to learn more about the workflow configuration and
syntax differences between both platforms.

Important note
The comprehensive documentation to support the migration from GitLab CI/
CD to GitHub Actions can be found at https://docs.github.com/
en/actions/learn-github-actions/migrating-from-
gitlab-cicd-to-github-actions.

3. Start migrating the contents of your .gitlab-ci.yml file to a GitHub repository.

Syntax differences
There are many similarities between GitLab CI/CD and GitHub Actions. For example,
YAML is used to write the workflow configuration file on both platforms. There are,
however, a few syntax differences that you must be aware of when migrating your
workflow configuration file from GitLab CI/CD to GitHub Actions.

The following list will illustrate the main differences in vocabulary and syntax between
GitLab CI/CD and GitHub Actions.

Pipeline versus workflow
GitHub Actions defines a workflow as an automated procedure that can be used to build,
test, deploy, release, or package a project. Pipelines are equivalent to workflows on GitLab
CI/CD.

GitLab CI/CD also uses workflow as a key within the YAML file to determine whether
a pipeline should be created.

https://docs.github.com/en/actions/learn-github-actions/migrating-from-gitlab-cicd-to-github-actions
https://docs.github.com/en/actions/learn-github-actions/migrating-from-gitlab-cicd-to-github-actions
https://docs.github.com/en/actions/learn-github-actions/migrating-from-gitlab-cicd-to-github-actions

162 Migrations

script versus run
The script key is used in GitLab CI/CD to run code as a step using a command-line
tool such as Bash or PowerShell. It is equivalent to the run key used in GitHub Actions.

stage versus needs
GitLab CI/CD uses the stages key. Jobs within the same stage key will run in parallel,
but a job in a different stage key will not run until the jobs in the prior stage key are
completed. The equivalent key in GitHub Actions is needs.

Docker images
While both GitLab CI/CD and GitHub Actions support running jobs in a Docker image,
the keys used in the YAML file are different. GitLab CI/CD uses the image key to define
Docker images, and GitHub Actions uses the container key.

rules versus if
GitHub Actions uses one simple if key to prevent a job from running unless a specific
condition is met. GitLab CI/CD uses the rules key and the conditional if key.

Important note
GitLab CI/CD's feature for scheduling workflows is configured using the user
interface. In comparison, you can use the on key within a GitHub Actions
workflow file to schedule a cron job to determine when a job should run. Keep
this in mind when migrating a pipeline from GitLab CI/CD to GitHub Actions
that needs to run on a set schedule.

Now that you have learned more about the syntax differences between GitLab CI/CD and
GitHub Actions, you are ready to review how a pipeline file can be migrated to a GitHub
Actions workflow file.

The following screenshot shows a simple YAML file in GitLab CI/CD. This pipeline will be
triggered by push events against the master branch, triggering a few different jobs. The
jobs that are parts of the same stage, such as test-job1 and test-job2, will run in parallel.
All jobs will run commands that will print messages to the screen as they are completed
successfully:

Migrating from GitLab CI/CD 163

Figure 7.2 – A YAML file in GitLab CI/CD

Considering the syntax comparison you read previously, you can simply migrate a GitLab
CI/CD YAML file to GitHub and, by adjusting a few keys, create a GitHub Actions
workflow that looks like this:

name: GitLab CI/CD test

on:

 push:

 branches: [main]

jobs:

 build:

 runs-on: ubuntu-latest

 steps:

 - name: Run build command

 - run: echo "Hello $GITHUB_ACTOR!"

164 Migrations

 test-job1:

 runs-on: windows-latest

 steps:

 - name: Run test1

 - run: echo "This job tests something"

 test-job2:

 runs-on: windows-latest

 steps:

 - name: Run test2

 run: echo "This job tests something, but takes more time
than test-job1."

 - run: echo "After the echo commands complete, it runs the
sleep command for 20 seconds"

 - run: echo "which simulates a test that runs 20 seconds
longer than job-test1."

 - run: sleep 20

 deploy-prod:

 runs-on: windows-latest

 needs: [test-job1,test-job2]

 steps:

 - run: echo "This job deploys something new after the other
jobs complete"

While the examples in this section will help you get started with your migration from
GitLab CI/CD to GitHub Actions, they do not present a comprehensive list of the
distinctions between both tools. Consider researching, studying, and cross-referencing
the documentation of both GitLab CI/CD and GitHub Actions, which will uncover other
important differences in the syntax used by both platforms.

Next, we will learn more about migrating automated tasks from Jenkins.

Migrating from Jenkins 165

Migrating from Jenkins
You have studied and compared the features and benefits of both Jenkins and GitHub
Actions, and you have decided to migrate some, or all, of your workflows to GitHub
Actions. The next few sections will introduce basic steps to help you perform this
migration successfully.

To get started with the migration, follow these steps:

1. Migrate your code to GitHub. If your code is not hosted on GitHub already, create
a new repository and push your code there. Please refer to Chapter 1, Learning the
Foundations for GitHub Actions, and review the steps to accomplish that.

2. Read the documentation to learn more about the workflow configuration and
syntax differences between both platforms.

Important note
The comprehensive documentation to support the migration from Jenkins
to GitHub Actions can be found at https://docs.github.com/
en/actions/learn-github-actions/migrating-from-
jenkins-to-github-actions.

3. Start migrating the contents of your Jenkins pipeline script to a GitHub repository.

Syntax differences
As you have learned, GitHub Actions workflows are written using YAML. In comparison,
Jenkins Pipelines scripts can be written using either Declarative Pipeline syntax or
Scripted Pipeline syntax. Only Declarative Pipeline syntax will be covered in this book,
given its simplicity and recentness.

Declarative Pipeline and YAML share many similarities. There are, however, a few syntax
differences that you must be aware of when migrating your Jenkins script written using
Directive Pipeline syntax to a GitHub Actions workflow file.

To help you plan the migration, the following list will illustrate a few differences in
vocabulary and syntax between Jenkins and GitHub Actions.

https://docs.github.com/en/actions/learn-github-actions/migrating-from-jenkins-to-github-actions
https://docs.github.com/en/actions/learn-github-actions/migrating-from-jenkins-to-github-actions
https://docs.github.com/en/actions/learn-github-actions/migrating-from-jenkins-to-github-actions

166 Migrations

Agent versus runners
Jenkins uses an agent in a similar way to how GitHub Actions uses runners. They specify
the environment where the pipeline will be executed and represent a required key that
must be added to the pipeline script—the same way runners are required in a GitHub
Actions workflow. Because Jenkins deployments are usually self-hosted, you might want
to consider using GitHub Actions self-hosted runners to keep a similar deployment
strategy during the migration. Please refer to Chapter 4, Working with Self-Hosted Runners,
to review what self-hosted runners are and how to use them.

Stages versus jobs
As you have seen, GitHub Actions use jobs to define a set of steps that will be executed on
the same runner. Jenkins' Directive Pipeline has similar functionality, which is defined by
the stages directive in the script.

Tools versus self-runner specifications
Although this is not a required directive, Jenkins uses tools to define what software must
be installed on the agent. This is similar to the set of preinstalled software that is available
with GitHub-hosted runners.

Now that you have learned more about the syntax differences between Jenkins and
GitHub Actions, you are ready to review how a pipeline file can be migrated to a GitHub
Actions workflow file.

The following screenshot shows a sample script using Maven in Jenkins. This pipeline
will install Maven, leverage code from a GitHub repository, run Maven on a Unix agent,
record the results, and archive the artifact:

Migrating from Jenkins 167

Figure 7.3 – A Directive Pipeline sample script in Jenkins

Considering the syntax comparison you read previously, you can migrate a script written
using Directive Pipeline in Jenkins to GitHub and, by adjusting a few keys, create a
GitHub Actions workflow that looks like this:

name: Java CI with Maven

on: workflow_dispatch

jobs:

 build-jdk11:

 runs-on: ubuntu-latest

 steps:

 - name: Set up JDK 11

 uses: actions/checkout@v2

168 Migrations

 - uses: actions/setup-java@v2

 with:

 java-version: 11

 distribution: 'adopt'

 - name: Build with Maven

 run: mvn -B clean package --file pom.xml

 - name: archive-artifacts

 run: |

 mvn --batch-mode --update-snapshots verify

 mkdir staging && cp target/*.jar staging

 - name: upload package

 uses: actions/upload-artifact@v2

 with:

 name: Package

 path: staging

While the examples in this section will help you get started with your migration from
Jenkins to GitHub Actions, they do not present a comprehensive list of the distinctions
between both tools. Consider researching, studying, and cross-referencing the
documentation of both Jenkins and GitHub Actions, which will uncover other important
differences in the syntax that is used by both platforms.

You have reached the end of this chapter: excellent job! You now know how to start
planning and executing the migration of your CI/CD pipelines from platforms such as
Gitlab CI/CD, Azure Pipelines, and Jenkins to GitHub Actions.

Summary 169

Summary
By reading the first seven chapters of this book, you have gathered the necessary skills
to implement a complete CI/CD pipeline to automate important tasks that are part of
your software development life cycle. You have also learned how to migrate your current
pipelines and workflows from other platforms into GitHub Actions, which allows you to
manage your code and automation in one single place.

As you begin to put these new skills into practice, you will likely have questions and
require practical guidance. You will probably also want to share the lessons you have
learned with others and appreciate being part of the community that makes GitHub
Actions such a collaborative tool.

In the next Chapter 8, Contributing to the Community and Finding Help, you will review
the resources available to support you in your journey of automating workflows with
GitHub actions. You will also explore ways in which you can contribute to the community
and find help when you need it.

8
Contributing to the

Community and
Finding Help

The best part of learning a new skill is putting it into practice. By reading the previous
chapters, you gathered skills that will allow you to explore the many benefits of using
GitHub Actions. You are now ready to design and implement a CI/CD pipeline that
easily integrates your code with many tools! Continue learning about GitHub Actions by
practicing it: use the examples you have seen throughout this book and adapt them to
your own workflows and tasks.

As you continue developing your skills, keep the GitHub Actions community in mind.
By interacting with a global group of people interested in using and improving GitHub
Actions, you will be able to collaborate with the community, find help, share your
knowledge, and continue learning.

172 Contributing to the Community and Finding Help

By reading this chapter, you will learn about the many different ways in which you can
collaborate with the GitHub Actions community, as well as with the GitHub Support
team. To help explore the many platforms where you can both find help and contribute,
this chapter is organized into the following sections:

• Hands-on learning

• Interacting with the GitHub Actions community

• Helping to improve GitHub Actions

• Requesting technical support

By the end of this chapter, you will feel comfortable finding the guidance and support
to help you use GitHub Actions successfully. You will be able to take on the journey
of exploring GitHub Actions in a way that fits your needs, while keeping a rich list of
resources to review, both to find help and to share the lessons you will learn with others.

Technical requirements
In addition to the skills you have learned in previous chapters, you will need to use your
GitHub user account to access some of the resources shared throughout this chapter.

Hands-on learning
You have seen, and hopefully practiced, many scenarios throughout this book where
GitHub Actions were applied. Practice can be one of the most efficient ways of learning a
new skill or technology. While the skills you have gathered by reading this book set you
up to build successful workflows, you should not stop your learning journey here! GitHub
provides an open source tool that you can leverage to continue learning other ways in
which GitHub Actions and other GitHub features can be used: the GitHub Learning Lab.

The GitHub Learning Lab allows you to develop your skills by completing guided, lively,
fun, and interactive projects. You can find individual courses or learning paths, which
groups many courses that relate to a specific topic or technology.

Important note
To access the GitHub Learning Lab and see all the available courses, navigate to
https://lab.github.com.

https://lab.github.com

Hands-on learning 173

The GitHub Actions learning path includes 10 different courses. To see and complete all
the available courses that are part of this path, follow these steps:

1. Navigate to https://lab.github.com/githubtraining/devops-with-
github-actions.

2. Click on Start free course:

Figure 8.1 – The GitHub Actions learning path

3. Next, sign in using your GitHub user account credentials.

https://lab.github.com/githubtraining/devops-with-github-actions
https://lab.github.com/githubtraining/devops-with-github-actions

174 Contributing to the Community and Finding Help

4. On the next screen, select the type of repository you prefer and click Begin DevOps
with GitHub Actions. Note that you will need to be on the GitHub Pro plan if you
decide to use a private repository:

Figure 8.2 – Starting the DevOps with GitHub Actions learning path

5. The prompts in the next few screens will guide you in completing the tasks and
projects within each course. Once you complete a course, you will be taken to the
next one in the path, until you complete the full learning path. You can also start
individual courses in any order that you prefer.

Interacting with the GitHub Actions community 175

The GitHub Learning Lab is a great tool to keep in mind if you need a practical refresher,
or if you would like to share additional resources with peers and friends.

Sharing the skills you have learned and participating in conversations with other members
of the community can be a valuable way of keeping your skills current and improving
GitHub Actions as a product.

Interacting with the GitHub Actions
community
The GitHub community forum is the place where many GitHub users ask each other
questions, interact with GitHub staff, and share knowledge and best practices. There
are over 251 thousand posts concerning many different topics related to GitHub and its
products, including GitHub Actions.

Consider the GitHub community forum your place to learn from and participate in
existing posts, create new topics or questions, and help other fellow users by sharing your
experience and knowledge. Using the GitHub community forum is free, and all you need
is your GitHub user account.

GitHub Actions is one of the hottest topics in the GitHub community forum. It is not
uncommon to see discussions created by the GitHub Actions product team, where they
ask the community for their insight and opinions.

Important note
To visit the GitHub community forum, navigate to https://github.
community.

Before you start interacting in the GitHub community forum, consider reviewing
their code of conduct, located at https://github.community/t/code-of-
conduct/49.

https://github.community
https://github.community
https://github.community/t/code-of-conduct/49
https://github.community/t/code-of-conduct/49

176 Contributing to the Community and Finding Help

To start interacting with the GitHub Actions community in the GitHub community
forum, follow these instructions:

1. Navigate to https://github.community/c/code-to-cloud/github-
actions/41.

2. Log in. While it is not required that you log in to browse topics or conversations,
you will need to log in using your GitHub user account credentials to create
a new topic or reply on an existing one. To log in, click on Log In in the top
right-hand corner:

Figure 8.3 – The GitHub Actions topics in the GitHub community forum

https://github.community/c/code-to-cloud/github-actions/41
https://github.community/c/code-to-cloud/github-actions/41

Interacting with the GitHub Actions community 177

3. Once you log in, you will be able to do the following:

• Create new topics.

• Add replies to, upvote, share, or bookmark topics.

• Configure notifications for specific topics:

Figure 8.4 – The options available for a logged-in user

178 Contributing to the Community and Finding Help

To create a new topic to ask for help, raise a feature request, or share something with the
community, navigate to https://github.community/new, or click the New Topic
button on any GitHub community forum page, once you have authenticated with your
GitHub user account credentials:

Figure 8.5 – Creating a new topic is as easy as pushing a button

You are now ready to be an active member of the GitHub Actions community! Make sure
to visit the GitHub community forum regularly to learn what the community has been
working on and contribute your own projects.

The open source nature of GitHub Actions makes it easy to both interact with the
community and contribute with code, by raising GitHub issues and pull requests. The next
section will introduce the GitHub Actions organization hosted on GitHub, and the many
repositories you can contribute to.

https://github.community/new

Helping to improve GitHub Actions 179

Helping to improve GitHub Actions
As you become more familiar with GitHub Actions, you may find ways in which you can
contribute your knowledge to improve the product itself. You can share your ideas and
contributions by raising a feature request in the GitHub community forum, or by using
the many public GitHub Actions repositories to report bugs and create pull requests with
your code:

Important note
To access the GitHub Actions public repositories, visit https://github.
com/actions.

Figure 8.6 – The GitHub Actions organization

https://github.com/actions
https://github.com/actions

180 Contributing to the Community and Finding Help

The GitHub Actions product team created an organization on GitHub that hosts many
public repositories that the community has access to and can contribute to. Many of
those repositories host some of the most commonly used actions, such as actions/
checkout, used in some of the examples in Chapter 3, A Closer Look at Workflows.

Using the GitHub Actions Toolkit repository as an example, follow these steps to
contribute to a public GitHub Actions repository:

1. Navigate to the repository main page, in this case, https://github.com/
actions/toolkit.

2. Review the repository's README file, which also includes instructions on how to
contribute to that project.

3. Create an issue to raise a feature request or bug report. Alternatively, create a
branch, add your code, and propose changes by raising a pull request. If you need a
refresher on how to accomplish this, review Chapter 1, Learning the Foundations for
GitHub Actions:

Figure 8.7 – GitHub Actions community members reporting bugs and requesting enhancements

https://github.com/actions/toolkit
https://github.com/actions/toolkit

Requesting technical support 181

You have learned how to help improve GitHub Actions by contributing code, reporting
bugs, and requesting enhancements. The next section will introduce another resource for
your GitHub Actions toolkit, GitHub Support, and how to reach out to them when things
aren't going as well as you had hoped.

Requesting technical support
Although you have learned about many resources to help you get the best use out of
GitHub Actions, sometimes, things may not work as expected. The GitHub Actions
documentation and community may be able to help answer many questions, but
sometimes, reaching out to technical support is the best solution.

GitHub Support can: help answer questions; troubleshoot issues that happened while you
were using GitHub products; fix things that aren't working quite as they should; and help
with feature requests and bug reports.

Important note
To request technical support, visit https://support.github.com/
contact.

If you need to ask for help from GitHub Support, follow these steps:

1. Navigate to https://support.github.com/contact.

2. Sign in using your GitHub user account credentials.

3. Select the account your problem is related to.

4. Add a subject and a comprehensive description of the problem. In many cases, it
is helpful to include a copy of the workflow file you are using, as well as any other
details that can be helpful for the GitHub Support team in understanding and
diagnosing the problem.

https://support.github.com/contact
https://support.github.com/contact

182 Contributing to the Community and Finding Help

5. Click Send request:

Figure 8.8 – Creating a support request

You will receive an email confirmation that your support ticket has been created, and
somebody from the GitHub Support team will work with you via email.

Summary 183

Summary
Way to go! You have reached the end of Chapter 8, Contributing to the Community and
Finding Help. You are now well equipped to venture into the exciting world of automating
tasks and workflows using GitHub Actions. While you are exploring, creating, and
learning, remember that you are not alone and that the GitHub Actions community is
a powerful ally: collaborate, ask for help, read about their best practices, and share your
findings as you go.

By finishing this chapter, you learned about the resources available to help you continue
using GitHub Actions successfully. You can continue learning and practicing with
the GitHub Learning Lab. You now know how to interact with the community in the
GitHub community forum, and contribute code and ideas in the GitHub Actions public
repositories. Finally, you reviewed the steps to reach out to GitHub Support when you
need expert help. Don't forget the GitHub Actions documentation used throughout this
book! You should revisit it often to feel more confident in your knowledge and skills

The community has a powerful influence on what new features and changes are added
to GitHub Actions. You know how to find the hottest topics that the community is
talking about and is interested in. In the next Chapter 9, The Future of GitHub Actions,
you will learn about ways to stay in the know and keep up with what the future of GitHub
Actions holds.

9
The Future of

GitHub Actions
Soon, GitHub Actions will become an essential part of your CI/CD pipeline, no matter
how simple or complex it may be. Given its importance in your workflow and tasks, you
should always take advantage of updates and improvements that will continue improving
GitHub Actions.

By reading this chapter, you will learn about resources that will help you stay up to date
with the latest news and updates to GitHub Actions. To present those resources, this
chapter is organized into the following sections:

• Checking the GitHub roadmap

• Reading the GitHub blog and changelog

• Connecting through social media

By the end of this chapter, you will know what social media accounts to follow and what
pages to visit to learn about features and updates being added to GitHub Actions.

186 The Future of GitHub Actions

Technical requirements
You will need access to a device that has a connection to the internet.

Checking the GitHub roadmap
GitHub's roadmap is one of the most reliable ways to be informed about what the
company is working on and plans on releasing in future months. The roadmap displays
the release plans for many GitHub products, including GitHub Actions.

Important note
To see GitHub's roadmap, visit https://github.com/github/
roadmap/projects/1.

The roadmap is organized into quarters. Each feature on the roadmap is categorized based
on a few factors:

• Feature area: Such as ecosystem, which includes API features, for example, and
code-to-cloud, which includes GitHub Actions.

• Release phase: Such as alpha, beta, and generally available (GA).

• Feature: Such as actions, docs, packages, or pages.

• Product SKU: This represents the many GitHub product SKUs, such as GitHub
team, GitHub Enterprise, GitHub AE, and others:

https://github.com/github/roadmap/projects/1
https://github.com/github/roadmap/projects/1

Checking the GitHub roadmap 187

Figure 9.1 – The GitHub roadmap

Note how GitHub's roadmap lives in a public repository and was created using a GitHub
feature called Projects. Within this project, all features represent GitHub issues. Because
this is a repository, you can be notified when changes happen. To configure what kind
of notification you want to receive, click on the Notifications button in the top right-
hand corner and select your preferred option. If you would prefer not to receive any
notifications, you can consider starring this repository, which won't send you notifications
but can help you in navigating back to this repository at a later time. To star this
repository, click on the Star button in the top right-hand corner.

To learn more about GitHub's roadmap, read the project's README file at https://
github.com/github/roadmap/blob/main/README.md.

In addition to the roadmap, GitHub regularly announces new features, changes, and
updates on their blog and changelog page.

https://github.com/github/roadmap/blob/main/README.md
https://github.com/github/roadmap/blob/main/README.md

188 The Future of GitHub Actions

Reading the GitHub blog and changelog
The GitHub blog is one of GitHub's many platforms to officially share announcements and
updates. You will often see new blog posts from GitHub employees sharing news about the
company, open source, community, and its products.

Important note
To access the GitHub blog, visit https://github.blog/. To view blog
posts specifically about GitHub Actions, navigate to https://github.
blog/?s=GitHub%20Actions.

The GitHub changelog is part of the GitHub blog and focuses on providing feature
updates only. By visiting https://github.blog/changelog/, you will be able to
see what changes were recently incorporated into GitHub products and features:

Figure 9.2 – The GitHub blog and changelog

GitHub is present on many different social media platforms, which they also use for
important messages and announcements. The next section will help you find GitHub's
social media accounts to help you not miss future announcements.

https://github.blog/
https://github.blog/?s=GitHub%20Actions
https://github.blog/?s=GitHub%20Actions
https://github.blog/changelog/

Connecting through social media 189

Connecting through social media
Historically, GitHub has made important announcements about new features or major
updates to existing products during events such as Universe, their annual conference.
GitHub is very active on social media, and often streams live events on platforms such as
Twitch and YouTube. Consider connecting with GitHub's accounts to receive alerts when
they go live or create a new post.

You can find GitHub on these platforms:

• Twitter, at https://twitter.com/github

• Youtube, at https://www.youtube.com/github

• Twitch, at https://twitch.tv/github

• LinkedIn, at https://www.linkedin.com/company/github

• Facebook, at https://www.facebook.com/GitHub:

Fig. 9.3 – GitHub's page on YouTube

https://twitter.com/github
https://www.youtube.com/github
https://twitch.tv/github
https://www.linkedin.com/company/github
https://www.facebook.com/GitHub

190 The Future of GitHub Actions

Summary
Outstanding work! You have reached the end of Chapter 9, The Future of GitHub Actions,
and the end of Automating Workflows with GitHub Actions.

You are ready to put the new abilities you have gathered into practice. Now it is up to
you to identify opportunities where your workflow can be improved and decluttered by
implementing easy-to-write GitHub Actions workflows written in a simple YAML file, and
that can accomplish so much. Remember to leverage GitHub Marketplace and find actions
that fit your needs with little effort to implement. Deepen your knowledge by frequently
visiting the GitHub documentation and interacting with the community. Automate
repetitive tasks so that you can focus on what truly matters.

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
http://www.packt.com

192 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Docker for Developers

Richard Bullington-McGuire, Andrew K. Dennis, and Michael Schwartz

ISBN: 978-1-78953-605-8

• Get up to speed with creating containers and understand how they work

• Package and deploy your containers to a variety of platforms

• Work with containers in the cloud and on the Kubernetes platform

• Deploy and then monitor the health and logs of running containers

• Explore best practices for working with containers from a security perspective

• Become familiar with scanning containers and using third-party security tools and libraries

https://www.packtpub.com/product/docker-for-developers/9781789536058

Why subscribe? 193

Google Cloud for DevOps Engineers

Sandeep Madamanchi

ISBN: 978-1-83921-801-9

• Categorize user journeys and explore different ways to measure SLIs

• Explore the four golden signals for monitoring a user-facing system

• Understand psychological safety along with other SRE cultural practices

• Create containers with build triggers and manual invocations

• Delve into Kubernetes workloads and potential deployment strategies

• Secure GKE clusters via private clusters, Binary Authorization, and shielded GKE nodes

• Get to grips with monitoring, Metrics Explorer, uptime checks, and alerting

• Discover how logs are ingested via the Cloud Logging API

https://www.packtpub.com/product/google-cloud-for-devops-engineers/9781839218019

194 Other Books You May Enjoy

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Automating Workflows with GitHub Actions, we'd love to hear
your thoughts! If you purchased the book from Amazon, please click here to go
straight to the Amazon review page for this book and share your feedback or
leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1800560400

https://packt.link/r/1800560400

Index

A
action

about 159
preparing 144-150
prerequisites 144
publishing 144-150
publishing, to GitHub Marketplace 144
removing, from GitHub

Marketplace 150, 151
Actions tab

used, for customizing workflow
templates 57-59

used, for finding workflow
templates 57-59

action types
overview 116

Adaptive Software Development (ASD) 5
Agile Alliance 6
alternative authentication methods

about 83
bot account, using 84
GitHub App 85
Personal Access Tokens (PATs) 84
SSH key 85

automated tasks
migrating, from GitLab CI/CD 161
migrating, from Jenkins 165

Azure Pipelines
CI/CD workflow, migrating from 157

Azure Pipelines, syntax differences
about 158, 160
default shell 158
displayName, versus name key 159, 160
pipeline, versus workflow 158
pool key 158
script key, versus run key 158
task key, versus uses key 159
trigger key, versus on key 158
vmImage key, versus runs-on key 158

B
bot account 84

C
changelog

reading 188
command-line interface (CLI) 17
Command shell 158

196 Index

composite run steps action
about 116, 117
creating 133
defining 135, 136
prerequisites 134, 135
working 136, 137

contexts 80, 86, 87
Continuous Integration/Continuous

Delivery (CI/CD)
about 4
software development 5, 6

CI/CD workflow
migrating, from Azure Pipelines 157

cron job 162

D
Declarative Pipeline 165
Docker container action

about 116
creating 127
defining 130
Dockerfile, creating in GitHub

repository 129, 130
exit codes, adding to 120
logic, writing 130, 131
prerequisites 127, 128
working 131-133

Dockerfile
creating, in GitHub repository 129

E
encrypted secrets

creating, at environment level 63-65
creating, at repository level 62
using, in workflow 65

environment variables 86

existing actions
finding 141-143

exit codes
adding, to Docker container action 120
adding, to JavaScript action 119
using 119

expressions
about 80, 86, 88
functions 89
literals 88
operators 88

Extreme Programming (XP) 5

F
functions 89

G
Git

basics 17
commands 18
configuring 17, 18

Git commands
about 18
git add 20, 21
git checkout 20, 21
git clone 25, 26
git commit 21-24
git init 18, 19
git pull 24
git status 18, 19

GitHub
Actions permissions 36
basics 17, 26-28
branches 34
branch protection rule, adding 34, 36
communication 99

Index 197

issues 28, 29
on platforms 189
PAT, creating 9, 10
sensitive information, safeguarding 37
Settings tab 33
URL 27
user account, creating 7, 8

GitHub Actions
actions 49
core components and concepts 44
encrypted secrets, creating at

environment level 63-65
encrypted secrets, creating at

repository level 62
events 44
improving 180
jobs 48
runners 49-51
secrets, creating 60
secrets, using 60
securing 60
steps 48
technical support, requesting 181, 182

GitHub Actions community
interacting with 175-178

GitHub Actions, events
manual events 45-47
scheduled events 45
webhook events 48

GitHub Actions runner application
adding, to repository 100-104

GitHub Actions, secrets
brief overview 60
limitations 61
rules, naming 60

GitHub Actions Toolkit 180
GitHub App 82, 85

GitHub blog
reading 188

GitHub blog, accessing
reference link 188

GitHub documentation
reference link 85

GitHub-hosted runner
versus self-hosted runner 97

GitHub Learning Lab
reference link 85

GitHub Marketplace
about 140
action, publishing to 144
action, removing from 150, 151
overview 140, 141
reference link 140

GitHub repository
Dockerfile, creating 129, 130

GitHub roadmap
checking 186, 187
reference link 186

GitLab CI/CD
automated tasks, migrating from 161

GitLab CI/CD, syntax differences
about 161, 164
Docker images 162
pipeline, versus workflow 161
rules key, versus if key 162, 163
script key, versus run key 162
stage key, versus needs key 162

graphical user interface (GUI) 17

H
hands-on learning 172-175
HTTP Secure (HTTPS) 25

198 Index

I
input and output (I/O) 117, 145
issue event, activity types

assigned 75
closed 75
edited 75
opened 75
unassigned 75

J
JavaScript action

about 116
creating 120
defining 121, 122
exit codes, adding to 119
logic, writing 122, 124
prerequisites 120
working 124, 126

Jenkins
automated tasks, migrating from 165

Jenkins, syntax differences
about 165, 168
agent, versus runners 166
stages, versus jobs 166
tools, versus self-runner

specifications 166, 167
job log files 111, 112
job, running on self-hosted runner

configuring 108, 109

L
labels

creating 106-108
used, for organizing

self-hosted runner 106-108

learning paths 172
Linguist library 57
literals 88
local repository 19
logs

job log files 111, 112
reviewing 111
runner application log files 112

M
main 20
manual events

about 45-47
repository_dispatch 45
types 45
workflow_dispatch 45

master 20
metadata syntax

reviewing 117-119
migration

considerations 156, 157

N
Node.js

download link 121

O
object type 87
operators 88

P
Personal Access Token (PAT) 84
POSIX cron syntax 45
pull requests 30-32

Index 199

R
Red Hat Enterprise Linux 7 (RHEL 7) 99
remote repository 21
runner application log files 112
runner diagnostic logging 92, 94
runners

about 49
GitHub-hosted runners 49
self-hosted runners 49
types 49

S
scheduled events 45
Scripted Pipeline 165
self-hosted runner

architectures 98, 99
automatic update process 113
creating 96, 97
logs, reviewing 111
managing 110
operating systems 98, 99
organizing, with labels 106-108
removing 113, 114
securing, best practices 66, 67
setting, to run as service 104-106
status, reviewing 110, 111
versus GitHub-hosted runner 97

social media
connecting through 189

SSH key
about 11, 85
adding, to GitHub user account 14, 16
adding, to SSH agent 13, 14
checking 11
creating 12, 13

step debug logging 94
SUSE Linux Enterprise Server (SLES) 99

T
test-driven development (TDD) 5
two-factor authentication (2FA) 148

U
Uniform Resource Locators (URLs) 99

V
verified creator badge 143

W
Waterfall model 5
webhook events

about 48
branch, creating 73, 74
deployment creation 74
deployment status 74
issue_comment 75, 76
issue event 75
project 77, 78
pull request 78, 79
pull request review 80-82
reference link 72
reviewing 72
tag, creating 73, 74

workflow
about 51
encrypted secrets, using in 65
third-party actions, adding

securely to 66

200 Index

workflow authentication
about 82
alternative authentication methods 83
overview 82
permissions 83

workflow files
about 89
creating 55
customizing 54
manual creation 55, 56
writing 54

workflow file syntax
about 51
job_id 52
jobs 52
name 52
needs 53
run 54
runs_on 53
steps 53
uses 54

workflow run
managing 89
visualizing 89-91

workflow run logs
about 91, 92
runner diagnostic logging 92
step debug logging 94

workflow templates
customizing, with Actions tab 57-59
reference link 59
searching, with Actions tab 57-59

Y
YAML 37, 51
YAML Ain't Markup Language. See YAML
YAML components

about 39
mappings 40, 41
scalars 39
sequences 40

YAML rules
about 37
comments, adding 39
indentation 38
key-value pairs and case sensitivity 38
tabs, using 38

	Cover
	Title page
	Copyright and Credits
	Dedication
	Contributors
	Table of Contents
	Preface
	Section 1:
Introduction and Overview of Technologies Used with GitHub Actions
	Chapter 1: Learning the Foundations for GitHub Actions
	Technical requirements
	Understanding the basics of CI/CD
	A brief trip through the history of software development

	Introduction to GitHub: creating a user account
	Creating a free user account on GitHub
	Creating a PAT
	About SSH keys
	Checking for existing SSH keys
	Adding your SSH key to your GitHub user account

	Discovering the basics of Git and GitHub
	Configuring Git
	Basic Git commands
	Basics of GitHub
	Pull requests
	Settings
	Branches
	Actions
	Secrets

	Introduction to YAML
	Basic rules
	YAML components

	Summary

	Chapter 2: Deep Diving into GitHub Actions
	Learning about GitHub Actions' core concepts and components
	Events
	Jobs
	Steps
	Actions
	Runners

	Understanding the basics of workflows
	Learning the basics of the workflow file syntax
	Writing and customizing workflow files
	Using the Actions tab to find and customize workflow templates

	Securing your GitHub Actions
	Secrets – how to create and use them
	Creating encrypted secrets at the repository level
	Creating encrypted secrets at the environment level
	Using encrypted secrets in a workflow
	Best practices for securing self-hosted runners

	Summary

	Section 2:
Advanced Concepts and Hands-On Exercises to
Create Actions
	Chapter 3: A Closer Look at Workflows
	Reviewing the webhook events that trigger workflows
	Branch or tag creation
	Deployment creation and deployment status
	Issues
	Issue_comment
	Project
	Pull request
	Pull request review

	Authenticating within a workflow
	Overview
	Permissions
	Alternative authentication methods

	Understanding contexts, environment variables, and expressions
	Contexts
	Expressions

	Managing the workflow run
	Visualizing a workflow run
	Workflow run logs

	Summary

	Chapter 4: Working with
Self-Hosted Runners
	Technical requirements
	Creating a self-hosted runner
	Overview
	Architecture and operating systems supported
by self-hosted runners
	Communication with GitHub
	Adding the GitHub Actions runner application to your repository

	Configuring a job that runs on
a self-hosted runner
	Managing a self-hosted runner
	Understanding the status of self-hosted runners
	Reviewing logs
	The automatic update process
	Removing a self-hosted runner

	Summary

	Chapter 5: Writing Your Own Actions
	Technical requirements
	Overview
	Types of actions

	Reviewing the metadata syntax
	Using exit codes
	Adding exit codes to a JavaScript action
	Adding exit codes to a Docker container action

	Creating a JavaScript action
	Prerequisites
	Defining the action
	Writing the action logic
	Ensuring all works as expected

	Creating a Docker container action
	Prerequisites
	Creating a Dockerfile in your GitHub repository
	Defining the action
	Writing the action logic
	Ensuring all works as expected

	Creating a composite run steps action
	Prerequisites
	Defining the action
	Ensuring all works as expected

	Summary

	Chapter 6: Marketplace – Finding Existing Actions and Publishing Your Own
	Technical requirements
	Overview
	Finding existing actions
	Publishing your own actions
	Prerequisites
	Preparing and publishing your action

	Removing your action from GitHub Marketplace
	Summary

	Section 3: Customizing Existing Actions, Migrations, and the Future of GitHub Actions
	Chapter 7: Migrations
	Technical requirements
	Considerations before you migrate
	Migrating from Azure Pipelines
	Syntax differences

	Migrating from GitLab CI/CD
	Syntax differences

	Migrating from Jenkins
	Syntax differences

	Summary

	Chapter 8: Contributing to the Community and Finding Help
	Technical requirements
	Hands-on learning
	Interacting with the GitHub Actions community
	Helping to improve GitHub Actions
	Requesting technical support
	Summary

	Chapter 9: The Future of GitHub Actions
	Technical requirements
	Checking the GitHub roadmap
	Reading the GitHub blog and changelog
	Connecting through social media
	Summary
	Why subscribe?

	About Packt
	Other Books You May Enjoy
	Index

