

Learning Elastic Stack 7.0
Second Edition

Distributed search, analytics, and visualization using
Elasticsearch, Logstash, Beats, and Kibana

Pranav Shukla
Sharath Kumar M N

BIRMINGHAM - MUMBAI

Learning Elastic Stack 7.0
Second Edition
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Amey Varangaonkar
Acquisition Editor: Yogesh Deokar
Content Development Editor: Unnati Guha
Technical Editor: Manikandan Kurup
Copy Editor: Safis Editing
Project Coordinator: Manthan Patel
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Graphics: Jisha Chirayil
Production Coordinator: Aparna Bhagat

First published: December 2017
Second edition: May 2019

Production reference: 2310519

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78995-439-5

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Pranav Shukla is the founder and CEO of Valens DataLabs, a technologist, husband, and
father of two. He is a big data architect and software craftsman who uses JVM-based
languages. Pranav has over 15 years experience in architecting enterprise applications for
Fortune 500 companies and start-ups. His core expertise lies in building JVM-based,
scalable, reactive, and data-driven applications using Java/Scala, the Hadoop ecosystem,
Apache Spark, and NoSQL databases. Pranav founded Valens DataLabs with the vision of
helping companies to leverage data to their competitive advantage. In his spare time, he
enjoys reading books, playing musical instruments, and playing tennis.

I would like to thank my wife Kruti Shukla, our sons Sauhadra and Pratishth, my parents
Dr Sharad Shukla and Varsha Shukla and my brother Vishal Shukla for inspiring me to
write this book. I would like to thank Parth Mistry, Gopal Ghanghar, and Krishna Meet
for their valuable feedback for the book. Special thanks to Umesh Kakkad, Alex Bolduc,
Eddie Moojen, Wart Fransen, Vinod Patel, and Satyendra Bhatt for their help and
support.

Sharath Kumar M N did his master's in computer science at the University of Texas, Dallas,
USA. He is currently working as a senior principal architect at Broadcom. Prior to this, he
was working as an Elasticsearch solutions architect at Oracle. He has given several tech
talks at conferences such as Oracle Code events. Sharath is a certified trainer – Elastic
Certified Instructor – one of the few technology experts in the world who has been
certified by Elastic Inc. to deliver their official from the creators of Elastic training. He is also a
data science and machine learning enthusiast.
In his free time, he likes playing with his lovely niece, Monisha; nephew, Chirayu; and his
pet, Milo.

I would like to thank my parents, Geetha and Nanjaiah; sister, Dr. Shilpa; brother-in-law,
Dr. Sridhar; and my friends and colleagues - without their support, I wouldn't have been
able to finish my part of this book in time. I would like to thank Ali Siddiqui and Venkata
Karpuram for their inspirational leadership in AIOps at Broadcom. I would also like to
thank Rajat Bhardwaj, Prasanth Kongati and Kiran Kadarla for their encouragement and
support.

About the reviewer
Tan-Vinh Nguyen is a Switzerland-based Java, Elasticsearch, and Kafka enthusiast. He has
more than 15 years experience in enterprise software development. As Elastic Certified
Engineer, he works currently for mimacom ag in international Elasticsearch projects. He
runs a blog named Cinhtau, where he evaluates technology, concepts, and best practices.
His blog posts enable and empower application developers to accomplish their missions.

Marcelo Ochoa works for Dirección TICs of Facultad de Ciencias Exactas at Universidad
Nacional del Centro de la Prov. de Buenos Aires and is the CTO at Scotas.com, a company
that specializes in near real-time search solutions using Apache Solr and Oracle. He divides
his time between university jobs and external projects related to Oracle, open source and
big data technologies. Since 2006, he has been part of an Oracle ACE program and
was recently incorporated into a Docker Mentor program.

He has coauthored Oracle Database Programming using Java and Web Services and Professional
XML Databases, and worked as technical reviewers on several books such as Mastering
Apache Solr 7, Learning Elastic Search 6 Video, Mastering Elastic Stack and more.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Introduction to Elastic Stack and
Elasticsearch
Chapter 1: Introducing Elastic Stack 8

What is Elasticsearch, and why use it? 9
Schemaless and document-oriented 10
Searching capability 10
Analytics 11
Rich client library support and the REST API 11
Easy to operate and easy to scale 12
Near real-time capable 12
Lightning–fast 13
Fault-tolerant 13

Exploring the components of the Elastic Stack 13
Elasticsearch 14
Logstash 14
Beats 15
Kibana 16
X-Pack 16

Security 16
Monitoring 16
Reporting 17
Alerting 17
Graph 17
Machine learning 17

Elastic Cloud 18
Use cases of Elastic Stack 18

Log and security analytics 18
Product search 19
Metrics analytics 20
Web search and website search 21

Downloading and installing 21
Installing Elasticsearch 22
Installing Kibana 23

Summary 23

Chapter 2: Getting Started with Elasticsearch 24
Using the Kibana Console UI 25
Core concepts of Elasticsearch 28

Table of Contents

[ii]

Indexes 29
Types 30
Documents 31
Nodes 32
Clusters 32
Shards and replicas 33
Mappings and datatypes 35

Datatypes 35
Core datatypes 36
Complex datatypes 37
Other datatypes 37

Mappings 37
Creating an index with the name catalog 38
Defining the mappings for the type of product 38

Inverted indexes 41
CRUD operations 43

Index API 43
Indexing a document by providing an ID 43
Indexing a document without providing an ID 44

Get API 45
Update API 45
Delete API 47

Creating indexes and taking control of mapping 48
Creating an index 49
Creating type mapping in an existing index 49
Updating a mapping 51

REST API overview 53
Common API conventions 53

Formatting the JSON response 54
Dealing with multiple indexes 55

Searching all documents in one index 56
Searching all documents in multiple indexes 57
Searching all the documents of a particular type in all indexes 57

Summary 57

Section 2: Analytics and Visualizing Data
Chapter 3: Searching - What is Relevant 59

The basics of text analysis 59
Understanding Elasticsearch analyzers 60

Character filters 61
Tokenizer 62

Standard tokenizer 63
Token filters 64

Using built-in analyzers 65
Standard analyzer 65

Implementing autocomplete with a custom analyzer 70
Searching from structured data 74

Table of Contents

[iii]

Range query 76
Range query on numeric types 77
Range query with score boosting 78
Range query on dates 79

Exists query 80
Term query 81

Searching from the full text 82
Match query 84

Operator 86
Minimum should match 86
Fuzziness 87

Match phrase query 88
Multi match query 90

Querying multiple fields with defaults 90
Boosting one or more fields 91
With types of multi match queries 91

Writing compound queries 91
Constant score query 92
Bool query 94

Combining OR conditions 95
Combining AND and OR conditions 96
Adding NOT conditions 97

Modeling relationships 98
has_child query 102
has_parent query 104
parent_id query 106

Summary 107

Chapter 4: Analytics with Elasticsearch 108
The basics of aggregations 108

Bucket aggregations 110
Metric aggregations 110
Matrix aggregations 111
Pipeline aggregations 111

Preparing data for analysis 111
Understanding the structure of the data 112
Loading the data using Logstash 115

Metric aggregations 116
Sum, average, min, and max aggregations 117

Sum aggregation 117
Average aggregation 119
Min aggregation 120
Max aggregation 120

Stats and extended stats aggregations 121
Stats aggregation 121
Extended stats aggregation 122

Cardinality aggregation 123

Table of Contents

[iv]

Bucket aggregations 124
Bucketing on string data 125

Terms aggregation 125
Bucketing on numerical data 130

Histogram aggregation 130
Range aggregation 131

Aggregations on filtered data 133
Nesting aggregations 135
Bucketing on custom conditions 138

Filter aggregation 139
Filters aggregation 140

Bucketing on date/time data 141
Date Histogram aggregation 141

Creating buckets across time periods 142
Using a different time zone 143
Computing other metrics within sliced time intervals 144
Focusing on a specific day and changing intervals 145

Bucketing on geospatial data 147
Geodistance aggregation 147
GeoHash grid aggregation 149

Pipeline aggregations 151
Calculating the cumulative sum of usage over time 151

Summary 153

Chapter 5: Analyzing Log Data 154
Log analysis challenges 154
Using Logstash 157

Installation and configuration 158
Prerequisites 158
Downloading and installing Logstash 159

Installing on Windows 160
Installing on Linux 161

Running Logstash 161
The Logstash architecture 162
Overview of Logstash plugins 165

Installing or updating plugins 166
Input plugins 166
Output plugins 167
Filter plugins 167
Codec plugins 168

Exploring plugins 168
Exploring input plugins 168

File 168
Beats 170
JDBC 173
IMAP 175

Output plugins 176
Elasticsearch 176
CSV 177

Table of Contents

[v]

Kafka 178
PagerDuty 178

Codec plugins 179
JSON 179
Rubydebug 180
Multiline 180

Filter plugins 181
Ingest node 181

Defining a pipeline 182
Ingest APIs 182

Put pipeline API 182
Get pipeline API 184
Delete pipeline API 185
Simulate pipeline API 185

Summary 186

Chapter 6: Building Data Pipelines with Logstash 187
Parsing and enriching logs using Logstash 187

Filter plugins 188
CSV filter 189
Mutate filter 190
Grok filter 192
Date filter 194
Geoip filter 195
Useragent filter 196

Introducing Beats 197
Beats by Elastic.co 198

Filebeat 198
Metricbeat 198
Packetbeat 198
Heartbeat 199
Winlogbeat 199
Auditbeat 199
Journalbeat 199
Functionbeat 200

Community Beats 200
Logstash versus Beats 201

Filebeat 201
Downloading and installing Filebeat 202

Installing on Windows 202
Installing on Linux 203

Architecture 204
Configuring Filebeat 205

Filebeat inputs 209
Filebeat general/global options 212
Output configuration 213
Logging 215
Filebeat modules 216

Summary 219

Table of Contents

[vi]

Chapter 7: Visualizing Data with Kibana 220
Downloading and installing Kibana 221

Installing on Windows 222
Installing on Linux 222
Configuring Kibana 225

Preparing data 226
Kibana UI 231

User interaction 232
Configuring the index pattern 233
Discover 236

Elasticsearch query string/Lucene query 241
Elasticsearch DSL query 246
KQL 246

Visualize 256
Kibana aggregations 258

Bucket aggregations 258
Metric 260

Creating a visualization 260
Visualization types 262

Line, area, and bar charts 262
Data tables 262
Markdown widgets 262
Metrics 262
Goals 263
Gauges 263
Pie charts 263
Co-ordinate maps 263
Region maps 263
Tag clouds 264

Visualizations in action 264
Response codes over time 264
Top 10 requested URLs 266
Bandwidth usage of the top five countries over time 268
Web traffic originating from different countries 269
Most used user agent 271

Dashboards 273
Creating a dashboard 273
Saving the dashboard 275
Cloning the dashboard 276
Sharing the dashboard 277

Timelion 277
Timelion 278
Timelion expressions 278

Using plugins 283
Installing plugins 284
Removing plugins 284

Summary 285

Table of Contents

[vii]

Section 3: Elastic Stack Extensions
Chapter 8: Elastic X-Pack 287

Installation 288
Activating X-Pack trial account 292

Generating passwords for default users 295
Configuring X-Pack 298
Securing Elasticsearch and Kibana 299

User authentication 299
User authorization 301
Security in action 303

Creating a new user 304
Deleting a user 306
Changing the password 307

Creating a new role 308
Deleting or editing a role 313

Document-level security or field-level security 315
X-Pack security APIs 320

User Management APIs 320
Role Management APIs 322

Monitoring Elasticsearch 324
Monitoring UI 326

Elasticsearch metrics 329
Overview tab 329
Nodes tab 330
The Indices tab 333

Alerting 335
Anatomy of a watch 336
Alerting in action 341

Creating a new alert 342
Threshold Alert 343
Advanced Watch 344

Deleting/deactivating/editing a watch 346
Summary 348

Section 4: Production and Server Infrastructure
Chapter 9: Running Elastic Stack in Production 350

Hosting Elastic Stack on a managed cloud 351
Getting up and running on Elastic Cloud 351
Using Kibana 354
Overriding configuration 355
Recovering from a snapshot 355

Hosting Elastic Stack on your own 358
Selecting hardware 358
Selecting an operating system 359
Configuring Elasticsearch nodes 359

JVM heap size 360

Table of Contents

[viii]

Disable swapping 360
File descriptors 360
Thread pools and garbage collector 361

Managing and monitoring Elasticsearch 361
Running in Docker containers 361
Special considerations while deploying to a cloud 362

Choosing instance type 363
Changing default ports; do not expose ports! 363
Proxy requests 363
Binding HTTP to local addresses 363
Installing EC2 discovery plugin 364
Installing the S3 repository plugin 364
Setting up periodic snapshots 364

Backing up and restoring 365
Setting up a repository for snapshots 365

Shared filesystem 366
Cloud or distributed filesystems 367
Taking snapshots 368
Restoring a specific snapshot 368

Setting up index aliases 369
Understanding index aliases 369
How index aliases can help 370

Setting up index templates 371
Defining an index template 371
Creating indexes on the fly 372

Modeling time series data 373
Scaling the index with unpredictable volume over time 373

Unit of parallelism in Elasticsearch 373
The effect of the number of shards on the relevance score 374
The effect of the number of shards on the accuracy of aggregations 374

Changing the mapping over time 375
New fields get added 375
Existing fields get removed 375

Automatically deleting older documents 375
How index-per-timeframe solves these issues 376

Scaling with index-per-timeframe 376
Changing the mapping over time 377
Automatically deleting older documents 377

Summary 377

Chapter 10: Building a Sensor Data Analytics Application 378
Introduction to the application 378

Understanding the sensor-generated data 380
Understanding the sensor metadata 381
Understanding the final stored data 382

Modeling data in Elasticsearch 383
Defining an index template 383

Table of Contents

[ix]

Understanding the mapping 386
Setting up the metadata database 386
Building the Logstash data pipeline 387

Accepting JSON requests over the web 388
Enriching the JSON with the metadata we have in the MySQL database 389

The jdbc_streaming plugin 390
The mutate plugin 391

Moving the looked-up fields that are under lookupResult directly in JSON 392
Combining the latitude and longitude fields under lookupResult as a location field 392
Removing the unnecessary fields 393

Store the resulting documents in Elasticsearch 393
Sending data to Logstash over HTTP 394
Visualizing the data in Kibana 395

Setting up an index pattern in Kibana 395
Building visualizations 397

How does the average temperature change over time? 398
How does the average humidity change over time? 399
How do temperature and humidity change at each location over time? 400
Can I visualize temperature and humidity over a map? 402
How are the sensors distributed across departments? 403

Creating a dashboard 404
Summary 408

Chapter 11: Monitoring Server Infrastructure 409
Metricbeat 409

Downloading and installing Metricbeat 410
Installing on Windows 411
Installing on Linux 411

Architecture 412
Event structure 414

Configuring Metricbeat 416
Module configuration 416

Enabling module configs in the modules.d directory 417
Enabling module configs in the metricbeat.yml file 418

General settings 419
Output configuration 420
Logging 422

Capturing system metrics 423
Running Metricbeat with the system module 424
Specifying aliases 427
Visualizing system metrics using Kibana 429

Deployment architecture 432
Summary 433

Other Books You May Enjoy 434

Index 437

Preface
The Elastic Stack is a powerful combination of tools for techniques including distributed
searching, analytics, logging, and the visualization of data. Elastic Stack 7.0 encompasses
new features and capabilities that will enable you to find unique insights into analytics
using these techniques. This book will give you a fundamental understanding of what the
stack is all about, and help you use it efficiently to build powerful real-time data processing
applications.

The first few sections of the book will help you to understand how to set up the stack by
installing tools and exploring their basic configurations. You'll then get up to speed with
using Elasticsearch for distributed searching and analytics, Logstash for logging, and
Kibana for data visualization. As you work through the book, you will discover a technique
for creating custom plugins using Kibana and Beats. This is followed by coverage of Elastic
X-Pack, a useful extension for effective security and monitoring. You'll also find helpful tips
on how to use Elastic Cloud and deploy Elastic Stack in production environments.

By the end of this book, you'll be well versed in the fundamental Elastic Stack
functionalities and the role of each component in the stack in solving different data
processing problems.

Who this book is for
This book is for entry-level data professionals, software engineers, e-commerce developers,
and full-stack developers who want to learn about Elastic Stack and how the real-time
processing and search engine works for business analytics and enterprise search
applications.

What this book covers
Chapter 1, Introducing Elastic Stack, motivates you by introducing the core components of
Elastic Stack, and the importance of the distributed, scalable search and analytics that
Elastic Stack offers by means of use cases involving Elasticsearch. The chapter provides a
brief introduction to all the core components, where they fit into the overall stack, and the
purpose of each component. It concludes with instructions for downloading and installing
Elasticsearch and Kibana to get started.

Preface

[2]

Chapter 2, Getting Started with Elasticsearch, introduces the core concepts involved in
Elasticsearch, which form the backbone of the Elastic Stack. Concepts such as indexes,
types, nodes, and clusters are introduced. You will also be introduced to the REST API to
perform essential operations, datatypes, and mappings.

Chapter 3, Searching – What is Relevant, focuses on the search use case of Elasticsearch. It
introduces the concepts of text analysis, tokenizers, analyzers, and the need for analysis and
relevance-based searches. The chapter highlights an example use case to cover the
relevance-based search topics.

Chapter 4, Analytics with Elasticsearch, covers various types of aggregations by means of
examples in order for you to acquire an in-depth understanding. This chapter covers very
simple to complex aggregations to get powerful insights from terabytes of data. The chapter
also covers the motivation behind using different types of aggregations.

Chapter 5, Analyzing Log Data, establishes the foundation for the motivation behind
Logstash, its architecture, and installing and configuring Logstash to set up basic data
pipelines. Elastic 5 introduced ingest nodes, which can be used instead of a dedicated
Logstash setup. This chapter also covers building pipelines using Elastic ingest nodes.

Chapter 6, Building Data Pipelines with Logstash, builds on the fundamental knowledge of
Logstash by means of transformations and aggregation-related filters. It covers how the
rich set of filters brings Logstash closer to the other real-time and near real-time stream
processing frameworks with zero coding. It introduces the Beats platform, along with
FileBeat components, to transport log files from edge machines.

Chapter 7, Visualizing Data with Kibana, covers how to effectively use Kibana to build
beautiful dashboards for effective story telling regarding your data. It uses a sample dataset
and provides step-by-step guidance on creating visualizations with just a few clicks.

Chapter 8, Elastic X-Pack, covers how to add the extensions required for specific use cases.
Elastic X-Pack is a set of extensions developed and maintained by Elastic Stack developers.
These extensions are maintained with consistent versioning.

Chapter 9, Running Elastic Stack in Production, puts together a complete application for
sensor data analytics with the concepts learned so far. It is entirely reliant on Elastic Stack
components and close to zero programming. It shows how to model your data in
Elasticsearch, how to build the data pipeline to ingest data, and then visualize it using
Kibana. It also demonstrates how to effectively use X-Pack components to secure, monitor,
and get alerts when certain conditions are met in this real-world example.

Preface

[3]

Chapter 10, Building a Sensor Data Analytics Application, covers recommendations on how to
deploy Elastic Stack to production. ElasticSearch can be deployed to solve a variety of use
cases, such as product search, log analytics, and sensor data analytics. This chapter
provides recommendations for taking your application to production. It provides
guidelines on typical configurations that need to be looked at for different use cases. It also
covers deployment in cloud-based hosted providers such as Elastic Cloud.

Chapter 11, Monitoring Server Infrastructure, shows how you can use Elastic Stack to set up
a real-time monitoring solution for your servers and applications that is built entirely using
Elastic Stack. This can help prevent and minimize downtime while also improving the end
user experience.

To get the most out of this book
Previous experience with Elastic Stack is not required. However, some knowledge of data
warehousing and database concepts will be beneficial.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

http://www.packt.com
http://www.packt.com/support
http://www.packt.com

Preface

[4]

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Learning-Elastic-Stack-7.0-Second-
Edition. In case there's an update to the code, it will be updated on the existing GitHub
repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http:/ /www. packtpub. com/sites/ default/ files/
downloads/9781789954395_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

A block of code is set as follows:

POST _analyze
{
 "tokenizer": "standard",
 "text": "Tokenizer breaks characters into tokens!"
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

GET /amazon_products/_search
{
 "query": {
 "term": {
 "manufacturer.raw": "victory multimedia"
 }
 }
}

https://github.com/PacktPublishing/Learning-Elastic-Stack-7.0-Second-Edition
https://github.com/PacktPublishing/Learning-Elastic-Stack-7.0-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781789954395_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789954395_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789954395_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789954395_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789954395_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789954395_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789954395_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789954395_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789954395_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789954395_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789954395_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789954395_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789954395_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789954395_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789954395_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789954395_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789954395_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789954395_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789954395_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789954395_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789954395_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789954395_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789954395_ColorImages.pdf

Preface

[5]

Any command-line input or output is written as follows:

$> tar -xzf filebeat-7.0.0-linux-x86_64.tar.gz
$> cd filebeat

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Click on the Management icon on the left-hand menu and then click on License
Management."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/

Preface

[6]

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/

1
Section 1: Introduction to

Elastic Stack and Elasticsearch
This section covers the basics of Elasticsearch and Elastic Stack. It highlights the importance
of distributed and scalable search and analytics that Elastic Stack offers. It will includes
concepts such as indexes, types, nodes, and clusters, and provide insights into the REST
API, which can be used to perform essential operations such as datatypes and mappings.

This section includes the following chapters:

Chapter 1, Introducing Elastic Stack
Chapter 2, Getting Started with Elasticsearch

1
Introducing Elastic Stack

The emergence of the web, mobiles, social networks, blogs, and photo sharing has created a
massive amount of data in recent years. These new data sources create information that
cannot be handled using traditional data storage technology, typically relational databases.
As an application developer or business intelligence developer, your job is to fulfill the
search and analytics needs of the application.

A number of data stores, capable of big data scale, have emerged in the last few years.
These include Hadoop ecosystem projects, several NoSQL databases, and search and
analytics engines such as Elasticsearch.

The Elastic Stack is a rich ecosystem of components serving as a full search and analytics
stack. The main components of the Elastic Stack are Kibana, Logstash, Beats, X-Pack, and
Elasticsearch.

Elasticsearch is at the heart of the Elastic Stack, providing storage, search, and analytical
capabilities. Kibana, also referred to as a window into the Elastic Stack, is a user interface
for the Elastic Stack with great visualization capabilities. Logstash and Beats help get the
data into the Elastic Stack. X-Pack provides powerful features including monitoring,
alerting, security, graph, and machine learning to make your system production-ready.
Since Elasticsearch is at the heart of the Elastic Stack, we will cover the stack inside-out,
starting from the heart and moving on to the surrounding components.

In this chapter, we will cover the following topics:

What is Elasticsearch, and why use it?
A brief history of Elasticsearch and Apache Lucene
Elastic Stack components
Use cases of Elastic Stack

Introducing Elastic Stack Chapter 1

[9]

We will look at what Elasticsearch is and why you should consider it as your data store.
Once you know the key strengths of Elasticsearch, we will look at the history of
Elasticsearch and its underlying technology, Apache Lucene. We will then look at some use
cases of the Elastic Stack, and provide an overview of the Elastic Stack's components.

What is Elasticsearch, and why use it?
Since you are reading this book, you probably already know what Elasticsearch is. For the
sake of completeness, let's define Elasticsearch:

Elasticsearch is a real-time, distributed search and analytics engine that is horizontally
scalable and capable of solving a wide variety of use cases. At the heart of the Elastic Stack,
it centrally stores your data so you can discover the expected and uncover the unexpected.

Elasticsearch is at the core of the Elastic Stack, playing the central role of a search and
analytics engine. Elasticsearch is built on a radically different technology, Apache Lucene.
This fundamentally different technology in Elasticsearch sets it apart from traditional
relational databases and other NoSQL solutions. Let's look at the key benefits of using
Elasticsearch as your data store:

Schemaless, document-oriented
Searching
Analytics
Rich client library support and the REST API
Easy to operate and easy to scale
Near real-time
Lightning-fast
Fault-tolerant

Let's look at each benefit one by one.

Introducing Elastic Stack Chapter 1

[10]

Schemaless and document-oriented
Elasticsearch does not impose a strict structure on your data; you can store any JSON
documents. JSON documents are first-class citizens in Elasticsearch as opposed to rows and
columns in a relational database. A document is roughly equivalent to a record in a
relational database table. Traditional relational databases require a schema to be defined
beforehand to specify a fixed set of columns and their data types and sizes. Often the nature
of data is very dynamic, requiring support for new or dynamic columns. JSON documents
naturally support this type of data. For example, take a look at the following document:

{
 "name": "John Smith",
 "address": "121 John Street, NY, 10010",
 "age": 40
}

This document may represent a customer's record. Here the record has the name, address,
and age fields of the customer. Another record may look like the following:

{
 "name": "John Doe",
 "age": 38,
 "email": "john.doe@company.org"
}

Note that the second customer doesn't have the address field but, instead, has an email
address. In fact, other customer documents may have completely different sets of fields.
This provides a tremendous amount of flexibility in terms of what can be stored.

Searching capability
The core strength of Elasticsearch lies in its text-processing capabilities. Elasticsearch is
great at searching, especially full-text searches. Let's understand what a full-text search is:

Full-text search means searching through all the terms of all the documents available in the
database. This requires the entire contents of all documents to be parsed and stored
beforehand. When you hear full-text search, think of Google Search. You can enter any
search term and Google looks through all of the web pages on the internet to find the best-
matching web pages. This is quite different from simple SQL queries run against columns
of type string in relational databases. Normal SQL queries with a WHERE clause and an
equals (=) or LIKE clause try to do an exact or wildcard match with underlying data. SQL
queries can, at best, just match the search term to a sub-string within the text column.

Introducing Elastic Stack Chapter 1

[11]

When you want to perform a search similar to a Google search on your own data,
Elasticsearch is your best bet. You can index emails, text documents, PDF files, web pages,
or practically any unstructured text documents and search across all your documents with
search terms.

At a high level, Elasticsearch breaks up text data into terms and makes every term
searchable by building Lucene indexes. You can build your own fast and flexible Google-
like search for your application.

In addition to supporting text data, Elasticsearch also supports other data types such as
numbers, dates, geolocations, IP addresses, and many more. We will take an in-depth look
at searching in Chapter 3, Searching-What is Relevant.

Analytics
Apart from searching, the second most important functional strength of Elasticsearch is
analytics. Yes, what was originally known as just a full-text search engine is now used as an
analytics engine in a variety of use cases. Many organizations are running analytics
solutions powered by Elasticsearch in production.

Conducting a search is like zooming in and finding a needle in a haystack, that is, locating
precisely what is needed within huge amounts of data. Analytics is exactly the opposite of a
search; it is about zooming out and taking a look at the bigger picture. For example, you
may want to know how many visitors on your website are from the United States as
opposed to every other country, or you may want to know how many of your website's
visitors use macOS, Windows, or Linux.

Elasticsearch supports a wide variety of aggregations for analytics. Elasticsearch
aggregations are quite powerful and can be applied to various data types. We will take a
look at the analytics capabilities of Elasticsearch in Chapter 4, Analytics with Elasticsearch.

Rich client library support and the REST API
Elasticsearch has very rich client library support to make it accessible to many
programming languages. There are client libraries available for Java, C#, Python,
JavaScript, PHP, Perl, Ruby, and many more. Apart from the official client libraries, there
are community-driven libraries for 20 plus programming languages.

Introducing Elastic Stack Chapter 1

[12]

Additionally, Elasticsearch has a very rich REST (Representational State Transfer) API,
which works on the HTTP protocol. The REST API is very well documented and quite
comprehensive, making all operations available over HTTP.

All this means that Elasticsearch is very easy to integrate into any application to fulfill your
search and analytics needs.

Easy to operate and easy to scale
Elasticsearch can run on a single node and easily scale out to hundreds of nodes. It is very
easy to start a single node instance of Elasticsearch; it works out of the box without any
configuration changes and scales to hundreds of nodes.

Horizontal scalability is the ability to scale a system horizontally by
starting up multiple instances of the same type rather than making
one instance more and more powerful. Vertical scaling is about
upgrading a single instance by adding more processing power (by
increasing the number of CPUs or CPU cores), memory, or storage
capacity. There is a practical limit to how much a system can be scaled
vertically due to cost and other factors, such as the availability of higher-
end hardware.

Unlike most traditional databases that only allow vertical scaling, Elasticsearch can be
scaled horizontally. It can run on tens or hundreds of commodity nodes instead of one
extremely expensive server. Adding a node to an existing Elasticsearch cluster is as easy as
starting up a new node in the same network, with virtually no extra configuration. The
client application doesn't need to change, whether it is running against a single-node or a
hundred-node cluster.

Near real-time capable
Typically, data is available for queries within a second after being indexed (saved). Not all
big data storage systems are real-time capable. Elasticsearch allows you to index thousands
to hundreds of thousands of documents per second and makes them available for searching
almost immediately.

Introducing Elastic Stack Chapter 1

[13]

Lightning–fast
Elasticsearch uses Apache Lucene as its underlying technology. By default, Elasticsearch
indexes all the fields of your documents. This is extremely invaluable as you can query or
search by any field in your records. You will never be in a situation in which you think, If
only I had chosen to create an index on this field. Elasticsearch contributors have leveraged
Apache Lucene to its best advantage, and there are other optimizations that make it
lightning-fast.

Fault-tolerant
Elasticsearch clusters can keep running even when there are hardware failures such as node
failure and network failure. In the case of node failure, it replicates all the data on the failed
node to another node in the cluster. In the case of network failure, Elasticsearch seamlessly
elects master replicas to keep the cluster running. Whether it is a case of node or network
failure, you can rest assured that your data is safe.

Now that you know when and why Elasticsearch could be a great choice, let's take a high-
level view of the ecosystem – the Elastic Stack.

Exploring the components of the Elastic
Stack
The Elastic Stack components are shown in the following diagram. It is not necessary to
include all of them in your solution. Some components are general-purpose and can be
used outside the Elastic Stack without using any other components.

Introducing Elastic Stack Chapter 1

[14]

Let's look at the purpose of each component and how they fit into the stack:

Elasticsearch
Elasticsearch is at the heart of the Elastic Stack. It stores all your data and provides search
and analytic capabilities in a scalable way. We have already looked at the strengths of
Elasticsearch and why you would want to use it. Elasticsearch can be used without using
any other components to power your application in terms of search and analytics. We will
cover Elasticsearch in great detail in Chapter 2, Getting Started with Elasticsearch, Chapter 3,
Searching-What is Relevant, and Chapter 4, Analytics with Elasticsearch.

Logstash
Logstash helps centralize event data such as logs, metrics, or any other data in any format.
It can perform a number of transformations before sending it to a stash of your choice. It is
a key component of the Elastic Stack, used to centralize the collection and transformation
processes in your data pipeline.

Introducing Elastic Stack Chapter 1

[15]

Logstash is a server-side component. Its role is to centralize the collection of data from a
wide number of input sources in a scalable way, and transform and send the data to an
output of your choice. Typically, the output is sent to Elasticsearch, but Logstash is capable
of sending it to a wide variety of outputs. Logstash has a plugin-based, extensible
architecture. It supports three types of plugin: input plugins, filter plugins, and output
plugins. Logstash has a collection of 200+ supported plugins and the count is ever
increasing.

Logstash is an excellent general-purpose data flow engine that helps in building real-time,
scalable data pipelines.

Beats
Beats is a platform of open source lightweight data shippers. Its role is complementary to
Logstash. Logstash is a server-side component, whereas Beats has a role on the client side.
Beats consists of a core library, libbeat, which provides an API for shipping data from the
source, configuring the input options, and implementing logging. Beats is installed on
machines that are not part of server-side components such as Elasticsearch, Logstash, or
Kibana. These agents reside on non-cluster nodes, which are sometimes called edge nodes.

Many Beat components have already been built by the Elastic team and the open source
community. The Elastic team has built Beats including Packetbeat, Filebeat, Metricbeat,
Winlogbeat, Audiobeat, and Heartbeat.

Filebeat is a single-purpose Beat built to ship log files from your servers to a centralized
Logstash server or Elasticsearch server. Metricbeat is a server monitoring agent that
periodically collects metrics from the operating systems and services running on your
servers. There are already around 40 community Beats built for specific purposes, such as
monitoring Elasticsearch, Cassandra, the Apache web server, JVM performance, and so on.
You can build your own beat using libbeat, if you don't find one that fits your needs.

We will explore Logstash and Beats in Chapter 5, Analyzing Log Data, and Chapter 6,
Building Data Pipelines with Logstash.

Introducing Elastic Stack Chapter 1

[16]

Kibana
Kibana is the visualization tool for the Elastic Stack, and can help you gain powerful
insights about your data in Elasticsearch. It is often called a window into the Elastic Stack. It
offers many visualizations including histograms, maps, line charts, time series, and more.
You can build visualizations with just a few clicks and interactively explore data. It lets you
build beautiful dashboards by combining different visualizations, sharing with others, and
exporting high-quality reports.

Kibana also has management and development tools. You can manage settings and
configure X‑Pack security features for Elastic Stack. Kibana also has development tools that
enable developers to build and test REST API requests.

We will explore Kibana in Chapter 7, Visualizing Data with Kibana.

X-Pack
X-Pack adds essential features to make the Elastic Stack production-ready. It adds security,
monitoring, alerting, reporting, graph, and machine learning capabilities to the Elastic
Stack.

Security
The security plugin within X-Pack adds authentication and authorization capabilities to
Elasticsearch and Kibana so that only authorized people can access data, and they can only
see what they are allowed to. The security plugin works across components seamlessly,
securing access to Elasticsearch and Kibana.

The security extension also lets you configure fields and document-level security with the
licensed version.

Monitoring
You can monitor your Elastic Stack components so that there is no downtime. The
monitoring component in X-Pack lets you monitor your Elasticsearch clusters and Kibana.

You can monitor clusters, nodes, and index-level metrics. The monitoring plugin maintains
a history of performance so you can compare current metrics with past metrics. It also has a
capacity planning feature.

Introducing Elastic Stack Chapter 1

[17]

Reporting
The reporting plugin within X-Pack allows for generating printable, high-quality reports
from Kibana visualizations. The reports can be scheduled to run periodically or on a per-
event basis.

Alerting
X-Pack has sophisticated alerting capabilities that can alert you in multiple possible ways
when certain conditions are met. It gives tremendous flexibility in terms of when, how, and
who to alert.

You may be interested in detecting security breaches, such as when someone has five login
failures within an hour from different locations or finding out when your product is
trending on social media. You can use the full power of Elasticsearch queries to check when
complex conditions are met.

Alerting provides a wide variety of options in terms of how alerts are sent. It can send
alerts via email, Slack, Hipchat, and PagerDuty.

Graph
Graph lets you explore relationships in your data. Data in Elasticsearch is generally
perceived as a flat list of entities without connections to other entities. This relationship
opens up the possibility of new use cases. Graph can surface relationships among entities
that share common properties such as people, places, products, or preferences.

Graph consists of the Graph API and a UI within Kibana, that let you explore this
relationship. Under the hood, it leverages distributed querying, indexing at scale, and the
relevance capabilities of Elasticsearch.

Machine learning
X-Pack has a machine learning module, which is for learning from patterns within data.
Machine learning is a vast field that includes supervised learning, unsupervised learning,
reinforcement learning, and other specialized areas such as deep learning. The machine
learning module within X-Pack is limited to anomaly detection in time series data, which
falls under the unsupervised learning branch of machine learning.

We will look at some X-Pack components in Chapter 8, Elastic X-Pack.

Introducing Elastic Stack Chapter 1

[18]

Elastic Cloud
Elastic Cloud is the cloud-based, hosted, and managed setup of the Elastic Stack
components. The service is provided by Elastic (https:/ /www. elastic. co/), which is
behind the development of Elasticsearch and other Elastic Stack components. All Elastic
Stack components are open source except X-Pack (and Elastic Cloud). Elastic, the company,
provides services for Elastic Stack components including training, development, support,
and cloud hosting.

Apart from Elastic Cloud, other hosted solutions are available for Elasticsearch, including
one from Amazon Web Services (AWS). The advantage of Elastic Cloud is that it is
developed and maintained by the original creators of Elasticsearch and other Elastic Stack
components.

Use cases of Elastic Stack
Elastic Stack components have a variety of practical use cases, and new use cases are
emerging as more plugins are added to existing components. As mentioned earlier, you
may use a subset of the components for your use case. The following list of example use
cases is by no means exhaustive, but highlights some of the most common ones:

Log and security analytics
Product search
Metrics analytics
Web searches and website searches

Let's look at each use case.

Log and security analytics
The Elasticsearch, Logstash, and Kibana trio was, previously, very popular as a stack. The
presence of Elasticsearch, Logstash, and Kibana (also known as ELK) makes the Elastic
Stack an excellent stack for aggregating and analyzing logs in a central place.

https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/

Introducing Elastic Stack Chapter 1

[19]

Application support teams face a great challenge in administering and managing large
numbers of applications deployed across tens or hundreds of servers. The application
infrastructure could have the following components:

Web servers
Application servers
Database servers
Message brokers

Typically, enterprise applications have all, or most, of the types of servers described earlier,
and there are multiple instances of each server. In the event of an error or production issue,
the support team has to log in to individual servers and look at the errors. It is quite
inefficient to log in to individual servers and look at the raw log files. The Elastic Stack
provides a complete toolset to collect, centralize, analyze, visualize, alert, and report errors
as they occur. Each component can be used to solve this problem as follows:

The Beats framework, Filebeat in particular, can run as a lightweight agent to
collect and forward logs.
Logstash can centralize events received from Beats, and parse and transform each
log entry before sending it to the Elasticsearch cluster.
Elasticsearch indexes logs. It enables both search and analytics on the parsed
logs.
Kibana then lets you create visualizations based on errors, warnings, and other
information logs. It lets you create dashboards on which you can centrally
monitor events as they occur, in real time.
With X-Pack, you can secure the solution, configure alerts, get reports, and
analyze relationships in data.

As you can see, you can get a complete log aggregation and monitoring solution using
Elastic Stack.

A security analytics solution would be very similar to this; the logs and events being fed
into the system would pertain to firewalls, switches, and other key network elements.

Product search
A product search involves searching for the most relevant product from thousands or tens
of thousands of products and presenting the most relevant products at the top of the list
before other, less relevant, products. You can directly relate this problem to e-commerce
websites, which sell huge numbers of products sold by many vendors or resellers.

Introducing Elastic Stack Chapter 1

[20]

Elasticsearch's full-text and relevance search capabilities can find the best-matching results.
Presenting the best matches on the first page has great value as it increases the chances of
the customer actually buying the product. Imagine a customer searching for the iPhone 7,
and the results on the first page showing different cases, chargers, and accessories for
previous iPhone versions. Text analysis capabilities backed by Lucene, and innovations
added by Elasticsearch, ensure that the search shows iPhone 7 chargers and cases as the
best match.

This problem, however, is not limited to e-commerce websites. Any application that needs
to find the most relevant item from millions, or billions, of items, can use Elasticsearch to
solve this problem.

Metrics analytics
Elastic Stack has excellent analytics capabilities, thanks to the rich Aggregations API in
Elasticsearch. This makes it a perfect tool for analyzing data with lots of metrics. Metric
data consists of numeric values as opposed to unstructured text such as documents and
web pages. Some examples are data generated by sensors, Internet of Things (IoT) devices,
metrics generated by mobile devices, servers, virtual machines, network routers, switches,
and so on. The list is endless.

Metric data is, typically, also time series; that is, values or measures are recorded over a
period of time. Metrics that are recorded are usually related to some entity. For example, a
temperature reading (which is a metric) is recorded for a particular sensor device with a
certain identifier. The type, name of the building, department, floor, and so on are the
dimensions associated with the metric. The dimensions may also include the location of the
sensor device, that is, the longitude and latitude.

Elasticsearch and Kibana allow for slicing and dicing metric data along different
dimensions to provide a deep insight into your data. Elasticsearch is very powerful at
handling time series and geospatial data, which means you can plot your metrics on line
charts and area charts aggregating millions of metrics. You can also conduct geospatial
analysis on a map.

We will build a metrics analytics application using the Elastic Stack in Chapter 9, Building a
Sensor Data Analytics Application.

Introducing Elastic Stack Chapter 1

[21]

Web search and website search
Elasticsearch can serve as a search engine for your website and perform a Google-like
search across the entire content of your site. GitHub, Wikipedia, and many other platforms
power their searches using Elasticsearch.

Elasticsearch can be leveraged to build content aggregation platforms. What is a content
aggregator or a content aggregation platform? Content aggregators scrape/crawl multiple
websites, index the web pages, and provide a search functionality on the underlying
content. This is a powerful way to build domain-specific, aggregated platforms.

Apache Nutch, an open source, large-scale web crawler, was created by Doug Cutting, the
original creator of Apache Lucene. Apache Nutch crawls the web, parses HTML pages,
stores them, and also builds indexes to make the content searchable. Apache Nutch
supports indexing into Elasticsearch or Apache Solr for its search engine.

As is evident, Elasticsearch and the Elastic Stack have many practical use cases. The Elastic
Stack is a platform with a complete set of tools to build end-to-end search and analytics
solutions. It is a very approachable platform for developers, architects, business intelligence
analysts, and system administrators. It is possible to put together an Elastic Stack solution
with almost zero coding and only configuration. At the same time, Elasticsearch is very
customizable, that is, developers and programmers can build powerful applications using
its rich programming language support and REST API.

Downloading and installing
Now that we have enough motivation and reasons to learn about Elasticsearch and the
Elastic Stack, let's start by downloading and installing the key components. Firstly, we will
download and install Elasticsearch and Kibana. We will install the other components as we
need them on the course of our journey. We also need Kibana because, apart from
visualizations, it also has a UI for developer tools and for interacting with Elasticsearch.

Starting from Elastic Stack 5.x, all Elastic Stack components are now released together; they
share the same version and are tested for compatibility with each other. This is also true for
Elastic Stack 6.x components.

At the time of writing, the current version of Elastic Stack is 7.0.0. We will use this version
for all components.

Introducing Elastic Stack Chapter 1

[22]

Installing Elasticsearch
Elasticsearch can be downloaded as a ZIP, TAR, DEB, or RPM package. If you are on
Ubuntu, Red Hat, or CentOS Linux, it can be directly installed using apt or yum.

We will use the ZIP format as it is the least intrusive and the easiest for development
purposes:

Go to https:/ /www. elastic. co/downloads/ elasticsearch and download the1.
ZIP distribution. You can also download an older version if you are looking for
an exact version.
Extract the file and change your directory to the top-level extracted folder. Run2.
bin/elasticsearch or bin/elasticsearch.bat.
Run curl http://localhost:9200 or open the URL in your favorite browser.3.

You should see an output like this:

Congratulations! You have just set up a single-node Elasticsearch cluster.

https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch

Introducing Elastic Stack Chapter 1

[23]

Installing Kibana
Kibana is also available in a variety of packaging formats such as ZIP, TAR.GZ, RMP, and
DEB for 32-bit and 64-bit architecture machines:

Go to https:/ /www. elastic. co/downloads/ kibana and download the ZIP or1.
TAR.GZ distribution for the platform that you are on.
Extract the file and change your directory to the top-level extracted folder. Run2.
bin/kibana or bin/kibana.bat.
Open http://localhost:5601 in your favorite browser.3.

Congratulations! You have a working setup of Elasticsearch and Kibana.

Summary
In this chapter, we started by understanding the motivations of various search and
analytics technologies other than relational databases and NoSQL stores. We looked at the
strengths of Elasticsearch, which is at the heart of the Elastic Stack. We then looked at the
rest of the components of the Elastic Stack and how they fit into the ecosystem. We also
looked at real-world use cases of the Elastic Stack. We successfully downloaded and
installed Elasticsearch and Kibana to begin the journey of learning about the Elastic Stack.

In the next chapter, we will understand the core concepts of Elasticsearch. We will learn
about indexes, types, shards, datatypes, mappings, and other fundamentals. We will also
interact with Elasticsearch by using Create, Read, Update, and Delete (CRUD) operations,
and learn the basics of searching.

https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana

2
Getting Started with

Elasticsearch
In the first chapter, we looked at the reasons for learning about and using the Elastic Stack,
and the use cases of the Elastic Stack.

In this chapter, we will start our journey of learning about the Elastic Stack by looking at
the core of the Elastic Stack – Elasticsearch. Elasticsearch is the search and analytics engine
behind the Elastic Stack. We will learn about the core concepts of Elasticsearch while doing
some hands-on practice, where we will learn about querying, filtering, and searching.

We will cover the following topics in this chapter:

Using the Kibana Console UI
Core concepts of Elasticsearch
CRUD operations
Creating indexes and taking control of mapping
REST API overview

Getting Started with Elasticsearch Chapter 2

[25]

Using the Kibana Console UI
Before we start writing our first queries to interact with Elasticsearch, we should familiarize
ourselves with a very important tool: Kibana Console. This is important because
Elasticsearch has a very rich REST API, allowing you to do all sorts of operations with
Elasticsearch. Kibana Console has an editor that is very capable and aware of the REST API.
It allows for auto completion, and for the formatting of queries as you write them.

What is a REST API? REST stands for Representational State Transfer. It
is an architectural style that's used to make systems inter operate and
interact with each other. REST has evolved along with the HTTP protocol,
and almost all REST-based systems use HTTP as their protocol.
HTTP supports different methods, including GET, POST, PUT, DELETE,
HEAD, and more, which are used for different semantics. For example, GET
is used for getting or searching for something, POST is used for creating a
new resource, PUT may be used for creating or updating an existing
resource, and DELETE may be used for deleting a resource permanently.

In Chapter 1, Introducing the Elastic Stack, we successfully installed Kibana and launched
the UI at http://localhost:5601. As we mentioned previously, Kibana is the window
into the Elastic Stack. It not only provides insight into the data through visualizations, but it
also has developer tools such as the Console. The following diagram shows the Console
UI:

Getting Started with Elasticsearch Chapter 2

[26]

Figure 2.1: Kibana Console

In Kibana 7.0, you can navigate to the Console by first clicking on Console under Manage
and Administer the Elastic Stack. The Console is divided into two parts: the editor pane
and the results pane. You can type the REST API command and press the green triangle-
like icon, which sends the query to the Elasticsearch instance (or cluster).

Getting Started with Elasticsearch Chapter 2

[27]

Here, we have simply sent the GET / query. This is equivalent to the curl command that
we sent to Elasticsearch for testing the setup, that is, curl http://localhost:9200. As
you can see, the length of the command that's sent via the Console is already more concise
than the curl command. You don't need to type http followed by the host and port of the
Elasticsearch node, that is, http://localhost:9200. However, as we mentioned earlier,
there is much more to it than just skipping the host and port with every request. As you
start typing in the Console editor, you will get an autosuggestion dropdown, as displayed
in the following screenshot:

Figure 2.2: Kibana Dev Tools Console autosuggestions

Now that we have the right tool to generate and send queries to Elasticsearch, let's continue
learning about the core concepts.

Getting Started with Elasticsearch Chapter 2

[28]

Core concepts of Elasticsearch
Relational databases have concepts such as rows, columns, tables, and schemas.
Elasticsearch and other document-oriented stores are based on different abstractions.
Elasticsearch is a document-oriented store. JSON documents are first-class citizens in
Elasticsearch. These JSON documents are organized within different types and indexes. We
will look at the following core abstractions of Elasticsearch:

Indexes
Types
Documents
Clusters
Nodes
Shards and replicas
Mappings and types
Inverted indexes

Let's start learning about these with an example:

PUT /catalog/_doc/1
{
 "sku": "SP000001",
 "title": "Elasticsearch for Hadoop",
 "description": "Elasticsearch for Hadoop",
 "author": "Vishal Shukla",
 "ISBN": "1785288997",
 "price": 26.99
}

Copy and paste this example into the editor of your Kibana Console UI and execute it. This
will index a document that represents a product in the product catalog of a system. All of
the examples that are written for the Kibana Console UI can be very easily converted into
curl commands that can be executed from the command line. The following is the curl
version of the previous Kibana Console UI command:

curl -XPUT http://localhost:9200/catalog/_doc/1 -d '{ "sku": "SP000001",
"title": "Elasticsearch for Hadoop", "description": "Elasticsearch for
Hadoop", "author": "Vishal Shukla", "ISBN": "1785288997", "price": 26.99}'

We will use this example to understand the following concepts: indexes, types, and
documents.

Getting Started with Elasticsearch Chapter 2

[29]

In the previous code block, the first line is PUT /catalog/_doc/1, which is followed by a
JSON document.

PUT is the HTTP method that's used to index a new document. PUT is among the other HTTP
methods we covered earlier. Here, catalog is the name of the index, _doc is the name of
the type where the document will be indexed (more on this later; each index in
Elasticsearch 7.0 should create just one type), and 1 is the ID to be assigned to the document
after it is indexed.

The following sections explain each concept in depth.

Indexes
An index is a container that stores and manages documents of a single type in
Elasticsearch. We will look at type in the next section. An index can contain documents of a
single Type, as depicted in the following diagram:

Figure 2.3: Organization of Index, Type, and Document

An index is a logical container of a type. Some configuration parameters are defined at the
index level, while other configuration parameters are defined at the type level, as we will
see later in this chapter.

The concept of index in Elasticsearch is roughly analogous to the database schema in a
relational database. Going by that analogy, a type in Elasticsearch is equivalent to a table,
and a document is equivalent to a record in the table. But please keep in mind that this
analogy is just for ease of understanding. Unlike relational database schemas, which almost
always contain multiple tables, one index can just contain one type.

Getting Started with Elasticsearch Chapter 2

[30]

Prior to Elasticsearch 6.0, one index could contain multiple types. This has
been changed since 6.0 to allow only one type within an index. If you have
an existing index with multiple types created prior to 6.0 and you are
upgrading to Elasticsearch 6.0, you can still use your old index. You
cannot create a new index with more than one type in Elasticsearch 6.0
and above.

With Elasticsearch 7.0, one index can strictly contain only one type by default. Attempting
to create a second type would result in the following error: Rejecting mapping update to
[index1] as the final mapping would have more than 1 type: [type1, type2].

Types
In our example of a product catalog, the document that was indexed was of the product
type. Each document stored in the product type represents one product. Since the same
index cannot have other types, such as customers, orders, and order line items, and more,
types help in logically grouping or organizing the same kind of documents within an
index.

Typically, documents with mostly common sets of fields are grouped under one type.
Elasticsearch is schemaless, allowing you to store any JSON document with any set of fields
into a type. In practice, we should avoid mixing completely different entities, such as
customers and products, into a single type. It makes sense to store them in separate types
within separate indexes.

The following code is for the index for customers:

PUT /customers/_doc/1
{
 "firstName": "John",
 "lastName": "Smith",
 "contact": {
 "mobile": "212-xxx-yyyy"
 },
 ...
}

Getting Started with Elasticsearch Chapter 2

[31]

The following code is for the index for products:

PUT /products/_doc/1
{
 "title": "Apple iPhone Xs (Gold, 4GB RAM, 64GB Storage, 12 MP Dual Camera,
458 PPI Display)",
 "price": 999.99,
 ...
}

As you can see, different types of documents are better handled in different indexes since
they may have different sets of fields/attributes.

Documents
As we mentioned earlier, JSON documents are first-class citizens in Elasticsearch. A
document consists of multiple fields and is the basic unit of information that's stored in
Elasticsearch. For example, you may have a document representing a single product, a
single customer, or a single order line item.

As depicted in the preceding diagram, which shows the relationship between indexes,
types, and documents, documents are contained within indexes and types.

Documents contain multiple fields. Each field in the JSON document is of a particular type.
In the product catalog example that we saw earlier, these fields were sku, title,
description, and price. Each field and its value can be seen as a key-value pair in the
document, where key is the field name and value is the field value. The field name is
similar to a column name in a relational database. The field value can be thought of as a
value of the column for a given row, that is, the value of a given cell in the table.

In addition to the fields that are sent by the user in the document, Elasticsearch maintains
internal metafields. These fields are as follows:

_id: This is the unique identifier of the document within the type, just like a
primary key in a database table. It can be autogenerated or specified by the user.
_type: This field contains the type of the document.
_index: This field contains the index name of the document.

Getting Started with Elasticsearch Chapter 2

[32]

Nodes
Elasticsearch is a distributed system. It consists of multiple processes running across
different machines in a network that communicate with the other processes. In Chapter
1, Introducing the Elastic Stack, we downloaded, installed, and started Elasticsearch. It
started what is called a single node of Elasticsearch, or a single node Elasticsearch cluster.

An Elasticsearch node is a single server of Elasticsearch, which may be part of a larger
cluster of nodes. It participates in indexing, searching, and performing other operations that
are supported by Elasticsearch. Every Elasticsearch node is assigned a unique ID and name
when it is started. A node can also be assigned a static name via the node.name parameter
in the Elasticsearch configuration file, config/elasticsearch.yml.

Every Elasticsearch node or instance has a main configuration file, which
is located in the config subdirectory. The file is in YML format (which
stands for YAML Ain't Markup Language). This configuration file can be
used to change defaults such as the node name, port, and cluster name.

At the lowest level, a node corresponds to one instance of the Elasticsearch process. It is
responsible for managing its share of data.

Clusters
A cluster hosts one or more indexes and is responsible for providing operations such as
searching, indexing, and aggregations. A cluster is formed by one or more nodes. Every
Elasticsearch node is always part of a cluster, even if it is just a single node cluster. By
default, every Elasticsearch node tries to join a cluster with the name Elasticsearch. If you
start multiple nodes on the same network without modifying the cluster.name property
in config/elasticsearch.yml, they form a cluster automatically.

It is advisable to modify the cluster.name property in the Elasticsearch
configuration file to avoid joining another cluster in the same network.
Since the default behavior of a node is to join an existing cluster within the
network, your local node may try to join another node and form a cluster.
This can happen in developer machines and also in other environments as
long as the nodes are in the same network.

A cluster consists of multiple nodes, where each node takes responsibility for storing and
managing its share of data. One cluster can host one or more indexes. An index is a logical
grouping of related types of documents.

Getting Started with Elasticsearch Chapter 2

[33]

Shards and replicas
First, let's understand what a shard is. An index contains documents of one or more types.
Shards help in distributing an index over the cluster. Shards help in dividing the
documents of a single index over multiple nodes. There is a limit to the amount of data that
can be stored on a single node, and that limit is dictated by the storage, memory, and
processing capacities of that node. Shards help by splitting the data of a single index over
the cluster, and hence allowing the storage, memory, and processing capacities of the
cluster to be utilized.

The process of dividing the data among shards is called sharding. Sharding is inherent in
Elasticsearch and is a way of scaling and parallelizing, as follows:

It helps in utilizing storage across different nodes of the cluster
It helps in utilizing the processing power of different nodes of the cluster

By default, every index is configured to have five shards in Elasticsearch. At the time of
creating the index, you can specify the number of shards from which the data will be
divided for your index. Once an index is created, the number of shards cannot be modified.

The following diagram illustrates how five shards of one index may be distributed on a
three-node cluster:

Figure 2.4: Organization of shards across the nodes of a cluster

The shards are named P1 to P5 in the preceding diagram. Each shard contains roughly one
fifth of the total data stored in the index. When a query is made against this index,
Elasticsearch takes care of going through all the shards and consolidating the result.

Getting Started with Elasticsearch Chapter 2

[34]

Now, imagine that one of the nodes (Node 1) goes down. With Node 1, we also lose the
share of data, which was stored in shards P1 and P2:

Figure 2.5: Failure of one node, along with the loss of its shards

Distributed systems such as Elasticsearch are expected to run in spite of hardware failure.
This issue is addressed by replica shards or replicas. Each shard in an index can be
configured to have zero or more replica shards. Replica shards are extra copies of the
original or primary shard and provide a high availability of data.

For example, with one replica of each shard, we will have one extra copy of each replica. In
the following diagram, we have five primary shards, with one replica of each shard:

Figure 2.6: Organization of shards with replicas on cluster nodes

Getting Started with Elasticsearch Chapter 2

[35]

Primary shards are depicted in green and replica shards are depicted in yellow. With the
replicas in place, if Node 1 goes down, we still have all the shards available in Node 2 and
Node 3. Replica shards may be promoted to primary shards when the corresponding
primary shard fails.

Apart from providing high availability and failover, replica shards also enable the querying
workload to be executed over replicas. Read operations such as search, query, and
aggregations can be executed on replicas as well. Elasticsearch transparently distributes the
execution of queries across nodes of the cluster where the required shards or replicas are
located.

To summarize, nodes get together to form a cluster. Clusters provide a physical layer of
services on which multiple indexes can be created. An index may contain one or more
types, with each type containing millions or billions of documents. Indexes are split into
shards, which are partitions of underlying data within an index. Shards are distributed
across the nodes of a cluster. Replicas are copies of primary shards and provide high
availability and failover.

Mappings and datatypes
Elasticsearch is schemaless, meaning that you can store documents with any number of
fields and types of fields. In a real-world scenario, data is never completely schemaless or
unstructured. There are always some sets of fields that are common across all documents in
a type. In fact, types within the indexes should be created based on common fields.
Typically, one type of document in an index shares some common fields.

Relational databases impose a strict structure. In a relational database, you need to define
the structure of the table with column names and datatypes for each column at the time of
creating the table. You cannot insert a record with a new column or a different datatype
column at runtime.

It is important to understand the datatypes supported by Elasticsearch.

Datatypes
Elasticsearch supports a wide variety of datatypes for different scenarios where you want
to store text data, numbers, booleans, binary objects, arrays, objects, nested types, geo-
points, geo-shapes, and many other specialized datatypes, such as IPv4 and IPv6 addresses.

In a document, each field has a datatype associated with it. A summary of the datatypes
supported by Elasticsearch is discussed in the following sections.

Getting Started with Elasticsearch Chapter 2

[36]

Core datatypes
The core datatypes supported by Elasticsearch are as follows:

String datatypes:
text: The text datatype is useful for supporting full-text search
for fields that contain a description or lengthy text values. These
fields are analyzed before indexing to support full-text search.
keyword: The keyword type enables analytics on string fields.
Fields of this type support sorting, filtering, and aggregations.

Numeric datatypes:
byte, short, integer, and long: Signed integers with 8-bit, 16-
bit, 32-bit, and 64-bit precision, respectively
float and double: IEEE 754 floating-point numbers with single-
precision 32-bit and double-precision 64-bit representations
half_float: IEEE 754 floating-point number with half-precision
16-bit representation
scaled_float: Floating-point number backed by a long and fixed
scaling factor

Date datatype:
date: Date with an optional timestamp component that's capable
of storing precision timestamps down to the millisecond

Boolean datatype:
boolean: The boolean datatype that is common in all
programming languages

Binary datatype:
binary: Allows you to store arbitrary binary values after
performing Base64 encoding

Range datatypes:
integer_range, float_range, long_range, double_range,
and date_range: Defines ranges of integers, floats, longs, and
more

scaled_float is a very useful datatype for storing something such as
price, which always has a precision of a limited number of decimal places.
Price can be stored with a scaling factor of 100, so a price of $10.98 would
be internally stored as 1,098 cents and can be treated as an integer.
Internally, scaled_float is much more storage efficient since integers
can be compressed much better.

Getting Started with Elasticsearch Chapter 2

[37]

Complex datatypes
The complex datatypes supported by Elasticsearch are as follows:

Array datatype: Arrays of the same types of instances. For example, arrays of
strings, integers, and more. Doesn't allow for the mixing of datatypes in arrays.
Object datatype: Allows inner objects within JSON documents.
Nested datatype: Useful for supporting arrays of inner objects, where each inner
object needs to be independently queriable.

Other datatypes
The other datatypes supported by Elasticsearch are as follows:

Geo-point datatype: Allows the storing of geo-points as longitude and latitude.
The geo-point datatype enables queries such as searching across all ATMs within
a distance of 2 km from a point.
Geo-shape datatype: Allows you to store geometric shapes such as polygons,
maps, and more. Geo-shape enables queries such as searching for all items within
a shape.
IP datatype: Allows you to store IPv4 and IPv6 addresses.

Mappings
To understand mappings, let's add another product to the product catalog:

PUT /catalog/_doc/2
{
 "sku": "SP000002",
 "title": "Google Pixel Phone 32GB - 5 inch display",
 "description": "Google Pixel Phone 32GB - 5 inch display (Factory
Unlocked US Version)",
 "price": 400.00,
 "resolution": "1440 x 2560 pixels",
 "os": "Android 7.1"
}

Copy and paste this example into the editor of your Kibana Console UI and execute it.

As you can see, the product has many different fields, as it is of a completely different
category. Yet, there are some fields that are common in all products. The common fields are
the reason why all of these documents are called products.

Getting Started with Elasticsearch Chapter 2

[38]

Remember, unlike relational databases, we didn't have to define the fields that would be
part of each document. In fact, we didn't even have to create an index with the name
catalog. When the first document about the product type was indexed in the index catalog,
the following tasks were performed by Elasticsearch:

Creating an index with the name catalog
Defining the mappings for the type of documents that will be stored in the
index's default type – _doc

Creating an index with the name catalog
The first step involves creating an index, because the index doesn't exist already. The index
is created using the default number of shards. We will look at a concept called index
templates – you can create templates for any new indexes. Sometimes, an index needs to be
created on the fly, just like in this case, where the insertion of the first document triggers the
creation of a new index. The index template kicks in and provides the matching template
for the index while creating the new index. This helps in creating indexes in a controlled
way, that is, with desired defaults, like the number of shards and type mappings for the
types within them.

An index can be created beforehand as well. Elasticsearch has a separate index API
(https://www.elastic. co/ guide/ en/ elasticsearch/ reference/ current/ indices. html)
that deals with index-level operations. This includes create, delete, get, create mapping, and
many more advanced operations.

Defining the mappings for the type of product
The second step involves defining the mappings for the type of product. This step is
executed because the type catalog did not exist before the first document was indexed.
Remember the analogy of type with a relational database table. The table needs to exist
before any row can be inserted. When a table is created in an RDBMS (Relational Database
Management System), we define the fields (columns) and their datatypes in the CREATE
TABLE statement.

When the first document is indexed within a type that doesn't exist yet, Elasticsearch tries
to infer the datatypes of all the fields. This feature is called the dynamic mapping of types.
By default, the dynamic mapping of types is enabled in Elasticsearch.

https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html

Getting Started with Elasticsearch Chapter 2

[39]

To see the mappings of the product type in the catalog index, execute the following
command in the Kibana Console UI:

GET /catalog/_mapping

This is an example of a GET mapping API (https:/ /www. elastic. co/guide/ en/
elasticsearch/reference/ current/ indices- get- mapping. html). You can request
mappings of a specific type, all the types within an index, or within multiple indexes.

The response should look like the following:

{
 "catalog" : {
 "mappings" : {
 "properties" : {
 "ISBN" : {
 "type" : "text",
 "fields" : {
 "keyword" : {
 "type" : "keyword",
 "ignore_above" : 256
 }
 }
 },
 "author" : {
 "type" : "text",
 "fields" : {
 "keyword" : {
 "type" : "keyword",
 "ignore_above" : 256
 }
 }
 },
 "description" : {
 "type" : "text",
 "fields" : {
 "keyword" : {
 "type" : "keyword",
 "ignore_above" : 256
 }
 }
 },
 "os" : {
 "type" : "text",
 "fields" : {
 "keyword" : {
 "type" : "keyword",
 "ignore_above" : 256

https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-mapping.html

Getting Started with Elasticsearch Chapter 2

[40]

 }
 }
 },
 "price" : {
 "type" : "float"
 },
 "resolution" : {
 "type" : "text",
 "fields" : {
 "keyword" : {
 "type" : "keyword",
 "ignore_above" : 256
 }
 }
 },
 "sku" : {
 "type" : "text",
 "fields" : {
 "keyword" : {
 "type" : "keyword",
 "ignore_above" : 256
 }
 }
 },
 "title" : {
 "type" : "text",
 "fields" : {
 "keyword" : {
 "type" : "keyword",
 "ignore_above" : 256
 }
 }
 }
 }
 }
 }
}

At the top level of the JSON response, catalog is the index for which we requested
mappings. The mappings child product signifies the fact that these are mappings for the
product type. The actual datatype mappings for each field are under the properties
element.

Getting Started with Elasticsearch Chapter 2

[41]

The actual type mappings that are returned will be slightly different from the ones shown
in the preceding code. It has been simplified slightly. As you can see, only price is of the
float datatype; the other fields were mapped to the text type. In reality, each text
datatype field is mapped as follows:

"field_name": {
 "type": "text",
 "fields": {
 "keyword": {
 "type": "keyword",
 "ignore_above": 256
 }
 }
}

As you may have noticed, each field that was sent as a string is assigned the text datatype.
The text datatype enables full-text search on a field. Additionally, the same field is also
stored as a multi-field, and it is also stored as a keyword type. This effectively enables full-
text search and analytics (such as sorting, aggregations, and filtering) on the same field. We
will look at both search and analytics in the upcoming chapters of this book.

Inverted indexes
An inverted index is the core data structure of Elasticsearch and any other system
supporting full-text search. An inverted index is similar to the index that you see at the end
of any book. It maps the terms that appear in the documents to the documents.

For example, you may build an inverted index from the following strings:

Document ID Document
1 It is Sunday tomorrow.
2 Sunday is the last day of the week.
3 The choice is yours.

Elasticsearch builds a data structure from the three documents that have been indexed. The
following data structure is called an inverted index:

Term Frequency Documents (postings)
choice 1 3
day 1 2
is 3 1, 2, 3

Getting Started with Elasticsearch Chapter 2

[42]

it 1 1
last 1 2
of 1 2
sunday 2 1, 2
the 3 2, 3
tomorrow 1 1
week 1 2
yours 1 3

Notice the following things:

Documents were broken down into terms after removing punctuation and
placing them in lowercase.
Terms are sorted alphabetically.
The Frequency column captures how many times the term appears in the entire
document set.
The third column captures the documents in which the term was found.
Additionally, it may also contain the exact locations (offsets within the
document) where the term was found.

When searching for terms in the documents, it is blazingly fast to locate the documents in
which the given term appears. If the user searches for the term sunday, then looking up
sunday from the Term column will be really fast, because the terms are sorted in the index.
Even if there were millions of terms, it is quick to look up terms when they are sorted.

Subsequently, consider a scenario in which the user searches for two words, for example,
last sunday. The inverted index can be used to individually search for the occurrence of
last and sunday; document 2 contains both terms, so it is a better match than document 1,
which contains only one term.

The inverted index is the building block for performing fast searches. Similarly, it is easy to
look up how many occurrences of terms are present in the index. This is a simple count
aggregation. Of course, Elasticsearch uses lots of innovation on top of the bare inverted
index we've explained here. It caters to both search and analytics.

Getting Started with Elasticsearch Chapter 2

[43]

By default, Elasticsearch builds an inverted index on all the fields in the document, pointing
back to the Elasticsearch document in which the field was present.

CRUD operations
In this section, we will look at how to perform basic CRUD operations, which are the most
fundamental operations required by any data store. Elasticsearch has a very well-designed
REST API, and the CRUD operations are targeted at documents.

To understand how to perform CRUD operations, we will cover the following APIs. These
APIs fall under the category of document APIs, which deal with documents:

Index API
Get API
Update API
Delete API

Index API
In Elasticsearch terminology, adding (or creating) a document to a type within an index of
Elasticsearch is called an indexing operation. Essentially, it involves adding the document
to the index by parsing all the fields within the document and building the inverted index.
This is why this operation is known as an indexing operation.

There are two ways we can index a document:

Indexing a document by providing an ID
Indexing a document without providing an ID

Indexing a document by providing an ID
We have already seen this version of the indexing operation. The user can provide the ID of
the document using the PUT method.

The format of this request is PUT /<index>/<type>/<id>, with the JSON document as
the body of the request:

PUT /catalog/_doc/1
{
 "sku": "SP000001",

Getting Started with Elasticsearch Chapter 2

[44]

 "title": "Elasticsearch for Hadoop",
 "description": "Elasticsearch for Hadoop",
 "author": "Vishal Shukla",
 "ISBN": "1785288997",
 "price": 26.99
}

Indexing a document without providing an ID
If you don't want to control the ID generation for the documents, you can use the POST
method.

The format of this request is POST /<index>/<type>, with the JSON document as the
body of the request:

POST /catalog/_doc
{
 "sku": "SP000003",
 "title": "Mastering Elasticsearch",
 "description": "Mastering Elasticsearch",
 "author": "Bharvi Dixit",
 "price": 54.99
}

The ID, in this case, will be generated by Elasticsearch. It is a hash string, as highlighted in
the response:

{
 "_index" : "catalog",
 "_type" : "_doc",
 "_id" : "1ZFMpmoBa_wgE5i2FfWV",
 "_version" : 1,
 "result" : "created",
 "_shards" : {
 "total" : 2,
 "successful" : 1,
 "failed" : 0
 },
 "_seq_no" : 4,
 "_primary_term" : 1
}

Getting Started with Elasticsearch Chapter 2

[45]

As per pure REST conventions, POST is used for creating a new resource
and PUT is used for updating an existing resource. Here, the usage of PUT
is equivalent to saying I know the ID that I want to assign, so use this ID while
indexing this document.

Get API
The get API is useful for retrieving a document when you already know the ID of the
document. It is essentially a get by primary key operation, as follows:

GET /catalog/_doc/1ZFMpmoBa_wgE5i2FfWV

The format of this request is GET /<index>/<type>/<id>. The response would be as
expected:

{
 "_index" : "catalog",
 "_type" : "_doc",
 "_id" : "1ZFMpmoBa_wgE5i2FfWV",
 "_version" : 1,
 "_seq_no" : 4,
 "_primary_term" : 1,
 "found" : true,
 "_source" : {
 "sku" : "SP000003",
 "title" : "Mastering Elasticsearch",
 "description" : "Mastering Elasticsearch",
 "author": "Bharvi Dixit",
 "price": 54.99
 }
}

Update API
The update API is useful for updating the existing document by ID.

Getting Started with Elasticsearch Chapter 2

[46]

The format of an update request is POST <index>/<type>/<id>/_update, with a JSON
request as the body:

POST /catalog/_update/1
{
 "doc": {
 "price": "28.99"
 }
}

The properties specified under the doc element are merged into the existing document. The
previous version of this document with an ID of 1 had a price of 26.99. This update
operation just updates the price and leaves the other fields of the document unchanged.
This type of update means that doc is specified and used as a partial document to merge
with an existing document; there are other types of updates supported.

The response of the update request is as follows:

{
 "_index": "catalog",
 "_type": "_doc",
 "_id": "1",
 "_version": 2,
 "result": "updated",
 "_shards": {
 "total": 2,
 "successful": 1,
 "failed": 0
 }
}

Internally, Elasticsearch maintains the version of each document. Whenever a document is
updated, the version number is incremented.

The partial update that we saw in the preceding code will work only if the document
existed beforehand. If the document with the given ID did not exist, Elasticsearch will
return an error saying that the document is missing. Let's understand how to do an upsert
operation using the update API. The term upsert loosely means update or insert, that is,
update the document if it exists, otherwise, insert the new document.

The doc_as_upsert parameter checks whether the document with the given ID already
exists and merges the provided doc with the existing document. If the document with the
given ID doesn't exist, it inserts a new document with the given document contents.

Getting Started with Elasticsearch Chapter 2

[47]

The following example uses doc_as_upsert to merge into the document with an ID of 3
or insert a new document if it doesn't exist:

POST /catalog/_update/3
{
 "doc": {
 "author": "Albert Paro",
 "title": "Elasticsearch 5.0 Cookbook",
 "description": "Elasticsearch 5.0 Cookbook Third Edition",
 "price": "54.99"
 },
 "doc_as_upsert": true
}

We can update the value of a field based on the existing value of that field or another field
in the document. The following update uses an inline script to increase the price by two for
a specific product:

POST /catalog/_update/1ZFMpmoBa_wgE5i2FfWV
{
 "script": {
 "source": "ctx._source.price += params.increment",
 "lang": "painless",
 "params": {
 "increment": 2
 }
 }
}

Scripting support allows you to read the existing value, increment the value by a variable,
and store it in a single operation. The inline script that's used here is Elasticsearch's own
painless scripting language. The syntax for incrementing an existing variable is similar to
most other programming languages.

Delete API
The delete API lets you delete a document by ID:

DELETE /catalog/_doc/1ZFMpmoBa_wgE5i2FfWV

Getting Started with Elasticsearch Chapter 2

[48]

The response of the delete operation is as follows:

{
 "_index" : "catalog",
 "_type" : "_doc",
 "_id" : "1ZFMpmoBa_wgE5i2FfWV",
 "_version" : 4,
 "result" : "deleted",
 "_shards" : {
 "total" : 2,
 "successful" : 1,
 "failed" : 0
 },
 "_seq_no" : 9,
 "_primary_term" : 1
}

This is how basic CRUD operations are performed with Elasticsearch. Please bear in mind
that Elasticsearch maintains data in a completely different data structure, that is, an
inverted index, using the capabilities of Apache Lucene. A relational database builds and
maintains B-trees, which are more suitable for typical CRUD operations.

Creating indexes and taking control of
mapping
In the previous section, we learned how to perform CRUD operations with Elasticsearch. In
the process, we saw how indexing the first document to an index that doesn't yet exist,
results in the creation of the new index and the mapping of the type.

Usually, you wouldn't want to let things happen automatically, as you would want to
control how indexes are created and also how mapping is created. We will see how you can
take control of this process in this section and we will look at the following:

Creating an index
Creating a mapping
Updating a mapping

Getting Started with Elasticsearch Chapter 2

[49]

Creating an index
You can create an index and specify the number of shards and replicas to create:

PUT /catalog
{
 "settings": {
 "index": {
 "number_of_shards": 5,
 "number_of_replicas": 2
 }
 }
}

It is possible to specify a mapping for a type at the time of index creation. The following
command will create an index called catalog, with five shards and two replicas.
Additionally, it also defines a type called my_type with two fields, one of the text type
and another of the keyword type:

PUT /catalog1
{
 "settings": {
 "index": {
 "number_of_shards": 5,
 "number_of_replicas": 2
 }
 },
 "mappings": {
 "properties": {
 "f1": {
 "type": "text"
 },
 "f2": {
 "type": "keyword"
 }
 }
 }
}

Creating type mapping in an existing index
With Elasticsearch 7.0, indexes contain strictly one type, and hence it is generally
recommended that you create the index and the default type within that index at index
creation time. The default type name is _doc.

Getting Started with Elasticsearch Chapter 2

[50]

In the earlier versions of Elasticsearch (6.0 and before), it was possible to define an index
and then add multiple types to that index as needed. This is still possible but it is a
deprecated feature. A type can be added within an index after the index is created using the
following code. The mappings for the type can be specified as follows:

PUT /catalog/_mapping
{
 "properties": {
 "name": {
 "type": "text"
 }
 }
}

This command creates a type called _doc, with one field of the text type in the existing
index catalog. Let's add a couple of documents after creating the new type:

POST /catalog/_doc
{
 "name": "books"
}
POST /catalog/_doc
{
 "name": "phones"
}

After a few documents are indexed, you realize that you need to add fields in order to store
the description of the category. Elasticsearch will assign a type automatically based on the
value that you insert for the new field. It only takes into consideration the first value that it
sees to guess the type of that field:

POST /catalog/_doc
{
 "name": "music",
 "description": "On-demand streaming music"
}

When the new document is indexed with fields, the field is assigned a datatype based on its
value in the initial document. Let's look at the mapping after this document is indexed:

{
 "catalog" : {
 "mappings" : {
 "properties" : {
 "description" : {
 "type" : "text",
 "fields" : {

Getting Started with Elasticsearch Chapter 2

[51]

 "keyword" : {
 "type" : "keyword",
 "ignore_above" : 256
 }
 }
 },
 "name" : {
 "type" : "text"
 }
 }
 }
 }
}

The field description has been assigned the text datatype, with a field with the name
keyword, which is of the keyword type. What this means is that, logically, there are two
fields, description and description.keyword. The description field is analyzed at
the time of indexing, whereas the description.keyword field is not analyzed and is
stored as is without any analysis. By default, fields that are indexed with double quotes for
the first time are stored as both text and keyword types.

If you want to take control of the type, you should define the mapping for the field before
the first document containing that field is indexed. A field's type cannot be changed after
one or more documents are indexed within that field. Let's see how to update the mapping
to add a field with the desired type.

Updating a mapping
Mappings for new fields can be added after a type has been created. A mapping can be
updated for a type with the PUT mapping API. Let's add a code field, which is of the
keyword type, but with no analysis:

PUT /catalog/_mapping
{
 "properties": {
 "code": {
 "type": "keyword"
 }
 }
}

Getting Started with Elasticsearch Chapter 2

[52]

This mapping is merged into the existing mappings of the _doc type. The mapping looks
like the following after it is merged:

{
 "catalog" : {
 "mappings" : {
 "properties" : {
 "code" : {
 "type" : "keyword"
 },
 "description" : {
 "type" : "text",
 "fields" : {
 "keyword" : {
 "type" : "keyword",
 "ignore_above" : 256
 }
 }
 },
 "name" : {
 "type" : "text"
 }
 }
 }
 }
}

Any subsequent documents that are indexed with the code field are assigned the right
datatype:

POST /catalog/_doc
{
 "name": "sports",
 "code": "C004",
 "description": "Sports equipment"
}

This is how we can take control of the index creation and type mapping process, and add
fields after the type is created.

Getting Started with Elasticsearch Chapter 2

[53]

REST API overview
We just looked at how to perform basic CRUD operations. Elasticsearch supports a wide
variety of operation types. Some operations deal with documents, that is, creating, reading,
updating, deleting, and more. Some operations provide search and aggregations, while
other operations are for providing cluster-related operations, such as monitoring health.
Broadly, the APIs that deal with Elasticsearch are categorized into the following types of
APIs:

Document APIs
Search APIs
Aggregation APIs
Indexes APIs
Cluster APIs
cat APIs

The Elasticsearch reference documentation has documented these APIs very nicely. In this
book, we will not go into the APIs down to the last detail. We will conceptually
understand, with examples, how the APIs can be leveraged to get the best out of
Elasticsearch and the other components of the Elastic Stack.

We will look at the search and aggregation APIs in Chapter 3, Searching – What is Relevant,
and Chapter 4, Analytics with Elasticsearch, respectively.

In the following section, we will cover the common API conventions that are applicable to
all REST APIs.

Common API conventions
All Elasticsearch REST APIs share some common features. They can be used across almost
all APIs. In this section, we will cover the following features:

Formatting the JSON response
Dealing with multiple indexes

Let's look at each item, one by one, in the following sections.

Getting Started with Elasticsearch Chapter 2

[54]

Formatting the JSON response
By default, the response of all the requests is not formatted. It returns an unformatted JSON
string in a single line:

curl -XGET http://localhost:9200/catalog/_doc/1

The following response is not formatted:

{"_index":"catalog","_type":"product","_id":"1","_version":3,"found":true,"
_source":{
 "sku": "SP000001",
 "title": "Elasticsearch for Hadoop",
 "description": "Elasticsearch for Hadoop",
 "author": "Vishal Shukla",
 "ISBN": "1785288997",
 "price": 26.99
}}

Passing pretty=true formats the response:

curl -XGET http://localhost:9200/catalog/_doc/1?pretty=true
{
 "_index" : "catalog",
 "_type" : "product",
 "_id" : "1",
 "_version" : 3,
 "found" : true,
 "_source" : {
 "sku" : "SP000001",
 "title" : "Elasticsearch for Hadoop",
 "description" : "Elasticsearch for Hadoop",
 "author" : "Vishal Shukla",
 "ISBN" : "1785288997",
 "price" : 26.99
 }
}

When you are using the Kibana Console UI, all responses are formatted by default.

Getting Started with Elasticsearch Chapter 2

[55]

Dealing with multiple indexes
Operations such as search and aggregations can run against multiple indexes in the same
query. It is possible to specify which indexes should be searched by using different URLs in
the GET request. Let's understand how the URLs can be used to search in different indexes
and the types within them. We cover the following scenarios when dealing with multiple
indexes within a cluster:

Searching all documents in all indexes
Searching all documents in one index
Searching all documents of one type in an index
Searching all documents in multiple indexes
Searching all documents of a particular type in all indexes

The following query matches all documents. The documents that are actually returned by
the query will be limited to 10 in this case. The default size of the result is 10, unless
specified otherwise in the query:

GET /_search

This will return all the documents from all the indexes of the cluster. The response looks
similar to the following, and it is truncated to remove the unnecessary repetition of
documents:

{
 "took": 3,
 "timed_out": false,
 "_shards": {
 "total": 16,
 "successful": 16,
 "failed": 0
 },
 "hits": {
 "total": 4,
 "max_score": 1,
 "hits": [
 {
 "_index": ".kibana",
 "_type": "doc",
 "_id": "config:7.0.0",
 "_score": 1,
 "_source": {
 "type": "config",
 "config": {
 "buildNum": 16070

Getting Started with Elasticsearch Chapter 2

[56]

 }
 }
 },
 ...
 ...
]
 }
}

Clearly, this is not a very useful operation, but let's use it to understand the search
response:

took: The number of milliseconds taken by the cluster to return the result.
timed_out: false: This means that the operation completed successfully
without timing out.
_shards: Shows the summary of how many shards across the entire cluster were
searched for successfully, or failed.
hits: Contains the actual documents that matched. It contains total, which
signifies the total documents that matched the search criteria across all indexes.
The max_score displays the score of the best matching document from the
search hits. The hits child of this element contains the actual document list.

The hits list contained within an array doesn't contain all matched
documents. It would be wasteful to return everything that matched the
search criteria, as there could be millions or billions of such matched
documents. Elasticsearch truncates the hits by size, which can be
optionally specified as a request parameter using GET
/_search?size=100. The default value for the size is 10, hence the
search hits array will contain up to 10 records by default.

Searching all documents in one index
The following code will search for all documents, but only within the catalog index:

GET /catalog/_search

You can also be more specific and include the type in addition to the index name, like so:

GET /catalog/_doc/_search

The version with the _doc type name produces a deprecation warning because each index
is supposed to contain only one type.

Getting Started with Elasticsearch Chapter 2

[57]

Searching all documents in multiple indexes
The following will search for all the documents within the catalog index and an index
named my_index:

GET /catalog,my_index/_search

Searching all the documents of a particular type in all indexes
The following will search all the indexes in the cluster, but only documents of the product
type will be searched:

GET /_all/_doc/_search

This feature can be quite handy when you have multiple indexes, with each index
containing the exact same type. This type of query can help you query data for that type
from all indexes.

Summary
In this chapter, we learned about the essential Kibana Console UI and curl commands that
we can use to interact with Elasticsearch with the REST API. Then, we looked at the core
concepts of Elasticsearch. We performed customary CRUD operations, which are required
as support for any data store. We took a closer look at how to create indexes, and how to
create and manage mappings. We ended this chapter with an overview of the REST API in
Elasticsearch, and the common conventions that are used in most APIs.

In the next chapter, we will take a deep dive into the search capabilities of Elasticsearch to
understand the maximum benefits of Elasticsearch as a search engine.

2
Section 2: Analytics and

Visualizing Data
This section will introduce you to Elasticsearch topics such as text analysis, tokenizers,
and analyzers, and to the importance of analysis. We will also learn about aggregation and
see how we can acquire powerful insights from terabytes of data. Then, we will learn how
to analyze log data using Logstash. You will gain insights into the architecture of Logstash
and how to set it up. After that, we will see how filters bring Logstash closer to other real-
time and near-real-time stream processing frameworks without the need to code. Finally,
we will look at visualizations using Kibana. You will be amazed at how easy it is to create
dashboards using Kibana.

This section includes the following chapters:

Chapter 3, Searching – What is Relevant
Chapter 4, Analytics with Elasticsearch
Chapter 5, Analyzing Log Data
Chapter 6, Building Data Pipelines with Logstash
Chapter 7, Visualizing Data with Kibana

3
Searching - What is Relevant

One of the core strengths of Elasticsearch is its search capabilities. In the previous chapter,
we gained a good understanding of Elasticsearch's core concepts, its REST API, and its
basic operations. With all that knowledge at hand, we will further our journey by learning
about the Elastic Stack.

We will cover the following topics in this chapter:

The basics of text analysis
Searching from structured data
Writing compound queries
Searching from full-text
Modeling relationships

The basics of text analysis
The analysis of text data is different from other types of data analysis, such as numbers,
dates, and times. The analysis of numeric and date/time datatypes can be done in a very
definitive way. For example, if you are looking for all records with a price greater than, or
equal to, 50, the result is a simple yes or no for each record. Either the record in question
qualifies or doesn't qualify for inclusion in the query's result. Similarly, when querying
something by date or time, the criteria for searching through records is very clearly defined
– a record either falls into the date/time range or it doesn't.

However, the analysis of text/string data can be different. Text data can be of a different
nature, and it can be used for structured or unstructured analysis.

Some examples of structured types of string fields are as follows: country codes, product
codes, non-numeric serial numbers/identifiers, and so on. The datatype of these fields may
be a string, but often you may want to do exact-match queries on these fields.

Searching - What is Relevant Chapter 3

[60]

We will first cover the analysis of unstructured text, which is also known as full-text
search.

From the previous chapter, we already understand the concepts of Elasticsearch indexes,
types, and mappings within a type. All fields that are of the text type are analyzed by what
is known as an analyzer.

In the following sections, we will cover the following topics:

Understanding Elasticsearch analyzers
Using built-in analyzers
Implementing autocomplete with a custom analyzer

Understanding Elasticsearch analyzers
The main task of an analyzer is to take the value of a field and break it down into terms. In
Chapter 2, Getting Started with Elasticsearch, we looked at the structure of an inverted index.
The job of the analyzer is to take documents and each field within them and extract terms
from them. These terms make the index searchable, that is, they can help us find out which
documents contain particular search terms.

The analyzer performs this process of breaking up input character streams into terms. This
happens twice:

At the time of indexing
At the time of searching

The core task of the analyzer is to parse the document fields and build the actual index.

Every field of text type needs to be analyzed before the document is indexed. This process
of analysis is what makes the documents searchable by any term that is used at the time of
searching.

Analyzers can be configured on a per field basis, that is, it is possible to have two fields of
the text type within the same document, each one using different analyzers.

Elasticsearch uses analyzers to analyze text data. An analyzer has the following
components:

Character filters: Zero or more
Tokenizer: Exactly one
Token filters: Zero or more

Searching - What is Relevant Chapter 3

[61]

The following diagram depicts the components of an analyzer:

Figure 3.1: Anatomy of an analyzer

Let's understand the role of each component one by one.

Character filters
When composing an analyzer, we can configure zero or more character filters. A character
filter works on a stream of characters from the input field; each character filter can add,
remove, or change the characters in the input field.

Elasticsearch ships with a few built-in character filters, which you can use to compose or
create your own custom analyzer.

For example, one of the character filters that Elasticsearch ships with is the Mapping Char
Filter. It can map a character or sequence of characters into target characters.

For example, you may want to transform emoticons into some text that represents those
emoticons:

:) should be translated to _smile_
:(should be translated to _sad_
:D should be translated to _laugh_

This can be achieved through the following character filter. The short name for the
Mapping Char Filter is the mapping filter:

 "char_filter": {
 "my_char_filter": {

Searching - What is Relevant Chapter 3

[62]

 "type": "mapping",
 "mappings": [
 ":) => _smile_",
 ":(=> _sad_",
 ":D => _laugh_"
]
 }
 }

When this character filter is used to create an analyzer, it will have the following effect:

Good morning everyone :) will be transformed in to Good morning everyone
smile.

I am not feeling well today :(will be transformed in to I am not feeling well
today _sad_.

Since character filters are at the very beginning of the processing chain in an analyzer (see
Figure 3.1), the tokenizer will always see the replaced characters. Character filters can be
useful for replacing characters with something more meaningful in certain cases, such as
replacing the numeric characters from other languages with English language decimals,
that is, digits from Hindi, Arabic, and other languages can be turned into 0, 1, 2, and so on.

You can find a list of available built-in character filters here: https:/ /www. elastic. co/
guide/en/elasticsearch/ reference/ current/ analysis- charfilters. html.

Tokenizer
An analyzer has exactly one tokenizer. The responsibility of a tokenizer is to receive a
stream of characters and generate a stream of tokens. These tokens are used to build an
inverted index. A token is roughly equivalent to a word. In addition to breaking down
characters into words or tokens, it also produces, in its output, the start and end offset of
each token in the input stream.

Elasticsearch ships with a number of tokenizers that can be used to compose a custom
analyzer; these tokenizers are also used by Elasticsearch itself to compose its built-in
analyzers.

You can find a list of available built-in tokenizers here: https:/ /www. elastic. co/guide/
en/elasticsearch/reference/ current/ analysis- tokenizers. html.

https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-charfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenizers.html

Searching - What is Relevant Chapter 3

[63]

Standard tokenizer is one of the most popular tokenizers as it is suitable for most
languages. Let's look at what standard tokenizer does.

Standard tokenizer
Loosely speaking, the standard tokenizer breaks down a stream of characters by separating
them with whitespace characters and punctuation.

The following example shows how the standard tokenizer breaks a character stream into
tokens:

POST _analyze
{
 "tokenizer": "standard",
 "text": "Tokenizer breaks characters into tokens!"
}

The preceding command produces the following output; notice the start_offset,
end_offset, and positions in the output:

{
 "tokens": [
 {
 "token": "Tokenizer",
 "start_offset": 0,
 "end_offset": 9,
 "type": "<ALPHANUM>",
 "position": 0
 },
 {
 "token": "breaks",
 "start_offset": 10,
 "end_offset": 16,
 "type": "<ALPHANUM>",
 "position": 1
 },
 {
 "token": "characters",
 "start_offset": 17,
 "end_offset": 27,
 "type": "<ALPHANUM>",
 "position": 2
 },
 {
 "token": "into",
 "start_offset": 28,
 "end_offset": 32,

Searching - What is Relevant Chapter 3

[64]

 "type": "<ALPHANUM>",
 "position": 3
 },
 {
 "token": "tokens",
 "start_offset": 33,
 "end_offset": 39,
 "type": "<ALPHANUM>",
 "position": 4
 }
]
}

This token stream can be further processed by the token filters of the analyzer.

Token filters
There can be zero or more token filters in an analyzer. Every token filter can add, remove,
or change tokens in the input token stream that it receives. Since it is possible to have
multiple token filters in an analyzer, the output of each token filter is sent to the next one
until all token filters are considered.

Elasticsearch comes with a number of token filters, and they can be used to compose your
own custom analyzers.

Some examples of built-in token filters are the following:

Lowercase token filter: Replaces all tokens in the input with their lowercase
versions.
Stop token filter: Removes stopwords, that is, words that do not add more
meaning to the context. For example, in English sentences, words like is, a, an,
and the, do not add extra meaning to a sentence. For many text search problems,
it makes sense to remove such words, as they don't add any extra meaning or
context to the content.

You can find a list of available built-in token filters here: https:/ /www. elastic. co/guide/
en/elasticsearch/reference/ current/ analysis- tokenfilters. html.

Thus far, we have looked at the role of character filters, tokenizers, and token filters. This
sets us up to understand how some of the built-in analyzers in Elasticsearch are composed.

https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-tokenfilters.html

Searching - What is Relevant Chapter 3

[65]

Using built-in analyzers
Elasticsearch comes with a number of built-in analyzers that can be used directly. Almost
all of these analyzers work without any need for additional configuration, but they provide
the flexibility of configuring some parameters.

Some analyzers come packaged with Elasticsearch. Some popular analyzers are the
following:

Standard analyzer: This is the default analyzer in Elasticsearch. If not overridden
by any other field-level, type-level, or index-level analyzer, all fields are analyzed
using this analyzer.
Language analyzers: Different languages have different grammatical rules. There
are differences between some languages as to how a stream of characters is
tokenized into words or tokens. Additionally, each language has its own set of
stopwords, which can be configured while configuring language analyzers.
Whitespace analyzer: The whitespace analyzer breaks down input into tokens
wherever it finds a whitespace token such as a space, a tab, a new line, or a
carriage return.

You can find a list of the available built-in analyzers here: https:/ / www.elastic. co/ guide/
en/elasticsearch/reference/ current/ analysis- analyzers. html.

Standard analyzer
Standard Analyzer is suitable for many languages and situations. It can also be customized
for the underlying language or situation. Standard analyzer comprises of the following
components:

Tokenizer:

Standard tokenizer: A tokenizer that splits tokens at whitespace characters

Token filters:

Standard token filter: Standard token filter is used as a placeholder token filter
within the Standard Analyzer. It does not change any of the input tokens but
may be used in future to perform some tasks.
Lowercase token filter: Makes all tokens in the input lowercase.
Stop token filter: Removes specified stopwords. The default setting has a
stopword list set to _none_, which doesn't remove any stopwords by default.

https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html

Searching - What is Relevant Chapter 3

[66]

Let's see how Standard analyzer works by default with an example:

PUT index_standard_analyzer
{
 "settings": {
 "analysis": {
 "analyzer": {
 "std": {
 "type": "standard"
 }
 }
 }
 },
 "mappings": {
 "properties": {
 "my_text": {
 "type": "text",
 "analyzer": "std"
 }
 }
 }
}

Here, we created an index, index_standard_analyzer. There are two things to notice
here:

Under the settings element, we explicitly defined one analyzer with the name
std. The type of analyzer is standard. Apart from this, we did not do any
additional configuration on Standard Analyzer.
We created one type called _doc in the index and explicitly set a field level
analyzer on the only field, my_text.

Let's check how Elasticsearch will do the analysis for the my_text field whenever any
document is indexed in this index. We can do this test using the _analyze API, as we saw
earlier:

POST index_standard_analyzer/_analyze
{
 "field": "my_text",
 "text": "The Standard Analyzer works this way."
}

Searching - What is Relevant Chapter 3

[67]

The output of this command shows the following tokens:

{
 "tokens": [
 {
 "token": "the",
 "start_offset": 0,
 "end_offset": 3,
 "type": "<ALPHANUM>",
 "position": 0
 },
 {
 "token": "standard",
 "start_offset": 4,
 "end_offset": 12,
 "type": "<ALPHANUM>",
 "position": 1
 },
 {
 "token": "analyzer",
 "start_offset": 13,
 "end_offset": 21,
 "type": "<ALPHANUM>",
 "position": 2
 },
 {
 "token": "works",
 "start_offset": 22,
 "end_offset": 27,
 "type": "<ALPHANUM>",
 "position": 3
 },
 {
 "token": "this",
 "start_offset": 28,
 "end_offset": 32,
 "type": "<ALPHANUM>",
 "position": 4
 },
 {
 "token": "way",
 "start_offset": 33,
 "end_offset": 36,
 "type": "<ALPHANUM>",
 "position": 5
 }
]
}

Searching - What is Relevant Chapter 3

[68]

Please note that, in this case, the field level analyzer for the my_field field was set to
Standard Analyzer explicitly. Even if it wasn't set explicitly for the field, Standard Analyzer
is the default analyzer if no other analyzer is specified.

As you can see, all of the tokens in the output are lowercase. Even though the Standard
Analyzer has a stop token filter, none of the tokens are filtered out. This is why the
_analyze output has all words as tokens.

Let's create another index that uses English language stopwords:

PUT index_standard_analyzer_english_stopwords
{
 "settings": {
 "analysis": {
 "analyzer": {
 "std": {
 "type": "standard",
 "stopwords": "_english_"
 }
 }
 }
 },
 "mappings": {
 "properties": {
 "my_text": {
 "type": "text",
 "analyzer": "std"
 }
 }
 }
}

Notice the difference here. This new index is using _english_ stopwords. You can also
specify a list of stopwords directly, such as stopwords: (a, an, the). The _english_
value includes all such English words.

Searching - What is Relevant Chapter 3

[69]

When you try the _analyze API on the new index, you will see that it removes the
stopwords, such as the and this:

POST index_standard_analyzer_english_stopwords/_analyze
{
 "field": "my_text",
 "text": "The Standard Analyzer works this way."
}

It returns a response like the following:

{
 "tokens": [
 {
 "token": "standard",
 "start_offset": 4,
 "end_offset": 12,
 "type": "<ALPHANUM>",
 "position": 1
 },
 {
 "token": "analyzer",
 "start_offset": 13,
 "end_offset": 21,
 "type": "<ALPHANUM>",
 "position": 2
 },
 {
 "token": "works",
 "start_offset": 22,
 "end_offset": 27,
 "type": "<ALPHANUM>",
 "position": 3
 },
 {
 "token": "way",
 "start_offset": 33,
 "end_offset": 36,
 "type": "<ALPHANUM>",
 "position": 5
 }
]
}

Searching - What is Relevant Chapter 3

[70]

English stopwords such as the and this are removed. As you can see, with a little
configuration, Standard Analyzer can be used for English and many other languages.

Let's go through a practical application of creating a custom analyzer.

Implementing autocomplete with a custom
analyzer
In certain situations, you may want to create your own custom analyzer by composing
character filters, tokenizers, and token filters of your choice. Please remember that most
requirements can be fulfilled by one of the built-in analyzers with some configuration. Let's
create an analyzer that can help when implementing autocomplete functionality.

To support autocomplete, we cannot rely on Standard Analyzer or one of the pre-built
analyzers in Elasticsearch. The analyzer is responsible for generating the terms at indexing
time. Our analyzer should be able to generate the terms that can help with autocompletion.
Let's understand this through a concrete example.

If we were to use Standard Analyzer at indexing time, the following terms would be
generated for the field with the Learning Elastic Stack 7 value:

GET /_analyze
{
 "text": "Learning Elastic Stack 7",
 "analyzer": "standard"
}

The response of this request would contain the terms Learning, Elastic, Stack, and 7.
These are the terms that Elasticsearch would create and store in the index if Standard
Analyzer was used. Now, what we want to support is that when the user starts typing a
few characters, we should be able to match possible matching products. For example, if the
user has typed elas, it should still recommend Learning Elastic Stack 7 as a
product. Let's compose an analyzer that can generate terms such as el, ela, elas, elast, elasti,
elastic, le, lea, and so on:

PUT /custom_analyzer_index
{
 "settings": {
 "index": {
 "analysis": {
 "analyzer": {
 "custom_analyzer": {
 "type": "custom",

Searching - What is Relevant Chapter 3

[71]

 "tokenizer": "standard",
 "filter": [
 "lowercase",
 "custom_edge_ngram"
]
 }
 },
 "filter": {
 "custom_edge_ngram": {
 "type": "edge_ngram",
 "min_gram": 2,
 "max_gram": 10
 }
 }
 }
 }
 },
 "mappings": {
 "properties": {
 "product": {
 "type": "text",
 "analyzer": "custom_analyzer",
 "search_analyzer": "standard"
 }
 }
 }
}

This index definition creates a custom analyzer that uses Standard Tokenizer to create the
tokens and uses two token filters – a lowercase token filter and the edge_ngram token
filter. The edge_ngram token filter breaks down each token into lengths of 2 characters, 3
characters, and 4 characters, up to 10 characters. One incoming token, such as elastic, will
generate tokens such as el, ela, and so on, from one token. This will enable autocompletion
searches.

Given that the following two products are indexed, and the user has typed Ela so far, the
search should return both products:

POST /custom_analyzer_index/_doc
{
 "product": "Learning Elastic Stack 7"
}

POST /custom_analyzer_index/_doc
{
 "product": "Mastering Elasticsearch"
}

Searching - What is Relevant Chapter 3

[72]

GET /custom_analyzer_index/_search
{
 "query": {
 "match": {
 "product": "Ela"
 }
 }
}

This would not have been possible if the index was built using Standard Analyzer at
indexing time. We will cover the match query later in this chapter. For now, you can
assume that it applies Standard Analyzer (the analyzer configured as search_analyzer)
on the given search terms and then uses the output terms to perform the search. In this
case, it would search for the term Ela in the index. Since the index was built using a custom
analyzer using an edge_ngram token filter, it would find a match for both products.

In this section, we have learned about analyzers. Analyzers play a vital role in the
functioning of Elasticsearch. Analyzers decide which terms get stored in the index. As a
result, what kind of search operations can be performed on the index after it has been built
is decided by the analyzer used at index time. For example, Standard Analyzer cannot
fulfill the requirement of supporting the autocompletion feature. We have looked at the
anatomy of analyzers, tokenizers, token filters, character filters, and some built-in support
in Elasticsearch. We also looked at a scenario in which building a custom analyzer solves a
real business problem regarding supporting the autocomplete function in your application.

Before we move onto the next section and start looking at different query types, let's set up
the necessary index with the data required for the next section. We are going to use product
catalog data taken from the popular e-commerce site www.amazon.com. The data is
downloadable from http:/ / dbs. uni- leipzig. de/file/ Amazon- GoogleProducts. zip.

Before we start with the queries, let's create the required index and import some data:

PUT /amazon_products
{
 "settings": {
 "number_of_shards": 1,
 "number_of_replicas": 0,
 "analysis": {
 "analyzer": {}
 }
 },
 "mappings": {
 "properties": {
 "id": {
 "type": "keyword"

http://www.amazon.com
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
http://dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip

Searching - What is Relevant Chapter 3

[73]

 },
 "title": {
 "type": "text"
 },
 "description": {
 "type": "text"
 },
 "manufacturer": {
 "type": "text",
 "fields": {
 "raw": {
 "type": "keyword"
 }
 }
 },
 "price": {
 "type": "scaled_float",
 "scaling_factor": 100
 }
 }
 }
}

The title and description fields are analyzed text fields on which analysis should be
performed. This will enable full-text queries on these fields. The manufacturer field is of
the text type, but it also has a field with the name raw. The manufacturer field is stored
in two ways, as text, and manufacturer.raw is stored as a keyword. All fields of the
keyword type internally use the keyword analyzer. The keyword analyzer consists of just
the keyword tokenizer, which is a noop tokenizer, simply returning the whole input as one
token. Remember, in an analyzer, character filters and token filters are optional. Thus, by
using the keyword type on the field, we are choosing a noop analyzer and hence skipping
the whole analysis process on that field.

The price field is chosen to be of the scaled_float type. This is a new type introduced
with Elastic 6.0, which internally stores floats as scaled whole numbers. For example, 13.99
will be stored as 1399 with a scaling factor of 100. This is space-efficient as float
and double datatypes occupy much more space.

Searching - What is Relevant Chapter 3

[74]

To import the data, please follow the instructions in the book's accompanying source code
repository at GitHub: https:/ /github. com/ pranav- shukla/ learningelasticstack in the
branch v7.0.

The instructions for importing data are in chapter-03/products_data/README.md.

After you have imported the data, verify that it is imported with the following query:

GET /amazon_products/_search
{
 "query": {
 "match_all": {}
 }
}

In the next section, we will look at structured search queries.

Searching from structured data
In certain situations, we may want to find out whether a given document should be
included or not; that is, a simple binary answer. On the other hand, there are other types of
queries that are relevance-based. Such relevance-based queries also return a score against
each document to say how well that document fits the query. Most structured queries do
not need relevance-based scoring, and the answer is a simple yes/no for any item to be
included or excluded from the result. These structured search queries are also referred to
as term-level queries.

Let's understand the flow of a term-level query's execution:

https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-03/products_data#import-product-data-into-elasticsearch

Searching - What is Relevant Chapter 3

[75]

Figure 3.2: Term-level query flow

As you can see, the figure is divided into two parts. The left-hand half of the figure depicts
what happens at the time of indexing, and the right-hand half depicts what happens at the
time of a query when a term-level query is executed.

Searching - What is Relevant Chapter 3

[76]

Looking at the left-hand half of the figure, we can see what happens during indexing. Here,
specifically, we are looking at how the inverted index is built and queried for the
manufacturer.raw field. Remember, from our definition of the index, the
manufacturer.raw field is of the keyword type. The keyword type fields are not
analyzed; the field's value is directly stored as a term in the inverted index.

At query time, when we search using a term query that is a term-level query, we see the
flow of execution on the right-hand half of the figure. The term query, as we will see later
in this section, is a term-level query that directly passes on the victory multimedia
search term, without breaking it down using an analyzer. This is how term-level queries
completely skip the analysis process at query time and directly search for the given term in
the inverted index.

These term-level queries create a foundation layer on which other, high-level, full-text
queries are built. We will look at high-level queries in the next section.

We will cover the following structured or term-level queries:

Range query
Exists query
Term query
Terms query

Range query
Range queries can be applied to fields with datatypes that have natural ordering. For
example, integers, logs, and dates have a natural order. There is no ambiguity in deciding
whether one value is less, equal to, or greater than the other values. Because of this well-
defined datatypes order, a range query can be applied.

We will look at how to apply range queries in the following ways:

On numeric types
With score boosting
On dates

Let's look at the most typical range query on a numeric field.

Searching - What is Relevant Chapter 3

[77]

Range query on numeric types
Suppose we are storing products with their prices in an Elasticsearch index and we want to
get all products within a range. The following is the query to get products in the range of
$10 to $20:

GET /amazon_products/_search
{
 "query": {
 "range": {
 "price": {
 "gte": 10,
 "lte": 20
 }
 }
 }
}

The response of this query looks like the following:

{
 "took": 1,
 "timed_out": false,
 "_shards": {
 "total": 1,
 "successful": 1,
 "failed": 0
 },
 "hits": {
 "total" : {
 "value" : 201, 1
 "relation" : "eq"
 },
 "max_score": 1.0, 2
 "hits": [
 {
 "_index": "amazon_products",
 "_type": "_doc",
 "_id": "AV5lK4WiaMctupbz_61a",
 "_score": 1, 3
 "_source": {
 "price": "19.99", 4
 "description": "reel deal casino championship edition (win 98 me
nt 2000 xp)",
 "id": "b00070ouja",
 "title": "reel deal casino championship edition",
 "manufacturer": "phantom efx",
 "tags": []

Searching - What is Relevant Chapter 3

[78]

 }
 },

Please take a note of the following:

The hits.total.value field in the response shows how many search hits were
found. Here, there were 201 search hits.
The hits.max_score field shows the score of the best matching document for
the query. Since a range query is a structured query without any importance or
relevance, it is executed as a filter. It doesn't do the scoring. All documents have a
score of one.
The hits.hits array lists all the actual hits. Elasticsearch doesn't return all 201
hits in a single pass by default. It just returns the first 10 records. If you wish to
scroll through all results, you can do so easily by issuing multiple queries, as we
will see later.
The price field in all search hits would be within the requested range, that is,
10: <= price <= 20.

Range query with score boosting
By default, the range query assigns a score of 1 to each matching document. What if you
are using a range query in conjunction with some other query and you want to assign a
higher score to the resulting document if it satisfies some criteria? We will look at
compound queries such as the bool query, where you can combine multiple types of
queries. The range query allows you to provide a boost parameter to enhance its score
relative to other query/queries that it is combined with:

GET /amazon_products/_search
{
 "from": 0,
 "size": 10,
 "query": {
 "range": {
 "price": {
 "gte": 10,
 "lte": 20,
 "boost": 2.2
 }
 }
 }
}

All documents that pass the filter will have a score of 2.2 instead of 1 in this query.

Searching - What is Relevant Chapter 3

[79]

Range query on dates
A range query can also be applied to date fields since dates are also inherently ordered.
You can specify the date format while querying a date range:

GET /orders/_search
{
 "query": {
 "range" : {
 "orderDate" : {
 "gte": "01/09/2017",
 "lte": "30/09/2017",
 "format": "dd/MM/yyyy"
 }
 }
 }
}

The preceding query will filter all the orders that were placed in the month of September
2017.

Elasticsearch allows us to use dates with or without the time in its queries. It also supports
the use of special terms, including now to denote the current time. For example, the
following query queries data from the last 7 days up until now, that is, data from exactly 24
x 7 hours ago till now with a precision of milliseconds:

GET /orders/_search
{
 "query": {
 "range" : {
 "orderDate" : {
 "gte": "now-7d",
 "lte": "now"
 }
 }
 }
}

Searching - What is Relevant Chapter 3

[80]

The ability to use terms such as now makes this easier to comprehend.

Elasticsearch supports many date-math operations. As part of its date
support, it supports the special keyword now. It also supports adding or
subtracting time with different units of measurement. It supports single
character shorthands such as y (year), M (month), w (week), d (day), hor H
(hours), m (minutes), and s (seconds). For example, now - 1y would
mean a time of exactly 1 year ago until this moment. It is possible to round
time into different units. For example, to round the interval by day,
inclusive of both the start and end interval day, use "gte": "now -
7d/d" or "lte": "now/d". Specifying /d rounds time by days.

The range query runs in filter context by default. It doesn't calculate any scores and the
score is always set to 1 for all matching documents.

Exists query
Sometimes it is useful to obtain only records that have non-null and non-empty values in a
certain field. For example, getting all products that have description fields defined:

GET /amazon_products/_search
{
 "query": {
 "exists": {
 "field": "description"
 }
 }
}

The exists query turns the query into a filter; in other words, it runs in a filter context.
This is similar to the range query where the scores don't matter.

What is a Filter Context? When the query is just about filtering our
documents, that is, deciding whether to include the document in the result
or not, it is sufficient to skip the scoring process. Elasticsearch can skip the
scoring process for certain types of queries and assign a uniform score of 1
to each document, which passes the filter criteria. This not only speeds up
the query (as the scoring process is skipped) but also allows Elasticsearch
to cache the results of filters. Elasticsearch caches the results of filters by
maintaining arrays of zeros and ones.

Searching - What is Relevant Chapter 3

[81]

Term query
How would you find all of the products made by a particular manufacturer? We know that
the manufacturer field in our data is of the string type. The name of a manufacturer can
possibly contain whitespaces. What we are looking for here is an exact search. For example,
when we search for victory multimedia, we don't want any results that have a
manufacturer that contains just victory or just multimedia. You can use a term query to
achieve that.

When we defined the manufacturer field, we stored it as both text and keyword fields.
When doing an exact match, we have to use the field with the keyword type:

GET /amazon_products/_search
{
 "query": {
 "term": {
 "manufacturer.raw": "victory multimedia"
 }
 }
}

The term query is a low-level query in the sense that it doesn't perform any analysis on the
term. Also, it directly runs against the inverted index constructed from the mentioned term
field; in this case, against the manufacturer.raw field. By default, the term query runs in
the query context and hence calculates scores.

The response looks like the following (only the partial response is included):

{
 ...
 "hits": {
 "total" : {
 "value" : 3,
 "relation" : "eq"
 },
 "max_score": 5.965414,
 "hits": [
 {
 "_index": "amazon_products",
 "_type": "products",
 "_id": "AV5rBfPNNI_2eZGciIHC",
 "_score": 5.965414,
 ...

Searching - What is Relevant Chapter 3

[82]

As we can see, each document is scored by default. To run the term query in the filter
context without scoring, it needs to be wrapped inside a constant_score filter:

GET /amazon_products/_search
{
 "query": {
 "constant_score": {
 "filter": {
 "term": {
 "manufacturer.raw": "victory multimedia"
 }
 }
 }
 }
}

This query will now return results with a score of one for all matching documents. We will
look at the constant_score query later in the chapter. For now, you can imagine that it
turns a scoring query into a non-scoring query. In all queries where we don't need to know
how well a document fits the query, we can speed up the query by wrapping it inside
constant_score with a filter. There are also other types of compound queries that can
help in converting different types of queries and combining other queries; we will look at
them when we examine compound queries.

Searching from the full text
Full-text queries can work on unstructured text fields. These queries are aware of the
analysis process. Full-text queries apply the analyzer on the search terms before performing
the actual search operation. That determines the right analyzer to be applied by first
checking whether a field-level search_analyzer is defined, and then by checking whether
a field-level analyzer is defined. If analyzers at the field level are not defined, it tries the
analyzer defined at the index level.

Full-text queries are thus aware of the analysis process on the underlying field and apply
the right analysis process before forming actual search queries. These analysis-
aware queries are also called high-level queries. Let's understand how the high-level query
flow works.

Searching - What is Relevant Chapter 3

[83]

Here, we can see how one high-level query on the title field will be executed. Remember
from our index definition earlier that the title field is of the text type. At indexing time,
the value is analyzed using the analyzer for the field. In this case, it was a Standard
Analyzer, and hence the inverted index contains all of the broken down terms, such as
gods, heroes, rome, and so on, as depicted in the following figure:

Figure 3.3: High-level query flow

Searching - What is Relevant Chapter 3

[84]

At query time (see the right-hand half of the figure), we issue a match query, which is a
high-level query. We will cover match queries later in this section. The search terms passed
to a match query are analyzed using standard analyzer. The individual terms after
applying standard analyzer are then used to generate individual term-level queries.

The example here results in multiple term queries—one for each term after applying the
analyzer. The original search term was gods heroes, resulting in two terms, gods and
heroes, which are used as individual terms in their own term queries. The two term queries
are then combined using a bool query, which is a compound query. We will also look at
different compound queries in the next section.

We will cover the following full-text queries in the following sections:

Match query
Match phrase query
Multi match query

Match query
A match query is the default query for most full-text search requirements. It is one of the
high-level queries that is aware of the analyzer used for the underlying field. Let's get an
understanding of what this means under the hood.

For example, when you use the match query on a keyword field, it knows that the
underlying field is a keyword field, and hence, the search terms are not analyzed at the
time of querying:

GET /amazon_products/_search
{
 "query": {
 "match": {
 "manufacturer.raw": "victory multimedia"
 }
 }
}

Searching - What is Relevant Chapter 3

[85]

The match query, in this case, behaves just like a term query, which we understand from
the previous section. It does not analyze the search term's victory multimedia as the
separate terms victory and multimedia. This is because we are querying a keyword
field, manufacturer.raw. In fact, in this particular case, the match query gets converted
into a term query, such as the following:

GET /amazon_products/_search
{
 "query": {
 "term": {
 "manufacturer.raw": "victory multimedia"
 }
 }
}

The term query returns the same scores as the match query in this case, as they are both
executed against a keyword field.

Let's see what happens if you execute a match query against a text field, which is a real
use case for a full-text query:

GET /amazon_products/_search
{
 "query": {
 "match": {
 "manufacturer": "victory multimedia"
 }
 }
}

When we execute the match query, we expect it to do the following things:

Search for the terms victory and multimedia across all documents within the
manufacturer field.
Find the best matching documents sorted by score in descending order.
If both terms appear in the same order, right next to each other in a document,
the document should get a higher score than other documents that have both
terms but not in the same order, or not next to each other.
Include documents that have either victory or multimedia in the results, but
give them a lower score.

The match query with default parameters does all of these things to find the best matching
documents in order, according to their scores (high to low).

Searching - What is Relevant Chapter 3

[86]

By default, when only search terms are specified, this is how the match query behaves. It is
possible to specify additional options for the match query. Let's look at some typical
options that you would specify:

Operator
Minimum should match
Fuzziness

Operator
By default, if the search term specified results in multiple terms after applying the analyzer,
we need a way to combine the results from individual terms. As we saw in the preceding
example, the default behavior of the match query is to combine the results using the or
operator, that is, one of the terms has to be present in the document's field.

This can be changed to use the and operator using the following query:

GET /amazon_products/_search
{
 "query": {
 "match": {
 "manufacturer": {
 "query": "victory multimedia",
 "operator": "and"
 }
 }
 }
}

In this case, both the terms victory and multimedia should be present in the document's
manufacturer field.

Minimum should match
Instead of applying the and operator, we can keep the or operator and specify at least how
many terms should match in a given document for it to be included in the result. This
allows for finer-grained control:

GET /amazon_products/_search
{
 "query": {
 "match": {
 "manufacturer": {

Searching - What is Relevant Chapter 3

[87]

 "query": "victory multimedia",
 "minimum_should_match": 2
 }
 }
 }
}

The preceding query behaves in a similar way to the and operator, as there are two terms in
the query and we have specified that, as the minimum, two terms should match.

With minimum_should_match, we can specify something similar to at least three of the
terms matching in the document.

Fuzziness
With the fuzziness parameter, we can turn the match query into a fuzzy query. This
fuzziness is based on the Levenshtein edit distance, to turn one term into another by
making a number of edits to the original text. Edits can be insertions, deletions,
substitutions, or the transposition of characters in the original term. The fuzziness
parameter can take one of the following values: 0, 1, 2, or AUTO.

For example, the following query has a misspelled word, victor instead of victory. Since
we are using a fuzziness of 1, it will still be able to find all victory multimedia
records:

GET /amazon_products/_search
{
 "query": {
 "match": {
 "manufacturer": {
 "query": "victor multimedia",
 "fuzziness": 1
 }
 }
 }
}

If we wanted to still allow more room for errors to be correctable, the fuzziness should be
increased to 2. For example, a fuzziness of 2 will even match victer. Victory is two
edits away from victer:

GET /amazon_products/_search
{
 "query": {
 "match": {

Searching - What is Relevant Chapter 3

[88]

 "manufacturer": {
 "query": "victer multimedia",
 "fuzziness": 2
 }
 }
 }
}

The AUTO value means that the fuzziness numeric value of 0, 1, 2 is determined
automatically based on the length of the original term. With AUTO, terms with up to 2
characters have fuzziness = 0 (must match exactly), terms from 3 to 5 characters have
fuzziness = 1, and terms with more than five characters have fuzziness = 2.

Fuzziness comes at its own cost because Elasticsearch has to generate extra terms to match
against. To control the number of terms, it supports the following additional parameters:

max_expansions: The maximum number of terms after expanding.
prefix_length: A number, such as 0, 1, 2, and so on. The edits for introducing
fuzziness will not be done on the prefix characters as defined by the
prefix_length parameter.

Match phrase query
When you want to match a sequence of words, as opposed to separate terms in a document,
the match_phrase query can be useful.

For example, the following text is present as part of the description for one of the products:

real video saltware aquarium on your desktop!

What we want are all the products that have this exact sequence of words right next to each
other: real video saltware aquarium. We can use the match_phrase query to
achieve it. The match query will not work, as it doesn't consider the sequence of terms and
their proximity to each other. The match query can include all those documents that have
any of the terms, even when they are out of order within the document:

GET /amazon_products/_search
{
 "query": {
 "match_phrase": {
 "description": {
 "query": "real video saltware aquarium"
 }
 }

Searching - What is Relevant Chapter 3

[89]

 }
}

The response will look like the following:

{
 ...,
 "hits": {
 "total": 1,
 "max_score": 22.338196,
 "hits": [
 {
 "_index": "amazon_products",
 "_type": "products",
 "_id": "AV5rBfasNI_2eZGciIbg",
 "_score": 22.338196,
 "_source": {
 "price": "19.95",
 "description": "real video saltware aquarium on your
desktop!product information see real fish swimming on your desktop in full-
motion video! you'll find exotic saltwater fish such as sharks angelfish
and more! enjoy the beauty and serenity of a real aquarium at yourdeskt",
 "id": "b00004t2un",
 "title": "sales skills 2.0 ages 10+",
 "manufacturer": "victory multimedia",
 "tags": []
 }
 }
]
 }
}

The match_phrase query also supports the slop parameter, which allows you to specify
an integer: 0, 1, 2, 3, and so on. slop relaxes the number of words/terms that can be skipped
at the time of querying.

For example, a slop value of 1 would allow one missing word in the search text but would
still match the document:

GET /amazon_products/_search
{
 "query": {
 "match_phrase": {
 "description": {
 "query": "real video aquarium",
 "slop": 1
 }
 }

Searching - What is Relevant Chapter 3

[90]

 }
}

A slop value of 1 would allow the user to search with real video aquarium or real
saltware aquarium and still match the document that contains the exact phrase real
video saltware aquarium. The default value of slop is zero.

Multi match query
The multi_match query is an extension of the match query. The multi_match query
allows us to run the match query across multiple fields, and also allows many options to
calculate the overall score of the documents.

The multi_match query can be used with different options. We will look at the following
options:

Querying multiple fields with defaults
Boosting one or more fields
With types of multi_match queries

Let's look at each option, one by one.

Querying multiple fields with defaults
We want to provide a product search functionality in our web application. When the end
user searches for some terms, we want to query both the title and description fields.
This can be done using the multi_match query.

The following query will find all of the documents that have the terms monitor or
aquarium in the title or the description fields:

GET /amazon_products/_search
{
 "query": {
 "multi_match": {
 "query": "monitor aquarium",
 "fields": ["title", "description"]
 }
 }
}

Searching - What is Relevant Chapter 3

[91]

This query gives equal importance to both fields. Let's look at how to boost one or more
fields.

Boosting one or more fields
In an e-commerce type of web application, the user intends to search for an item, and they
might search for some keywords. What if we want the title field to be more important
than the description? If one or more of the search terms appears in the title, it is definitely
a more relevant product than the ones that have those values only in the description. It is
possible to boost the score of the document if a match is found in a particular field.

Let's make the title field three times more important than the description field. This
can be done by using the following syntax:

GET /amazon_products/_search
{
 "query": {
 "multi_match": {
 "query": "monitor aquarium",
 "fields": ["title^3", "description"]
 }
 }
}

The multi_match query offers more control regarding how to combine the scores from
different fields. Let's look at the options.

With types of multi match queries
In this section, we have learned about full-text queries, which are also known as high-level
queries. These queries find the best matching documents according to the score. High-level
queries internally make use of some term-level queries. In the next section, we will look at
how to write compound queries.

Writing compound queries
This class of queries can be used to combine one or more queries to come up with a more
complex query. Some compound queries convert scoring queries into non-scoring queries
and combine multiple scoring and non-scoring queries.

Searching - What is Relevant Chapter 3

[92]

We will look at the following compound queries:

Constant score query
Bool query

Constant score query
Elasticsearch supports querying both structured data and full text. While full-text queries
need scoring mechanisms to find the best matching documents, structured searches don't
need scoring. The constant score query allows us to convert a scoring query that normally
runs in a query context to a non-scoring filter context. The constant score query is a very
important tool in your toolbox.

For example, a term query is normally run in a query context. This means that when
Elasticsearch executes a term query, it not only filters documents but also scores all of
them:

GET /amazon_products/_search
{
 "query": {
 "term": {
 "manufacturer.raw": "victory multimedia"
 }
 }
}

Notice the text in bold. This part is the actual term query. By default, the query JSON
element that contains the bold text defines a query context.

The response contains the score for every document. Please see the following partial
response:

{
 ...,
 "hits": {
 "total": 3,
 "max_score": 5.966147,
 "hits": [
 {
 "_index": "amazon_products",
 "_type": "products",
 "_id": "AV5rBfasNI_2eZGciIbg",
 "_score": 5.966147,
 "_source": {
 "price": "19.95",

Searching - What is Relevant Chapter 3

[93]

 ...
}

Here, we just intended to filter the documents, so there was no need to calculate the
relevance score of each document.

The original query can be converted to run in a filter context using the following
constant_score query:

GET /amazon_products/_search
{
 "query": {
 "constant_score": {
 "filter": {
 "term": {
 "manufacturer.raw": "victory multimedia"
 }
 }
 }
 }
}

As you can see, we have wrapped the original highlighted term element and its child. It
assigns a neutral score of 1 to each document by default. Please note the partial response in
the following code:

{
 ...,
 "hits": {
 "total": 3,
 "max_score": 1,
 "hits": [
 {
 "_index": "amazon_products",
 "_type": "products",
 "_id": "AV5rBfasNI_2eZGciIbg",
 "_score": 1,
 "_source": {
 "price": "19.95",
 "description": ...
 }
 ...
}

Searching - What is Relevant Chapter 3

[94]

It is possible to specify a boost parameter, which will assign that score instead of the
neutral score of 1:

GET /amazon_products/_search
{
 "query": {
 "constant_score": {
 "filter": {
 "term": {
 "manufacturer.raw": "victory multimedia"
 }
 },
 "boost": 1.2
 }
 }
}

What is the benefit of boosting the score of every document in this filter to 1.2? Well, there
is no benefit if this query is used in an isolated way. When this query is combined with
other queries, using a query such as a bool query, the boosted score becomes important.
All the documents that pass this filter will have higher scores compared to other documents
that are combined from other queries.

Let's look at the bool query next.

Bool query
The bool query in Elasticsearch is your Swiss Army knife. It can help you write many
types of complex queries. If you are come from an SQL background, you already know
how to filter based on multiple AND and OR conditions in the WHERE clause. The bool query
allows you to combine multiple scoring and non-scoring queries.

Let's first see how to implement simple AND and OR conjunctions.

A bool query has the following sections:

GET /amazon_products/_search
{
 "query": {
 "bool": {
 "must": [...], scoring queries executed in query context
 "should": [...], scoring queries executed in query context
 "filter": {}, non-scoring queries executed in filter context
 "must_not": [...] non-scoring queries executed in filter context
 }

Searching - What is Relevant Chapter 3

[95]

 }
}

The queries included in must and should clauses are executed in a query context unless
the whole bool query is included inside a filter context.

The filter and must_not queries are always executed in the filter context. They will
always return a score of zero and only contribute to the filtering of documents.

Let's look at how to form a non-scoring query that just performs a structured search. We
will gain an understanding of how to formulate the following types of structured search
queries using the bool query:

Combining OR conditions
Combining AND and OR conditions
Adding NOT conditions

Combining OR conditions
To find all of the products in the price range 10 to 13, OR manufactured by valuesoft:

GET /amazon_products/_search
{
 "query": {
 "constant_score": {
 "filter": {
 "bool": {
 "should": [
 {
 "range": {
 "price": {
 "gte": 10,
 "lte": 13
 }
 }
 },
 {
 "term": {
 "manufacturer.raw": {
 "value": "valuesoft"
 }
 }
 }
]
 }

Searching - What is Relevant Chapter 3

[96]

 }
 }
 }
}

Since we want to OR the conditions, we have placed them under should. Since we are not
interested in the scores, we have wrapped our bool query inside a constant_score
query.

Combining AND and OR conditions
Find all products in the price range 10 to 13, AND manufactured by valuesoft or
pinnacle:

GET /amazon_products/_search
{
 "query": {
 "constant_score": {
 "filter": {
 "bool": {
 "must": [
 {
 "range": {
 "price": {
 "gte": 10,
 "lte": 30
 }
 }
 }
],
 "should": [
 {
 "term": {
 "manufacturer.raw": {
 "value": "valuesoft"
 }
 }
 },
 {
 "term": {
 "manufacturer.raw": {
 "value": "pinnacle"
 }
 }
 }
]

Searching - What is Relevant Chapter 3

[97]

 }
 }
 }
 }
}

Please note that all conditions that need to be ORed together are placed inside the should
element. The conditions that need to be ANDed together, can be placed inside the must
element, although it is also possible to put all the conditions to be ANDed in the filter
element.

Adding NOT conditions
It is possible to add NOT conditions, that is, specifically filtering out certain clauses using
the must_not clause in the bool filter. For example, find all of the products in the price
range 10 to 20, but they must not be manufactured by encore. The following query will do
just that:

GET /amazon_products/_search
{
 "query": {
 "constant_score": {
 "filter": {
 "bool": {
 "must": [
 {
 "range": {
 "price": {
 "gte": 10,
 "lte": 20
 }
 }
 }
],
 "must_not": [
 {
 "term": {
 "manufacturer.raw": "encore"
 }
 }
]
 }
 }
 }
 }
}

Searching - What is Relevant Chapter 3

[98]

The bool query with the must_not element is useful for negate any query. To negate or
apply a NOT filter to the query, it should be wrapped inside the bool with must_not, as
follows:

GET /amazon_products/_search
{
 "query": {
 "bool": {
 "must_not": {
 original query to be negated ...
 }
 }
 }
}

Notice that we do not need to wrap the query in a constant_score query when we are
only using must_not to negate a query. The must_not query is always executed in a filter
context.

This concludes our understanding of the different types of compound queries. There are
more compound queries supported by Elasticsearch. They include the following:

Dis Max query
Function Score query
Boosting query
Indices query

Besides the full-text search capabilities of Elasticsearch, we can also model relationships
within Elasticsearch. Due to the flat structure of documents, we can easily model a one-to-
one type of relationship within a document. Let's see how to model a one-to-many type of
relationship in Elasticsearch in the next section.

Modeling relationships
We saw in the previous sections how to model and store products and run various queries
on products. The product data had partly structured data and partly textual data. What if
we also had detailed features of the products available to us? We may have many different
types of products and each product may have completely different types of detailed
features. For example, for products that fall into the Laptops category, we would have
features such as screen size, processor type, and processor clock speed.

Searching - What is Relevant Chapter 3

[99]

At the same time, products in the Automobile GPS Systems category may have features
such as screen size, whether GPS can speak street names, or whether it has free lifetime
map updates available.

Because we may have tens of thousands of products in hundreds of product categories, we
may have tens of thousands of features. One solution might be to create one field for each
feature. As you may remember from our earlier analogy between the field and database
column, the resulting data would look very sparse if we tried to show it in tabular format:

Title Category Screen
Size

Processor
Type

Clock
Speed

Speaks
Street
Names

Map
Updates

ThinkPad X1 Laptops 14 inches core i5 2.3 GHz
Acer Predator Laptops 15.6 inches core i7 2.6 GHz

Trucker 600 GPS Navigation
Systems 6 inches Yes Yes

RV Tablet 70 GPS Navigation
Systems 7 inches Yes Yes

As you can see, products in the Laptops category have a different set of columns populated
(those columns are the features related to that category) and products in the GPS
Navigation Systems category have a different set of columns populated. If we were to
model all products of all categories like this, we may end up with tens of thousands of
fields (imagine tens of thousands of columns to make it a very wide table). If the data was
modeled in this way, it would be hard to generate certain types of queries, as we have
many different fields.

Instead, we could model this relationship between a product and its features as a one-to-
many relationship as we would in a relational database. Let's see how we would have
modeled it in a relational database.

The product table would be modeled as follows:

ProductID Title Category Description Other Product
Columns...

c0001 ThinkPad X1 Laptops
c0002 Acer Predator Laptops
c0003 Trucker 600 GPS Navigation Systems
c0004 RV Tablet 70 GPS Navigation Systems

Searching - What is Relevant Chapter 3

[100]

The features would be modeled as a separate table, where the ProductID and Feature may
be a composite primary key:

ProductID Feature FeatureValue
c001 Screen Size 14 inches
c001 Processor Type core i5
c001 Clock Speed 2.3 GHz
c002 Screen Size 15.6 inches
...

When we model a similar type of relationship in Elasticsearch, we can use the join
datatype (https:/ /www. elastic. co/ guide/ en/elasticsearch/ reference/ 7. x/parent-
join.html) to model relationships. To import the data, follow the steps mentioned in
chapter-03/products_with_features_data.

Here, we want to establish a relationship between products and features. When using
the join datatype, we still need to index everything into a single Elasticsearch index within
a single Elasticsearch type. Remember, we can't have more than one type within a single
index. The join datatype mapping that establishes the relationship is defined as follows:

PUT /amazon_products_with_features
{
 ...
 "mappings": {
 "doc": {
 "properties": {
 ...
 "product_or_feature": {
 "type": "join",
 "relations": {
 "product": "feature"
 }
 },
 ...
 }
 }
 }
}

The highlighted product_or_feature field is of type join and it defines the relationship
between product and feature. The product is on the left-hand side, which is analogous to
conveying that the product is the parent of the feature(s).

https://www.elastic.co/guide/en/elasticsearch/reference/7.x/parent-join.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/parent-join.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/parent-join.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/parent-join.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/parent-join.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/parent-join.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/parent-join.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/parent-join.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/parent-join.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/parent-join.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/parent-join.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/parent-join.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/parent-join.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/parent-join.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/parent-join.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/parent-join.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/parent-join.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/parent-join.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/parent-join.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/parent-join.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/parent-join.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/parent-join.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/parent-join.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/parent-join.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/parent-join.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/parent-join.html
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-03/products_with_features_data

Searching - What is Relevant Chapter 3

[101]

When indexing product records, we use the following syntax:

PUT /amazon_products_with_features/doc/c0001
{
 "description": "The Lenovo ThinkPad X1 Carbon 20K4002UUS has a 14 inch
IPS Full HD LED display which makes each image and video appear sharp and
crisp. The Thinkpad has an Intel Core i5 6200U 2.3 GHz Dual-core processor
with Intel HD 520 graphics and 8 GB LPDDR3 SDRAM that gives lag free
experience. It has a 180 GB SSD which makes all essential data and
entertainment files handy. It supports 802.11ac and Bluetooth 4.1 and runs
on Windows 7 Pro 64-bit downgrade from Windows 10 Pro 64-bit operating
system. The ThinkPad X1 Carbon has two USB 3.1 Gen 1 ports which enables 10
times faster file transfer and has Gigabit ethernet for network
communication. This notebook comes with 3 cell Lithium ion battery which
gives upto 15.5 hours of battery life.",
 "price": "699.99",
 "id": "c0001",
 "title": "Lenovo ThinkPad X1 Carbon 20K4002UUS",
 "product_or_feature": "product",
 "manufacturer": "Lenovo"
}

The value of product_or_feature, which is set to product suggests that this document
is referring to a product.

A feature record is indexed as follows:

PUT amazon_products_with_features/doc/c0001_screen_size?routing=c0001
{
 "product_or_feature": {
 "name": "feature",
 "parent": "c0001"
 },
 "feature_key": "screen_size",
 "feature_value": "14 inches",
 "feature": "Screen Size"
}

Notice that, while indexing a feature, we need to set which is the parent of the document
within product_or_feature. We also need to set a routing parameter that is equal to the
document ID of the parent so that the child document gets indexed in the same shard as the
parent. Please follow the instructions at chapter-03/products_with_features_data to load
some sample data, that has products and features.

Once we have some products and features populated, we can query from products while
joining the data from features. For example, you may want to get all of the products that
have a certain feature.

https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-03/products_with_features_data

Searching - What is Relevant Chapter 3

[102]

has_child query
If you want to get products based on some condition on the features, you can use
has_child queries.

The outline of a has_child query is as follows:

GET <index>/_search
{
 "query": {
 "has_child": {
 "type": <the child type against which to run the following query>,
 "query": {
 <any elasticsearch query like term, bool, query_string to be run
against the child type>
 }
 }
 }
}

As you can see in the preceding code, we mainly need to specify only two things:

The type of the child against which to execute the query1.
The actual query to be run against the child to get their parents2.

Let's learn about this through an example. We want to get all of the products where
processor_series is Core i7 from the example dataset that we loaded:

GET amazon_products_with_features/_search
{
 "query": {
 "has_child": {
 "type": "feature", 1
 "query": {
 "bool": { 2
 "must": [
 {
 "term": { 3
 "feature_key": {
 "value": "processor_series"
 }
 }
 },
 {
 "term": { 4
 "feature_value": {
 "value": "Core i7"

Searching - What is Relevant Chapter 3

[103]

 }
 }
 }
]
 }
 }
 }
 }
}

Please note the following points about the query:

The has_child query is used to query based on the child type feature.
The actual query to be used on the child type is specified under the query
element. We can use any query supported by Elasticsearch under this query
element. Whichever query is used will be run against the child type that we
specified. We are using a bool query because we want to filter by all features
where—feature_key = processor_series AND feature_value = Core i7.
We have used a bool query, as explained in the previous point. The first of the
conditions is included as a term query here under the must clause. This term
query checks that we filter for feature_key = processor_series.
This is the second condition under the must clause, in which the term query
checks that we filter for feature_value = Core i5.

The result of this has_child query is that we get back all the products that satisfy the
query mentioned under the has_child element executed against all the features. The
response should look like the following:

{
 "took" : 1,
 "timed_out" : false,
 "_shards" : {
 "total" : 1,
 "successful" : 1,
 "skipped" : 0,
 "failed" : 0
 },
 "hits" : {
 "total" : {
 "value" : 1,
 "relation" : "eq"
 },
 "max_score" : 1.0,
 "hits" : [
 {

Searching - What is Relevant Chapter 3

[104]

 "_index" : "amazon_products_with_features",
 "_type" : "doc",
 "_id" : "c0002",
 "_score" : 1.0,
 "_source" : {
 "description" : "The Acer G9-593-77WF Predator 15 Notebook comes
with a 15.6 inch IPS display that makes each image and video appear sharp
and crisp. The laptop has Intel Core i7-6700HQ 2.60 GHz processor with
NVIDIA Geforce GTX 1070 graphics and 16 GB DDR4 SDRAM that gives lag free
experience. The laptop comes with 1 TB HDD along with 256 GB SSD which
makes all essential data and entertainment files handy.",
 "price" : "1899.99",
 "id" : "c0002",
 "title" : "Acer Predator 15 G9-593-77WF Notebook",
 "product_or_feature" : "product",
 "manufacturer" : "Acer"
 }
 }
]
 }
}

Next, let's look at another type of query that can be utilized when we have used the join
type in Elasticsearch.

has_parent query
In the previous type of query, has_child, we wanted to get records of the parent_type
query based on a query that we executed against the child type. The has_parent query is
useful for exactly the opposite purpose, that is, when we want to get all child type of
records based on a query executed against the parent_type. Let's learn about this through
an example.

We want to get all the features of a specific product that has the product id = c0003. We can
use a has_parent query as follows:

GET amazon_products_with_features/_search
{
 "query": {
 "has_parent": {
 "parent_type": "product", 1
 "query": { 2
 "ids": {
 "values": ["c0001"]
 }

Searching - What is Relevant Chapter 3

[105]

 }
 }
 }
}

Please note the following points, marked with the numbers in the query:

Under the has_parent query, we need to specify the parent_type against1.
which the query needs to be executed to get the children (features).
The query element can be any Elasticsearch query that will be run against the2.
parent_type. Here we want features of a very specific product and we already
know the Elasticsearch ID field (_id) of the product. This is why we use the ids
query with just one value in the array: c0001.

The result is all the features of that product:

{
 "took" : 0,
 "timed_out" : false,
 "_shards" : {
 "total" : 1,
 "successful" : 1,
 "skipped" : 0,
 "failed" : 0
 },
 "hits" : {
 "total" : {
 "value" : 3,
 "relation" : "eq"
 },
 "max_score" : 1.0,
 "hits" : [
 {
 "_index" : "amazon_products_with_features",
 "_type" : "doc",
 "_id" : "c0001_screen_size",
 "_score" : 1.0,
 "_routing" : "c0001",
 "_source" : {
 "product_or_feature" : {
 "name" : "feature",
 "parent" : "c0001"
 },
 "feature_key" : "screen_size",
 "parent_id" : "c0001",
 "feature_value" : "14 inches",
 "feature" : "Screen Size"

Searching - What is Relevant Chapter 3

[106]

 }
 },
 {
 "_index" : "amazon_products_with_features",
 "_type" : "doc",
 "_id" : "c0001_processor_series",
 "_score" : 1.0,
 "_routing" : "c0001",
 "_source" : {
 "product_or_feature" : {
 "name" : "feature",
 "parent" : "c0001"
 },
 "feature_key" : "processor_series",
 "parent_id" : "c0001",
 "feature_value" : "Core i5",
 "feature" : "Processor Series"
 }
 },
 {
 "_index" : "amazon_products_with_features",
 "_type" : "doc",
 "_id" : "c0001_clock_speed",
 "_score" : 1.0,
 "_routing" : "c0001",
 "_source" : {
 "product_or_feature" : {
 "name" : "feature",
 "parent" : "c0001"
 },
 "feature_key" : "clock_speed",
 "parent_id" : "c0001",
 "feature_value" : "2.30 GHz",
 "feature" : "Clock Speed"
 }
 }
]
 }
}

parent_id query
In the has_parent query example, we already knew the ID of the parent document. There
is actually a handier query to get all children documents if we know the ID of the parent
document.

Searching - What is Relevant Chapter 3

[107]

You guessed correctly; it is the parent_id query, where we obtain all children using the
parent's ID:

GET /amazon_products_with_features/_search
{
 "query": {
 "parent_id": {
 "type": "feature",
 "id": "c0001"
 }
 }
}

The response of this query will be exactly the same as the has_parent query we wrote
earlier. The key difference between the has_parent query and the parent_id query is
that the former is used to get all children based on an arbitrary Elasticsearch query
executed against the parent_type query, whereas the latter (parent_id query) is useful if
you know the ID.

Covering all types of queries is beyond the scope of this book. Having learned different
types of full-text queries, compound queries, and relationship queries in depth, you are
now well equipped to try other queries that aren't covered here. Please refer to the
Elasticsearch reference documentation to learn about their usage.

Summary
In this chapter, we took a deep dive into the search capabilities of Elasticsearch. We looked
at the role of analyzers and the anatomy of an analyzer, saw how to use some of the built-in
analyzers that come with Elasticsearch, and saw how to create custom analyzers. Along
with a solid background on analyzers, we learned about two main types of queries—term-
level queries and full-text queries. We also learned how to compose different queries in
more complex queries using one of the compound queries.

This chapter provided you with sound knowledge to get a foothold on querying
Elasticsearch data. There are many more types of queries supported by Elasticsearch, but
we have covered the most essential ones. This should help you get started and enable you
to understand other types of queries from the Elasticsearch reference documentation.

In Chapter 4, Analytics with Elasticsearch, we will learn about the analytics capabilities of
Elasticsearch. With that chapter under your belt, we will conclude by learning the core
components of the Elastic Stack and Elasticsearch, and you will be well-equipped to
understand the other components of the Elastic Stack.

4
Analytics with Elasticsearch

On our journey of learning about Elastic Stack 7.0, we have gained a strong understanding
of Elasticsearch. We learned about the strong foundations of Elasticsearch in the previous
two chapters and gained an in-depth understanding of its search use cases.

The underlying technology, Apache Lucene, was originally developed for text search use
cases. Due to innovations in Apache Lucene and additional innovations in Elasticsearch, it
has also emerged as a very powerful analytics engine. In this chapter, we will look at how
Elasticsearch can serve as our analytics engine. We will cover the following topics:

The basics of aggregations
Preparing data for analysis
Metric aggregations
Bucket aggregations
Pipeline aggregations

We will learn about all of this by using a real-world dataset. Let's start by looking at the
basics of aggregations.

The basics of aggregations
In contrast to searching, analytics deals with the bigger picture. Searching addresses the
need for zooming in to a few records, whereas analytics address the need for zooming out
and slicing the data in different ways.

Analytics with Elasticsearch Chapter 4

[109]

While learning about searching, we used the following API:

POST /<index_name>/_search
{
 "query":
 {
 ... type of query ...
 }
}

All aggregation queries take a common form. Let's go over the structure.

The aggregations, or aggs, element allows us to aggregate data. All aggregation requests
take the following form:

POST /<index_name>/_search
{
 "aggs": {
 ... type of aggregation ...
 },
 "query": { ... type of query ... }, //optional query part
 "size": 0 //size typically set to
0
}

The aggs element should contain the actual aggregation query. The body depends on the
type of aggregation that we want to do. We will cover these aggregations later in this
chapter.

The optional query element defines the context of the aggregation. The aggregation
considers all of the documents in the given index and type if the query element is not
specified (you can imagine it as equivalent to the match_all query when no query is
present). If we want to limit the context of the aggregation, it can be done by specifying the
query. For example, we may not want to consider all the data for aggregation, but only
certain documents that satisfy a particular condition. This query filters the documents to be
fed to the actual aggs query.

The size element specifies how many of the search hits should be returned in the response.
The default value of size is 10. If size is not specified, the response will contain 10 hits
from the context under the query. Typically, if we are only interested in getting aggregation
results, we should set the size element to 0, to avoid getting any results, along with the
aggregation result.

Analytics with Elasticsearch Chapter 4

[110]

Broadly, there are four types of aggregations that Elasticsearch supports:

Bucket aggregations
Metric aggregations
Matrix aggregations
Pipeline aggregations

Bucket aggregations
Bucket aggregations segment the data in question (defined by the query context) into
various buckets that are identified by the buckets key. Bucket aggregation evaluates each
document in the context by deciding which bucket it falls into. At the end, bucket
aggregation has a set of distinct buckets with their respective bucket keys and documents
that fall into those buckets.

For people who are coming from an SQL background, a query that has GROUP BY, such as
the following query, does the following with bucket aggregations:

SELECT column1, count(*) FROM table1 GROUP BY column1;

This query divides the table by the different values of column 1 and returns a count of
documents within each value of column 1. This is an example of bucket aggregation. There
are many different types of bucket aggregation supported by Elasticsearch, all of which we
will go through in this chapter.

Bucket aggregations can be present on the top or outermost level in an aggregation query.
Bucket aggregations can also be nested inside other bucket aggregations.

Metric aggregations
Metric aggregations work on numerical fields. They compute the aggregate value of a
numerical field in the given context. For example, let's suppose that we have a table
containing the results of a student's examination. Each record contains marks obtained by
the student. A metric aggregation can compute different aggregates of that numerical score
column. Some examples are sum, average, minimum, maximum, and so on.

In SQL terms, the following query gives a rough analogy of what a metric aggregation may
do:

SELECT avg(score) FROM results;

Analytics with Elasticsearch Chapter 4

[111]

This query computes the average score in the given context. Here, the context is the whole
table, that is, all students.

Metric aggregation can be placed on the top or outermost level in the aggregations query.
Metric aggregations can also be nested inside bucket aggregations. Metric aggregations
cannot nest other types of aggregations inside of them.

Matrix aggregations
Matrix aggregations were introduced with Elasticsearch version 5.0. Matrix aggregations
work on multiple fields and compute matrices across all the documents within the query
context.

Matrix aggregations can be nested inside bucket aggregations, but bucket aggregations
cannot be nested inside of matrix aggregations. This is still a relatively new feature.
Coverage of matrix aggregations is not within the scope of this book.

Pipeline aggregations
Pipeline aggregations are higher order aggregations that can aggregate the output of other
aggregations. These are useful for computing something, such as derivatives. We will look
at some pipeline aggregations later in this chapter.

This was an overview about the different types of aggregations supported by Elasticsearch
at a high level. Pipeline aggregations and matrix aggregations are relatively new and have
fewer use cases compared to metric and bucket aggregations. We will look at metric and
bucket aggregations in greater depth later in this chapter.

In the next section, we will load and prepare data so that we can look at these aggregations
in more detail.

Preparing data for analysis
We will consider an example of network traffic data generated from Wi-Fi routers.
Throughout this chapter, we will analyze the data from this example. It is important to
understand what the records in the underlying system look like, and what they represent.

Analytics with Elasticsearch Chapter 4

[112]

We will cover the following topics while we prepare and load the data into the local
Elasticsearch instance:

Understanding the structure of the data
Loading the data using Logstash

Understanding the structure of the data
The following diagram depicts the design of the system, in order to help you gain a better
understanding of the problem and the structure of the data that's collected:

Fig 4.1: Network traffic and bandwidth usage data for Wi-Fi traffic and storage in Elasticsearch

Analytics with Elasticsearch Chapter 4

[113]

The data is collected by the system with the following objectives:

On the left half of the diagram, there are multiple squares, representing one
customer's premises as well as the Wi-Fi routers deployed on that site, along with
all of the devices connected to those Wi-Fi routers. The connected devices include
laptops, mobile devices, desktop computers, and so on. Each device has a unique
MAC address and a user associated with it.
The right half of the diagram represents the centralized system, which collects
and stores data from multiple customers into a centralized Elasticsearch cluster.
Our focus will be on how to design this centralized Elasticsearch cluster and the
index to gain meaningful insight.
The routers at each customer site collect additional metrics for each connected
device, such as data downloaded, data uploaded, and URLs or domain names
accessed by the client in a specific time interval. The Wi-Fi routers collect such
metrics and send them to the centralized API server periodically, for long-term
storage and analysis.
When the data is sent by the Wi-Fi routers, it contains fewer fields: mainly the
metrics captured by the Wi-Fi routers and the MAC address of the end device for
which those metrics are collected. The API server looks up and enriches the
records with more information, which is useful for analytics, before storing it in
Elasticsearch. The MAC address is looked up to find out the username of the user
that the device is assigned to. It also looks up additional dimensions, such as the
department of the user.

What are metrics and dimensions? Metric is a common term used in the
analytics world to represent a numerical measure. A common example of
a metric is the amount of data downloaded or uploaded in a given time
period. The term dimension is usually used to refer to extra/auxiliary
information, usually of the string datatype. In this example, we are using a
MAC address to look up auxiliary information related to that MAC
address, namely the username of the user that the device is assigned to in
the system. The name of the department the user belongs to is another
example of a dimension.

Finally, the enriched records are stored in Elasticsearch in a flat data structure. One record
looks as follows:

"_source": {
 "customer": "Google" // Customer to which the WiFi router and
device belongs to
 "accessPointId": "AP-59484", // Identifier of the WiFi router or Access
Point

Analytics with Elasticsearch Chapter 4

[114]

 "time": 1506148631061, // Time of the record in milliseconds since
Epoch Jan 1, 1970
 "mac": "c6:ec:7d:c6:3d:8d", // MAC address of the client device

 "username": "Pedro Harrison", // Name of the user to whom the device is
assigned
 "department": "Operations", // Department of the user to which the
device belongs to

 "application": "CNBC", // Application name or domain name for
which traffic is reported
 "category": "News", // Category of the application

 "networkId": "Internal", // SSID of the network
 "band": "5 GHz", // Band 5 GHz or 2.4 GHz

 "location": "23.102789,72.595381", // latitude & longitude separated by
comma

 "uploadTotal": 1340, // Bytes uploaded since the last report
 "downloadTotal": 2129, // Bytes downloaded since the last report
 "usage": 3469, // Total bytes downloaded and uploaded in
current period

 "uploadCurrent": 22.33, // Upload speed in bytes/sec in current period
 "downloadCurrent": 35.48, // Download speed in bytes/sec in current
period
 "bandwidth": 57.82, // Total speed in bytes/sec (Upload speed +
download speed)

 "signalStrength": -25, // Signal strength between WiFi router and
device
 ...
}

One record contains various metrics for the given end client device at the given time.

Please note that all the data included in this example is synthetic.
Although the names of customers, users, and MAC addresses look
realistic, the data was generated using a simulator. The data doesn't
belong to any real customers.

Now that we know what our data represents and what each record represents, let's load the
data in our local instance.

Analytics with Elasticsearch Chapter 4

[115]

Loading the data using Logstash
To import the data, please follow the instructions in this book's accompanying source code
repository on GitHub, at https:/ / github. com/ pranav- shukla/ learningelasticstack.
This can be found in the v7.0 branch.

Please clone or download the repository from GitHub. The instructions for importing data
are at the following path within the project: chapter-04/README.md. Once you have cloned
the repository, check out the v7.0 branch.

Once you have imported the data, verify that your data has been imported with the
following query:

GET /bigginsight/_search
{
 "query": {
 "match_all": {}
 },
 "size": 1
}

You should see a response similar to the following:

{
 ...
 "hits":
 {
 "total" : {
 "value" : 10000,
 "relation" : "gte"
 },
 "max_score": 1,
 "hits": [
 {
 "_index": "bigginsight",
 "_type": "_doc",
 "_id": "AV7Sy4FofN33RKOLlVH0",
 "_score": 1,
 "_source": {
 "inactiveMs": 1316,
 "bandwidth": 51.03333333333333,
 "signalStrength": -58,
 "accessPointId": "AP-1D7F0",
 "usage": 3062,
 "downloadCurrent": 39.93333333333333,
 "uploadCurrent": 11.1,
 "mac": "d2:a1:74:28:c0:5a",

https://github.com/pranav-shukla/learningelasticstack/tree/v7.0
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0
https://github.com/pranav-shukla/learningelasticstack/blob/master/chapter-04/README.md

Analytics with Elasticsearch Chapter 4

[116]

 "tags": [],
 "@timestamp": "2017-09-30T12:38:25.867Z",
 "application": "Dropbox",
 "downloadTotal": 2396,
 "@version": "1",
 "networkId": "Guest",
 "location": "23.102900,72.595611",
 "time": 1506164775655,
 "band": "2.4 GHz",
 "department": "HR",
 "category": "File Sharing",
 "uploadTotal": 666,
 "username": "Cheryl Stokes",
 "customer": "Microsoft"
 }
 }
]
 }
}

Now that we have the data that we want, we can get started and learn about different types
of aggregations from the data that we just loaded. You can find all the queries that are used
in this chapter in the accompanying source code in the GitHub repository, at the location
chapter-04/queries.txt. The queries can be run directly in Kibana Dev Tools, as we have
seen previously in this book.

One thing to note here is the hits.total in the response. It has values of 10,000 and
"relation"="gte". There are actually 242,835 documents in the index, all of which we
have created. Before version 7.0 was released, hits.total always used to represent the
actual count of documents that matched the query criteria. With Elasticsearch version 7.0,
hits.total is not calculated if the hits are greater than 10,000. This is to avoid the
unnecessary overhead of calculating the exact matching documents for the given query. We
can force the calculation of exact hits by passing track_total_hits=true as a request
parameter.

Metric aggregations
Metric aggregations work with numerical data, computing one or more aggregate metrics
within the given context. The context can be a query, filter, or no query, to include the
whole index/type. Metric aggregations can also be nested inside other bucket aggregations.
In this case, these metrics will be computed for each bucket in the bucket aggregations.

https://github.com/pranav-shukla/learningelasticstack/blob/master/chapter-04/queries.txt

Analytics with Elasticsearch Chapter 4

[117]

We will start with simple metric aggregations, without nesting them inside bucket
aggregations. When we learn about bucket aggregations later in this chapter, we will also
learn how to use metric aggregations inside bucket aggregations.

In this section, we will go over the following metric aggregations:

Sum, average, min, and max aggregations
Stats and extended stats aggregations
Cardinality aggregations

Let's learn about them, one by one.

Sum, average, min, and max aggregations
Finding the sum of a field, the minimum value for a field, the maximum value for a field, or
an average, are very common operations. For people who are familiar with SQL, the query
to find the sum is as follows:

SELECT sum(downloadTotal) FROM usageReport;

The preceding query will calculate the sum of the downloadTotal field across all the
records in the table. This requires going through all the records of the table or all the
records in the given context and adding the values of the given fields.

In Elasticsearch, a similar query can be written using the sum aggregation. Let's look at the
sum aggregation first.

Sum aggregation
Here is how to write a simple sum aggregation:

GET bigginsight/_search?track_total_hits=true
{
 "aggregations": { 1
 "download_sum": { 2
 "sum": { 3
 "field": "downloadTotal" 4
 }
 }
 },
 "size": 0 5
}

Analytics with Elasticsearch Chapter 4

[118]

The key parts from the preceding code are explained in the following points:

The aggs or aggregations element at the top level should wrap any
aggregation.
Give a name to the aggregation; here, we are doing the sum aggregation on the
downloadTotal field, and hence, the name we chose was download_sum. You
can name it anything. This field will be useful while looking up this particular
aggregation's result in the response.
We are doing a sum aggregation; hence, we have the sum element.
We want to do terms aggregation on the downloadTotal field.
Specify size = 0 to prevent raw search results from being returned. We just
want aggregation results, and not the search results, in this case. Since we haven't
specified any top-level query elements, it matches all documents. We do not
want any raw documents (or search hits) in the result.

The response should look like the following:

{
 "took": 92,
 ...
 "hits": {
 "total" : {
 "value" : 242836, 1
 "relation" : "eq"
 }, 1
 "max_score": 0,
 "hits": []
 },
 "aggregations": { 2
 "download_sum": { 3
 "value": 2197438700 4
 }
 }
}

Let's go over the key aspects of the response. The key parts are numbered 1, 2, 3, and so on,
and are explained in the following points:

The hits.total element shows the number of documents that were considered
or were in the context of the query. If there was no additional query or filter
specified, it will include all of the documents in the type or index. We passed
?track_total_hits=true in the request, and hence, you will see the exact
count of total hits in the index.

Analytics with Elasticsearch Chapter 4

[119]

Just like the request, this response is wrapped inside aggregations to indicate
them.
The response of the aggregation we requested was named download_sum;
hence, we get our response from the sum aggregation inside an element with the
same name.
This is the actual value after applying the sum aggregation.

The average, min, and max aggregations are very similar. Let's look at them briefly.

Average aggregation
The average aggregation finds an average across all the documents in the querying context:

GET bigginsight/_search
{
 "aggregations": {
 "download_average": { 1
 "avg": { 2
 "field": "downloadTotal"
 }
 }
 },
 "size": 0
}

The only notable differences from the sum aggregation are as follows:

We chose a different name, download_average, to make it apparent that the
aggregation is trying to compute the average.
The type of aggregation that we are doing is avg, instead of the sum aggregation
that we were doing earlier.

The response structure is identical, but the value field will now represent the average of the
requested field.

The min and max aggregations are exactly the same.

Analytics with Elasticsearch Chapter 4

[120]

Min aggregation
The min aggregation is how we will find the minimum value of the downloadTotal field
in the entire index/type:

GET bigginsight/_search
{
 "aggregations": {
 "download_min": {
 "min": {
 "field": "downloadTotal"
 }
 }
 },
 "size": 0
}

Now, let's take a look at max aggregation.

Max aggregation
Here's how we will find the maximum value of the downloadTotal field in the entire
index/type:

GET bigginsight/_search
{
 "aggregations": {
 "download_max": {
 "max": {
 "field": "downloadTotal"
 }
 }
 },
 "size": 0
}

These aggregations were really simple. Now, let's look at some more advanced stats and
extended stats aggregations.

Analytics with Elasticsearch Chapter 4

[121]

Stats and extended stats aggregations
These aggregations compute some common statistics in a single request, without having to
issue multiple requests. This saves resources on the Elasticsearch side, as well, because the
statistics are computed in a single pass, rather than being requested multiple times. The
client code also becomes simpler if you are interested in more than one of these statistics.
Let's look at stats aggregation first.

Stats aggregation
Stats aggregation computes the sum, average, min, max, and count of documents in a single
pass:

GET bigginsight/_search
{
 "aggregations": {
 "download_stats": {
 "stats": {
 "field": "downloadTotal"
 }
 }
 },
 "size": 0
}

The structure of the stats request is the same as the other metric aggregations we have
looked at so far, so nothing special is going on here.

The response should look like the following:

{
 "took": 4,
 ...,
 "hits": {
 "total" : {
 "value" : 10000,
 "relation" : "gte"
 },
 "max_score": 0,
 "hits": []
 },
 "aggregations": {
 "download_stats": {
 "count": 242835,
 "min": 0,
 "max": 241213,

Analytics with Elasticsearch Chapter 4

[122]

 "avg": 9049.102065188297,
 "sum": 2197438700
 }
 }
}

As you can see, the response with the download_stats element contains count, min, max,
average, and sum; everything is included in the same response. This is very handy, as it
reduces the overhead of multiple requests, and also simplifies the client code.

Let's look at the extended stats aggregation.

Extended stats aggregation
The extended stats aggregation returns a few more statistics in addition to the ones
returned by the stats aggregation:

GET bigginsight/_search
{
 "aggregations": {
 "download_estats": {
 "extended_stats": {
 "field": "downloadTotal"
 }
 }
 },
 "size": 0
}

The response looks like the following:

{
 "took": 15,
 "timed_out": false,
 ...,
 "hits": {
 "total" : {
 "value" : 10000,
 "relation" : "gte"
 },
 "max_score": 0,
 "hits": []
 },
 "aggregations": {
 "download_estats": {
 "count": 242835,

Analytics with Elasticsearch Chapter 4

[123]

 "min": 0,
 "max": 241213,
 "avg": 9049.102065188297,
 "sum": 2197438700,
 "sum_of_squares": 133545882701698,
 "variance": 468058704.9782911,
 "std_deviation": 21634.664429528162,
 "std_deviation_bounds": {
 "upper": 52318.43092424462,
 "lower": -34220.22679386803
 }
 }
 }
}

It also returns the sum of squares, variance, standard deviation, and standard
deviation bounds.

Cardinality aggregation
Finding the count of unique elements can be done with the cardinality aggregation. It is
similar to finding the result of a query such as the following:

select count(*) from (select distinct username from usageReport) u;

Finding the cardinality, or the number of unique values, for a specific field is a very
common requirement. If you have a click stream from the different visitors on your
website, you may want to find out how many unique visitors you had in a given day, week,
or month.

Let's look at how we can find out the count of unique users for which we have network
traffic data:

GET bigginsight/_search
{
 "aggregations": {
 "unique_visitors": {
 "cardinality": {
 "field": "username"
 }
 }
 },
 "size": 0
}

Analytics with Elasticsearch Chapter 4

[124]

The cardinality aggregation response is just like the other metric aggregations:

{
 "took": 110,
 ...,
 "hits": {
 "total" : {
 "value" : 10000,
 "relation" : "gte"
 },
 "max_score": 0,
 "hits": []
 },
 "aggregations": {
 "unique_visitors": {
 "value": 79
 }
 }
}

Now that we have covered the simplest forms of aggregations, we can look at some of the
bucket aggregations.

Bucket aggregations
Bucket aggregations are useful to analyze how the whole relates to its parts, so that we can
gain better insight on the data. They help in segmenting the data into smaller parts. Each
type of bucket aggregation slices the data into different segments, or buckets. Bucket
aggregations are the most common type of aggregation used in any analysis process.

In this section, we will cover the following topics, keeping the network traffic data example
at the center:

Bucketing on string data
Bucketing on numerical data
Aggregating filtered data
Nesting aggregations
Bucketing on custom conditions
Bucketing on date/time data
Bucketing on geospatial data

Analytics with Elasticsearch Chapter 4

[125]

Bucketing on string data
Sometimes, we may need to bucket the data, or segment the data, based on a field that has a
string datatype, which is typically keyword typed fields in Elasticsearch. This is very
common. Some examples of scenarios in which you may want to segment the data by a
string typed field are as follows:

Segmenting the network traffic data per department
Segmenting the network traffic data per user
Segmenting the network traffic data per application, or per category

The most common way to bucket or segment your string typed data is by using terms
aggregation. Let's take a look at terms aggregation.

Terms aggregation
Terms aggregation is probably the most widely used aggregation. It is useful for
segmenting or grouping the data by a given field's distinct values. Suppose that, in the
network traffic data example that we have loaded, we have the following question:

Which are the top categories, that is, categories that are surfed the most by users?

We are interested in the most surfed categories – not in terms of the bandwidth used, but
just in terms of counts (record counts). In a relational database, we could write a query like
the following:

SELECT category, count(*) FROM usageReport GROUP BY category ORDER BY
count(*) DESC;

The Elasticsearch aggregation query, which would do a similar job, can be written as
follows:

GET /bigginsight/_search
{
 "aggs": { 1
 "byCategory": { 2
 "terms": { 3
 "field": "category" 4
 }
 }
 },
 "size": 0 5
}

Analytics with Elasticsearch Chapter 4

[126]

Let's look at the terms of the aggregation query here. Notice the numbers that refer to
different parts of the query:

The aggs or aggregations element at the top level should wrap any
aggregation.
Give a name to the aggregation. Here, we are doing terms aggregation by the
category field, and hence, the name we chose is byCategory.
We are doing a terms aggregation, and hence, we have the terms element.
We want to do a terms aggregation on the category field.
Specify size = 0 to prevent raw search results from being returned. We just
want aggregation results, and not the search results, in this case. Since we haven't
specified any top-level query element, it matches all documents. We do not want
any raw documents (or search hits) in the result.

The response looks like the following:

{
 "took": 11,
 "timed_out": false,
 "_shards": {
 "total": 5,
 "successful": 5,
 "failed": 0
 },
 "hits": {
 "total" : {
 "value" : 10000, 1
 "relation" : "gte"
 },
 "max_score": 0,
 "hits": [] 2
 },
 "aggregations": { 3
 "byCategory": { 4
 "doc_count_error_upper_bound": 0, 5
 "sum_other_doc_count": 0, 6
 "buckets": [8
 {
 "key": "Chat", 9
 "doc_count": 52277 10
 },
 {
 "key": "File Sharing",
 "doc_count": 46912
 },

Analytics with Elasticsearch Chapter 4

[127]

 {
 "key": "Other HTTP",
 "doc_count": 38535
 },
 {
 "key": "News",
 "doc_count": 25784
 },
 {
 "key": "Email",
 "doc_count": 21003
 },
 {
 "key": "Gaming",
 "doc_count": 19578
 },
 {
 "key": "Jobs",
 "doc_count": 19429
 },
 {
 "key": "Blogging",
 "doc_count": 19317
 }
]
 }
 }
}

Please note the following in the response, and notice the numbers that are annotated as
well:

The total element under hits (we will refer to this as hits.total, navigating
the path from the top JSON element) is greater than 10000. This is the total
number of documents considered in this aggregation. As we mentioned
previously, if you want the exact total hits to be returned, you need to pass an
extra parameter in the request.
The hits.hits array is empty. This is because we specified "size": 0, so as to
not include any search hits here. What we were interested in was the
aggregations, and not the search results.
The aggregations element at the top level in the JSON response contains all the
aggregation results.

Analytics with Elasticsearch Chapter 4

[128]

The name of the aggregation is byCategory. This is the name that was given by
us to this terms aggregation. This name helps us to relate the response to the
request, since the request can be generated for several aggregations at once.
doc_count_error_upper_bound is the measure of error while doing this
aggregation. Data is distributed in shards; if each shard sends data for all bucket
keys, this results in too much data being sent across the network. Elasticsearch
only sends the top n buckets across the network if the aggregation was requested
for the top n items. Here, n is the number of aggregation buckets determined by
the size parameter to the bucket aggregation. We will look at bucket
aggregation's size parameter later in this chapter.
sum_other_doc_count is the total count of documents that are not included in
the buckets that are returned. By default, the terms aggregations returns the top
10 buckets if there are more than 10 distinct buckets. The remaining documents,
other than these 10 buckets, are summed and returned in this field. In this case,
there are only eight categories, and hence, this field is set to zero.
The list of buckets returned by the aggregation.
The key of one of the buckets, that is, the category of Chat.
The count of documents in the bucket.

As you can see, there are only eight distinct buckets in the results of the query.

Next, we want to find out the top applications in terms of the maximum number of records
for each application:

GET /bigginsight/_search?size=0
{
 "aggs": {
 "byApplication": {
 "terms": {
 "field": "application"
 }
 }
 }
}

Note that we have added size=0 as a request parameter in the URL itself.

This returns a response like the following:

{
 ...,
 "aggregations": {
 "byApplication": {
 "doc_count_error_upper_bound": 6339,

Analytics with Elasticsearch Chapter 4

[129]

 "sum_other_doc_count": 129191,
 "buckets": [
 {
 "key": "Skype",
 "doc_count": 26115
 },
 ...
}

Note that sum_other_doc_count has a big value, 129191. This is a big number that's
relative to the total hits; as we saw in the previous query, there are around 242,000
documents in the index. The reason for this is that the terms aggregation only returns 10
buckets, by default. In the current setting, the top 10 buckets with the highest documents
are returned in descending order. The remaining documents that are not covered in the top
10 buckets are indicated in sum_other_doc_count. There are actually 30 different
applications for which we have network traffic data. The number in
sum_other_doc_count is the sum of the counts for the remaining 20 applications that
were not included in the buckets list.

To get the top n buckets instead of the default 10, we can use the size parameter inside the
terms aggregation:

GET /bigginsight/_search?size=0
{
 "aggs": {
 "byApplication": {
 "terms": {
 "field": "application",
 "size": 15
 }
 }
 }
}

Notice that this size (specified inside the terms aggregation) is different from the size
specified at the top level. At the top level, the size parameter is used to prevent any search
hits, whereas the size parameter being used inside the terms aggregation denotes the
maximum number of term buckets to be returned.

Terms aggregation is very useful for generating data for pie charts or bar charts, where we
may want to analyze the relative counts of string typed fields in a set of documents. In
Chapter 7, Visualizing Data with Kibana, you will learn that Kibana terms aggregation is
useful for generating pie and bar charts.

Next, we will look at how to do bucketing on numerical types of fields.

Analytics with Elasticsearch Chapter 4

[130]

Bucketing on numerical data
Another common scenario is when we want to segment or slice the data into various
buckets, based on a numerical field. For example, we may want to slice the product data by
different price ranges, such as up to $10, $10 to $50, $50 to $100, and so on. You may want
to segment the data by age group, employee count, and so on.

We will look at the following aggregations in this section:

Histogram aggregation
Range aggregation

Histogram aggregation
Histogram aggregation can slice the data into different buckets based on one numerical
field. The range of each slice, also called the interval, can be specified in the input of the
query.

Here, we have some records of network traffic usage data. The usage field tells us about
the number of bytes that are used for uploading or downloading data. Let's try to divide or
slice all the data based on the usage:

POST /bigginsight/_search?size=0
{
 "aggs": {
 "by_usage": {
 "histogram": {
 "field": "usage",
 "interval": 1000
 }
 }
 }
}

The preceding aggregation query will slice all the data into the following buckets:

0 to 999: All records that have usage >= 0 and < 1,000 will fall into this bucket
1,000 to 1,999: All records that have usage >= 1,000 and < 2,000 will fall into this
bucket
2,000 to 2,999: All records that have usage >= 2,000 and < 3,000 will fall into this
bucket

Analytics with Elasticsearch Chapter 4

[131]

The response should look like the following (truncated for brevity):

{
 ...,
 "aggregations": {
 "by_usage": {
 "buckets": [
 {
 "key": 0.0,
 "doc_count": 30060
 },
 {
 "key": 1000.0,
 "doc_count": 42880
 },
 {
 "key": 2000.0,
 "doc_count": 42041
 },
...
}

This is how the histogram aggregation creates buckets of equal ranges by using the
interval specified in the query. By default, it includes all buckets with the given interval,
regardless of whether there are any documents in that bucket. It is possible to get back only
those buckets that have at least some documents. This can be done by using the
min_doc_count parameter. If specified, the histogram aggregation only returns those
buckets that have, at the very least, the specified number of documents.

Let's look at another aggregation, range aggregation, which can be used on numerical data.

Range aggregation
What if we don't want all the buckets to have the same interval? It's possible to create
unequal sized buckets by using the range aggregation.

The following range aggregation slices the data into three buckets: up to 1 KB, 1 KB to 100
KB, and 100 KB or more. Notice that we can specify from and to in the ranges. Both from
and to are optional in the range. If only to is specified, that bucket includes all the
documents up to the specified value in that bucket. The to value is exclusive, and is not
included in the current bucket's range:

POST /bigginsight/_search?size=0
{
 "aggs": {

Analytics with Elasticsearch Chapter 4

[132]

 "by_usage": {
 "range": {
 "field": "usage",
 "ranges": [
 { "to": 1024 },
 { "from": 1024, "to": 102400 },
 { "from": 102400 }
]
 }
 }
 }
}

The response of this request will look similar to the following:

{
 ...,
 "aggregations": {
 "by_usage": {
 "buckets": [
 {
 "key": "*-1024.0",
 "to": 1024,
 "doc_count": 31324
 },
 {
 "key": "1024.0-102400.0",
 "from": 1024,
 "to": 102400,
 "doc_count": 207498
 },
 {
 "key": "102400.0-*",
 "from": 102400,
 "doc_count": 4013
 }
]
 }
 }
}

It is possible to specify custom key labels for the range buckets, as follows:

POST /bigginsight/_search?size=0
{
 "aggs": {
 "by_usage": {
 "range": {

Analytics with Elasticsearch Chapter 4

[133]

 "field": "usage",
 "ranges": [
 { "key": "Upto 1 kb", "to": 1024 },
 { "key": "1 kb to 100 kb","from": 1024, "to": 102400 },
 { "key": "100 kb and more", "from": 102400 }
]
 }
 }
 }
}

The resulting buckets will have the keys set with each bucket. This is helpful for looking up
the relevant bucket from the response without iterating through all the buckets.

There are more aggregations available for numerical data, but covering all of these
aggregations is beyond the scope of this book.

Next, we will look at a couple of important concepts related to bucket aggregation and
aggregations in general.

Aggregations on filtered data
In our quest to learn about different bucket aggregations, let's take a very short detour to
understand how to apply aggregations on filtered data. So far, we have been applying all of
our aggregations on all the data of the given index/type. In the real world, you will almost
always need to apply some filters before applying aggregations (either metric or bucket
aggregations).

Let's revisit the example that we looked at in the Terms aggregation section. We found out
the top categories in the whole index and type. Now, what we want to do is find the top
category for a specific customer, not for all of the customers:

GET /bigginsight/_search?size=0&track_total_hits=true
{
 "query": {
 "term": {
 "customer": "Linkedin"
 }
 },
 "aggs": {
 "byCategory": {
 "terms": {
 "field": "category"
 }
 }

Analytics with Elasticsearch Chapter 4

[134]

 }
}

We modified the original query, which found the top categories, with an additional query
(highlighted in the preceding query in bold). We added a query, and inside that query, we
added a term filter for a specific customer that we were interested in.

This type of query, when used with any type of aggregation, changes the context of the data
on which aggregations are calculated. The query/filter decides the data that the
aggregations will be run on.

Let's look at the response of this query to understand this better:

{
 "took": 18,
 ...,
 "hits": {
 "total" : {
 "value" : 76607,
 "relation" : "eq"
 },
 "max_score": 0,
 "hits": []
 },
 ...
}

The hits.total element in the response is now much smaller than the earlier aggregation
query, which was run on the whole index and type. We may also want to apply more filters
to limit the query to a smaller time window.

The following query applies multiple filters and makes the scope of the aggregation more
specific. It does this for a customer, and within some subset of the time interval:

GET /bigginsight/_search?size=0
{
 "query": {
 "bool": {
 "must": [
 {"term": {"customer": "Linkedin"}},
 {"range": {"time": {"gte": 1506277800000, "lte": 1506294200000}}}
]
 }
 },
 "aggs": {
 "byCategory": {
 "terms": {

Analytics with Elasticsearch Chapter 4

[135]

 "field": "category"
 }
 }
 }
}

This is how the scope of aggregation can be modified using filters. Now, we will continue
on our detour of learning about different bucket aggregations and look at how to nest
metric aggregations inside bucket aggregations.

Nesting aggregations
Bucket aggregations split the context into one or more buckets. We can restrict the context
of the aggregation by specifying the query element, as we saw in the previous section.

When a metric aggregation is nested inside a bucket aggregation, the metric aggregation is
computed within each bucket. Let's go over this by considering the following question,
which we may want to get an answer for:

What is the total bandwidth consumed by each user, or a specific customer, on a given day?

We have to take the following steps:

First, filter the overall data for the given customer and for the given day. This can1.
be done using a global query element of the bool type.
Once we have the filtered data, we will want to create some buckets per user.2.
Once we have one bucket for each user, we will want to compute the sum metric3.
aggregation on the total usage field (which includes upload and download).

The following query does exactly this. Please refer to the annotated numbers, which
correspond to the three main objectives of the the following query:

GET /bigginsight/usageReport/_search?size=0
{
 "query": { 1
 "bool": {
 "must": [
 {"term": {"customer": "Linkedin"}},
 {"range": {"time": {"gte": 1506257800000, "lte": 1506314200000}}}
]
 }
 },
 "aggs": {
 "by_users": { 2

Analytics with Elasticsearch Chapter 4

[136]

 "terms": {
 "field": "username"
 },
 "aggs": {
 "total_usage": { 3
 "sum": { "field": "usage" }
 }
 }
 }
 }
}

The thing to notice here is that the top level by_users aggregation, which is a terms
aggregation, contains another aggs element with the total_usage metric aggregation
inside it.

The response should look like the following:

{
 ...,
 "aggregations": {
 "by_users": {
 "doc_count_error_upper_bound": 0,
 "sum_other_doc_count": 453,
 "buckets": [
 {
 "key": "Jay May",
 "doc_count": 2170,
 "total_usage": {
 "value": 6516943
 }
 },
 {
 "key": "Guadalupe Rice",
 "doc_count": 2157,
 "total_usage": {
 "value": 6492653
 }
 },
 ...
}

As you can see, each of the terms aggregation buckets contains a total_usage child,
which has the metric aggregation value. The buckets are sorted by the number of
documents in each bucket, in descending order. It is possible to change the order of buckets
by specifying the order parameter within the bucket aggregation.

Analytics with Elasticsearch Chapter 4

[137]

Please see the following partial query, which has been modified to sort the buckets in
descending order of the total_usage metric:

GET /bigginsight/usageReport/_search
{
 ...,
 "aggs": {
 "by_users": {
 "terms": {
 "field": "username",
 "order": { "total_usage": "desc"}
 },
 "aggs": {
 ...
...
}

The highlighted order clause sorts the buckets using the total_usage nested aggregation,
in descending order.

Bucket aggregations can be nested inside other bucket aggregations. Let's considering this
by getting an answer to the following question:

Who are the top two users in each department, given the total bandwidth consumed by each user?

The following query will help us get that answer:

GET /bigginsight/usageReport/_search?size=0
{
 "query": { 1
 "bool": {
 "must": [
 {"term": {"customer": "Linkedin"}},
 {"range": {"time": {"gte": 1506257800000, "lte": 1506314200000}}}
]
 }
 },
 "aggs": {
 "by_departments": { 2
 "terms": { "field": "department" },
 "aggs": {
 "by_users": { 3
 "terms": {
 "field": "username",
 "size": 2,
 "order": { "total_usage": "desc"}
 },
 "aggs": {

Analytics with Elasticsearch Chapter 4

[138]

 "total_usage": {"sum": { "field": "usage" }} 4
 }
 }
 }
 }
 }
}

Please see the following explanation of the annotated numbers in the query:

This is a query that filters the specific customer and time range.
The top-level terms aggregation to get a bucket for each department.
The second-level terms aggregation to get the top two users (note that size = 2)
within each bucket.
The metric aggregation that has the sum of usage within its parent bucket. The
immediate parent bucket of the total_usage aggregation is the by_users
aggregation, which causes the sum of usage to be calculated for each user.

This is how we can nest bucket and metric aggregations to answer complex questions in a
very fast and efficient way, regarding big data stored in Elasticsearch.

Bucketing on custom conditions
Sometimes, what we want is more control over how the buckets are created. The
aggregations that we have looked at so far have dealt with a single type of field. If the given
field that we want to slice data from is of the string type, we generally use the terms
aggregation. If the field is of the numerical type, we have a few choices, including
histogram, range aggregation, and others, to slice the data into different segments.

The following aggregations allow us to create one or more buckets, based on the
queries/filters that we choose:

Filter aggregation
Filters aggregation

Let's look at them, one by one.

Analytics with Elasticsearch Chapter 4

[139]

Filter aggregation
Why would you want to use filter aggregation? Filter aggregation allows you to create a
single bucket using any arbitrary filter and computes the metrics within that bucket.

For example, if we wanted to create a bucket of all the records for the Chat category, we
could use a term filter. Here, we want to create a bucket of all records that have category
= Chat:

POST /bigginsight/_search?size=0
{
 "aggs": {
 "chat": {
 "filter": {
 "term": {
 "category": "Chat"
 }
 }
 }
 }
}

The response should look like the following:

{
 "took": 4,
 ...,
 "hits": {
 "total" : {
 "value" : 10000,
 "relation" : "gte"
 },
 "max_score": 0,
 "hits": []
 },
 "aggregations": {
 "chat": {
 "doc_count": 52277
 }
 }
}

As you can see, the aggregations element contains just one item, corresponding to the
Chat category. It has 52277 documents. This response can be seen as a subset of the
terms aggregation response, which contained all the categories, apart from Chat.

Analytics with Elasticsearch Chapter 4

[140]

Let's look at filters aggregation next, which allows you to bucket on more than one custom
filter.

Filters aggregation
With filters aggregation, you can create multiple buckets, each with its own specified filter
that will cause the documents satisfying that filter to fall into the related bucket. Let's look
at an example.

Suppose that we want to create multiple buckets to understand how much of the network
traffic was caused by the Chat category. At the same time, we want to understand how
much of it was caused by the Skype application, versus other applications in the Chat
category. This can be achieved by using filters aggregation, as it allows us to write arbitrary
filters to create buckets:

GET bigginsight/_search?size=0
{
 "aggs": {
 "messages": {
 "filters": {
 "filters": {
 "chat": { "match": { "category": "Chat" }},
 "skype": { "match": { "application": "Skype" }},
 "other_than_skype": {
 "bool": {
 "must": {"match": {"category": "Chat"}},
 "must_not": {"match": {"application": "Skype"}}
 }
 }
 }
 }
 }
 }
}

We created three filters for the three buckets that we want, as follows:

Bucket with chat key: Here, we specify the category = Chat filter. Remember
that the match query that we have used is a high-level query that understands
the mapping of the underlying field. The underlying field category is a keyword
field, and hence, the match query looks for the exact term, that is, Chat.

Analytics with Elasticsearch Chapter 4

[141]

Bucket with skype key: Here, we specify the application = Skype filter and
only include Skype traffic.
Bucket with other_than_skype key: Here, we use a bool query to filter
documents that are in the Chat category, but not Skype.

As you can see, filters aggregation is very powerful when you want custom buckets using
different filters. It allows you to take full control of the bucketing process. You can choose
your own fields and your own conditions to create the buckets of your choice, in order to
segment the data in customized ways.

Next, we will look at how to slice data on a date type column, so that we can slice it into
different time intervals.

Bucketing on date/time data
So far, you have seen how to bucket (or segment, or slice) your data on different types of
columns/fields. The analysis of data across the time dimension is another very common
requirement. We may have questions such as the following, which require the aggregation
of data on the time dimension:

How are sales volumes growing over a period of time?
How is profit changing from month to month?

In the context of the network traffic example that we are going through, the following
questions can be answered through time series analysis of the data:

How are the bandwidth requirements changing for my organization over a
period of time?
Which are the top applications, over a period of time, in terms of bandwidth
usage?

Elasticsearch has a very powerful Date Histogram aggregation that can answer questions
like these. Let's look at how we can get answers to these questions.

Date Histogram aggregation
Using Date Histogram aggregation, we will see how we can create buckets on a date field.
In the process, we will go through the following stages:

Creating buckets across time periods
Using a different time zone

Analytics with Elasticsearch Chapter 4

[142]

Computing other metrics within sliced time intervals
Focusing on a specific day and changing intervals

Creating buckets across time periods
The following query will slice the data into intervals of one day. Just like how we were able
to create buckets on different values of strings, the following query will create buckets on
different values of time, grouped by one-day intervals:

GET /bigginsight/_search?size=0 1
{
 "aggs": {
 "counts_over_time": {
 "date_histogram": { 2
 "field": "time",
 "interval": "1d" 3
 }
 }
 }
}

The key points from the preceding code are explained as follows:

We have specified size=0 as a request parameter, instead of specifying it in the
request body.
We are using the date_histogram aggregation.
We want to slice the data by day; that's why we specify the interval for slicing
the data as 1d (for one day). Intervals can take values like 1d (one day), 1h (one
hour), 4h (four hours), 30m (30 minutes), and so on. This gives tremendous
flexibility when specifying a dynamic criteria.

The response to the request should look like the following:

{
 ...,
 "aggregations": {
 "counts_over_time": {
 "buckets": [
 {
 "key_as_string": "2017-09-23T00:00:00.000Z",
 "key": 1506124800000,
 "doc_count": 62493
 },
 {
 "key_as_string": "2017-09-24T00:00:00.000Z",

Analytics with Elasticsearch Chapter 4

[143]

 "key": 1506211200000,
 "doc_count": 5312
 },
 {
 "key_as_string": "2017-09-25T00:00:00.000Z",
 "key": 1506297600000,
 "doc_count": 175030
 }
]
 }
 }
}

As you can see, the simulated data that we have in our index is only for a three-day period.
The returned buckets contain keys in two forms, key and key_as_string. The key field
is in milliseconds since the epoch (January 1st 1970), and key_as_string is the beginning
of the time interval in UTC. In our case, we have chosen the interval of one day. The first
bucket with the 2017-09-23T00:00:00.000Z key is the bucket that has documents
between September 23, 2017 UTC, and September 24, 2017 UTC.

Using a different time zone
We actually want to slice the data by the IST time zone, rather than slicing it according to
the UTC time zone. This is possible by specifying the time_zone parameter. We need to
separate the offset of the required time zone from the UTC time zone. In this case, we need
to provide +05:30 as the offset, since IST is 5 hours and 30 minutes ahead of UTC:

GET /bigginsight/_search?size=0
{
 "aggs": {
 "counts_over_time": {
 "date_histogram": {
 "field": "time",
 "interval": "1d",
 "time_zone": "+05:30"
 }
 }
 }
}

The response now looks like the following:

{
 ...,
 "aggregations": {
 "counts_over_time": {

Analytics with Elasticsearch Chapter 4

[144]

 "buckets": [
 {
 "key_as_string": "2017-09-23T00:00:00.000+05:30",
 "key": 1506105000000,
 "doc_count": 62493
 },
 {
 "key_as_string": "2017-09-24T00:00:00.000+05:30",
 "key": 1506191400000,
 "doc_count": 0
 },
 {
 "key_as_string": "2017-09-25T00:00:00.000+05:30",
 "key": 1506277800000,
 "doc_count": 180342
 }
]
 }
 }
}

As you can see, the key and key_as_string for all the buckets have changed. The keys are
now at the beginning of the day, in the IST time zone. There are no documents for
September 24, 2017, now, since it is a Sunday.

Computing other metrics within sliced time intervals
So far, we have just sliced the data across time by using the Date Histogram to create the
buckets on the time field. This gave us the document counts in each bucket. Next, we will
try to answer the following question:

What is the day-wise total bandwidth usage for a given customer?

The following query will provide us with an answer for this:

GET /bigginsight/_search?size=0
{
 "query": { "term": {"customer": "Linkedin"} },
 "aggs": {
 "counts_over_time": {
 "date_histogram": {
 "field": "time",
 "interval": "1d",
 "time_zone": "+05:30"
 },
 "aggs": {
 "total_bandwidth": {

Analytics with Elasticsearch Chapter 4

[145]

 "sum": { "field": "usage" }
 }
 }
 }
 }
}

We added a term filter to consider only one customer's data. Within the date_histogram
aggregation, we nested another metric aggregation, that is, sum aggregation, to count the
sum of the usage field within each bucket. This is how we will get the total data consumed
each day. The following is the shortened response to the query:

{
 ..,
 "aggregations": {
 "counts_over_time": {
 "buckets": [
 {
 "key_as_string": "2017-09-23T00:00:00.000+05:30",
 "key": 1506105000000,
 "doc_count": 18892,
 "total_bandwidth": {
 "value": 265574303
 }
 },
 ...
]
 }
 }
}

Focusing on a specific day and changing intervals
Next, we will look at how to focus on a specific day by filtering the data for the other time
periods and changing the value of the interval to a smaller value. We are trying to get an
hourly breakdown of data usage for September 25, 2017.

What we are doing is also called drilling down in the data. Often, the result of the previous
query is displayed as a line chart, with time on the x axis and data used on the y axis. If we
want to zoom in on a specific day from that line chart, the following query can be useful:

GET /bigginsight/_search?size=0
{
 "query": {
 "bool": {
 "must": [
 {"term": {"customer": "Linkedin"}},

Analytics with Elasticsearch Chapter 4

[146]

 {"range": {"time": {"gte": 1506277800000}}}
]
 }
 },
 "aggs": {
 "counts_over_time": {
 "date_histogram": {
 "field": "time",
 "interval": "1h",
 "time_zone": "+05:30"
 },
 "aggs": {
 "hourly_usage": {
 "sum": { "field": "usage" }
 }
 }
 }
 }
}

The shortened response would look like the following:

{
 ...,
 "aggregations": {
 "counts_over_time": {
 "buckets": [
 {
 "key_as_string": "2017-09-25T00:00:00.000+05:30",
 "key": 1506277800000,
 "doc_count": 465,
 "hourly_usage": {
 "value": 1385524
 }
 },
 {
 "key_as_string": "2017-09-25T01:00:00.000+05:30",
 "key": 1506281400000,
 "doc_count": 478,
 "hourly_usage": {
 "value": 1432123
 }
 },
 ...
}

Analytics with Elasticsearch Chapter 4

[147]

As you can see, we have buckets for one-hour intervals, with data for those hours
aggregated within each bucket.

The Date Histogram aggregation allows you to do many powerful time series analyses. As
you have seen in these examples, aggregating from a one-day interval to a one-hour
interval is extremely easy. You can slice your data in the required interval on demand,
without planning it in advance. You can do this with big data; there are hardly any other
data stores that can provide this type of flexibility with big data.

Bucketing on geospatial data
Another powerful feature of bucket aggregation is the ability to do geospatial analysis on
the data. If your data contains fields of the geo-point datatype, where the coordinates are
captured, you can perform some interesting analysis, which can be rendered on a map to
give you better insight into the data.

We will cover two types of geospatial aggregations in this section:

Geodistance aggregation
GeoHash grid aggregation

Geodistance aggregation
Geodistance aggregation helps in creating buckets of distances from a given geo-point. This
can be better illustrated using a diagram:

Fig 4.2 Geodistance aggregation with only to specified (left), and both to and from specified (right)

Analytics with Elasticsearch Chapter 4

[148]

The shaded area in blue represents the area included in the geodistance aggregation.

The following aggregation will form a bucket with all the documents within the given
distance from the given geo-point. This corresponds to the first (left) circle in the preceding
diagram. The shaded area is from the center up to the given radius, forming a circle:

GET bigginsight/_search?size=0
{
 "aggs": {
 "within_radius": {
 "geo_distance": {
 "field": "location",
 "origin": {"lat": 23.102869,"lon": 72.595692},
 "ranges": [{"to": 5}]
 }
 }
 }
}

As you can see, the ranges parameter is similar to the range aggregation that we saw
earlier. It includes all the points up to 5 meters away from the given origin specified. This
is helpful in aggregations like getting the counts of things that are within 2 kilometers from
a given location, and is often used on many websites. This is a good way to find all
businesses within a given distance of your location (such as all coffee shops or hospitals
within 2 km).

The default unit of distance is meters, but you can specify the unit parameter as km, mi,
and so on, to switch to different units.

Now, let's look at what happens if you specify both from and to in the geodistance
aggregation. This will correspond to the right circle in the preceding diagram:

GET bigginsight/_search?size=0
{
 "aggs": {
 "within_radius": {
 "geo_distance": {
 "field": "location",
 "origin": {"lat": 23.102869,"lon": 72.595692},
 "ranges": [{"from": 5, "to": 10}]
 }
 }
 }
}

Analytics with Elasticsearch Chapter 4

[149]

Here, we are bucketing the points that are at least 5 meters away, but less than 10 meters
away, from the given point. Similarly, it is possible to form a bucket of a point which is at
least x units away from the given origin, by only specifying the from parameter.

Now, let's look at GeoHash grid aggregation.

GeoHash grid aggregation
GeoHash grid aggregation uses the GeoHash mechanism to divide the map into smaller
units. You can read about GeoHash at https:/ / en.wikipedia. org/ wiki/ Geohash. The
GeoHash system divides the world map into a grid of rectangular regions of different
precisions. Lower values of precision represent larger geographical areas, while higher
values represent smaller, more precise geographical areas:

GET bigginsight/_search?size=0
{
 "aggs": {
 "geo_hash": {
 "geohash_grid": {
 "field": "location",
 "precision": 7
 }
 }
 }
}

The data that we have in our network traffic example is spread over a very small
geographical area, so we have used a precision of 7. The supported values for precision
are from 1 to 12. Let's look at the response to this request:

{
 ...,
 "aggregations": {
 "geo_hash": {
 "buckets": [
 {
 "key": "ts5e7vy",
 "doc_count": 161893
 },
 {
 "key": "ts5e7vw",
 "doc_count": 80942
 }
]
 }

https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Geohash

Analytics with Elasticsearch Chapter 4

[150]

 }
}

After aggregating the data onto GeoHash blocks of "precision": 7, all the documents
fell into two GeoHash regions, with the respective document counts seen in the response.
We can zoom in on this map or request the data to be aggregated on smaller hashes, by
increasing the value of the precision.

When you try a precision value of 9, you will see the following response:

{
 ...,
 "aggregations": {
 "geo_hash": {
 "buckets": [
 {
 "key": "ts5e7vy80k",
 "doc_count": 131034
 },
 {
 "key": "ts5e7vwrdb",
 "doc_count": 60953
 },
 {
 "key": "ts5e7vy84c",
 "doc_count": 30859
 },
 {
 "key": "ts5e7vwxfn",
 "doc_count": 19989
 }
]
 }
 }
}

As you can see, the GeoHash grid aggregation allows you to slice or aggregate the data
over geographical regions of different sizes/precisions, which is quite powerful. This data
can be visualized in Kibana, or it can be used in your application with a library that can
render the data on a map.

We have covered a wide variety of bucket aggregations that let us slice and dice data on
fields of various datatypes. We also looked at how to aggregate over text data, numerical
data, dates/times, and geospatial data. Next, we will look at what pipeline aggregations are.

Analytics with Elasticsearch Chapter 4

[151]

Pipeline aggregations
Pipeline aggregations, as their name suggests, allow you to aggregate over the results of
another aggregation. They let you pipe the results of an aggregation as input to another
aggregation. Pipeline aggregations are a relatively new feature, and they are still
experimental. At a high level, there are two types of pipeline aggregation:

Parent pipeline aggregations have the pipeline aggregation nested inside other
aggregations
Sibling pipeline aggregations have the pipeline aggregation as the sibling of the
original aggregation from which pipelining is done

Let's look at how the pipeline aggregations work by considering one example of cumulative
sum aggregation, which is a parent of pipeline aggregation.

Calculating the cumulative sum of usage over
time
While discussing Date Histogram aggregation, in the Focusing on a specific day and changing
intervals section, we looked at the aggregation that's used to compute hourly bandwidth
usage for one particular day. After completing that exercise, we had data for September 24,
with hourly consumption between 12:00 am to 1:00 am, 1:00 am to 2:00 am, and so on.
Using cumulative sum aggregation, we can also compute the cumulative bandwidth usage
at the end of every hour of the day. Let's look at the query and try to understand it:

GET /bigginsight/_search?size=0
{
 "query": {
 "bool": {
 "must": [
 {"term": {"customer": "Linkedin"}},
 {"range": {"time": {"gte": 1506277800000}}}
]
 }
 },
 "aggs": {
 "counts_over_time": {
 "date_histogram": {
 "field": "time",
 "interval": "1h",
 "time_zone": "+05:30"
 },
 "aggs": {

Analytics with Elasticsearch Chapter 4

[152]

 "hourly_usage": {
 "sum": { "field": "usage" }
 },
 "cumulative_hourly_usage": { 1
 "cumulative_sum": { 2
 "buckets_path": "hourly_usage" 3
 }
 }
 }
 }
 }
}

Only the part highlighted in bold is the new addition over the query that we saw
previously. What we wanted was to calculate the cumulative sum over the buckets
generated by the previous aggregation. Let's go over the newly added code, which has been
annotated with numbers:

This gives an easy to understand name to this aggregation and places it inside
the parent Date Histogram aggregation, which is the bucket aggregation
containing this aggregation.
We are using the cumulative sum aggregation, and hence, we refer to its name,
cumulative_sum, here.
The buckets_path element refers to the metric over which we want to do the
cumulative sum. In our case, we want to sum over the hourly_usage metric
that was created previously.

The response should look as follows. It has been truncated for brevity:

{
 ...,
 "aggregations": {
 "counts_over_time": {
 "buckets": [
 {
 "key_as_string": "2017-09-25T00:00:00.000+05:30",
 "key": 1506277800000,
 "doc_count": 465,
 "hourly_usage": {
 "value": 1385524
 },
 "cumulative_hourly_usage": {
 "value": 1385524
 }
 },
 {

Analytics with Elasticsearch Chapter 4

[153]

 "key_as_string": "2017-09-25T01:00:00.000+05:30",
 "key": 1506281400000,
 "doc_count": 478,
 "hourly_usage": {
 "value": 1432123
 },
 "cumulative_hourly_usage":
 {
 "value": 2817647
 }
}

As you can see, cumulative_hourly_usage contains the sum of hourly_usage, so far. In
the first bucket, the hourly usage and the cumulative hourly usage are the same. From the
second bucket onward, the cumulative hourly usage has the sum of all the hourly buckets
we've seen so far.

Pipeline aggregations are powerful. They can compute derivatives, moving averages, the
average over other buckets (as well as the min, max, and so on), and the average over
previously calculated aggregations.

Summary
In this chapter, you learned how to use Elasticsearch to build powerful analytics
applications. We covered how to slice and dice the data to get powerful insight. We started
with metric aggregation and dealt with numerical datatypes. We then covered bucket
aggregation in order to find out how to slice the data into buckets or segments, in order to
drill down into specific segments.

We also went over how pipeline aggregations work. We did all of this while dealing with a
real-world-like dataset of network traffic data. We illustrated how flexible Elasticsearch is
as an analytics engine. Without much additional data modeling and extra effort, we can
analyze any field, even when the data is on a big data scale. This is a rare capability that's
not offered by many data stores. As you will see in Chapter 7, Visualizing Data with Kibana,
Kibana leverages many of the aggregations that we learned about in this chapter.

This concludes the chapters on Elasticsearch, the core of Elastic Stack, in this book. You
now have a very strong foundation to learn about the rest of the ecosystem of Elastic Stack.
Starting with the next chapter, we will shift our focus to learning about Logstash, which
primarily deals with getting data into Elasticsearch from a variety of sources.

5
Analyzing Log Data

Logs contain rich information about the state and behavior of a system or an application.
Each system/application generates logs whenever an event occurs, and the frequency,
amount of information, and format of the information it logs varies from one
system/application to another. With so much information at our disposal, collecting it,
extracting the relevant information from it, and analyzing it in near real time can be a
daunting task.

In the previous chapters, we have already explored how Elasticsearch, with its rich
aggregation features, assists in analyzing huge amounts of data in near real time. Before
analysis can be performed, we need a tool that can assist/ease the process of collecting logs,
extracting the relevant information from them, and pushing them to Elasticsearch.

In this chapter, we will be exploring Logstash, another key component of the Elastic Stack
that is mainly used as an ETL (Extract, Transform, and Load) engine. We will also be
exploring the following topics:

Log Analysis challenges
Using Logstash
The Logstash architecture
Overview of Logstash plugins
Ingest node

Log analysis challenges
Logs are defined as records of incidents or observations. Logs are generated by a wide
variety of resources, such as systems, applications, devices, humans, and so on. A log is
typically made of two things; that is, a timestamp (the time the event was generated) and
data (the information related to the event):

Log = Timestamp + Data

Analyzing Log Data Chapter 5

[155]

Logs are typically used for the following reasons:

Troubleshooting: When a bug or issue is reported, the first place to look for what
might have caused the issue is the logs. For example, when looking at an
exception stack trace in the logs, you may easily find the root cause of the issue.
To understand system/application behavior: When an application/system is
running, it's like a black box, and, in order to investigate or understand what's
happening within the system/application, you have to rely on logs. For example,
you might log the time taken by various code blocks within the application and
use this for understanding the bottlenecks and fine-tune your code for better
performance.
Auditing: Many organizations have to adhere to some compliance procedures
and are compelled to maintain the logs. For example, login activity or transaction
activities carried out by a user are commonly captured and maintained in logs for
a certain duration of time for the purpose of auditing, or for the analysis of
malicious activity by users/hackers.
Predictive analytics: With advancements in machine learning, data mining, and
artificial intelligence, a recent trend in analytics is predictive analytics. This is a
branch of advanced analytics that is used to predict unknown events that may
occur in the future. The patterns that result in historical and transactional data
can then be utilized to identify opportunities, as well as risks for the future.
Predictive analytics also lets organizations become proactive and forward
thinking, anticipating outcomes and behaviors based on the results acquired and
not just on some assumptions. Some examples of the use cases of predictive
analytics are when suggesting movies or items for users to purchase, detecting
fraud, optimizing marketing campaigns, and so on.

Based on the previous sample/typical usages of logs, we can come to the conclusion that
logs are data rich and can be used in a wide variety of use cases. However, logs come with
their own set of challenges. Some of the challenges are as follows:

No common/consistent format: Every system generates logs in its own format,
and as an administrator or end user, it would require expertise in understanding
the formats of logs raised by each system/application. Since the formats are
different, searching across different types of logs would be difficult. For example,
the following screenshot shows the typical format of SQL server logs,
Elasticsearch exceptions/logs, and NGNIX logs:

Analyzing Log Data Chapter 5

[156]

Logs are decentralized: Since logs are generated by a wide variety of resources,
such as systems, applications, devices, and so on, logs are typically spread across
multiple servers. With the advent of cloud computing and disturbed computing,
it is now much more challenging to search across the logs, as typical tools like
SSH and grep won't be scalable in these cases. Hence, there is need for
centralized log management, which assists the analyst/administrators in
searching for the required information easily.
No consistent time format: Since logs are made up of timestamps, each
system/application logs the time in its own format, thus making it difficult to
identify the exact time of the occurrence of the event (some formats are more
machine-friendly than human-friendly). Correlating events occur across multiple
systems at the same time. Some example time formats that can be seen in the logs
are as follows:

Nov 14 22:20:10
[10/Oct/2000:13:55:36 -0700]
172720538
053005 05:45:21
1508832211657

Analyzing Log Data Chapter 5

[157]

Data is unstructured: Log data is unstructured and thus it becomes difficult to
perform analysis on it directly. Before analysis can be performed on it, the data
would have to transform into the right structure so that searching or performing
analysis would become easier. Most analysis tools depend on structured/semi-
structured data.

In the next section, we will explore how Logstash can help us in addressing the preceding
challenges and thus ease the log analysis process.

Using Logstash
Logstash is a popular open source data collection engine with real-time pipelining
capabilities. Logstash allows us to easily build a pipeline that can help in collecting data
from a wide variety of input sources, and parse, enrich, unify, and store it in a wide variety
of destinations. Logstash provides a set of plugins known as input filters and output
plugins, which are easy to use and are pluggable in nature, thus easing the process of
unifying and normalizing huge volumes and varieties of data. Logstash does the work of
the ETL engine:

Some of the salient features of logstash are as follows:

Pluggable data pipeline architecture: Logstash contains over 200 plugins that
have been developed by Elastic and the open source community, which can be
used to mix, match, and orchestrate different inputs, filters, and outputs, while
building pipelines for data processing.

Analyzing Log Data Chapter 5

[158]

Extensibility: Logstash is written in JRuby and, since it supports the pluggable
pipeline architecture, you can easily build/create custom plugins to meet your
custom needs.
Centralized data processing: Data from disparate sources can be easily pulled
using the various input plugins it provides and can be enriched, transformed,
and sent to different/multiple destinations.
Variety and volume: Logstash handles all types of logging data, for example,
Apache, NGNIX logs, system logs, and window event logs, and also collects
metrics from a wide range of application platforms over TCP and UDP. Logstash
can transform HTTP requests into events and provides webhooks for
applications like Meetup, GitHub, JIRA, and so on. It also supports consuming
data from existing relational/NoSQL databases and queues including Kafka,
RabbitMQ, and so on. The Logstash data processing pipeline can be easily scaled
horizontally, and, since Logstash 5, it supports persistent queues, thus providing
the ability to reliably process huge volumes of incoming events/data.
Synergy: Logstash has a strong synergy with Elasticsearch, Beats, and Kibana,
thus allowing you to build end-to-end log analysis solutions with ease.

Installation and configuration
In the following sections, we will take a look at how to install and configure Logstash on
our system.

Prerequisites
Java runtime is required to run Logstash. Logstash requires Java 8. Make sure that
JAVA_HOME is set as an environment variable, and to check your Java version, run the
following command:

java -version

Analyzing Log Data Chapter 5

[159]

You should see the following output:

java version "1.8.0_65"
Java(TM) SE Runtime Environment (build 1.8.0_65-b17)
Java HotSpot(TM) 64-Bit Server VM (build 25.65-b01, mixed mode)

For Java, you can use the official Oracle distribution (http:/ /www. oracle.
com/technetwork/ java/ javase/ downloads/ index. html) or an open
source distribution such as OpenJDK (http:/ / openjdk. java. net/).

Downloading and installing Logstash
Just like the other components of the Elastic Stack, downloading and installing Logstash is
pretty simple and straightforward. Navigate to https:/ /www. elastic. co/downloads/
logstash-oss and, depending on your operating system, download the required ZIP/TAR
file, as shown in the following screenshot:

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://openjdk.java.net/
http://openjdk.java.net/
http://openjdk.java.net/
http://openjdk.java.net/
http://openjdk.java.net/
http://openjdk.java.net/
http://openjdk.java.net/
http://openjdk.java.net/
http://openjdk.java.net/
http://openjdk.java.net/
https://www.elastic.co/downloads/logstash-oss
https://www.elastic.co/downloads/logstash-oss
https://www.elastic.co/downloads/logstash-oss
https://www.elastic.co/downloads/logstash-oss
https://www.elastic.co/downloads/logstash-oss
https://www.elastic.co/downloads/logstash-oss
https://www.elastic.co/downloads/logstash-oss
https://www.elastic.co/downloads/logstash-oss
https://www.elastic.co/downloads/logstash-oss
https://www.elastic.co/downloads/logstash-oss
https://www.elastic.co/downloads/logstash-oss
https://www.elastic.co/downloads/logstash-oss
https://www.elastic.co/downloads/logstash-oss
https://www.elastic.co/downloads/logstash-oss

Analyzing Log Data Chapter 5

[160]

Post 6.3 Elastic components come with two variations (distributions):

OSS distribution, which is 100% Apache 2.0
Community License, which will have basic x-pack features
that are free to use and are bundled with Elastic
components

More details about this can be found at https:/ /www. elastic. co/
products/ x- pack/ open. For this book, we will be using the logstash-oss
version, which is based on the 100% Apache 2.0 license.

The Community License Logstash download page is available
at https://www.elastic.co/downloads/logstash#ga-release.

The Apache 2.0 Logstash download page is available at https:/ /
www. elastic. co/ downloads/ logstash- oss#ga- release.

The Elastic developer community is quite vibrant, and newer releases
with new features/fixes get released quite often. By the time you are
reading this book, the latest Logstash version might have changed.
Instructions in this book are based on Logstash version (logstash-oss)
7.0.0. You can click on the past releases link and download version 7.0.0 if
you want to follow this as is. The instructions/explanations in this book
should hold good for any 7.x or 6.7.x release.

Unlike Kibana, which requires major and minor version compatibility
with Elasticsearch, Logstash versions starting from 6.7 are compatible
with Elasticsearch 7.x. The compatibility matrix can be found at https:/ /
www.elastic. co/ support/ matrix#matrix_ compatibility.

Installing on Windows
Rename the downloaded file logstash-7.0.0.zip. Unzip the downloaded file. Once
unzipped, navigate to the newly created folder, as shown in the following code snippet:

E:\>cd logstash-oss-7.0.0

https://www.elastic.co/products/x-pack/open
https://www.elastic.co/products/x-pack/open
https://www.elastic.co/products/x-pack/open
https://www.elastic.co/products/x-pack/open
https://www.elastic.co/products/x-pack/open
https://www.elastic.co/products/x-pack/open
https://www.elastic.co/products/x-pack/open
https://www.elastic.co/products/x-pack/open
https://www.elastic.co/products/x-pack/open
https://www.elastic.co/products/x-pack/open
https://www.elastic.co/products/x-pack/open
https://www.elastic.co/products/x-pack/open
https://www.elastic.co/products/x-pack/open
https://www.elastic.co/products/x-pack/open
https://www.elastic.co/products/x-pack/open
https://www.elastic.co/products/x-pack/open
https://www.elastic.co/products/x-pack/open
https://www.elastic.co/downloads/logstash#ga-release
https://www.elastic.co/downloads/logstash#ga-release
https://www.elastic.co/downloads/logstash#ga-release
https://www.elastic.co/downloads/logstash#ga-release
https://www.elastic.co/downloads/logstash#ga-release
https://www.elastic.co/downloads/logstash-oss#ga-release
https://www.elastic.co/downloads/logstash-oss#ga-release
https://www.elastic.co/downloads/logstash-oss#ga-release
https://www.elastic.co/downloads/logstash-oss#ga-release
https://www.elastic.co/downloads/logstash-oss#ga-release
https://www.elastic.co/downloads/logstash-oss#ga-release
https://www.elastic.co/downloads/logstash-oss#ga-release
https://www.elastic.co/downloads/logstash-oss#ga-release
https://www.elastic.co/downloads/logstash-oss#ga-release
https://www.elastic.co/downloads/logstash-oss#ga-release
https://www.elastic.co/downloads/logstash-oss#ga-release
https://www.elastic.co/downloads/logstash-oss#ga-release
https://www.elastic.co/downloads/logstash-oss#ga-release
https://www.elastic.co/downloads/logstash-oss#ga-release
https://www.elastic.co/downloads/logstash-oss#ga-release
https://www.elastic.co/downloads/logstash-oss#ga-release
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility

Analyzing Log Data Chapter 5

[161]

Installing on Linux
 Unzip the tar.gz package and navigate to the newly created folder, as follows:

$>tar -xzf logstash-oss-7.0.0.tar.gz
$>cd logstash-7.0.0/

The Logstash installation folder will be referred to as LOGSTASH_HOME.

Running Logstash
Logstash requires configuration to be specified while running it. Configuration can be
specified directly as an argument using the -e option by specifying the configuration file
(the .conf file) using the -f option/flag.

Using the terminal/command prompt, navigate to LOGSTASH_HOME/bin. Let's ensure that
Logstash works fine after installation by running the following command with a simple
configuration (the logstash pipeline) as a parameter:

E:\logstash-7.0.0\bin>logstash -e "input { stdin { } } output { stdout {}
}"

You should get the following logs:

E:\logstash-7.0.0\bin>logstash -e "input { stdin {}} output { stdout{}}"
Sending Logstash logs to E:/logstash-7.0.0/logs which is now configured via
log4j2.properties
[2019-03-17T15:17:23,771][INFO][logstash.setting.writabledirectory]
Creating directory {:setting=>"path.queue",
:path=>"E:/logstash-7.0.0/data/queue"}
[2019-03-17T15:17:23,782][INFO][logstash.setting.writabledirectory]
Creating directory {:setting=>"path.dead_letter_queue",
:path=>"E:/logstash-7
.0.0/data/dead_letter_queue"}
[2019-03-17T15:17:23,942][WARN][logstash.config.source.multilocal]
Ignoring the 'pipelines.yml' file because modules or command line options
are specified
[2019-03-17T15:17:23,960][INFO][logstash.runner] Starting Logstash
{"logstash.version"=>"7.0.0"}
[2019-03-17T15:17:24,006][INFO][logstash.agent] No persistent UUID file
found. Generating new UUID {:uuid=>"5e0b1f2a-d1dc-4c0b-9c4f-8efded
6c3260", :path=>"E:/logstash-7.0.0/data/uuid"}

Analyzing Log Data Chapter 5

[162]

[2019-03-17T15:17:32,701][INFO][logstash.javapipeline] Starting pipeline
{:pipeline_id=>"main", "pipeline.workers"=>4, "pipeline.batch.size"=>125
, "pipeline.batch.delay"=>50, "pipeline.max_inflight"=>500,
:thread=>"#<Thread:0x74a9c9ab run>"}
[2019-03-17T15:17:32,807][INFO][logstash.javapipeline] Pipeline started
{"pipeline.id"=>"main"}
The stdin plugin is now waiting for input:
[2019-03-17T15:17:32,897][INFO][logstash.agent] Pipelines running
{:count=>1, :running_pipelines=>[:main], :non_running_pipelines=>[]}
[2019-03-17T15:17:33,437][INFO][logstash.agent] Successfully started
Logstash API endpoint {:port=>9600}

Now, enter any text and press Enter. Logstash adds a timestamp and IP address
information to the input text message. Exit Logstash by issuing a CTRL + C command in the
shell where Logstash is running. We just ran Logstash with some simple configurations
(pipeline). In the next section, we will explore the Logstash pipeline in more detail.

In some windows machines, after executing the previous mentioned
command, you might encounter error like "ERROR: Unknown command '{
stdin { } } output { stdout {} }'". In that case, please remove the spaces in
between the command and execute the command as follows C:\>logstash
-e input"{stdin{}}output{stdout{}}"

The Logstash architecture
The Logstash event processing pipeline has three stages, that is, Inputs, Filters, and
Outputs. A Logstash pipeline has two required elements, that is, input and output, and one
option element known as filters:

Analyzing Log Data Chapter 5

[163]

Inputs create events, Filters modify the input events, and Outputs ship them to the
destination. Inputs and outputs support codecs, which allow you to encode or decode the
data as and when it enters or exits the pipeline, without having to use a separate filter.

Logstash uses in-memory bounded queues between pipeline stages by default (Input to
Filter and Filter to Output) to buffer events. If Logstash terminates unsafely, any events
that are stored in memory will be lost. To prevent data loss, you can enable Logstash to
persist in-flight events to the disk by making use of persistent queues.

Persistent queues can be enabled by setting the queue.type:
persisted property in the logstash.yml file, which can be found under
the LOGSTASH_HOME/config folder. logstash.yml is a configuration file
that contains settings related to Logstash. By default, the files are stored in
LOGSTASH_HOME/data/queue. You can override this by setting the
path.queue property in logstash.yml.
By default, Logstash starts with a heap size of 1 GB. This can be
overridden by setting the Xms and Xmx properties in the jvm.options
file, which is found under the LOGSTASH_HOME/config folder.

The Logstash pipeline is stored in a configuration file that ends with a .conf extension.
The three sections of the configuration file are as follows:

input
{
}
filter
{
}
output
{
}

Each of these sections contains one or more plugin configurations. A plugin can be
configured by providing the name of the plugin and then its settings as a key-value pair.
The value is assigned to a key using the => operator.

Let's use the same configuration that we used in the previous section, with some little
modifications, and store it in a file:

#simple.conf
#A simple logstash configuration

input {
 stdin { }

Analyzing Log Data Chapter 5

[164]

}

filter {
 mutate {
 uppercase => ["message"]
 }
}

output {
 stdout {
 codec => rubydebug
 }
}

Create a conf folder under LOGSTASH_HOME. Create a file called simple.conf under the
LOGSTASH_HOME/conf folder.

It's good practice to place all the configurations in a separate directory,
either under LOGSTASH_HOME or outside of it rather than placing the files
in the LOGSTASH_HOME/bin folder.

You may notice that this file contains two required elements, input and output, and that
the input section has a plugin named stdin which accepts default parameters. The
output section has a stdout plugin which accepts the rubydebug codec. stdin is used for
reading input from the standard input, and the stdout plugin is used for writing the event
information to standard outputs. The rubydebug codec will output your Logstash event
data using the Ruby Awesome Print library. It also contains a filter section that has a
mutate plugin, which converts the incoming event message into uppercase.

Let's run Logstash using this new pipeline/configuration that's stored in the simple.conf
file, as follows:

E:\logstash-7.0.0\bin>logstash -f ../conf/simple.conf

Once Logstash has started, enter any input, say, LOGSTASH IS AWESOME, and you should
see the response, as follows:

{
 "@version" => "1",
 "host" => "SHMN-IN",
 "@timestamp" => 2017-11-03T11:42:56.221Z,
 "message" => "LOGSTASH IS AWESOME\r"
}

Analyzing Log Data Chapter 5

[165]

As seen in the preceding code, along with the input message, Logstash automatically adds
the timestamp at which the event was generated, and information such as the host and
version number. The output is pretty printed due to the use of the rubydebug codec. The
incoming event is always stored in the field named message.

 Since the configuration was specified using the file note, we used the -f
flag/option when running Logstash.

Overview of Logstash plugins
Logstash has a rich collection of input, filter, codec, and output plugins. Plugins are
available as self-contained packages called gems, and are hosted on RubyGems.org. By
default, as part of the Logstash distribution, many common plugins are available out of the
box. You can verify the list of plugins that are part of the current installation by executing
the following command:

E:\logstash-7.0.0\bin>logstash-plugin list

By passing the --verbose flag to the preceding command, you can find
out the version information of each plugin.

Using the --group flag, followed by either input, filter, output, or codec, you can find
the list of installed input, filters, output, codecs, and plugins, respectively. For example:

E:\logstash-7.0.0\bin>logstash-plugin list --group filter

You can list all the plugins containing a name fragment by passing the name fragment to
logstash-plugin list. For example:

E:\logstash-7.0.0\bin>logstash-plugin list 'pager'

In the preceding example commands, E:\logstash-7.0.0\bin> refers
to the LOGSTASH_HOME\bin directory on your machine.

Analyzing Log Data Chapter 5

[166]

Installing or updating plugins
If the required plugin is not bundled by default, you can install it using the
bin\logstash-plugin install command. For example, to install the logstash-
output-email plugin, execute the following command:

E:\logstash-7.0.0\bin>logstash-plugin install logstash-output-email

By using the bin\logstash-plugin update command and passing the plugin name as a
parameter to the command, you can get the latest version of the plugin:

E:\logstash-oss-7.0.0\bin>logstash-plugin update logstash-output-s3

Executing just the bin\logstash-plugin update command would
update all the plugins.

Input plugins
An input plugin is used to configure a set of events to be fed to Logstash. The plugin allows
you to configure single or multiple input sources. It acts as the first section, which is
required in the Logstash configuration file. The list of available input plugins out of the box
is as follows:

logstash-input-beats logstash-input-kafka logstash-input-elasticsearch logstash-input-ganglia
logstash-input-heartbeat logstash-input-unix logstash-input-syslog logstash-input-stdin
logstash-input-udp logstash-input-twitter logstash-input-tcp logstash-input-sqs
logstash-input-snmptrap logstash-input-redis logstash-input-pipe logstash-input-graphite
logstash-input-s3 logstash-input-rabbitmq logstash-input-lumberjack logstash-input-http_poller
logstash-input-exec logstash-input-file logstash-input-http logstash-input-imap
logstash-input-gelf logstash-input-jdbc logstash-input-azure_event_hubs logstash-input-generator

Details of each of these plugins and a list of the other available plugins that are not part of
the default distribution can be found at https:/ /www. elastic. co/ guide/ en/ logstash/ 7.
0/input-plugins. html.

https://www.elastic.co/guide/en/logstash/7.0/input-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/input-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/input-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/input-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/input-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/input-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/input-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/input-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/input-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/input-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/input-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/input-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/input-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/input-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/input-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/input-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/input-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/input-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/input-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/input-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/input-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/input-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/input-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/input-plugins.html

Analyzing Log Data Chapter 5

[167]

Output plugins
Output plugins are used to send data to a destination. Output plugins allow you to
configure single or multiple output sources. They act as the last section, which is required
in the Logstash configuration file. The list of available output plugins out of the box is as
follows:

logstash-output-cloudwatch logstash-output-csv logstash-output-udp logstash-output-webhdfs
logstash-output-elastic_app_search logstash-output-elasticsearch logstash-output-email logstash-output-file
logstash-output-null logstash-output-lumberjack logstash-output-http logstash-output-graphite
logstash-output-nagios logstash-output-pagerduty logstash-output-pipe logstash-output-rabbitmq
logstash-output-redis logstash-output-s3 logstash-output-sns logstash-output-sqs
logstash-output-stdout logstash-output-tcp

Details of each of the preceding plugins and a list of the other available plugins that are not
part of the default distribution can be found at https:/ /www. elastic. co/guide/ en/
logstash/7.0/output- plugins. html.

Filter plugins
A filter plugin is used to perform transformations on the data. It allows you to combine one
or more plugins, and the order of the plugins defines the order in which the data is
transformed. It acts as the intermediate section between input and output, and it's an
optional section in the Logstash configuration. The list of available filter plugins out of the
box is as follows:

logstash-filter-de_dot logstash-filter-dissect logstash-filter-dns logstash-filter-drop
logstash-filter-elasticsearch logstash-filter-fingerprint logstash-filter-geoip logstash-filter-grok
logstash-filter-http logstash-filter-jdbc_static logstash-filter-jdbc_streaming logstash-filter-json
logstash-filter-mutate logstash-filter-metrics logstash-filter-memcached logstash-filter-kv
logstash-filter-ruby logstash-filter-sleep logstash-filter-split logstash-filter-syslog_pri
logstash-filter-throttle logstash-filter-translate logstash-filter-urldecode logstash-filter-truncate
logstash-filter-aggregate logstash-filter-anonymize logstash-filter-xml logstash-filter-useragent
logstash-filter-date logstash-filter-csv logstash-filter-clone logstash-filter-cidr
logstash-filter-anonymize logstash-filter-aggregate

Details of each of the preceding plugins and a list of the other available plugins that are not
part of the default distribution can be found at https:/ /www. elastic. co/guide/ en/
logstash/7.0/filter- plugins. html.

https://www.elastic.co/guide/en/logstash/7.0/output-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/output-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/output-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/output-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/output-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/output-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/output-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/output-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/output-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/output-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/output-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/output-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/output-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/output-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/output-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/output-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/output-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/output-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/output-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/output-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/output-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/output-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/output-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/output-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/filter-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/filter-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/filter-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/filter-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/filter-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/filter-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/filter-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/filter-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/filter-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/filter-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/filter-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/filter-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/filter-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/filter-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/filter-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/filter-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/filter-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/filter-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/filter-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/filter-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/filter-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/filter-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/filter-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/filter-plugins.html

Analyzing Log Data Chapter 5

[168]

Codec plugins
Codec plugins are used to encode or decode incoming or outgoing events from Logstash.
Codecs can be used in input and output as well. Input codecs render a convenient way to
decode your data before it even enters the input. Output codecs provide a convenient way
to encode your data before it leaves the output. The list of available codec plugins out of the
box is as follows:

logstash-codec-cef logstash-codec-es_bulk logstash-codec-json logstash-codec-multiline

logstash-codec-collectd logstash-codec-edn_lines logstash-codec-json_lines logstash-codec-netflow

logstash-codec-dots logstash-codec-fluent logstash-codec-line logstash-codec-plain

logstash-codec-edn logstash-codec-graphite logstash-codec-msgpack logstash-codec-rubydebug

Details of each of the preceding plugins and a list of the other available plugins that are not
part of the default distribution can be found at https:/ /www. elastic. co/guide/ en/
logstash/7.0/codec- plugins. html.

Exploring plugins
In this section, we will explore some commonly used input, output, filters, and codec
plugins.

Exploring input plugins
Let's walk through some of the most commonly used input plugins in detail.

File
The file plugin is used to stream events from file(s) line by line. It works in a similar
fashion to the tail -0f Linux\Unix command. For each file, it keeps track of any changes
in the file, and the last location from where the file was read, only sends the data since it
was last read. It also automatically detects file rotation. This plugin also provides the option
to read the file from the beginning of the file.

The file plugin keeps account of the current position in each file. It does so by recording
the current position in a separate file named sincedb. This makes it possible as well as
convenient to stop and restart Logstash and have it pick up where it left off without
missing the lines that were added to the file while Logstash was stopped.

https://www.elastic.co/guide/en/logstash/7.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/codec-plugins.html
https://www.elastic.co/guide/en/logstash/7.0/codec-plugins.html

Analyzing Log Data Chapter 5

[169]

The location of the sincedb file is set to <path.data>/plugins/inputs/file by
default, which can be overridden by providing the file path for the sincedb_path plugin
parameter. The only required parameter for this plugin is the path parameter, which
accepts one or more files to read from.

Let's take some example configurations to understand this plugin better:

#sample configuration 1
#simple1.conf

input
{ file{
 path => "/usr/local/logfiles/*"
 }
}
 output
{
 stdout {
 codec => rubydebug
 }
}

The preceding configuration specifies the streaming of all the new entries (that is, tailing
the files) to the files found under the /usr/local/logfiles/ location:

#sample configuration 2
#simple2.conf
input
{
 file{
 path => ["D:\es\app*","D:\es\logs*.txt"]
 start_position => "beginning"
 exclude => ["*.csv]
 discover_interval => "10s"
 type => "applogs"
 }
}

output
{
 stdout {
 codec => rubydebug
 }
}

Analyzing Log Data Chapter 5

[170]

The preceding configuration specifies the streaming of all the log entries/lines in the files
found under the D:\es\app* location, and only files of the .txt type. Files found under
the D:\es\logs*.txt location, starting from the beginning (specified by the
start_position => "beginning" parameter), and while looking for files, it excludes
files of the .csv type (specified by the exclude => ["*.csv] parameter, which takes an
array of values). Every line that's streamed would be stored in the message field by default.
The preceding configuration also specified to add a new additional field type with the
applogs value (specified by the type => "applogs" parameter). Adding additional
fields would be helpful while transforming events in filter plugins or identifying the events
in the output. The discover_interval parameter is used to define how often the path
will be expanded to search for new files that are created inside the location specified in
the path parameter.

Specifying the parameter/setting as start_position => "beginning"
or sincedb_path => "NULL" would force the file to stream from the
beginning every time Logstash is restarted.

Beats
The Beats input plugin allows Logstash to receive events from the Elastic Beats framework.
Beats are a collection of lightweight daemons that collect operational data from your
servers and ship to configured outputs such as Logstash, Elasticsearch, Redis, and so on.
There are several Beats available, including Metricbeat, Filebeat, Winlogbeat, and so on.
Filebeat ships log files from your servers, Metricbeat is a server monitoring agent that
periodically collects metrics from the services and operating systems running on your
servers, and Winlogbeat ships Windows event logs. We will be exploring the Beats
framework and some of these Beats in the upcoming chapters.

By using the beats input plugin, we can make Logstash listen on desired ports for
incoming Beats connections:

#beats.conf

input {
 beats {
 port => 1234
 }

}

output {
 elasticsearch {

Analyzing Log Data Chapter 5

[171]

 }
}

port is the only required setting for this plugin. The preceding configuration makes
Logstash listen for incoming Beats connections and index into Elasticsearch. When you start
Logstash with the preceding configuration, you may notice Logstash starting an input
listener on port 1234 in the logs, as follows:

E:\logstash-7.0.0\bin>logstash -f ../conf/beats.conf -r
Sending Logstash logs to E:/logstash-7.0.0/logs which is now configured via
log4j2.properties
[2019-04-22T10:45:04,551][WARN][logstash.config.source.multilocal]
Ignoring the 'pipelines.yml' file because modules or command line options
are spec
ified
[2019-04-22T10:45:04,579][INFO][logstash.runner] Starting Logstash
{"logstash.version"=>"7.0.0"}
[2019-04-22T10:45:12,622][INFO][logstash.outputs.elasticsearch]
Elasticsearch pool URLs updated {:changes=>{:removed=>[],
:added=>[http://127.0.0.1:9
200/]}}
[2019-04-22T10:45:13,008][WARN][logstash.outputs.elasticsearch] Restored
connection to ES instance {:url=>"http://127.0.0.1:9200/"}
[2019-04-22T10:45:13,114][INFO][logstash.outputs.elasticsearch] ES Output
version determined {:es_version=>7}
[2019-04-22T10:45:13,119][WARN][logstash.outputs.elasticsearch] Detected a
6.x and above cluster: the `type` event field won't be used to determine t
he document _type {:es_version=>7}
[2019-04-22T10:45:13,148][INFO][logstash.outputs.elasticsearch] New
Elasticsearch output {:class=>"LogStash::Outputs::ElasticSearch",
:hosts=>["//127
.0.0.1"]}
[2019-04-22T10:45:13,162][INFO][logstash.outputs.elasticsearch] Using
default mapping template
[2019-04-22T10:45:13,186][INFO][logstash.javapipeline] Starting pipeline
{:pipeline_id=>"main", "pipeline.workers"=>4, "pipeline.batch.size"=>125
, "pipeline.batch.delay"=>50, "pipeline.max_inflight"=>500,
:thread=>"#<Thread:0x1bf9b54c run>"}
[2019-04-22T10:45:13,453][INFO][logstash.outputs.elasticsearch] Index
Lifecycle Management is set to 'auto', but will be disabled - Index
Lifecycle m
anagement is not installed on your Elasticsearch cluster
[2019-04-22T10:45:13,459][INFO][logstash.outputs.elasticsearch] Attempting
to install template {:manage_template=>{"index_patterns"=>"logstash-*", "v
ersion"=>60001, "settings"=>{"index.refresh_interval"=>"5s",
"number_of_shards"=>1},
"mappings"=>{"dynamic_templates"=>[{"message_field"=>{"path_match
"=>"message", "match_mapping_type"=>"string", "mapping"=>{"type"=>"text",

Analyzing Log Data Chapter 5

[172]

"norms"=>false}}}, {"string_fields"=>{"match"=>"*",
"match_mapping_type"=>"s
tring", "mapping"=>{"type"=>"text", "norms"=>false,
"fields"=>{"keyword"=>{"type"=>"keyword", "ignore_above"=>256}}}}}],
"properties"=>{"@timestamp"=>
{"type"=>"date"}, "@version"=>{"type"=>"keyword"},
"geoip"=>{"dynamic"=>true, "properties"=>{"ip"=>{"type"=>"ip"},
"location"=>{"type"=>"geo_point"},
"latitude"=>{"type"=>"half_float"},
"longitude"=>{"type"=>"half_float"}}}}}}}
[2019-04-22T10:45:13,513][INFO][logstash.outputs.elasticsearch] Installing
elasticsearch template to _template/logstash
[2019-04-22T10:45:13,902][INFO][logstash.inputs.beats] Beats inputs:
Starting input listener {:address=>"0.0.0.0:1234"}
[2019-04-22T10:45:13,932][INFO][logstash.javapipeline] Pipeline started
{"pipeline.id"=>"main"}
[2019-04-22T10:45:14,196][INFO][logstash.agent] Pipelines running
{:count=>1, :running_pipelines=>[:main], :non_running_pipelines=>[]}
[2019-04-22T10:45:14,204][INFO][org.logstash.beats.Server] Starting server
on port: 1234
[2019-04-22T10:45:14,695][INFO][logstash.agent] Successfully started
Logstash API endpoint {:port=>9600}

Logstash starts the input listener on the 0.0.0.0 address, which is the default value of the
host parameter/setting of the plugin.

You can start multiple listeners to listen for incoming Beats connections as follows:

#beats.conf

input {
 beats {
 host => "192.168.10.229"
 port => 1234
 }
 beats {
 host => "192.168.10.229"
 port => 5065
 }

}

output {
 elasticsearch {
 }
}

Analyzing Log Data Chapter 5

[173]

Using the -r flag while running Logstash allows you to automatically
reload the configuration whenever changes are made to it and saved. This
would be useful when testing new configurations, as you can modify
them so that Logstash doesn't need to be started manually every time a
change is made to the configuration.

JDBC
This plugin is used to import data from a database to Logstash. Each row in the results set
would become an event, and each column would get converted into fields in the event.
Using this plugin, you can import all the data at once by running a query, or you can
periodically schedule the import using cron syntax (using the schedule
parameter/setting). When using this plugin, the user would need to specify the path of the
JDBC drivers that's appropriate to the database. The driver library can be specified using
the jdbc_driver_library parameter.

The SQL query can be specified using the statement parameter or can be stored in a file;
the path of the file can be specified using the statement_filepath parameter. You can
use either statement or statement_filepath for specifying the query. It is good practice
to store the bigger queries in a file. This plugin accepts only one SQL statement since
multiple SQL statements aren't supported. If the user needs to execute multiple queries to
ingest data from multiple tables/views, then they need to define multiple JDBC inputs (that
is, one JDBC input for one query) in the input section of Logstash configuration.

The results set size can be specified by using the jdbc_fetch_size parameter. The plugin
will persist the sql_last_value parameter in the form of a metadata file stored in the
configured last_run_metadata_path parameter. Upon query execution, this file will be
updated with the current value of sql_last_value. The sql_last_value value is used
to incrementally import data from the database every time the query is run based on the
schedule set. Parameters to the SQL statement can be specified using the parameters
setting, which accepts a hash of the query parameter.

Let's look at an example:

#jdbc.conf
input {
 jdbc {
 # path of the jdbc driver
 jdbc_driver_library => "/path/to/mysql-connector-java-5.1.36-
bin.jar"

 # The name of the driver class
 jdbc_driver_class => "com.mysql.jdbc.Driver"

Analyzing Log Data Chapter 5

[174]

 # Mysql jdbc connection string to company database
 jdbc_connection_string => "jdbc:mysql://localhost:3306/company"
 # user credentials to connect to the DB
 jdbc_user => "user"
 jdbc_password => "password"

 # when to periodically run statement, cron format (ex: every 30
minutes)
 schedule => "30 * * * *"

 # query parameters
 parameters => { "department" => "IT" }

 # sql statement
 statement => "SELECT * FROM employees WHERE department=
:department AND
 created_at >= :sql_last_value"
 }
}

output {
 elasticsearch {
 index => "company"
 document_type => "employee"
 hosts => "localhost:9200"
 }
}

The previous configuration is used to connect to the company schema belonging to
MySQLdb and is used to pull employee records from the IT department. The SQL
statement is run every 30 minutes to check for new employees that have been created since
the last run. The fetched rows are sent to Elasticsearch and configured as the output.

sql_last_value is set to Thursday, January 1, 1970 by default before the
execution of the query, and is updated with the timestamp every time the
query is run. You can force it to store a column value other than the last
execution time, by setting the use_column_value parameter to true and
specifying the column name to be used using the tracking_column
parameter.

Analyzing Log Data Chapter 5

[175]

IMAP
This plugin is used to read emails from an IMAP server. This plugin can be used to read
emails and, depending on the email context, the subject of the email, or specific senders, it
can be conditionally processed in Logstash and used to raise JIRA tickets, pagerduty events,
and so on. The required configurations are host, password, and user. Depending on the
settings that are required by the IMAP server that you want to connect to, you might need
to set values for additional configurations, such as port, secure, and so on. host is where
you would specify your IMAP server host details, and user and password are where you
need to specify the user credentials to authenticate/connect to the IMAP server:

#email_log.conf
input {
 imap {
 host => "imap.packt.com"
 password => "secertpassword"
 user => "user1@pact.com"
 port => 993
 check_interval => 10
 folder => "Inbox"

 }
}

output {
 stdout {
 codec => rubydebug
 }
 elasticsearch {
 index => "emails"
 document_type => "email"
 hosts => "localhost:9200"
 }
}

By default, the logstash-input-imap plugin reads from the INBOX folder, and it polls the
IMAP server every 300 seconds. In the preceding configuration, when using the
check_interval parameter, the interval is overridden every 10 seconds. Each new email
would be considered an event, and as per the preceding configuration, it would be sent to
the standard output and Elasticsearch.

Analyzing Log Data Chapter 5

[176]

Output plugins
In this section, we will walk through some of the most commonly used output plugins in
detail.

Elasticsearch
This plugin is used for transferring events from Logstash to Elasticsearch. This plugin is the
recommended approach for pushing events/log data from Logstash to Elasticsearch. Once
the data is in Elasticsearch, it can be easily visualized using Kibana. This plugin requires no
mandatory parameters and it automatically tries to connect to Elasticsearch, which is
hosted on localhost:9200.

The simple configuration of this plugin would be as follows:

#elasticsearch1.conf

input {
 stdin{
 }
 }

output {
 elasticsearch {
 }
}

Often, Elasticsearch will be hosted on a different server that's usually secure, and we might
want to store the incoming data in specific indexes. Let's look at an example of this:

#elasticsearch2.conf

input {
 stdin{
 }
 }

output {
 elasticsearch {
 index => "company"
 document_type => "employee"
 hosts => "198.162.43.30:9200"
 user => "elastic"
 password => "elasticpassword"
 }
}

Analyzing Log Data Chapter 5

[177]

As we can see in the preceding code, incoming events would be stored in an Elasticsearch
index named company (specified using the index parameter) under the employee type
(specified using the document_type parameter). Elasticsearch is hosted at the
198.162.43.30:9200 address (specified using the document_type parameter), and the
user credentials of Elasticsearch are elastic and elasticpassword (specified using
the user and password parameters).

If the index is not specified by default, the index pattern would be logstash-
%(+YYYY.MM.dd) and the document_type would be set to the type event, if it existed;
otherwise, the document type would be assigned the value of logs/events.

You can also specify the document_type index and the document_id dynamically by
using syntax %(fieldname). In the hosts parameter, a list of hosts can be specified too.
By default, the protocol that's used would be HTTP, if not specified explicitly while
defining hosts.

It is recommended that you specify either the data nodes or ingest nodes
in the hosts field.

CSV
This plugin is used for storing output in the CSV format. The required parameters for this
plugin are the path parameter, which is used to specify the location of the output file, and
fields, which specifies the field names from the event that should be written to the CSV
file. If a field does not exist on the event, an empty string will be written.

Let's look at an example. In the following configuration, Elasticsearch is queried against the
apachelogs index for all documents matching statuscode:200, and the message,
@timestamp, and host fields are written to a .csv file:

#csv.conf

input {
 elasticsearch {
 hosts => "localhost:9200"
 index => "apachelogs"
 query => '{ "query": { "match": { "statuscode": 200 } }}'
 }
}
output {
 csv {
 fields => ["message", "@timestamp","host"]

Analyzing Log Data Chapter 5

[178]

 path => "D:\es\logs\export.csv"
 }
}

Kafka
This plugin is used to write events to a Kafka topic. It uses the Kafka Producer API to write
messages to a topic on the broker. The only required configuration is the topic_id.

Let's look at a basic Kafka configuration:

#kafka.conf

input {
 stdin{
 }
 }

output {
 kafka {
 bootstrap_servers => "localhost:9092"
 topic_id => 'logstash'
 }
}

The bootstrap_servers parameter takes the list of all server connections in the form of
host1:port1, host2:port2, and so on, and the producer will only use it for getting metadata
(topics, partitions, and replicas). The socket connections for sending the actual data will be
established based on the broker information that's returned in the metadata. topic_id
refers to the topic name where messages will be published.

Note: Only Kafka version 0.10.0.x is compatible with Logstash versions
2.4.x to 5.x.x and the Kafka output plugin version 5.x.x.

PagerDuty
This output plugin will send notifications based on preconfigured services and escalation
policies. The only required parameter for this plugin is the service_key to specify the
Service API Key.

Analyzing Log Data Chapter 5

[179]

Let's look at a simple example with basic pagerduty configuration. In the following
configuration, Elasticsearch is queried against the ngnixlogs index for all documents
matching statuscode:404, and pagerduty events are raised for each document returned
by Elasticsearch:

#kafka.conf
input {
 elasticsearch {
 hosts => "localhost:9200"
 index => "ngnixlogs"
 query => '{ "query": { "match": { "statuscode": 404} }}'
 }
}

output {
 pagerduty {
 service_key => "service_api_key"
 details => {
 "timestamp" => "%{[@timestamp]}"
 "message" => "Problem found: %{[message]}"
 }
 event_type => "trigger"
 }
}

Codec plugins
In the following sections, we will take a look at some of the most commonly used codec
plugins in detail.

JSON
This codec is useful if the data consists of .json documents, and is used to encode (if used
in output plugins) or decode (if used in input plugins) the data in the .json format. If the
data being sent is a JSON array at its root, multiple events will be created (that is, one per
element).

The simple usage of a JSON codec plugin is as follows:

input{
 stdin{
 codec => "json"
 }
}

Analyzing Log Data Chapter 5

[180]

If there are multiple JSON records, and those are delimited by \n, then
use the json_lines codec.

If the json codec receives a payload from an input that is not valid JSON, then it will fall
back to plain text and add a _jsonparsefailure tag.

Rubydebug
This codec will output your Logstash event data using the Ruby Awesome Print library.

The simple usage of this codec plugin is as follows:

output{
 stdout{
 codec => "rubydebug"
 }
}

Multiline
This codec is useful for merging multiple lines of data with a single event. This codec comes
in very handy when dealing with stack traces or single event information that is spread
across multiple lines.

The sample usage of this codec plugin is shown in the following snippet:

input {
 file {
 path => "/var/log/access.log"
 codec => multiline {
 pattern => "^\s "
 negate => false
 what => "previous"
 }
 }
}

The preceding multiline codec combines any line starting with a space with the previous
line.

Analyzing Log Data Chapter 5

[181]

Filter plugins
Since we will be covering different ways of transforming and enriching logs using various
filter plugins in the next chapter, we won't be covering anything about filter plugins here.

Ingest node
Prior to Elasticsearch 5.0, if we wanted to preprocess documents before indexing them to
Elasticsearch, then the only way was to make use of Logstash or preprocess them
programmatically/manually and then index them to Elasticsearch. Elasticsearch lacked the
ability to preprocess/transform the documents, and it just indexed the documents as they
were. However, the introduction of a feature called ingest node in Elasticsearch 5.x onward
provided a lightweight solution for preprocessing and enriching documents within
Elasticsearch itself before they are indexed.

If an Elasticsearch node is implemented with the default configuration, by default, it would
be master, data, and ingest enabled (that is, it would act as a master node, data node, and
ingest node). To disable ingest on a node, configure the following setting in the
elasticsearch.yml file:

node.ingest: false

The ingest node can be used to preprocess documents before the actual indexing is
performed on the document. This preprocessing is performed via an ingest node that
intercepts bulk and index requests, applies the transformations to the data, and then passes
the documents back to the index or bulk APIs. With the release of the new ingest feature,
Elasticsearch has taken out the filter part of Logstash so that we can do our processing of
raw logs and enrichment within Elasticsearch.

To preprocess a document before indexing, we must define the pipeline (which contains
sequences of steps known as processors for transforming an incoming document). To use a
pipeline, we simply specify the pipeline parameter on an index or bulk request to tell the
ingest node which pipeline to use:

POST my_index/my_type?pipeline=my_pipeline_id
{
 "key": "value"
}

Analyzing Log Data Chapter 5

[182]

Defining a pipeline
A pipeline defines a series of processors. Each processor transforms the document in some
way. Each processor is executed in the order in which it is defined in the pipeline. A
pipeline consists of two main fields: a description and a list of processors.

The description parameter is a non-required field and is used to store some
descriptions/usage of the pipeline; by using the processors parameter, you can list the
processors to transform the document.

The typical structure of a pipeline is as follows:

{
 "description" : "...",
 "processors" : [...]
}

The ingest node has around 20 + built-in processors, including gsub, grok, convert, remove,
rename, and so on. These can be used while building a pipeline. Along with built-in
processors, ingest plugins such as ingest attachment, ingest geo-ip, and ingest user-agent
are available and can be used while building a pipeline. These plugins are not available by
default and can be installed just like any other Elasticsearch plugin.

Ingest APIs
The ingest node provides a set of APIs known as ingest APIs, which can be used to define,
simulate, remove, or find information about pipelines. The ingest API endpoint is
_ingest.

Put pipeline API
This API is used to define a new pipeline. This API is also used to add a new pipeline or
update an existing pipeline.

Let's look at an example. As we can see in the following code, we have defined a new
pipeline named firstpipeline, which converts the value present in the message field
into upper case:

curl -X PUT http://localhost:9200/_ingest/pipeline/firstpipeline -H
'content-type: application/json'
 -d '{
 "description" : "uppercase the incoming value in the message field",

Analyzing Log Data Chapter 5

[183]

 "processors" : [
 {
 "uppercase" : {
 "field": "message"
 }
 }
]
}'

When creating a pipeline, multiple processors can be defined, and the order of the
execution depends on the order in which it is defined in the definition. Let's look at an
example for this. As we can see in the following code, we have created a new pipeline
called secondpipeline that converts the uppercase value present in the message field
and renames the message field to data. It creates a new field named label with the
testlabel value:

curl -X PUT http://localhost:9200/_ingest/pipeline/secondpipeline -H
'content-type: application/json'
-d '{
 "description" : "uppercase the incoming value in the message field",
 "processors" : [
 {
 "uppercase" : {
 "field": "message",
 "ignore_failure" : true
 }
 },
 {
 "rename": {
 "field": "message",
 "target_field": "data",
 "ignore_failure" : true
 }
 },
 {
 "set": {
 "field": "label",
 "value": "testlabel",
 "override": false
 }
 }
]
}'

Analyzing Log Data Chapter 5

[184]

Let's make use of the second pipeline to index a sample document:

curl -X PUT 'http://localhost:9200/myindex/mytpe/1?pipeline=secondpipeline'
-H 'content-type: application/json' -d '{
 "message":"elk is awesome"
}'

Let's retrieve the same document and validate the transformation:

curl -X GET http://localhost:9200/myindex/mytpe/1 -H 'content-type:
application/json'

Response:
{
 "_index": "myindex",
 "_type": "mytpe",
 "_id": "1",
 "_version": 1,
 "found": true,
 "_source": {
 "label": "testlabel",
 "data": "ELK IS AWESOME"
 }
}

If the field that's used in the processor is missing, then the processor
throws an exception and the document won't be indexed. In order to
prevent the processor from throwing an exception, we can make use of
the "ignore_failure" : true parameter.

Get pipeline API
This API is used to retrieve the definition of an existing pipeline. Using this API, you can
find the details of a single pipeline definition or find the definitions of all the pipelines.

The command to find the definition of all the pipelines is as follows:

curl -X GET http://localhost:9200/_ingest/pipeline -H 'content-type:
application/json'

Analyzing Log Data Chapter 5

[185]

To find the definition of an existing pipeline, pass the pipeline ID to the pipeline API. The
following is an example of finding the definition of the pipeline named secondpipeline:

curl -X GET http://localhost:9200/_ingest/pipeline/secondpipeline -H
'content-type: application/json'

Delete pipeline API
The delete pipeline API deletes pipelines by ID or wildcard match. The following is
an example of deleting the pipeline named firstpipeline:

curl -X DELETE http://localhost:9200/_ingest/pipeline/firstpipeline -H
'content-type: application/json'

Simulate pipeline API
This pipeline can be used to simulate the execution of a pipeline against the set of
documents provided in the body of the request. You can either specify an existing pipeline
to execute against the provided documents or supply a pipeline definition in the body of
the request. To simulate the ingest pipeline, add the _simulate endpoint to the pipeline
API.

The following is an example of simulating an existing pipeline:

curl -X POST
http://localhost:9200/_ingest/pipeline/firstpipeline/_simulate -H 'content-
type: application/json' -d '{
 "docs" : [
 { "_source": {"message":"first document"} },
 { "_source": {"message":"second document"} }
]
}'

The following is an example of a simulated request, with the pipeline definition in the body
of the request itself:

curl -X POST http://localhost:9200/_ingest/pipeline/_simulate -H 'content-
type: application/json' -d '{
 "pipeline" : {
 "processors":[
 {
 "join": {
 "field": "message",
 "separator": "-"
 }

Analyzing Log Data Chapter 5

[186]

 }]
 },
 "docs" : [
 { "_source": {"message":["first","document"]} }
]
}'

Summary
In this chapter, we laid out the foundations of Logstash. We walked you through the steps
to install and configure Logstash to set up basic data pipelines, and studied Logstash's
architecture.

We also learned about the ingest node that was introduced in Elastic 5.x, which can be used
instead of a dedicated Logstash setup. We saw how the ingest node can be used to
preprocess documents before the actual indexing takes place, and also studied its different
APIs.

In the next chapter, we will show you how a rich set of filters brings Logstash closer to the
other real-time and near real-time stream processing frameworks with zero coding.

6
Building Data Pipelines with

Logstash
In the previous chapter, we understood the importance of Logstash in the log analysis
process. We also covered its usage and its high-level architecture, and went through some
commonly used plugins. One of the important processes of Logstash is converting
unstructured log data into structured data, which helps us search for relevant information
easily and also assists in analysis. Apart from parsing the log data to make it structured, it
would also be helpful if we could enrich the log data during this process so that we can
gain further insights into our logs. Logstash comes in handy for enriching our log data, too.
In the previous chapter, we have also seen that Logstash can read from a wide range of
inputs and that Logstash is a heavy process. Installing Logstash on the edge nodes of
shipping logs might not always be feasible. Is there an alternative or lightweight agent that
can be used to ship logs? Let's explore that in this chapter as well.

In this chapter, we will be covering the following topics:

Parsing and enriching logs using Logstash
The Elastic Beats platform
Installing and configuring Filebeats for shipping logs

Parsing and enriching logs using Logstash
The analysis of structured data is easier and helps us find meaningful/deeper analysis,
rather than trying to perform analysis on unstructured data. Most analysis tools depend on
structured data. Kibana, which we will be making use of for analysis and visualization, can
be used effectively if the data in Elasticsearch is right (the information in the log data is
loaded into appropriate fields, and the datatypes of the fields are more appropriate than
just having all the values of the log data in a single field).

Building Data Pipelines with Logstash Chapter 6

[188]

Log data is typically made up of two parts, as follows:

logdata = timestamp + data

timestamp is the time when the event occurred and data is the information about the
event. data may contain just a single piece of information or it may contain many pieces of
information. For example, if we take apache-access logs, the data piece will contain the
response code, request URL, IP address, and so on. We would need to have a mechanism
for extracting this information from the data and thus converting the unstructured
data/event into a structured data/event. This is where the filter section of the Logstash
pipeline comes in handy. The filter section is made up of one or more filter plugins that
assist in parsing and enriching the log data.

Filter plugins
A filter plugin is used to perform transformations on data. It allows us to combine one or
more plugins, and the order of the plugins defines the order in which the data is
transformed. A sample filter section in a Logstash pipeline would look as follows:

The generated event from the input plugin goes through each of the plugins defined in the
filter section, during which it transforms the event based on the plugins defined. Finally, it
is sent to the output plugin to send the event to the appropriate destination.

In the following sections, we will explore some common filter plugins that are used for
transformation.

Building Data Pipelines with Logstash Chapter 6

[189]

CSV filter
This filter is useful for parsing .csv files. This plugin takes an event containing CSV data,
parses it, and stores it as individual fields.

Let's take some sample data and use a CSV filter to parse data out of it. Store the following
data in a file named users.csv:

FName,LName,Age,Salary,EmailId,Gender
John,Thomas,25,50000,John.Thomas,m
Raj, Kumar,30,5000,Raj.Kumar,f
Rita,Tony,27,60000,Rita.Tony,m

The following code block shows the usage of the CSV filter plugin. The CSV plugin has no
required parameters. It scans each row of data and uses default column names such as
column1, column2, and so on to place the data. By default, this plugin uses , (a comma) as
a field separator. The default separator can be changed by using the separator parameter
of the plugin. You can either specify the list of column names using the columns
parameter, which accepts an array of column names, or by using the
autodetect_column_names parameter, set to true. In doing so, you can let the plugin
know that it needs to detect column names automatically, as follows:

#csv_file.conf
input {
 file{
 path => "D:\es\logs\users.csv"
 start_position => "beginning"
 }
}

filter {
 csv{
 autodetect_column_names => true
 }
}

output {
 stdout {
 codec => rubydebug
 }
}

Building Data Pipelines with Logstash Chapter 6

[190]

Mutate filter
You can perform general mutations on fields using this filter. The fields in the event can be
renamed, converted, stripped, and modified.

Let's enhance the csv_file.conf file we created in the previous section with the mutate
filter and understand its usage. The following code block shows the use of the mutate
filter:

#csv_file_mutuate.conf
input {
 file{
 path => "D:\es\logs\users.csv"
 start_position => "beginning"
 sincedb_path => "NULL"
 }

}

filter {
 csv{
 autodetect_column_names => true
 }
 mutate {
 convert => {
 "Age" => "integer"
 "Salary" => "float"
 }
 rename => { "FName" => "Firstname"
 "LName" => "Lastname" }
 gsub => [
 "EmailId", "\.", "_"
]
 strip => ["Firstname", "Lastname"]
 uppercase => ["Gender"]
 }
}

output {
 stdout {
 codec => rubydebug
 }
}

Building Data Pipelines with Logstash Chapter 6

[191]

As we can see, the convert setting within the filter helps to change the datatype of a
field. The valid conversion targets are integer, string, float, and boolean.

If the conversion type is boolean, these are the possible values:
True: true, t, yes, y, and 1.
False: false, f, no, n, and 0.

The rename setting within the filter helps rename one or more fields. The preceding
example renames the FName field to Firstname and LName to Lastname.

gsub matches a regular expression against a field value and replaces all matches with a
replacement string. Since regular expressions work only on strings, this field can only take
a field containing a string or an array of strings. It takes an array consisting of three
elements per substitution (that is, it takes the field name, regex, and the replacement
string). In the preceding example, . in the EmailId field is replaced with _.

Make sure to escape special characters such as \, ., +, and ? when
building regex.

strip is used to strip the leading and training white spaces.

The order of the settings within the mutate filter matters. The fields are
mutated in the order the settings are defined. For example, since the
FName and LName fields in the incoming event were renamed to
Firstname and Lastname using the rename setting, other settings can no
longer refer to FName and LName. Instead, they have to use the newly
renamed fields.

uppercase is used to convert the string into upper case. In the preceding example, the
value in the Gender field is converted into upper case.

Similarly, by using various settings of the mutate filter, such as lowercase, update,
replace, join, and merge, you can lower-case a string, update an exiting field, replace the
value of a field, join an array of values, or merge fields.

Building Data Pipelines with Logstash Chapter 6

[192]

Grok filter
This is a powerful and often used plugin for parsing the unstructured data into structured
data, thus making the data easily queryable/filterable. In simple terms, Grok is a way of
matching a line against a pattern (which is based on a regular expression) and mapping
specific parts of the line to dedicated fields. The general syntax of a grok pattern is as
follows:

%{PATTERN:FIELDNAME}

PATTERN is the name of the pattern that will match the text. FIELDNAME is the identifier for
the piece of text being matched.

By default, groked fields are strings. To cast either to float or int values, you can use the
following format:

%{PATTERN:FIELDNAME:type}

Logstash ships with about 120 patterns by default. These patterns are reusable and
extensible. You can create a custom pattern by combining existing patterns. These patterns
are based on the Oniguruma regular expression library.

Patterns consist of a label and a regex. For example:

USERNAME [a-zA-Z0-9._-]+

Patterns can contain other patterns, too; for example:

HTTPDATE %{MONTHDAY}/%{MONTH}/%{YEAR}:%{TIME} %{INT}

The complete list of patterns can be found at https:/ /github. com/
logstash- plugins/ logstash- patterns- core/ blob/ master/ patterns/
grok- patterns.

If a pattern is not available, then you can use a regular expression by using the following
format:

(?<field_name>regex)

For example, regex (?<phone>\d\d\d-\d\d\d-\d\d\d\d) would match telephone
numbers, such as 123-123-1234, and place the parsed value into the phone field.

https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns

Building Data Pipelines with Logstash Chapter 6

[193]

Let's look at some examples to understand grok better:

#grok1.conf

input {
 file{
 path => "D:\es\logs\msg.log"
 start_position => "beginning"
 sincedb_path => "NULL"
 }

}

filter {
 grok{
 match => {"message" => "%{TIMESTAMP_ISO8601:eventtime} %{USERNAME:userid}
%{GREEDYDATA:data}" }
 }
}

output {
 stdout {
 codec => rubydebug
 }
}

If the input line is of the "2017-10-11T21:50:10.000+00:00 tmi_19 001 this is a
random message" format, then the output would be as follows:

{
 "path" => "D:\\es\\logs\\msg.log",
 "@timestamp" => 2017-11-24T12:30:54.039Z,
 "data" => "this is a random message\r",
 "@version" => "1",
 "host" => "SHMN-IN",
 "messageId" => 1,
 "eventtime" => "2017-10-11T21:50:10.000+00:00",
 "message" => "2017-10-11T21:50:10.000+00:00 tmi_19 001 this is a
random message\r",
 "userid" => "tmi_19"
}

If the pattern doesn't match the text, it will add a
_grokparsefailure tag to the tags field.

Building Data Pipelines with Logstash Chapter 6

[194]

There is a tool hosted at http:/ /grokdebug. herokuapp. com which helps build grok
patterns that match the log.

X-Pack 5.5 onward contains the Grok Debugger utility and is
automatically enabled when you install X-Pack in Kibana. It is located
under the DevTools tab in Kibana.

Date filter
This plugin is used for parsing the dates from the fields. This plugin is very handy and
useful when working with time series events. By default, Logstash adds a @timestamp
field for each event, representing the time it processed the event. But the user might be
interested in the actual timestamp of the generated event rather than the processed
timestamp. So, by using this filter, you can parse the date/timestamp from the fields and
then use it as the timestamp of the event.

We can use the plugin like so:

filter {
 date {
 match => ["timestamp", "dd/MMM/YYYY:HH:mm:ss Z"]
 }
}

By default, the date filter overwrites the @timestamp field, but this can be changed by
providing an explicit target field, as shown in the following code snippet. Thus, the user
can keep the event time processed by Logstash, too:

filter {
 date {
 match => ["timestamp", "dd/MMM/YYYY:HH:mm:ss Z"]
 target => "event_timestamp"
 }
}

By default, the timezone will be the server local time, unless specified
otherwise. To manually specify the timezone, use the timezone
parameter/setting of the plugin. Valid timezone values can be found
at http:/ /joda- time. sourceforge. net/ timezones. html.

http://grokdebug.herokuapp.com
http://grokdebug.herokuapp.com
http://grokdebug.herokuapp.com
http://grokdebug.herokuapp.com
http://grokdebug.herokuapp.com
http://grokdebug.herokuapp.com
http://grokdebug.herokuapp.com
http://grokdebug.herokuapp.com
http://grokdebug.herokuapp.com
http://joda-time.sourceforge.net/timezones.html
http://joda-time.sourceforge.net/timezones.html
http://joda-time.sourceforge.net/timezones.html
http://joda-time.sourceforge.net/timezones.html
http://joda-time.sourceforge.net/timezones.html
http://joda-time.sourceforge.net/timezones.html
http://joda-time.sourceforge.net/timezones.html
http://joda-time.sourceforge.net/timezones.html
http://joda-time.sourceforge.net/timezones.html
http://joda-time.sourceforge.net/timezones.html
http://joda-time.sourceforge.net/timezones.html
http://joda-time.sourceforge.net/timezones.html
http://joda-time.sourceforge.net/timezones.html
http://joda-time.sourceforge.net/timezones.html
http://joda-time.sourceforge.net/timezones.html
http://joda-time.sourceforge.net/timezones.html

Building Data Pipelines with Logstash Chapter 6

[195]

If the time field has multiple possible time formats, then those can be specified as an array
of values to the match parameter:

match => ["eventdate", "dd/MMM/YYYY:HH:mm:ss Z", "MMM dd yyyy
HH:mm:ss","MMM d yyyy HH:mm:ss", "ISO8601"]

Geoip filter
This plugin is used to enrich the log information. Given the IP address, it adds the
geographical location of the IP address. It finds the geographical information by
performing a lookup against the GeoLite2 City database for valid IP addresses and
populates fields with results. The GeoLite2 City database is a product of the Maxmind
organization and is available under the CCA-ShareAlike 4.0 license. Logstash comes
bundled with the GeoLite2 City database, so when performing a lookup, it doesn't need to
perform any network call; this is why the lookup is fast.

The only required parameter for this plugin is source, which accepts an IP address in
string format. This plugin creates a geoip field with geographical details such as country,
postal code, region, city, and so on. A [geoip][location] field is created if the GeoIP
lookup returns a latitude and longitude, and it is mapped to the geo_point type when
indexing to Elasticsearch. geop_point fields can be used for Elasticsearch's geospatial
query, facet, and filter functions, and can be used to generate Kibana's map visualization, as
shown in the following screenshot:

Building Data Pipelines with Logstash Chapter 6

[196]

The Geoip filter supports both IPv4 and IPv6 lookups.

Useragent filter
This filter parses user agent strings into structured data based on BrowserScope (http:/ /
www.browserscope.org/) data. It adds information about the user agent, such as family,
operating system, version, device, and so on. To extract the user agent details, this filter
plugin makes use of the regexes.yaml database that is bundled with Logstash. The only
required parameter for this plugin is the source parameter, which accepts strings
containing user agent details, as shown in the following screenshot:

http://www.browserscope.org/
http://www.browserscope.org/
http://www.browserscope.org/
http://www.browserscope.org/
http://www.browserscope.org/
http://www.browserscope.org/
http://www.browserscope.org/
http://www.browserscope.org/
http://www.browserscope.org/

Building Data Pipelines with Logstash Chapter 6

[197]

Introducing Beats
Beats are lightweight data shippers that are installed as agents on edge servers to ship
operational data to Elasticsearch. Just like Elasticsearch, Logstash, Kibana, and Beats are
open source products too. Depending on the use case, Beats can be configured to ship the
data to Logstash to transform events prior to pushing the events to Elasticsearch.

The Beats framework is made up of a library called libbeat, which provides an
infrastructure to simplify the process of shipping operation data to Elasticsearch. It offers
the API that all Beats can use to ship data to an output (such as Elasticsearch, Logstash,
Redis, Kafka, and so on), configure the input/output options, process events, implement
logging, and more. The libbeat library is built using the Go programming language. Go
was chosen to build Beats because it's easy to learn, very resource-friendly, and, since it's
statically compiled, it's easy to deploy.

Elastic.co has built and maintained several Beats, such as Filebeat, Packetbeat, Metricbeat,
Heartbeat, and Winlogbeat. There are several community Beats, including amazonbeat,
mongobeat, httpbeat, and nginxbeat, which have been built into the Beats framework by
the open source community. Some of these Beats can be extended to meet business needs,
as some of them provide extension points. If a Beat for your specific use case is not
available, then custom Beats can be easily built with the libbeat library:

Building Data Pipelines with Logstash Chapter 6

[198]

Beats by Elastic.co
Let's take a look at some used Beats commonly used by Elastic.co in the following sections.

Filebeat
Filebeat is an open source, lightweight log shipping agent that ships logs from local files.
Filebeat runs as a binary and no runtime, such as JVM, is needed, hence it's very
lightweight, executable, and also consumes fewer resources. It is installed as an agent on
the edge servers from where the logs need to be shipped. It is used to monitor log
directories, tail the files, and send them to Elasticsearch, Logstash, Redis, or Kafka. It is
easily scalable and allows us to send logs from different systems to a centralized server,
where the logs can then be parsed and processed.

Metricbeat
Metricbeat is a lightweight shipper that periodically collects metrics from the operating
system and from services running on the server. It helps you monitor servers by collecting
metrics from the system and services such as Apache, MondoDB, Redis, and so on, that are
running on the server. Metricbeat can push collected metrics directly into Elasticsearch or
send them to Logstash, Redis, or Kafka. To monitor services, Metricbeat can be installed on
the edge server where services are running; it provides you with the ability to collect
metrics from a remote server as well. However, it's recommended to have it installed on the
edge servers where the services are running.

Packetbeat
Packetbeat captures the network traffic between applications and servers. It is a packet
analyzer that works in real-time. It does tasks such as decoding the application layer
protocols, namely HTTP, MySQL, Memcache, and Redis. It also correlates the requests to
responses and records the different transaction fields that may interest you. Packetbeat is
used to sniff the traffic between different servers and parses the application-level protocol;
it also converts messages into transactions. It also notices issues with the backend
application, such as bugs or other performance-related problems, and so it makes
troubleshooting tasks easy. Packetbeat can run on the same server which contains
application processes, or on its own servers. Packetbeat ships the collected transaction
details to the configured output, such as Elasticsearch, Logstash, Redis, or Kafka.

Building Data Pipelines with Logstash Chapter 6

[199]

Heartbeat
Heatbeat is a new addition to the Beat ecosystem and is used to check if a service is up or
not, and if the services are reachable. Heartbeat is a lightweight daemon that is installed on
a remote server to periodically check the status of services running on the host. Heartbeat
supports ICMP, TCP, and HTTP monitors for checking hosts/services.

Winlogbeat
Winlogbeat is a Beat dedicated to the Windows platform. Winlogbeat is installed as a
Windows service on Windows XP or later versions. It reads from many event logs using
Windows APIs. It can also filter events on the basis of user-configured criteria. After this, it
sends the event data to the configured output, such as Elasticsearch or Logstash. Basically,
Winlogbeat captures event data such as application events, hardware events, security
events, and system events.

Auditbeat
Auditbeat is a new addition to the Beats family, and was first implemented in the Elastic
Stack 6.0. Auditbeat is a lightweight shipper that is installed on servers in order to monitor
user activity. It analyzes and processes event data in the Elastic Stack without using Linux's
auditd. It works by directly communicating with the Linux audit framework and collects
the same data that the auditd collects. It also does the job of sending events to the Elastic
Stack in real time. By using auditbeat, you can watch the list of directories and identify
whether there were any changes as file changes are sent to the configured output in real
time. This helps us identify various security policy violations.

Journalbeat
Journalbeat is one of the latest additions to the Beats family, starting with Elastic Stack 6.5.
Journalbeat is a lightweight shipper that is installed as agents on servers to collect and ship
systemd journals to either Elasticsearch or Logsatsh. Journalbeat requires systemd v233 or
later to function properly.

Building Data Pipelines with Logstash Chapter 6

[200]

Functionbeat
As lot of organizations are adopting serverless computing. Functionbeat is one of the latest
additions to the Beats family, starting with the Elastic Stack 6.5, and is used to collect events
on serverless environments and ship these events to Elasticsearch. At the time of writing,
these events can only be sent to Elasticsearch.

Community Beats
These are Beats that are developed by the open source community using the Beats
framework. Some of these open source Beats are as follows:

Beat Name Description

springbeat Used to collect health and metrics data from Spring Boot applications that are
running within the actuator module.

rsbeat Ships Redis slow logs to Elasticsearch.

nginxbeat Reads the status from Nginx.

mysqlbeat Runs any query in MySQL and send the results to Elasticsearch.

mongobeat It can be configured to send multiple document formats to Elasticsearch. It
also monitors mongodb instances.

gabeat Collects data from the Google Analytics Real Time Reporting API.

apachebeat Reads the status from Apache HTTPD server-status.

dockbeat Reads docker container statistics and pushes them to Elasticsearch.

kafkabeat Reads data from kafkatopic.

amazonbeat Reads data from a specified Amazon product.

Building Data Pipelines with Logstash Chapter 6

[201]

A complete list of community Beats can be found at https:/ /www. elastic. co/ guide/ en/
beats/devguide/current/ community- beats. html.

Elastic.co doesn't support or provide warranties for community Beats.

The Beats Developer guide provides the necessary information to create a
custom Beat. The developer guide can be found at https:/ /www. elastic.
co/guide/ en/ beats/ devguide/ current/ index. html.

Logstash versus Beats
After reading through the Logstash and Beats introduction, you might be confused as to
whether Beats is a replacement for Logstash, the difference between them, or when to use
one over the other. Beats are lightweight agents and consume fewer resources, and hence
are installed on the edge servers where the operational data needs to be collected and
shipped. Beats lack the powerful features of Logstash for parsing and transforming events.
Logstash has many options in terms of inputs, filters, and output plugins for collecting,
enriching, and transforming data. However, it is very resource-intensive and can also be
used as an independent product outside of the Elastic Stack. Logstash is recommended to
be installed on a dedicated server rather than edge servers, and listens for incoming events
for processing. Beats and Logstash are complementary products, and depending on the use
case, both of them can be used or just one of them can be used, as described in the
Introducing Beats section.

Filebeat
Filebeat is an open source, lightweight log shipping agent that is installed as an agent to
ship logs from local files. It monitors log directories, tails the files, and sends them to
Elasticsearch, Logstash, Redis, or Kafka. It allows us to send logs from different systems to
a centralized server. The logs can then be parsed or processed from here.

https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/community-beats.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html
https://www.elastic.co/guide/en/beats/devguide/current/index.html

Building Data Pipelines with Logstash Chapter 6

[202]

Downloading and installing Filebeat
Navigate to https:/ /www. elastic. co/ downloads/ beats/ filebeat- oss and, depending on
your operating system, download the .zip/.tar file. The installation of Filebeat is simple
and straightforward:

In this book, we will be using the Apache 2.0 version of Beats. Beats
version 7.0.x is compatible with Elasticsearch 6.7.x and 7.0.x, and Logstash
6.7.x and 7.0.x. The compatibility matrix can be found at https:/ /www.
elastic. co/ support/ matrix#matrix_ compatibility. When you come
across Elasticsearch and Logstash examples with Beats in this chapter,
make sure that you have compatible versions of Elasticsearch and
Logstash installed.

Installing on Windows
Unzip the downloaded file and navigate to the extracted location, as follows:

E:> cd E:\filebeat-7.0.0-windows-x86_64

https://www.elastic.co/downloads/beats/filebeat-oss
https://www.elastic.co/downloads/beats/filebeat-oss
https://www.elastic.co/downloads/beats/filebeat-oss
https://www.elastic.co/downloads/beats/filebeat-oss
https://www.elastic.co/downloads/beats/filebeat-oss
https://www.elastic.co/downloads/beats/filebeat-oss
https://www.elastic.co/downloads/beats/filebeat-oss
https://www.elastic.co/downloads/beats/filebeat-oss
https://www.elastic.co/downloads/beats/filebeat-oss
https://www.elastic.co/downloads/beats/filebeat-oss
https://www.elastic.co/downloads/beats/filebeat-oss
https://www.elastic.co/downloads/beats/filebeat-oss
https://www.elastic.co/downloads/beats/filebeat-oss
https://www.elastic.co/downloads/beats/filebeat-oss
https://www.elastic.co/downloads/beats/filebeat-oss
https://www.elastic.co/downloads/beats/filebeat-oss
https://www.elastic.co/downloads/beats/filebeat-oss
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility

Building Data Pipelines with Logstash Chapter 6

[203]

To install Filebeat as a service on Windows, refer to the following steps:

Open Windows PowerShell as an administrator and navigate to the extracted1.
location.
Run the following commands from the PowerShell prompt to install Filebeat as a2.
Windows service:

PS >cd E:\filebeat-7.0.0-windows-x86_64
 PS E:\filebeat-7.0.0-windows-x86_64>.\install-service-filebeat.ps1

In the event script execution is disabled on your system, you will have to set the execution
policy for the current session:

 PowerShell.exe -ExecutionPolicy UnRestricted -File .\install-service-
filebeat.ps1

Installing on Linux
Unzip the tar.gz package and navigate to the newly created folder, as follows:

$> tar -xzf filebeat-7.0.0-linux-x86_64.tar.gz
$> cd filebeat

To install using dep or rpm, execute the appropriate commands in the Terminal:

deb:

curl -L -O
https://artifacts.elastic.co/downloads/beats/filebeat/filebeat-7.0.0-amd64.
deb
sudo dpkg -i filebeat-7.0.0-amd64.deb

rpm:

curl -L -O
https://artifacts.elastic.co/downloads/beats/filebeat/filebeat-7.0.0-x86_64
.rpm
sudo rpm -vi filebeat-7.0.0-x86_64.rpm

Filebeat will be installed in the /usr/share/filebeat directory. The configuration files
will be present in /etc/filebeat. The init script will be present in
/etc/init.d/filebeat. The log files will be present within the
/var/log/filebeat directory.

Building Data Pipelines with Logstash Chapter 6

[204]

Architecture
Filebeat is made up of key components called inputs, harvesters, and spoolers. These
components work in unison in order to tail files and allow you to send event data to the
specified output. The input is responsible for identifying the list of files to read logs from.
The input is configured with one or many file paths, from which it identifies the files to
read logs from; it starts a harvester for each file. The harvester reads the contents of the file.
In order to send the content to the output, it reads each file, line by line. It also opens and
closes the file, This implies that the descriptor is always open when the harvester runs.
Once the harvester starts for one file, it sends the read content – also known as the events
– to the spooler. The spooler aggregates the events to the configured outputs.

Each instance of Filebeat can be configured with one or more inputs. As of Filebeat 6.0,
there are two types of input the Filebeat supports, that is, log and stdin. Later versions of
Filebeats started supporting multiple types of input. As of Filebeat 7.0, the list of inputs that
are supported is: Log, Stdin, Redis, UDP, Docker, TCP, Syslog, and NetFlow. For example,
if the log is the input file, then the input finds all the related files on the drive that match
the predefined glob paths, and then the harvester is started for every file. Every input uses
its own Go routine to run. If the type is stdin, it reads from standard inputs and if the
input type is UDP/TCP, it reads/captures events over UDP/TCP.

Every time Filebeat reads a file, the state of the last read is offset by the harvester, and if the
read line is sent to the output, it is maintained in a registry file which is flushed periodically
to a disk. If the output (Elasticsearch, Logstash, Kafka, or Redis) is unreachable, it keeps
track of the lines that were sent last and continues to read the file after the output becomes
reachable. This is done by keeping the state information in memory by each input when the
Filebeat is running. If the Filebeat restarts, the state is built by referring to the registry file.

Filebeat will not consider a log line shipped until the output acknowledges the request.
Since the state of the delivery of the lines to the configured output is maintained in the
registry file, you can safely assume that events will be delivered to the configured
outputs at least once and without any data loss:

Building Data Pipelines with Logstash Chapter 6

[205]

(Reference: https://www.elastic.co/guide/en/beats/filebeat/7.0/images/filebeat.png)

The location of registry-js is as follows: data/registry for .tar.gz
and .zip archives, /var/lib/filebeat/registry for DEB and RPM
packages, and C:\ProgramData\filebeat\registry for the Windows
.zip file (if Filebeat is installed as a service).

Configuring Filebeat
Configurations related to Filebeat are stored in a configuration file named filebeat.yml.
They use the YAML syntax.

https://www.elastic.co/guide/en/beats/filebeat/7.0/images/filebeat.png

Building Data Pipelines with Logstash Chapter 6

[206]

The filebeat.yml file contains the following important sections:

Filebeat inputs
Filebeat modules
Elasticsearch template settings
Filebeat general/global options
Kibana dashboard settings
Output configuration
Processors configuration
Logging configuration

The filebeat.yml file will be present in the installation directory if .zip
or .tar files are used. If dep or rpm is used for installation, then it will be
present in the /etc/filebeat location.

Some of these sections are common for all type of Beats. Before we look into some of these,
let's see what a simple configuration would look like. As we can see in the following
configuration, when Filebeat is started, it looks for files ending with the .log extension in
the E:\packt\logs\ path. It ships the log entries of each file to Elasticsearch, which is
configured as the output, and is hosted at localhost:9200:

#filebeat.yml
#=========================== Filebeat inputs =============================

filebeat.inputs:

- type: log

 # Change to true to enable this input configuration.
 enabled: true

 # Paths that should be crawled and fetched. Glob based paths.
 paths:
 - E:\packt\logs*.log

#================================ Outputs
=====================================

#-------------------------- Elasticsearch output --------------------------

output.elasticsearch:
 # Array of hosts to connect to.
 hosts: ["localhost:9200"]

Building Data Pipelines with Logstash Chapter 6

[207]

Any changes made to filebeat.yml require restarting Filebeat to pick
up the changes.

Place some log files in E:\packt\logs\. To get Filebeat to ship the logs, execute the
following command:

Windows:
E:\>filebeat-7.0.0-windows-x86_64>filebeat.exe

Linux:
[locationOfFilebeat]$./filebeat

To run the preceding example, please replace the content of the default
filebeat.yml file with the configuration provided in the preceding
snippet.

To validate whether the logs were shipped to Elasticsearch, execute the following
command:

E:\>curl -X GET http://localhost:9200/filebeat*/_search?pretty

Sample Response:
{
 "took" : 2,
 "timed_out" : false,
 "_shards" : {
 "total" : 1,
 "successful" : 1,
 "skipped" : 0,
 "failed" : 0
 },
 "hits" : {
 "total" : {
 "value" : 3,
 "relation" : "eq"
 },
 "max_score" : 1.0,
 "hits" : [
 {
 "_index" : "filebeat-7.0.0-2019.04.22",
 "_type" : "_doc",
 "_id" : "bPnZQ2oB_501XGfHmzJg",
 "_score" : 1.0,

Building Data Pipelines with Logstash Chapter 6

[208]

 "_source" : {
 "@timestamp" : "2019-04-22T07:01:30.820Z",
 "ecs" : {
 "version" : "1.0.0"
 },
 "host" : {
 "id" : "254667db-4667-46f9-8cf5-0d52ccf2beb9",
 "name" : "madsh01-I21350",
 "hostname" : "madsh01-I21350",
 "architecture" : "x86_64",
 "os" : {
 "platform" : "windows",
 "version" : "6.1",
 "family" : "windows",
 "name" : "Windows 7 Enterprise",
 "kernel" : "6.1.7601.24408 (win7sp1_ldr_escrow.190320-1700)",
 "build" : "7601.24411"
 }
 },
 "agent" : {
 "type" : "filebeat",
 "ephemeral_id" : "d2ef4b77-3c46-4af4-85b4-e9f690ce00f1",
 "hostname" : "madsh01-I21350",
 "id" : "29600459-f3ca-4516-8dc4-8a0fd1bd6b0f",
 "version" : "7.0.0"
 },
 "log" : {
 "offset" : 0,
 "file" : {
 "path" : "E:\\packt\\logs\\one.log"
 }
 },
 "message" : "exception at line1",
 "input" : {
 "type" : "log"
 }
 }
 },
 ...
 ...
 ...

Building Data Pipelines with Logstash Chapter 6

[209]

Filebeat places the shipped logs under an filebeat index, which is a
time-based index based on the filebeat-YYYY.MM.DD pattern. The log
data would be placed in the message field.
To start Filebeat on deb or rpm installations, execute the
sudo service filebeat start command. If installed as a service on
Windows, then use Powershell to execute the following command:

PS C:\> Start-Service filebeat

Filebeat inputs
This section will show you how to configure Filebeat manually instead of using out-of-the-
box preconfigured modules for shipping files/logs/events. This section contains a list of
inputs that Filebeat uses to locate and process log files. Each input item begins with a dash
(-) and contains input-specific configuration options to define the behavior of the input.

A sample configuration is as follows:

Building Data Pipelines with Logstash Chapter 6

[210]

As of Filebeat 7.0, inputs supported are Log, Stdin, Redis, UDP, Docker, TCP, Syslog, and
NetFlow. Depending on the type of input configured, each input has specific configuration
parameters that can be set to define the behavior of log/file/event collection. You can
configure multiple input types and selectively enable or disable them before running
Filebeat by setting the enabled parameter to true or false.

Since logs are one commonly used input, let's look into some of the configurations that can
be set to define the behavior of Filebeat to collect logs.

log input-specific configuration options are as follows:

type: It has to be set to log in order to read every log line from the file.
paths: It is used to specify one or more paths to look for files that need to be
crawled. One path needs to be specified per line, starting with a dash (-). It
accepts Golang glob-based paths, and all patterns Golang glob (https:/ /golang.
org/pkg/ path/ filepath/ #Glob) supports are accepted by the paths parameter.
exclude_files: This parameter takes regex to exclude file patterns from
processing.
exclude_lines: It accepts a list of regular expressions to match. It drops the
lines that match any regular expression from the list. In the preceding
configuration example, it drops all the lines beginning with DBG.
include_lines: It accepts a list of regular expressions to match. It exports the
lines that match any regular expressions from the list. In the preceding
configuration example, it exports all the lines beginning with either ERR or WARN.

Regular expressions are based on RE2. You can refer to the following link
for all supported regex patterns: https:/ /godoc. org/regexp/ syntax.

tags: It accepts a list of tags that will be included in the tags field of every event
Filebeat ships. tags aid conditional filtering of events in Kibana or Logstash. In
the preceding configuration example, java_logs is appended to the tags list.
fields: It is used to specify option fields that need to be included in each event
Filebeat ships. Like tags, it helps with the conditional filtering of events in
Kibana or Logstash. Fields can be scalar values, arrays, dictionaries, or any
nested combination of these. By default, the fields that you specify will be
grouped under a fields sub-dictionary in the output document. In the
preceding configuration example, a new field called env with the staging value
would be created under the fields field.

https://golang.org/pkg/path/filepath/#Glob
https://golang.org/pkg/path/filepath/#Glob
https://golang.org/pkg/path/filepath/#Glob
https://golang.org/pkg/path/filepath/#Glob
https://golang.org/pkg/path/filepath/#Glob
https://golang.org/pkg/path/filepath/#Glob
https://golang.org/pkg/path/filepath/#Glob
https://golang.org/pkg/path/filepath/#Glob
https://golang.org/pkg/path/filepath/#Glob
https://golang.org/pkg/path/filepath/#Glob
https://golang.org/pkg/path/filepath/#Glob
https://golang.org/pkg/path/filepath/#Glob
https://golang.org/pkg/path/filepath/#Glob
https://golang.org/pkg/path/filepath/#Glob
https://godoc.org/regexp/syntax
https://godoc.org/regexp/syntax
https://godoc.org/regexp/syntax
https://godoc.org/regexp/syntax
https://godoc.org/regexp/syntax
https://godoc.org/regexp/syntax
https://godoc.org/regexp/syntax
https://godoc.org/regexp/syntax
https://godoc.org/regexp/syntax
https://godoc.org/regexp/syntax
https://godoc.org/regexp/syntax

Building Data Pipelines with Logstash Chapter 6

[211]

To store custom fields as top-level fields, set the fields_under_root
option to true.

scan_frequency: It is used to specify the time interval after which the input
checks for any new files under the configured paths. By default,
scan_frequency is set to 10 seconds.
multiline: It specifies how logs that are spread over multiple lines need to be
processed. This is very beneficial for processing stack traces/exception messages.
It is made up of a pattern that specifies the regular expression pattern to
match; negate, which specifies whether or not the pattern is negated; and
match, which specifies how Filebeat combines matching lines with an event. The
values for the negate setting are either true or false; by default, false is
used. The values for the match setting are either after or before. In the
preceding configuration example, all consecutive lines that begin with the space
pattern are appended to the previous line that doesn't begin with a space.

The after setting is similar to the previous Logstash multi-line setting,
and before is similar to the next Logstash multi-line setting.

Let's look into another frequently used input type, docker, which is used to read logs from
docker containers. It also contain many overlapping configuration parameters for
the log input type.

docker input-specific configuration options are as follows:

type: It has to be set to docker in order to read container logs.
containers.ids: This parameter is used to specify the list of containers to read
logs from. In order to read logs from all containers, you can specify *. This is a
required parameter.
containers.path: The base path where logs are present so that Filebeat can
read from them. If the location is not specified, it defaults to /var/lib/docker/
containers.
containers.stream: The stream to read the file from. The list of streams
available is: all, stdout, and stderr. all is the default option.

Building Data Pipelines with Logstash Chapter 6

[212]

exclude_lines: It accepts a list of regular expressions to match. It drops lines
that match any regular expression from the list. In the preceding configuration
example, it drops all lines beginning with DBG.
include_lines: It accepts a list of regular expressions to match. It exports lines
that match any regular expressions from the list. In the preceding configuration
example, it exports all lines beginning with either ERR or WARN.
tags: It accepts a list of tags that will be included in the tags field of every event
Filebeat ships. tags aids conditional filtering of events in Kibana or Logstash. In
the preceding configuration example, java_logs is appended to the tags list.
fields: It is used to specify option fields that need to be included in each event
Filebeat ships. Like tags, it aids conditional filtering of events in Kibana or
Logstash. Fields can be scalar values, arrays, dictionaries, or any nested
combination of these. By default, the fields that you specify will be grouped
under a fields sub-dictionary in the output document. In the preceding
configuration example, a new field called env with the staging value would be
created under the fields field.

To store custom fields as top-level fields, set the fields_under_root
option to true.

scan_frequency: It is used to specify the time interval after which the input
checks for any new files under the configured paths. By default,
scan_frequency is set to 10 seconds.

Filebeat general/global options
This section contains configuration options and some general/global settings to control the
behavior of Filebeat.

Some of these configuration options are as follows:

registry_file: It is used to specify the location of the registry file, which is
used to maintain information about files, such as the last offset read and whether
the read lines are acknowledged by the configured outputs or not. The default
location of the registry is ${path.data}/registry:

filebeat.registry_file: /etc/filebeat/registry

Building Data Pipelines with Logstash Chapter 6

[213]

You can specify a relative path or an absolute path as a value for this
setting. If a relative path is specified, it is considered relative to
the ${path.data} setting.

shutdown_timeout: This setting specifies how long Filebeat waits on shutdown
for the publisher to finish. This ensures that if there is a sudden shutdown while
filebeat is in the middle of sending events, it won't wait for the output to
acknowledge all events before it shuts down. Hence, the filebeat waits for a
certain time before it actually shuts down:

filebeat.shutdown_timeout: 10s

registry_flush: This setting specifies the time interval when registry entries
are to be flushed to the disk:

filebeat.registry_flush: 5s

name: The name of the shipper that publishes the network data. By default,
hostname is used for this field:

name: "dc1-host1"

tags: The list of tags that will be included in the tags field of every event
Filebeat ships. Tags make it easy to group servers by different logical properties
and aids filtering of events in Kibana and Logstash:

tags: ["staging", "web-tier","dc1"]

max_procs: The maximum number of CPUs that can be executed
simultaneously. The default is the number of logical CPUs available in the
system:

max_procs: 2

Output configuration
This section is used to configure outputs where events need to be shipped. Events can be
sent to single or multiple outputs simultaneously. The allowed outputs are Elasticsearch,
Logstash, Kafka, Redis, file, and console.

Building Data Pipelines with Logstash Chapter 6

[214]

Some outputs that can be configured are as follows:

elasticsearch: It is used to send the events directly to Elasticsearch.

A sample Elasticsearch output configuration is as follows:

output.elasticsearch:
 enabled: true
 hosts: ["localhost:9200"]

By using the enabled setting, you can enable or disable the output. hosts
accepts one or more Elasticsearch nodes/servers. Multiple hosts can be defined for
failover purposes. When multiple hosts are configured, the events are distributed
to these nodes in round-robin order. If Elasticsearch is secure, then the credentials
can be passed using the username and password settings:

output.elasticsearch:
 enabled: true
 hosts: ["localhost:9200"]
 username: "elasticuser"
 password: "password"

To ship an event to the Elasticsearch ingest node pipeline so that it can be
preprocessed before it is stored in Elasticsearch, the pipeline information can be
provided using the pipleline setting:

output.elasticsearch:
 enabled: true
 hosts: ["localhost:9200"]
 pipeline: "apache_log_pipeline"

logstash: This is used to send events to Logstash.

To use Logstash as output, Logstash needs to be configured with the Beats
input plugin to receive incoming Beats events.

A sample Logstash output configuration is as follows:

output.logstash:
 enabled: true
 hosts: ["localhost:5044"]

Building Data Pipelines with Logstash Chapter 6

[215]

By using the enabled setting, you can enable or disable the output. hosts
accepts one or more Logstash servers. Multiple hosts can be defined for failover
purposes. If the configured host is unresponsive, then the event will be sent to
one of the other configured hosts. When multiple hosts are configured, the events
are distributed in a random order. To enable load balancing of events across the
Logstash hosts, use the loadbalance flag, set to true:

output.logstash:
 hosts: ["localhost:5045", "localhost:5046"]
 loadbalance: true

console: This is used to send the events to stdout. The events are written in
JSON format. It is useful during debugging or testing.

A sample console configuration is as follows:

output.console:
 enabled: true
 pretty: true

Logging
This section contains the options for configuring the Filebeat logging output. The logging
system can write logs to syslog or rotate log files. If logging is not explicitly
configured, file output is used on Windows systems, and syslog output is used on Linux
and OS X.

A sample configuration is as follows:

logging.level: debug
logging.to_files: true
logging.files:
 path: C:\logs\filebeat
 name: metricbeat.log
 keepfiles: 10

Some available configuration options are as follows:

level: To specify the logging level.
to_files: To write all logging output to files. The files are subject to file
rotation. This is the default value.
to_syslog: To write the logging output to syslogs if this setting is set to true.

Building Data Pipelines with Logstash Chapter 6

[216]

files.path, files.name, and files.keepfiles: These are used to specify
the location of the file, the name of the file, and the number of most recently
rotated log files to keep on the disk, respectively.

Filebeat modules
Filebeat modules simplify the process of collecting, parsing, and visualizing logs of
common formats.

A module is made up of one or more filesets. A fileset is made up of the following:

Filebeat input configurations that contain the default paths needed to look out
for logs. It also provides configuration for combining multiline events when
needed.
An Elasticsearch Ingest pipeline definition to parse and enrich logs.
Elasticsearch templates, which define the field definitions so that appropriate
mappings are set to the fields of the events.
Sample Kibana dashboards, which can be used for visualizing logs.

Filebeat modules require the Elasticsearch Ingest node. The version of
Elasticsearch should be greater that 5.2.

Some of the modules that are shipped with Filebeat are as follows:

Apache module
Auditd module
Elasticsearch module
Haproxy module
IIS module
Kafka module
MongoDB module
MySQL module
Nginx module
PostgreSQL module
Redis module

Building Data Pipelines with Logstash Chapter 6

[217]

The modules.d directory contains the default configurations for all the modules that are
available in Filebeat. Any configuration that's specific to a module is stored in a .yml file,
with the name of the file being the name of the module. For example, the configuration
related to the redis module would be stored in the redis.yml file.

Since each module comes with the default configuration, make the appropriate changes in
the module configuration file.

The basic configuration for the redis module is as follows:

#redis.yml
- module: redis
 # Main logs
 log:
 enabled: true

 # Set custom paths for the log files. If left empty,
 # Filebeat will choose the paths depending on your OS.
 #var.paths: ["/var/log/redis/redis-server.log*"]

 # Slow logs, retrieved via the Redis API (SLOWLOG)
 slowlog:
 enabled: true

 # The Redis hosts to connect to.
 #var.hosts: ["localhost:6379"]

 # Optional, the password to use when connecting to Redis.
 #var.password:

To enable modules, execute the modules enable command, passing one or more module
names:

Windows:
E:\filebeat-7.0.0-windows-x86_64>filebeat.exe modules enable redis mysql

Linux:
[locationOfFileBeat]$./filebeat modules enable redis mysql

If a module is disabled, then in the modules.d directory the configuration
related to the module will be stored with .disabled extension.

Building Data Pipelines with Logstash Chapter 6

[218]

To disable modules, execute the modules disable command, passing one or more
module names to it. For example:

Windows:
E:\filebeat-7.0.0-windows-x86_64>filebeat.exe modules disable redis mysql

Linux:
[locationOfFileBeat]$./filebeat modules disable redis mysql

Once the module is enabled, to load the recommended index template for writing to
Elasticsearch, and to deploy sample dashboards for visualizing data in Kibana, execute the
setup command, as follows:

Windows:
E:\filebeat-7.0.0-windows-x86_64>filebeat.exe -e setup

Linux:
[locationOfFileBeat]$./filebeat -e setup

The -e flag specifies logging the output to stdout. Once the modules are enabled and the
setup command is run, to load index templates and sample dashboards, start Filebeat as
usual so that it can start shipping logs to Elasticsearch.

The setup command has to be executed while installating or upgrading
Filebeat, or after a new module is enabled.

Most modules have dependency plugins such as ingest-geoip and
ingest-user-agent, which need to be installed on Elasticsearch prior to
setting up the modules, otherwise the setup will fail.

Rather than enabling the modules by passing them as command-line parameters, you can
enable the modules in the filebeat.yml configuration file itself, and start Filebeat as
usual:

filebeat.modules:
- module: nginx
- module: mysql

Each of the modules has associated filesets which contain certain variables that can be
overridden either using the configuration file or by passing it as a command-line parameter
using the -M flag when running Filebeat.

Building Data Pipelines with Logstash Chapter 6

[219]

For the configuration file, use the following code:

filebeat.modules:
- module: nginx
 access:
 var.paths: ["C:\ngnix\access.log*"]

For the command line, use the following code:

Windows:
E:\filebeat-7.0.0-windows-x86_64>filebeat.exe -e -modules=nginx -M
"nginx.access.var.paths=[C:\ngnix\access.log*]"

Linux:
[locationOfFileBeat]$./filebeat -e -modules=nginx -M
"nginx.access.var.paths=[\var\ngnix\access.log*]"

Summary
In this chapter, we covered the powerful filter section of Logstash, which can be used for
parsing and enriching log events. We have also covered some commonly used filter
plugins. Then, we covered the Beats framework and took an overview of various Beats,
including Filebeat, Heartbeat, Packetbeat, and so on, covering Filebeat in detail.

In the next chapter, we will be covering the various features of X-Pack, a commercial
offering by Elastic.co which contains features such as securing the Elastic Stack, as well as
monitoring, alerting, graphs, and reporting.

7
Visualizing Data with Kibana

Kibana is an open source web-based analytics and visualization tool that lets you visualize
the data stored in Elasticsearch using a variety of tables, maps, and charts. Using its simple
interface, users can easily explore large volumes of data stored in Elasticsearch and perform
advanced analysis of data in real time. In this chapter, let's explore the various components
of Kibana and explore how you can use it for data analysis.

We will cover the following topics in this chapter:

Downloading and installing Kibana
Preparing data
Kibana UI
Timelion
Using plugins

Visualizing Data with Kibana Chapter 7

[221]

Downloading and installing Kibana
Just as with other components of the Elastic Stack, downloading and installing Kibana is
pretty simple and straightforward.

Navigate to https:/ /www. elastic. co/ downloads/ kibana- oss and, depending on your
operating system, download the ZIP/TAR file, as shown in the following screenshot:

https://www.elastic.co/downloads/kibana-oss
https://www.elastic.co/downloads/kibana-oss
https://www.elastic.co/downloads/kibana-oss
https://www.elastic.co/downloads/kibana-oss
https://www.elastic.co/downloads/kibana-oss
https://www.elastic.co/downloads/kibana-oss
https://www.elastic.co/downloads/kibana-oss
https://www.elastic.co/downloads/kibana-oss
https://www.elastic.co/downloads/kibana-oss
https://www.elastic.co/downloads/kibana-oss
https://www.elastic.co/downloads/kibana-oss
https://www.elastic.co/downloads/kibana-oss
https://www.elastic.co/downloads/kibana-oss
https://www.elastic.co/downloads/kibana-oss
https://www.elastic.co/downloads/kibana-oss

Visualizing Data with Kibana Chapter 7

[222]

The Elastic developer community is quite vibrant, and new releases with
new features/fixes get released quite often. While you have been reading
this book, the latest Kibana version might have changed. The instructions
in this book are based on Kibana version 7.0.0. You can click on the past
releases link and download version 7.0.0 (kibana-oss) if you want to
follow as is, but the instructions/explanations in this book should hold
good for any 7.x release.

Kibana is a visualization tool that relies on Elasticsearch for querying data that is used to
generate visualizations. Hence, before proceeding further, make sure Elasticsearch is up
and running.

Installing on Windows
Unzip the downloaded file. Once unzipped, navigate to the newly created folder, as shown
in the following line of code:

E:\>cd kibana-7.0.0-windows-x86_64

To start Kibana, navigate to the bin folder, type kibana.bat, and press Enter.

Installing on Linux
Unzip the tar.gz package and navigate to the newly created folder, shown as follows:

$> tar -xzf kibana-oss-7.0.1-linux-x86_64.tar.gz
$> cd kibana-7.0.1-linux-x86_64/

To start Kibana, navigate to the bin folder, type ./kibana (in the case of Linux) or
kibana.bat (in the case of Windows), and press Enter.

Visualizing Data with Kibana Chapter 7

[223]

You should get the following logs:

 log [09:00:51.216] [info][status][plugin:kibana@undefined] Status changed
from uninitialized to green - Ready
 log [09:00:51.279] [info][status][plugin:elasticsearch@undefined] Status
changed from uninitialized to yellow - Waiting for Elasticsearch
 log [09:00:51.293] [info][status][plugin:interpreter@undefined] Status
changed from uninitialized to green - Ready
 log [09:00:51.300] [info][status][plugin:metrics@undefined] Status changed
from uninitialized to green - Ready
 log [09:00:51.310] [info][status][plugin:apm_oss@undefined] Status changed
from uninitialized to green - Ready
 log [09:00:51.320] [info][status][plugin:console@undefined] Status changed
from uninitialized to green - Ready
 log [09:00:51.779] [info][status][plugin:timelion@undefined] Status
changed from uninitialized to green - Ready
 log [09:00:51.785] [info][status][plugin:tile_map@undefined] Status
changed from uninitialized to green - Ready
 log [09:00:51.987] [info][status][plugin:elasticsearch@undefined] Status
changed from yellow to green - Ready
 log [09:00:52.036] [info][migrations] Creating index .kibana_1.
 log [09:00:52.995] [info][migrations] Pointing alias .kibana to .kibana_1.
 log [09:00:53.099] [info][migrations] Finished in 1075ms.
 log [09:00:53.102] [info][listening] Server running at
http://localhost:5601

Kibana is a web application and, unlike Elasticsearch and Logstash, which run on the JVM,
Kibana is powered by Node.js. During bootup, Kibana tries to connect to Elasticsearch
running on http://localhost:9200. Kibana is started on the default port 5601. Kibana
can be accessed from a web browser using the http://localhost:5601 URL. You can
navigate to the http://localhost:5601/status URL to find the Kibana server status.

The status page displays information about the server's resource usage and lists the
installed plugins, as shown in the following screenshot:

Visualizing Data with Kibana Chapter 7

[224]

Kibana should be configured to run against an Elasticsearch node of the
same version. Running different patch version releases of Kibana and
Elasticsearch (for example, Kibana 7.0.0 and Elasticsearch 7.0.1) is
generally supported, but not highly encouraged.

Running different major version releases of Kibana and Elasticsearch (for
example, Kibana 7.x and Elasticsearch52.x) is not supported, nor is
running minor versions of Kibana that are newer than the version of
Elasticsearch (for example, Kibana 7.1 and Elasticsearch 7.0).

Visualizing Data with Kibana Chapter 7

[225]

Configuring Kibana
When Kibana was started, it started on port 5601, and it tried to connect to Elasticsearch
running on port 9200. What if we want to change some of these settings? All the
configurations of Kibana are stored in a file called kibana.yml, which is present under
the config folder, under $KIBANA_HOME. When this file is opened in your favorite text
editor, it contains many properties (key-value pairs) that are commented by default. What
this means is that, unless those are overridden, the value specified in the property is
considered the default value. To uncomment the property, remove the # before the
property and save the file.

The following are some of the key configuration settings that you should look for when
starting out with Kibana:

server.port
This setting specifies the port Kibana will be serving requests
on. It defaults to 5601.

server.host
This specifies the address to which the Kibana server will
bind. IP addresses and hostnames are both valid values. It
defaults to localhost.

elasticsearch.url

This is the URL of the Elasticsearch instance to use for all
your queries. It defaults to http://localhost:9200. If your
Elasticsearch is running on a different host/port, make sure
you update this property.

elasticsearch.username
elasticsearch.password

If Elasticsearch is secured, specify the username/password
details that have access to Elasticsearch here. In the next
chapter (Chapter 8, Elastic X-pack), we will be exploring how
to secure Elasticsearch.

server.name
A human-readable display name that identifies this Kibana
instance. Defaults to hostname.

kibana.index
Kibana uses an index in Elasticsearch to store saved searches,
visualizations, and dashboards. Kibana creates a new index if
the index doesn't already exist. Defaults to .kibana.

The .yml file is space-sensitive and indentation-aware. Make sure all the
uncommented properties have the same indentation; otherwise, an error
will be thrown upon Kibana startup and it will fail to start.

Visualizing Data with Kibana Chapter 7

[226]

Preparing data
As Kibana is all about gaining insights from data, before we can start exploring with
Kibana, we need to have data ingested to Elasticsearch, which is the primary data source
for Kibana. When you launch Kibana, it comes with predefined options to enable loading of
data to Elasticsearch with a few clicks and you can start exploring Kibana right away.
When you launch Kibana by accessing the http://localhost:5601 link in your browser
for the first time, you will see the following screen:

Visualizing Data with Kibana Chapter 7

[227]

You can click on the Try our sample data button to get started quickly with Kibana by
loading predefined data, or you can configure existing indexes present in Elasticsearch and
analyze existing data by clicking on the Explore on my own button.

Clicking on the Try our sample data button will take you to the following screen:

Clicking on Add data on any of the three widgets/panels will add some default data to
Elasticsearch as well as sample visualizations and dashboards that you can readily explore.
Don't worry what visualizations and dashboards are now; we will be covering them in
detail in the subsequent sections.

Go ahead and click on Add data for Sample eCommerce orders. It should load data,
visualizations, and dashboards in the background. Once ready, you can click on View data,
which will take you to the eCommerce dashboard:

Visualizing Data with Kibana Chapter 7

[228]

The following screenshot shows the dashboard:

Visualizing Data with Kibana Chapter 7

[229]

The actual data that is powering these dashboards/visualizations can be verified in
Elasticsearch by executing the following command. As seen, the sample data is loaded into
the kibana_sample_data_ecommerce index, which has 4675 docs:

C:\>curl localhost:9200/_cat/indices/kibana_sample*?v
health status index uuid pri rep docs.count docs.deleted store.size
pri.store.size
green open kibana_sample_data_ecommerce 4fjYoAkMTOSF8MrzMObaXg 1 0 4675 0
4.8mb 4.8mb

If you click on the Remove button, all the dashboards and data will be
deleted. Similarly, you can click on the Add data button for the other two
widgets if you want to explore sample flight and sample logs data.

If you want to navigate back to the home page, you can always click on the Kibana icon
 at the top-left corner, which will take you to the home screen, which will be the default
screen once you load Kibana in the browser again. This is in same screen you would have
been taken to if you had clicked on the Explore on my own button when Kibana was
loaded for the first time:

Visualizing Data with Kibana Chapter 7

[230]

Clicking on the link in section 1 will take you to the Sample data page that we just saw.
Similarly, if you want to configure Kibana against your own index and use it for data
exploration and visualization, you can click on the link in section 2, in the previous
screenshot. In earlier chapters, you might have read briefly about Beats, which is used for
ingesting file or metric data easily into Elasticsearch. Clicking on the buttons in section 3
will take you to screens that provide standard instructions of how you can enable the
insertion of various types of data using Beats. We will be covering more about Beats in the
subsequent chapters.

In this chapter, rather than relying on the sample default data shipped out of the box, we
will load custom data which we will use to follow the tutorial. One of the most common
use cases is log analysis. For this tutorial, we will be loading Apache server logs into
Elasticsearch using Logstash and will then use it in Kibana for analysis/building
visualizations.

https://github.com/ elastic/ elk- index- size- tests hosts a dump of Apache server logs
that were collected for the www.logstash.net site during the period of May 2014 to June
2014. It contains 300,000 log events.

Navigate to https:/ /github. com/ elastic/ elk-index- size- tests/ blob/ master/ logs. gz
and click the Download button. Unzip the logs.gz file and place it in a folder (For
example: C:\packt\data).

Make sure you have Logstash version 7.0 or above installed. Create a config file named
apache.conf in the $LOGSTASH_HOME\bin folder, as shown in the following code block:

input
{
 file {
 path => ["C:/packt/data/logs"]
 start_position => "beginning"
 sincedb_path => "NUL"
 }
}

filter
{
 grok {
 match => {
 "message" => "%{COMBINEDAPACHELOG}"
 }
 }
 mutate {
 convert => { "bytes" => "integer" }
 }

https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
https://github.com/elastic/elk-index-size-tests
http://www.logstash.net
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz
https://github.com/elastic/elk-index-size-tests/blob/master/logs.gz

Visualizing Data with Kibana Chapter 7

[231]

 date {
 match => ["timestamp", "dd/MMM/YYYY:HH:mm:ss Z"]
 locale => en
 remove_field => "timestamp"
 }
 geoip {
 source => "clientip"
 }
 useragent {
 source => "agent"
 target => "useragent"
 }
}

output
{
 stdout {
 codec => dots
 }
 elasticsearch { }
}

Start Logstash, shown as follows, so that it can begin processing the logs, and index them to
Elasticsearch. Logstash will take a while to start and then you should see a series of dots (a
dot per processed log line):

$LOGSTASH_HOME\bin>logstash –f apache.conf

Let's verify the total number of documents (log events) indexed into Elasticsearch:

curl -X GET http://localhost:9200/logstash-*/_count

In the response, you should see a count of 300,000.

Kibana UI
In this section, let's understand how data exploration and analysis is typically performed
and how to create visualizations and a dashboard to derive insights about data.

Visualizing Data with Kibana Chapter 7

[232]

User interaction
Let's understand user interaction before diving into the core components of Kibana. A
typical user interaction flow is as depicted in the following diagram:

The following points will give you a clear idea of the user interaction flow in Kibana:

Prior to using Kibana for data analysis, the user will have already loaded the data
into Elasticsearch.
In order to analyze the data using Kibana, the user has to first make Kibana
aware of the data stored in ES indexes. So, the user will need to configure the
indexes on which they want to perform analysis.
Once configured, the user has to find out the data structure, such as the fields
present in the document and the type of fields present in the document, and
explore the data. This is done so that they can decide how they can visualize this,
and what type of questions they want to pose and find answers for, in terms of
the data.
After understanding the data, and having formed questions to find answers to,
the user will create appropriate visualizations that will help them seek the
answers easily from huge amounts of data.
The user then creates a dashboard from the set of visualizations created earlier,
which will tell the story of the data.

Visualizing Data with Kibana Chapter 7

[233]

This is an iterative process and the user would juggle around the various stages
to find answers to their questions. Thus, in this process, they might gain deeper
insights into the data and discover answers to newly formed questions, that they
might not even have thought of before beginning this process.

Now that we have an idea about how the user would use Kibana and interact with it, let's
understand what Kibana is made up of. As seen in the left-hand side of the collapsible
menu/sidebar, the Kibana UI consists of the following components:

Discover: This page assists in exploring the data present in ES Indexes. It
provides the ability to query data, filter data, and inspect document structures.
Visualize: This page assists in building visualizations. It contains a variety of
visualizations, such as bar charts, line charts, maps, tag clouds, and so on. The
user can pick and choose the appropriate visualizations that help in analyzing
the data.
Dashboard: This page assists in bringing multiple visualizations on to a single
page, and thus builds a story about the data.
Dev Tools: This page consists of a set of plugins, each of which assists in
performing different functionalities. By default, this page contains only a single
plugin, called Console, which provides a UI to interact with the REST API of
Elasticsearch.
Management: This page assists in the configuring and managing of indexes. It
also assists in the management (deleting, exporting, and importing) of existing
visualizations, dashboards, and search queries.

Configuring the index pattern
Before you can start working with data and creating visualizations to analyze data, Kibana
requires you to configure/create an index pattern. Index patterns are used to identify the
Elasticsearch index, that will have search and analytics run against it. They are also used to
configure fields. An index pattern is a string with optional wildcards that can match
multiple indices. Typically, two types of index exist within Elasticsearch:

Time-series indexes: If there is a correlation between the timestamp and the
data, the data is called time-series data. This data will have a timestamp field.
Examples of this would be logs data, metrics data, and tweet data. When this
data is stored in Elasticsearch, the data is stored in multiple indexes (rolling
indexes) with index names appended by a timestamp, usually; for example,
unixlogs-2017.10.10, tweets-2017.05, logstash-2017.08.10.

Visualizing Data with Kibana Chapter 7

[234]

Regular indexes: If the data doesn't contain timestamp and the data has no
correlation with time, then the data is called regular data. Typically, this data is
stored in single indexes—for example, departments data and product catalog
data.

Open up Kibana from the browser using the http:/ / localhost:5601 URL. In the landing
page, click on the Connect to your Elasticsearch instance link and type in logstash-* in
the Index pattern text field and click on the Next step button, as shown in the following
screenshot:

Visualizing Data with Kibana Chapter 7

[235]

On the Create Index Pattern screen, during the configuration of an index pattern, if the
index has a datetime field (that is, it is a time-series index), the Time Filter field name
dropdown is visible and allows the user to select the appropriate datetime field; otherwise,
the field is not visible. As the data that we loaded in the previous section contains time-
series data, in the Time Filter field name, select @timestamp and click Create, as follows:

Once the index pattern is successfully created, you should see the following screen:

Visualizing Data with Kibana Chapter 7

[236]

Discover
The Discover page helps you to interactively explore data. It allows the user to interactively
perform search queries, filter search results, and view document data. It also allows the
user to save the search, or filter criteria so that it can be reused or used to create
visualizations on top of the filtered results. Clicking on the third icon from the top-left takes
you to the Discover page.

Visualizing Data with Kibana Chapter 7

[237]

By default, the Discover page displays the events of the last 15 minutes. As the log events
are from the period May 2014 to June 2014, set the appropriate date range in the time filter.
Navigate to Time Filter | Absolute Time Range and set From as 2014-05-28
00:00:00.000 and >To to 2014-07-01 00:00:00.000. Click Update, as shown in the
following screenshot:

The Discover page contains the sections shown in the following screenshot:

Visualizing Data with Kibana Chapter 7

[238]

The numbers in the preceding screenshot, represent individual sections—Index Pattern (1),
Fields List (2), Document Table (3), Query Bar (4), Hits (5), Histogram (6), Toolbar (7), Time
Picker (8), Filters (9), and Expand/Collapse (10).

Let's look at each one of them:

Index Pattern: All the configured index patterns are shown here in a dropdown
and the default one is selected automatically. The user can choose the
appropriate index pattern for data exploration.
Fields List: All the fields that are part of the document are shown in this section.
Clicking on the field shows Quick Count, that is, how many of the documents in
the documents table contain a particular field, what the top five values are, and
what percentage of documents contain each value, as shown in the following
screenshot:

Visualizing Data with Kibana Chapter 7

[239]

Document Table: This section shows the actual document data. The table shows
the 500 most recent documents that match the user-entered query/filters, sorted
by timestamp (if the field exists). By clicking the Expand button found to the left
of the document's table entry, data can be visualized in table format or JSON
format, as follows:

During data exploration, we are often interested in a subset of fields rather than
the whole of a document. In order to add fields to the document table, either
hover over the field on the fields list and click its add button, or expand the
document and click the field's Toggle column in table button:

Visualizing Data with Kibana Chapter 7

[240]

Added field columns replace the _source column in the Documents table. Field
columns in the table can be shuffled by clicking the right or left arrows found
when hovering over the column name. Similarly, by clicking the remove button,
x, columns can be removed from the table, as follows:

Query Bar: Using the query bar/search bar, the user can enter queries to filter the
search results. Submitting a search request results in the histogram being
updated (if the time field is configured for the selected index pattern), and the
documents table, fields lists, and hits being updated to reflect the search results.
Matching search text is highlighted in the document table. To search your data,
enter your search criteria in the query bar and press Enter, or click the search
icon.

The query bar accepts three types of queries:

An Elasticsearch query string/Lucene query, which is based on the Lucene query
syntax: https:/ /lucene. apache. org/ core/ 2_ 9_4/queryparsersyntax. html

A full JSON-based Elasticsearch query DSL: https:/ /www. elastic. co/ guide/
en/elasticsearch/ reference/ 5.5/query- dsl.html

Kibana Query Language

Let's explore the three options in detail.

https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.5/query-dsl.html

Visualizing Data with Kibana Chapter 7

[241]

Elasticsearch query string/Lucene query
This provides the ability to perform various types of queries ranging from simple to
complex queries that adhere to the Lucene query syntax. In the query bar, by default, KQL
will be the query language. Go ahead and disable it as shown in the following screenshot.
Once you disable it, KQL changes to Lucene in the query bar, as follows:

Let's see some examples:

Free Text search: To search for text present in any of the fields, simply enter a text string in
the query bar:

Visualizing Data with Kibana Chapter 7

[242]

When you enter a group of words to search for, as long as the document contains any of the
words, or all or part of the words in any order, the document is included in the search
result.

If you are doing an exact phrase search, that is, the documents should contain all the words
given the search criteria, and the words should be in the same order, then surround the
phrase with quotes. For example, file logstash or files logstash.

Field search: To search for values against a specific field, use the syntax field: value:

Boolean search: You can make use of Boolean operators such as AND, OR, and - (Must Not
match) to build complex queries. Using Boolean operators, you can combine the field:
value and free text as well.

Must Not match: The following is a screenshot of a Must Not operator with a field:

Visualizing Data with Kibana Chapter 7

[243]

The following is an example of a Must Not operator with free text:

There should be no space between the - operator and the search text/field.

Grouping searches: When we want to build complex queries, often, we have to group the
search criteria. Grouping both by field and value is supported, as shown in the following
screenshot:

Visualizing Data with Kibana Chapter 7

[244]

Range search: This allows you to search within a range of values. Inclusive ranges are
specified with square brackets—for example, [START_VALUE TO END_VALUE], and
exclusive ranges with curly brackets—for example, { START _VALUE TO END_VALUE }.
Ranges can be specified for dates and numeric or string fields, as follows:

The TO operator is case-sensitive and its range values should be numeric
values.

Visualizing Data with Kibana Chapter 7

[245]

Wildcard and Regex search: By using the * and ? wildcards with search text, queries can
be executed; * denotes zero or more matches and ? denotes zero or one match, as shown in
the following screenshot:

Wildcard searches can be computationally expensive. It is always
preferable to add a wildcard as a suffix rather than a prefix of the search
text.

Like wildcards, regex queries are supported too. By using slashes (/) and square brackets
([]), regex patterns can be specified. But be cautious when using regex queries, as they are
very computationally expensive.

Visualizing Data with Kibana Chapter 7

[246]

Elasticsearch DSL query
By using a DSL query, queries can be performed from the query bar. The query part of a
DSL query can be used to perform searches.

The following screenshot is an example of searching for documents that have IE in the
useragent.name field and Washington in the geoip.region_name field:

Hits: Hits represent the total number of documents that match the user-entered input
query/criteria.

KQL
Kibana Query Language (KQL) is a query language specifically built for Kibana that is
built to simplify query usage with easy-to-use syntax, support for querying on scripted
fields, and ease of migration of queries as the product evolves. The query syntax is similar
to the Lucene query syntax that was explained in the previous sections. For example, in a
Lucene query, response:404 geoip.city_name:Diedorf would search for any
documents having a response of 404 or any documents having geoip.city_name with
Diedorf.

Visualizing Data with Kibana Chapter 7

[247]

KQL doesn't allow spaces between expressions and the same thing would have to be
written as response:200 or geoip.city_name:Diedorf, as shown in the following
screenshot:

Similarly, you can have and not expressions too and group expressions as shown in the
following screenshot:

Visualizing Data with Kibana Chapter 7

[248]

The operators and, or, and not are case-insensitive.

Histogram: This section is only visible if a time field is configured for the selected index
pattern. This section displays the distribution of documents over time in a histogram. By
default, the best time interval for generating the histogram is automatically inferred based
on the time set in the time filter. However, the histogram interval can be changed by
selecting the interval from the dropdown, as shown in the following screenshot:

During data exploration, the user can slice and dice through the histogram and filter the
search results. Hovering over the histogram converts the mouse pointer to a + symbol.
When left-clicking, the user can draw a rectangle to inspect/filter the documents that fall in
those selected intervals.

After slicing through a histogram, the time interval/period changes. To
revert back, click the browser's back button.

Toolbar: User-entered search queries and applied filters can be saved so that they can be
reused or used to build visualizations on top of the filtered search results. The toolbar
provides options for clearing the search (New), and saving (Save), viewing (Open), sharing
(Share), and inspecting (Inspect) search queries.

Visualizing Data with Kibana Chapter 7

[249]

The user can refer to existing stored searches later and modify the query, and they can
either overwrite the existing search or save it as a new search (by toggling the Save as new
search option in the Save Search window), as follows:

Clicking the Open button displays the saved searches, as shown in the following
screenshot:

Visualizing Data with Kibana Chapter 7

[250]

In Kibana, the state of the current page/UI is stored in the URL itself, thus allowing it to be
easily shareable. Clicking the Share button allows you to share the Saved Search, as shown
in the following screenshot:

The Inspect button allows to view query statistics such as total hits, query time, the actual
query fired against ES, and the actual response returned by ES. This would be useful to
understand how the Lucene/KQL query we entered in the query bar translates to an actual
ES query, as shown in the following screenshot:

Visualizing Data with Kibana Chapter 7

[251]

Visualizing Data with Kibana Chapter 7

[252]

Time Picker: This section is only visible if a time field is configured for the selected index
pattern. The Time Filter restricts the search results to a specific time period, thus assisting in
analyzing the data belonging to the period of interest. When the Discover page is opened,
by default, the Time Filter is set to Last 15 minutes.

Time Filter provides the following options to select time periods. Click on Time Filter
(calendar icon)/ Date fields to access the following options:

Quick time filter: This helps you to filter quickly based on some already
available time ranges:

Relative time filter: This helps you to filter based on the relative time with
respect to the current time. Relative times can be in the past or the future. A
checkbox is provided to round the time:

Visualizing Data with Kibana Chapter 7

[253]

Absolute time filter: This helps you to filter based on input start and end times:

Auto Refresh: During the analysis of real-time data or data that is continuously
generated, a feature to automatically fetch the latest data would be very useful.
Auto Refresh provides such a functionality. By default, the refresh interval is
turned off. The user can choose the appropriate refresh interval that assists their
analysis and click the Start button, as shown in the following screenshot:

Visualizing Data with Kibana Chapter 7

[254]

Time Filter is present on the Discover, Visualize, and Dashboard pages.
The time range that gets selected/set on any of these pages gets carried
over to other pages, too.

Filters: By using positive filters, you can refine the search results to display only those
documents that contain a particular value in a field. You can also create negative filters that
exclude documents that contain the specified field value.

You can add field filters from Fields list or Documents table, and even manually add a
filter. In addition to creating positive and negative filters, Documents table enables you to
determine whether a field is present.

To add a positive or negative filter, in Fields List or Documents Table, click on the positive
icon or negative icon respectively. Similarly, to filter a search according to whether a field is
present, click on the * icon (the exists filter), as follows:

Visualizing Data with Kibana Chapter 7

[255]

You can also add filters manually by clicking the Add a Filter button found below the
query bar. Clicking on the button will launch a popup in which filters can be specified and
applied by clicking the Save button, as follows:

The applied filters are shown below the query bar. You can add multiple filters, and the
following actions can be applied to the applied filters:

Enable/Disable Filter: This icon allows the enabling/disabling of the filter
without removing it. Diagonal stripes indicate that a filter is disabled.
Pin Filter: Pin the filter. Pinned filters persist when you switch contexts in
Kibana. For example, you can pin a filter in Discover and it remains in place
when you switch to the Visualize/Dashboard page.
Toggle Filter (Include/Exclude results): Allows you to switch from a positive
filter to a negative filter and vice versa.
Delete Filter: Allows you to remove the applied filter.
Edit Filter: Allows you to edit the applied filter.
Expand/Collapse: Clicking this icon will show the labels next to the icons on the
left-hand-side menu.

Visualizing Data with Kibana Chapter 7

[256]

The following screenshot displays the preceding actions that can be applied:

You can perform the preceding actions across multiple filters at once rather than one at a
time by clicking on the filter settings icon, as follows:

Visualize
The Visualize page helps to create visualizations in the form of graphs, tables, and charts,
thus assisting in visualizing all the data that has been stored in Elasticsearch easily. By
creating visualizations, the user can easily make sense of data and can obtain answers to the
questions they might have formed during the data discovery process. These built
visualizations can be used when building dashboards.

Visualizing Data with Kibana Chapter 7

[257]

For our Apache access log analysis use case, the user can easily find out answers to some of
the typical questions raised in log analysis, such as the following:

What's the traffic in different regions of the world?
What are the top URLs requested?
What are the top IP addresses making requests?
How's the bandwidth usage over time?
Is there any suspicious or malicious activity from any region/IP address?

All visualizations in Kibana are based on the aggregation queries of Elasticsearch.
Aggregations provide the multi-dimensional grouping of results—for example, finding the
top user agents by device and by country. Kibana provides a variety of visualizations,
shown as follows:

Visualizing Data with Kibana Chapter 7

[258]

Kibana aggregations
Kibana supports two types of aggregations:

Bucket aggregations
Metric aggregations

As aggregation concepts are key to understanding how visualizations are built, let's get an
overview of them before jumping into building visualizations.

Bucket aggregations
The grouping of documents by a common criteria is called bucketing. Bucketing is very
similar to the GROUP BY functionality in SQL. Depending on the aggregation type, each
bucket is associated with a criterion that determines whether a document in the current
context belongs to the bucket. Each bucket provides the information about the total number
of documents it contains.

Bucket aggregations can do the following:

Give an employee index containing employee documents
Find the number of employees based on their age group or location
Give the Apache access logs index, and find the number of 404 responses by
country

Bucket aggregation supports sub aggregations, that is, given a bucket, all the documents
present in the bucket can be further bucketed (grouped based on criteria); for example,
finding the number of 404 responses by country and also by state.

Depending on the type of bucket aggregation, some define a single bucket, some define a
fixed number of multiple buckets, and others dynamically create buckets during the
aggregation process.

Bucket aggregations can be combined with metric aggregations—for example, finding the
average age of employees per age group.

Visualizing Data with Kibana Chapter 7

[259]

Kibana supports the following types of bucket aggregations:

Histogram: This type of aggregation works only on numeric fields and, given the
value of the numeric field and the interval, it works by distributing them into
fixed-size interval buckets. For example, a histogram can be used to find the
number of products per price range, with an interval of 100.
Date Histogram: This is a type of histogram aggregation that works only on date
fields. It works by distributing them into fixed-size date interval buckets. It
supports date/time-oriented intervals such as 2 hours, days, weeks, and so on.
Kibana provides various intervals including auto, millisecond, second, minute,
hour, day, week, month, year, and custom, for ease of use. Using the Custom
option, date/time-oriented intervals such as 2 hours, days, weeks, and so on, can
be supplied. This histogram is ideal for analyzing time-series data—for example,
finding the total number of incoming web requests per week/day.
Range: This is similar to histogram aggregations; however, rather than fixed
intervals, ranges can be specified. Also, it not only works on numeric fields, but it
can work on dates and IP addresses. Multiple ranges can be specified using from
and to values—for example, finding the number of employees falling in the age
ranges 0-25, 25-35, 35-50, and 50 and above.

This type of aggregation includes the from value and excludes
the to value for each range.

Terms: This type of aggregation works by grouping documents based on each
unique term in the field. This aggregation is ideal for finding the top n values for
a field—for example, finding the top five countries based on the number of
incoming web requests.

This aggregation works on keyword fields only.

Filters: This aggregation is used to create buckets based on a filter condition. This
aggregation allows for the comparison of specific values. For example, finding
the average number of web requests in India compared to the US.

Visualizing Data with Kibana Chapter 7

[260]

GeoHash Grid: This aggregation works with fields containing geo_point
values. This aggregation is used for plotting geo_points on a map by grouping
them into buckets—for example, visualizing web request traffic over different
geographies.

Metric
This is used to compute metrics based on values extracted from the fields of a document.
Metrics are used in conjunction with buckets. The different metrics that are available are as
follows:

Count: The default metric in Kibana visualizations; returns the count of
documents
Average: Used to compute the average value (for a field) of all the documents in
the bucket
Sum: Used to compute the sum value (for a field) of all the documents in the
bucket
Median: Used to compute the median value (for a field) of all the documents in
the bucket
Min: Used to compute the minimum value (for a field) of all the documents in
the bucket
Max: Used to compute the maximum value (for a field) of all the documents in
the bucket
Standard deviation: Used to compute the standard deviation (for a field) of all
the documents in the bucket
Percentiles: Used to compute the number of percentile values
Percentile ranks: For a set of percentiles, this is used to compute the
corresponding values

Creating a visualization
The following are the steps to create visualizations:

Navigate to the Visualize page and click the Create a new Visualization button1.
or the + button
Select a visualization type2.
Select a data source3.
Build the visualization4.

Visualizing Data with Kibana Chapter 7

[261]

The Visualize Interface looks as follows:

The following are the components of the Visualize interface as depicted in the screenshot:

Visualization designer: This is used for choosing appropriate metrics and
buckets for creating visualizations.
Visualization preview: Based on the metrics, buckets, queries, filters, and time
frame selected, the visualization is dynamically changed.
Label: This reflects the metric type and bucket keys as labels. Colors in the
visualization can be changed by clicking on Label and choosing the color from
the color palette.
Query Bar/Field filters: This is used to filter the search results.
Toolbar: This provides the option to save, inspect (ES queries), and share
visualizations.
Time filter: Using the time filter, the user can restrict the time to filter the search
results.

Time filters, the query bar, and field filters are explained in the Discover
section.

Visualizing Data with Kibana Chapter 7

[262]

Visualization types
Let's take a look at each visualization type in detail.

Line, area, and bar charts
These charts are used for visualizing the data distributions by plotting them against an x/y
axis. These charts are also used for visualizing the time-series data to analyze trends. Bar
and area charts are very useful for visualizing stacked data (that is, when sub aggregations
are used).

Kibana 5.5 onward provides the option to dynamically switch the chart type; that is, the
user can start off with a line chart but can change its type to either bar or area, thus
allowing for the flexibility of choosing the right visualizations for analysis.

Data tables
This is used to display aggregated data in a tabular format. This aggregation is useful for
analyzing data that has a high degree of variance and that would be difficult to analyze
using charts. For example, a data table is useful for finding the top 20 URLs or top 20 IP
addresses. It helps identify the top n types of aggregations.

Markdown widgets
This type of visualization is used to create formatted text containing general information,
comments, and instructions pertaining to a dashboard. This widget accepts GitHub-
flavored Markdown text (https:/ /help. github. com/ categories/ writing- on-github/).

Metrics
Metric aggregations work only on numeric fields and display a single numeric value for the
aggregations that are selected.

https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/
https://help.github.com/categories/writing-on-github/

Visualizing Data with Kibana Chapter 7

[263]

Goals
Goal is a metric aggregation that provides visualizations that display how the metric
progresses toward a fixed goal. It is a new visualization that was introduced in Kibana 5.5.

Gauges
A gauge is a metric aggregation that provides visualizations that are used to show how a
metric value relates to the predefined thresholds/ranges. For example, this visualization can
be used to show whether a server load is within a normal range or instead has reached
critical capacity. It is a new visualization that was introduced in Kibana 5.5.

Pie charts
This type of visualization is used to represent part-to-whole relationships. Parts are
represented by slices in the visualization.

Co-ordinate maps
This type of visualization is used to display the geographical area mapped to the data
determined by the specified buckets/aggregations. In order to make use of this
visualization, documents must have some fields mapped to the geo_point datatype. It
uses a GeoHash grid aggregation and groups points into buckets that represent cells in a
grid. This type of visualization was previously called a tile map.

Region maps
Region maps are thematic maps on which boundary vector shapes are colored using a
gradient; higher-intensity colors indicate higher values, and lower-intensity colors indicate
lower values. These are also known as choropleth maps (https:/ /en. wikipedia. org/
wiki/Choropleth_map). Kibana offers two vector layers by default: one for countries of the
world and one for US shapes. It is a new type of visualization that was introduced in
Kibana 5.5.

https://en.wikipedia.org/wiki/Choropleth_map
https://en.wikipedia.org/wiki/Choropleth_map
https://en.wikipedia.org/wiki/Choropleth_map
https://en.wikipedia.org/wiki/Choropleth_map
https://en.wikipedia.org/wiki/Choropleth_map
https://en.wikipedia.org/wiki/Choropleth_map
https://en.wikipedia.org/wiki/Choropleth_map
https://en.wikipedia.org/wiki/Choropleth_map
https://en.wikipedia.org/wiki/Choropleth_map
https://en.wikipedia.org/wiki/Choropleth_map
https://en.wikipedia.org/wiki/Choropleth_map
https://en.wikipedia.org/wiki/Choropleth_map
https://en.wikipedia.org/wiki/Choropleth_map
https://en.wikipedia.org/wiki/Choropleth_map

Visualizing Data with Kibana Chapter 7

[264]

Tag clouds
A tag cloud is a visual representation of text data typically used to visualize free-form text.
Tags are usually single words, and the importance of each tag is shown with a font size or
color. The font size for each word is determined by the metric aggregation. For example, if a
count (metric) is used, then the most frequently occurring word has the biggest font size
and the least occurring word has the smallest font size.

Visualizations in action
Let’s see how different visualizations can help us in doing the following:

Analyzing response codes over time
Finding the top 10 requested URLs
Analyzing the bandwidth usage of the top five countries over time
Finding the most used user agent

As the log events are from the period May 2014 to June 2014, set the
appropriate date range in the time filter. Navigate to Time Filter |
Absolute Time Range and set From as 2014-05-28 00:00:00.000 and
To to 2014-07-01 00:00:00.000; click Go.

Response codes over time
This can be visualized easily using a bar graph.

Create a new visualization:

Click on New and select Vertical Bar1.
Select Logstash-* under From a New Search, Select Index2.
On the x axis, select Date Histogram and @timestamp as the field3.
Click Add sub-buckets and select Split Series4.
Select Terms as the Sub Aggregation5.
Select response.keyword as the field6.
Click the Play (Apply Changes) button7.

Visualizing Data with Kibana Chapter 7

[265]

The following screenshot displays the steps to create a new visualization for response codes
over time:

Save the visualization as Response Codes By Time.

As seen in the visualization, on a few days, such as June 9, June 16, and so on, there is a
significant amount of 404. Now, to analyze just the 404 events, from the labels/keys panel,
click on 404 and then click positive filter:

Visualizing Data with Kibana Chapter 7

[266]

The resulting graph is shown in the following screenshot:

You can expand the labels/keys and choose the colors from the color
palette, thus changing the colors in the visualization. Pin the filter and
navigate to the Discover page to see the requests resulting in 404s.

Top 10 requested URLs
This can be visualized easily using a data table.

The steps are as follows:

Create a new visualization1.
Click on New and select Data Table2.
Select Logstash-* under From a New Search, Select Index3.
Select Buckets type as Split Rows4.
Select Aggregation as Terms5.

Visualizing Data with Kibana Chapter 7

[267]

Select the request.keyword field6.
Set the Size to 107.
Click the Play (Apply Changes) button8.

The following screenshot displays the steps to create a new visualization for the top
10 requested URLs:

Save the visualization as Top 10 URLs.

Custom Label fields can be used to provide meaningful names for
aggregated results. Most of the visualizations support custom labels. Data
table visualizations can be exported as a .csv file by clicking the Raw or
Formatted links found under the data table visualization.

Visualizing Data with Kibana Chapter 7

[268]

Bandwidth usage of the top five countries over time
The steps to demonstrate this are as follows:

Create a new visualization1.
Click on New and select Area Chart2.
Select Logstash-* under From a New Search, Select Index3.
In Y axis, select Aggregation type and Sum of bytes as the field4.
In X axis, select Date Histogram and @timestamp as the field5.
Click Add sub-buckets and select Split Series6.
Select Terms as the Sub Aggregation7.
Select geoip.country_name.keyword as the field8.
Click the Play (Apply Changes) button9.

The following screenshot displays the steps to create a new visualization for the bandwidth
usage of the top five countries over time:

Save the visualization as Top 5 Countries by Bandwidth Usage.

Visualizing Data with Kibana Chapter 7

[269]

What if we were not interested in finding only the top five countries? Rearrange the
aggregation and click Play, as follows:

The order of aggregation is important.

Web traffic originating from different countries
This can be visualized easily using a coordinate map.

The steps are as follows:

Create a new visualization1.
Click on New and select Coordinate Map2.
Select logstash-* under From a New Search, Select Index3.
Set the bucket type as Geo Coordinates4.

Visualizing Data with Kibana Chapter 7

[270]

Select the Aggregation as Geohash5.
Select the geoip.location field6.
In the Options tab, select Map Type as Heatmap7.
Click the Play (Apply Changes) button:8.

Save the visualization as Traffic By Country.

Based on this visualization, most of the traffic is originating from California.

Visualizing Data with Kibana Chapter 7

[271]

For the same visualization, if the metric is changed to bytes, the resulting visualization is as
follows:

You can click on the +/- button found at the top-left of the map and zoom
in/zoom out.

Using the Draw Rectangle button found at the top-left, below the zoom in
and zoom out buttons, you can draw a region for filtering the documents.
Then, you can pin the filter and navigate to the Discover page to see the
documents belonging to that region.

Most used user agent
This can be visualized easily using a variety of charts. Let's use Tag Cloud.

The steps are as follows:

Create a new visualization1.
Click on New and select Tag Cloud2.
Select logstash-* under From a New Search, Select Index3.

Visualizing Data with Kibana Chapter 7

[272]

Set the bucket type to Tags4.
Select the Terms aggregation5.
Select the useragent.name.keyword field6.
Set the Size to 10 and click the Play (Apply Changes) button:7.

Save the visualization as Most used user agent. Chrome, followed by Firefox, is the
user agent the majority of traffic is originating from.

Visualizing Data with Kibana Chapter 7

[273]

Dashboards
Dashboards help you bring different visualizations into a single page. By using previously
stored visualizations and saved queries, you can build a dashboard that tells a story about
the data.

A sample dashboard would look like the following screenshot:

Let's see how we can build a dashboard for our log analysis use case.

Creating a dashboard
In order to create a new dashboard, navigate to the Dashboard page and click the Create a
Dashboard button:

Visualizing Data with Kibana Chapter 7

[274]

On the resulting page, the user can click the Add button, which shows all the stored
visualizations and saved searches that are available to be added. Clicking on Saved
search/Visualization will result in them getting added to the page, as follows:

Visualizing Data with Kibana Chapter 7

[275]

The user can expand, edit, rearrange, or remove visualizations using the buttons available
at the top corner of each visualization, as follows:

By using the query bar, field filters, and time filters, search results can be
filtered. The dashboard reflects those changes via the changes to the
embedded visualizations.

For example, you might be only interested in knowing the top user agents
and top devices by country when the response code is 404.

Usage of the query bar, field filters, and time filters is explained in the
Discover section.

Saving the dashboard
Once the required visualizations are added to the dashboard, make sure to save the
dashboard by clicking the Save button available on the toolbar and provide a title. When a
dashboard is saved, all the query criteria and filters get saved, too. If you want to save the
time filters, then, while saving the dashboard, select the Store time with dashboard toggle
button. Saving the time along with the dashboard might be useful when you want to
share/reopen the dashboard in its current state, as follows:

Visualizing Data with Kibana Chapter 7

[276]

Cloning the dashboard
Using the Clone feature, you can copy the current dashboard, along with its queries and
filters, and create a new dashboard. For example, you might want to create new dashboards
for continents or countries, as follows:

Visualizing Data with Kibana Chapter 7

[277]

The dashboard background theme can be changed from light to dark.
When you click the Edit button in the toolbar, it provides a button called
Options, which provides the feature to change the dashboard theme.

Sharing the dashboard
Using the Share feature, you can either share a direct link to a Kibana dashboard with
another user or embed the dashboard in a web page as an iframe:

Timelion
Timelion visualizations are special type of visualization for analyzing time-series data in
Kibana. They enable you to combine totally independent data sources within the same
visualization. Using its simple expression language, you can execute advanced
mathematical calculations, such as dividing and subtracting metrics, calculating derivatives
and moving averages, and visualize the results of these calculations.

Visualizing Data with Kibana Chapter 7

[278]

Timelion
Timelion is available just like any other visualization in the New Visualization window, as
follows:

The main components/features of Timelion visualization are Timelion expressions, which
allow you to define expressions that influence the generation of graphs. They allow you to
define multiple expressions separated by commas, and also allow you to chain functions.

Timelion expressions
The simplest Timelion expression used for generating graphs is as follows:

.es(*)

Timelion expressions always start with a dot followed by the function name that can accept
one or more parameters. The .es(*) expression queries data from all the indexes present
in Elasticsearch. By default, it will just count the number of documents, resulting in a graph
showing the number of documents over time.

Visualizing Data with Kibana Chapter 7

[279]

If you'd like to restrict Timelion to data within a specific index (for example, logstash-*),
you can specify the index within the function as follows:

.es(index=logstash-*)

As Timelion is a time-series visualizer, it uses the @timestamp field present in the index as
the time field for plotting the values on an x axis. You can change it by passing the
appropriate time field as a value to the timefield parameter.

Timelion's helpful autocompletion feature will help you build the expression as you go
along, as follows:

Visualizing Data with Kibana Chapter 7

[280]

Let's see some examples in action to understand Timelion better.

As the log events are from the period May 2014 to June 2014, set the
appropriate date range in the time filter. Navigate to Time Filter |
Absolute Time Range and set From to 2014-05-28 00:00:00.000 and
To to 2014-07-01 00:00:00.000; click Go.

Let's find the average bytes usage over time for the US. The expression for this would be as
follows:

.es(q='geoip.country_code3:US',metric='avg:bytes')

The output is displayed in the following screenshot:

Timelion allows for the plotting of multiple graphs in the same chart as well. By separating
expressions with commas, you can plot multiple graphs.

Visualizing Data with Kibana Chapter 7

[281]

Let's find the average bytes usage over time for the US and the average bytes usage over
time for China. The expression for this would be as follows:

 es(q='geoip.country_code3:US',metric='avg:bytes'),
.es(q='geoip.country_code3:CN',metric='avg:bytes')

The output is displayed in the following screenshot:

Timelion also allows for the chaining of functions. Let's change the label and color of the
preceding graphs. The expression for this would be as follows:

.es(q='geoip.country_code3:US',metric='avg:bytes').label('United
States').color('yellow'),
.es(q='geoip.country_code3:CN',metric='avg:bytes').label('China').color('re
d')

Visualizing Data with Kibana Chapter 7

[282]

The output is displayed in the following screenshot:

One more useful option in Timelion is using offsets to analyze old data. This is useful for
comparing current trends to earlier patterns. Let's compare the sum of bytes usage to the
previous week for the US. The expression for this would be as follows:

.es(q='geoip.country_code3:US',metric='sum:bytes').label('Current Week'),

.es(q='geoip.country_code3:US',metric='sum:bytes',
offset=-1w).label('Previous Week')

Visualizing Data with Kibana Chapter 7

[283]

The output is displayed in the following screenshot:

Timelion also supports the pulling of data from external data sources using a public API.
Timelion has a native API for pulling data from the World Bank, Quandl, and Graphite.

Timelion expressions support around 50 different functions (https:/ /
github. com/ elastic/ timelion/ blob/ master/ FUNCTIONS. md), which you
can use to build expressions.

Using plugins
Plugins are a way to enhance the functionality of Kibana. All the plugins that are installed
will be placed in the $KIBANA_HOME/plugins folder. Elastic, the company behind Kibana,
provides many plugins that can be installed, and there are quite a number of public plugins
that are not maintained by Elastic that can be installed, too.

https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md
https://github.com/elastic/timelion/blob/master/FUNCTIONS.md

Visualizing Data with Kibana Chapter 7

[284]

Installing plugins
Navigate to KIBANA_HOME and execute the install command, as shown in the following
code, to install any plugins. During installation, either the name of the plugin can be given
(if it's hosted by Elastic itself), or the URL of the location where the plugin is hosted can be
given:

$ KIBANA_HOME>bin/kibana-plugin install <package name or URL>

For example, to install x-pack, a plugin developed and maintained by Elastic, execute the
following command:

$ KIBANA_HOME>bin/kibana-plugin install x-pack

To install a public plugin, for example, LogTrail (https:/ / github. com/ sivasamyk/
logtrail), execute the following command:

$ KIBANA_HOME>bin/kibana-plugin install
https://github.com/sivasamyk/logtrail/releases/download/v0.1.31/logtrail-6.
7.1-0.1.31.zip

LogTrail is a plugin for viewing, analyzing, searching, and tailing log
events from multiple hosts in real time with a developer friendly interface,
inspired by Papertrail (https:/ /papertrailapp. com/).

A list of publicly available Kibana plugins can be found at https:/ /www.
elastic. co/ guide/ en/ kibana/ 6.0/ known- plugins. html.

Removing plugins
To remove a plugin, navigate to KIBANA_HOME and execute the remove command followed
by the plugin name:

$ KIBANA_HOME>bin/kibana-plugin remove x-pack

https://github.com/sivasamyk/logtrail
https://github.com/sivasamyk/logtrail
https://github.com/sivasamyk/logtrail
https://github.com/sivasamyk/logtrail
https://github.com/sivasamyk/logtrail
https://github.com/sivasamyk/logtrail
https://github.com/sivasamyk/logtrail
https://github.com/sivasamyk/logtrail
https://github.com/sivasamyk/logtrail
https://github.com/sivasamyk/logtrail
https://papertrailapp.com/
https://papertrailapp.com/
https://papertrailapp.com/
https://papertrailapp.com/
https://papertrailapp.com/
https://papertrailapp.com/
https://papertrailapp.com/
https://papertrailapp.com/
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html
https://www.elastic.co/guide/en/kibana/6.0/known-plugins.html

Visualizing Data with Kibana Chapter 7

[285]

Summary
In this chapter, we covered how to effectively use Kibana to build beautiful dashboards for
effective storytelling about your data.

We learned how to configure Kibana to visualize data from Elasticsearch. We also looked at
how to add custom plugins to Kibana.

In the next chapter, we will cover ElasticSearch and the core components that help when
building data pipelines. We will also cover visualizing data to add the extensions needed
for specific use cases.

3
Section 3: Elastic Stack

Extensions
This small section will give you insights into the set of extensions that are developed and
maintained by Elastic Stack's developers. You will find out how to incorporate security,
monitor Elasticsearch, and add alerting functionalities to your work.

This section includes one chapter:

Chapter 8, Elastic X-Pack

8
Elastic X-Pack

X-Pack is an Elastic Stack extension that bundles security, alerting, monitoring, reporting,
machine learning, and graph capabilities into one easy-to-install package. It adds essential
features to make Elastic Stack production-ready. Unlike the components of Elastic Stack,
which are open source, X-Pack is a commercial offering from Elastic.co, and so it requires
a paid license so that it can be used. When you install X-Pack for the first time, you are
given a 30-day trial. Even though X-Pack comes as a bundle, it allows you to easily enable
or disable the features you want to use. In this chapter, we won't be covering all the
features provided by X-Pack, but we will be covering the important features that an X-Pack
beginner should be aware of.

In this chapter, we will cover the following topics:

Installing Elasticsearch and Kibana with X-Pack
Configuring/activating X-Pack trial account
Securing Elasticsearch and Kibana
Monitoring Elasticsearch
Alerting

Installing Elasticsearch and Kibana
with X-Pack
Prior to Elastic 6.3, X-Pack was an extension of Elastic Stack that could have been installed
on top of Elasticsearch or Kibana. Now, Elasticsearch and Kibana come in two flavors:

OSS version, that is, Apache 2.0License
Elastic license

http://Elastic.co
http://Elastic.co

Elastic X-Pack Chapter 8

[288]

If X-Pack isn't available with the OSS version, then you have to download Elasticsearch and
Kibana with the Elastic license. When you download Elasticsearch or Kibana with the
Elastic license, all the basic features are available for free by default. The paid features can
be used as a trial for 30 days; post that time period, a license has to be bought.

To see a list of all the features that are available for free and the features
that are paid, go to https:/ /www. elastic. co/ subscriptions.

Installation
In order to explore X-Pack and its features, we will need to download Elasticsearch and
Kibana with Elastic license.

You can download Elasticsearch from https:/ /www. elastic. co/downloads/ past-
releases/elasticsearch- 7-0- 0.

You can download Kibana from https:/ / www. elastic. co/ downloads/ past- releases/
kibana-7-0-0.

Please refer to Chapter 1, Introducing Elastic Stack, for installation instructions for
Elasticsearch and Chapter 7, Visualizing Data with Kibana, for installation instructions for
Kibana.

Before installation, please make sure to stop any existing running
instances of Elastic Stack components.

When you start Elasticsearch, you should see X-Pack-related plugins getting loaded and
new files getting created under the ES_HOME/config folder. The bootup logs should also
indicate the license type; in this case, this will be basic:

[2019-05-21T13:38:08,679][INFO][o.e.p.PluginsService] [MADSH01-APM01]
loaded module [x-pack-ccr]
[2019-05-21T13:38:08,682][INFO][o.e.p.PluginsService] [MADSH01-APM01]
loaded module [x-pack-core]
[2019-05-21T13:38:08,684][INFO][o.e.p.PluginsService] [MADSH01-APM01]
loaded module [x-pack-deprecation]
[2019-05-21T13:38:08,687][INFO][o.e.p.PluginsService] [MADSH01-APM01]
loaded module [x-pack-graph]
[2019-05-21T13:38:08,689][INFO][o.e.p.PluginsService] [MADSH01-APM01]

https://www.elastic.co/subscriptions
https://www.elastic.co/subscriptions
https://www.elastic.co/subscriptions
https://www.elastic.co/subscriptions
https://www.elastic.co/subscriptions
https://www.elastic.co/subscriptions
https://www.elastic.co/subscriptions
https://www.elastic.co/subscriptions
https://www.elastic.co/subscriptions
https://www.elastic.co/subscriptions
https://www.elastic.co/subscriptions
https://www.elastic.co/downloads/past-releases/elasticsearch-7-0-0
https://www.elastic.co/downloads/past-releases/elasticsearch-7-0-0
https://www.elastic.co/downloads/past-releases/elasticsearch-7-0-0
https://www.elastic.co/downloads/past-releases/elasticsearch-7-0-0
https://www.elastic.co/downloads/past-releases/elasticsearch-7-0-0
https://www.elastic.co/downloads/past-releases/elasticsearch-7-0-0
https://www.elastic.co/downloads/past-releases/elasticsearch-7-0-0
https://www.elastic.co/downloads/past-releases/elasticsearch-7-0-0
https://www.elastic.co/downloads/past-releases/elasticsearch-7-0-0
https://www.elastic.co/downloads/past-releases/elasticsearch-7-0-0
https://www.elastic.co/downloads/past-releases/elasticsearch-7-0-0
https://www.elastic.co/downloads/past-releases/elasticsearch-7-0-0
https://www.elastic.co/downloads/past-releases/elasticsearch-7-0-0
https://www.elastic.co/downloads/past-releases/elasticsearch-7-0-0
https://www.elastic.co/downloads/past-releases/elasticsearch-7-0-0
https://www.elastic.co/downloads/past-releases/elasticsearch-7-0-0
https://www.elastic.co/downloads/past-releases/elasticsearch-7-0-0
https://www.elastic.co/downloads/past-releases/elasticsearch-7-0-0
https://www.elastic.co/downloads/past-releases/elasticsearch-7-0-0
https://www.elastic.co/downloads/past-releases/elasticsearch-7-0-0
https://www.elastic.co/downloads/past-releases/elasticsearch-7-0-0
https://www.elastic.co/downloads/past-releases/elasticsearch-7-0-0
https://www.elastic.co/downloads/past-releases/kibana-7-0-0
https://www.elastic.co/downloads/past-releases/kibana-7-0-0
https://www.elastic.co/downloads/past-releases/kibana-7-0-0
https://www.elastic.co/downloads/past-releases/kibana-7-0-0
https://www.elastic.co/downloads/past-releases/kibana-7-0-0
https://www.elastic.co/downloads/past-releases/kibana-7-0-0
https://www.elastic.co/downloads/past-releases/kibana-7-0-0
https://www.elastic.co/downloads/past-releases/kibana-7-0-0
https://www.elastic.co/downloads/past-releases/kibana-7-0-0
https://www.elastic.co/downloads/past-releases/kibana-7-0-0
https://www.elastic.co/downloads/past-releases/kibana-7-0-0
https://www.elastic.co/downloads/past-releases/kibana-7-0-0
https://www.elastic.co/downloads/past-releases/kibana-7-0-0
https://www.elastic.co/downloads/past-releases/kibana-7-0-0
https://www.elastic.co/downloads/past-releases/kibana-7-0-0
https://www.elastic.co/downloads/past-releases/kibana-7-0-0
https://www.elastic.co/downloads/past-releases/kibana-7-0-0
https://www.elastic.co/downloads/past-releases/kibana-7-0-0
https://www.elastic.co/downloads/past-releases/kibana-7-0-0
https://www.elastic.co/downloads/past-releases/kibana-7-0-0
https://www.elastic.co/downloads/past-releases/kibana-7-0-0
https://www.elastic.co/downloads/past-releases/kibana-7-0-0

Elastic X-Pack Chapter 8

[289]

loaded module [x-pack-ilm]
[2019-05-21T13:38:08,690][INFO][o.e.p.PluginsService] [MADSH01-APM01]
loaded module [x-pack-logstash]
[2019-05-21T13:38:08,692][INFO][o.e.p.PluginsService] [MADSH01-APM01]
loaded module [x-pack-ml]
[2019-05-21T13:38:08,694][INFO][o.e.p.PluginsService] [MADSH01-APM01]
loaded module [x-pack-monitoring]
[2019-05-21T13:38:08,696][INFO][o.e.p.PluginsService] [MADSH01-APM01]
loaded module [x-pack-rollup]
[2019-05-21T13:38:08,698][INFO][o.e.p.PluginsService] [MADSH01-APM01]
loaded module [x-pack-security]
[2019-05-21T13:38:08,700][INFO][o.e.p.PluginsService] [MADSH01-APM01]
loaded module [x-pack-sql]
[2019-05-21T13:38:08,707][INFO][o.e.p.PluginsService] [MADSH01-APM01]
loaded module [x-pack-watcher]

:
:
[2019-05-21T13:38:18,783][INFO][o.e.l.LicenseService] [MADSH01-APM01]
license [727c7d40-2008-428f-bc9f-b7f511fc399e] mode [basic] - valid
[2019-05-21T13:38:18,843][INFO][o.e.g.GatewayService] [MADSH01-APM01]
recovered [0] indices into cluster_states

If you list the files under the ES_HOME/config directory, you should see the files being
displayed, as shown in the following screenshot. All the highlighted files are the new files
that aren't available if the Elasticsearch OSS version is used:

Elastic X-Pack Chapter 8

[290]

When you start Kibana, you should see a list of X-Pack-related plugins that are loaded, as
shown in the following code:

 log [05:57:13.939] [info][status][plugin:xpack_main@7.0.0] Status changed
from uninitialized to yellow - Waiting for Elasticsearch
 log [05:57:13.952] [info][status][plugin:graph@7.0.0] Status changed from
uninitialized to yellow - Waiting for Elasticsearch
 log [05:57:13.968] [info][status][plugin:monitoring@7.0.0] Status changed
from uninitialized to green - Ready
 log [05:57:13.974] [info][status][plugin:spaces@7.0.0] Status changed
from uninitialized to yellow - Waiting for Elasticsearch
 :
 :
 log [05:57:14.136] [info][status][plugin:beats_management@7.0.0] Status
changed from uninitialized to yellow - Waiting for Elasticsearch
 log [05:57:14.162] [info][status][plugin:apm_oss@undefined] Status
changed from uninitialized to green - Ready
 log [05:57:14.179] [info][status][plugin:apm@7.0.0] Status changed from
uninitialized to green - Ready
 :
 :
 log [05:57:16.798] [info][license][xpack] Imported license information
from Elasticsearch for the [data] cluster: mode: basic | status: active
 :
 :
 log [05:57:19.711] [info][listening] Server running at
http://localhost:5601
 log [05:57:20.530] [info][status][plugin:spaces@7.0.0] Status changed
from yellow to green - Ready

Elastic X-Pack Chapter 8

[291]

Open Kibana by navigating to http:localhost:5601. You should see the following
screen. Some of the new features that are not present in the OSS version are highlighted in
the following screenshot:

Elastic X-Pack Chapter 8

[292]

Activating X-Pack trial account
In order to activate all the X-Pack paid features, we need to enable the trial account, which
is valid for 30 days. Let's go ahead and activate it.

Click on the Management icon on the left-hand side menu and click on License
Management. Then, click on Start Trial, as follows:

Click on the Start my Trial button in the resultant popup, as follows:

Elastic X-Pack Chapter 8

[293]

On successful activation, you should see the status of the license as Active. At any point in
time before the trial ends, you can go ahead and revert back to the basic license by clicking
on the Revert to Basic button:

Elastic X-Pack Chapter 8

[294]

Open elasticsearch.yml, which can be found under the $ES_HOME/config folder, and
add the following line at the end of the file to enable X-Pack and restart Elasticsearch and
Kibana:

xpack.security.enabled: true

If the Elasticsearch cluster has multiple nodes, then the
xpack.security.enabled: true property must be set in each of the
nodes and restarted.

Now, when you try to access Elasticsearch via http://localhost:9200, the user will be
prompted for login credentials, as shown in the following screenshot:

Similarly, if you see the logs of Kibana in the Terminal, it would fail to connect to
Elasticsearch due to authentication issues and won't come up until we set the right
credentials in the kibana.yml file.

Go ahead and stop Kibana. Let Elasticsearch run. Now that X-Pack is enabled and security
is in place, how do we know what credentials to use to log in? We will look at this in the
next section.

Elastic X-Pack Chapter 8

[295]

Generating passwords for default users
Elastic Stack security comes with default users and a built-in credential helper to set up
security with ease and have things up and running quickly. Open up another Terminal and
navigate to ES_HOME. Let's generate the passwords for the reserved/default
users—elastic, kibana, apm_system, remote_monitoring_user, beats_system,
and logstash_system—by executing the following command:

$ ES_HOME>bin/elasticsearch-setup-passwords interactive

You should get the following logs/prompts to enter the password for the reserved/default
users:

Initiating the setup of passwords for reserved users
elastic,apm_system,kibana,logstash_system,beats_system,remote_monit
oring_user.
You will be prompted to enter passwords as the process progresses.
Please confirm that you would like to continue [y/N]y

Enter password for [elastic]:elastic
Reenter password for [elastic]:elastic
Enter password for [apm_system]:apm_system
Reenter password for [apm_system]:apm_system
Enter password for [kibana]:kibana
Reenter password for [kibana]:kibana
Enter password for [logstash_system]:logstash_system
Reenter password for [logstash_system]:logstash_system
Enter password for [beats_system]:beats_system
Reenter password for [beats_system]:beats_system
Enter password for [remote_monitoring_user]:remote_monitoring_user
Reenter password for
[remote_monitoring_user]:remote_monitoring_user
Changed password for user [apm_system]
Changed password for user [kibana]
Changed password for user [logstash_system]
Changed password for user [beats_system]
Changed password for user [remote_monitoring_user]
Changed password for user [elastic]

Please make a note of the passwords that have been set for the
reserved/default users. You can choose any password of your liking. We
have chosen the passwords as elastic, kibana, logstash_system,
beats_system, apm_system, and
remote_monitoring_user for elastic, kibana, logstash_system, b
eats_system, apm_system, and remote_monitoring_user users,
respectively, and we will be using them throughout this chapter.

Elastic X-Pack Chapter 8

[296]

All the security-related information for the built-in users will be stored in
a special index called .security and will be managed by Elasticsearch.

To verify X-Pack's installation and enforcement of security, point your web browser to
http://localhost:9200/ to open Elasticsearch. You should be prompted to log in to
Elasticsearch. To log in, you can use the built-in elastic user and elastic password.
Upon logging in, you should see the following response:

{
 "name" : "MADSH01-APM01",
 "cluster_name" : "elasticsearch",
 "cluster_uuid" : "I2RVLSk2Rr6IRJb6zDf19g",
 "version" : {
 "number" : "7.0.0",
 "build_flavor" : "default",
 "build_type" : "zip",
 "build_hash" : "b7e28a7",
 "build_date" : "2019-04-05T22:55:32.697037Z",
 "build_snapshot" : false,
 "lucene_version" : "8.0.0",
 "minimum_wire_compatibility_version" : "6.7.0",
 "minimum_index_compatibility_version" : "6.0.0-beta1"
 },
 "tagline" : "You Know, for Search"
}

Before we can go ahead and start Kibana, we need to set the Elasticsearch credentials in
kibana.yml so that when we boot up Kibana, it knows what credentials it needs to use for
authenticating itself/communicating with Elasticsearch.

Add the following credentials in the kibana.yml file, which can be found under
$KIBANA_HOME/config, and save it:

elasticsearch.username: "kibana"
elasticsearch.password: "kibana"

If you have chosen a different password for the kibana user during
password setup, use that value for
the elasticsearch.password property.

Elastic X-Pack Chapter 8

[297]

Start Kibana:

$KIBANA_HOME>bin/kibana

To verify that the authentication is in place, go to http://localhost:5601/ to open
Kibana. You should be prompted to login to Kibana. To log in, you can use the built-
in elastic user and the elastic password, as follows:

The built-in kibana user will be used to connect and communicate with
Elasticsearch. Each built-in user has a specific role which provides certain
authorization and restrictions for specific activities. It is recommended to
use the kibana user for this. We will be covering roles in more detail in
the upcoming sections.

Elastic X-Pack Chapter 8

[298]

Configuring X-Pack
X-Pack comes bundled with security, alerting, monitoring, reporting, machine learning, and
graph capabilities. By default, all of these features are enabled. However, you might not be
interested in all of the features it provides. You can selectively enable and disable the
features that you are interested in from the elasticsearch.yml and
kibana.yml configuration files.

Elasticsearch supports the following features and settings in the elasticsearch.yml file:

Feature Setting Description

Machine learning xpack.ml.enabled Set this to false to disable X-Pack machine
learning features

Monitoring xpack.monitoring.enabled Set this to false to disable Elasticsearch's
monitoring features

Security xpack.security.enabled Set this to false to disable X-Pack security
features

Watcher xpack.watcher.enabled Set this to false to disable Watcher

Kibana supports the following features and settings in the kibana.yml file:

Feature Setting Description

Machine learning xpack.ml.enabled Set this to false to disable X-Pack machine
learning features

Monitoring xpack.monitoring.enabled Set this to false to disable Kibana's monitoring
features

Security xpack.security.enabled Set this to false to disable X-Pack security
features

Graph xpack.graph.enabled Set this to false to disable X-Pack graph features

Reporting xpack.reporting.enabled Set this to false to disable X-Pack reporting
features

If X-Pack is installed on Logstash, you can disable monitoring by setting
the xpack.monitoring.enabled property to false in the logstash.yml
configuration file.

Elastic X-Pack Chapter 8

[299]

Securing Elasticsearch and Kibana
The components of Elastic Stack are unsecured, as it doesn't have inherent security built
into it; this means it can be accessed by anyone. This poses a security risk when running
Elastic Stack in production. In order to prevent unauthorized access in production, different
mechanisms of imposing security, such as running Elastic Stack behind a firewall and
securing via reverse proxies (such as nginx, HAProxy, and so on), are employed. Elastic.co
offers a commercial product to secure Elastic Stack. This offering is part of X-Pack and the
module is called Security.

The X-Pack security module provides the following ways to secure Elastic Stack:

User authentication and user authorization
Node/Client authentication and channel encryption
Auditing

User authentication
User authentication is the process of validating the user and thus preventing unauthorized
access to the Elastic Cluster. In the X-Pack security module, the authentication process is
handled by one or more authentication services called realms. The Security module
provides two types of realms, namely internal realms and external realms.

The two types of built-in internal realms are native and file. The native realm is the
default realm, and the user credentials are stored in a special index called .security-7 on
Elasticsearch itself. These users are managed using the User Management API or the
Management page of the Kibana UI. We will be exploring this in more detail later in this
chapter.

If the realm is of the file type, then the user credentials are stored in a file on each node.
These users are managed via dedicated tools that are provided by X-Pack. These tools can
be found at $ES_HOME\bin\. The files are stored under the $ES_HOME\config folder.
Since the credentials are stored in a file, it is the responsibility of the administrator to create
users with the same credentials on each node.

The built-in external realms are ldap, active_directory, and pki, which use the
external LDAP server, the external Active Directory Server, and the Public Key
Infrastructure, respectively, to authenticate users.

Elastic X-Pack Chapter 8

[300]

Depending on the realms that have been configured, the user credentials need to be
attached to the requests that are sent to Elasticsearch. Realms live within a realm chain. The
realm's order is configured in the elasticsearch.yml file and determines the order in
which realms are consulted during the authentication process. Each realm is consulted one
by one based on the order defined until the authentication is successful. Once one of the
realms successfully authenticates the request, the authentication is considered to be
successful. If none of the realms are able to authenticate the user, then the authentication is
considered unsuccessful and an authentication error (HTTP 401) will be returned to the
caller. The default realm chain consists of internal realm types, that is, native and file.

If none of these realms are specified in elasticsearch.yml, then the default realm that's
used is native. To use the file type realm or external realms, they need to be specified in
the elasticsearch.yml file.

For example, the following snippet shows the configuration for the realm chain
containing native, file, and ldap:

xpack.security.authc:
 realms:
 native:
 type: native
 order: 0
 file:
 type: file
 order: 1
 ldap_server:
 type: ldap
 order: 2
 url: 'url_to_ldap_server'

To disable a specific realm type, use the enabled:false property, as
shown in the following example:
ldap_server:

 type: ldap
 order: 2
 enabled: false
 url: 'url_to_ldap_server'

Elastic X-Pack Chapter 8

[301]

User authorization
Once the user has been successfully authenticated, the authorization process kicks in.
Authorization determines whether the user behind the request has enough permissions
to execute a particular request.

In X-Pack security, secured resources are the foundation of user-based security. A secured
resource is a resource that needs access, such as indexes, documents, or fields, to perform
Elasticsearch cluster operations. X-Pack security enables authorization by assigning
permissions to roles that are assigned to users. A permission is one or more privileges
against a secured resource. A privilege is a named group representing one or more actions
that a user may execute against a secured resource. A user can have one or more roles, and
the total set of permissions that a user has is defined as a union of the permissions in all its
roles, as shown in the following diagram:

The X-Pack security module provides three types of privileges:

Cluster privileges: Cluster privileges provide privileges for performing various
operations on the cluster:

all: Allows you to execute cluster administration operations settings, as
well as update, reroute, or manage users and roles

Elastic X-Pack Chapter 8

[302]

monitor: Allows you to execute all cluster read-only operations, such as
fetching cluster health, cluster state, nodes' state, and more, for
monitoring purposes
manage: This allows you to execute and perform cluster operations that
can update the cluster, such as rerouting and updating cluster settings

Index privileges: Index privileges provide privileges for performing various
operations on indexes:

all: Allows you to execute any operation on an index
read: Allows you to execute read-only operations on an index, such as
invoking search, get, suggest, and many more APIs
create_index: This privilege allows you to create a new index
create: This privilege allows you to index new documents into an
index

Run As privilege: This provides the ability to perform user impersonation; that
is, it allows an authenticated user to test out another users' access rights without
knowing their credentials.

A complete list of all the privileges can be obtained at https:/ /www.
elastic. co/ guide/ en/ elastic- stack- overview/ 7.0/ security-
privileges. html.

Node/client authentication and channel encryption: By encrypting the
communication, X-Pack security prevents network-based attacks. It provides you
with the ability to encrypt traffic to and from the Elasticsearch cluster to outside
applications, as well as encrypt the communication between nodes in the cluster.
To prevent unintended nodes from joining the cluster, you can configure the
nodes to authenticate as they join the cluster using SSL certificates. X-Pack
security IP filtering can prevent unintended application clients, node clients, or
transport clients from joining the cluster.
Auditing: Auditing allows you to capture suspicious activity in your cluster. You
can enable auditing to keep track of security-related events, such as
authentication failures and refused connections. Logging these events allows you
to monitor the cluster for suspicious activity and provides evidence in the event
of an attack.

https://www.elastic.co/guide/en/elastic-stack-overview/7.0/security-privileges.html
https://www.elastic.co/guide/en/elastic-stack-overview/7.0/security-privileges.html
https://www.elastic.co/guide/en/elastic-stack-overview/7.0/security-privileges.html
https://www.elastic.co/guide/en/elastic-stack-overview/7.0/security-privileges.html
https://www.elastic.co/guide/en/elastic-stack-overview/7.0/security-privileges.html
https://www.elastic.co/guide/en/elastic-stack-overview/7.0/security-privileges.html
https://www.elastic.co/guide/en/elastic-stack-overview/7.0/security-privileges.html
https://www.elastic.co/guide/en/elastic-stack-overview/7.0/security-privileges.html
https://www.elastic.co/guide/en/elastic-stack-overview/7.0/security-privileges.html
https://www.elastic.co/guide/en/elastic-stack-overview/7.0/security-privileges.html
https://www.elastic.co/guide/en/elastic-stack-overview/7.0/security-privileges.html
https://www.elastic.co/guide/en/elastic-stack-overview/7.0/security-privileges.html
https://www.elastic.co/guide/en/elastic-stack-overview/7.0/security-privileges.html
https://www.elastic.co/guide/en/elastic-stack-overview/7.0/security-privileges.html
https://www.elastic.co/guide/en/elastic-stack-overview/7.0/security-privileges.html
https://www.elastic.co/guide/en/elastic-stack-overview/7.0/security-privileges.html
https://www.elastic.co/guide/en/elastic-stack-overview/7.0/security-privileges.html
https://www.elastic.co/guide/en/elastic-stack-overview/7.0/security-privileges.html
https://www.elastic.co/guide/en/elastic-stack-overview/7.0/security-privileges.html
https://www.elastic.co/guide/en/elastic-stack-overview/7.0/security-privileges.html
https://www.elastic.co/guide/en/elastic-stack-overview/7.0/security-privileges.html
https://www.elastic.co/guide/en/elastic-stack-overview/7.0/security-privileges.html
https://www.elastic.co/guide/en/elastic-stack-overview/7.0/security-privileges.html
https://www.elastic.co/guide/en/elastic-stack-overview/7.0/security-privileges.html
https://www.elastic.co/guide/en/elastic-stack-overview/7.0/security-privileges.html
https://www.elastic.co/guide/en/elastic-stack-overview/7.0/security-privileges.html
https://www.elastic.co/guide/en/elastic-stack-overview/7.0/security-privileges.html

Elastic X-Pack Chapter 8

[303]

Security in action
In this section, we will look into creating new users, creating new roles, and associating
roles with users. Let's import some sample data and use it to understand how security
works.

Save the following data to a file named data.json:

{"index" : {"_index":"employee"}}
{ "name":"user1", "email":"user1@packt.com","salary":5000, "gender":"M",
"address1":"312 Main St", "address2":"Walthill", "state":"NE"}
{"index" : {"_index":"employee"}}
{ "name":"user2", "email":"user2@packt.com","salary":10000, "gender":"F",
"address1":"5658 N Denver Ave", "address2":"Portland", "state":"OR"}
{"index" : {"_index":"employee"}}
{ "name":"user3", "email":"user3@packt.com","salary":7000, "gender":"F",
"address1":"300 Quinterra Ln", "address2":"Danville", "state":"CA"}
{"index" : {"_index":"department","_type":"department"}}
{ "name":"IT", "employees":50 }
{"index" : {"_index":"department","_type":"department"}}
{ "name":"SALES", "employees":500 }
{"index" : {"_index":"department","_type":"department"}}
{ "name":"SUPPORT", "employees":100 }

The _bulk API requires the last line of the file to end with the newline
character, \n. While saving the file, make sure that you have a newline as
the last line of the file.

Navigate to the directory where the file is stored and execute the following command to
import the data into Elasticsearch:

$ directoy_of_data_file> curl -s -H "Content-Type: application/json" -u
elastic:elastic -XPOST http://localhost:9200/_bulk --data-binary @data.json

To check whether the import was successful, execute the following command and validate
the count of documents:

curl -s -H "Content-Type: application/json" -u elastic:elastic -XGET
http://localhost:9200/employee,department/_count
{"count":6,"_shards":{"total":10,"successful":10,"skipped":0,"failed":0}}

Elastic X-Pack Chapter 8

[304]

Creating a new user
Let's explore the creation of a new user in this section. Log in to Kibana
(http://locahost:5601) as the elastic user:

To create a new user, navigate to the Management UI and select Users in1.
the Security section:

The Users screen displays the available users and their roles. By default, it2.
displays the default/reserved users that are part of the native X-Pack security
realm:

Elastic X-Pack Chapter 8

[305]

To create a new user, click on the Create new user button and enter the required3.
details, as shown in the following screenshot. Then, click on Create user:

Elastic X-Pack Chapter 8

[306]

Now that the user has been created, let's try to access some Elasticsearch REST
APIs with the new user credentials and see what happens. Execute the following
command and check the response that's returned. Since the user doesn't have any
role associated with them, the authentication is successful. The user gets HTTP
status code 403, stating that the user is not authorized to carry out the operation:

curl -s -H "Content-Type: application/json" -u user1:password -XGET
http://localhost:9200
Response:
{"error":{"root_cause":[{"type":"security_exception","reason":"acti
on [cluster:monitor/main] is unauthorized for user
[user1]"}],"type":"security_exception","reason":"action
[cluster:monitor/main] is unauthorized for user
[user1]"},"status":403}

Similarly, go ahead and create one more user called user2 with the password set4.
as password.

Deleting a user
To delete a role, navigate to Users UI, select the custom user2 that you created, and click
on the Delete button. You cannot delete built-in users:

Elastic X-Pack Chapter 8

[307]

Changing the password
Navigate to the Users UI and select the custom user for which the password needs to be
changed. This will take you to the User Details page. You can edit the user's details, change
their password, or delete the user from the user details screen. To change the user's
password, click on the Change password link and enter the new password details. Then,
click on the Update user button:

The passwords must be a minimum of 6 characters long.

Elastic X-Pack Chapter 8

[308]

Creating a new role
To create a new user, navigate to the Management UI and select Roles in
the Security section, or if you are currently on the Users screen, click on the Roles tab.
The Roles screen displays all the roles that are defined/available. By default, it displays the
built-in/reserved roles that are part of the X-Pack security native realm:

Elastic X-Pack Chapter 8

[309]

X-Pack security also provides a set of built-in roles that can be assigned to users. These roles
are reserved and the privileges associated with these roles cannot be updated. Some of the
built-in roles are as follows:

kibana_system: This role grants the necessary access to read from and write to
Kibana indexes, manage index templates, and check the availability of the
Elasticsearch cluster. This role also grants read access for monitoring
(.monitoring-*) and read-write access to reporting (.reporting-*) indexes.
The default user, kibana, has these privileges.
superuser: This role grants access for performing all operations on clusters,
indexes, and data. This role also grants rights to create/modify users or roles. The
default user, elastic, has superuser privileges.
ingest_admin: This role grants permissions so that you can manage all pipeline
configurations and all index templates.

To find the complete list of built-in roles and their descriptions, please
refer to https:/ /www. elastic. co/ guide/ en/x- pack/ master/ built- in-
roles. html.

Users with the superuser role can create custom roles and assign them to the users using
the Kibana UI.

Let's create a new role with a Cluster privilege called monitor and assign it to user1 so
that the user can cluster read-only operations such as cluster state, cluster health, nodes
info, nodes stats, and more.

https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html
https://www.elastic.co/guide/en/x-pack/master/built-in-roles.html

Elastic X-Pack Chapter 8

[310]

Click on the Create role button in the Roles page/tab and fill in the details that are shown
in the following screenshot:

Elastic X-Pack Chapter 8

[311]

To assign the newly created role to user1, click on the Users tab and select user1. In
the User Details page, from the roles dropdown, select the monitor_role role and click on
the Save button, as shown in the following screenshot:

A user can be assigned multiple roles.

Elastic X-Pack Chapter 8

[312]

Now, let's validate that user1 can access some cluster/node details APIs:

curl -u user1:password "http://localhost:9200/_cluster/health?pretty"
{
 "cluster_name" : "elasticsearch",
 "status" : "yellow",
 "timed_out" : false,
 "number_of_nodes" : 1,
 "number_of_data_nodes" : 1,
 "active_primary_shards" : 5,
 "active_shards" : 5,
 "relocating_shards" : 0,
 "initializing_shards" : 0,
 "unassigned_shards" : 2,
 "delayed_unassigned_shards" : 0,
 "number_of_pending_tasks" : 0,
 "number_of_in_flight_fetch" : 0,
 "task_max_waiting_in_queue_millis" : 0,
 "active_shards_percent_as_number" : 71.42857142857143
}

Let's also execute the same command that we executed when we created user2, but
without assigning any roles to it, and see the difference:

curl -u user2:password "http://localhost:9200/_cluster/health?pretty"
{
 "error" : {
 "root_cause" : [
 {
 "type" : "security_exception",
 "reason" : "action [cluster:monitor/main] is unauthorized for user
[user2]"
 }
],
 "type" : "security_exception",
 "reason" : "action [cluster:monitor/main] is unauthorized for user
[user2]"
 },
 "status" : 403
}

Elastic X-Pack Chapter 8

[313]

Deleting or editing a role
To delete a role, navigate to the Roles UI/tab, select the custom role that we created,
and click on Delete. You cannot delete built-in roles:

To edit a role, navigate to the Roles UI/tab and click on the custom role that needs to be
edited. The user is taken to the Roles Details page. Make the required changes in the
Privileges section and click on the Update role button.

Elastic X-Pack Chapter 8

[314]

You can also delete the role from this page:

Elastic X-Pack Chapter 8

[315]

Document-level security or field-level security
Now that we know how to create a new user, create a new role, and assign roles to a user,
let's explore how security can be imposed on documents and fields for a given
index/document.

The sample data that we imported previously, at the beginning of this chapter, contained
two indexes: employee and department. Let's use these indexes and understand the
document-level security with two use cases.

Use case 1: When a user searches for employee details, the user should not be able to find
the salary/address details contained in the documents belonging to the employee index.

This is where field-level security helps. Let's create a new role (employee_read) with
read index privileges on the employee index. To restrict the fields, type the actual field
names that are allowed to be accessed by the user in the Granted Fields section, as shown
in the following screenshot, and click the Create role button:

Elastic X-Pack Chapter 8

[316]

When creating a role, you can specify the same set of privileges on
multiple indexes by adding one or more index names to the Indices field,
or you can specify different privileges for different indexes by clicking on
the Add index privilege button that's found in the Index
privileges section.

Assign the newly created role to user2:

Elastic X-Pack Chapter 8

[317]

Now, let's search in the employee index and check what fields were returned in the
response. As we can see in the following response, we have successfully restricted the user
from accessing salary and address details:

curl -u user2:password "http://localhost:9200/employee/_search?pretty"
{
 "took" : 1,
 "timed_out" : false,
 "_shards" : {
 "total" : 1,
 "successful" : 1,
 "skipped" : 0,
 "failed" : 0
 },
 "hits" : {
 "total" : {
 "value" : 3,
 "relation" : "eq"
 },
 "max_score" : 1.0,
 "hits" : [
 {
 "_index" : "employee",
 "_type" : "_doc",
 "_id" : "xsTc2GoBlyaBuhcfU42x",
 "_score" : 1.0,
 "_source" : {
 "gender" : "M",
 "state" : "NE",
 "email" : "user1@packt.com"
 }
 },
 {
 "_index" : "employee",
 "_type" : "_doc",
 "_id" : "x8Tc2GoBlyaBuhcfU42x",
 "_score" : 1.0,
 "_source" : {
 "gender" : "F",
 "state" : "OR",
 "email" : "user2@packt.com"
 }
 },
 {
 "_index" : "employee",
 "_type" : "_doc",
 "_id" : "yMTc2GoBlyaBuhcfU42x",
 "_score" : 1.0,

Elastic X-Pack Chapter 8

[318]

 "_source" : {
 "gender" : "F",
 "state" : "CA",
 "email" : "user3@packt.com"
 }
 }
]
 }
}

Use case 2: We want to have a multi-tenant index and restrict certain documents to certain
users. For example, user1 should be able to search in the department index and retrieve
only documents belonging to the IT department.

Let's create a role, department_IT_role, and provide the read privilege for the
department index. To restrict the documents, specify the query in the Granted
Documents Query section. The query should be in the Elasticsearch Query DSL format:

Elastic X-Pack Chapter 8

[319]

Associate the newly created role with user1:

Let's verify that it is working as expected by executing a search against the department
index using the user1 credentials:

curl -u user1:password "http://localhost:9200/department/_search?pretty"
{
 "took" : 19,
 "timed_out" : false,
 "_shards" : {
 "total" : 1,
 "successful" : 1,
 "skipped" : 0,
 "failed" : 0
 },

Elastic X-Pack Chapter 8

[320]

 "hits" : {
 "total" : {
 "value" : 1,
 "relation" : "eq"
 },
 "max_score" : 1.0,
 "hits" : [
 {
 "_index" : "department",
 "_type" : "department",
 "_id" : "ycTc2GoBlyaBuhcfU42x",
 "_score" : 1.0,
 "_source" : {
 "name" : "IT",
 "employees" : 50
 }
 }
]
 }

X-Pack security APIs
In the previous section, we learned how to manage users and roles using the Kibana UI.
However, often, we would like to carry out these operations programmatically from our
applications. This is where the X-Pack security APIs come in handy. X-Pack security APIs
are REST APIs that can be used for user/role management, role mapping to users,
performing authentication, and checking whether the authenticated user has specified a list
of privileges. These APIs perform operations on the native realm. The Kibana UI
internally makes use of these APIs for user/role management. In order to execute these
APIs, the user should have superuser or the latest manage_security privileges. Let's
explore some of these APIs in this section.

User Management APIs
This provides a set of APIs to create, update, or delete users from the native realm.

The following is a list of available APIs and how to use them:

GET /_xpack/security/user -- To list all the
users
GET /_xpack/security/user/<username> -- To get the details
of a specific user
DELETE /_xpack/security/user/<username> -- To Delete a user
POST /_xpack/security/user/<username> -- To Create a new
user

Elastic X-Pack Chapter 8

[321]

PUT /_xpack/security/user/<username> -- To Update an
existing user
PUT /_xpack/security/user/<username>/_disable -- To disable an
existing user
PUT /_xpack/security/user/<username>/_enable -- To enable an
existing disabled user
PUT /_xpack/security/user/<username>/_password -- to Change the
password

The username in the path parameter specifies the user against which the operation is
carried out. The body of the request accepts parameters such as email, full_name,
and password as strings and roles as list.

Example 1: Create a new user, user3, with monitor_role assigned to it:

curl -u elastic:elastic -X POST
http://localhost:9200/_xpack/security/user/user3 -H 'content-type:
application/json' -d '
{
 "password" : "randompassword",
 "roles" : ["monitor_role"],
 "full_name" : "user3",
 "email" : "user3@packt.com"
}'

Response:
user":{"created":true}}

 Example 2: Get the list of all users:

curl -u elastic:elastic -XGET
http://localhost:9200/_xpack/security/user?pretty

Example 3: Delete user3:

curl -u elastic:elastic -XDELETE
http://localhost:9200/_xpack/security/user/user3
Response:
{"found":true}

Example 4: Change the password:

curl -u elastic:elastic -XPUT
http://localhost:9200/_xpack/security/user/user2/_password -H "content-
type: application/json" -d "{ \"password\": \"newpassword\"}"

Elastic X-Pack Chapter 8

[322]

When using curl commands on Windows machines, note that they don't
work if they have single quotes (') in them. The preceding example
showed the use of a curl command on a Windows machine. Also, make
sure you escape double quotes within the body of the command, as shown
in the preceding example.

Role Management APIs
This provides a set of APIs to create, update, remove, and retrieve roles from the native
realm.

The list of available APIs under this section, as well as information on what they do, is as
follows:

GET /_xpack/security/role -- To retrieve the
list of all roles
GET /_xpack/security/role/<rolename> -- To retrieve
details of a specific role
POST /_xpack/security/role/<rolename>/_clear_cache -- To
evict/clear roles from the native role cache
POST /_xpack/security/role/<rolename> -- To create a
role
PUT /_xpack/security/role/<rolename> -- To update an
existing role

The rolename in the path parameter specifies the role against which the operation is
carried out. The body of the request accepts parameters such as cluster, which accepts a
list of cluster privileges; indices, which accepts a list of objects that specify the indices
privileges and run_as, which contains a list of users that the owners of this role can
impersonate.

indices contains an object with parameters such as names, which accepts a list of index
names; field_security, which accepts a list of fields to provide read access;
privileges, which accepts a list of index privileges; and the query parameter, which
accepts the query to filter the documents.

Let's take a look at a few examples of managing different roles using APIs:

Example 1: Create a new role with field-level security imposed on the employee
index:

curl -u elastic:elastic -X POST
http://localhost:9200/_xpack/security/role/employee_read_new -H
'content-type: application/json' -d '{

Elastic X-Pack Chapter 8

[323]

 "indices": [
 {
 "names": ["employee"],
 "privileges": ["read"],
 "field_security" : {
 "grant" : ["*"],
 "except": ["address*","salary"]
 }
 }
]
}'

Response:
role":{"created":true}}

Unlike the Kibana UI, which doesn't have any way to exclude fields from
user access, using the Security API, you can easily exclude or include
fields as part of field-level security. In the preceding example, we have
restricted access to the salary field and any fields starting with
the address text/string.

Example 2: Get the details of a specific role:

curl -u elastic:elastic -XGET
http://localhost:9200/_xpack/security/role/employee_read_new?pretty
Response:
{
 "employee_read" : {
 "cluster" : [],
 "indices" : [
 {
 "names" : [
 "employee"
],
 "privileges" : [
 "read"
],
 "field_security" : {
 "grant" : [
 "*"
],
 "except" : [
 "address*",
 "salary"
]
 }
 }

Elastic X-Pack Chapter 8

[324]

],
 "run_as" : [],
 "metadata" : { },
 "transient_metadata" : {
 "enabled" : true
 }
 }
}

Example 3: Delete a role:

curl -u elastic:elastic -XDELETE
http://localhost:9200/_xpack/security/role/employee_read

Response:
{"found":true}

Similar to the User Management and Role Management APIs, using Role
Mapping APIs, you can associate roles with users. Details about Role
Mapping APIs and User Management APIs can be found at https:/ / www.
elastic. co/ guide/ en/ elasticsearch/ reference/ master/ security- api-
role- mapping. html and https:/ /www. elastic. co/guide/ en/
elasticsearch/ reference/ master/ security- api- users. html,
respectively.

Monitoring Elasticsearch
Elasticsearch exposes a rich set of APIs, known as stats APIs, to monitor Elasticsearch at the
cluster, node, and indices levels. Some of these APIs are _cluster/stats, _nodes/stats,
and myindex/stats. These APIs provide state/monitoring information in real time, and
the statistics that are presented in these APIs are point-in-time and in .json format. As an
administrator/developer, when working with Elasticsearch, you will be interested in both
real-time statistics as well as historical statistics, which would help you in
understanding/analyzing the behavior (health or performance) of a cluster better.

Also, reading through a set of numbers for a period of time (say, for example, to find out
the JVM utilization over time) would be very difficult. Rather, a UI that pictorially
represents these numbers as graphs would be very useful for visualizing and analyzing the
current and past trends/behaviors (health or performance) of the Elasticsearch cluster. This
is where the monitoring feature of X-Pack comes in handy.

https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-role-mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-users.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-users.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-users.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-users.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-users.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-users.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-users.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-users.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-users.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-users.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-users.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-users.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-users.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-users.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-users.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-users.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-users.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-users.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-users.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-users.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-users.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-users.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-users.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-users.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-users.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/security-api-users.html

Elastic X-Pack Chapter 8

[325]

The X-Pack monitoring components allow you to easily monitor the Elastic Stack
(Elasticsearch, Kibana, and Logstash) from Kibana. X-Pack consists of a monitoring agent
that runs on each of the instances (Elasticsearch, Kibana, and Logstash) and periodically
collects and indexes the health and performance metrics. These can then be easily
visualized using the Monitoring UI component of Kibana. The Monitoring UI of Kibana
comes with predefined dashboards that let you easily visualize and analyze real-time and
past performance data.

By default, the metrics collected by X-Pack are indexed within the cluster you are
monitoring. However, in production, it is strongly recommended to have a separate,
dedicated cluster to store these metrics. A dedicated cluster for monitoring has the
following benefits:

Allows you to monitor multiple clusters from a central location
Reduces the load and storage on your production clusters since the metrics are
stored in a dedicated monitoring cluster
There is access to Monitoring, even when some clusters are unhealthy or down
Separate security levels from Monitoring and Production Cluster can be
enforced:

Elastic X-Pack Chapter 8

[326]

As we mentioned previously, the metrics collected by X-Pack are indexed within the cluster
you are monitoring. If a dedicated monitoring cluster is set up, then we need to configure
where to send/ship the metrics to in the monitored instances. This can be configured in the
elasticsearch.yml file of each node, as shown in the following code:

xpack.monitoring.exporters:
 id1:
 type: http
 host: ["http://dedicated_monitoring_cluster:port"]

It's optional to have X-Pack installed on a dedicated monitoring cluster;
however, it is recommended to have it installed there too. If X-Pack is
installed on a dedicated monitoring cluster, then make sure you provide
the user credentials (auth.username and auth.password) as well while
configuring the monitored instances. Monitored metrics are stored in a
system-level index that has the .monitoring-* index pattern.

Monitoring UI
To access the Monitoring UI, log in to Kibana and click on Stack Monitoring from the side
navigation. If the monitoring data collection is not enabled, you will be taken to the
following screen, where you can enable monitoring by clicking on the Turn on monitoring
button. By default, monitoring would be enabled but data collection would be disabled.
These settings can be dynamic and can be updated using the cluster update settings API,
which doesn't require a restart to occur. If the same settings were set in
elasticsearch.yml or kibana.yml, a restart would be required:

Elastic X-Pack Chapter 8

[327]

Once you click on Turn on monitoring, the cluster settings will update, which can be
verified by using the following API:

curl -u elastic:elastic -XGET
http://localhost:9200/_cluster/settings?pretty
{
 "persistent" : {
 "xpack" : {
 "monitoring" : {
 "collection" : {
 "enabled" : "true"
 }
 }
 }
 },
 "transient" : { }
}

You can refer to https:/ /www.elastic. co/ guide/ en/elasticsearch/
reference/ 7. 0/monitoring- settings. html and https:/ / www.elastic.
co/guide/ en/ kibana/ 7. 0/ monitoring- settings- kb. html for more on
how to customize the monitoring settings.

https://www.elastic.co/guide/en/elasticsearch/reference/7.0/monitoring-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/monitoring-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/monitoring-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/monitoring-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/monitoring-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/monitoring-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/monitoring-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/monitoring-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/monitoring-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/monitoring-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/monitoring-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/monitoring-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/monitoring-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/monitoring-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/monitoring-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/monitoring-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/monitoring-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/monitoring-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/monitoring-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/monitoring-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/monitoring-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/monitoring-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/monitoring-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/monitoring-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/monitoring-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/monitoring-settings.html
https://www.elastic.co/guide/en/kibana/7.0/monitoring-settings-kb.html
https://www.elastic.co/guide/en/kibana/7.0/monitoring-settings-kb.html
https://www.elastic.co/guide/en/kibana/7.0/monitoring-settings-kb.html
https://www.elastic.co/guide/en/kibana/7.0/monitoring-settings-kb.html
https://www.elastic.co/guide/en/kibana/7.0/monitoring-settings-kb.html
https://www.elastic.co/guide/en/kibana/7.0/monitoring-settings-kb.html
https://www.elastic.co/guide/en/kibana/7.0/monitoring-settings-kb.html
https://www.elastic.co/guide/en/kibana/7.0/monitoring-settings-kb.html
https://www.elastic.co/guide/en/kibana/7.0/monitoring-settings-kb.html
https://www.elastic.co/guide/en/kibana/7.0/monitoring-settings-kb.html
https://www.elastic.co/guide/en/kibana/7.0/monitoring-settings-kb.html
https://www.elastic.co/guide/en/kibana/7.0/monitoring-settings-kb.html
https://www.elastic.co/guide/en/kibana/7.0/monitoring-settings-kb.html
https://www.elastic.co/guide/en/kibana/7.0/monitoring-settings-kb.html
https://www.elastic.co/guide/en/kibana/7.0/monitoring-settings-kb.html
https://www.elastic.co/guide/en/kibana/7.0/monitoring-settings-kb.html
https://www.elastic.co/guide/en/kibana/7.0/monitoring-settings-kb.html
https://www.elastic.co/guide/en/kibana/7.0/monitoring-settings-kb.html
https://www.elastic.co/guide/en/kibana/7.0/monitoring-settings-kb.html
https://www.elastic.co/guide/en/kibana/7.0/monitoring-settings-kb.html
https://www.elastic.co/guide/en/kibana/7.0/monitoring-settings-kb.html
https://www.elastic.co/guide/en/kibana/7.0/monitoring-settings-kb.html
https://www.elastic.co/guide/en/kibana/7.0/monitoring-settings-kb.html
https://www.elastic.co/guide/en/kibana/7.0/monitoring-settings-kb.html
https://www.elastic.co/guide/en/kibana/7.0/monitoring-settings-kb.html
https://www.elastic.co/guide/en/kibana/7.0/monitoring-settings-kb.html

Elastic X-Pack Chapter 8

[328]

Once data collection has been enabled, click on the Stack Monitoring icon on the left-hand
side menu. You will see the following screen:

This page provides a summary of the metrics that are available for Elasticsearch and
Kibana. By clicking on links such as Overview, Nodes, Indices, or Instances, you can get
additional/detailed information. The metrics that are displayed on the page are
automatically refreshed every 10 seconds, and by default, you can view the data of the past
1 hour, which can be changed in the Time Filter that's found toward the top left of the
screen. You can also see the cluster name, which in this case is elasticsearch.

The monitoring agent that's installed on the instances being monitored
sends metrics every 10 seconds by default. This can be changed in the
configuration file (elasticsearch.yml) by setting the appropriate value
to the xpack.monitoring.collection.interval property.

Elastic X-Pack Chapter 8

[329]

Elasticsearch metrics
You can monitor the Elasticsearch performance data at a cluster level, node level, or index
level. The Elasticsearch Monitoring UI provides three tabs, each displaying the metrics at
the cluster, node, and index levels. The three tabs are Overview, Nodes, and Indices,
respectively. To navigate to the Elasticsearch Monitoring UI, click on one of the links
(Overview, Nodes, and Indices) under the Elasticsearch section.

Overview tab
Cluster-level metrics provide aggregated information across all the nodes and is the first
place one should look when monitoring an Elasticsearch cluster. Cluster-level metrics are
displayed in the Overview tab and can be navigated to by clicking on the Overview link
under the Elasticsearch section found in the landing page of the Monitoring UI.

The Overview tab provides key metrics that indicate the overall health of an Elasticsearch
cluster:

Elastic X-Pack Chapter 8

[330]

The key metrics that are displayed are cluster status, number of nodes and number of
indices present, memory used, total number of shards present, total number of unassigned
shards, total number of documents present in the indices, the disk space used for storing
the documents, uptime, and version of Elasticsearch. The Overview tab also displays charts
that show the search and indexing performance over time, while the table at the bottom
shows information about any shards that are being recovered.

Clicking on the Information icon present at the top right of each chart
provides a description of the metrics.

In the Overview tab, the metrics are aggregated at the cluster level; so, when you're
monitoring the Elasticsearch cluster, you might miss out some vital parameters that may
eventually affect the cluster's overall state. For example, the Memory Used metric
showcases the average memory used by combining the memory used across all nodes.
However, one node might be running with full memory utilization and another node's
memory might have hardly been used. Hence, as an administrator, you should always
monitor at the Node level too.

Nodes tab
Clicking on the Nodes tab displays the summary details of each node present in the cluster,
as shown in the following screenshot:

Elastic X-Pack Chapter 8

[331]

For each node, information is provided, such as the Name of the node, Status of the
node, CPU Usage (average, min, and max usage), Load Average (average, min, and max
usage), JVM Memory (average, min, and max usage), Disk Free Space (average, min, and
max usage), and total number of assigned Shards. It also provides information such as
whether a node is a Master node or not (indicated by a star next to the node name) and
details about the transport host and port.

Clicking on the Node name provides detailed information about the node. This detailed
information is displayed in two tabs, namely Overview and Advanced. The
node Overview tab looks like this:

The node Overview tab provides information in the top pane, such as the status of the
node, transport IP address of the node, JVM Heap Utilization in percent, free disk space
available, total number of documents present on the node (this number includes documents
present in both replica and primary shards), total disk space used, total number of indices
in the node, total number of shards, and type of node (master, data, ingest, or coordinating
node).

Elastic X-Pack Chapter 8

[332]

The node Overview tab also provides visualizations for JVM Heap usage, Index
Memory, CPU Utilization in percent, System Load average, Latency (ms), and Segment
Count. The statuses of shards of various indices are provided under the Shard
Legend section.

If the Show system indices checkbox is checked, then the shard status of
all the indexes created by X-Pack can be seen.

The node Advanced tab provides visualizations of other metrics, such as garbage
collection (GC) count and duration, detailed Index Memory usage at Lucene and
Elasticsearch levels, Indexing Time (in ms), Request rate, Indexing, Read Threads, and
Cgroup stats.

The following is a screenshot of the Node Advanced tab:

Elastic X-Pack Chapter 8

[333]

The Indices tab
Clicking on the Indices tab displays the summary details of each index present in the
cluster, as shown in the following screenshot:

If the Show system indices checkbox is checked, then the shard status of
all indexes created by X-Pack can be seen.

For each index, it provides information, such as the name of the index, status of the index,
total count of documents present, disk space used, index rate per second, search rate per
second, and number of unassigned shards.

Elastic X-Pack Chapter 8

[334]

Clicking on an Index name provides detailed information about that index. The detailed
information is displayed in two tabs, namely Overview and Advanced. The Index
Overview tab looks like this:

This tab provides information in the top pane, such as on the status of the index, total
number of documents present in the index, disk space used, total number of shards
(primary and replicas), and unassigned shards.

The Index Overview tab also provides visualizations for Index Memory (in KB), Index size
(in MB), Search rate per second, Indexing rate per second, total count of segments, and total
count of documents. Shard Legend displays the status of shards belonging to the index and
the information for the nodes the shards are assigned to.

The Index Advanced tab provides visualizations of other metrics, such as detailed Index
Memory usage at Lucene and Elasticsearch levels, Indexing Time (in ms), Request Rate
and Time, Refresh Time (in ms), Disk usage, and Segment counts:

Elastic X-Pack Chapter 8

[335]

From the landing page of the Monitoring UI, by clicking on Overview or
Instances under the Kibana section, the metrics of Kibana can be
visualized/monitored in a similar way.

Alerting
The Kibana UI provides beautiful visualizations that help with analyzing and detecting
anomalies in data in real time. However, as an administrator or an analyst, it wouldn't be
possible to sit in front of dashboards for hours to detect anomalies and take action. It would
be nice if the administrator gets notified when, for example, the following events occur:

There is an outage in one of the servers being monitored
An Elasticsearch Cluster turns red/yellow due to some nodes leaving the cluster
Disk space/CPU utilization crosses a specific threshold
There is an intrusion in the network
There are errors reported in the logs

Elastic X-Pack Chapter 8

[336]

This is where the X-Pack Alerting component comes to the rescue. The X-Pack Alerting
component, named Watcher, provides the ability to automatically watch for
changes/anomalies in data stored on Elasticsearch and take the required action. X-Pack
Alerting is enabled by default as part of the X-Pack default installation.

Watcher provides a set of REST APIs for creating, managing, and testing watches. Kibana
also provides a Watcher UI for creating, managing, and testing. The Watcher UI internally
makes use of Watcher REST APIs for the management of watches.

Anatomy of a watch
A Watch is made of the following components:

schedule: This is used to specify the time interval for scheduling/triggering the
watch.
query: This is used to specify a query to retrieve data from Elasticsearch and run
it as an input to the condition. Elasticsearch Query DSL/Lucene queries can be
used to specify the queries.
condition: This is used to specify conditions against the input data obtained
from the query and check whether any action needs to be taken or not.
action: This is used to specify actions such as sending an email, sending a slack
notification, logging the event to a specific log, and much more on meeting
the condition:

Elastic X-Pack Chapter 8

[337]

Let's look into a sample watch and understand the building blocks of a watch in detail. The
following code snippet creates a watch:

curl -u elastic:elastic -X POST
http://localhost:9200/_xpack/watcher/watch/logstash_error_watch -H
'content-type: application/json' -d '{

 "trigger" : { "schedule" : { "interval" : "30s" }},
 "input" : {
 "search" : {
 "request" : {
 "indices" : ["logstash*"],
 "body" : {
 "query" : {
 "match" : { "message": "error" }
 }
 }
 }
 }
 },
 "condition" : {
 "compare" : { "ctx.payload.hits.total" : { "gt" : 0 }}
 },
 "actions" : {
 "log_error" : {
 "logging" : {
 "text" : "The number of errors in logs is
{{ctx.payload.hits.total}}"
 }
 }
 }
}'

In order to create a watch, the user should have watcher_admin cluster
privileges.

trigger: This section is used to provide a schedule to specify how often the
watch needs to be executed. Once the watch is created, Watcher immediately
registers its trigger with the scheduler trigger engine. The trigger engine
evaluates the trigger and runs the watch accordingly.

Several types of schedule triggers can be defined to specify when watch execution
should start. The different types of schedule triggers are interval, hourly, daily,
weekly, monthly, yearly, and cron.

Elastic X-Pack Chapter 8

[338]

In the preceding code snippet, a trigger was specified with a schedule of 30
seconds, which means that the watch is executed every 30 seconds.

Example to specify hourly trigger: The following snippet shows how to specify
an hourly trigger that triggers the watch every 45th minute of an hour:

{
 "trigger" : {
 "schedule" : {
 "hourly" : { "minute" : 45 }
 }
 }
}

You can specify an array of minutes, too. The following snippet shows how to
specify an hourly trigger that triggers the watch every 15th and 45th minute of an
hour:

{
 "trigger" : {
 "schedule" : {
 "hourly" : { "minute" : [15, 45] }
 }
 }
}

The following is an example of specifying that the watch should trigger daily at 8
PM:

{
 "trigger" : {
 "schedule" : {
 "daily" : { "at" : "20:00" }
 }
 }
}

The following is an example of specifying a watch to trigger weekly on Mondays
at 10 AM and on Fridays at 8 PM:

{
 "trigger" : {
 "schedule" : {
 "weekly" : [
 { "on" : "monday", "at" : "10:00" },
 { "on" : "friday", "at" : "20:00" }
]

Elastic X-Pack Chapter 8

[339]

 }
 }
}

The following is an example of specifying a schedule using cron syntax. The
following snippet specifies a watch to be triggered hourly at the 45th minute:

{
 "trigger" : {
 "schedule" : {
 "cron" : "0 45 * * * ?"
 }
 }
}

input: This section is used to specify the input to load the data into the
Watcher execution context. This data is referred to as Watcher Payload and will
be available/accessible in subsequent phases of the watcher execution so that it
can be used to create conditions on it or used when generating actions. The
payload can be accessed using the ctx.payload.* variable:

"input" : {
 "search" : {
 "request" : {
 "indices" : ["logstash*"],
 "body" : {
 "query" : {
 "match" : { "message": "error" }
 }
 }
 }
 }
 }

As shown in the preceding code, an input of the search type is used to specify
the query to be executed against Elasticsearch to load the data into Watcher
Payload. The query fetches all the documents present in the indices of
the logstash* pattern that contain error in the message field.

Inputs of the simple type load static data, http loads an http response,
and chain provides a series of inputs that can also be used in
the input section.

Elastic X-Pack Chapter 8

[340]

condition: This section is used to specify a condition against the payload in
order to determine whether an action needs to be executed or not:

"condition" : {
 "compare" : { "ctx.payload.hits.total" : { "gt" : 0 }}
 }

As shown in the preceding code, it uses a condition of the compare type to
determine whether the payload has any documents, and if it finds any, then the
action will be invoked.

A condition of the compare type is used to specify simple comparisons, such
as eq, not-eq, gt, gte, lt, and lte, against a value in the watch payload.

Conditions of the always type always evaluate the watch condition to
true, whereas never always evaluates watch condition to
false. array_compare is used to compare against an array of values to
determine the watches' condition, and script is used to determine the
watches' condition.

actions: This section is used to specify one or more actions that need to be taken
when the watch condition evaluates to true:

 "actions" : {
 "log_error" : {
 "logging" : {
 "text" : "The number of errors in logs is
{{ctx.payload.hits.total}}"
 }
 }
 }

As shown in the preceding code, it uses a logging action to log the specified text when the
watch condition is met. The logs would be logged into Elasticsearch logs. The number of
errors found is dynamically obtained using the field (hits.total) of the payload. The
payload is accessed using the ctx.payload.* variable.

Watcher supports the following types of actions:
email, webhook, index, logging, hipchat, Slack, and pagerduty.

Elastic X-Pack Chapter 8

[341]

During the watches' execution, once the condition is met, a decision is made per configured
action as to whether it should be throttled or continue executing the action. The main
purpose of action throttling is to prevent too many executions of the same action for the
same watch.

Watcher supports two types of throttling:

Time-based Throttling: You can define a throttling period by using
the throttle_period parameter as part of the action configuration or at the
watch level (which applies to all actions) to limit how often the action is
executed. The global default throttle period is 5 seconds.

ACK-based Throttling: Using ACK Watch APIs, you can prevent watch actions
from being executed again while the watch condition remains true.

Watches are stored in a special index named .watches. Every time a watch is executed,
a watch_record containing details such as watch details, the time of watch execution,
watch payload, and the result of the condition is stored in the watch history index, which is
named .watches-history-6-*.

A user with the watcher_user privilege can view watches and watch
history.

Alerting in action
Now that we know what a Watch is made up of, in this section, we will explore how to
create, delete, and manage watches.

You can create/delete/manage watches using the following software:

Kibana Watcher UI
X-Pack Watcher REST APIs

The Watcher UI internally makes use of Watcher REST APIs for the management of
watches. In this section, we will explore the creation, deletion, and management of watches
using the Kibana Watcher UI.

Elastic X-Pack Chapter 8

[342]

Creating a new alert
To create a watch, log in to Kibana (http://localhost:5601) as elastic/elastic and
navigate to the Management UI; click on Watcher in the Elasticsearch section. Two options
are available for creating alerts:

Create threshold alert
Create advanced watch:

By using the Threshold alert option, you can create a threshold-based alert to get
notified when a metric goes above or below a given threshold. Using this UI, users can
easily create threshold-based alerts without worrying about directly working with raw
JSON requests. This UI provides options for creating alerts on time-based indices only (that
is, the index has a timestamp).

Using the Advanced watch options, you can create watches by directly working with the
raw .json required for the watches API.

The Watcher UI requires a user with kibana_user and watcher_admin
privileges to create, edit, delete, and deactivate a watch.

Elastic X-Pack Chapter 8

[343]

Threshold Alert
Click on Create New Watch and choose the Threshold Alert option. This brings up the
Threshold Alert UI.

Specify the name of the alert; choose the index to be used to query against, the time field,
and the trigger frequency in the Threshold Alert UI:

Then, specify the condition that will cause the alert to trigger. As the expressions/conditions
are changed or modified, the visualization is updated automatically to show the threshold
value and data as red and blue lines, respectively:

Elastic X-Pack Chapter 8

[344]

Finally, specify the action that needs to be triggered when the action is met by clicking on
the Add new action button. It provides three types of actions, that is, email, slack, and
logging actions. One or more actions can be configured:

Then, click on the Save button to create the watch.

Clicking on Save will save the watch in the watches index and can be validated using the
following query:

curl -u elastic:elastic -XGET
http://localhost:9200/.watches/_search?q=metadata.name:logs_watch

Advanced Watch
Click on the Create New Watch button and choose the Advanced Watch option. This
brings up the Advanced Watch UI.

Specify the watch ID and watch name, and then paste the JSON to create a watch in
the Watch JSON box; click on Save to create a watch. Watch ID refers to the identifier used
by Elasticsearch when creating a Watch, whereas name is the more user-friendly way to
identify the watch:

Elastic X-Pack Chapter 8

[345]

The Simulate tab provides a UI to override parts of the watch and then run a simulation of
it.

Watch Name will be stored in the metadata section of the watch body.
You can use the metadata section when creating the watch to store custom
metadata, tags, or information to represent/identify a watch.

Clicking on Save will save the watch in the watches index and can be validated using the
following query:

curl -u elastic:elastic -XGET
http://localhost:9200/.watches/_search?q=metadata.name:errored_logs_watch

Elastic X-Pack Chapter 8

[346]

Since we have configured logging as the action, when the alert is triggered, the same can be
seen in elasticsearch.log:

Deleting/deactivating/editing a watch
To delete a watch, navigate to the Management UI and click on Watcher in
the Elasticsearch section. From the Watches list, select one or more watches that need to be
deleted and click on the Delete button:

Elastic X-Pack Chapter 8

[347]

To edit a watch, click on the Edit link, modify the watch details, and click on
the Save button to save your changes. To deactivate a watch (that is, to temporarily disable
watch execution), navigate to the Management UI and click on Watcher in
the Elasticsearch section. From the Watches list, click on the custom watch. The Watch
History will be displayed. Click on the Deactivate button. You can also delete a watch from
this screen.

Clicking on an execution time (link) in the Watch History displays the details of a
particular watch_record:

Starting from Elastic Stack 6.8.0 and 7.1.0, basic security features are free
with the Elastic Basic License. More details can be found at https:/ /www.
elastic. co/ blog/ security- for- elasticsearch- is- now-free.

https://www.elastic.co/blog/security-for-elasticsearch-is-now-free
https://www.elastic.co/blog/security-for-elasticsearch-is-now-free
https://www.elastic.co/blog/security-for-elasticsearch-is-now-free
https://www.elastic.co/blog/security-for-elasticsearch-is-now-free
https://www.elastic.co/blog/security-for-elasticsearch-is-now-free
https://www.elastic.co/blog/security-for-elasticsearch-is-now-free
https://www.elastic.co/blog/security-for-elasticsearch-is-now-free
https://www.elastic.co/blog/security-for-elasticsearch-is-now-free
https://www.elastic.co/blog/security-for-elasticsearch-is-now-free
https://www.elastic.co/blog/security-for-elasticsearch-is-now-free
https://www.elastic.co/blog/security-for-elasticsearch-is-now-free
https://www.elastic.co/blog/security-for-elasticsearch-is-now-free
https://www.elastic.co/blog/security-for-elasticsearch-is-now-free
https://www.elastic.co/blog/security-for-elasticsearch-is-now-free
https://www.elastic.co/blog/security-for-elasticsearch-is-now-free
https://www.elastic.co/blog/security-for-elasticsearch-is-now-free
https://www.elastic.co/blog/security-for-elasticsearch-is-now-free
https://www.elastic.co/blog/security-for-elasticsearch-is-now-free
https://www.elastic.co/blog/security-for-elasticsearch-is-now-free
https://www.elastic.co/blog/security-for-elasticsearch-is-now-free
https://www.elastic.co/blog/security-for-elasticsearch-is-now-free
https://www.elastic.co/blog/security-for-elasticsearch-is-now-free

Elastic X-Pack Chapter 8

[348]

Summary
In this chapter, we explored how to install and configure the X-Pack components in Elastic
Stack and how to secure the Elastic cluster by creating users and roles. We also learned how
to monitor the Elasticsearch server and alerting in order to generate notifications when
there are changes or anomalies in the data.

In the next chapter, we'll put together a complete application using Elastic Stack for sensor
data analytics with the concepts we've learned about so far.

4
Section 4: Production and

Server Infrastructure
This section shows you how Elastic Stack components can be used to model your data in
Elasticsearch and how to build data pipelines to ingest data and visualize it using Kibana. It
also shows you how to deploy Elastic Stack to production. You will see how Elasticsearch
simplifies situations in terms of searching products, log analytics, and sensor data analytics.
We are also going to work on Elastic Cloud to deploy Elastic Stack. Finally, we will look at
how Elastic Stack can be used to set up a real-time monitoring solution for your servers and
the applications that we have built using Elastic Stack.

This section includes the following chapters:

Chapter 9, Running Elastic Stack in Production
Chapter 10, Building a Sensor Data Analytics Application
Chapter 11, Monitoring Server Infrastructure

9
Running Elastic Stack in

Production
In our quest to learn Elastic Stack, we have covered good ground and have a solid footing
in all of its components. We have a solid foundation of the core Elasticsearch with its search
and analytics capabilities, and we have covered how to effectively use Logstash and Kibana
to build a powerful platform that can deliver analytics on big data. We have also seen how
X-Pack makes it easy to secure and monitor big data, generate alerts, and perform graph
analysis and machine learning.

Taking the Elastic Stack components to production requires that you are aware of some
common pitfalls, patterns, and strategies that can help you run your solution smoothly in
production. In this chapter, we will see some common patterns, tips, and tricks to run
Elasticsearch, Logstash, Kibana, and other components in production.

We will start with Elasticsearch and then move on to other components. There are various
ways to run Elasticsearch in production. There may be various factors that influence your
decision on how you should deploy. We will cover the following topics to help you take
your next Elastic Stack project to production:

Hosting Elastic Stack on a managed cloud
Hosting Elastic Stack on your own, that is, self-hosting
Backing up and restoring
Setting up index aliases
Setting up index templates
Modeling time series data

Let's first understand how we can go about taking Elastic Stack to production with one of
the managed cloud providers. This option requires a minimum amount of work to set up a
production-ready cluster.

Running Elastic Stack in Production Chapter 9

[351]

Hosting Elastic Stack on a managed cloud
Cloud providers make the process of setting up a production-ready cluster much easier. As
a user, we don't have to do low-level configuration or the selection and management of
hardware, an operating system, and many of the Elasticsearch and Kibana configuration
parameters.

There are multiple cloud providers that provide managed clusters for Elastic Stack, such as
Elastic Cloud, QBox.io, Bonsai, and many more. In this section, we will go through how to
get started with Elastic Cloud. Elastic Cloud is the official cloud offering by the company
Elastic.co, which is the main company contributing to the development of Elasticsearch and
other Elastic Stack components. We will cover the following topics while working with
Elastic Cloud:

Getting up and running on Elastic Cloud
Using Kibana
Overriding configuration
Recovering from a snapshot

Getting up and running on Elastic Cloud
Sign up for Elastic Cloud using https:/ /www.elastic. co/ cloud/ as-a- service/ signup,
provide your email address, and verify your email. You will be asked to set your initial
password.

After your initial password is set, you can log in to the Elastic Cloud console at https:/ /
cloud.elastic.co. The Elastic Cloud console offers an easy-to-use user interface to manage
your clusters. Since you just signed up for a trial account, you can create a free cluster
during the trial period.

We can choose a name for your trial cluster. You will also be able to choose AWS (Amazon
Web Services) or GCE (Google Compute Engine) while launching the cluster. Upon
logging in, you can create a cluster from the following screen:

https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://www.elastic.co/cloud/as-a-service/signup
https://cloud.elastic.co
https://cloud.elastic.co
https://cloud.elastic.co
https://cloud.elastic.co
https://cloud.elastic.co
https://cloud.elastic.co
https://cloud.elastic.co
https://cloud.elastic.co

Running Elastic Stack in Production Chapter 9

[352]

Fig-9.1: Creating a new cluster on Elastic Cloud

After selecting the cloud platform, you can choose a region for your cluster.

Running Elastic Stack in Production Chapter 9

[353]

Select the version to be the latest 7.x version that is available. At the time of writing this
book, version 7.1.0 is the latest version available on Elastic Cloud. You have the option of
choosing either I/O Optimized, Compute Optimized, Memory Optimized, or Hot-Warm
Architecture deployment. Different types of clusters are suitable for different use cases.

When you click the the Create deployment button, your cluster will be created and started
with production-grade configuration. The cluster will be secured. It will also start with a
Kibana instance. At this point, it should provide you with a username/password to be used
for logging into your Elasticsearch and Kibana nodes. Please note it down. It also provides
a Cloud ID, which is a helpful string when connecting to your cloud cluster from your
Beats agents and Logstash servers.

You can click under the Deployments text where you will see the name with which you
created your deployment. In this case, we called it test-cluster. If you click on that, you
should see a screen that has a summary of your deployment:

Fig-9.2: Deployment Overview screen on Elastic Cloud

As you can see, the cluster is up and running. In the second tab, Kibana, you can get the
URL at which it is accessible. The Elasticsearch cluster is available at the given secured
HTTPS URL.

Running Elastic Stack in Production Chapter 9

[354]

The cluster has two nodes: one in each AWS availability zone and one tiebreaker node. The
tiebreaker node helps to elect a master node. Tiebreaker nodes are special nodes on Elastic
Cloud that help in the re-election of masters whenever some nodes become unreachable in
the cluster.

Now that we have the cluster up and running with a Kibana instance, let's use it!

Using Kibana
The link to the Kibana instance is already made available to us on the cluster overview page
on Elastic Cloud. You can click on it to launch the Kibana UI. Unlike the local instance of
Kibana that we initially created, this instance is secured by X-Pack security. You will have
to log in using the credentials provided to you after you created the Elastic Cloud cluster in
the previous section.

After logging in, you should see the Kibana UI, as follows:

Fig-9.3 Kibana UI on Elastic Cloud after logging in

Running Elastic Stack in Production Chapter 9

[355]

You can view all indexes, analyze data on your Elasticsearch cluster, and monitor your
Elasticsearch cluster from this Kibana UI.

Overriding configuration
It is possible to override the configuration of your Elasticsearch nodes via the Edit menu in
the navigation panel on the left side under the Deployments. Elastic Cloud doesn't allow
you to edit the elasticsearch.yml file directly. However, it provides
a section called User Settings, which allows you to override a subset of the configuration
parameters.

The configuration parameters that can be overridden are documented in the Elastic Cloud
reference documentation at https:/ / www. elastic. co/ guide/ en/ cloud/ current/ ec- add-
user-settings.html.

Recovering from a snapshot
Elastic Cloud automatically creates a snapshot of all indexes in your cluster periodically
(every 30 minutes) and keeps them for recovery purposes, if required. This happens
automatically without doing any additional setup or code. You can visit the Snapshots link
under your Deployments > Elasticsearch to view the available list of Snapshots, as follows:

https://www.elastic.co/guide/en/cloud/current/ec-add-user-settings.html
https://www.elastic.co/guide/en/cloud/current/ec-add-user-settings.html
https://www.elastic.co/guide/en/cloud/current/ec-add-user-settings.html
https://www.elastic.co/guide/en/cloud/current/ec-add-user-settings.html
https://www.elastic.co/guide/en/cloud/current/ec-add-user-settings.html
https://www.elastic.co/guide/en/cloud/current/ec-add-user-settings.html
https://www.elastic.co/guide/en/cloud/current/ec-add-user-settings.html
https://www.elastic.co/guide/en/cloud/current/ec-add-user-settings.html
https://www.elastic.co/guide/en/cloud/current/ec-add-user-settings.html
https://www.elastic.co/guide/en/cloud/current/ec-add-user-settings.html
https://www.elastic.co/guide/en/cloud/current/ec-add-user-settings.html
https://www.elastic.co/guide/en/cloud/current/ec-add-user-settings.html
https://www.elastic.co/guide/en/cloud/current/ec-add-user-settings.html
https://www.elastic.co/guide/en/cloud/current/ec-add-user-settings.html
https://www.elastic.co/guide/en/cloud/current/ec-add-user-settings.html
https://www.elastic.co/guide/en/cloud/current/ec-add-user-settings.html
https://www.elastic.co/guide/en/cloud/current/ec-add-user-settings.html
https://www.elastic.co/guide/en/cloud/current/ec-add-user-settings.html
https://www.elastic.co/guide/en/cloud/current/ec-add-user-settings.html
https://www.elastic.co/guide/en/cloud/current/ec-add-user-settings.html
https://www.elastic.co/guide/en/cloud/current/ec-add-user-settings.html
https://www.elastic.co/guide/en/cloud/current/ec-add-user-settings.html
https://www.elastic.co/guide/en/cloud/current/ec-add-user-settings.html
https://www.elastic.co/guide/en/cloud/current/ec-add-user-settings.html
https://www.elastic.co/guide/en/cloud/current/ec-add-user-settings.html
https://www.elastic.co/guide/en/cloud/current/ec-add-user-settings.html

Running Elastic Stack in Production Chapter 9

[356]

Fig-9.4: Listing of snapshots on Elastic Cloud

Running Elastic Stack in Production Chapter 9

[357]

You can choose the snapshot that you want to restore from, and you will be presented with
the following screen:

Fig-9.5: Snapshot details and restoring from a specific snapshot

Running Elastic Stack in Production Chapter 9

[358]

The snapshot contains the saved state for all indexes in the cluster. It is possible to choose a
subset of the indexes for restoring and also to rename it while restoring it. It is also possible
to restore the snapshot on a separate cluster.

Next, we will see how to get started with Elastic Stack if you are planning to manage the
Elastic Stack components yourself. This is also called self-hosting, in that you will be
hosting and managing it on your own.

Hosting Elastic Stack on your own
Hosting Elastic Stack on your own, that is, self-hosting Elastic Stack, requires you to install,
configure, and manage Elasticsearch and your other Elastic Stack products. This can
be done in one of two ways:

Self-hosting on-premise
Self-hosting on a cloud

Regardless of whether you run Elastic Stack on-premise (in your own data center) or run it
on one of the cloud providers, such as AWS, Azure, or GCE, there are some common
aspects that you should take into consideration. While self-hosting, you will be faced with
the following choices:

Selecting hardware
Selecting the operating system
Configuring Elasticsearch nodes
Managing and monitoring Elasticsearch nodes
Special considerations while self-hosting on a cloud

Except for the last item, which is applicable only if you are self-hosting on a cloud, the
others are equally applicable for cloud and on-premise deployments.

Selecting hardware
Elasticsearch primarily has memory-bound tasks which rely on the inverted index. The
more data that it can fit in the RAM, the faster the performance will be. But this statement
cannot always be generalized. It depends on the nature of your data and the type of
operations or workload that you are going to have.

Running Elastic Stack in Production Chapter 9

[359]

Using Elasticsearch doesn't mean that it has to perform all operations in-memory.
Elasticsearch also uses on-disk data very efficiently, especially for aggregation operations.

All datatypes (except analyzed strings) support a special data structure
called doc_values, which organizes the data on the disk in a columnar
fashion. doc_values is useful for sorting and aggregation operations.
Since doc_values is enabled by default for all datatypes except analyzed
strings, it makes sorts and aggregations run mostly off the disk. Those
fields do not need to be loaded in memory to aggregate or sort by them.

As Elasticsearch can scale horizontally, this is a relatively easy decision to make. It is fine to
start with nodes of around 16 or 32 GB RAM, with around 8 CPU cores. As we will see in
the coming sections, you cannot have Elasticsearch JVM with more than 32 GB of heap;
effectively, there is no point in having a machine with more than 64 GB RAM. SSD hard
disks are recommended if you are planning to do heavy aggregations.

It is important to benchmark with the initial hardware and then add more nodes or
upgrade your nodes.

Selecting an operating system
Linux is the preferred choice when deploying Elasticsearch and the Elastic Stack
components. Your choice of operating system will mostly depend on the preferred
technologies of your organization. Elastic Stack can also be deployed on Windows if your
organization prefers the Microsoft stack.

Configuring Elasticsearch nodes
Elasticsearch, which is the heart of Elastic Stack, needs some configuration before starting it
in production. Most of the configuration should work out of the box, but will require the
following things to be reviewed at the OS level or JVM level.

Running Elastic Stack in Production Chapter 9

[360]

JVM heap size
Set -Xms and -Xmx to be the same. More heap means Elasticsearch can keep more data in
memory for faster access. But more heap also means that when the Java heap is close to full,
the JVM's garbage collector will run a full garbage collection. At that point, all other
processing within the Elasticsearch node experiences a pause. So, the larger the heap, the
longer the pauses will be. The maximum heap size that you can configure is around 32 GB.
Another recommendation to keep in mind is that we should allocate no more than 50% of
the total available RAM on the machine to the Elasticsearch JVM. The reason is that the
system needs enough memory for the filesystem cache for Apache Lucene. Ultimately, all
the data stored on the Elasticsearch node is managed as Apache Lucene indexes, which
needs RAM for fast access to the files.

So, if you are planning to store huge amounts of data in Elasticsearch, there is no point in
having one single node with more than 64 GB RAM (50% of which is 32 GB, the maximum
heap size). Instead, add more nodes if you want to scale.

Disable swapping
When swapping is enabled, an OS generally has a tendency to reclaim the memory from an
application by swapping the data to disk to make more memory available for other
programs.

On the Elasticsearch node, this can result in the OS swapping out the heap memory of
Elasticsearch. This process of swapping out from memory to disk and then swapping back
from disk to memory can slow down the process. This is why swapping should be disabled
on the node that is running Elasticsearch.

File descriptors
On Linux and macOS operating systems, there is a limit to the number of open file handles
or file descriptors that a process can keep. This often needs to be increased in the case of
Elasticsearch, as the default value is generally quite low for the open file descriptor limit.

Running Elastic Stack in Production Chapter 9

[361]

Thread pools and garbage collector
Elasticsearch does many types of operations, such as indexing, searching, sorting, and
aggregations, and uses JVM thread pools to accomplish its tasks. It is advisable to not tune
the settings related to thread pools in Elasticsearch. They generally do more harm than help
to improve performance. Another thing not to tune in Elasticsearch is the garbage collector
settings.

Managing and monitoring Elasticsearch
When you self-host Elasticsearch, the entire monitoring and management activities for the
cluster are on you. It is necessary to monitor your Elasticsearch node process status,
memory, and disk space on the node. If a node crashes for any reason, or becomes
unavailable, it needs to be started back again.

The snapshots of the Elasticsearch indexes need to be taken regularly for taking backups.
We will discuss the snapshot/restore functionalities for backing up. Most of the
monitoring can be achieved via X-Pack and Kibana, but management processes need to be
set up manually.

Running in Docker containers
Docker is a popular way of containerizing and shipping software. The advantage of Docker
is that the software that is dockerized and runs inside a light-weight container that has a
small overhead compared to a virtual machine. As a result of its reduced overhead and
large pool of publicly available Docker images, Docker is a great way to run software in
production in a predictable way without the need of much configuration.

Official Elasticsearch Docker images are available for download in different flavors:

Elasticsearch with basic X-Pack license
Elasticsearch with full X-Pack license and 30-day evaluation
Open source version of Elasticsearch without X-Pack

Running Elastic Stack in Production Chapter 9

[362]

Getting started with an Elasticsearch instance running inside Docker is as easy as installing
Docker and running the docker pull command with the Elasticsearch image of your
choice. The following simple commands will get your single-node Elasticsearch 7.0.1 up
and running if you have Docker installed on your system:

docker pull docker.elastic.co/elasticsearch/elasticsearch:7.0.1

docker run -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node"
docker.elastic.co/elasticsearch/elasticsearch:7.0.1

Docker is a highly recommended way of running applications in a predictable way in
production. You can find out more about how to run Elasticsearch in Docker in a
production environment in the documentation—https:/ /www. elastic. co/guide/ en/
elasticsearch/reference/ 7. 0/ docker. html.

Special considerations while deploying to a cloud
While self-hosting on a cloud, you may choose one of the cloud providers, such as AWS,
Microsoft Azure, or GCE. They provide compute resources, networking capabilities, virtual
private clouds, and much more, to get control over your servers. Using a cloud provider as
opposed to running on your own hardware comes with the following advantages:

No upfront investment in hardware
Ability to upgrade/downgrade servers
Ability to add or remove servers as and when needed

It is typical to not be sure how much CPU, RAM, and so on, is required for your nodes
when you start. Choosing the cloud gives the flexibility to benchmark on one type of
configuration and then upgrade/downgrade or add/remove nodes as needed without
incurring upfront costs. We will take EC2 as an example and try to understand the
considerations to take into account. Most of the considerations should remain similar for
other cloud providers as well. The following are some of the aspects to consider on AWS
EC2:

Choosing instance type
Changing the ports; do not expose ports!
Proxy requests
Binding HTTP to local addresses
Installing EC2 discovery plugin

https://www.elastic.co/guide/en/elasticsearch/reference/7.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.0/docker.html

Running Elastic Stack in Production Chapter 9

[363]

Installing S3 repository plugin
Setting up periodic snapshots

Let's focus on them one by one.

Choosing instance type
EC2 offers different types of instances to meet different requirements. A typical starting
point for Elasticsearch is to consider the m5d.large or m5d.2xlarge instance; they have
has 4 CPU cores and 8 CPU cores with 16 and 32 GB RAM respectively, and SSD storage. It
is always good to benchmark on your data and monitor the resource usage on your nodes.
You can upgrade or downgrade the nodes as per your findings.

Changing default ports; do not expose ports!
Running any type of service in a cloud involves different security risks. It is important that
none of the ports used by Elasticsearch are exposed and accessible from the public internet.
EC2 allows detailed control over which ports are accessible and from which IP addresses or
subnets. Generally, you should not need to make any ports accessible from outside
anywhere other than port 22 in order to log in remotely.

By default, Elasticsearch uses port 9200 for HTTP traffic and 9300 for inter-node
communication. It is advisable to change these default ports by editing
elasticsearch.yml on all nodes.

Proxy requests
Use a reverse proxy such as nginx (pronounced engine x) or Apache to proxy your requests
to Elasticsearch/Kibana.

Binding HTTP to local addresses
You should run your Elasticsearch nodes in a VPC (Virtual Private Cloud). More recently,
AWS creates all nodes in a VPC. The nodes that do not need to interface with the clients
accept the queries from clients over HTTP. This can be done by setting http.host
in elasticsearch.yml. You can find out more about the HTTP host/port bindings in the
reference documentation at https:/ / www. elastic. co/ guide/ en/ elasticsearch/
reference/current/ modules- http. html.

https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-http.html

Running Elastic Stack in Production Chapter 9

[364]

Installing EC2 discovery plugin
Elasticsearch nodes discover their peers via multicast when they are in the same network.
This works very well in a regular LAN. When it comes to EC2, the network is shared and
the node to node communication and automatic discovery don't work. It requires the
installation of the EC2 discovery plugin on all nodes to be able to discover new nodes.

To install the EC2 discovery plugin, follow the instructions at https:/ /www. elastic. co/
guide/en/elasticsearch/ plugins/ current/ discovery- ec2. html and install it on all
nodes.

Installing the S3 repository plugin
It is important to back up your data in Elasticsearch regularly to restore the data if a
catastrophic event occurs or if you want to revert to a last known healthy state. We will
look at how to backup and restore using the snapshot/restore APIs of Elasticsearch in the
next section. In order to take regular backups and store them in centralized and resilient
data storage, we need to set up a snapshot mechanism. When you are running Elasticsearch
in EC2, it makes sense to store snapshots in an AWS S3 bucket.

S3 stands for Simple Storage Service. It is a scalable, durable, and reliable
storage service to store large amounts of data. It provides comprehensive
security for your data and accessibility from many different platforms. It
can meet very stringent compliance requirements due to its
comprehensive security support. It is often the preferred solution for
storing long-term data, especially when systems that generate the data are
hosted on AWS.

The S3 repository plugin can be installed using the following command; it needs to be
installed on every node of your Elasticsearch cluster:

sudo bin/elasticsearch-plugin install repository-s3

Setting up periodic snapshots
Once you have a repository set up on S3, we need to ensure that actual snapshots are taken
periodically. What this means is that we need a scheduled job that triggers the command to
take a snapshot at regular intervals. The interval could be 15 minutes, 30 minutes, one hour,
and so on, depending on the sensitivity of your data. We will see how to establish the
snapshot/restore process for your cluster in depth later in this chapter.

https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/discovery-ec2.html

Running Elastic Stack in Production Chapter 9

[365]

These are some of the considerations that you have to address while running Elasticsearch
in production on AWS or other clouds.

So far, we have covered how to get your production up and running on a managed cloud
or self-hosted environment. If you opted to self-host, you will need to set up a backup and
restore process so that you don't lose your data. The next section is only applicable if you
are self-hosting your Elasticsearch cluster.

Backing up and restoring
Taking regular backups of your data to recover in the event of catastrophic failures is
absolutely critical. It is important that all of your data is saved periodically at fixed time
intervals and a sufficient number of such backups are preserved.

A common strategy is to take a full backup of your data at regular intervals and keep a
fixed number of backups. Your cluster may be deployed on-premise in your own data
center or it may be deployed on a cloud hosted service such as AWS, where you may be
managing the cluster yourself.

We will look at the following topics on how to manage your backups and restore a specific
backup if it is needed:

Setting up a repository for snapshots
Taking snapshots
Restoring a specific snapshot

Let's look at how to do these one by one.

Setting up a repository for snapshots
The first step in setting up a regular backup process is setting up a repository for storing
snapshots. There are different places where we could store snapshots:

A shared filesystem
Cloud or distributed filesystems (S3, Azure, GCS, or HDFS)

Running Elastic Stack in Production Chapter 9

[366]

Depending upon where the Elasticsearch cluster is deployed, and which storage options are
available, you may want to set up the repository for your snapshots in a certain way.

Let's first understand how you would do this in the simplest of scenarios, when you want
to store it in a shared filesystem directory.

Shared filesystem
When your cluster has a shared filesystem accessible from all the nodes of the cluster, you
have to ensure that the shared filesystem is accessible on a common path. You should
mount that shared folder on all nodes and add the path of the mounted directory. The
shared, mounted filesystem's path should be added to each node's elasticsearch.yml as
follows:

path.repo: ["/mount/es_backups"]

If you are running a single node cluster and haven't set up a real
distributed cluster, there is no need for a mounted shared drive.
The path.repo parameter can be set to a local directory of your node. It
is not recommended to run a production server on a single node cluster.

Once this setting is added to config/elasticsearch.yml on all nodes, please restart all
the nodes of your cluster.

The next step is to register a named repository under this registered folder. This is done
using the following curl command, where we are registering a named repository with the
name backups:

curl -XPUT 'http://localhost:9200/_snapshot/backups' -H 'Content-Type:
application/json' -d '{
 "type": "fs",
 "settings": {
 "location": "/mount/es_backups/backups",
 "compress": true
 }
}'

Running Elastic Stack in Production Chapter 9

[367]

You will need to replace localhost with the hostname or IP address of one of the nodes
on your cluster. The type parameter set to fs is for the shared filesystem. The settings
parameter's body depends on the type parameter's value.

Since we are currently looking at a shared filesystem snapshot repository, the body of
the settings parameter has specific parameters to set up the shared filesystem-based
repository. If the location parameter is specified as an absolute path, it must be under one
of the folders registered with the path.repo parameter in elasticsearch.yml. If
the location parameter is not an absolute path, Elasticsearch will assume it is a relative
path from the path.repo parameter. The compress parameter saves the snapshots in
compressed format.

Cloud or distributed filesystems
When you are running your Elasticsearch cluster on AWS, Azure, or Google Cloud, it
makes sense to store the snapshots in one of the alternatives provided by the cloud
platform to store the data in robust, fault tolerant storage, rather than storing it on a shared
drive.

Elasticsearch has official plugins that allow you to store the snapshots in S3. All you need to
do is install the repository—s3 plugin on all nodes of your cluster and set up the repository
settings in a similar way to how we set up the shared filesystem repository:

curl -XPUT 'http://localhost:9200/_snapshot/backups' -H 'Content-Type:
application/json' -d '{
 "type": "s3",
 "settings": {
 "bucket": "bucket_name",
 "region": "us-west",
 ...
 }
}'

The type should be s3 and settings should have relevant values for s3.

Running Elastic Stack in Production Chapter 9

[368]

Taking snapshots
Once the repository is set up, we can put named snapshots into a specific repository:

curl -XPUT
'http://localhost:9200/_snapshot/backups/backup_201905271530?pretty' -H
'Content-Type: application/json' -d'
{
 "indices": "bigginsight,logstash-*",
 "ignore_unavailable": true,
 "include_global_state": false
}
'

In this command, we specified that we want a snapshot to be taken in the repository
backups with the name backup_201905271530. The name of the snapshot could be
anything, but it should help you identify the snapshot at a later stage. One typical strategy
would be to take a snapshot every 30 minutes and set snapshot names with prefixes such
as backup_yyyyMMddHHmm. In the event of any failure, you could then identify the
snapshot that can be restored.

Snapshots are incremental by default. They don't store all the redundant data in all
snapshots.

Having taken the snapshots periodically, you would want to list all the snapshots that exist
in a repository. This can be done using the following command:

curl -XGET 'http://localhost:9200/_snapshot/backups/_all?pretty'

Restoring a specific snapshot
If the need arises, you can restore the state from a specific snapshot using the following
command:

curl -XPOST
'http://localhost:9200/_snapshot/backups/backup_201905271530/_restore'

This will restore the backup_201905271530 snapshot from the backups repository.

Running Elastic Stack in Production Chapter 9

[369]

Once we have set up a periodic job that takes and stores a snapshot, we are safe in the event
of any failure. We now have a cluster that is recoverable from any disaster-like situation.
Remember, the output of snapshots should be stored in resilient storage. At least, it should
not be saved on the same Elasticsearch cluster; it should be saved on different storage,
preferably a robust filesystem that is highly available, such as S3, HDFS, and so on.

So far in this chapter, we have got up and running with a cluster that is reliable and is
backed up regularly. In the upcoming sections, we will see how to address some common
scenarios in data modeling. We will see some common strategies for setting up aliases for
indexes, index templates, modeling time-series data, and so on.

Setting up index aliases
Index aliases let you create aliases for one or more indexes or index name patterns. We will
cover the following topics in order to learn how index aliases work:

Understanding index aliases
How index aliases can help

Understanding index aliases
An index alias just provides an extra name to refer to an index; it can be defined in the
following way:

POST /_aliases
{
 "actions" : [
 { "add" : { "index" : "index1", "alias" : "current_index" } }
]
}

Here, index1 can be referred to with the alias current_index. Similarly, the index alias
can be removed with the remove action of the _aliases REST API:

POST /_aliases
{
 "actions" : [
 { "remove" : { "index" : "index1", "alias" : "current_index" } }
]
}

Running Elastic Stack in Production Chapter 9

[370]

The preceding call will remove the alias current_index. Two actions can be combined in
a single invocation of the _aliases API. When two calls are combined, the operations are
done automatically. For example, the following call would be completely transparent to the
client:

POST /_aliases
{
 "actions" : [
 { "remove" : { "index" : "index1", "alias" : "current_index" } },
 { "add" : { "index" : "index2", "alias" : "current_index" } }
]
}

Before the call, the alias current_index was referring to the index index1, and after the
call, the alias will refer to the index index2.

How index aliases can help
Once in production, it often happens that we need to reindex data from one index to
another. We might have one or more applications developed in Java, Python, .NET, or other
programming environments that may be referring to these indexes. In the event that the
production index needs to be changed from index1 to index2, it will require a change in
all client applications.

Aliases come to the rescue here. They offer extra flexibility, and hence, they are a
recommended feature to use in production. The key thing is to create an alias for your
production index and use the alias instead of the actual index name in the client
applications that use them.

In the event that the current production index needs to change, we just need to update the
alias to point to the new index instead of the old one. Using this feature, we can achieve
zero downtime in production in the case of data migration or the need for reindexing.
Aliases use a famous principle in computer science—an extra layer of indirection can solve
most problems in computer science—https:/ /en. wikipedia. org/wiki/ Indirection.

Apart from the ones discussed here, there are more features that aliases offer; these include
the ability to use index patterns, routing, the ability to specify filters, and many more. We
will see how index aliases can be leveraged when creating time-based indexes later in the
chapter.

https://en.wikipedia.org/wiki/Indirection
https://en.wikipedia.org/wiki/Indirection
https://en.wikipedia.org/wiki/Indirection
https://en.wikipedia.org/wiki/Indirection
https://en.wikipedia.org/wiki/Indirection
https://en.wikipedia.org/wiki/Indirection
https://en.wikipedia.org/wiki/Indirection
https://en.wikipedia.org/wiki/Indirection
https://en.wikipedia.org/wiki/Indirection
https://en.wikipedia.org/wiki/Indirection
https://en.wikipedia.org/wiki/Indirection
https://en.wikipedia.org/wiki/Indirection
https://en.wikipedia.org/wiki/Indirection

Running Elastic Stack in Production Chapter 9

[371]

Setting up index templates
One important step while setting up your index is defining the mapping for the types,
number of shards, replica, and other configurations. Depending upon the complexity of the
types within your index, this step can involve a substantial amount of configuration.

Index templates allow you to create indexes based on a given template, rather than creating
each index manually beforehand. Index templates allow you to specify settings and
mappings for the index to be created. Let's understand this by going through the following
points:

Defining an index template
Creating indexes on the fly

Let's say we want to store sensor data from various devices and we want to create one
index per day. At the beginning of every day, we want a new index to be created whenever
the first sensor reading is indexed for that day. We will look into the details of why we
should use such time-based indexes in the next section.

Defining an index template
We start by defining an index template:

PUT _template/readings_template 1
{
 "index_patterns": ["readings*"], 2
 "settings": { 3
 "number_of_shards": 1
 },
 "mappings": { 4
 "properties": {
 "sensorId": {
 "type": "keyword"
 },
 "timestamp": {
 "type": "date"
 },
 "reading": {
 "type": "double"
 }
 }
 }
}

Running Elastic Stack in Production Chapter 9

[372]

In this _template call, we define the following things:

A template with the name readings_template.
The index name patterns that will match this template. We configured
readings* as the one and only index pattern. Any attempt to index into an
index that does not exist but matches this pattern would use this template.
The settings to be applied to the newly created index from this template.
The mappings to be applied to the newly created index from this template.

Let's try to index data into this new index.

Creating indexes on the fly
When any client tries to index the data for a particular sensor device, it should use the
index name with the current day appended in yyyy-mm-dd format after readings. A call
to index data for 2019-05-01 would look like the following:

POST /readings-2019-05-01/_doc
{
 "sensorId": "a11111",
 "timestamp": 1483228800000,
 "reading": 1.02
}

When the first record for the date 2019-05-01 is being inserted, the client should use the
index name readings-2019-05-01. Since this index doesn't exist yet, and we have an
index template in place, Elasticsearch creates a new index using the index template we
defined. As a result, the settings and mappings defined in our index template get applied to
this new index.

This is how we create indexes based on index templates. In the next section, let's
understand why these types of time-based indexes are useful and how to use them in
production with your time-series data.

Running Elastic Stack in Production Chapter 9

[373]

Modeling time series data
Often, we have a need to store time series data in Elasticsearch. Typically, one would create
a single index to hold all documents. This typical approach of one big index to hold all
documents has its own limitations, especially for the following reasons:

Scaling the index with an unpredictable volume over time
Changing the mapping over time
Automatically deleting older documents

Let's look at how each problem manifests itself when we choose a single monolithic index.

Scaling the index with unpredictable volume over
time
One of the most difficult choices when creating an Elasticsearch cluster and its indexes is
deciding how many primary shards should be created and how many
replica shards should be created.

Let's understand how the number of shards becomes important in the following sub-
sections:

Unit of parallelism in Elasticsearch:
The effect of the number of shards on the relevance score
The effect of the number of shards on the accuracy of aggregations

Unit of parallelism in Elasticsearch
We have to decide the number of shards at the time of creating the index. The number of
shards cannot be changed once the index has been created. There is no golden rule that will
help you decide how many shards should be created at the time of creating an index. The
number of shards actually decides the level of parallelism in the index. Let's understand
this by taking an example of how a search query might be executed.

When a search or aggregation query is sent by a client, it is first received by one of the
nodes in the cluster. That node acts as a coordinator for that request. The coordinating node
sends requests to all the shards on the cluster and waits for the response from all shards.
Once the response is received by the coordinating node from all shards, it collates the
response and sends it back to the original client.

Running Elastic Stack in Production Chapter 9

[374]

What this means is, when we have a greater number of shards, each shard has to do
relatively less work and parallelism can be increased.

But can we choose an arbitrarily big number of shards? Let's look at this in the next couple
of sub-sections.

The effect of the number of shards on the relevance score
A large number of small shards is not always the solution, as it can affect the relevance of
the search results. In the context of search queries, the relevance score is calculated within
the context of a shard. The relative frequencies of documents are calculated within the
context of each shard and not across all shards. This is why the number of shards can affect
the overall scores observed for a query. In particular, having too many shards to address
the future scalability problem is not a solution.

The effect of the number of shards on the accuracy of aggregations
Similar to the execution of the search query, an aggregation query is also coordinated by a
coordinating node. Let's say that the client has requested terms aggregation on a field that
can take a large number of unique values. By default, the terms aggregation returns the top
10 terms to the client.

To coordinate the execution of terms aggregation, the coordinator node does not request all
the buckets from all shards. All shards are requested to give their top n buckets. By default,
this number, n, is equal to the size parameter of the terms aggregation, that is, the number
of top buckets that the client has requested. So, if the client requested the top 10 terms, the
coordinating node in turn requests the top 10 buckets from each shard.

Since the data can be skewed across the shards to a certain extent, some of the shards may
not even have certain buckets, even though those buckets might be one of the top buckets
in some shards. If a particular bucket is in the top n buckets returned by one of the shards
and that bucket is not one of the top n buckets by one of the other shards, the final count
aggregated by the coordinating node will be off for that bucket. A large number of shards,
just to ensure future scalability, does not help the accuracy of aggregations.

We have understood why the number of shards is important and how deciding the number
of shards upfront is difficult. Next, we will see how changing the mapping of indexes
becomes difficult over a period of time.

Running Elastic Stack in Production Chapter 9

[375]

Changing the mapping over time
Once an index is created and documents start getting stored, the requirements can change.
There is only one thing that is constant, change.

When the schema changes, the following types of change may happen with respect to the
schema:

New fields get added
Existing fields get removed

New fields get added
When the first document with a new field gets indexed, the new field's mapping is
automatically created if it doesn't already exist. Elasticsearch infers the datatype of the field
based on the value of that field in the first document in order to create the mapping. The
mappings of one particular type of document can grow over a period of time.

Once a document with a new field is indexed, the mapping is created for that new field and
its mapping remains.

Existing fields get removed
Over a period of time, the requirements of a project can change. Some fields might become
obsolete and may no longer be used. In the case of Elasticsearch indexes, the fields that are
no longer used are not removed automatically; the mapping remains in the index for all the
fields that were ever indexed. Each extra field in the Elasticsearch index carries an
overhead; this is especially true if you have hundreds or thousands of fields. If, in your use
case, you have a very high number of fields that are not used, it can increase the burden on
your cluster.

Automatically deleting older documents
No cluster has an infinite capacity to retain data forever. With the volume growing over a
period of time, you may decide to only store necessary data in Elasticsearch. Typically, you
may want to retain data for the past few weeks, months, or years in Elasticsearch,
depending on your use case.

Running Elastic Stack in Production Chapter 9

[376]

Prior to Elasticsearch 2.x, this was achieved using TTL (Time to Live) set on individual
documents. Each document could be configured to remain in the index for a configurable
amount of time. But, the TTL feature was deprecated with the 2.x version because of its
overheads in maintaining time-to-live on a per-document basis.

We have seen some problems that we might face while dealing with time series data. Now,
let's look at how the use of time-based indexes addresses these issues. Time-based indexes
are also called index-per-timeframe:

How index-per-timeframe solves these issues
How to set up index-per-timeframe

How index-per-timeframe solves these issues
Instead of going with one big monolithic index, we now create one index per timeframe.
The timeframe could be one day, one week, one month, or any arbitrary time duration. For
example, in our example in the Index Template section, we chose index-per-day. The names
of the index would reflect that—we had indexes such as readings-2019-05-01,
readings-2019-05-02, and so on. If we had chosen index-per-month, the index names
would look like readings-2019-04, readings-2019-05, readings-2019-06, and so
on.

Let's look at how this scheme solves the issues we saw earlier one by one.

Scaling with index-per-timeframe
Since we no longer have a monolithic index that needs to hold all historic data, scaling up
or scaling down according to the recent volumes becomes easier. The choice of the number
of shards is not an upfront and permanent decision. Start with an initial estimated number
of shards for the given time period. This number, the chosen number of shards, can be put
in the index template.

Since that choice of shards can be changed before the next timeframe begins, you are not
stuck with a bad choice. With each time period, it gives a chance to adjust the index
template to increase or decrease the number of shards for the next index to be created.

Running Elastic Stack in Production Chapter 9

[377]

Changing the mapping over time
Changing the mapping becomes easier, as we could just update the index template that is
used for creating new indexes. When the index template is updated, the new index that is
created for the new timeframe uses the new mappings in the template.

Again, each timeframe gives us an opportunity to change.

Automatically deleting older documents
With time-based indexes, deleting the older documents becomes easier. We could just drop
older indexes rather than delete individual documents. If we were using monthly indexes
and wanted to enforce six-month retention of data, we could delete all indexes older than 6
months. This may be set up as a scheduled job to look for and delete older indexes.

As we have seen in this section, setting up index-per-timeframe has obvious advantages
when we are dealing with time-series data.

Summary
In this chapter, we have seen essential techniques necessary to take your next Elastic Stack
application to production. We have seen various deployment options, including cloud-
based and on-premise. We have seen how to use a managed cloud service provider such as
Elastic Cloud and have also covered how to self-host Elastic Stack. We have covered some
common concerns and decision choices that you will face, whether you self-host or use a
managed cloud provider.

Additionally, we have seen various techniques useful in a production-grade Elastic Stack
deployment. These include the usage of index aliases, index templates, and modeling time-
series data. This is definitely not a comprehensive guide covering all the nuances of
running Elastic Stack in production, but we have definitely covered enough for you to
comfortably take your next Elastic Stack project to production.

Equipped with all these techniques, we will build a sensor data analytics application in the
next chapter, Chapter 10, Building a Sensor Data Analytics Application.

10
Building a Sensor Data

Analytics Application
In the previous chapter, we saw how you can take an Elastic Stack application to
production. Armed with all the knowledge of the Elastic Stack and the techniques for
taking applications to production, we are ready to apply these concepts in a real-world
application. In this chapter, we will build one such application using the Elastic Stack that
can handle a large amount of data, applying the techniques that we have learned so far.

We will cover the following topics as we build a sensor-data analytics application:

Introduction to the application
Modeling data in Elasticsearch
Setting up the metadata database
Building the Logstash data pipeline
Sending data to Logstash over HTTP
Visualizing the data in Kibana

Let's go through the topics.

Introduction to the application
The internet of things (IoT) has found a wide range of applications in modern times.
IoT can be defined as follows:

The Internet of things (IoT) is the collective web of connected smart devices that can sense
and communicate with each other by exchanging data via the Internet.

Building a Sensor Data Analytics Application Chapter 10

[379]

IoT devices are connected to the internet; they sense and communicate. They are equipped
with different types of sensors that collect the data they observe and transmit it over the
internet. This data can be stored, analyzed, and often acted upon in near-real time. The
number of such connected devices is projected to rise rapidly; according to Wikipedia, there
will be an estimated 30 billion connected devices by 2020. Since each device can capture the
current value of a metric and transmit it over the internet, this can result in massive
amounts of data.

A plethora of different types of sensors have emerged in recent times for temperature,
humidity, light, motion, and airflow; these can be used in different types of applications.
Each sensor can be programmed to take a current reading and send it over the internet.

Let's consider the following diagram for our understanding:

Figure 10.1: Connected devices and sensors sending data to Elastic Stack

Building a Sensor Data Analytics Application Chapter 10

[380]

Figure 10.1 provides an idea of the high-level architecture of the system that we will discuss
in this chapter. The left-hand side of the figure depicts various types of devices equipped
with sensors. These devices are capable of capturing different metrics and sending them
over the internet for long-term storage and analysis. In the right half of the figure, you see
the server-side components on the other side of the internet. The server-side components
primarily consist of the Elastic Stack.

In this chapter, we will look at an application in which we want to store and analyze sensor
data from two types of sensors: temperature and humidity sensors, placed at various
locations.

Sensors can be deployed across multiple sites or locations, with each site connected to the
internet as shown in the figure. Our example demonstrates two types of sensors,
temperature, and humidity, but the application can be extended to support any kind of
sensor data.

We will cover the following points about the system in this section:

Understanding the sensor-generated data
Understanding the sensor metadata
Understanding the final stored data

Let's go deep into the application by understanding each topic one by one.

Understanding the sensor-generated data
What does the data look like when it is generated by the sensor? The sensor sends JSON-
format data over the internet and each reading looks like the following:

{
 "sensor_id": 1,
 "time": 1511935948000,
 "value": 21.89
}

Here, we can see the following:

The sensor_id field is the unique identifier of the sensor that has emitted the
record.
The time field is the time of the reading in milliseconds since the epoch, that is,
00:00:00 on January 1, 1970.
The value field is the actual metric value emitted by the sensor.

Building a Sensor Data Analytics Application Chapter 10

[381]

This type of JSON payload is generated every minute by all the sensors in the system. Since
all sensors are registered in the system, the server-side system has the associated metadata
with each sensor. Let's look at the sensor-related metadata that is available to us on the
server side in a database.

Understanding the sensor metadata
The metadata about all the sensors across all locations is available to us in a relational
database. In our example, we have stored it in MySQL. This type of metadata can be stored
in any relational database other than MySQL. It can also be stored in Elasticsearch in an
index.

The metadata about sensors primarily contains the following details:

Type of sensor: What type of sensor is it? It can be a temperature sensor, a
humidity sensor, and so on.
Location-related metadata: Where is the sensor with the given sensor
ID physically located? Which customer is it associated with?

This information is stored in the following three tables in MySQL:

sensor_type: Defines various sensor types and their sensor_type_id:

sensor_type_id sensor_type
1 Temperature
2 Humidity

location: This defines locations with their latitude/longitude and address
within a physical building:

location_id customer department building_name room floor location_on_floor latitude longitude
1 Abc Labs R & D 222 Broadway 101 1 C-101 40.710936 -74.008500

sensors: This maps sensor_id with sensor types and locations:

sensor_id sensor_type_id location_id
1 1 1
2 2 1

Building a Sensor Data Analytics Application Chapter 10

[382]

Given this database design, it is possible to look up all of the metadata associated with the
given sensor_id using the following SQL query:

select
 st.sensor_type as sensorType,
 l.customer as customer,
 l.department as department,
 l.building_name as buildingName,
 l.room as room,
 l.floor as floor,
 l.location_on_floor as locationOnFloor,
 l.latitude,
 l.longitude
from
 sensors s
 inner join
 sensor_type st ON s.sensor_type_id = st.sensor_type_id
 inner join
 location l ON s.location_id = l.location_id
where
 s.sensor_id = 1;

The result of the previous query will look like this:

sensorType customer department buildingName room floor locationOnFloor latitude longitude
Temperature Abc Labs R & D 222 Broadway 101 Floor1 C-101 40.710936 -74.0085

Up until now, we have seen the format of incoming sensor data from the client side. We
have also established a mechanism to look up the associated metadata for the given sensor.

Next, we will see what the final enriched record should look like.

Understanding the final stored data
By combining the data that is coming from the client side and contains the sensor's metric
value for a given metric at a given time, we can construct an enriched record of the
following fields:

sensorId

sensorType

customer

department

Building a Sensor Data Analytics Application Chapter 10

[383]

buildingName

room

floor

locationOnFloor

latitude

longitude

time

reading

Field numbers 1, 11, and 12 are present in the payload sent by the sensor to our application.
The remaining fields are looked up or enriched using the SQL query that we saw in the
previous section – using the sensorId. This way, we can generate a denormalized sensor
reading record for every sensor for every minute.

We have understood what the application is about and what the data represents. As we
start developing the application, we will start the solution from the inside out. It is better to
attack the problem at hand at the very heart and try to piece together its core. Elasticsearch
is at the core of the Elastic Stack, so we will start defining our solution from it's very heart
by first building the data model in Elasticsearch. Let's do that in the next section.

Modeling data in Elasticsearch
We have seen the structure of the final record after enriching the data. That should help us
model the data in Elasticsearch. Given that our data is time series data, we can apply some
of the techniques mentioned in Chapter 9, Running the Elastic Stack in Production, to model
the data:

Defining an index template
Understanding the mapping

Let's look at the index template that we will define.

Defining an index template
Since we are going to be storing time series data that is immutable, we do not want to
create one big monolithic index. We'll use the techniques discussed in the Modeling time
series data section in Chapter 9, Running the Elastic Stack in Production.

Building a Sensor Data Analytics Application Chapter 10

[384]

The source code of the application in this chapter is within the GitHub repository
at https://github. com/ pranav- shukla/ learningelasticstack/ tree/ v7.0/ chapter- 10.
As we go through the chapter, we will perform the steps mentioned in the README.md file
located at that path.

Please create the index template mentioned in Step 1 of the README.md file or execute the
following script in your Kibana Dev Tools Console:

POST _template/sensor_data_template
{
 "index_patterns": [
 "sensor_data*"
],
 "settings": {
 "number_of_replicas": "1",
 "number_of_shards": "5"
 },
 "mappings": {
 "properties": {
 "sensorId": {
 "type": "integer"
 },
 "sensorType": {
 "type": "keyword",
 "fields": {
 "analyzed": {
 "type": "text"
 }
 }
 },
 "customer": {
 "type": "keyword",
 "fields": {
 "analyzed": {
 "type": "text"
 }
 }
 },
 "department": {
 "type": "keyword",
 "fields": {
 "analyzed": {
 "type": "text"
 }
 }
 },
 "buildingName": {

https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10

Building a Sensor Data Analytics Application Chapter 10

[385]

 "type": "keyword",
 "fields": {
 "analyzed": {
 "type": "text"
 }
 }
 },
 "room": {
 "type": "keyword",
 "fields": {
 "analyzed": {
 "type": "text"
 }
 }
 },
 "floor": {
 "type": "keyword",
 "fields": {
 "analyzed": {
 "type": "text"
 }
 }
 },
 "locationOnFloor": {
 "type": "keyword",
 "fields": {
 "analyzed": {
 "type": "text"
 }
 }
 },
 "location": {
 "type": "geo_point"
 },
 "time": {
 "type": "date"
 },
 "reading": {
 "type": "double"
 }
 }
 }
}

This index template will create a new index with the name sensor_data-YYYY.MM.dd
when any client attempts to index the first record in this index. We will see later in this
chapter how this can be done from Logstash under Building the Logstash data pipeline section.

Building a Sensor Data Analytics Application Chapter 10

[386]

Understanding the mapping
The mapping that we defined in the index template contains all the fields that will be
present in the denormalized record after lookup. A few things to notice in the index
template mapping are as follows:

All the fields that contain a text type of data are stored as the keyword type;
additionally, they are stored as text in an analyzed field. For example, please
have a look at the customer field.
The latitude and longitude fields that we had in the enriched data are now
mapped to a geo_point type of field with the field name of location.

At this point, we have defined an index template that will trigger the creation of an index
with the mapping we defined in the template.

Setting up the metadata database
We need to have a database that has metadata about the sensors. This database will hold
the tables that we discussed in the Introduction to the application section.

We are storing the data in a relational database MySQL, but you can use any other
relational database equally well. Since we are using MySQL, we will be using the MySQL
JDBC driver to connect to the database. Please ensure that you have the following things set
up on your system:

MySQL database community version 5.5, 5.6, or 5.7. You can use an existing1.
database if you already have it on your system.
Install the downloaded MySQL database and log in with the root user. Execute2.
the script available https:/ /github. com/ pranav- shukla/
learningelasticstack/ tree/ v7.0/chapter- 10/ files/ create_ sensor_
metadata. sql.
Log in to the newly created sensor_metadata database and verify that the three3.
tables, sensor_type, locations, and sensors, exist in the database.

You can verify that the database was created and populated successfully by executing the
following query:

select
 st.sensor_type as sensorType,
 l.customer as customer,
 l.department as department,

https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/create_sensor_metadata.sql
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/create_sensor_metadata.sql

Building a Sensor Data Analytics Application Chapter 10

[387]

 l.building_name as buildingName,
 l.room as room,
 l.floor as floor,
 l.location_on_floor as locationOnFloor,
 l.latitude,
 l.longitude
from
 sensors s
 inner join
 sensor_type st ON s.sensor_type_id = st.sensor_type_id
 inner join
 location l ON s.location_id = l.location_id
where
 s.sensor_id = 1;

The result of the previous query will look like this:

sensorType customer department buildingName room floor locationOnFloor latitude longitude
Temperature Abc Labs R & D 222 Broadway 101 Floor1 C-101 40.710936 -74.0085

Our sensor_metadata database is ready to look up the necessary sensor metadata. In the
next section, we will build the Logstash data pipeline.

Building the Logstash data pipeline
Having set up the mechanism to automatically create the Elasticsearch index and the
metadata database, we can now focus on building the data pipeline using Logstash. What
should our data pipeline do? It should perform the following steps:

Accept JSON requests over the web (over HTTP).
Enrich the JSON with the metadata we have in the MySQL database.
Store the resulting documents in Elasticsearch.

These three main functions that we want to perform correspond exactly with the Logstash
data pipeline's input, filter, and output plugins, respectively. The full Logstash
configuration file for this data pipeline is in the code base at https:/ / github. com/ pranav-
shukla/learningelasticstack/ tree/ v7. 0/chapter- 10/ files/ logstash_ sensor_ data_
http.conf.

Let us look at how to achieve the end goal of our data pipeline by following the
aforementioned steps. We will start with accepting JSON requests over the web (over
HTTP).

https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf
https://github.com/pranav-shukla/learningelasticstack/tree/v7.0/chapter-10/files/logstash_sensor_data_http.conf

Building a Sensor Data Analytics Application Chapter 10

[388]

Accepting JSON requests over the web
This function is achieved by the input plugin. Logstash has support for the http input
plugin, which does precisely that. It builds an HTTP interface using different types of
payloads that can be submitted to Logstash as an input.

The relevant part from logstash_sensor_data_http.conf, which has the input filter, is
as follows:

input {
 http {
 id => "sensor_data_http_input"
 }
}

Here, the id field is a string that can uniquely identify this input filter later in the file if
needed. We will not need to reference this name in the file; we just choose the name
sensor_data_http_input.

The reference documentation of the HTTP input plugin is available at: https:/ /www.
elastic.co/guide/ en/ logstash/ current/ plugins- inputs- http. html. In this instance,
since we are using the default configuration of the http input plugin, we have just
specified id. We should secure this HTTP endpoint as it will be exposed over the internet
to allow sensors to send data from anywhere. We can
configure user and password parameters to protect this endpoint with the desired
username and password, as follows:

input {
 http {
 id => "sensor_data_http_input"
 user => "sensor_data"
 password => "sensor_data"
 }
}

When Logstash is started with this input plugin, it starts an HTTP server on port 8080,
which is secured using basic authentication with the given username and password. We
can send a request to this Logstash pipeline using a curl command, as follows:

curl -XPOST -u sensor_data:sensor_data --header "Content-Type:
application/json" "http://localhost:8080/" -d
'{"sensor_id":1,"time":1512102540000,"reading":16.24}'

Let's see how we will enrich the JSON payload with the metadata we have in MySQL.

https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html

Building a Sensor Data Analytics Application Chapter 10

[389]

Enriching the JSON with the metadata we have in
the MySQL database
The enrichment and other processing parts of the data pipeline can be done using filter
plugins. We have built a relational database that contains the tables and necessary lookup
data for enriching the incoming JSON requests.

Logstash has a jdbc_streaming filter plugin that can be used to do lookups from any
relational database and enrich the incoming JSON documents. Let's zoom into the filter
plugin section in our Logstash configuration file:

filter {
 jdbc_streaming {
 jdbc_driver_library => "/path/to/mysql-connector-java-5.1.45-bin.jar"
 jdbc_driver_class => "com.mysql.jdbc.Driver"
 jdbc_connection_string => "jdbc:mysql://localhost:3306/sensor_metadata"
 jdbc_user => "root"
 jdbc_password => "<password>"
 statement => "select st.sensor_type as sensorType, l.customer as
customer, l.department as department, l.building_name as buildingName,
l.room as room, l.floor as floor, l.location_on_floor as locationOnFloor,
l.latitude, l.longitude from sensors s inner join sensor_type st on
s.sensor_type_id=st.sensor_type_id inner join location l on
s.location_id=l.location_id where s.sensor_id= :sensor_identifier"
 parameters => { "sensor_identifier" => "sensor_id"}
 target => lookupResult
 }

 mutate {
 rename => {"[lookupResult][0][sensorType]" => "sensorType"}
 rename => {"[lookupResult][0][customer]" => "customer"}
 rename => {"[lookupResult][0][department]" => "department"}
 rename => {"[lookupResult][0][buildingName]" => "buildingName"}
 rename => {"[lookupResult][0][room]" => "room"}
 rename => {"[lookupResult][0][floor]" => "floor"}
 rename => {"[lookupResult][0][locationOnFloor]" => "locationOnFloor"}
 add_field => {
 "location" =>
"%{[lookupResult][0][latitude]},%{[lookupResult][0][longitude]}"
 }
 remove_field => ["lookupResult", "headers", "host"]
 }

}

Building a Sensor Data Analytics Application Chapter 10

[390]

As you will notice, there are two filter plugins used in the file:

jdbc_streaming

mutate

Let's see what each filter plugin is doing.

The jdbc_streaming plugin
We essentially specify the whereabouts of the database that we want to connect to, the
username/password, the JDBC driver .jar file, and the class. We already created the
database in the Setting up the metadata database section.

Download the latest MySQL JDBC Driver, also known as Connector/J, from https:/ /dev.
mysql.com/downloads/ connector/ j/ . At the time of writing this book, the latest version is
5.1.45, which works with MySQL 5.5, 5.6, and 5.7. Download the .tar/.zip file containing
the driver and extract it into your system. The path of this extracted .jar file should be
updated in the jdbc_driver_library parameter.

To summarize, you should review and update the following parameters in the Logstash
configuration to point to your database and driver .jar file:

jdbc_connection_string

jdbc_password

jdbc_driver_library

The statement parameter has the same SQL query that we saw earlier. It looks up the
metadata for the given sensor_id. A successful query will fetch all additional fields for
that sensor_id. The result of the lookup query is stored in a new field, lookupResult, as
specified by the target parameter.

The resulting document, up to this point, should look like this:

{
 "sensor_id": 1,
 "time": 1512113760000,
 "reading": 16.24,
 "lookupResult": [
 {
 "buildingName": "222 Broadway",
 "sensorType": "Temperature",
 "latitude": 40.710936,
 "locationOnFloor": "Desk 102",

https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/

Building a Sensor Data Analytics Application Chapter 10

[391]

 "department": "Engineering",
 "floor": "Floor 1",
 "room": "101",
 "customer": "Linkedin",
 "longitude": -74.0085
 }
],
 "@timestamp": "2019-05-26T05:23:22.618Z",
 "@version": "1",
 "host": "0:0:0:0:0:0:0:1",
 "headers": {
 "remote_user": "sensor_data",
 "http_accept": "*\/*",
 ...
 }
}

As you can see, the jdbc_streaming filter plugin added some fields apart from the
lookupResult field. These fields were added by Logstash and the headers field was
added by the HTTP input plugin.

In the next section, we will use the mutate filter plugin to modify this JSON to the desired
end result that we want in Elasticsearch.

The mutate plugin
As we have seen in the previous section, the output of the jdbc_streaming filter plugin
has some undesired aspects. Our JSON payload needs the following modifications:

Move the looked-up fields that are under lookupResult directly into the JSON
file.
Combine the latitude and longitude fields under lookupResult as a location
field.
Remove the unnecessary fields.

mutate {
 rename => {"[lookupResult][0][sensorType]" => "sensorType"}
 rename => {"[lookupResult][0][customer]" => "customer"}
 rename => {"[lookupResult][0][department]" => "department"}
 rename => {"[lookupResult][0][buildingName]" => "buildingName"}
 rename => {"[lookupResult][0][room]" => "room"}
 rename => {"[lookupResult][0][floor]" => "floor"}
 rename => {"[lookupResult][0][locationOnFloor]" =>
"locationOnFloor"}
 add_field => {

Building a Sensor Data Analytics Application Chapter 10

[392]

 "location" =>
"%{lookupResult[0]latitude},%{lookupResult[0]longitude}"
 }
 remove_field => ["lookupResult", "headers", "host"]
 }

Let's see how the mutate filter plugin achieves these objectives.

Moving the looked-up fields that are under lookupResult directly in JSON
As we have seen, lookupResult is an array with just one element: the element at index 0
in the array. We need to move all the fields under this array element directly under the
JSON payload. This is done field by field using the rename operation.

For example, the following operation renames the existing sensorType field directly under
the JSON payload:

rename => {"[lookupResult][0][sensorType]" => "sensorType"}

We do this for all the looked-up fields that are returned by the SQL query.

Combining the latitude and longitude fields under lookupResult as a
location field
Remember when we defined the index template mapping for our index? We defined
the location field to be of geo_point type. The geo_point type accepts a value that is
formatted as a string with latitude and longitude appended together, separated by a
comma.

This is achieved by using the add_field operation to construct the location field, as
follows:

 add_field => {
 "location" =>
"%{[lookupResult][0][latitude]},%{[lookupResult][0][longitude]}"
 }

By now, we should have a new field called location added to our JSON payload, exactly
as desired. Next, we will remove the undesirable fields.

Building a Sensor Data Analytics Application Chapter 10

[393]

Removing the unnecessary fields
After moving all the elements from the lookupResult field directly in the JSON, we don't
need that field anymore. Similarly, we don't want to store the headers or the host fields
in the Elasticsearch index, so we remove them all at once using the following operation:

remove_field => ["lookupResult", "headers", "host"]

We finally have the JSON payload in the structure that we want in the Elasticsearch index.
Next, let us see how to send it to Elasticsearch.

Store the resulting documents in Elasticsearch
We use the Elasticsearch output plugin that comes with Logstash to send data to
Elasticsearch. The usage is very simple; we just need to have elasticsearch under the
output tag, as follows:

output {
 elasticsearch {
 hosts => ["localhost:9200"]
 index => "sensor_data-%{+YYYY.MM.dd}"
 }
}

We have specified hosts and index to send the data to the right index within the right
cluster. Notice that the index name has %{YYYY.MM.dd}. This calculates the index name to
be used by using the event's current time and formats the time in this format.

Remember that we had defined an index template with the index pattern sensor_data*.
When the first event is sent on May 26, 2019, the output plugin defined here will send the
event to index sensor_data-2019.05.26.

If you want to send events to a secured Elasticsearch cluster as we did when we used X-
Pack in Chapter 8, Elastic X-Pack, you can configure the user and password parameters as
follows:

output {
 elasticsearch {
 hosts => ["localhost:9200"]
 index => "sensor_data-%{+YYYY.MM.dd}"
 user => "elastic"
 password => "elastic"
 }
}

Building a Sensor Data Analytics Application Chapter 10

[394]

This way, we will have one index for every day, where each day's data will be stored
within its index. We had learned the index per time frame in Chapter 9, Running the Elastic
Stack in Production.

Now that we have our Logstash data pipeline ready, let's send some data.

Sending data to Logstash over HTTP
At this point, sensors can start sending their readings to the Logstash data pipeline that we
have created in the previous section. They just need to send the data as follows:

curl -XPOST -u sensor_data:sensor_data --header "Content-Type:
application/json" "http://localhost:8080/" -d
'{"sensor_id":1,"time":1512102540000,"reading":16.24}'

Since we don't have real sensors, we will simulate the data by sending these types of
requests. The simulated data and script that send this data are incorporated in the code
at https://github. com/ pranav- shukla/ learningelasticstack/ tree/ master/ chapter-
10/data.

If you are on Linux or macOS, open the Terminal and change the directory to your
Learning Elasticstack workspace that was checked out from GitHub.

If your machine has a Windows operating system, you will need a Linux-
like shell that supports the curl command and basic BASH (Bourne
Again SHell) commands. As you may already have a GitHub workspace
checked out, you may be using Git for Windows, which has Git BASH. This
can be used to run the script that loads data. If you don't have Git BASH,
please download and install Git for Windows from https:/ /git- scm.com/
download/ win and launch Git BASH to run the commands mentioned in
this section.

Now, go to the chapter-10/data directory and execute load_sensor_data.sh:

$ pwd
/Users/pranavshukla/workspace/learningelasticstack
$ cd chapter-10/data
$ ls
load_sensor_data.sh sensor_data.json
$./load_sensor_data.sh

The load_sensor_data.sh script reads the sensor_data.json line by line and submits
to Logstash using the curl command we just saw.

https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://github.com/pranav-shukla/learningelasticstack/tree/master/chapter-10/data
https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/win

Building a Sensor Data Analytics Application Chapter 10

[395]

We have just played one day's worth of sensor readings and taken every minute from
different sensors across a few geographical locations to Logstash. The Logstash data
pipeline that we built earlier should have enriched and sent the data to our Elasticsearch.

It is time to switch over to Kibana and get some insights from the data.

Visualizing the data in Kibana
We have successfully set up the Logstash data pipeline and loaded some data using the
pipeline into Elasticsearch. It is time to explore the data and build a dashboard that will
help us gain some insights into the data.

Let's start by doing a sanity check to see if the data is loaded correctly. We can do so by
going to Kibana Dev Tools and executing the following query:

GET /sensor_data-*/_search?size=0&track_total_hits=true
{
 "query": {"match_all": {}}
}

This query will search data across all indices matching the sensor_data-* pattern. There
should be a good number of records in the index if the data was indexed correctly.

We will cover the following topics:

Set up an index pattern in Kibana
Build visualizations
Create a dashboard using the visualizations

Let's go through each step.

Setting up an index pattern in Kibana
Before we can start building visualizations, we need to set up the index pattern for all
indexes that we will potentially have for the Sensor Data Analytics application. We need to
do this because our index names are dynamic. We will have one index per day, but we
want to be able to create visualizations and dashboards that work across multiple indices of
sensor data even when there are multiple indices. To do this, click on the Index Patterns
link under the Manage and Administer the Elastic Stack section, as follows:

Building a Sensor Data Analytics Application Chapter 10

[396]

Figure 10.2: Creating an index pattern

In the Index pattern field, type in sensor_data* index pattern, as shown in the following
screenshot, and click Next step:

Figure 10.3: Creating an index pattern

Building a Sensor Data Analytics Application Chapter 10

[397]

On the next screen, in Time Filter Field Name, choose the time field as follows and click
on Create index pattern:

Figure 10.4: Choose Time Filter field name field for the index pattern

We have successfully created the index pattern for our sensor data. Next, we will start
building some visualizations.

Building visualizations
Before we embark on an analytics project, we often already have some questions that we
want to get answered quickly from visualizations. These visualizations, which answer
different questions, may be packaged as a dashboard or may be used as, and when, needed.
We will also start with some questions and try to build visualizations to get answers to
those questions.

We will try to answer the following questions:

How does the average temperature change over time?
How does the average humidity change over time?
How do temperature and humidity change at each location over time?
Can I visualize temperature and humidity over a map?
How are the sensors distributed across departments?

Let's build visualizations to get the answers, starting with the first question.

Building a Sensor Data Analytics Application Chapter 10

[398]

How does the average temperature change over time?
Here, we are just looking for an aggregate statistic. We want to know the average
temperature across all temperature sensors regardless of their location or any other criteria.
As we saw in Chapter 7, Visualizing Data with Kibana, we should go to the Visualize tab to
create new visualizations and click on the button with a + Create a Visualization button.

Choose Line Chart, and then choose the sensor_data* index pattern as the source for the
new visualization. On the next screen, to configure the line chart, follow steps 1 to 5, as
shown in the following screenshot:

Figure 10.5: Creating the visualization for average temperature over time

Click on the time range selection fields near the top-right corner, choose1.
Absolute, and select the date range as December 1, 2017 to December 2, 2017.
We have to do this because our simulated sensor data is from December 1, 2017.

Building a Sensor Data Analytics Application Chapter 10

[399]

Click on Add a filter as shown in Figure-10.5 and choose the Filter as follows:2.
sensorType:Temperature. Click on the Save button. We have two types of
sensors, Temperature and Humidity. In the current visualization that we are
building, we are only interested in the temperature readings. This is why we've
added this filter.
From the Metrics section, choose the values shown in Figure 10.5. We are3.
interested in the average value of the readings. We have also modified the label
to be Average Temperature.
From the Buckets section, choose the Date Histogram aggregation and the time4.
field, with the other options left as they are.
Click on the triangular Apply changes button.5.

The result is the average temperature across all temperature sensors over the selected time
period. This is what we were looking for when we started building this visualization. From
the preceding graph, we can quickly see that on December 1, 2017 at 15:00 IST, the
temperature became unusually high. The time may be different on your machine. We may
want to find out which underlying sensors reported the higher-than-normal temperatures
that caused this peak.

We can click on the Save link at the top bar and give this visualization a name. Let's call it
Average temperature over time. Later, we will use this visualization in a dashboard.

Let's proceed to the next question.

How does the average humidity change over time?
This question is very similar to the previous question. We can reuse the previous
visualization, make a slight modification, and create another copy to answer this question.
We will start by opening the first visualization, which we saved with the name Average
temperature over time.

Execute the steps as follows to update the visualization:

Click on the filter with the sensorType: Temperature label and click on the Edit1.
Filter action.
Change the Filter value from Temperature to Humidity and click on Save.2.

Building a Sensor Data Analytics Application Chapter 10

[400]

Modify Custom Label from Average Temperature to Average Humidity and3.
click on the Apply changes button, as shown in the following screenshot.

Figure 10.6: Creating the visualization for average humidity over time

As you will see, the chart gets updated for the Humidity sensors. You can click on the Save
link at the top navigation bar. You can give a new name to the visualization, such
as Average humidity over time, check the Save as a new visualization box, and click
on Save. This completes our second visualization and answers our second question.

How do temperature and humidity change at each
location over time?
This time, we are looking to get more details than the first two questions. We want to know
how the temperature and humidity vary at each location over time. We will solve it for
temperature.

Building a Sensor Data Analytics Application Chapter 10

[401]

Go to the Visualizations tab in Kibana and create a new Line chart visualization, the same
as before:

Figure 10.7: Creating the visualization for temperature at locations over time

Add a filter for sensorType: Temperature as we did before.1.
Set up the Metrics section exactly same as the first chart that we created, that2.
is Average Temperature over time on the reading field.
Since we are aggregating the data over the time field, we need to choose the Date3.
Histogram aggregation in the Buckets section. Here, we should choose the
time field and leave the aggregation Interval as Auto.
Up to this point, this visualization is the same as Average temperature over4.
time. We don't just want to see the average temperature over time; we want to
see it per locationOnFloor, which is our most fine-grained unit of identifying a
location. This is why we are splitting the series using the Terms aggregation on
the locationOnFloor in this step. We select Order By as metric: Average
Temperature, keep Order as Descend, and Size to be 5 to retain only the top five
locations.

Building a Sensor Data Analytics Application Chapter 10

[402]

We have now built a visualization that shows how the temperature changes for each value
of locationOnFloor field in our data. You can clearly see that there is a spike in O-201 on
December 1, 2017 at 15:00 IST. Because of this spike, we had seen the average temperature
in our first visualization spike at that time. This is an important insight that we have
uncovered. Save this visualization as Temperature at locations over time.

A visualization for humidity can be created by following the same steps but just replacing
Temperature with Humidity.

Can I visualize temperature and humidity over a map?
We can visualize temperature and humidity over the map using the Coordinate Map
visualization. Create a new Coordinate Map visualization by going to the Visualize tab
and clicking the + icon to create a new visualization, and perform the following steps as
shown in the following screenshot:

Figure 10.8: Creating a visualization to view sensor locations over a map

As in previous visualizations, add a filter for the sensorType: Temperature.1.
In the Metrics section, choose Average aggregation on the reading field as done2.
previously.

Building a Sensor Data Analytics Application Chapter 10

[403]

Since this is a Coordinate Map, we need to choose the GeoHash grid aggregation3.
and then select the geo_point field that we have in our data. The location is the
field to aggregate.

As you can see, it helps in visualizing our data on the map. We can immediately see the
average temperature at each site when we hover over a specific location. Focus on the
relevant part of the map and save the visualization with the name Temperature over
locations.

You can create a similar Coordinate Map visualization for the Humidity sensors.

How are the sensors distributed across departments?
What if we want to see how the sensors distributed across different departments?
Remember, we have the department field in our data, which we obtained after enriching
the data using the sensor_id. Pie charts are particularly useful to visualize how data is
distributed across multiple values of a keyword type field, such as department. We will
start by creating a new pie chart visualization.

Follow the steps as shown in the following screenshot:

Figure 10.9: Creating a visualization for locations across departments

Building a Sensor Data Analytics Application Chapter 10

[404]

In the Metrics section, choose Unique Count aggregation and 1.
the locationOnFloor field. You may modify the Custom Label to Number of
locations.
In the Buckets section, we need to choose Terms aggregation on the department2.
field as we want to aggregate the data across different departments.

Click on Apply changes and save this visualization as Locations across departments.
You can also create another similar visualization to visualize locations across different
buildings. Let's call that visualization Locations across buildings. This will help us
see how many locations are being monitored in each building.

Next, we will create a dashboard to bring together all the visualizations we have built.

Creating a dashboard
A dashboard lets you organize multiple visualizations together, save them, and share them
with other people. The ability to look at multiple visualizations has its own benefits. You
can filter the data using some criteria and all visualizations will show the data filtered by
the same criteria. This ability lets you uncover some powerful insights. It can also answer
more complex questions.

Let us build a dashboard from the visualizations that we have created so far. Please click on
the Dashboard tab from the left-hand-side navigation bar in Kibana. Click on the + Create
new dashboard button to create a new dashboard.

Click on the Add link to add visualizations to your newly created dashboard. As you click,
you will see all the visualizations we have built in a dropdown selection. You can add all
the visualizations one by one and drag/resize to create a dashboard that suits your
requirements.

Building a Sensor Data Analytics Application Chapter 10

[405]

Let us see what a dashboard may look like for the application that we are building:

Figure 10.10: Dashboard for sensor data analytics application

With the dashboard, you can add filters by clicking on the Add filter link near the top-left
corner of the dashboard. The selected filter will be applied to all the charts.

The visualizations are interactive; for example, clicking on one of the pies of the donut
charts will apply that filter globally. Let's see how this can be helpful.

When you click on the pie for 222 Broadway building in the donut chart at the bottom-right
corner, you will see the filter for buildingName: "222 Broadway" added to the filters.
This lets you see all of the data from the perspective of all the sensors in that building:

Building a Sensor Data Analytics Application Chapter 10

[406]

Figure 10.11: Interacting with the visualizations in a dashboard

Let us delete that filter by hovering over the buildingName: "222 Broadway" filter by
clicking on the trash icon. Next, we will try to interact with one of the line charts, that is,
the Temperature at locations over time visualization.

As we observed earlier, there was a spike on December 1, 2017 at 15:00 IST. It is possible to
zoom in to a particular time period by clicking, dragging, and drawing a rectangle around
the time interval that we want to zoom in to within any line chart. In other words, just draw
a rectangle around the spike, dragging your mouse while it is clicked. The result is that the
time filter applied on the entire dashboard (which is displayed in the top-right corner) is
changed.

Building a Sensor Data Analytics Application Chapter 10

[407]

Let's see whether we get any new insights from this simple operation to focus on that time
period:

Figure 10.12: Zooming into a time interval from a line chart

We uncover the following facts:

The temperature sensor at location O-201 (pink legend in fig-10.12) is steadily1.
rising around this time.
In the Coordinate Map visualization, you can see that the highlighted circle is2.
red, compared to the other locations, which are yellow. This highlights that the
location has an abnormally high temperature compared to the other locations.

Interacting with charts and applying different filters can provide powerful insights like the
ones we just saw.

This concludes our application and demonstration of what we can do using the Elastic
Stack components.

Building a Sensor Data Analytics Application Chapter 10

[408]

Summary
In this chapter, we built a sensor data analytics application that has a wide variety of
applications, as it is related to the emerging field of IoT. We understood the problem
domain and the data model, including metadata related to sensors. We wanted to build an
analytics application using only the components of the Elastic Stack, without using any
other tools and programming languages, to obtain a powerful tool that can handle large
volumes of data.

We started at the very core by designing the data model for Elasticsearch. Then, we
designed a data pipeline that is secured and can accept data over the internet using HTTP.
We enriched the incoming data using the metadata that we had in a relational database and
stored in Elasticsearch. We sent some test data over HTTP just like those that real sensors
send over the internet. We built some meaningful visualizations that will give answers to
some typical questions. We then put together all visualizations in a powerful, interactive
dashboard.

In Chapter 11, Monitoring Server Infrastructure, we will build another real-world application
in which the Elastic Stack excels.

11
Monitoring Server Infrastructure

In the previous chapter, we covered how to effectively run the Elastic Stack in a production
environment, and the best practices to follow when running the Elastic Stack in production.

In this chapter, we will be covering how to use the Beats platform to monitor server
infrastructure. We will learn about Metricbeat in detail, a Beat that helps IT administrators
and application support teams monitor their applications and server infrastructure and
respond to infrastructure outages in a timely manner.

In this chapter, we will cover the following topics:

Metricbeat
Configuring Metricbeat
Capturing system metrics
Deployment architecture

Metricbeat
Metricbeat is a lightweight shipper that periodically collects metrics from the operating
system and from services running on the server. It helps you monitor servers by collecting
metrics from the system and services such as Apache, MongoDB, Redis, and so on, that are
running on the server. Metricbeat can push collected metrics directly into Elasticsearch or
send them to Logstash, Redis, or Kafka. To monitor services, Metricbeat can be installed on
the edge server where services are running, but it also provides the ability to collect metrics
from remote servers as well. However, it's recommended that you have it installed on the
edge servers where the services are running.

Monitoring Server Infrastructure Chapter 11

[410]

Downloading and installing Metricbeat
Navigate to https:/ /www. elastic. co/ downloads/ beats/ metricbeat- oss and, depending
on your operating system, download the ZIP/TAR file, as shown in the following
screenshot. The installation of Metricbeat is simple and straightforward as follows:

https://www.elastic.co/downloads/beats/metricbeat-oss
https://www.elastic.co/downloads/beats/metricbeat-oss
https://www.elastic.co/downloads/beats/metricbeat-oss
https://www.elastic.co/downloads/beats/metricbeat-oss
https://www.elastic.co/downloads/beats/metricbeat-oss
https://www.elastic.co/downloads/beats/metricbeat-oss
https://www.elastic.co/downloads/beats/metricbeat-oss
https://www.elastic.co/downloads/beats/metricbeat-oss
https://www.elastic.co/downloads/beats/metricbeat-oss
https://www.elastic.co/downloads/beats/metricbeat-oss
https://www.elastic.co/downloads/beats/metricbeat-oss
https://www.elastic.co/downloads/beats/metricbeat-oss
https://www.elastic.co/downloads/beats/metricbeat-oss
https://www.elastic.co/downloads/beats/metricbeat-oss
https://www.elastic.co/downloads/beats/metricbeat-oss
https://www.elastic.co/downloads/beats/metricbeat-oss
https://www.elastic.co/downloads/beats/metricbeat-oss

Monitoring Server Infrastructure Chapter 11

[411]

For this tutorial, we'll use the Apache 2.0 version of Metricbeat. Beats
version 7.0.x is compatible with Elasticsearch 6.7.x and 7.0.x, and Logstash
6.7.x and 7.0.x. The compatibility matrix can be found at https:/ /www.
elastic. co/ support/ matrix#matrix_ compatibility. When you come
across Elasticsearch and Logstash examples, or scenarios using Beats in
this chapter, make sure that you have compatible versions of Elasticsearch
and Logstash installed.

Installing on Windows
Unzip the downloaded file and navigate to the extracted location, as follows:

E:>cd E:\metricbeat-7.0.0-windows-x86_64

To install Metricbeat as a service on Windows, perform the following steps:

Open Windows PowerShell as an administrator and navigate to the extracted1.
location.
 Run the following commands to install Metricbeat as a Windows service from2.
the PowerShell prompt as follows:

PS >cd E:\metricbeat-7.0.0-windows-x86_64
PS >E:\metricbeat-7.0.0-windows-x86_64>.\install-service-
metricbeat.ps1

You need to set the execution policy for the current session to allow the script to run if
script execution is disabled. For example, PowerShell.exe -ExecutionPolicy
UnRestricted -File .\install-service-metricbeat.ps1.

Installing on Linux
Unzip the tar.gz package and navigate to the newly created folder, as shown in the
following code snippet:

$>tar -xzf metricbeat-7.0.0-linux-x86_64.tar.gz
$>cd metricbeat

https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility
https://www.elastic.co/support/matrix#matrix_compatibility

Monitoring Server Infrastructure Chapter 11

[412]

To install using dep/rpm, execute the appropriate commands in the
Terminal as follows:
deb:
curl -L -O
https://artifacts.elastic.co/downloads/beats/metricbeat/m
etricbeat-7.0.0-amd64.deb
sudo dpkg -i metricbeat-7.0.0-amd64.deb

rpm:
curl -L -O
https://artifacts.elastic.co/downloads/beats/metricbeat/m
etricbeat-7.0.0-x86_64.rpm
sudo rpm -vi metricbeat-7.0.0-x86_64.rpm

Metricbeat will be installed in the /usr/share/metricbeat directory.
The configuration files will be present in /etc/metricbeat. The init
script will be present in /etc/init.d/metricbeat. The log files will be
present within the /var/log/metricbeat directory.

Architecture
Metricbeat is made up of two components: one is called modules and the other is called
metricsets. A Metricbeat module defines the basic logic of collecting data from a specific
service, such as MongoDB, Apache, and so on. The module specifies details about the
service, including how to connect, how often to collect metrics, and which metrics to collect.

Each module has one or more metricsets. A metricset is the component that collects a list of
related metrics from services or the operating system using a single request. It structures
event data and ships it to the configured outputs, such as Elasticsearch or Logstash.

Metricbeat collects metrics periodically, based on the interval specified in the
metricbeat.yml configuration file, and publishes the event to the configured output
asynchronously. Since the events are published asynchronously, just like in Filebeat, which
guarantees delivery at least once, if the configured output is not available, the events will
be lost.

Monitoring Server Infrastructure Chapter 11

[413]

For example, the MongoDB module provides the status and dbstats metricsets, which
collect information and statistics by parsing the returned response obtained from running
the db.serverStatus() and db.stats() commands on MongoDB, as shown in the
following diagram:

The key benefits of Metricbeat are as follows:

Metricbeat sends error events, too: When the service is not reachable or is down,
Metricbeat will still send events that contain full error messages obtained when
they are fetching information from the host systems. This is beneficial for
troubleshooting or identifying the reason behind the outage of the service.
Combines multiple related metrics into a single event: Metricbeat fetches all
related metrics from the host system, making a single request rather than making
multiple requests for fetching each metric one by one, thus resulting in less load
on the services/host systems. Fetched metrics are combined into a single event
and sent to the configured output.
Sends metadata information: Metrics sent by Metricbeat contain both numbers
as well as strings for contacting the status information. It also ships basic
metadata information about each metric as part of each event. This is helpful for
mapping appropriate data types during storage and helps with
querying/filtering data, identifying events based on metadata information, and
so on.
Sends raw data as it is: Metricbeat sends obtained raw data as-is without
performing any processing or any aggregation operations on it, thus reducing its
complexity.

Monitoring Server Infrastructure Chapter 11

[414]

Event structure
Metricbeat sends two types of event:

Regular events containing the fetched metrics
Error events when the service is down/unreachable

Irrespective of the type of event, all events have the same basic structure and contain the
following fields as a minimum, irrespective of the type of module that's enabled:

@timestamp: Time when the event was captured
host.hostname: Hostname of the server on which Beat is running
host.os: Operating system details of the server where Beat is running
agent.type: Name given to Beat
agent.version: The Beat version
event.module: Name of the module that the data is from
event.dataset: Name of the metricset that the data is from

In the case of error events, an error field such as error.message, containing the error
message, code, and type, will be appended to the event.

An example of a regular event is as follows:

{"@timestamp" : "2019-04-22T12:40:16.608Z",
"service" : {
 "type" : "system"
},
"system" : {
 "uptime" : {
 "duration" : {
 "ms" : 830231705
 }
 }
},
"event" : {
 "module" : "system",
 "duration" : 221012700,
 "dataset" : "system.uptime"
},
"metricset" : {
 "name" : "uptime"
},
"agent" : {
 "type" : "metricbeat",

Monitoring Server Infrastructure Chapter 11

[415]

 "ephemeral_id" : "1956888d-7da0-469f-9a38-ab8b9ad52e07",
 "hostname" : "madsh01-I21350",
 "id" : "5b28d885-1389-4e32-a3a9-3c5e8f9063b0",
 "version" : "7.0.0"
},
"ecs" : {
 "version" : "1.0.0"
},
"host" : {
 "name" : "madsh01-I21350",
 "os" : {
 "kernel" : "6.1.7601.24408 (win7sp1_ldr_escrow.190320-1700)",
 "build" : "7601.24411",
 "platform" : "windows",
 "version" : "6.1",
 "family" : "windows",
 "name" : "Windows 7 Enterprise"
 },
 "id" : "254667db-4667-46f9-8cf5-0d52ccf2beb9",
 "hostname" : "madsh01-I21350",
 "architecture" : "x86_64"
}
}

An example of an error event when mongodb is not reachable is as follows:

{
 "@timestamp": "2019-04-02T11:53:08.056Z",
 "metricset": {
 "host": "localhost:27017",
 "rtt": 1003057,
 "module": "mongodb",
 "name": "status"
 },
 "error": {
 "message": "no reachable servers"
 },
 "mongodb": {
 "status": {}
}

Along with the minimum fields (the basic structure of the event) that Metricbeat ships with,
it ships fields related to the modules that are enabled. The complete list of fields it ships
with per module can be obtained at https:/ /www. elastic. co/ guide/ en/ beats/
metricbeat/current/ exported- fields. html.

https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields.html

Monitoring Server Infrastructure Chapter 11

[416]

Configuring Metricbeat
The configurations related to Metricbeat are stored in a configuration file named
metricbeat.yml, which uses YAML syntax.

The metricbeat.yml file contains the following:

Module configuration
General settings
Output configuration
Processor configuration
Path configuration
Dashboard configuration
Logging configuration

Let's explore some of these sections.

The location of the metricbeat.yml file will be present in the installation
directory if .zip or .tar files are used for installation. If .dep or .rpm
files are used for installation, then it will be present in the
/etc/metricbeat location.

Module configuration
Metricbeat comes bundled with various modules to collect metrics from the system and
applications, such as Apache, MongoDB, Redis, MySQL, and so on.

Metricbeat provides two ways of enabling modules and metricsets as follows:

Enabling module configs in the modules.d directory
Enabling module configs in the metricbeat.yml file

Monitoring Server Infrastructure Chapter 11

[417]

Enabling module configs in the modules.d directory
The modules.d directory contains default configurations for all the modules that are
available in Metricbeat. The configuration that's specific to a module is stored in a
.yml file, with the name of the file being the name of the module. For example, the
configuration related to the MySQL module will be stored in the mysql.yml file. By
default, except for the system module, all other modules are disabled. To list the modules
that are available in Metricbeat, execute the following command:

Windows:
E:\metricbeat-7.0.0-windows-x86_64>metricbeat.exe modules list

Linux:
[locationOfMetricBeat]$./metricbeat modules list

The modules list command displays all the available modules and also lists which
modules are currently enabled/disabled.

If a module is disabled, then in the modules.d directory, the
configuration related to the module will be stored with the .disabled
extension.

Since each module comes with default configurations, make the appropriate changes in the
module configuration file.

The basic configuration for the mongodb module will look as follows:

- module: mongodb
 metricsets: ["dbstats", "status"]
 period: 10s
 hosts: ["localhost:27017"]
 username: user
 password: pass

To enable it, execute the modules enable command, passing one or more module names.
For example:

Windows:
E:\metricbeat-7.0.0-windows-x86_64>metricbeat.exe modules enable redis
mongodb

Linux:
[locationOfMetricBeat]$./metricbeat modules enable redis mongodb

Monitoring Server Infrastructure Chapter 11

[418]

Similar to disabling modules, execute the modules disable command, passing one or
more module names to it. For example:

Windows:
E:\metricbeat-7.0.0-windows-x86_64>metricbeat.exe modules disable redis
mongodb

Linux:
[locationOfMetricBeat]$./metricbeat modules disable redis mongodb

To enable dynamic config reloading, set reload.enabled to true and
specify a frequency with which to look for config file changes. Set the
reload.period parameter under the metricbeat.config.modules
property.
For example:

#metricbeat.yml
metricbeat.config.modules:
path: ${path.config}/modules.d/*.yml
reload.enabled: true
reload.period: 20s

Enabling module configs in the metricbeat.yml file
If you're used to using earlier versions of Metricbeat, you can enable the appropriate
modules and metricsets in the metricbeat.yml file directly by adding entries to the
metricbeat.modules list. Each entry in the list begins with a dash (-) and is followed by
the settings for that module. For example:

metricbeat.modules:
#------------------ Memcached Module -----------------------------
- module: memcached
 metricsets: ["stats"]
 period: 10s
 hosts: ["localhost:11211"]

#------------------- MongoDB Module ------------------------------
- module: mongodb
 metricsets: ["dbstats", "status"]
 period: 5s

Monitoring Server Infrastructure Chapter 11

[419]

It is possible to specify a module multiple times and specify a different
period one or more metricsets should be used for. For example:

#------- Couchbase Module -----------------------------
- module: couchbase
metricsets: ["bucket"]
period: 15s
hosts: ["localhost:8091"]

- module: couchbase
metricsets: ["cluster", "node"]
period: 30s
hosts: ["localhost:8091"]

General settings
This section contains configuration options and some general settings to control the
behavior of Metricbeat.

Some of these configuration options/settings are as follows:

name: The name of the shipper that publishes the network data. By default, the
hostname is used for this field, as follows:

name: "dc1-host1"

tags: A list of tags that will be included in the tags field of every event
Metricbeat ships. Tags make it easy to group servers by different logical
properties and are useful when filtering events in Kibana and Logstash, as
follows:

tags: ["staging", "web-tier","dc1"]

max_procs: The maximum number of CPUs that can be executing
simultaneously. The default is the number of logical CPUs available in the
system:

max_procs: 2

Monitoring Server Infrastructure Chapter 11

[420]

Output configuration
This section is all about configuring outputs where the events need to be shipped. Events
can be sent to single or multiple outputs simultaneously. The allowed outputs are
Elasticsearch, Logstash, Kafka, Redis, file, and console. Some outputs that can be
configured are as follows:

elasticsearch: This is used to send events directly to Elasticsearch. A sample
Elasticsearch output configuration is shown in the following code snippet:

output.elasticsearch:
 enabled: true
 hosts: ["localhost:9200"]

Using the enabled setting, you can enable or disable the output. hosts accepts
one or more Elasticsearch node/servers. Multiple hosts can be defined for failover
purposes. When multiple hosts are configured, the events are distributed to these
nodes in a round-robin order. If Elasticsearch is secure, then credentials can be
passed using the username and password settings, as follows:

output.elasticsearch:
 enabled: true
 hosts: ["localhost:9200"]
 username: "elasticuser"
 password: "password"

To ship events to the Elasticsearch ingest node pipeline so that they can be
preprocessed before being stored in Elasticsearch, pipeline information can be
provided using the pipleline setting, as follows:

output.elasticsearch:
 enabled: true
 hosts: ["localhost:9200"]
 pipeline: "ngnix_log_pipeline"

The default index the data gets written to is in the metricbeat-
%{[beat.version]}-%{+yyyy.MM.dd} format. This will create a new index
every day. For example, if today is April 02, 2019, then all the events are placed in
the metricbeat-7.0.0-2019-04-02 index. You can override the index name or
the pattern using the index setting. In the following configuration snippet, a new
index is created for every month, as follows:

output.elasticsearch:
 hosts: ["http://localhost:9200"]
 index: "metricbeat-%{[beat.version]}-%{+yyyy.MM}"

Monitoring Server Infrastructure Chapter 11

[421]

Using the indices setting, you can conditionally place the events in the
appropriate index that matches the specified condition. In the following code
snippet, if the message contains the DEBUG string, it will be placed in the debug-
%{+yyyy.MM.dd} index. If the message contains the ERR string, it will be placed
in the error-%{+yyyy.MM.dd} index. If the message contains neither of these
strings, then those events will be pushed to the logs-%{+yyyy.MM.dd} index, as
specified in the index parameter, as follows:

output.elasticsearch:
 hosts: ["http://localhost:9200"]
 index: "logs-%{+yyyy.MM.dd}"
 indices:
 - index: "debug-%{+yyyy.MM.dd}"
 when.contains:
 message: "DEBUG"
 - index: "error-%{+yyyy.MM.dd}"
 when.contains:
 message: "ERR"

When the index parameter is overridden, disable templates and
dashboards by adding the following settings:
setup.dashboards.enabled: false
setup.template.enabled: false

Alternatively, provide the values for setup.template.name and
setup.template.pattern in the metricbeat.yml configuration file;
otherwise, Metricbeat will fail to run.

logstash: This is used to send events to Logstash.

To use Logstash as output, Logstash needs to be configured with the Beats
input plugin so it can receive incoming Beats events.

A sample Logstash output configuration is as follows:

output.logstash:
 enabled: true
 hosts: ["localhost:5044"]

Monitoring Server Infrastructure Chapter 11

[422]

Using the enabled setting, you can enable or disable the output. hosts accepts
one or more Logstash servers. Multiple hosts can be defined for failover purposes.
If the configured host is unresponsive, then the event will be sent to one of the
other configured hosts. When multiple hosts are configured, events are
distributed in a random order. To enable load-balancing events across the
Logstash hosts, use the loadbalance flag, set to true, as follows:

output.logstash:
 hosts: ["localhost:5045", "localhost:5046"]
 loadbalance: true

console: This is used to send events to stdout. These events are written in
JSON format. This is useful during debugging or testing.

A sample console configuration is as follows:

output.console:
 enabled: true
 pretty: true

Logging
This section contains the options for configuring the Metricbeat logging output. The
logging system can write logs to syslog or rotate log files. If logging is not explicitly
configured, file output is used on Windows systems, and syslog output is used on Linux
and OS X.

A sample configuration is as follows:

logging.level: debug
logging.to_files: true
logging.files:
 path: C:\logs\metricbeat
 name: metricbeat.log
 keepfiles: 10

Some of the available configuration options are as follows:

level: To specify the logging level.
to_files: To write all logging output to files. The files are subject to file
rotation. This is the default value.

Monitoring Server Infrastructure Chapter 11

[423]

to_syslog: To write logging output to syslogs if this setting is set to true.
files.path, files.name, and files.keepfiles: These are used to specify
the location of the file, the name of the file, and the number of recently rotated
log files to keep on the disk.

Capturing system metrics
In order to monitor and capture metrics related to servers, Metricbeat provides the system
module. The system module provides the following metricsets to capture server metrics, as
follows:

core: This metricset provides usage statistics for each CPU core.
cpu: This metricset provides CPU statistics.
diskio: This metricset provides disk IO metrics collected from the operating
system. One event is created for each disk mounted on the system.
filesystem: This metricset provides filesystem statistics. For each file system,
one event is created.
process: This metricset provides process statistics. One event is created for each
process.
process_summary: This metricset collects high-level statistics about the running
processes.
fsstat: This metricset provides overall filesystem statistics.
load: This metricset provides load statistics.
memory: This metricset provides memory statistics.
network: This metricset provides network IO metrics collected from the
operating system. One event is created for each network interface.
socket: This metricset reports an event for each new TCP socket that it sees. This
metricset is available on Linux only and requires kernel 2.6.14 or newer.

Some of these metricsets provide configuration options for fine-tuning returned metrics.
For example, the cpu metricset provides a cpu.metrics configuration to control the CPU
metrics that are reported. However, metricsets such as memory and diskio don't provide
any configuration options. Unlike other modules, which can be monitored from other
servers by configuring the hosts appropriately (not a highly recommended approach),
system modules are local to the server and can collect the metrics of underlying hosts.

Monitoring Server Infrastructure Chapter 11

[424]

A complete list of fields per metricset that are exported by the system
module can be found at https:/ /www. elastic. co/guide/ en/ beats/
metricbeat/ current/ exported- fields- system. html.

Running Metricbeat with the system module
Let's make use of Metricbeat and capture system metrics.

Make sure that Kibana 7.0 and Elasticsearch 7.0 are running:

Replace the content of metricbeat.yml with the following configuration and1.
save the file:

############### Metricbeat Configuration Example ################
#============== Modules configuration =========================

metricbeat.config.modules:
 # Glob pattern for configuration loading
 path: ${path.config}/modules.d/*.yml

 # Set to true to enable config reloading
 reload.enabled: false

 # Period on which files under path should be checked for changes
 #reload.period: 10s

#=========== Elasticsearch template setting =================

setup.template.settings:
 index.number_of_shards: 1
 index.codec: best_compression
 #_source.enabled: false

#=================== General
Settings===============================
name: metricbeat_inst1

tags: ["system-metrics", "localhost"]

fields:
 env: test-env

#============================== Dashboards
===========================
setup.dashboards.enabled: true

https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-system.html

Monitoring Server Infrastructure Chapter 11

[425]

#============================== Kibana Settings
===========================
setup.kibana:
 host: "localhost:5601"
 #username: "elastic"
 #password: "changeme"

#-------------------------- Elasticsearch output Settings ---------

output.elasticsearch:
 # Array of hosts to connect to.
 hosts: ["localhost:9200"]
 #username: "elastic"
 #password: "changeme"

The setup.dashboards.enabled: true setting loads sample
dashboards to the Kibana index during startup, which are loaded via the
Kibana API. If Elasticsearch and Kibana are secured, make sure that you
uncomment the username and password parameters and set the
appropriate values.

By default, the system module is enabled. Make sure that it is enabled by2.
executing the following command:

Windows:
E:\metricbeat-7.0.0-windows-x86_64>metricbeat.exe modules enable
system
Module system is already enabled

Linux:
[locationOfMetricBeat]$./metricbeat modules enable system
Module system is already enabled

You can verify the metricsets that are enabled for the system module by opening3.
the system.yml file, which can be found under the modules.d directory, as
follows:

#system.yml
- module: system
 period: 10s
 metricsets:
 - cpu
 #- load
 - memory
 - network
 - process
 - process_summary

Monitoring Server Infrastructure Chapter 11

[426]

 #- socket_summary
 #- core
 #- diskio
 #- socket
 processes: ['.*']
 process.include_top_n:
 by_cpu: 5 # include top 5 processes by CPU
 by_memory: 5 # include top 5 processes by memory

- module: system
 period: 1m
 metricsets:
 - filesystem
 - fsstat
 processors:
 - drop_event.when.regexp:
 system.filesystem.mount_point:
'^/(sys|cgroup|proc|dev|etc|host|lib)($|/)'

As seen in the preceding code, the configuration module is defined twice, with
different periods to use for a set of metricsets. The cpu, memory, network,
process, process_summary, filesystem, and fsstats metricsets are enabled.

Start Metricbeat by executing the following command:4.

Windows:
E:\metricbeat-7.0.0-windows-x86_64>metricbeat.exe -e

Linux:
[locationOfMetricBeat]$./metricbeat -e

Once Metricbeat is started, it loads sample Kibana dashboards and starts shipping
metrics to Elasticsearch. To validate this, execute the following command:

curl -X GET 'http://localhost:9200/_cat/indices?v=&format=json'

Sample Response:
[
 {
 "health": "yellow",
 "status": "open",
 "index": "metricbeat-7.0.0-2019.04.02",
 "uuid": "w2WoP2IhQ9eG7vSU_HmgnA",
 "pri": "1",
 "rep": "1",
 "docs.count": "29",
 "docs.deleted": "0",

Monitoring Server Infrastructure Chapter 11

[427]

 "store.size": "45.3kb",
 "pri.store.size": "45.3kb"
 },
 {
 "health": "yellow",
 "status": "open",
 "index": ".kibana",
 "uuid": "sSzeYu-YTtWR8vr2nzKrbg",
 "pri": "1",
 "rep": "1",
 "docs.count": "108",
 "docs.deleted": "59",
 "store.size": "289.3kb",
 "pri.store.size": "289.3kb"
 }
]

curl -X GET 'http://localhost:9200/_cat/indices?v'

health status index uuid pri rep docs.count docs.deleted store.size
pri.store.size
yellow open metricbeat-7.0.0-2019.04.02 w2WoP2IhQ9eG7vSU_HmgnA 1 1
29 0 45.3kb 45.3kb
yellow open .kibana sSzeYu-YTtWR8vr2nzKrbg 1 1 108 59 289.3kb
289.3kb

Specifying aliases
Elasticsearch allows the user to create an alias—a virtual index name that can be used to
refer to an index or multiple indices. The Elasticsearch index API aliases an index with a
name. This enables all the APIs to automatically convert their alias names into the actual
index name.

Say, for example, that we want to query against a set of similar indexes. Rather than
specifying each of the index names in the query, we can make use of aliases and execute the
query against the alias. The alias will internally point to all the indexes and perform a query
against them. This will be highly beneficial if we added certain indexes dynamically on a
regular basis, so that one application/user performing the query need not worry about
including those indexes in the query as long as the index is updated with the alias (which
can be done manually by an admin or specified during index creation).

Monitoring Server Infrastructure Chapter 11

[428]

Let's say the IT admin creates an alias pointing to all the indexes containing the metrics for
a specific month. For example, as shown in the following code snippet, an alias called
april_04_metrics is created for all the indexes of the metricbeat-7.0.0-2019.04.*
pattern, that is, those Metricbeats indexes that are created on a daily basis in the month of
April 2019:

curl -X POST http://localhost:9200/_aliases -H 'content-type:
application/json' -d '
{
 "actions":
 [
 {"add":{ "index" : "metricbeat-7.0.0-2019.04.*", "alias":
"april_04_metrics"} }
]
}'

Now, using the april_04_metrics alias name, the query can be executed against all the
indexes of the metricbeat-7.0.0-2019.04.* pattern as follows:

curl -X GET http://localhost:9200/april_04_metrics/_search

In the following example, the sales alias is created against the it_sales and
retail_sales indexes. In the future, if a new sales index gets created, then that index can
also point to the sales index so that the end user/application can always make use of the
sales endpoint to query all sales data, as follows:

curl -X POST http://localhost:9200/_aliases -d '{
"actions" : [
 { "add" : { "index" : "it_sales", "alias" : "sales" } },
 { "add" : { "index" : "retail_sales", "alias" : "sales" } }
] }

To remove an alias from an index, use the remove action of the aliases API, as follows:

curl -X POST http://localhost:9200/_aliases -d '
{ "actions" : [{ "remove" : { "index" : "retail_sales", "alias" : "sales"
} }] }

Monitoring Server Infrastructure Chapter 11

[429]

Visualizing system metrics using Kibana
To visualize the system metrics using Kibana, execute the following steps:

Navigate to http://localhost:5601 and open up Kibana.1.
Click on the Dashboard link found in the left navigation menu and select either2.
[Metricbeat System] Overview ECS or [Metricbeat System] Host Overview
ECS from the dashboard, as shown in the following screenshot:

[Metricbeat System] Overview Dashboard ECS: This dashboard provides an overview of
all the systems that are being monitored. Since we are monitoring only a single host, we see
that the Number of hosts is 1, as shown in the following screenshot:

Monitoring Server Infrastructure Chapter 11

[430]

[Metricbeat Host] Overview Dashboard: This dashboard is useful for finding the detailed
metrics of individual systems/hosts. In order to filter metrics based on a particular host,
enter the search/filter criterion in the search/query bar. In the following screenshot, the filter
criterion is agent.name:metricbeat_inst1. Any attribute that uniquely identifies a
system/host can be used; for example, you can filter based on host.hostname, as follows:

Since the diskio and load metricsets were disabled in the system module configuration,
we will see empty visualizations for the Disk IO and System Load visualizations, as shown
in the following screenshot:

Monitoring Server Infrastructure Chapter 11

[431]

To see the dashboard refresh in real time, in the top right corner select the time and enter
the appropriate refresh interval. Then, click the Start button as shown in the following
screenshot:

Monitoring Server Infrastructure Chapter 11

[432]

To view the dashboard in full-screen mode, click the Full screen button on
the top left navigation bar. This hides the browser and the top navigation
bar. To exit full-screen mode, hover over and click the Kibana button on
the lower left-hand side of the page, or simply press the Esc key.

Refer to Chapter 7, Visualizing Data with Kibana, to learn how to
effectively use Kibana and the different sections of Kibana to gain insights
into your data.

Deployment architecture
The following diagram depicts the commonly used Elastic Stack deployment architecture:

This diagram depicts three possible architectures:

Ship the operation metrics directly to Elasticsearch: As seen in the preceding
diagram, you will install various types of Beats, such as Metricbeat, Filebeat,
Packetbeat, and so on, on the edge servers from which you would like to ship the
operation metrics/logs. If no further processing is required, then the generated
events can be shipped directly to the Elasticsearch cluster. Once the data is
present in Elasticsearch, it can then be visualized/analyzed using Kibana. In this
architecture, the flow of events would be Beats → Elasticsearch → Kibana.

Monitoring Server Infrastructure Chapter 11

[433]

Ship the operation metrics to Logstash: The operation metrics/logs that are
captured by Beats and installed on edge servers is sent to Logstash for further
processing, such as parsing the logs or enriching log events. Then, the
parsed/enriched events are pushed to Elasticsearch. To increase the processing
capacity, you can scale up Logstash instances, for example, by configuring a set
of Beats to send data to Logstash instance 1 and configuring another set of Beats
to send data to Logstash instance 2, and so on. In this architecture, the flow of
events would be Beats → Logstash → Elasticsearch → Kibana.
Ship the operation metrics to a resilient queue: If the generated events are at a
very high rate and if Logstash is unable to cope with the load or to prevent loss
of data/events when Logstash is down, you can go for resilient queues such as
Apache Kafka so that events are queued. Then, Logstash can process them at its
own speed, thus avoiding the loss of operation metrics/logs captured by Beats. In
this architecture, the flow of events would be Beats → Kafka → Logstash →
Elasticsearch → Kibana.

Starting with Logstash 5.x, you can make use of the persistent queue
settings of Logstash and make use of it as queue, too. However, it doesn't
offer a high degree of resilience like Kafka.

In the aforementioned architectures, you can easily scale up/scale down instances of
Elasticsearch, Logstash, and Kibana based on the use case at hand.

Summary
In this chapter, we covered another Beat library called Metricbeat in detail. We covered
how to install and configure Metricbeat so that it can send operational metrics to
Elasticsearch. We also covered the various deployment architectures for building real-time
monitoring solutions using Elasticsearch Stack in order to monitor servers and applications.
This helps IT administrators and application support personnel gain insights into the
behavior of applications and servers, and allows them to respond in a timely manner in the
event of an infrastructure outage.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Elasticsearch 7.0 Cookbook - Fourth Edition
Alberto Paro

ISBN: 9781789956504

Create an efficient architecture with Elasticsearch
Optimize search results by executing analytics aggregations
Build complex queries by managing indices and documents
Monitor the performance of your cluster and nodes
Design advanced mapping to take full control of index steps
Integrate Elasticsearch in Java, Scala, Python, and big data applications
Install Kibana to monitor clusters and extend it for plugins

https://www2.packtpub.com/big-data-and-business-intelligence/elasticsearch-70-cookbook-fourth-edition

Other Books You May Enjoy

[435]

Machine Learning with the Elastic Stack
Bahaaldine Azarmi, Rich Collier

ISBN: 9781788477543

Install the Elastic Stack to use machine learning features
Understand how Elastic machine learning is used to detect a variety of anomaly
types
Apply effective anomaly detection to IT operations and security analytics
Leverage the output of Elastic machine learning in custom views, dashboards,
and proactive alerting
Combine your created jobs to correlate anomalies of different layers of
infrastructure
Learn various tips and tricks to get the most out of Elastic machine learning

https://www.packtpub.com/big-data-and-business-intelligence/machine-learning-elastic-stack

Other Books You May Enjoy

[436]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
aggregations
 basics 108, 109
 bucket aggregations 110, 258
 matrix aggregations 111
 metric aggregations 110, 260
 pipeline aggregations 111
 types 258
alert
 Advanced Watch 344
 creating 342
 Threshold Alert 343
alerting
 working 341
aliases
 specifying 427
altering 335
Amazon Web Services (AWS) 18, 351
analysis
 data, preparing for 111
analyzer 60
analyzers, components
 character filters 61
 token filters 64
 tokenizer 62
Apache Nutch 21
Auditbeat 199
autocomplete
 implementing, with custom analyzer 70, 71, 72,

74

average aggregation 119

B
backup 365
BASH (Bourne Again SHell) 394
Beats input plugin 170, 172

Beats, by Elastic.co
 about 198
 Auditbeat 199
 Filebeat 198
 Functionbeat 200
 Heartbeat 199
 Journalbeat 199
 Metricbeat 198
 Packetbeat 198
 Winlogbeat 199
Beats
 about 15, 197
 community Beats 200
 versus Logstash 201
bool query
 about 94
 AND condition, combining with OR condition 96
 NOT conditions, adding 97
 OR conditions, combining 95
BrowserScope
 reference 196
bucket aggregations
 about 110, 124, 258
 bucketing on numeric data 130
 bucketing on string data 125
 date histogram 259
 Date Histogram aggregation 141
 filter aggregation 139
 filters 259
 filters aggregation 140
 GeoHash Grid 260
 histogram 259
 histogram aggregation 130
 nesting aggregations 135, 136
 on custom conditions 138
 on date/time data 141
 on filtered data 133, 134

[438]

 on geospatial data 147
 range 259
 range aggregation 131
 terms 259
 terms aggregation 125, 126, 127, 129
bucketing 258
built-in analyzers
 Language Analyzers 65
 reference 65
 Standard Analyzer 65
 Whitespace Analyzer 65
built-in roles
 ingest_admin 309
 kibana_system 309
 superuser 309
built-in token filters
 Lowercase Token Filter 64
 reference 64
 Stop Token Filter 64

C
cardinality aggregation 123
character filters
 about 61
 reference 62
choropleth maps
 reference 263
cluster 32
codec plugins
 about 168, 179
 JSON 179
 multiline 180
 reference 168
 Rubydebug 180
community Beats
 about 200
 amazonbeat 200
 apachebeat 200
 dockbeat 200
 gabeat 200
 kafkabeat 200
 mongobeat 200
 mysqlbeat 200
 nginxbeat 200
 reference 201

 rsbeat 200
 springbeat 200
complex datatypes
 array datatype 37
 nested datatype 37
 object datatype 37
compound queries
 bool query 94
 constant score query 92, 94
 writing 91
considerations, for deploying to cloud
 about 362
 default ports, modifying 363
 EC2 discovery plugin, installing 364
 HTTP, binding to local addresses 363
 instance type, selecting 363
 periodic snapshots, setting up 364
 proxy requests 363
 S3 repository plugin, installing 364
constant score query 92, 94
core datatypes
 binary datatype 36
 Boolean datatype 36
 date datatype 36
 numeric datatypes 36
 string datatypes 36
CRUD operations 43
CSV filter 189
CSV plugin 177
custom analyzer
 autocomplete, implementing with 70, 71, 72, 73

D
dashboards
 about 273
 cloning 276
 creating 273, 275
 saving 275
 sharing 277
data modeling, in Elasticsearch
 about 383
 index template, defining 383
 mapping 386
data preparation 230
data

[439]

 loading, with Logstash 115, 116
 preparing 226, 227, 229
 preparing, for analysis 111
 sending, to Logstash over HTTPS 394
 structure 112, 113
 visualizing, in Kibana 395
datatypes, Elasticsearch
 about 35
 complex datatypes 37
 core datatypes 36
 geo-point datatype 37
 geo-shape datatype 37
 IP datatype 37
date filter 194
Date Histogram aggregation
 about 141
 buckets, creating across time periods 142, 143
 day, focusing 145
 intervals, modifying 145
 metrics, computing within sliced time intervals

144

 time zone, using 143
Delete API 48
Delete pipeline API 185
deployment architecture 432, 433
dimension 113
Docker 361
Docker containers
 software, running 361
documents
 about 31, 43
 deleting, automatically 375, 377
 indexing, by providing ID 43
 indexing, without providing ID 44
 searching of particular type, in indices 57
 searching, in multiple indicies 57
 searching, in one index 56

E
EC2 discovery plugin
 reference 364
edge nodes 15
Elastic Cloud
 about 18, 351
 cluster, creating 352

 configuration, overriding 355
 Deployment Overview screen 353
 reference 355
 references 351
 snapshots 355
Elastic Stack, components
 Beats 15
 Elastic Cloud 18
 Elasticsearch 14
 exploring 13
 Kibana 16
 Logstash 14
 X-Pack 16
Elastic Stack, hosting
 about 358
 hardware, selecting 358, 359
 operating system, selecting 359
Elastic Stack, use cases
 about 18
 log 18
 logs 19
 metrics analytics 20
 product search 19, 20
 security analytics 18, 19
 web search 21
 website search 21
Elastic Stack
 hosting, on managed cloud 351
Elastic
 reference 18
Elasticsearch analyzers
 about 60
 built-in analyzers 65
Elasticsearch DSL query
 absolute time filter 253
 Auto Refresh 253
 filters 254
 histogram 248
 quick time filter 252
 relative time filter 252
 time picker 252
 toolbar 248
Elasticsearch metrics
 about 329
 cluster-level metrics 329

[440]

 Indices tab 333
 Nodes tab 330
 Overview tab 329
Elasticsearch nodes, configuring
 about 359
 file descriptors 360
 garbage collector 361
 JVM heap size 360
 swapping, disabling 360
 thread pools 361
Elasticsearch plugin 176, 177
Elasticsearch Query String
 Boolean search 242
 Field search 242
 Free Text search 241
 range search 244
 regex search 245
 searches, grouping 243
 wild card 245
Elasticsearch, benefits
 analytics 11
 document-oriented 10
 easy to operate 12
 easy to scale 12
 fault-tolerant 13
 lightning-fast 13
 real-time capable 12
 REST API 11
 rich client library support 11
 schemaless 10
 searching capability 10, 11
Elasticsearch, concepts
 cluster 32
 datatypes 35
 document 31
 index 29
 inverted index 41, 42
 mappings 35
 node 32
 replicas 33, 35
 shards 33, 35
 type 30
Elasticsearch
 about 9, 14
 core concepts 28

 data, modeling 383
 download link 288
 downloading 21
 installing 21, 22
 installing, with X-Pack 287
 managing 361
 monitoring 324, 361
 Monitoring UI 326
 need for 9
 securing 299
 unit of parallelism 373, 374
ELK 18
exists query 80
extended stats aggregations 122

F
fields 31
file plugin 168, 170
Filebeat, components
 harvesters 204
 inputs 204, 209, 210, 212
 spoolers 204
Filebeat
 about 198, 201
 architecture 204
 configuring 205, 206, 207
 downloading 202
 general options 212
 global option 213
 installing 202
 installing, on Linux 203
 installing, on Windows 202
 logging 215
 modules 216, 217, 218
 output configuration 213, 214
filter aggregation 139
Filter Context 80
filter plugins
 about 167, 181, 188
 CSV filter 189
 date filter 194
 geoip filter 195
 Grok filter 192, 193
 jdbc_streaming plugin 390
 mutate filter 190, 191

[441]

 mutate plugin 391
 reference 167
 useragent filter 196
filters aggregation 140
final stored data 382
formatsensor metadata 382
full text
 searching from 82
full-text search 10, 60
Functionbeat 200

G
garbage collection (GC) 332
GCE (Google Compute Engine) 351
gems 165
geo distance aggregation 147
GeoHash grid aggregation
 about 149, 150
 reference 149
geoip filter 195
geospatial aggregations
 geo distance aggregation 147
 GeoHash grid aggregation 149
Get API 45
Get Mapping API
 reference 39
Get pipeline API 184
Golang glob
 reference 210
Grok filter 192, 193

H
has_child query 102, 103
Heartbeat 199
high-level queries
 about 82
 match phrase query 89
 match query 84, 86
 multi-match query 90
histogram aggregation 130, 131
horizontal scalability 12
HTTP
 data, sending to Logstash 394

I
IMAP plugin 175
index aliases
 about 369
 setting up 369
 using 370
Index API 43
index API
 reference 38
index pattern
 regular indexes 234
 setting up, in Kibana 395, 397
 time-series indexes 233
index templates
 about 38
 defining 371, 383
 setting up 371
index-per-timeframe
 about 376
 scaling with 376
 used, for solving issues 376
 using 376
indexes
 about 29
 creating 48, 49, 372
 scaling, with unpredictable volume over time 373
 type mapping, creating in 50, 51
indexing operation 43
indirection
 reference 370
ingest APIs
 about 182
 Delete pipeline API 185
 Get pipeline API 184
 Put pipeline API 182
 Simulate pipeline API 185
ingest node
 about 181
 pipeline, defining 182
input plugins
 about 166
 Beats 170, 172
 exploring 168
 file 168, 170

[442]

 IMAP 175
 JDBC 173, 174
 reference 166
internet of things (IoT) 378
Internet of Things (IoT) 20
inverted index 41, 42
IoT devices 379

J
JDBC plugin 173, 174
jdbc_streaming plugin 390
Journalbeat 199
JSON 179
JVM heap size 360

K
Kafka plugin 178
Kibana Console UI
 using 25, 27
Kibana Query Language (KQL) 246
Kibana UI, components
 Dashboard page 233
 Dev Tools page 233
 Discover page 233, 236, 238, 240
 Management page 233
 Visualize page 233, 256
Kibana UI
 about 231, 234
 dashboards 273
 Elasticsearch DSL query 246
 Elasticsearch query string 241
 index pattern, configuring 233
 user interaction 232
Kibana
 about 16, 220
 configuring 225
 data, visualizing 395
 download link 288
 downloading 221
 index pattern, setting up 395, 397
 installing 23, 221
 installing, on Linux 222, 223
 installing, on Windows 222
 installing, with X-Pack 287
 reference 221

 securing 299
 used, for visualizing system metrics 429, 431
 using 354
 visualizations examples 397, 398, 399, 400,

402, 403

L
Language Analyzers 65
Linux
 Filebeat, installing on 203
 Kibana, installing on 222, 223
 Logstash, installing on 161
 Metricbeat, installing on 411
log analysis
 challenges 154
logs
 about 154
 challenges 155, 156, 157
 enriching, with Logstash 187
 parsing, with Logstash 187
 usage 155
Logstash data pipeline
 building 387
 JSON requests, accepting over web 388
 JSON, enriching with metadata in MySQL

database 389
 resulting documents, storing in Elasticsearch

393

Logstash plugins
 codec plugins 168, 179
 exploring 168
 filter plugins 167, 181
 input plugins 166
 installing 166
 output plugins 167, 176
 overview 165
 updating 166
Logstash
 about 14, 15
 architecture 162, 163, 164, 165
 centralized data processing 158
 configuring 158
 download link 159
 downloading 159
 extensibility 158

[443]

 features 157
 installing 158, 159
 installing, on Linux 161
 installing, on Windows 160
 pluggable data pipeline architecture 157
 prerequisites 158
 running 161, 162
 synergy 158
 used, for enriching logs 187
 used, for loading data 115, 116
 used, for parsing logs 187
 using 157
 variety 158
 versus Beats 201
 volume 158

M
managed cloud
 Elastic Stack, hosting on 351
mapping over time
 modifying 375, 377
mappings
 about 35, 37, 386
 controlling 48
 defining, for type of product 38
 index, creating with name catalog 38
 updating 51, 52
MarkDown text
 reference 262
match phrase query 88, 89
match query
 about 84
 fuzziness parameter 87, 88
 minimum_should_match 86
 operator 86
matrix aggregations 111
max aggregation 120
metadata database
 setting up 386
metric 113
metric aggregations
 about 110, 116, 260
 average aggregation 119
 cardinality aggregation 123
 extended stats aggregations 121, 122

 max aggregation 120
 min aggregation 120
 stats aggregation 121, 122
 sum aggregation 117, 118
Metricbeat, components
 metricsets 412
 modules 412
Metricbeat
 about 198, 409
 architecture 412
 benefits 413
 configuring 416
 download link 410
 downloading 410
 event structure 414, 415
 general settings 419
 installing 410
 installing, on Linux 411
 installing, on Windows 411
 logging 422
 module config, enabling in metricbeat.yml file

418

 module configs, enabling in modules.d directory
417

 module configuration 416
 output configuration 420, 422
 running, with system module 424, 426
metrics
 average 260
 count 260
 max 260
 median 260
 min 260
 percentile ranks 260
 percentiles 260
 standard deviation 260
 sum 260
min aggregation 120
multi-match query
 about 90
 fields, boosting 91
 multiple fields, querying with defaults 90
 types 91
multiline 180
mutate filter 190, 191

[444]

mutate plugin
 about 391
 latitude and longitude fields, combining 392
 looked-up fields, moving 392
 unnecessary fields, removing 393

N
nesting aggregations 135, 136
node 32

O
OpenJDK
 reference 159
output plugins
 about 167, 176
 CSV 177
 Elasticsearch 176, 177
 Kafka 178
 PagerDuty 178
 reference 167

P
Packetbeat 198
PagerDuty plugin 178
passwords
 generating, for default users 295, 296
 modifying 307
pipeline aggregations
 about 111, 151
 cumulative sum of usage over time, calculating

151, 152
 parent pipeline aggregations 151
 sibling pipeline aggregations 151
plugins
 installing 284
 removing 284
 using 283
products 37
Put pipeline API 182

R
range aggregation 131, 133
range query
 about 76

 applying, on dates 79
 applying, on numeric types 77, 78
 with score boosting 78
realms 299
regex queries 245
regular data 234
relationships
 modeling 98, 99, 100, 101
replica shards 34
replicas 33, 34
repository
 setting up, for snapshots 365
Representational State Transfer (REST) 12, 25
REST API
 about 25
 common API conventions 53
 JSON response, formatting 54
 multiple indices, dealing with 55
 overview 53
restore 365
Role Management APIs 322
role
 creating 308, 311, 312
 deleting 313
 editing 313
 reference 309
Rubydebug 180

S
secured resources 301
security
 working 303
sensor data analytics application
 about 378, 379, 380
 dashboard, creating 404, 405, 406, 407
 final stored data 382
 sensor metadata 381, 382
 sensor-generated data 380
sharding 33
shards 33
shared filesystem
 snapshots, storing in 366
Simple Storage Service (S3) 364
simulate pipeline API 185
snapshots

[445]

 backing up, in distributed filesystems 367
 repository, setting up 365
 restoring 368, 369
 restoring, in cloud 367
 storing, in shared filesystem 366
 taking 368
Standard Analyzer
 about 65
 components 65
 working 66, 67, 69
Standard Tokenizer 63
stats aggregation 121, 122
stats API 324
structured data
 searching from 74
sum aggregation 118
system metrics
 aliases, specifying 427
 capturing 423
 Metricbeat, running 424, 426
 visualizing, with Kibana 429, 431
system modules
 reference 423

T
tag cloud 264
term level queries
 about 74
 exists query 80
 flow 75
 range query 76
 term query 81, 82
term query 81, 82
terms aggregation 125, 126, 127, 129
text analysis
 basics 59
Time Based Throttling 341
time filter 252
time series data
 about 233
 modeling 373
time-based indexes 376
Timelion
 about 277, 278
 expressions 278, 280, 281, 282, 283

token filters
 about 64
 reference 64
tokenizers
 about 62
 reference 62
 Standard Tokenizer 63
TTL (Time to Live) 376
type 30
type mapping
 creating, in index 49, 51

U
unit of parallelism
 in Elasticsearch 373, 374
Update API 46
upsert 46
User Management APIs
 about 320, 321
user
 creating 304, 305
 deleting 306
useragent filter 196

V
vertical scaling 12
visualization types
 area chart 262
 bar chart 262
 co-ordinate maps 263
 data table 262
 gauge 263
 goal 263
 line chart 262
 MarkDown widget 262
 metric 262
 pie charts 263
 region maps 263
 tag cloud 264
visualizations
 bandwidth usage, of countries over time 268
 creating 260
 most used user agent 271
 response codes over time 264, 266
 URLs requested 266

 web traffic, originating from different countries
269

 working 264
Visualize interface
 components 261
VPC (Virtual Private Cloud) 363

W
Watch, components
 action 336
 actions 340
 condition 336, 340
 input 339
 query 336
 schedule 336
 trigger 337
watch
 anatomy 336
 deactivating 346
 deleting 346
 editing 346
Watcher Payload 339
Watcher UI 336
watcher
 ACK-based Throttling 341
 Time-based Throttling 341
Whitespace Analyzer 65
Windows
 Filebeats, installing on 202
 Kibana, installing on 222
 Logstash, installing on 160
 Metricbeat, installing on 411
Winlogbeat 199

X
X-Pack security APIs
 about 320
 Role Management APIs 322
 User Management APIs 320, 321
X-Pack security module
 auditing 302
 channel encryption 302
 cluster privileges 301
 document-level security 315, 317
 field-level security 315, 317
 index privileges 302
 node/client authentication 302
 Run As Privilege 302
 user authentication 299
 user authorization 301
X-Pack trial account
 activating 292, 294
X-Pack, features
 alerting 17
 graph 17
 machine learning 17
 monitoring 16
 reporting 17
 security 16
X-Pack
 about 16, 287
 configuring 298
 Elasticsearch, installing with 287
 Kibana, installing with 287

Y
YAML Ain't Markup Language (YAML) 32

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Introduction to Elastic Stack and Elasticsearch
	Chapter 1: Introducing Elastic Stack
	What is Elasticsearch, and why use it?
	Schemaless and document-oriented
	Searching capability
	Analytics
	Rich client library support and the REST API
	Easy to operate and easy to scale
	Near real-time capable
	Lightning–fast
	Fault-tolerant

	Exploring the components of the Elastic Stack
	Elasticsearch
	Logstash
	Beats
	Kibana
	X-Pack
	Security
	Monitoring
	Reporting
	Alerting
	Graph
	Machine learning

	Elastic Cloud

	Use cases of Elastic Stack
	Log and security analytics
	Product search
	Metrics analytics
	Web search and website search

	Downloading and installing
	Installing Elasticsearch
	Installing Kibana

	Summary

	Chapter 2: Getting Started with Elasticsearch
	Using the Kibana Console UI
	Core concepts of Elasticsearch
	Indexes
	Types
	Documents
	Nodes
	Clusters
	Shards and replicas
	Mappings and datatypes
	Datatypes
	Core datatypes
	Complex datatypes
	Other datatypes

	Mappings
	Creating an index with the name catalog
	Defining the mappings for the type of product

	Inverted indexes

	CRUD operations
	Index API
	Indexing a document by providing an ID
	Indexing a document without providing an ID

	Get API
	Update API
	Delete API

	Creating indexes and taking control of mapping
	Creating an index
	Creating type mapping in an existing index
	Updating a mapping

	REST API overview
	Common API conventions
	Formatting the JSON response
	Dealing with multiple indexes
	Searching all documents in one index
	Searching all documents in multiple indexes
	Searching all the documents of a particular type in all indexes

	Summary

	Section 2: Analytics and Visualizing Data
	Chapter 3: Searching - What is Relevant
	The basics of text analysis
	Understanding Elasticsearch analyzers
	Character filters
	Tokenizer
	Standard tokenizer

	Token filters

	Using built-in analyzers
	Standard analyzer

	Implementing autocomplete with a custom analyzer

	Searching from structured data
	Range query
	Range query on numeric types
	Range query with score boosting
	Range query on dates

	Exists query
	Term query

	Searching from the full text
	Match query
	Operator
	Minimum should match
	Fuzziness

	Match phrase query
	Multi match query
	Querying multiple fields with defaults
	Boosting one or more fields
	With types of multi match queries

	Writing compound queries
	Constant score query
	Bool query
	Combining OR conditions
	Combining AND and OR conditions
	Adding NOT conditions

	Modeling relationships
	has_child query
	has_parent query
	parent_id query

	Summary

	Chapter 4: Analytics with Elasticsearch
	The basics of aggregations
	Bucket aggregations
	Metric aggregations
	Matrix aggregations
	Pipeline aggregations

	Preparing data for analysis
	Understanding the structure of the data
	Loading the data using Logstash

	Metric aggregations
	Sum, average, min, and max aggregations
	Sum aggregation
	Average aggregation
	Min aggregation
	Max aggregation

	Stats and extended stats aggregations
	Stats aggregation
	Extended stats aggregation

	Cardinality aggregation

	Bucket aggregations
	Bucketing on string data
	Terms aggregation

	Bucketing on numerical data
	Histogram aggregation
	Range aggregation

	Aggregations on filtered data
	Nesting aggregations
	Bucketing on custom conditions
	Filter aggregation
	Filters aggregation

	Bucketing on date/time data
	Date Histogram aggregation
	Creating buckets across time periods
	Using a different time zone
	Computing other metrics within sliced time intervals
	Focusing on a specific day and changing intervals

	Bucketing on geospatial data
	Geodistance aggregation
	GeoHash grid aggregation

	Pipeline aggregations
	Calculating the cumulative sum of usage over time

	Summary

	Chapter 5: Analyzing Log Data
	Log analysis challenges
	Using Logstash
	Installation and configuration
	Prerequisites
	Downloading and installing Logstash
	Installing on Windows
	Installing on Linux

	Running Logstash

	The Logstash architecture
	Overview of Logstash plugins
	Installing or updating plugins
	Input plugins
	Output plugins
	Filter plugins
	Codec plugins

	Exploring plugins
	Exploring input plugins
	File
	Beats
	JDBC
	IMAP

	Output plugins
	Elasticsearch
	CSV
	Kafka
	PagerDuty

	Codec plugins
	JSON
	Rubydebug
	Multiline

	Filter plugins

	Ingest node
	Defining a pipeline
	Ingest APIs
	Put pipeline API
	Get pipeline API
	Delete pipeline API
	Simulate pipeline API

	Summary

	Chapter 6: Building Data Pipelines with Logstash
	Parsing and enriching logs using Logstash
	Filter plugins
	CSV filter
	Mutate filter
	Grok filter
	Date filter
	Geoip filter
	Useragent filter

	Introducing Beats
	Beats by Elastic.co
	Filebeat
	Metricbeat
	Packetbeat
	Heartbeat
	Winlogbeat
	Auditbeat
	Journalbeat
	Functionbeat

	Community Beats
	Logstash versus Beats

	Filebeat
	Downloading and installing Filebeat
	Installing on Windows
	Installing on Linux

	Architecture
	Configuring Filebeat
	Filebeat inputs
	Filebeat general/global options
	Output configuration
	Logging
	Filebeat modules

	Summary

	Chapter 7: Visualizing Data with Kibana
	Downloading and installing Kibana
	Installing on Windows
	Installing on Linux
	Configuring Kibana

	Preparing data
	Kibana UI
	User interaction
	Configuring the index pattern
	Discover
	Elasticsearch query string/Lucene query
	Elasticsearch DSL query
	KQL

	Visualize
	Kibana aggregations
	Bucket aggregations
	Metric

	Creating a visualization
	Visualization types
	Line, area, and bar charts
	Data tables
	Markdown widgets
	Metrics
	Goals
	Gauges
	Pie charts
	Co-ordinate maps
	Region maps
	Tag clouds

	Visualizations in action
	Response codes over time
	Top 10 requested URLs
	Bandwidth usage of the top five countries over time
	Web traffic originating from different countries
	Most used user agent

	Dashboards
	Creating a dashboard
	Saving the dashboard
	Cloning the dashboard
	Sharing the dashboard

	Timelion
	Timelion
	Timelion expressions

	Using plugins
	Installing plugins
	Removing plugins

	Summary

	Section 3: Elastic Stack Extensions
	Chapter 8: Elastic X-Pack
	[Installation]
	Installation
	Activating X-Pack trial account
	Generating passwords for default users

	Configuring X-Pack
	Securing Elasticsearch and Kibana
	User authentication
	User authorization
	Security in action
	Creating a new user
	Deleting a user
	Changing the password

	Creating a new role
	Deleting or editing a role

	Document-level security or field-level security
	X-Pack security APIs
	User Management APIs
	Role Management APIs

	Monitoring Elasticsearch
	Monitoring UI
	Elasticsearch metrics
	Overview tab
	Nodes tab
	The Indices tab

	Alerting
	Anatomy of a watch
	Alerting in action
	Creating a new alert
	Threshold Alert
	Advanced Watch

	Deleting/deactivating/editing a watch

	Summary

	Section 4: Production and Server Infrastructure
	Chapter 9: Running Elastic Stack in Production
	Hosting Elastic Stack on a managed cloud
	Getting up and running on Elastic Cloud
	Using Kibana
	Overriding configuration
	Recovering from a snapshot

	Hosting Elastic Stack on your own
	Selecting hardware
	Selecting an operating system
	Configuring Elasticsearch nodes
	JVM heap size
	Disable swapping
	File descriptors
	Thread pools and garbage collector

	Managing and monitoring Elasticsearch
	Running in Docker containers
	Special considerations while deploying to a cloud
	Choosing instance type
	Changing default ports; do not expose ports!
	Proxy requests
	Binding HTTP to local addresses
	Installing EC2 discovery plugin
	Installing the S3 repository plugin
	Setting up periodic snapshots

	Backing up and restoring
	Setting up a repository for snapshots
	Shared filesystem

	Cloud or distributed filesystems
	Taking snapshots
	Restoring a specific snapshot

	Setting up index aliases
	Understanding index aliases
	How index aliases can help

	Setting up index templates
	Defining an index template
	Creating indexes on the fly

	Modeling time series data
	Scaling the index with unpredictable volume over time
	Unit of parallelism in Elasticsearch
	The effect of the number of shards on the relevance score
	The effect of the number of shards on the accuracy of aggregations

	Changing the mapping over time
	New fields get added
	Existing fields get removed

	Automatically deleting older documents
	How index-per-timeframe solves these issues
	Scaling with index-per-timeframe
	Changing the mapping over time
	Automatically deleting older documents

	Summary

	Chapter 10: Building a Sensor Data Analytics Application
	Introduction to the application
	Understanding the sensor-generated data
	Understanding the sensor metadata
	Understanding the final stored data

	Modeling data in Elasticsearch
	Defining an index template
	Understanding the mapping

	Setting up the metadata database
	Building the Logstash data pipeline
	Accepting JSON requests over the web
	Enriching the JSON with the metadata we have in the MySQL database
	The jdbc_streaming plugin
	The mutate plugin
	Moving the looked-up fields that are under lookupResult directly in JSON
	Combining the latitude and longitude fields under lookupResult as a location field
	Removing the unnecessary fields

	Store the resulting documents in Elasticsearch

	Sending data to Logstash over HTTP
	Visualizing the data in Kibana
	Setting up an index pattern in Kibana
	Building visualizations
	How does the average temperature change over time?
	How does the average humidity change over time?
	How do temperature and humidity change at each location over time?
	Can I visualize temperature and humidity over a map?
	How are the sensors distributed across departments?

	Creating a dashboard

	Summary

	Chapter 11: Monitoring Server Infrastructure
	Metricbeat
	Downloading and installing Metricbeat
	Installing on Windows
	Installing on Linux

	Architecture
	Event structure

	Configuring Metricbeat
	Module configuration
	Enabling module configs in the modules.d directory
	Enabling module configs in the metricbeat.yml file

	General settings
	Output configuration
	Logging

	Capturing system metrics
	Running Metricbeat with the system module
	Specifying aliases
	Visualizing system metrics using Kibana

	Deployment architecture
	Summary

	Other Books You May Enjoy
	Index

