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Preface

This book (CS:APP) is for computer scientists, computer engineers, and others
who want to be able to write better programs by learning what is going on “under
the hood” of a computer system.

Our aim is to explain the enduring concepts underlying all computer systems,
and to show you the concrete ways that these ideas affect the correctness, perfor-
mance, and utility of your application programs. Other systems books are written
from a builder’s perspective, describing how to implement the hardware or the sys-
tems software, including the operating system, compiler, and network interface.
This book is written from a programmer’s perspective, describing how application
programmers can use their knowledge of a system to write better programs. Of
course, learning what a system is supposed to do provides a good first step in learn-
ing how to build one, and so this book also serves as a valuable introduction to
those who go on to implement systems hardware and software.

If you study and learn the concepts in this book, you will be on your way to
becoming the rare “power programmer” who knows how things work and how
to fix them when they break. Our aim is to present the fundamental concepts in
ways that you will find useful right away. You will also be prepared to delve deeper,
studying such topics as compilers, computer architecture, operating systems, em-
bedded systems, and networking.

Assumptions about the Reader’s Background

The presentation of machine code in the book is based on two related formats
supported by Intel and its competitors, colloquially known as “x86.” IA32 is the
machine code that has become the de facto standard for a wide range of systems.
x86-64 is an extension of IA32 to enable programs to operate on larger data and to
reference a wider range of memory addresses. Since x86-64 systems are able to run
TIA32 code, both of these forms of machine code will see widespread use for the
foreseeable future. We consider how these machines execute C programs on Unix
or Unix-like (such as Linux) operating systems. (To simplify our presentation,
we will use the term “Unix” as an umbrella term for systems having Unix as
their heritage, including Solaris, Mac OS, and Linux.) The text contains numerous
programming examples that have been compiled and run on Linux systems. We
assume that you have access to such a machine and are able to log in and do simple
things such as changing directories.

If your computer runs Microsoft Windows, you have two choices. First, you
can get a copy of Linux (www.ubuntu.com) and install it as a “dual boot” option,
so that your machine can run either operating system. Alternatively, by installing
a copy of the Cygwin tools (www.cygwin.com), you can run a Unix-like shell under

Xix
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Windows and have an environment very close to that provided by Linux. Not all
features of Linux are available under Cygwin, however.

We also assume that you have some familiarity with C or C++. If your only
prior experience is with Java, the transition will require more effort on your part,
but we will help you. Java and C share similar syntax and control statements.
However, there are aspects of C, particularly pointers, explicit dynamic memory
allocation, and formatted I/O, that do not exist in Java. Fortunately, C is a small
language, and it is clearly and beautifully described in the classic “K&R” text
by Brian Kernighan and Dennis Ritchie [58]. Regardless of your programming
background, consider K&R an essential part of your personal systems library.

Several of the early chapters in the book explore the interactions between
C programs and their machine-language counterparts. The machine-language
examples were all generated by the GNU Gcc compiler running on IA32 and x86-
64 processors. We do not assume any prior experience with hardware, machine
language, or assembly-language programming.

New to C? Advice on the C programming language

To help readers whose background in C programming is weak (or nonexistent), we have also included
these special notes to highlight features that are especially important in C. We assume you are familiar
with C++ or Java.

How to Read the Book

Learning how computer systems work from a programmer’s perspective is great
fun, mainly because you can do it actively. Whenever you learn something new,
you can try it out right away and see the result first hand. In fact, we believe that
the only way to learn systems is to do systems, either working concrete problems
or writing and running programs on real systems.

This theme pervades the entire book. When a new concept is introduced, it
is followed in the text by one or more practice problems that you should work
immediately to test your understanding. Solutions to the practice problems are
at the end of each chapter. As you read, try to solve each problem on your own,
and then check the solution to make sure you are on the right track. Each chapter
is followed by a set of homework problems of varying difficulty. Your instructor
has the solutions to the homework problems in an Instructor’s Manual. For each
homework problem, we show a rating of the amount of effort we feel it will require:

4 Should require just a few minutes. Little or no programming required.

€ ¢ Might require up to 20 minutes. Often involves writing and testing some code.
Many of these are derived from problems we have given on exams.

¢ ¢ Requires a significant effort, perhaps 1-2 hours. Generally involves writing
and testing a significant amount of code.

®9096¢ A lab assignment, requiring up to 10 hours of effort.



code/intro/hello.c
#include <stdio.h>

]
2

3 int main()

4 A

5 printf("hello, world\n");
6 return 0O;

7}

code/intro/hello.c

Figure T A typical code example.

Each code example in the text was formatted directly, without any manual
intervention, from a C program compiled with Gcc and tested on a Linux system.
Of course, your system may have a different version of Gcc, or a different compiler
altogether, and so your compiler might generate different machine code, but the
overall behavior should be the same. All of the source code is available from the
CS:APP Web page at csapp. cs.cmu. edu. In the text, the file names of the source
programs are documented in horizontal bars that surround the formatted code.
For example, the program in Figure 1 can be found in the file hello. c in directory
code/intro/. We encourage you to try running the example programs on your
system as you encounter them.

To avoid having a book that is overwhelming, both in bulk and in content,
we have created a number of Web asides containing material that supplements
the main presentation of the book. These asides are referenced within the book
with a notation of the form CHAP:TOP, where CHAP is a short encoding of the
chapter subject, and TOP is short code for the topic that is covered. For example,
Web Aside DATA:BOOL contains supplementary material on Boolean algebra for
the presentation on data representations in Chapter 2, while Web Aside ARCH:VLOG
contains material describing processor designs using the Verilog hardware descrip-
tion language, supplementing the presentation of processor design in Chapter 4.
All of these Web asides are available from the CS:APP Web page.

Aside What is an aside?

Preface
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You will encounter asides of this form throughout the text. Asides are parenthetical remarks that give
you some additional insight into the current topic. Asides serve a number of purposes. Some are little
history lessons. For example, where did C, Linux, and the Internet come from? Other asides are meant
to clarify ideas that students often find confusing. For example, what is the difference between a cache
line, set, and block? Other asides give real-world examples. For example, how a floating-point error
crashed a French rocket, or what the geometry of an actual Seagate disk drive looks like. Finally, some

asides are just fun stuff. For example, what is a “hoinky”?
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Book Overview

The CS:APP book consists of 12 chapters designed to capture the core ideas in
computer systems:

e Chapter 1: A Tour of Computer Systems. This chapter introduces the major
ideas and themes in computer systems by tracing the life cycle of a simple
“hello, world” program.

e Chapter 2: Representing and Manipulating Information. We cover computer
arithmetic, emphasizing the properties of unsigned and two’s-complement
number representations that affect programmers. We consider how numbers
are represented and therefore what range of values can be encoded for a given
word size. We consider the effect of casting between signed and unsigned num-
bers. We cover the mathematical properties of arithmetic operations. Novice
programmers are often surprised to learn that the (two’s-complement) sum
or product of two positive numbers can be negative. On the other hand, two’s-
complement arithmetic satisfies the algebraic properties of a ring, and hence a
compiler can safely transform multiplication by a constant into a sequence of
shifts and adds. We use the bit-level operations of C to demonstrate the prin-
ciples and applications of Boolean algebra. We cover the IEEE floating-point
format in terms of how it represents values and the mathematical properties
of floating-point operations.

Having a solid understanding of computer arithmetic is critical to writing
reliable programs. For example, programmers and compilers cannot replace
the expression (x<y) with (x-y < 0), due to the possibility of overflow. They
cannot even replace it with the expression (-y < -x), due to the asymmetric
range of negative and positive numbers in the two’s-complement represen-
tation. Arithmetic overflow is a common source of programming errors and
security vulnerabilities, yet few other books cover the properties of computer
arithmetic from a programmer’s perspective.

e Chapter 3: Machine-Level Representation of Programs. We teach you how to
read the IA32 and x86-64 assembly language generated by a C compiler. We
cover the basic instruction patterns generated for different control constructs,
such as conditionals, loops, and switch statements. We cover the implemen-
tation of procedures, including stack allocation, register usage conventions,
and parameter passing. We cover the way different data structures such as
structures, unions, and arrays are allocated and accessed. We also use the
machine-level view of programs as a way to understand common code se-
curity vulnerabilities, such as buffer overflow, and steps that the programmer,
the compiler, and the operating system can take to mitigate these threats.
Learning the concepts in this chapter helps you become a better programmer,
because you will understand how programs are represented on a machine.
One certain benefit is that you will develop a thorough and concrete under-
standing of pointers.

e Chapter 4: Processor Architecture. This chapter covers basic combinational
and sequential logic elements, and then shows how these elements can be



combined in a datapath that executes a simplified subset of the IA32 instruc-
tion set called “Y86.” We begin with the design of a single-cycle datapath. This
design is conceptually very simple, but it would not be very fast. We then intro-
duce pipelining, where the different steps required to process an instruction
are implemented as separate stages. At any given time, each stage can work
on a different instruction. Our five-stage processor pipeline is much more re-
alistic. The control logic for the processor designs is described using a simple
hardware description language called HCL. Hardware designs written in HCL
can be compiled and linked into simulators provided with the textbook, and
they can be used to generate Verilog descriptions suitable for synthesis into
working hardware.

Chapter 5: Optimizing Program Performance. This chapter introduces a num-
ber of techniques for improving code performance, with the idea being that
programmers learn to write their C code in such a way that a compiler can
then generate efficient machine code. We start with transformations that re-
duce the work to be done by a program and hence should be standard practice
when writing any program for any machine. We then progress to transforma-
tions that enhance the degree of instruction-level parallelism in the generated
machine code, thereby improving their performance on modern “superscalar”
processors. To motivate these transformations, we introduce a simple opera-
tional model of how modern out-of-order processors work, and show how to
measure the potential performance of a program in terms of the critical paths
through a graphical representation of a program. You will be surprised how
much you can speed up a program by simple transformations of the C code.

Chapter 6: The Memory Hierarchy. The memory system is one of the most visi-
ble parts of a computer system to application programmers. To this point, you
have relied on a conceptual model of the memory system as a linear array with
uniform access times. In practice, a memory system is a hierarchy of storage
devices with different capacities, costs, and access times. We cover the differ-
ent types of RAM and ROM memories and the geometry and organization of
magnetic-disk and solid-state drives. We describe how these storage devices
are arranged in a hierarchy. We show how this hierarchy is made possible by
locality of reference. We make these ideas concrete by introducing a unique
view of a memory system as a “memory mountain” with ridges of temporal
locality and slopes of spatial locality. Finally, we show you how to improve the
performance of application programs by improving their temporal and spatial
locality.

Chapter 7: Linking. This chapter covers both static and dynamic linking, in-
cluding the ideas of relocatable and executable object files, symbol resolution,
relocation, static libraries, shared object libraries, and position-independent
code. Linking is not covered in most systems texts, but we cover it for sev-
eral reasons. First, some of the most confusing errors that programmers can
encounter are related to glitches during linking, especially for large software
packages. Second, the object files produced by linkers are tied to concepts
such as loading, virtual memory, and memory mapping.
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e Chapter 8: Exceptional Control Flow. In this part of the presentation, we

step beyond the single-program model by introducing the general concept
of exceptional control flow (i.e., changes in control flow that are outside the
normal branches and procedure calls). We cover examples of exceptional
control flow that exist at all levels of the system, from low-level hardware
exceptions and interrupts, to context switches between concurrent processes,
to abrupt changes in control flow caused by the delivery of Unix signals, to
the nonlocal jumps in C that break the stack discipline.

This is the part of the book where we introduce the fundamental idea of
a process, an abstraction of an executing program. You will learn how pro-
cesses work and how they can be created and manipulated from application
programs. We show how application programmers can make use of multiple
processes via Unix system calls. When you finish this chapter, you will be able
to write a Unix shell with job control. It is also your first introduction to the
nondeterministic behavior that arises with concurrent program execution.

Chapter 9: Virtual Memory. Our presentation of the virtual memory system
seeks to give some understanding of how it works and its characteristics. We
want you to know how it is that the different simultaneous processes can each
use an identical range of addresses, sharing some pages but having individual
copies of others. We also cover issues involved in managing and manipulating
virtual memory. In particular, we cover the operation of storage allocators
such as the Unix malloc and free operations. Covering this material serves
several purposes. It reinforces the concept that the virtual memory space is
just an array of bytes that the program can subdivide into different storage
units. It helps you understand the effects of programs containing memory ref-
erencing errors such as storage leaks and invalid pointer references. Finally,
many application programmers write their own storage allocators optimized
toward the needs and characteristics of the application. This chapter, more
than any other, demonstrates the benefit of covering both the hardware and
the software aspects of computer systems in a unified way. Traditional com-
puter architecture and operating systems texts present only part of the virtual
memory story.

Chapter 10: System-Level I/0. We cover the basic concepts of Unix I/O such
as files and descriptors. We describe how files are shared, how I/O redirection
works, and how to access file metadata. We also develop a robust buffered I/O
package that deals correctly with a curious behavior known as short counts,
where the library function reads only part of the input data. We cover the C
standard I/O library and its relationship to Unix I/O, focusing on limitations
of standard I/O that make it unsuitable for network programming. In general,
the topics covered in this chapter are building blocks for the next two chapters
on network and concurrent programming.

Chapter 11: Network Programming. Networks are interesting I/O devices to
program, tying together many of the ideas that we have studied earlier in the
text, such as processes, signals, byte ordering, memory mapping, and dynamic



storage allocation. Network programs also provide a compelling context for
concurrency, which is the topic of the next chapter. This chapter is a thin slice
through network programming that gets you to the point where you can write
a Web server. We cover the client-server model that underlies all network
applications. We present a programmer’s view of the Internet, and show how
to write Internet clients and servers using the sockets interface. Finally, we
introduce HTTP and develop a simple iterative Web server.

e Chapter 12: Concurrent Programming. This chapter introduces concurrent
programming using Internet server design as the running motivational ex-
ample. We compare and contrast the three basic mechanisms for writing con-
current programs—processes, I/O multiplexing, and threads—and show how
to use them to build concurrent Internet servers. We cover basic principles of
synchronization using P and V semaphore operations, thread safety and reen-
trancy, race conditions, and deadlocks. Writing concurrent code is essential
for most server applications. We also describe the use of thread-level pro-
gramming to express parallelism in an application program, enabling faster
execution on multi-core processors. Getting all of the cores working on a sin-
gle computational problem requires a careful coordination of the concurrent
threads, both for correctness and to achieve high performance.

New to this Edition

The first edition of this book was published with a copyright of 2003. Consider-

ing the rapid evolution of computer technology, the book content has held up

surprisingly well. Intel x86 machines running Unix-like operating systems and

programmed in C proved to be a combination that continues to encompass many

systems today. Changes in hardware technology and compilers and the experience

of many instructors teaching the material have prompted a substantial revision.
Here are some of the more significant changes:

e Chapter 2: Representing and Manipulating Information. We have tried to make
this material more accessible, with more careful explanations of concepts
and with many more practice and homework problems. We moved some of
the more theoretical aspects to Web asides. We also describe some of the
security vulnerabilities that arise due to the overflow properties of computer
arithmetic.

e Chapter 3: Machine-Level Representation of Programs. We have extended our
coverage to include x86-64, the extension of x86 processors to a 64-bit word
size. We also use the code generated by a more recent version of gcc. We have
enhanced our coverage of buffer overflow vulnerabilities. We have created
Web asides on two different classes of instructions for floating point, and
also a view of the more exotic transformations made when compilers attempt
higher degrees of optimization. Another Web aside describes how to embed
x86 assembly code within a C program.
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e Chapter 4: Processor Architecture. We include a more careful exposition of
exception detection and handling in our processor design. We have also cre-
ated a Web aside showing a mapping of our processor designs into Verilog,
enabling synthesis into working hardware.

o Chapter 5: Optimizing Program Performance. We have greatly changed our
description of how an out-of-order processor operates, and we have created
a simple technique for analyzing program performance based on the paths
in a data-flow graph representation of a program. A Web aside describes
how C programmers can write programs that make use of the SIMD (single-
instruction, multiple-data) instructions found in more recent versions of x86
processors.

e Chapter 6: The Memory Hierarchy. We have added material on solid-state
disks, and we have updated our presentation to be based on the memory
hierarchy of an Intel Core 17 processor.

e Chapter 7: Linking. This chapter has changed only slightly.

e Chapter 8: Exceptional Control Flow. We have enhanced our discussion of
how the process model introduces some fundamental concepts of concurrency,
such as nondeterminism.

e Chapter 9: Virtual Memory. We have updated our memory system case study to
describe the 64-bit Intel Core i7 processor. We have also updated our sample
implementation of malloc to work for both 32-bit and 64-bit execution.

e Chapter 10: System-Level I/0. This chapter has changed only slightly.
e Chapter 11: Network Programming. This chapter has changed only slightly.

e Chapter 12: Concurrent Programming. We have increased our coverage of the
general principles of concurrency, and we also describe how programmers
can use thread-level parallelism to make programs run faster on multi-core
machines.

In addition, we have added and revised a number of practice and homework
problems.

Origins of the Book

The book stems from an introductory course that we developed at Carnegie Mel-
lon University in the Fall of 1998, called 15-213: Introduction to Computer Systems
(ICS) [14]. The ICS course has been taught every semester since then, each time to
about 150-250 students, ranging from sophomores to masters degree students and
with a wide variety of majors. It is a required course for all undergraduates in the
CS and ECE departments at Carnegie Mellon, and it has become a prerequisite
for most upper-level systems courses.

The idea with ICS was to introduce students to computers in a different way.
Few of our students would have the opportunity to build a computer system. On
the other hand, most students, including all computer scientists and computer
engineers, will be required to use and program computers on a daily basis. So we



decided to teach about systems from the point of view of the programmer, using
the following filter: we would cover a topic only if it affected the performance,
correctness, or utility of user-level C programs.

For example, topics such as hardware adder and bus designs were out. Topics
such as machine language were in, but instead of focusing on how to write assem-
bly language by hand, we would look at how a C compiler translates C constructs
into machine code, including pointers, loops, procedure calls, and switch state-
ments. Further, we would take a broader and more holistic view of the system
as both hardware and systems software, covering such topics as linking, loading,
processes, signals, performance optimization, virtual memory, I/O, and network
and concurrent programming.

This approach allowed us to teach the ICS course in a way that is practical,
concrete, hands-on, and exciting for the students. The response from our students
and faculty colleagues was immediate and overwhelmingly positive, and we real-
ized that others outside of CMU might benefit from using our approach. Hence
this book, which we developed from the ICS lecture notes, and which we have
now revised to reflect changes in technology and how computer systems are im-
plemented.

For Instructors: Courses Based on the Book

Instructors can use the CS:APP book to teach five different kinds of systems
courses (Figure 2). The particular course depends on curriculum requirements,
personal taste, and the backgrounds and abilities of the students. From left to
right in the figure, the courses are characterized by an increasing emphasis on the
programmer’s perspective of a system. Here is a brief description:

* ORG: A computer organization course with traditional topics covered in an
untraditional style. Traditional topics such as logic design, processor architec-
ture, assembly language, and memory systems are covered. However, there is
more emphasis on the impact for the programmer. For example, data repre-
sentations are related back to the data types and operations of C programs,
and the presentation on assembly code is based on machine code generated
by a C compiler rather than hand-written assembly code.

* ORG+: The ORG course with additional emphasis on the impact of hardware
on the performance of application programs. Compared to ORG, students
learn more about code optimization and about improving the memory per-
formance of their C programs.

¢ ICS: The baseline ICS course, designed to produce enlightened programmers
who understand the impact of the hardware, operating system, and compila-
tion system on the performance and correctness of their application programs.
A significant difference from ORG+ is that low-level processor architecture is
not covered. Instead, programmers work with a higher-level model of a mod-
ern out-of-order processor. The ICS course fits nicely into a 10-week quarter,
and can also be stretched to a 15-week semester if covered at a more leisurely
pace.
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Course
Chapter Topic ORG ORG+ ICS ICS+ SpP

1 Tour of systems . . o . .
2 Data representation . o . . oW
3 Machine language . . o . .
4 Processor architecture o o
5 Code optimization o . .
6 Memory hierarchy o®@ . . . o®@
7 Linking 0O 0© .
8 Exceptional control flow . . .
9 Virtual memory o® . . . .

10 System-level /O . .

—_
—_

Network programming

—_
\]

Concurrent programming

Figure 2 Five systems courses based on the CS:APP book. Notes: (a) Hardware only,
(b) No dynamic storage allocation, (c) No dynamic linking, (d) No floating point. ICS+

is the 15-213 course from Carnegie Mellon.

* ICS+: The baseline ICS course with additional coverage of systems program-
ming topics such as system-level I/O, network programming, and concurrent
programming. This is the semester-long Carnegie Mellon course, which covers
every chapter in CS:APP except low-level processor architecture.

* SP: A systems programming course. Similar to the ICS+ course, but drops
floating point and performance optimization, and places more emphasis on
systems programming, including process control, dynamic linking, system-
level I/0O, network programming, and concurrent programming. Instructors
might want to supplement from other sources for advanced topics such as

daemons, terminal control, and Unix IPC.

The main message of Figure 2 is that the CS:APP book gives a lot of options
to students and instructors. If you want your students to be exposed to lower-
level processor architecture, then that option is available via the ORG and ORG+
courses. On the other hand, if you want to switch from your current computer
organization course to an ICS or ICS+ course, but are wary are making such
a drastic change all at once, then you can move toward ICS incrementally. You
can start with ORG, which teaches the traditional topics in a nontraditional way.
Once you are comfortable with that material, then you can move to ORG+, and
eventually to ICS. If students have no experience in C (for example they have
only programmed in Java), you could spend several weeks on C and then cover

the material of ORG or ICS.



Finally, we note that the ORG+ and SP courses would make a nice two-term
(either quarters or semesters) sequence. Or you might consider offering ICS+ as
one term of ICS and one term of SP.

Classroom-Tested Laboratory Exercises

The ICS+ course at Carnegie Mellon receives very high evaluations from students.
Median scores of 5.0/5.0 and means of 4.6/5.0 are typical for the student course
evaluations. Students cite the fun, exciting, and relevant laboratory exercises as
the primary reason. The labs are available from the CS:APP Web page. Here are
examples of the labs that are provided with the book:

® Data Lab. This lab requires students to implement simple logical and arith-
metic functions, but using a highly restricted subset of C. For example, they
must compute the absolute value of a number using only bit-level operations.
This lab helps students understand the bit-level representations of C data
types and the bit-level behavior of the operations on data.

* Binary Bomb Lab. A binary bomb is a program provided to students as an
object-code file. When run, it prompts the user to type in six different strings.
If any of these is incorrect, the bomb “explodes,” printing an error message
and logging the event on a grading server. Students must “defuse” their
own unique bombs by disassembling and reverse engineering the programs
to determine what the six strings should be. The lab teaches students to
understand assembly language, and also forces them to learn how to use a
debugger.

e Buffer Overflow Lab. Students are required to modify the run-time behavior
of a binary executable by exploiting a buffer overflow vulnerability. This lab
teaches the students about the stack discipline, and teaches them about the
danger of writing code that is vulnerable to buffer overflow attacks.

® Architecture Lab. Several of the homework problems of Chapter 4 can be
combined into a lab assignment, where students modify the HCL description
of a processor to add new instructions, change the branch prediction policy,
or add or remove bypassing paths and register ports. The resulting processors
can be simulated and run through automated tests that will detect most of the
possible bugs. This lab lets students experience the exciting parts of processor
design without requiring a complete background in logic design and hardware
description languages.

* Performance Lab. Students must optimize the performance of an application
kernel function such as convolution or matrix transposition. This lab provides
a very clear demonstration of the properties of cache memories, and gives
students experience with low-level program optimization.

 Shell Lab. Students implement their own Unix shell program with job control,
including the ctrl-c and ctrl-zkeystrokes, fg, bg, and jobs commands. This
is the student’s first introduction to concurrency, and gives them a clear idea
of Unix process control, signals, and signal handling.
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® Malloc Lab. Students implement their own versions of malloc, free, and
(optionally) realloc. This lab gives students a clear understanding of data
layout and organization, and requires them to evaluate different trade-offs
between space and time efficiency.

e Proxy Lab. Students implement a concurrent Web proxy that sits between
their browsers and the rest of the World Wide Web. This lab exposes the
students to such topics as Web clients and servers, and ties together many of
the concepts from the course, such as byte ordering, file I/O, process control,
signals, signal handling, memory mapping, sockets, and concurrency. Students
like being able to see their programs in action with real Web browsers and Web
Servers.

The CS:APP Instructor’s Manual has a detailed discussion of the labs, as well
as directions for downloading the support software.
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2 Chapter 1

A Tour of Computer Systems

A computer system consists of hardware and systems software that work together
to run application programs. Specific implementations of systems change over
time, but the underlying concepts do not. All computer systems have similar
hardware and software components that perform similar functions. This book is
written for programmers who want to get better at their craft by understanding
how these components work and how they affect the correctness and performance
of their programs.

You are poised for an exciting journey. If you dedicate yourself to learning the
conceptsin this book, then you will be on your way to becoming a rare “power pro-
grammer,” enlightened by an understanding of the underlying computer system
and its impact on your application programs.

You are going to learn practical skills such as how to avoid strange numerical
errors caused by the way that computers represent numbers. You will learn how
to optimize your C code by using clever tricks that exploit the designs of modern
processors and memory systems. You will learn how the compiler implements
procedure calls and how to use this knowledge to avoid the security holes from
buffer overflow vulnerabilities that plague network and Internet software. You will
learn how to recognize and avoid the nasty errors during linking that confound
the average programmer. You will learn how to write your own Unix shell, your
own dynamic storage allocation package, and even your own Web server. You will
learn the promises and pitfalls of concurrency, a topic of increasing importance as
multiple processor cores are integrated onto single chips.

In their classic text on the C programming language [58], Kernighan and
Ritchie introduce readers to C using the hello program shown in Figure 1.1.
Although hello is a very simple program, every major part of the system must
work in concert in order for it to run to completion. In a sense, the goal of this
book is to help you understand what happens and why, when you run hello on
your system.

We begin our study of systems by tracing the lifetime of the hello program,
from the time it is created by a programmer, until it runs on a system, prints its
simple message, and terminates. As we follow the lifetime of the program, we will
briefly introduce the key concepts, terminology, and components that come into
play. Later chapters will expand on these ideas.

code/intro/hello.c

#include <stdio.h>

:
2

3 int main()

4 A

5 printf("hello, world\n");
6 }

code/intro/hello.c

Figure 1.1 The hello program.
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1.1 Information Is Bits + Context

Our hello program begins life as a source program (or source file) that the
programmer creates with an editor and saves in a text file called hello.c. The
source program is a sequence of bits, each with a value of 0 or 1, organized
in 8-bit chunks called byfes. Each byte represents some text character in the
program.

Most modern systems represent text characters using the ASCII standard that
represents each character with a unique byte-sized integer value. For example,
Figure 1.2 shows the ASCII representation of the hello.c program.

The hello.c program is stored in a file as a sequence of bytes. Each byte has
an integer value that corresponds to some character. For example, the first byte
has the integer value 35, which corresponds to the character ‘#’. The second byte
has the integer value 105, which corresponds to the character ‘i’, and so on. Notice
that each text line is terminated by the invisible newline character ‘\n’, which is
represented by the integer value 10. Files such as hello. c that consist exclusively
of ASCII characters are known as text files. All other files are known as binary
files.

The representation of hello. cillustrates a fundamental idea: All information
in a system—including disk files, programs stored in memory, user data stored in
memory, and data transferred across a network—is represented as a bunch of bits.
The only thing that distinguishes different data objects is the context in which
we view them. For example, in different contexts, the same sequence of bytes
might represent an integer, floating-point number, character string, or machine
instruction.

As programmers, we need to understand machine representations of numbers
because they are not the same as integers and real numbers. They are finite
approximations that can behave in unexpected ways. This fundamental idea is
explored in detail in Chapter 2.

# i n C 1 u d e <sp> < s t d i
35 105 110 99 108 117 100 101 32 60 115 116 100 105

h > \n \n i n t <sp> m a i n ( )
104 62 10 10 105 110 116 32 109 97 105 110 40 41

\n <sp> <sp> <sp> <sp> p r i n t f ( " h
10 32 32 32 32 112 114 105 110 116 102 40 34 104

1 o , <sp> W o T 1 d \ n " ) ;
108 111 44 32 119 111 114 108 100 92 110 34 41 59

Figure 1.2 The ASCII text representation of hello.c.

111

\n

10

101

\n
10

46
123
108

125

3



4 Chapter 1 A Tour of Computer Systems

Aside Origins of the C programming language

C was developed from 1969 to 1973 by Dennis Ritchie of Bell Laboratories. The American National
Standards Institute (ANSI) ratified the ANSI C standard in 1989, and this standardization later became
the responsibility of the International Standards Organization (ISO). The standards define the C
language and a set of library functions known as the C standard library. Kernighan and Ritchie describe
ANSI C in their classic book, which is known affectionately as “K&R” [58]. In Ritchie’s words [88], C
is “quirky, flawed, and an enormous success.” So why the success?

e C was closely tied with the Unix operating system. C was developed from the beginning as the
system programming language for Unix. Most of the Unix kernel, and all of its supporting tools
and libraries, were written in C. As Unix became popular in universities in the late 1970s and early
1980s, many people were exposed to C and found that they liked it. Since Unix was written almost
entirely in C, it could be easily ported to new machines, which created an even wider audience for
both C and Unix.

e Cisasmall, simple language. The design was controlled by a single person, rather than a committee,
and the result was a clean, consistent design with little baggage. The K&R book describes the
complete language and standard library, with numerous examples and exercises, in only 261 pages.
The simplicity of C made it relatively easy to learn and to port to different computers.

® C was designed for a practical purpose. C was designed to implement the Unix operating system.
Later, other people found that they could write the programs they wanted, without the language
getting in the way.

C is the language of choice for system-level programming, and there is a huge installed base of
application-level programs as well. However, it is not perfect for all programmers and all situations.
C pointers are a common source of confusion and programming errors. C also lacks explicit support
for useful abstractions such as classes, objects, and exceptions. Newer languages such as C++ and Java
address these issues for application-level programs.

1.2 Programs Are Translated by Other Programs into
Different Forms

The hello program begins life as a high-level C program because it can be read
and understood by human beings in that form. However, in order to run hello.c
on the system, the individual C statements must be translated by other programs
into a sequence of low-level machine-language instructions. These instructions are
then packaged in a form called an executable object program and stored as a binary
disk file. Object programs are also referred to as executable object files.

On a Unix system, the translation from source file to object file is performed
by a compiler driver:

unix> gcc -o hello hello.c
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printf.o
hello.c i Compiler | hello.s [Assembler| hello.o
(ccl) (as)
Source Modified Assembly Relocatable Executable
program source program object object
(text) program (text) programs program
(text) (binary) (binary)

Figure 1.3 The compilation system.

Here, the Gce compiler driver reads the source file hello. c and translates it into
an executable object file hello. The translation is performed in the sequence
of four phases shown in Figure 1.3. The programs that perform the four phases
(preprocessor, compiler, assembler, and linker) are known collectively as the
compilation system.

* Preprocessing phase. The preprocessor (cpp) modifies the original C program
according to directives that begin with the # character. For example, the
#include <stdio.h> command in line 1 of hello.c tells the preprocessor
to read the contents of the system header file stdio.h and insert it directly
into the program text. The result is another C program, typically with the .1
suffix.

Compilation phase. The compiler (cc1) translates the text file hello.i into
the text file hello.s, which contains an assembly-language program. Each
statement in an assembly-language program exactly describes one low-level
machine-language instruction in a standard text form. Assembly language is
useful because it provides a common output language for different compilers
for different high-level languages. For example, C compilers and Fortran
compilers both generate output files in the same assembly language.

Assembly phase. Next, the assembler (as) translates hello.s into machine-
language instructions, packages them in a form known as a relocatable object
program, and stores the result in the object file hello.o. The hello.o file is
a binary file whose bytes encode machine language instructions rather than
characters. If we were to view hello.o with a text editor, it would appear to
be gibberish.

Linking phase. Notice that our hello program calls the printf function, which
is part of the standard C library provided by every C compiler. The printf
function resides in a separate precompiled object file called printf . o, which
must somehow be merged with our hello.o program. The linker (1d) handles
this merging. The result is the hello file, which is an executable object file (or
simply executable) that is ready to be loaded into memory and executed by
the system.
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Aside The GNU project

GCC is one of many useful tools developed by the GNU (short for GNU’s Not Unix) project. The
GNU project is a tax-exempt charity started by Richard Stallman in 1984, with the ambitious goal of
developing a complete Unix-like system whose source code is unencumbered by restrictions on how
it can be modified or distributed. The GNU project has developed an environment with all the major
components of a Unix operating system, except for the kernel, which was developed separately by
the Linux project. The GNU environment includes the EMAcs editor, Gcc compiler, GDB debugger,
assembler, linker, utilities for manipulating binaries, and other components. The Gcc compiler has
grown to support many different languages, with the ability to generate code for many different
machines. Supported languages include C, C++, Fortran, Java, Pascal, Objective-C, and Ada.

The GNU project is a remarkable achievement, and yet it is often overlooked. The modern open-
source movement (commonly associated with Linux) owes its intellectual origins to the GNU project’s
notion of free software (“free” as in “free speech,” not “free beer”). Further, Linux owes much of its
popularity to the GNU tools, which provide the environment for the Linux kernel.

1.3 It Pays to Understand How Compilation Systems Work

For simple programs such as hello.c, we can rely on the compilation system to
produce correct and efficient machine code. However, there are some important
reasons why programmers need to understand how compilation systems work:

e Optimizing program performance. Modern compilers are sophisticated tools
that usually produce good code. As programmers, we do not need to know
the inner workings of the compiler in order to write efficient code. However,
in order to make good coding decisions in our C programs, we do need a
basic understanding of machine-level code and how the compiler translates
different C statements into machine code. For example, is a switch statement
always more efficient than a sequence of if-else statements? How much
overhead is incurred by a function call? Is a while loop more efficient than
a for loop? Are pointer references more efficient than array indexes? Why
does our loop run so much faster if we sum into a local variable instead of an
argument that is passed by reference? How can a function run faster when we
simply rearrange the parentheses in an arithmetic expression?

In Chapter 3, we will introduce two related machine languages: IA32, the
32-bit code that has become ubiquitous on machines running Linux, Windows,
and more recently the Macintosh operating systems, and x86-64, a 64-bit
extension found in more recent microprocessors. We describe how compilers
translate different C constructs into these languages. In Chapter 5, you will
learn how to tune the performance of your C programs by making simple
transformations to the C code that help the compiler do its job better. In
Chapter 6, you will learn about the hierarchical nature of the memory system,
how C compilers store data arrays in memory, and how your C programs can
exploit this knowledge to run more efficiently.
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e Understanding link-time errors. In our experience, some of the most perplex-
ing programming errors are related to the operation of the linker, especially
when you are trying to build large software systems. For example, what does
it mean when the linker reports that it cannot resolve a reference? What is the
difference between a static variable and a global variable? What happens if
you define two global variables in different C files with the same name? What
is the difference between a static library and a dynamic library? Why does it
matter what order we list libraries on the command line? And scariest of all,
why do some linker-related errors not appear until run time? You will learn
the answers to these kinds of questions in Chapter 7.

* Avoiding security holes. For many years, buffer overflow vulnerabilities have
accounted for the majority of security holes in network and Internet servers.
These vulnerabilities exist because too few programmers understand the need
to carefully restrict the quantity and forms of data they accept from untrusted
sources. A first step in learning secure programming is to understand the con-
sequences of the way data and control information are stored on the program
stack. We cover the stack discipline and buffer overflow vulnerabilities in
Chapter 3 as part of our study of assembly language. We will also learn about
methods that can be used by the programmer, compiler, and operating system
to reduce the threat of attack.

1.4 Processors Read and Interpret Instructions
Stored in Memory

At this point, our hello. c source program has been translated by the compilation
system into an executable object file called hello that is stored on disk. To run
the executable file on a Unix system, we type its name to an application program
known as a shell:

unix> ./hello
hello, world
unix>

The shell is acommand-line interpreter that prints a prompt, waits for you to type a
command line, and then performs the command. If the first word of the command
line does not correspond to a built-in shell command, then the shell assumes that
it is the name of an executable file that it should load and run. So in this case,
the shell loads and runs the hello program and then waits for it to terminate. The
hello program prints its message to the screen and then terminates. The shell then
prints a prompt and waits for the next input command line.

1.4.1 Hardware Organization of a System

To understand what happens to our hello program when we run it, we need
to understand the hardware organization of a typical system, which is shown in
Figure 1.4. This particular picture is modeled after the family of Intel Pentium
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Figure 1.4

Hardware organization
of a typical system. CPU:
Central Processing Unit,
ALU: Arithmetic/Logic
Unit, PC: Program counter,
USB: Universal Serial Bus.

CPU
Register file
ALU
System bus  Memory bus
Bus interf I/0 Main
us Interiace bridge memory
1/0 bus D D D )
Expansion slots for
- - other devices such
usB Graphics Disk as network adapters
controller adapter controller
Mouse Keyboard Display C

hello executable
stored on disk

systems, but all systems have a similar look and feel. Don’t worry about the
complexity of this figure just now. We will get to its various details in stages
throughout the course of the book.

Buses

Running throughout the system is a collection of electrical conduits called buses
that carry bytes of information back and forth between the components. Buses
are typically designed to transfer fixed-sized chunks of bytes known as words. The
number of bytes in a word (the word size) is a fundamental system parameter that
varies across systems. Most machines today have word sizes of either 4 bytes (32
bits) or 8 bytes (64 bits). For the sake of our discussion here, we will assume a word
size of 4 bytes, and we will assume that buses transfer only one word at a time.

/O Devices

Input/output (I/0) devices are the system’s connection to the external world. Our
example system has four I/O devices: a keyboard and mouse for user input, a
display for user output, and a disk drive (or simply disk) for long-term storage of
data and programs. Initially, the executable hello program resides on the disk.

Each I/O device is connected to the I/O bus by either a controller or an adapter.
The distinction between the two is mainly one of packaging. Controllers are chip
sets in the device itself or on the system’s main printed circuit board (often called
the motherboard). An adapter is a card that plugs into a slot on the motherboard.
Regardless, the purpose of each is to transfer information back and forth between
the I/0 bus and an I/O device.
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Chapter 6 has more to say about how I/O devices such as disks work. In
Chapter 10, you will learn how to use the Unix I/O interface to access devices from
your application programs. We focus on the especially interesting class of devices
known as networks, but the techniques generalize to other kinds of devices as well.

Main Memory

The main memory is a temporary storage device that holds both a program and
the data it manipulates while the processor is executing the program. Physically,
main memory consists of a collection of dynamic random access memory (DRAM)
chips. Logically, memory is organized as a linear array of bytes, each with its own
unique address (array index) starting at zero. In general, each of the machine
instructions that constitute a program can consist of a variable number of bytes.
The sizes of data items that correspond to C program variables vary according to
type. For example, on an IA32 machine running Linux, data of type short requires
two bytes, types int, float, and long four bytes, and type double eight bytes.

Chapter 6 has more to say about how memory technologies such as DRAM
chips work, and how they are combined to form main memory.

Processor

The central processing unit (CPU), or simply processor, is the engine that inter-
prets (or executes) instructions stored in main memory. At its core is a word-sized
storage device (or register) called the program counter (PC). At any point in time,
the PC points at (contains the address of) some machine-language instruction in
main memory.!

From the time that power is applied to the system, until the time that the
power is shut off, a processor repeatedly executes the instruction pointed at by the
program counter and updates the program counter to point to the next instruction.
A processor appears to operate according to a very simple instruction execution
model, defined by its instruction set architecture. In this model, instructions execute
in strict sequence, and executing a single instruction involves performing a series
of steps. The processor reads the instruction from memory pointed at by the
program counter (PC), interprets the bits in the instruction, performs some simple
operation dictated by the instruction, and then updates the PC to point to the next
instruction, which may or may not be contiguous in memory to the instruction that
was just executed.

There are only a few of these simple operations, and they revolve around
main memory, the register file, and the arithmetic/logic unit (ALU). The register
file is a small storage device that consists of a collection of word-sized registers,
each with its own unique name. The ALU computes new data and address values.
Here are some examples of the simple operations that the CPU might carry out
at the request of an instruction:

1. PC is also a commonly used acronym for “personal computer.” However, the distinction between
the two should be clear from the context.
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® Load: Copy a byte or a word from main memory into a register, overwriting
the previous contents of the register.

e Store: Copy a byte or a word from a register to a location in main memory,
overwriting the previous contents of that location.

* Operate: Copy the contents of two registers to the ALU, perform an arithmetic
operation on the two words, and store the result in a register, overwriting the
previous contents of that register.

e Jump: Extract a word from the instruction itself and copy that word into the
program counter (PC), overwriting the previous value of the PC.

We say that a processor appears to be a simple implementation of its in-
struction set architecture, but in fact modern processors use far more complex
mechanisms to speed up program execution. Thus, we can distinguish the pro-
cessor’s instruction set architecture, describing the effect of each machine-code
instruction, from its microarchitecture, describing how the processor is actually
implemented. When we study machine code in Chapter 3, we will consider the
abstraction provided by the machine’s instruction set architecture. Chapter 4 has
more to say about how processors are actually implemented.

1.4.2 Running the hello Program

Given this simple view of a system’s hardware organization and operation, we can
begin to understand what happens when we run our example program. We must
omit a lot of details here that will be filled in later, but for now we will be content
with the big picture.

Initially, the shell program is executing its instructions, waiting for us to type
a command. As we type the characters “./hello” at the keyboard, the shell
program reads each one into a register, and then stores it in memory, as shown in
Figure 1.5.

When we hit the enter key on the keyboard, the shell knows that we have
finished typing the command. The shell then loads the executable hello file by
executing a sequence of instructions that copies the code and data in the hello
object file from disk to main memory. The data include the string of characters
“hello, world\n” that will eventually be printed out.

Using a technique known as direct memory access (DMA, discussed in Chap-
ter 6), the data travels directly from disk to main memory, without passing through
the processor. This step is shown in Figure 1.6.

Once the code and data in the hello object file are loaded into memory, the
processor begins executing the machine-language instructions in the hello pro-
gram’s main routine. These instructions copy the bytes in the “hello, world\n”
string from memory to the register file, and from there to the display device, where
they are displayed on the screen. This step is shown in Figure 1.7.
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Figure 1.5 CPU
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Figure 1.6 Loading the executable from disk into main memory.
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Figure 1.7 CPU
Writing the output string Register file
from memory to the

display. ALU

System bus  Memory bus

/[e] Main | “hello, world\n”
bridge memory| 1110 code

I/0 bus D D D

Expansion slots for
other devices such

Bus interface

uUSB Graphics Disk as network adapters
controller adapter controller
Mouse Keyboard Display D hello executable
“hello, world\n” W stored on disk

1.5 Caches Matter

An important lesson from this simple example is that a system spends a lot of
time moving information from one place to another. The machine instructions in
the hello program are originally stored on disk. When the program is loaded,
they are copied to main memory. As the processor runs the program, instruc-
tions are copied from main memory into the processor. Similarly, the data string
“hello,world\n”, originally on disk, is copied to main memory, and then copied
from main memory to the display device. From a programmer’s perspective, much
of this copying is overhead that slows down the “real work” of the program. Thus,
a major goal for system designers is to make these copy operations run as fast as
possible.

Because of physical laws, larger storage devices are slower than smaller stor-
age devices. And faster devices are more expensive to build than their slower
counterparts. For example, the disk drive on a typical system might be 1000 times
larger than the main memory, but it might take the processor 10,000,000 times
longer to read a word from disk than from memory.

Similarly, a typical register file stores only a few hundred bytes of information,
as opposed to billions of bytes in the main memory. However, the processor can
read data from the register file almost 100 times faster than from memory. Even
more troublesome, as semiconductor technology progresses over the years, this
processor-memory gap continues to increase. It is easier and cheaper to make
processors run faster than it is to make main memory run faster.

To deal with the processor-memory gap, system designers include smaller
faster storage devices called cache memories (or simply caches) that serve as
temporary staging areas for information that the processor is likely to need in
the near future. Figure 1.8 shows the cache memories in a typical system. An LI
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Figure 1.8 CPU chip
Cache memories.

Register file

Cachg ALU
memories

I/0

Bus interface | bridge

cache on the processor chip holds tens of thousands of bytes and can be accessed
nearly as fast as the register file. A larger L2 cache with hundreds of thousands
to millions of bytes is connected to the processor by a special bus. It might take 5
times longer for the process to access the L2 cache than the L1 cache, but this is
still 5 to 10 times faster than accessing the main memory. The L1 and L2 caches are
implemented with a hardware technology known as static random access memory
(SRAM). Newer and more powerful systems even have three levels of cache: L1,
L2, and L3. The idea behind caching is that a system can get the effect of both
a very large memory and a very fast one by exploiting locality, the tendency for
programs to access data and code in localized regions. By setting up caches to hold
data that is likely to be accessed often, we can perform most memory operations
using the fast caches.

One of the most important lessons in this book is that application program-
mers who are aware of cache memories can exploit them to improve the perfor-
mance of their programs by an order of magnitude. You will learn more about
these important devices and how to exploit them in Chapter 6.

1.6 Storage Devices Form a Hierarchy

This notion of inserting a smaller, faster storage device (e.g., cache memory)
between the processor and a larger slower device (e.g., main memory) turns out
to be a general idea. In fact, the storage devices in every computer system are
organized as a memory hierarchy similar to Figure 1.9. As we move from the top
of the hierarchy to the bottom, the devices become slower, larger, and less costly
per byte. The register file occupies the top level in the hierarchy, which is known
as level 0, or LO. We show three levels of caching L1 to L3, occupying memory
hierarchy levels 1 to 3. Main memory occupies level 4, and so on.

The main idea of a memory hierarchy is that storage at one level serves as a
cache for storage at the next lower level. Thus, the register file is a cache for the
L1 cache. Caches L1 and L2 are caches for L2 and L3, respectively. The L3 cache
is a cache for the main memory, which is a cache for the disk. On some networked
systems with distributed file systems, the local disk serves as a cache for data stored
on the disks of other systems.

System bus Memory bus

|

Main
memory
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Figure 1.9 An example of a memory hierarchy.

Figure 1.10

Layered view of a
computer system.

Just as programmers can exploit knowledge of the different caches to improve
performance, programmers can exploit their understanding of the entire memory
hierarchy. Chapter 6 will have much more to say about this.

1.7 The Operating System Manages the Hardware

Back to our hello example. When the shell loaded and ran the hello program,
and when the hello program printed its message, neither program accessed the
keyboard, display, disk, or main memory directly. Rather, they relied on the
services provided by the operating system. We can think of the operating system as
alayer of software interposed between the application program and the hardware,
as shown in Figure 1.10. All attempts by an application program to manipulate the
hardware must go through the operating system.

The operating system has two primary purposes: (1) to protect the hardware
from misuse by runaway applications, and (2) to provide applications with simple
and uniform mechanisms for manipulating complicated and often wildly different
low-level hardware devices. The operating system achieves both goals via the

} Software

} Hardware

Application programs

Operating system

Processor Main memory I/O devices
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Figure 1.11 Processes
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fundamental abstractions shown in Figure 1.11: processes, virtual memory, and
files. As this figure suggests, files are abstractions for I/O devices, virtual memory
is an abstraction for both the main memory and disk I/O devices, and processes
are abstractions for the processor, main memory, and I/O devices. We will discuss
each in turn.

Aside Unix and Posix

The 1960s was an era of huge, complex operating systems, such as IBM’s OS/360 and Honeywell’s
Multics systems. While OS/360 was one of the most successful software projects in history, Multics
dragged on for years and never achieved wide-scale use. Bell Laboratories was an original partner in the
Multics project, but dropped out in 1969 because of concern over the complexity of the project and the
lack of progress. In reaction to their unpleasant Multics experience, a group of Bell Labs researchers—
Ken Thompson, Dennis Ritchie, Doug Mcllroy, and Joe Ossanna—began work in 1969 on a simpler
operating system for a DEC PDP-7 computer, written entirely in machine language. Many of the ideas
in the new system, such as the hierarchical file system and the notion of a shell as a user-level process,
were borrowed from Multics but implemented in a smaller, simpler package. In 1970, Brian Kernighan
dubbed the new system “Unix” as a pun on the complexity of “Multics.” The kernel was rewritten in
Cin 1973, and Unix was announced to the outside world in 1974 [89].

Because Bell Labs made the source code available to schools with generous terms, Unix developed
a large following at universities. The most influential work was done at the University of California
at Berkeley in the late 1970s and early 1980s, with Berkeley researchers adding virtual memory and
the Internet protocols in a series of releases called Unix 4.xBSD (Berkeley Software Distribution).
Concurrently, Bell Labs was releasing their own versions, which became known as System V Unix.
Versions from other vendors, such as the Sun Microsystems Solaris system, were derived from these
original BSD and System V versions.

Trouble arose in the mid 1980s as Unix vendors tried to differentiate themselves by adding new
and often incompatible features. To combat this trend, IEEE (Institute for Electrical and Electronics
Engineers) sponsored an effort to standardize Unix, later dubbed “Posix” by Richard Stallman. The
result was a family of standards, known as the Posix standards, that cover such issues as the C language
interface for Unix system calls, shell programs and utilities, threads, and network programming. As
more systems comply more fully with the Posix standards, the differences between Unix versions are
gradually disappearing.
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Figure 1.12
Process context
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A Tour of Computer Systems

1.7.1 Processes

When a program such as hello runs on a modern system, the operating system
provides the illusion that the program is the only one running on the system. The
program appears to have exclusive use of both the processor, main memory, and
I/0O devices. The processor appears to execute the instructions in the program, one
after the other, without interruption. And the code and data of the program appear
to be the only objects in the system’s memory. These illusions are provided by the
notion of a process, one of the most important and successful ideas in computer
science.

A process is the operating system’s abstraction for a running program. Multi-
ple processes can run concurrently on the same system, and each process appears
to have exclusive use of the hardware. By concurrently, we mean that the instruc-
tions of one process are interleaved with the instructions of another process. In
most systems, there are more processes to run than there are CPUs to run them.
Traditional systems could only execute one program at a time, while newer multi-
core processors can execute several programs simultaneously. In either case, a
single CPU can appear to execute multiple processes concurrently by having the
processor switch among them. The operating system performs this interleaving
with a mechanism known as context switching. To simplify the rest of this discus-
sion, we consider only a uniprocessor system containing a single CPU. We will
return to the discussion of multiprocessor systems in Section 1.9.1.

The operating system keeps track of all the state information that the process
needs in order to run. This state, which is known as the context, includes infor-
mation such as the current values of the PC, the register file, and the contents
of main memory. At any point in time, a uniprocessor system can only execute
the code for a single process. When the operating system decides to transfer con-
trol from the current process to some new process, it performs a context switch
by saving the context of the current process, restoring the context of the new
process, and then passing control to the new process. The new process picks up
exactly where it left off. Figure 1.12 shows the basic idea for our example hello
scenario.

There are two concurrent processes in our example scenario: the shell process
and the hello process. Initially, the shell process is running alone, waiting for input
on the command line. When we ask it to run the hello program, the shell carries
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out our request by invoking a special function known as a system call that passes
control to the operating system. The operating system saves the shell’s context,
creates a new hello process and its context, and then passes control to the new
hello process. After hello terminates, the operating system restores the context
of the shell process and passes control back to it, where it waits for the next
command line input.

Implementing the process abstraction requires close cooperation between
both the low-level hardware and the operating system software. We will explore
how this works, and how applications can create and control their own processes,
in Chapter 8.

1.7.2 Threads

Although we normally think of a process as having a single control flow, in modern
systems a process can actually consist of multiple execution units, called threads,
each running in the context of the process and sharing the same code and global
data. Threads are an increasingly important programming model because of the
requirement for concurrency in network servers, because it is easier to share data
between multiple threads than between multiple processes, and because threads
are typically more efficient than processes. Multi-threading is also one way to make
programs run faster when multiple processors are available, as we will discuss in
Section 1.9.1. You will learn the basic concepts of concurrency, including how to
write threaded programs, in Chapter 12.

1.7.3 Virtual Memory

Virtual memory is an abstraction that provides each process with the illusion that it
has exclusive use of the main memory. Each process has the same uniform view of
memory, which is known as its virtual address space. The virtual address space for
Linux processes is shown in Figure 1.13. (Other Unix systems use a similar layout.)
In Linux, the topmost region of the address space is reserved for code and data
in the operating system that is common to all processes. The lower region of the
address space holds the code and data defined by the user’s process. Note that
addresses in the figure increase from the bottom to the top.

The virtual address space seen by each process consists of a number of well-
defined areas, each with a specific purpose. You will learn more about these areas
later in the book, but it will be helpful to look briefly at each, starting with the
lowest addresses and working our way up:

* Program code and data. Code begins at the same fixed address for all processes,
followed by data locations that correspond to global C variables. The code and
data areas are initialized directly from the contents of an executable object file,
in our case the hello executable. You will learn more about this part of the
address space when we study linking and loading in Chapter 7.

17
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Figure 1.13
Process virtual address
space.
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Heap. The code and data areas are followed immediately by the run-time heap.
Unlike the code and data areas, which are fixed in size once the process begins
running, the heap expands and contracts dynamically at run time as a result
of calls to C standard library routines such as malloc and free. We will study
heaps in detail when we learn about managing virtual memory in Chapter 9.

Shared libraries. Near the middle of the address space is an area that holds the
code and data for shared libraries such as the C standard library and the math
library. The notion of a shared library is a powerful but somewhat difficult
concept. You will learn how they work when we study dynamic linking in
Chapter 7.

Stack. At the top of the user’s virtual address space is the user stack that
the compiler uses to implement function calls. Like the heap, the user stack
expands and contracts dynamically during the execution of the program. In
particular, each time we call a function, the stack grows. Each time we return
from a function, it contracts. You will learn how the compiler uses the stack
in Chapter 3.

Kernel virtual memory. The kernel is the part of the operating system that is
always resident in memory. The top region of the address space is reserved for
the kernel. Application programs are not allowed to read or write the contents
of this area or to directly call functions defined in the kernel code.

For virtual memory to work, a sophisticated interaction is required between

the hardware and the operating system software, including a hardware translation
of every address generated by the processor. The basic idea is to store the contents
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of a process’s virtual memory on disk, and then use the main memory as a cache
for the disk. Chapter 9 explains how this works and why it is so important to the
operation of modern systems.

1.7.4 Files

A file is a sequence of bytes, nothing more and nothing less. Every I/O device,
including disks, keyboards, displays, and even networks, is modeled as a file. All
input and output in the system is performed by reading and writing files, using a
small set of system calls known as Unix I/O.

This simple and elegant notion of a file is nonetheless very powerful because
it provides applications with a uniform view of all of the varied I/O devices that
might be contained in the system. For example, application programmers who
manipulate the contents of a disk file are blissfully unaware of the specific disk
technology. Further, the same program will run on different systems that use
different disk technologies. You will learn about Unix I/O in Chapter 10.

Aside The Linux project

In August 1991, a Finnish graduate student named Linus Torvalds modestly announced a new Unix-like
operating system kernel:

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)
Newsgroups: comp.os.minix

Subject: What would you like to see most in minix?

Summary: small poll for my new operating system

Date: 25 Aug 91 20:57:08 GMT

Hello everybody out there using minix -

I'm doing a (free) operating system (just a hobby, won't be big and

professional like gnu) for 386(486) AT clones. This has been brewing
since April, and is starting to get ready. I'd like any feedback on

things people like/dislike in minix, as my OS resembles it somewhat

(same physical layout of the file-system (due to practical reasons)

among other things).

I've currently ported bash(1.08) and gcc(1.40), and things seem to work.
This implies that I'll get something practical within a few months, and
I'd 1ike to know what features most people would want. Any suggestions
are welcome, but I won't promise I'll implement them :-)

Linus (torvalds@kruuna.helsinki.fi)
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The rest, as they say, is history. Linux has evolved into a technical and cultural phenomenon. By
combining forces with the GNU project, the Linux project has developed a complete, Posix-compliant
version of the Unix operating system, including the kernel and all of the supporting infrastructure.
Linux is available on a wide array of computers, from hand-held devices to mainframe computers. A
group at IBM has even ported Linux to a wristwatch!

1.8 Systems Communicate with Other Systems
Using Networks

Up to this point in our tour of systems, we have treated a system as an isolated
collection of hardware and software. In practice, modern systems are often linked
to other systems by networks. From the point of view of an individual system, the
network can be viewed as just another I/O device, as shown in Figure 1.14. When
the system copies a sequence of bytes from main memory to the network adapter,
the data flows across the network to another machine, instead of, say, to a local
disk drive. Similarly, the system can read data sent from other machines and copy
this data to its main memory.

With the advent of global networks such as the Internet, copying information
from one machine to another has become one of the most important uses of
computer systems. For example, applications such as email, instant messaging, the
World Wide Web, FTP, and telnet are all based on the ability to copy information
over a network.

Returning to our hello example, we could use the familiar telnet application
to run hello on a remote machine. Suppose we use a telnet client running on our
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1.User types 2. Client sends “hello”

‘hello” at the string to telnet server
keyboard 7 local Ne--o--ommmm oo
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“hello, world\n” string
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5. Client prints
“hello, world\n”
string on display

Figure 1.15 Using telnet to run hello remotely over a network.

local machine to connect to a telnet server on a remote machine. After we log in
to the remote machine and run a shell, the remote shell is waiting to receive an
input command. From this point, running the hello program remotely involves
the five basic steps shown in Figure 1.15.

After we type the “hello” string to the telnet client and hit the enter key,
the client sends the string to the telnet server. After the telnet server receives the
string from the network, it passes it along to the remote shell program. Next, the
remote shell runs the hello program, and passes the output line back to the telnet
server. Finally, the telnet server forwards the output string across the network to
the telnet client, which prints the output string on our local terminal.

This type of exchange between clients and servers is typical of all network
applications. In Chapter 11, you will learn how to build network applications, and
apply this knowledge to build a simple Web server.

1.9 Important Themes

This concludes our initial whirlwind tour of systems. An important idea to take
away from this discussion is that a system is more than just hardware. It is a
collection of intertwined hardware and systems software that must cooperate in
order to achieve the ultimate goal of running application programs. The rest of
this book will fill in some details about the hardware and the software, and it will
show how, by knowing these details, you can write programs that are faster, more
reliable, and more secure.

To close out this chapter, we highlight several important concepts that cut
across all aspects of computer systems. We will discuss the importance of these
concepts at multiple places within the book.

1.9.1 Concurrency and Parallelism

Throughout the history of digital computers, two demands have been constant
forces driving improvements: we want them to do more, and we want them to
run faster. Both of these factors improve when the processor does more things at
once. We use the term concurrency to refer to the general concept of a system with
multiple, simultaneous activities, and the term parallelism to refer to the use of
concurrency to make a system run faster. Parallelism can be exploited at multiple

3. Server sends “hello”
string to the shell, which
telnet runs the hello program
server and passes the output
to the telnet server
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Figure 1.16
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A Tour of Computer Systems

levels of abstraction in a computer system. We highlight three levels here, working
from the highest to the lowest level in the system hierarchy.

Thread-Level Concurrency

Building on the process abstraction, we are able to devise systems where multiple
programs execute at the same time, leading to concurrency. With threads, we
can even have multiple control flows executing within a single process. Support
for concurrent execution has been found in computer systems since the advent
of time-sharing in the early 1960s. Traditionally, this concurrent execution was
only simulated, by having a single computer rapidly switch among its executing
processes, much as a juggler keeps multiple balls flying through the air. This form
of concurrency allows multiple users to interact with a system at the same time,
such as when many people want to get pages from a single Web server. It also
allows a single user to engage in multiple tasks concurrently, such as having a
Web browser in one window, a word processor in another, and streaming music
playing at the same time. Until recently, most actual computing was done by a
single processor, even if that processor had to switch among multiple tasks. This
configuration is known as a uniprocessor system.

When we construct a system consisting of multiple processors all under the
control of a single operating system kernel, we have a multiprocessor system.
Such systems have been available for large-scale computing since the 1980s, but
they have more recently become commonplace with the advent of multi-core
processors and hyperthreading. Figure 1.16 shows a taxonomy of these different
processor types.

Multi-core processors have several CPUs (referred to as “cores”) integrated
onto a single integrated-circuit chip. Figure 1.17 illustrates the organization of an
Intel Core i7 processor, where the microprocessor chip has four CPU cores, each
with its own L1 and L2 caches but sharing the higher levels of cache as well as the
interface to main memory. Industry experts predict that they will be able to have
dozens, and ultimately hundreds, of cores on a single chip.

Hyperthreading, sometimes called simultaneous multi-threading, is a tech-
nique that allows a single CPU to execute multiple flows of control. It involves
having multiple copies of some of the CPU hardware, such as program counters
and register files, while having only single copies of other parts of the hardware,
such as the units that perform floating-point arithmetic. Whereas a conventional

All processors

Multiprocessors

Uniprocessors Multi- Hyper-
core threaded




Section 1.9 Important Themes

L3 unified cache
(shared by all cores)

Figure 1.17 Processor package
. . . T T T T T T TS T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
Intel Core i7 organization. ' Core 0 Core 3
Four processor cores are !
|nt'egrated onto a single ! Regs Regs
chip. !
I
i
1
! L1 L1 L1 L1
! d-cache i-cache et d-cache i-cache
I
1
1
:
I
! L2 unified cache L2 unified cache
1
I
I
I
I
1
1
I
I
I
I
1

Main memory

processor requires around 20,000 clock cycles to shift between different threads,
a hyperthreaded processor decides which of its threads to execute on a cycle-
by-cycle basis. It enables the CPU to make better advantage of its processing
resources. For example, if one thread must wait for some data to be loaded into
a cache, the CPU can proceed with the execution of a different thread. As an ex-
ample, the Intel Core i7 processor can have each core executing two threads, and
so a four-core system can actually execute eight threads in parallel.

The use of multiprocessing can improve system performance in two ways.
First, it reduces the need to simulate concurrency when performing multiple tasks.
As mentioned, even a personal computer being used by a single person is expected
to perform many activities concurrently. Second, it can run a single application
program faster, but only if that program is expressed in terms of multiple threads
that can effectively execute in parallel. Thus, although the principles of concur-
rency have been formulated and studied for over 50 years, the advent of multi-core
and hyperthreaded systems has greatly increased the desire to find ways to write
application programs that can exploit the thread-level parallelism available with
the hardware. Chapter 12 will look much more deeply into concurrency and its
use to provide a sharing of processing resources and to enable more parallelism
in program execution.

Instruction-Level Parallelism

At a much lower level of abstraction, modern processors can execute multiple
instructions at one time, a property known as instruction-level parallelism. For
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example, early microprocessors, such as the 1978-vintage Intel 8086 required
multiple (typically, 3-10) clock cycles to execute a single instruction. More recent
processors can sustain execution rates of 2—4 instructions per clock cycle. Any
given instruction requires much longer from start to finish, perhaps 20 cycles or
more, but the processor uses a number of clever tricks to process as many as 100
instructions at a time. In Chapter 4, we will explore the use of pipelining, where the
actions required to execute an instruction are partitioned into different steps and
the processor hardware is organized as a series of stages, each performing one
of these steps. The stages can operate in parallel, working on different parts of
different instructions. We will see that a fairly simple hardware design can sustain
an execution rate close to one instruction per clock cycle.

Processors that can sustain execution rates faster than one instruction per
cycle are known as superscalar processors. Most modern processors support super-
scalar operation. In Chapter 5, we will describe a high-level model of such proces-
sors. We will see that application programmers can use this model to understand
the performance of their programs. They can then write programs such that the
generated code achieves higher degrees of instruction-level parallelism and there-
fore runs faster.

Single-Instruction, Multiple-Data (SIMD) Parallelism

At the lowest level, many modern processors have special hardware that allows
a single instruction to cause multiple operations to be performed in parallel,
a mode known as single-instruction, multiple-data, or “SIMD” parallelism. For
example, recent generations of Intel and AMD processors have instructions that
can add four pairs of single-precision floating-point numbers (C data type float)
in parallel.

These SIMD instructions are provided mostly to speed up applications that
process image, sound, and video data. Although some compilers attempt to auto-
matically extract SIMD parallelism from C programs, a more reliable method is to
write programs using special vector data types supported in compilers such as Gcc.
We describe this style of programming in Web Aside opr:siMD, as a supplement to
the more general presentation on program optimization found in Chapter 5.

1.9.2 The Importance of Abstractions in Computer Systems

The use of abstractions is one of the most important concepts in computer science.
For example, one aspect of good programming practice is to formulate a simple
application-program interface (API) for a set of functions that allow programmers
to use the code without having to delve into its inner workings. Different program-
ming languages provide different forms and levels of support for abstraction, such
as Java class declarations and C function prototypes.

We have already been introduced to several of the abstractions seen in com-
puter systems, as indicated in Figure 1.18. On the processor side, the instruction set
architecture provides an abstraction of the actual processor hardware. With this
abstraction, a machine-code program behaves as if it were executed on a proces-
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sor that performs just one instruction at a time. The underlying hardware is far
more elaborate, executing multiple instructions in parallel, but always in a way
that is consistent with the simple, sequential model. By keeping the same execu-
tion model, different processor implementations can execute the same machine
code, while offering a range of cost and performance.

On the operating system side, we have introduced three abstractions: files as
an abstraction of 1/O, virtual memory as an abstraction of program memory, and
processes as an abstraction of a running program. To these abstractions we add
a new one: the virtual machine, providing an abstraction of the entire computer,
including the operating system, the processor, and the programs. The idea of a
virtual machine was introduced by IBM in the 1960s, but it has become more
prominent recently as a way to manage computers that must be able to run
programs designed for multiple operating systems (such as Microsoft Windows,
MacOS, and Linux) or different versions of the same operating system.

We will return to these abstractions in subsequent sections of the book.

1.10 Summary

A computer system consists of hardware and systems software that cooperate
to run application programs. Information inside the computer is represented as
groups of bits that are interpreted in different ways, depending on the context.
Programs are translated by other programs into different forms, beginning as
ASCII text and then translated by compilers and linkers into binary executable
files.

Processors read and interpret binary instructions that are stored in main
memory. Since computers spend most of their time copying data between memory,
1/O devices, and the CPU registers, the storage devices in a system are arranged
in a hierarchy, with the CPU registers at the top, followed by multiple levels
of hardware cache memories, DRAM main memory, and disk storage. Storage
devices that are higher in the hierarchy are faster and more costly per bit than
those lower in the hierarchy. Storage devices that are higher in the hierarchy serve
as caches for devices that are lower in the hierarchy. Programmers can optimize
the performance of their C programs by understanding and exploiting the memory
hierarchy.
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The operating system kernel serves as an intermediary between the applica-
tion and the hardware. It provides three fundamental abstractions: (1) Files are
abstractions for I/O devices. (2) Virtual memory is an abstraction for both main
memory and disks. (3) Processes are abstractions for the processor, main memory,
and I/O devices.

Finally, networks provide ways for computer systems to communicate with
one another. From the viewpoint of a particular system, the network is just another
I/0 device.
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puter itself, comprising a processor and a memory subsystem. At
the core, we require ways to represent basic data types, such as
approximations to integer and real arithmetic. From there we can con-
sider how machine-level instructions manipulate data and how a com-
piler translates C programs into these instructions. Next, we study several
methods of implementing a processor to gain a better understanding of
how hardware resources are used to execute instructions. Once we under-
stand compilers and machine-level code, we can examine how to maxi-
mize program performance by writing C programs that, when compiled,
achieve the maximum possible performance. We conclude with the de-
sign of the memory subsystem, one of the most complex components of
a modern computer system.
This part of the book will give you a deep understanding of how

O ur exploration of computer systems starts by studying the com-

application programs are represented and executed. You will gain skills
that help you write programs that are secure, reliable, and make the best
use of the computing resources.
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Modern computers store and process information represented as 2-valued signals.
These lowly binary digits, or bits, form the basis of the digital revolution. The
familiar decimal, or base-10, representation has been in use for over 1000 years,
having been developed in India, improved by Arab mathematicians in the 12th
century, and brought to the West in the 13th century by the Italian mathematician
Leonardo Pisano (c. 1170 — c. 1250), better known as Fibonacci. Using decimal
notation is natural for ten-fingered humans, but binary values work better when
building machines that store and process information. Two-valued signals can
readily be represented, stored, and transmitted, for example, as the presence or
absence of a hole in a punched card, as a high or low voltage on a wire, or as a
magnetic domain oriented clockwise or counterclockwise. The electronic circuitry
for storing and performing computations on 2-valued signals is very simple and
reliable, enabling manufacturers to integrate millions, or even billions, of such
circuits on a single silicon chip.

In isolation, a single bit is not very useful. When we group bits together and
apply some interpretation that gives meaning to the different possible bit patterns,
however, we can represent the elements of any finite set. For example, using a
binary number system, we can use groups of bits to encode nonnegative numbers.
By using a standard character code, we can encode the letters and symbols in a
document. We cover both of these encodings in this chapter, as well as encodings
to represent negative numbers and to approximate real numbers.

We consider the three most important representations of numbers. Unsigned
encodings are based on traditional binary notation, representing numbers greater
than or equal to 0. Two’s-complement encodings are the most common way to
represent signed integers, that is, numbers that may be either positive or neg-
ative. Floating-point encodings are a base-two version of scientific notation for
representing real numbers. Computers implement arithmetic operations, such as
addition and multiplication, with these different representations, similar to the
corresponding operations on integers and real numbers.

Computer representations use a limited number of bits to encode a number,
and hence some operations can overflow when the results are too large to be rep-
resented. This can lead to some surprising results. For example, on most of today’s
computers (those using a 32-bit representation of data type int), computing the
expression

200 * 300 * 400 * 500

yields —884,901,888. This runs counter to the properties of integer arithmetic—
computing the product of a set of positive numbers has yielded a negative result.

On the other hand, integer computer arithmetic satisfies many of the familiar
properties of true integer arithmetic. For example, multiplication is associative
and commutative, so that computing any of the following C expressions yields
—884,901,888:

(500
((500
((200
400

400) * (300 * 200)
400) = 300) * 200
500) * 300) * 400
(200 * (300 * 500))

* X X *
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The computer might not generate the expected result, but at least it is consistent!

Floating-point arithmetic has altogether different mathematical properties.
The product of a set of positive numbers will always be positive, although over-
flow will yield the special value +oc0. Floating-point arithmetic is not associative,
due to the finite precision of the representation. For example, the C expression
(3.14+1e20)-1e20 will evaluate to 0.0 on most machines, while 3. 14+ (1e20-
1e20) will evaluate to 3.14. The different mathematical properties of integer
vs. floating-point arithmetic stem from the difference in how they handle the finite-
ness of their representations—integer representations can encode a comparatively
small range of values, but do so precisely, while floating-point representations can
encode a wide range of values, but only approximately.

By studying the actual number representations, we can understand the ranges
of values that can be represented and the properties of the different arithmetic
operations. This understanding is critical to writing programs that work correctly
over the full range of numeric values and that are portable across different combi-
nations of machine, operating system, and compiler. As we will describe, a number
of computer security vulnerabilities have arisen due to some of the subtleties of
computer arithmetic. Whereas in an earlier era program bugs would only incon-
venience people when they happened to be triggered, there are now legions of
hackers who try to exploit any bug they can find to obtain unauthorized access
to other people’s systems. This puts a higher level of obligation on programmers
to understand how their programs work and how they can be made to behave in
undesirable ways.

Computers use several different binary representations to encode numeric
values. You will need to be familiar with these representations as you progress
into machine-level programming in Chapter 3. We describe these encodings in
this chapter and show you how to reason about number representations.

We derive several ways to perform arithmetic operations by directly manip-
ulating the bit-level representations of numbers. Understanding these techniques
will be important for understanding the machine-level code generated by compil-
ers in their attempt to optimize the performance of arithmetic expression eval-
uation.

Our treatment of this material is based on a core set of mathematical prin-
ciples. We start with the basic definitions of the encodings and then derive such
properties as the range of representable numbers, their bit-level representations,
and the properties of the arithmetic operations. We believe it is important for you
to examine the material from this abstract viewpoint, because programmers need
to have a clear understanding of how computer arithmetic relates to the more
familiar integer and real arithmetic.

Aside How to read this chapter

31

If you find equations and formulas daunting, do not let that stop you from getting the most out of this
chapter! We provide full derivations of mathematical ideas for completeness, but the best way to read
this material is often to skip over the derivation on your initial reading. Instead, study the examples
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provided, and be sure to work all of the practice problems. The examples will give you an intuition
behind the ideas, and the practice problems engage you in active learning, helping you put thoughts
into action. With these as background, you will find it much easier to go back and follow the derivations.
Be assured, as well, that the mathematical skills required to understand this material are within reach
of someone with good grasp of high school algebra.

The C++ programming language is built upon C, using the exact same numeric
representations and operations. Everything said in this chapter about C also holds
for C++. The Java language definition, on the other hand, created a new set of
standards for numeric representations and operations. Whereas the C standards
are designed to allow a wide range of implementations, the Java standard is quite
specific on the formats and encodings of data. We highlight the representations
and operations supported by Java at several places in the chapter.

Aside The evolution of the C programming language

As was described in an aside in Section 1.2, the C programming language was first developed by Dennis
Ritchie of Bell Laboratories for use with the Unix operating system (also developed at Bell Labs). At
the time, most system programs, such as operating systems, had to be written largely in assembly code,
in order to have access to the low-level representations of different data types. For example, it was
not feasible to write a memory allocator, such as is provided by the malloc library function, in other
high-level languages of that era.

The original Bell Labs version of C was documented in the first edition of the book by Brian
Kernighan and Dennis Ritchie [57]. Over time, C has evolved through the efforts of several standard-
ization groups. The first major revision of the original Bell Labs C led to the ANSI C standard in 1989,
by a group working under the auspices of the American National Standards Institute. ANSI C was a
major departure from Bell Labs C, especially in the way functions are declared. ANSI C is described
in the second edition of Kernighan and Ritchie’s book [58], which is still considered one of the best
references on C.

The International Standards Organization took over responsibility for standardizing the C lan-
guage, adopting a version that was substantially the same as ANSI Cin 1990 and hence is referred to as
“ISO C90.” This same organization sponsored an updating of the language in 1999, yielding “ISO C99.”
Among other things, this version introduced some new data types and provided support for text strings
requiring characters not found in the English language.

The GNU Compiler Collection (Gcc) can compile programs according to the conventions of several
different versions of the C language, based on different command line options, as shown in Figure 2.1.
For example, to compile program prog. c according to ISO C99, we could give the command line

unix> gcc —std=c99 prog.c

The options —ansi and -std=c89 have the same effect—the code is compiled according to the ANSI
or ISO C90 standard. (C90 is sometimes referred to as “C89,” since its standardization effort began in
1989.) The option -std=c99 causes the compiler to follow the ISO C99 convention.
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C version Gce command line option
GNU 89 none, -std=gnu89
ANSI, ISO C90 —ansi, -std=c89

ISO C99 -std=c99

GNU 99 -std=gnu99

Figure 2.1 Specifying different versions of C to Gcc.
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As of the writing of this book, when no option is specified, the program will be compiled according
to a version of C based on ISO C90, but including some features of C99, some of C++, and others
specific to gee. This version can be specified explicitly using the option -~std=gnu89. The GNU project
is developing a version that combines ISO C99, plus other features, that can be specified with command
line option -std=gnu99. (Currently, this implementation is incomplete.) This will become the default

version.

2.1 Information Storage

Rather than accessing individual bits in memory, most computers use blocks
of eight bits, or bytes, as the smallest addressable unit of memory. A machine-
level program views memory as a very large array of bytes, referred to as virtual
memory. Every byte of memory is identified by a unique number, known as its
address, and the set of all possible addresses is known as the virtual address space.
As indicated by its name, this virtual address space is just a conceptual image
presented to the machine-level program. The actual implementation (presented
in Chapter 9) uses a combination of random-access memory (RAM), disk storage,
special hardware, and operating system software to provide the program with what
appears to be a monolithic byte array.

In subsequent chapters, we will cover how the compiler and run-time system
partitions this memory space into more manageable units to store the different
program objects, that is, program data, instructions, and control information.
Various mechanisms are used to allocate and manage the storage for different
parts of the program. This management is all performed within the virtual address
space. For example, the value of a pointer in C—whether it points to an integer,
a structure, or some other program object—is the virtual address of the first byte
of some block of storage. The C compiler also associates type information with
each pointer, so that it can generate different machine-level code to access the
value stored at the location designated by the pointer depending on the type of
that value. Although the C compiler maintains this type information, the actual
machine-level program it generates has no information about data types. It simply
treats each program object as a block of bytes, and the program itself as a sequence
of bytes.



34 Chapter 2 Representing and Manipulating Information

New to C?

The role of pointers in C

Pointers are a central feature of C. They provide the mechanism for referencing elements of data
structures, including arrays. Just like a variable, a pointer has two aspects: its value and its type. The
value indicates the location of some object, while its type indicates what kind of object (e.g., integer or
floating-point number) is stored at that location.

2.1.1 Hexadecimal Notation

A single byte consists of 8 bits. In binary notation, its value ranges from 00000000,
to11111111,. When viewed as a decimal integer, its value ranges from 0y to 255y,.
Neither notation is very convenient for describing bit patterns. Binary notation
is too verbose, while with decimal notation, it is tedious to convert to and from
bit patterns. Instead, we write bit patterns as base-16, or hexadecimal numbers.
Hexadecimal (or simply “hex”) uses digits ‘0’ through ‘9’ along with characters
‘A’ through ‘F’ to represent 16 possible values. Figure 2.2 shows the decimal and
binary values associated with the 16 hexadecimal digits. Written in hexadecimal,
the value of a single byte can range from 00,4 to FFy4.

In C, numeric constants starting with Ox or OX are interpreted as being in
hexadecimal. The characters ‘A’ through ‘F’ may be written in either upper or
lower case. For example, we could write the number FA1D37B;4 as 0xFA1D37B,
as 0xfald37b, or even mixing upper and lower case, e.g., 0xFa1D37b. We will use
the C notation for representing hexadecimal values in this book.

A common task in working with machine-level programs is to manually con-
vert between decimal, binary, and hexadecimal representations of bit patterns.
Converting between binary and hexadecimal is straightforward, since it can be
performed one hexadecimal digit at a time. Digits can be converted by referring
to a chart such as that shown in Figure 2.2. One simple trick for doing the conver-
sion in your head is to memorize the decimal equivalents of hex digits A, C, and F.
The hex values B, D, and E can be translated to decimal by computing their values
relative to the first three.

For example, suppose you are given the number 0x173A4C. You can convert
this to binary format by expanding each hexadecimal digit, as follows:

Hex digit 0 1 2 3 4 5 6 7
Decimal value 0 1 2 3 4 5 6 7
Binary value 0000 0001 0010 0011 0100 0101 0110 0111
Hex digit 8 9 A B C D E F
Decimal value 8 9 10 11 12 13 14 15

Binary value 1000 1001 1010 1011 1100 1101 1110 1111

Figure 2.2 Hexadecimal notation. Each Hex digit encodes one of 16 values.
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Hexadecimal 1 7 3 A 4 C
Binary 0001 0111 0011 1010 0100 1100

This gives the binary representation 000101110011101001001100.

Conversely, given a binary number 1111001010110110110011, you convert it
to hexadecimal by first splitting it into groups of 4 bits each. Note, however, that if
the total number of bits is not a multiple of 4, you should make the leftmost group
be the one with fewer than 4 bits, effectively padding the number with leading
zeros. Then you translate each group of 4 bits into the corresponding hexadecimal
digit:

Binary 11 1100 1010 1101 1011 0011
Hexadecimal 3 C A D B 3

Practice Problem 2.1
Perform the following number conversions:
A. 0x39A7F8 to binary
B. Binary 1100100101111011 to hexadecimal
C. 0xD5EAC to binary
D. Binary 1001101110011110110101 to hexadecimal

When a value x is a power of two, that is, x = 2" for some nonnegative integer
n, we can readily write x in hexadecimal form by remembering that the binary
representation of x is simply 1 followed by n zeros. The hexadecimal digit 0
represents four binary zeros. So, for n written in the form i + 4, where 0 <i <3,
we can write x with a leading hex digit of 1 (i =0), 2 (i=1), 4 (i =2), or 8
(i = 3), followed by j hexadecimal 0s. As an example, for x = 2048 = 2!, we have
n=11=3+4.2, giving hexadecimal representation 0x800.

Practice Problem 2.2

Fill in the blank entries in the following table, giving the decimal and hexadecimal
representations of different powers of 2:

n 2" (Decimal) 2" (Hexadecimal)
9 512 0x200
19
16,384
0x10000
17
32

0x80

35
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Converting between decimal and hexadecimal representations requires using
multiplication or division to handle the general case. To convert a decimal num-
ber x to hexadecimal, we can repeatedly divide x by 16, giving a quotient ¢ and a
remainder r, such that x = g - 16 4+ . We then use the hexadecimal digit represent-
ing r as the least significant digit and generate the remaining digits by repeating
the process on ¢g. As an example, consider the conversion of decimal 314156:

314156 =19634 - 16 + 12 (C)

19634 = 1227 -16 +2 2

1227=76-16 + 11 (B)

76=4-16+12 (©)

4=0-16+4 (4)

From this we can read off the hexadecimal representation as 0x4CB2C.

Conversely, to convert a hexadecimal number to decimal, we can multiply
each of the hexadecimal digits by the appropriate power of 16. For example, given

the number 0x7AF, we compute its decimal equivalent as 7 - 162 +10- 16 + 15 =
7-256410-16+15=1792 + 160 + 15 = 1967.

Practice Problem 2.3

A single byte can be represented by two hexadecimal digits. Fill in the missing
entries in the following table, giving the decimal, binary, and hexadecimal values
of different byte patterns:

Decimal Binary Hexadecimal
0 0000 0000 0x00
167
62
188
0011 0111
1000 1000
1111 0011
0x52
0xAC
OxE7

Aside Converting between decimal and hexadecimal

For converting larger values between decimal and hexadecimal, it is best to let a computer or calculator
do the work. For example, the following script in the Perl language converts a list of numbers (given
on the command line) from decimal to hexadecimal:
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bin/d2h

1 #!/usr/local/bin/perl

2 # Convert list of decimal numbers into hex

3

4 for ($i = 0; $i < @ARGV; $i++) {

5 printf ("%d\t= Ox%x\n", $ARGV[$i], $ARGV[$il);

6 }
bin/d2h

Once this file has been set to be executable, the command

unix> ./d2h 100 500 751

yields output

100 = 0x64

500 = O0x1f4

751 = Ox2ef

Similarly, the following script converts from hexadecimal to decimal:
bin/h2d

1 #!/usr/local/bin/perl

2 # Convert list of hex numbers into decimal

3

4 for ($i = 0; $i < @ARGV; $i++) {

5 $val = hex($ARGV[$il);

6 printf ("0x%x = %d\n", $val, $val);

7}
bin/h2d

Practice Problem 2.4

Without converting the numbers to decimal or binary, try to solve the follow-
ing arithmetic problems, giving the answers in hexadecimal. Hint: Just modify
the methods you use for performing decimal addition and subtraction to use
base 16.

A. 0x503c + 0x8 =

B. 0x503c — 0x40 =
C. 0x503c + 64 =

D. 0x50ea — 0x503c =
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2.1.2 Words

Every computer has a word size, indicating the nominal size of integer and pointer
data. Since a virtual address is encoded by such a word, the most important system
parameter determined by the word size is the maximum size of the virtual address
space. That is, for a machine with a w-bit word size, the virtual addresses can range
from 0 to 2" — 1, giving the program access to at most 2 bytes.

Most personal computers today have a 32-bit word size. This limits the virtual
address space to 4 gigabytes (written 4 GB), that is, just over 4 x 10° bytes. Al-
though this is ample space for most applications, we have reached the point where
many large-scale scientific and database applications require larger amounts of
storage. Consequently, high-end machines with 64-bit word sizes are becoming in-
creasingly common as storage costs decrease. As hardware costs drop over time,
even desktop and laptop machines will switch to 64-bit word sizes, and so we will
consider the general case of a w-bit word size, as well as the special cases of w = 32
and w = 64.

2.1.3 Data Sizes

Computers and compilers support multiple data formats using different ways to
encode data, such as integers and floating point, as well as different lengths. For
example, many machines have instructions for manipulating single bytes, as well
as integers represented as 2-, 4-, and 8-byte quantities. They also support floating-
point numbers represented as 4- and 8-byte quantities.

The C language supports multiple data formats for both integer and floating-
point data. The C data type char represents a single byte. Although the name
“char” derives from the fact that it is used to store a single character in a text
string, it can also be used to store integer values. The C data type int can also be
prefixed by the qualifiers short, long, and recently long long, providing integer
representations of various sizes. Figure 2.3 shows the number of bytes allocated

C declaration 32-bit 64-bit
char 1 1
short int 2 2
int 4 4
long int 4 8
long long int 8 8
char * 4 8
float 4 4
double 8 8

Figure 2.3 Sizes (in bytes) of C numeric data types. The number of bytes allocated
varies with machine and compiler. This chart shows the values typical of 32-bit and 64-bit
machines.
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for different C data types. The exact number depends on both the machine and
the compiler. We show typical sizes for 32-bit and 64-bit machines. Observe that
“short” integers have 2-byte allocations, while an unqualified int is 4 bytes. A
“long” integer uses the full word size of the machine. The “long long” integer
data type, introduced in ISO C99, allows the full range of 64-bit integers. For 32-bit
machines, the compiler must compile operations for this data type by generating
code that performs sequences of 32-bit operations.

Figure 2.3 also shows that a pointer (e.g., a variable declared as being of type
“char *”) uses the full word size of the machine. Most machines also support
two different floating-point formats: single precision, declared in C as float,
and double precision, declared in C as double. These formats use 4 and 8 bytes,
respectively.

New to C? Declaring pointers

For any data type T, the declaration

T *p;

indicates that p is a pointer variable, pointing to an object of type T. For example,
char *p;

is the declaration of a pointer to an object of type char.

Programmers should strive to make their programs portable across different
machines and compilers. One aspect of portability is to make the program insensi-
tive to the exact sizes of the different data types. The C standards set lower bounds
on the numeric ranges of the different data types, as will be covered later, but there
are no upper bounds. Since 32-bit machines have been the standard since around
1980, many programs have been written assuming the allocations listed for this
word size in Figure 2.3. Given the increasing availability of 64-bit machines, many
hidden word size dependencies will show up as bugs in migrating these programs
to new machines. For example, many programmers assume that a program object
declared as type int can be used to store a pointer. This works fine for most 32-bit
machines but leads to problems on a 64-bit machine.

2.1.4 Addressing and Byte Ordering

For program objects that span multiple bytes, we must establish two conventions:
what the address of the object will be, and how we will order the bytes in memory.
In virtually all machines, a multi-byte object is stored as a contiguous sequence
of bytes, with the address of the object given by the smallest address of the bytes
used. For example, suppose a variable x of type int has address 0x100, that is, the
value of the address expression &x is 0x100. Then the 4 bytes of x would be stored
in memory locations 0x100, 0x101, 0x102, and 0x103.

39
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For ordering the bytes representing an object, there are two common conven-
tions. Consider a w-bit integer having a bit representation [x,,_1, X,y_2, - - - » X1, X0},
where x,,_; is the most significant bit and x is the least. Assuming w is a multiple
of 8, these bits can be grouped as bytes, with the most significant byte having bits
[*w—1> Xw_2- - - - » X,y_g], the least significant byte having bits [x7, x4, . . . , xo], and
the other bytes having bits from the middle. Some machines choose to store the ob-
ject in memory ordered from least significant byte to most, while other machines
store them from most to least. The former convention—where the least signifi-
cant byte comes first—is referred to as little endian. This convention is followed
by most Intel-compatible machines. The latter convention—where the most sig-
nificant byte comes first—is referred to as big endian. This convention is followed
by most machines from IBM and Sun Microsystems. Note that we said “most.”
The conventions do not split precisely along corporate boundaries. For example,
both IBM and Sun manufacture machines that use Intel-compatible processors
and hence are little endian. Many recent microprocessors are bi-endian, meaning
that they can be configured to operate as either little- or big-endian machines.

Continuing our earlier example, suppose the variable x of type int and at
address 0x100 has a hexadecimal value of 0x01234567. The ordering of the bytes
within the address range 0x100 through 0x103 depends on the type of machine:

Big endian
0x100  0x101  0x102  0x103

| 01 | 23 | 45 | 67 |

Little endian
0x100 0x101 0x102 0x103

| 67 | 45 | 23 | 01 |

Note that in the word 0x01234567 the high-order byte has hexadecimal value
0x01, while the low-order byte has value 0x67.

People get surprisingly emotional about which byte ordering is the proper one.
In fact, the terms “little endian” and “big endian” come from the book Gulliver’s
Travels by Jonathan Swift, where two warring factions could not agree as to how a
soft-boiled egg should be opened—by the little end or by the big. Just like the egg
issue, there is no technological reason to choose one byte ordering convention over
the other, and hence the arguments degenerate into bickering about socio-political
issues. As long as one of the conventions is selected and adhered to consistently,
the choice is arbitrary.

Aside Origin of “endian”

Here is how Jonathan Swift, writing in 1726, described the history of the controversy between big and

little endians:
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. .. Lilliput and Blefuscu . . . have, as I was going to tell you, been engaged in a most obstinate war
for six-and-thirty moons past. It began upon the following occasion. It is allowed on all hands, that
the primitive way of breaking eggs, before we eat them, was upon the larger end; but his present
majesty’s grandfather, while he was a boy, going to eat an egg, and breaking it according to the
ancient practice, happened to cut one of his fingers. Whereupon the emperor his father published
an edict, commanding all his subjects, upon great penalties, to break the smaller end of their eggs.
The people so highly resented this law, that our histories tell us, there have been six rebellions raised
on that account; wherein one emperor lost his life, and another his crown. These civil commotions
were constantly fomented by the monarchs of Blefuscu; and when they were quelled, the exiles
always fled for refuge to that empire. It is computed that eleven thousand persons have at several
times suffered death, rather than submit to break their eggs at the smaller end. Many hundred
large volumes have been published upon this controversy: but the books of the Big-endians have
been long forbidden, and the whole party rendered incapable by law of holding employments.

In his day, Swift was satirizing the continued conflicts between England (Lilliput) and France (Blefuscu).
Danny Cohen, an early pioneer in networking protocols, first applied these terms to refer to byte

ordering [25], and the terminology has been widely adopted.

For most application programmers, the byte orderings used by their machines
are totally invisible; programs compiled for either class of machine give identical
results. At times, however, byte ordering becomes an issue. The first is when
binary data are communicated over a network between different machines. A
common problem is for data produced by a little-endian machine to be sent to
a big-endian machine, or vice versa, leading to the bytes within the words being in
reverse order for the receiving program. To avoid such problems, code written for
networking applications must follow established conventions for byte ordering to
make sure the sending machine converts its internal representation to the network
standard, while the receiving machine converts the network standard to its internal
representation. We will see examples of these conversions in Chapter 11.

A second case where byte ordering becomes important is when looking at
the byte sequences representing integer data. This occurs often when inspecting
machine-level programs. As an example, the following line occurs in a file that
gives a text representation of the machine-level code for an Intel IA32 processor:

80483bd: 01 05 64 94 04 08 add %heax,0x8049464

This line was generated by a disassembler, a tool that determines the instruction
sequence represented by an executable program file. We will learn more about
disassemblers and how to interpret lines such as this in Chapter 3. For now, we
simply note that this line states that the hexadecimal byte sequence 01 05 64
94 04 08 is the byte-level representation of an instruction that adds a word of
data to the value stored at address 0x8049464. If we take the final 4 bytes of
the sequence, 64 94 04 08, and write them in reverse order, we have 08 04 94
64. Dropping the leading 0, we have the value 0x8049464, the numeric value
written on the right. Having bytes appear in reverse order is a common occurrence
when reading machine-level program representations generated for little-endian
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1 #include <stdio.h>

2

3 typedef unsigned char *byte_pointer;

4

5 void show_bytes(byte_pointer start, int len) {
6 int i;

7 for (i = 0; i < len; i++)

8 printf(" %.2x", start[i]);

9 printf("\n");

0}

11

12 void show_int(int x) {

13 show_bytes ((byte_pointer) &x, sizeof(int));
14 3}

15

16 void show_float(float x) {

17 show_bytes ((byte_pointer) &x, sizeof(float));
18}

19

20 void show_pointer(void *x) {

21 show_bytes ((byte_pointer) &x, sizeof(void *));
22}

Figure 2.4 Code to print the byte representation of program objects. This code uses
casting to circumvent the type system. Similar functions are easily defined for other data

types.

machines such as this one. The natural way to write a byte sequence is to have the
lowest-numbered byte on the left and the highest on the right, but this is contrary
to the normal way of writing numbers with the most significant digit on the left
and the least on the right.

A third case where byte ordering becomes visible is when programs are
written that circumvent the normal type system. In the C language, this can be
done using a cast to allow an object to be referenced according to a different data
type from which it was created. Such coding tricks are strongly discouraged for
most application programming, but they can be quite useful and even necessary
for system-level programming.

Figure 2.4 shows C code that uses casting to access and print the byte rep-
resentations of different program objects. We use typedef to define data type
byte_pointer as a pointer to an object of type “unsigned char.” Such a byte
pointer references a sequence of bytes where each byte is considered to be a non-
negative integer. The first routine show_bytes is given the address of a sequence
of bytes, indicated by a byte pointer, and a byte count. It prints the individual
bytes in hexadecimal. The C formatting directive “%.2x” indicates that an integer
should be printed in hexadecimal with at least two digits.
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New to C? Naming data types with typedef

The typedef declaration in C provides a way of giving a name to a data type. This can be a great help
in improving code readability, since deeply nested type declarations can be difficult to decipher.

The syntax for typedef is exactly like that of declaring a variable, except that it uses a type name
rather than a variable name. Thus, the declaration of byte_pointer in Figure 2.4 has the same form as
the declaration of a variable of type “unsigned char *.”

For example, the declaration

typedef int *int_pointer;
int_pointer ip;

defines type “int_pointer” to be a pointer to an int, and declares a variable ip of this type. Alterna-
tively, we could declare this variable directly as

int *ip;

New to C? Formatted printing with printf

The printf function (along with its cousins fprintf and sprintf) provides a way to print information
with considerable control over the formatting details. The first argument is a format string, while
any remaining arguments are values to be printed. Within the format string, each character sequence
starting with ‘%’ indicates how to format the next argument. Typical examples include ‘%d’ to print a
decimal integer, ‘%f’ to print a floating-point number, and ‘/c’ to print a character having the character
code given by the argument.

New to C? Pointers and arrays

In function show_bytes (Figure 2.4), we see the close connection between pointers and arrays, as will
be discussed in detail in Section 3.8. We see that this function has an argument start of type byte_
pointer (which has been defined to be a pointer to unsigned char), but we see the array reference
start[i] online 8. In C, we can dereference a pointer with array notation, and we can reference array
elements with pointer notation. In this example, the reference start [1] indicates that we want to read
the byte that is i positions beyond the location pointed to by start.

Procedures show_int, show_float, and show_pointer demonstrate how to
use procedure show_bytes to print the byte representations of C program objects
of type int, float, and void *, respectively. Observe that they simply pass show_
bytes a pointer &x to their argument x, casting the pointer to be of type “unsigned
char *.” This cast indicates to the compiler that the program should consider the
pointer to be to a sequence of bytes rather than to an object of the original data
type. This pointer will then be to the lowest byte address occupied by the object.
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New to C? Pointer creation and dereferencing

In lines 13, 17, and 21 of Figure 2.4, we see uses of two operations that give C (and therefore C++) its
distinctive character. The C “address of” operator & creates a pointer. On all three lines, the expression
&x creates a pointer to the location holding the object indicated by variable x. The type of this pointer
depends on the type of x, and hence these three pointers are of type int *, float *, and void **,
respectively. (Data type void * is a special kind of pointer with no associated type information.)

The cast operator converts from one data type to another. Thus, the cast (byte_pointer) &x
indicates that whatever type the pointer &x had before, the program will now reference a pointer to
data of type unsigned char. The casts shown here do not change the actual pointer; they simply direct
the compiler to refer to the data being pointed to according to the new data type.

These procedures use the C sizeof operator to determine the number of bytes
used by the object. In general, the expression sizeof (T) returns the number of
bytes required to store an object of type T. Using sizeof rather than a fixed value
is one step toward writing code that is portable across different machine types.

We ran the code shown in Figure 2.5 on several different machines, giving the
results shown in Figure 2.6. The following machines were used:

Linux 32: Intel IA32 processor running Linux

Windows: Intel IA32 processor running Windows

Sun: Sun Microsystems SPARC processor running Solaris
Linux 64: Intel x86-64 processor running Linux

Our argument 12,345 has hexadecimal representation 0x00003039. For the int
data, we get identical results for all machines, except for the byte ordering. In
particular, we can see that the least significant byte value of 0x39 is printed first
for Linux 32, Windows, and Linux 64, indicating little-endian machines, and last
for Sun, indicating a big-endian machine. Similarly, the bytes of the float data
are identical, except for the byte ordering. On the other hand, the pointer values
are completely different. The different machine/operating system configurations

code/data/show-bytes.c
1 void test_show_bytes(int val) {
2 int ival = val;

3 float fval = (float) ival;
4 int *pval = &ival;

5 show_int(ival);

6 show_float(fval);

7 show_pointer(pval);

8

code/data/show-bytes.c

Figure 2.5 Byte representation examples. This code prints the byte representations of
sample data objects.
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Machine Value Type Bytes (hex)
Linux 32 12,345 int 39 30 00 00
Windows 12,345 int 39 30 00 00
Sun 12,345 int 00 00 30 39
Linux 64 12,345 int 39 30 00 00
Linux 32 12,345.0 float 00 e4 40 46
Windows 12,345.0 float 00 e4 40 46
Sun 12,345.0 float 46 40 e4 00
Linux 64 12,345.0 float 00 e4 40 46
Linux 32 &ival int * ed f9 ff bf
Windows &ival int * b4 cc 22 00
Sun &ival int * ef ff fa Oc
Linux 64 &ival int * b8 11 e5 ff ££f 7f 00 00

Figure 2.6 Byte representations of different data values. Results for int and float
are identical, except for byte ordering. Pointer values are machine dependent.

use different conventions for storage allocation. One feature to note is that the
Linux 32, Windows, and Sun machines use 4-byte addresses, while the Linux 64

machine uses 8-byte addresses.

Observe that although the floating-point and the integer data both encode
the numeric value 12,345, they have very different byte patterns: 0x00003039
for the integer, and 0x4640E400 for floating point. In general, these two formats
use different encoding schemes. If we expand these hexadecimal patterns into
binary form and shift them appropriately, we find a sequence of 13 matching bits,
indicated by a sequence of asterisks, as follows:

0 o0 ©

o 3

9

00000000000000000011000000111001
ok ok ok ok ok oKk Kk ok K

4

6 4

E 4

0

01000110010000001110010000000000

This is not coincidental. We will return to this example when we study floating-

point formats.

Practice Problem 2.5

Consider the following three calls to show_bytes:
int val = 0x87654321;

byte_pointer valp = (byte_pointer) &val;

show_bytes(valp, 1); /* A. */
show_bytes(valp, 2); /* B. */
show_bytes(valp, 3); /* C. */
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Indicate which of the following values will be printed by each call on a little-
endian machine and on a big-endian machine:

A. Little endian: Big endian:
B. Little endian: Big endian:
C. Little endian: Big endian:

Practice Problem 2.6

Using show_int and show_float, we determine that the integer 3510593 has hexa-
decimal representation 0x00359141, while the floating-point number 3510593.0
has hexadecimal representation 0x4A564504.

A. Write the binary representations of these two hexadecimal values.

B. Shift these two strings relative to one another to maximize the number of
matching bits. How many bits match?

C. What parts of the strings do not match?

2.1.5 Representing Strings

A string in C is encoded by an array of characters terminated by the null (having
value 0) character. Each character is represented by some standard encoding, with
the most common being the ASCII character code. Thus, if we run our routine
show_bytes with arguments "12345" and 6 (to include the terminating character),
we get the result 31 32 33 34 35 00. Observe that the ASCII code for decimal digit
x happens to be 0x3x, and that the terminating byte has the hex representation
0x00. This same result would be obtained on any system using ASCII as its
character code, independent of the byte ordering and word size conventions. As
a consequence, text data is more platform-independent than binary data.

Aside Generating an ASCII table

You can display a table showing the ASCII character code by executing the command man ascii.

Practice Problem 2.7
What would be printed as a result of the following call to show_bytes?

const char *s = "abcdef";
show_bytes((byte_pointer) s, strlen(s));

Note that letters ‘a’ through ‘z’ have ASCII codes 0x61 through 0x7A.
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Aside The Unicode standard for text encoding

The ASCII character set is suitable for encoding English-language documents, but it does not have
much in the way of special characters, such as the French ‘¢’ It is wholly unsuited for encoding
documents in languages such as Greek, Russian, and Chinese. Over the years, a variety of methods
have been developed to encode text for different languages. The Unicode Consortium has devised the
most comprehensive and widely accepted standard for encoding text. The current Unicode standard
(version 5.0) has a repertoire of nearly 100,000 characters supporting languages ranging from Albanian
to Xamtanga (a language spoken by the Xamir people of Ethiopia).

The base encoding, known as the “Universal Character Set” of Unicode, uses a 32-bit representa-
tion of characters. This would seem to require every string of text to consist of 4 bytes per character.
However, alternative codings are possible where common characters require just 1 or 2 bytes, while
less common ones require more. In particular, the UTF-8 representation encodes each character as a
sequence of bytes, such that the standard ASCII characters use the same single-byte encodings as they
have in ASCII, implying that all ASCII byte sequences have the same meaning in UTF-8 as they do in
ASCIL

The Java programming language uses Unicode in its representations of strings. Program libraries
are also available for C to support Unicode.

2.1.6 Representing Code

Consider the following C function:

1 int sum(int x, int y) {
2 return x + y;
3 %

When compiled on our sample machines, we generate machine code having the
following byte representations:

Linux 32: 55 89 e5 8b 45 0c 03 45 08 c9 c3

Windows: 55 89 e5 8b 45 0c 03 45 08 5d c3

Sun: 81 c3 e0 08 90 02 00 09

Linux 64: 55 48 89 €5 89 7d £c 89 75 £8 03 45 fc c9 c3

Here we find that the instruction codings are different. Different machine types
use different and incompatible instructions and encodings. Even identical proces-
sors running different operating systems have differences in their coding conven-
tions and hence are not binary compatible. Binary code is seldom portable across
different combinations of machine and operating system.

A fundamental concept of computer systems is that a program, from the
perspective of the machine, is simply a sequence of bytes. The machine has no
information about the original source program, except perhaps some auxiliary
tables maintained to aid in debugging. We will see this more clearly when we study
machine-level programming in Chapter 3.
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~ & 01 | 01 - 01
0 1 0 00 0 01 0 01
1 0 1 01 1 11 1 10

Figure 2.7 Operations of Boolean algebra. Binary values 1 and 0 encode logic values
TRUE and FALSE, while operations ~, &, |, and ~ encode logical operations NOT, AND,
OR, and EXCLUSIVE-OR, respectively.

2.1.7 Introduction to Boolean Algebra

Since binary values are at the core of how computers encode, store, and manipu-
late information, a rich body of mathematical knowledge has evolved around the
study of the values 0 and 1. This started with the work of George Boole (1815-
1864) around 1850 and thus is known as Boolean algebra. Boole observed that by
encoding logic values TRUE and FALSE as binary values 1 and 0, he could formulate
an algebra that captures the basic principles of logical reasoning.

The simplest Boolean algebra is defined over the 2-element set {0, 1}. Fig-
ure 2.7 defines several operations in this algebra. Our symbols for representing
these operations are chosen to match those used by the C bit-level operations, as
will be discussed later. The Boolean operation ~ corresponds to the logical op-
eration Nort, denoted by the symbol —. That is, we say that —P is true when P
is not true, and vice versa. Correspondingly, ~p equals 1 when p equals 0, and
vice versa. Boolean operation & corresponds to the logical operation AND, de-
noted by the symbol A. We say that P A Q holds when both P is true and Q is
true. Correspondingly, p & g equals 1 only when p =1 and ¢ = 1. Boolean opera-
tion | corresponds to the logical operation ORr, denoted by the symbol v. We say
that P v Q holds when either P is true or Q is true. Correspondingly, p | ¢ equals
1 when either p =1 or ¢ = 1. Boolean operation ~ corresponds to the logical op-
eration ExcLusIVE-OR, denoted by the symbol @. We say that P & Q holds when
either P is true or Q is true, but not both. Correspondingly, p ~ ¢ equals 1 when
either p=1landg=0,or p=0andg = 1.

Claude Shannon (1916-2001), who later founded the field of information
theory, first made the connection between Boolean algebra and digital logic. In
his 1937 master’s thesis, he showed that Boolean algebra could be applied to the
design and analysis of networks of electromechanical relays. Although computer
technology has advanced considerably since, Boolean algebra still plays a central
role in the design and analysis of digital systems.

We can extend the four Boolean operations to also operate on bit vectors,
strings of zeros and ones of some fixed length w. We define the operations over
bit vectors according their applications to the matching elements of the arguments.
Let a and b denote the bit vectors [a,,_1, dy_2, - - - » ag] and [by,_1, by_2, - - -, byl
respectively. We define a & b to also be a bit vector of length w, where the ith
element equals a; & b;, for 0 <i < w. The operations |, ~, and ~ are extended to
bit vectors in a similar fashion.
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As examples, consider the case where w = 4, and with arguments a = [0110]
and » = [1100]. Then the four operations a & b, a | b, a ~ b, and ~b yield

0110 0110 0110
& 1100 | 1100 ~ 1100 ~ 1100
0100 1110 1010 0011

Practice Problem 2.8

Fill in the following table showing the results of evaluating Boolean operations on
bit vectors.

Operation Result

a [01101001]
b [01010101]
~a
~b

a&b

alb

a~b

Web Aside DATA:BOOL More on Boolean algebra and Boolean rings

The Boolean operations |, & and ~ operating on bit vectors of length w form a Boolean algebra, for
any integer w > 0. The simplest is the case where w =1, and there are just two elements, but for
the more general case there are 2% bit vectors of length w. Boolean algebra has many of the same
properties as arithmetic over integers. For example, just as multiplication distributes over addition,
writtena - (b + ¢) = (a - b) + (a - ¢), Boolean operation & distributes over |, writtena & (b | ¢) = (a &b) |
(a & ¢). In addition, however, Boolean operation | distributes over &, and so we can write a | (b &c) =
(a | b) & (a | ¢), whereas we cannot say that a + (b - ¢) = (a + b) - (a + ¢) holds for all integers.

When we consider operations ~, &, and ~ operating on bit vectors of length w, we get a different
mathematical form, known as a Boolean ring. Boolean rings have many properties in common with
integer arithmetic. For example, one property of integer arithmetic is that every value x has an additive
inverse —x, such that x + —x = 0. A similar property holds for Boolean rings, where - is the “addition”
operation, but in this case each element is its own additive inverse. That is, a ~ a = 0 for any value «,
where we use 0 here to represent a bit vector of all zeros. We can see this holds for single bits, since
0~0=1"1=0, and it extends to bit vectors as well. This property holds even when we rearrange terms
and combine them in a different order, and so (a ~ b) ~ a = b. This property leads to some interesting
results and clever tricks, as we will explore in Problem 2.10.

One useful application of bit vectors is to represent finite sets. We can encode
anysubset A € {0, 1, ..., w — 1} withabitvector [a,,_1, . . ., aj, ap], where q; = 1if
and onlyifi € A. For example, recalling that we write a,,_; on the left and a, on the
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right, bit vector a = [01101001] encodes the set A = {0, 3, 5, 6}, while bit vector b =
[01010101] encodes the set B = {0, 2, 4, 6}. With this way of encoding sets, Boolean
operations | and & correspond to set union and intersection, respectively, and ~
corresponds to set complement. Continuing our earlier example, the operation
a & b yields bit vector [01000001], while A N B = {0, 6}.

We will see the encoding of sets by bit vectors in a number of practical
applications. For example, in Chapter 8, we will see that there are a number of
different signals that can interrupt the execution of a program. We can selectively
enable or disable different signals by specifying a bit-vector mask, where a 1 in
bit position i indicates that signal i is enabled, and a 0 indicates that it is disabled.
Thus, the mask represents the set of enabled signals.

Practice Problem 2.9

Computers generate color pictures on a video screen or liquid crystal display
by mixing three different colors of light: red, green, and blue. Imagine a simple
scheme, with three different lights, each of which can be turned on or off, project-
ing onto a glass screen:

Light sources Glass screen

Red

Observer

o>

Green

Blue

We can then create eight different colors based on the absence (0) or presence (1)
of light sources R, G, and B:

R G B Color

0 0 O Black

0 0 1 Blue

0 1 0 Green

0 1 1 Cyan

1 0 O Red

1 0 1 Magenta
1 1 0 Yellow

1 1 1 White

Each of these colors can be represented as a bit vector of length 3, and we can
apply Boolean operations to them.
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A. The complement of a color is formed by turning off the lights that are on and
turning on the lights that are off. What would be the complement of each of

the eight colors listed above?

B. Describe the effect of applying Boolean operations on the following colors:

Blue | Green =
Yellow & Cyan =
Red - Magenta =

2.1.8 Bit-Level Operations in C

One useful feature of Cis that it supports bit-wise Boolean operations. In fact, the
symbols we have used for the Boolean operations are exactly those used by C: |
for ORr, & for AND, ~ for Not, and ~ for ExcLusIve-ORr. These can be applied to
any “integral” data type, that is, one declared as type char or int, with or without
qualifiers such as short, long, long long, or unsigned. Here are some examples

of expression evaluation for data type char:

C expression Binary expression Binary result Hexadecimal result
~0x41 ~[0100 0001] [10111110] 0xBE
~0x00 ~[0000 0000] [11111111] OxFF
0x69 & 0x55 [0110 1001] & [0101 0101] [0100 0001] 0x41
0x69 | 0x55 [0110 1001] | [01010101] [01111101] 0x7D

As our examples show, the best way to determine the effect of a bit-level ex-
pression is to expand the hexadecimal arguments to their binary representations,

perform the operations in binary, and then convert back to hexadecimal.

Practice Problem 2.10

As an application of the property that a = a = 0 for any bit vector a, consider the

following program:

void inplace_swap(int *x, int xy) {

]
2 xy = *x " *y; /* Step 1 %/
3 xX = *x " *y; /* Step 2 */
4 xy = *x " *y; /* Step 3 %/
5}

As the name implies, we claim that the effect of this procedure is to swap the
values stored at the locations denoted by pointer variables x and y. Note that
unlike the usual technique for swapping two values, we do not need a third
location to temporarily store one value while we are moving the other. There
is no performance advantage to this way of swapping; it is merely an intellectual

amusement.

51
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Starting with values a and b in the locations pointed to by x and y, respectively,
fill in the table that follows, giving the values stored at the two locations after each
step of the procedure. Use the properties of ~ to show that the desired effect is
achieved. Recall that every element is its own additive inverse (that is,a ~ a = 0).

Step *X xy
Initially a b
Step 1
Step 2
Step 3

Practice Problem 2.11

Armed with the function inplace_swap from Problem 2.10, you decide to write
code that will reverse the elements of an array by swapping elements from opposite
ends of the array, working toward the middle.

You arrive at the following function:

1 void reverse_array(int al[], int cnt) {

2 int first, last;

3 for (first = 0, last = cnt-1;

4 first <= last;

5 first++,last—-)

6 inplace_swap(&al[first], &al[last]);
7}

When you apply your function to an array containing elements 1, 2, 3, and 4, you
find the array now has, as expected, elements 4, 3, 2, and 1. When you try it on
an array with elements 1, 2, 3, 4, and 5, however, you are surprised to see that
the array now has elements 5, 4, 0, 2, and 1. In fact, you discover that the code
always works correctly on arrays of even length, but it sets the middle element to
0 whenever the array has odd length.

A. For an array of odd length cnt = 2k + 1, what are the values of variables
first and last in the final iteration of function reverse_array?

B. Why does this call to function xor_swap set the array element to 0?

C. What simple modification to the code for reverse_array would eliminate
this problem?

One common use of bit-level operations is to implement masking operations,
where a mask is a bit pattern that indicates a selected set of bits within a word. As
an example, the mask 0xFF (having ones for the least significant 8 bits) indicates
the low-order byte of a word. The bit-level operation x & O0xFF yields a value
consisting of the least significant byte of x, but with all other bytes set to 0.
For example, with x = 0x89ABCDEF, the expression would yield 0x000000EF.
The expression ~0 will yield a mask of all ones, regardless of the word size of
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the machine. Although the same mask can be written OxFFFFFFFF for a 32-bit
machine, such code is not as portable.

Practice Problem 2.12

Write C expressions, in terms of variable x, for the following values. Your code
should work for any word size w > 8. For reference, we show the result of evalu-
ating the expressions for x = 0x87654321, with w = 32.

A. The least significant byte of x, with all other bits set to 0. [0x00000021].

B. Allbut the least significant byte of x complemented, with the least significant
byte left unchanged. [0x789ABC21].

C. The least significant byte set to all 1s, and all other bytes of x left unchanged.
[0x876543FF].

Practice Problem 2.13

The Digital Equipment VAX computer was a very popular machine from the late
1970s until the late 1980s. Rather than instructions for Boolean operations AND
and OR, it had instructions bis (bit set) and bic (bit clear). Both instructions take
a data word x and a mask word m. They generate a result z consisting of the bits of
x modified according to the bits of m. With bis, the modification involves setting
z to 1 at each bit position where mis 1. With bic, the modification involves setting
z to 0 at each bit position where m is 1.

To see how these operations relate to the C bit-level operations, assume we
have functions bis and bic implementing the bit set and bit clear operations, and
that we want to use these to implement functions computing bit-wise operations
| and -, without using any other C operations. Fill in the missing code below.
Hint: Write C expressions for the operations bis and bic.

/* Declarations of functions implementing operations bis and bic */
int bis(int x, int m);
int bic(int x, int m);

/* Compute x|y using only calls to functions bis and bic */
int bool_or(int x, int y)

int result = H

return result;

}

/* Compute x”y using only calls to functions bis and bic */
int bool_xor(int x, int y) {

int result = H

return result;

}
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2.1.9 Logical Operations in C

Calso provides a set of logical operators | |, &&, and !, which correspond to the OR,
AND, and Nort operations of logic. These can easily be confused with the bit-level
operations, but their function is quite different. The logical operations treat any
nonzero argument as representing TRUE and argument O as representing FALSE.
They return either 1 or 0, indicating a result of either TRUE or FALSE, respectively.
Here are some examples of expression evaluation:

Expression Result
10x41 0x00
10x00 0x01
110x41 0x01

0x69 && 0x55 0x01
0x69 || 0x55 0x01

Observe that a bit-wise operation will have behavior matching that of its logical
counterpart only in the special case in which the arguments are restricted to O or 1.

A second important distinction between the logical operators && and | | ver-
sus their bit-level counterparts & and | is that the logical operators do not evaluate
their second argument if the result of the expression can be determined by evaluat-
ing the first argument. Thus, for example, the expression a && 5/a will never cause
adivision by zero, and the expression p && *p++ will never cause the dereferencing
of a null pointer.

Practice Problem 2.14

Suppose that x and y have byte values 0x66 and 0x39, respectively. Fill in the
following table indicating the byte values of the different C expressions:

Expression Value Expression Value
x&y x&&y
x|y x|y
~x | ~y x|ty
x&'ly x && ~y

Practice Problem 2.15

Using only bit-level and logical operations, write a C expression that is equivalent
to x == y. In other words, it will return 1 when x and y are equal, and 0 otherwise.

2.1.10 Shift Operations in C

C also provides a set of shift operations for shifting bit patterns to the left and
to the right. For an operand x having bit representation [x,_{, x,_2, . . ., X
the C expression x << k yields a value with bit representation [x,_;_1, X,,_r_2,



Section 2.1 Information Storage

... X0, 0,...0]. That is, x is shifted k bits to the left, dropping off the & most
significant bits and filling the right end with k zeros. The shift amount should be a
value between 0 and n — 1. Shift operations associate from left to right, so x << j
<< kis equivalent to (x << j) << k.

There is a corresponding right shift operation x >> k, but it has a slightly
subtle behavior. Generally, machines support two forms of right shift: logical
and arithmetic. A logical right shift fills the left end with k zeros, giving a result
[0,...,0, x,_1, X,_2, - . . x;]- An arithmetic right shift fills the left end with k repe-
titions of the most significant bit, giving a result [x,,_1, . . ., X,,_1> Xp—_1> Xy—2> - - - Xk J-
This convention might seem peculiar, but as we will see it is useful for operating
on signed integer data.

As examples, the following table shows the effect of applying the different
shift operations to some sample 8-bit data:

Operation Values

Argument x [01100011] [10010101]
x << 4 [00110000] [01010000]
x >> 4 (logical) [00000110]  [00001001]
x >> 4 (arithmetic) [00000110] [11111001]

The italicized digits indicate the values that fill the right (left shift) or left (right
shift) ends. Observe that all but one entry involves filling with zeros. The exception
is the case of shifting [10010101] right arithmetically. Since its most significant bit
is 1, this will be used as the fill value.

The C standards do not precisely define which type of right shift should
be used. For unsigned data (i.e., integral objects declared with the qualifier
unsigned), right shifts must be logical. For signed data (the default), either
arithmetic or logical shifts may be used. This unfortunately means that any code
assuming one form or the other will potentially encounter portability problems.
In practice, however, almost all compiler/machine combinations use arithmetic
right shifts for signed data, and many programmers assume this to be the case.

Java, on the other hand, has a precise definition of how right shifts should
be performed. The expression x >> k shifts x arithmetically by k positions, while
x >>> k shifts it logically.

Aside Shifting by k, for large values of k

55

For a data type consisting of w bits, what should be the effect of shifting by some value k£ > w? For

example, what should be the effect of computing the following expressions on a 32-bit machine:

int lval OxFEDCBA98 << 32;
int aval OxFEDCBA98 >> 36;

unsigned uval = OxFEDCBA98u >> 40;
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The C standards carefully avoid stating what should be done in such a case. On many machines, the shift
instructions consider only the lower log, w bits of the shift amount when shifting a w-bit value, and so
the shift amount is effectively computed as k mod w. For example, on a 32-bit machine following this
convention, the above three shifts are computed as if they were by amounts 0, 4, and §, respectively,
giving results

lval O0xFEDCBA98
aval OxFFEDCBA9
uval 0xOOFEDCBA

This behavior is not guaranteed for C programs, however, and so shift amounts should be kept less
than the word size.

Java, on the other hand, specifically requires that shift amounts should be computed in the modular
fashion we have shown.

Aside Operator precedence issues with shift operations

It might be tempting to write the expression 1<<2 + 3<<4, intending it to mean (1<<2) + (3<<4). But,
in C, the former expression is equivalent to 1 << (2+3) << 4, since addition (and subtraction) have
higher precedence than shifts. The left-to-right associativity rule then causes this to be parenthesized
as (1 << (2+3)) << 4, giving value 512, rather than the intended 52.

Getting the precedence wrong in C expressions is a common source of program errors, and often
these are difficult to spot by inspection. When in doubt, put in parentheses!

Practice Problem 2.16

Fillin the table below showing the effects of the different shift operations on single-
byte quantities. The best way to think about shift operations is to work with binary
representations. Convert the initial values to binary, perform the shifts, and then
convert back to hexadecimal. Each of the answers should be 8 binary digits or 2
hexadecimal digits.

(Logical) (Arithmetic)
X x << 3 x>>2 x>>2

Hex Binary Binary Hex Binary Hex Binary Hex

0xC3
0x75
0x87
0x66

2.2 Integer Representations

In this section, we describe two different ways bits can be used to encode integers—
one that can only represent nonnegative numbers, and one that can represent
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C data type Minimum Maximum
char —128 127
unsigned char 0 255
short [int] —32,768 32,767
unsigned short [int] 0 65,535
int —2,147,483,648 2,147,483,647
unsigned [int] 0 4,294,967,295
long [int] —2,147,483,648 2,147,483,647
unsigned long [int] 0 4,294,967,295
long long [int] —9,223,372,036,854,775,808 9,223,372,036,854,775,807
unsigned long long [int] 0 18,446,744,073,709,551,615

Figure 2.8 Typical ranges for C integral data types on a 32-bit machine. Text in

square brackets is optional.

C data type Minimum Maximum
char —128 127
unsigned char 0 255
short [int] —32,768 32,767
unsigned short [int] 0 65,535
int —2,147,483,648 2,147,483,647
unsigned [int] 0 4,294,967,295
long [int] —9,223,372,036,854,775,808 9,223,372,036,854,775,807
unsigned long [int] 0 18,446,744,073,709,551,615
long long [int] —9,223,372,036,854,775,808 9,223,372,036,854,775,807
unsigned long long [int] 0 18,446,744,073,709,551,615

Figure 2.9 Typical ranges for C integral data types on a 64-bit machine. Text in

square brackets is optional.

negative, zero, and positive numbers. We will see later that they are strongly
related both in their mathematical properties and their machine-level implemen-
tations. We also investigate the effect of expanding or shrinking an encoded integer
to fit a representation with a different length.

2.2.1 Integral Data Types

C supports a variety of integral data types—ones that represent finite ranges of
integers. These are shown in Figures 2.8 and 2.9, along with the ranges of values
they can have for “typical” 32- and 64-bit machines. Each type can specify a size
with keyword char, short, long, or long long, as well as an indication of whether
the represented numbers are all nonnegative (declared as unsigned), or possibly
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C data type Minimum Maximum
char —127 127
unsigned char 0 255
short [int] —32,767 32,767
unsigned short [int] 0 65,535
int —32,767 32,767
unsigned [int] 0 65,535
long [int] —2,147,483,0647 2,147,483,0647
unsigned long [int] 0 4.294.967,295
long long [int] —9,223,372,036,854,775,807  9,223,372,036,854,775,807
unsigned long long [int] 0 18,446,744,073,709,551,615

Figure 2.10 Guaranteed ranges for C integral data types. Text in square brackets is
optional. The C standards require that the data types have at least these ranges of values.

negative (the default). As we saw in Figure 2.3, the number of bytes allocated for
the different sizes vary according to machine’s word size and the compiler. Based
on the byte allocations, the different sizes allow different ranges of values to be
represented. The only machine-dependent range indicated is for size designator
long. Most 64-bit machines use an 8-byte representation, giving a much wider
range of values than the 4-byte representation used on 32-bit machines.

One important feature to note in Figures 2.8 and 2.9 is that the ranges are not
symmetric—the range of negative numbers extends one further than the range of
positive numbers. We will see why this happens when we consider how negative
numbers are represented.

The C standards define minimum ranges of values that each data type must
be able to represent. As shown in Figure 2.10, their ranges are the same or smaller
than the typical implementations shown in Figures 2.8 and 2.9. In particular, we see
that they require only asymmetric range of positive and negative numbers. We also
see that data type int could be implemented with 2-byte numbers, although this is
mostly a throwback to the days of 16-bit machines. We also see that size 1ong could
be implemented with 4-byte numbers, as is often the case. Data type long long
was introduced with ISO C99, and it requires at least an 8-byte representation.

New to C? Signed and unsigned numbers in C, C++, and Java

Both C and C++supportsigned (the default) and unsigned numbers. Java supports only signed numbers.

2.2.2 Unsigned Encodings

Assume we have an integer data type of w bits. We write a bit vector as either ¥, to
denote the entire vector, or as [x,,_1, X,_2, - - - » Xg], to denote the individual bits
within the vector. Treating ¥ as a number written in binary notation, we obtain the
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Figure 2.11

Unsigned number
examples for w =4.
When bit i in the binary
representation has value
1, it contributes 2! to the
value.

012345678 0910111213141516
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[0001]
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unsigned interpretation of X. We express this interpretation as a function B2U
(for “binary to unsigned,” length w):

w—1
B2U,(F) =) x2' (2.1)
i=0
In this equation, the notation “=" means that the left-hand side is defined to be

equal to the right-hand side. The function B2U ,, maps strings of zeros and ones
of length w to nonnegative integers. As examples, Figure 2.11 shows the mapping,
given by B2U, from bit vectors to integers for the following cases:

B2U4([0001)) = 0-2°4+0-2240-2'4+1-2° = 040+0+1 = 1
B2U,([0101)) = 0-2341-2240-2'41-2° = 04+4+0+1 = 5
B2U,(1011])) = 1-2°40-224+1-2141.20 = 8404241 = 11
B2U,(1111) = 1-2241-2241-2141.2° = 8444241 = 15
(2.2)

In the figure, we represent each bit position i by a rightward-pointing blue bar of
length 2. The numeric value associated with a bit vector then equals the combined
length of the bars for which the corresponding bit values are 1.

Let us consider the range of values that can be represented using w bits. The
least value is given by bit vector [00 - - - 0] having integer value 0, and the greatest
value is given by bit vector [11-- - 1] having integer value UMax,, = Z;“;Ol 2 =
2" — 1. Using the 4-bit case as an example, we have UMax, = B2U 4([1111]) =
2% —1=15.Thus, the function B2U ,, can be defined as a mapping B2U ,: {0, 1}** —
{0,...,2% —1}.

The unsigned binary representation has the important property that every
number between 0 and 2¥ — 1 has a unique encoding as a w-bit value. For example,
there is only one representation of decimal value 11 as an unsigned, 4-bit number,
namely [1011]. This property is captured in mathematical terms by stating that
function B2U , is a bijection—it associates a unique value to each bit vector of
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length w; conversely, each integer between 0 and 2 — 1 has a unique binary
representation as a bit vector of length w.

2.2.3 Two’'s-Complement Encodings

For many applications, we wish to represent negative values as well. The most com-
mon computer representation of signed numbers is known as two’s-complement
form. This is defined by interpreting the most significant bit of the word to have
negative weight. We express this interpretation as a function B2T,, (for “binary
to two’s-complement” length w):

w—2
B2T,(¥) = —x, 12"+ ) x;2' (2.3)
i=0

The most significant bit x,,_; is also called the sign bit. Its “weight” is — 2!, the
negation of its weight in an unsigned representation. When the sign bit is set to
1, the represented value is negative, and when set to O the value is nonnegative.
As examples, Figure 2.12 shows the mapping, given by B2T, from bit vectors to
integers for the following cases:

B2T4([0001]) = —0-2°40-2240-2'4+1-2° = 0+4+0+0+1 = 1
B2T,([0101)) = —0-2341-2240-2'41-2° = 0+440+1 =
B2T,(1011)) = —-1-2240-224+1-2'41-2° = —840+2+1 = -5
B2T,(1111)) = —-1-2241-2241.2141.20 = 8444241 = -1
(2.4)

In the figure, we indicate that the sign bit has negative weight by showing it as
a leftward-pointing gray bar. The numeric value associated with a bit vector is
then given by the combination of the possible leftward-pointing gray bar and the
rightward-pointing blue bars.

Figure 2.12 _23-_8
Two’s-complement 5

number examples for

w = 4. Bit 3 serves as a 2 =2 [
sign bit, and so, when 20 _ 1 .

set to 1, it contributes

— 23 = —8 to the value. This
weighting is shown as a
leftward-pointing gray bar.

[0001]
[0101]

[1011] -
win DD
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We see that the bit patterns are identical for Figures 2.11 and 2.12 (as well as
for Equations 2.2 and 2.4), but the values differ when the most significant bit is 1,
since in one case it has weight +8, and in the other case it has weight —8.

Let us consider the range of values that can be represented as a w-bit two’s-
complement number. The least representable value is given by bit vector [10 - - - 0]
(set the bit with negative weight, but clear all others), having integer value
TMin,, = —2"~!. The greatest value is given by bit vector [01- - - 1] (clear the bit
with negative weight, but set all others), having integer value TMax,, = Z;U:_oz 2i =
2w=1 _ 1. Using the 4-bit case as an example, we have TMin, = B2T 4([1000]) =
—23=_8,and TMax, = B2T,([0111]) =22 + 21 + 20 =4 424 1=7.

We can see that B2T,, is a mapping of bit patterns of length w to numbers be-
tween TMin,, and TMax,,, written as B2T ,: {0, 1} — {— 2wl 2wl 1} As
we saw with the unsigned representation, every number within the representable
range has a unique encoding as a w-bit two’s-complement number. In mathemat-
ical terms, we say that the function B2T, is a bijection—it associates a unique
value to each bit vector of length w; conversely, each integer between — 2*~! and
2*=1 _ 1 has a unique binary representation as a bit vector of length w.

Practice Problem 2.17

Assuming w =4, we can assign a numeric value to each possible hexadecimal
digit, assuming either an unsigned or a two’s-complement interpretation. Fill in
the following table according to these interpretations by writing out the nonzero
powers of two in the summations shown in Equations 2.1 and 2.3:

>

X
Hexadecimal Binary B2U 4(X) B2T 4(X)

OxE [1110] P422420=14 234 22421=22

0x0

0x5

0x8

0xD

OxF

Figure 2.13 shows the bit patterns and numeric values for several important
numbers for different word sizes. The first three give the ranges of representable
integers in terms of the values of UMax,,, TMin,,, and TMax,,. We will refer
to these three special values often in the ensuing discussion. We will drop the
subscript w and refer to the values UMax, TMin, and TMax when w can be inferred
from context or is not central to the discussion.

A few points are worth highlighting about these numbers. First, as observed
in Figures 2.8 and 2.9, the two’s-complement range is asymmetric: |TMin| =
|TMax| + 1, that is, there is no positive counterpart to TMin. As we shall see,
this leads to some peculiar properties of two’s-complement arithmetic and can be
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Word size w

Value 8 16 32 64

UMax,, OxFF OxFFFF OxFFFFFFFF OxXFFFFFFFFFFFFFFFF
255 65,535 4,294,967,295 18,446,744,073,709,551,615

TMin,, 0x80 0x8000 0x80000000 0x8000000000000000
—128 —32,768 —2,147,483,648 —9,223,372,036,854,775,808

TMaxw Ox7F OxX7FFF Ox7FFFFFFF Ox7FFFFFFFFFFFFFFF
127 32,767 2,147,483,647 9,223,372,036,854,775,807

-1 OxFF OxFFFF OxFFFFFFFF OxXFFFFFFFFFFFFFFFF
0 0x00 0x0000 0x00000000 0x0000000000000000

Figure2.13 Important numbers. Both numeric values and hexadecimal representations
are shown.

the source of subtle program bugs. This asymmetry arises, because half the bit pat-
terns (those with the sign bit set to 1) represent negative numbers, while half (those
with the sign bit set to 0) represent nonnegative numbers. Since 0 is nonnegative,
this means that it can represent one less positive number than negative. Second,
the maximum unsigned value is just over twice the maximum two’s-complement
value: UMax = 2TMax + 1. All of the bit patterns that denote negative numbers
in two’s-complement notation become positive values in an unsigned representa-
tion. Figure 2.13 also shows the representations of constants —1 and 0. Note that
—1 has the same bit representation as UMax—a string of all ones. Numeric value
0 is represented as a string of all zeros in both representations.

The C standards do not require signed integers to be represented in two’s-
complement form, but nearly all machines do so. Programmers who are con-
cerned with maximizing portability across all possible machines should not assume
any particular range of representable values, beyond the ranges indicated in Fig-
ure 2.10, nor should they assume any particular representation of signed numbers.
On the other hand, many programs are written assuming a two’s-complement
representation of signed numbers, and the “typical” ranges shown in Figures 2.8
and 2.9, and these programs are portable across a broad range of machines and
compilers. The file <1imits.h> in the C library defines a set of constants delim-
iting the ranges of the different integer data types for the particular machine on
which the compiler is running. For example, it defines constants INT_MAX, INT_
MIN, and UINT_MAX describing the ranges of signed and unsigned integers. For a
two’s-complement machine in which data type int has w bits, these constants
correspond to the values of TMax,,, TMin,,, and UMax,,.

Aside Exact-size integer types

For some programs, it is essential that data types be encoded using representations with specific sizes.
For example, when writing programs to enable a machine to communicate over the Internet according
to astandard protocol, it is important to have data types compatible with those specified by the protocol.
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We have seen that some C data types, especially long, have different ranges on different machines, and
in fact the C standards only specify the minimum ranges for any data type, and not the exact ranges.
Although we can choose data types that will be compatible with standard representations on most
machines, there is not guarantee of portability.

The ISO C99 standard introduces another class of integer types in the file stdint.h. This file
defines a set of data types with declarations of the form int N_t and uint N _t, specifying N-bit signed
and unsigned integers, for different values of N. The exact values of N are implementation dependent,
but most compilers allow values of 8, 16, 32, and 64. Thus, we can unambiguously declare an unsigned,
16-bit variable by giving it type uint16_t, and a signed variable of 32 bits as int32_t.

Along with these data types are a set of macros defining the minimum and maximum values for
each value of N. These have names of the form INTN _MIN, INTN_MAX, and UINTN _MAX.

The Java standard is quite specific about integer data type ranges and repre-
sentations. It requires a two’s-complement representation with the exact ranges
shown for the 64-bit case (Figure 2.9). In Java, the single-byte data type is called
byte instead of char, and there is no long long data type. These detailed require-
ments are intended to enable Java programs to behave identically regardless of
the machines running them.

Aside Alternative representations of signed numbers

There are two other standard representations for signed numbers:

Ones’ Complement: This is the same as two’s complement, except that the most
significant bit has weight —(2*~! — 1) rather than — 2%~ 1:

w—2
B20,@) = —x, 1" =D+ Y x2'
i=0

Sign-Magnitude: The most significant bit is a sign bit that determines whether
the remaining bits should be given negative or positive
weight:

w—2
B2S,,(X) = (=1)*w-1. (Z xiZi)
i=0

Both of these representations have the curious property that there are two different encodings of the
number 0. For both representations, [00 - - - 0] is interpreted as +0. The value —0 can be represented
in sign-magnitude form as [10 - - - 0] and in ones’-complement as [11 - - - 1]. Although machines based
on ones’-complement representations were built in the past, almost all modern machines use two’s
complement. We will see that sign-magnitude encoding is used with floating-point numbers.

Note the different position of apostrophes: Tiwo’s complement versus Ones’ complement. The term
“two’s complement” arises from the fact that for nonnegative x we compute a w-bit representation
of —x as 2% — x (a single two). The term “ones’ complement” comes from the property that we can
compute —x in this notation as [111 - - - 1] — x (multiple ones).
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12,345 —12,345 53,191
Weight Bit Value Bit Value Bit Value
1 1 1 1 1 1 1
2 0 0 1 2 1 2
4 0 0 1 4 1 4
8 1 8 0 0 0 0
16 1 16 0 0 0 0
32 1 32 0 0 0 0
64 0 0 1 64 1 64
128 0 0 1 128 1 128
256 0 0 1 256 1 256
512 0 0 1 512 1 512
1,024 0 0 1 1,024 1 1,024
2,048 0 0 1 2,048 1 2,048
4,096 1 4,096 0 0 0 0
8,192 1 8,192 0 0 0 0
16,384 0 0 1 16,384 1 16,384
+32,768 0 0 1 —32,768 1 32,768
Total 12,345 —12,345 53,191

Figure 2.14 Two’s-complement representations of 12,345 and —12,345, and
unsigned representation of 53,191. Note that the latter two have identical bit
representations.

As an example, consider the following code:

short x = 12345;
short mx = -x;

show_bytes ((byte_pointer) &x, sizeof(short));

v A w N =

show_bytes ((byte_pointer) &mx, sizeof(short));

When run on a big-endian machine, this code prints 30 39 and cf <7, indi-
cating that x has hexadecimal representation 0x3039, while mx has hexadeci-
mal representation 0xCFC7. Expanding these into binary, we get bit patterns
[0011000000111001] for x and [1100111111000111] for mx. As Figure 2.14 shows,
Equation 2.3 yields values 12,345 and —12,345 for these two bit patterns.

Practice Problem 2.18

In Chapter 3, we will look at listings generated by a disassembler, a program that
converts an executable program file back to a more readable ASCII form. These
files contain many hexadecimal numbers, typically representing values in two’s-
complement form. Being able to recognize these numbers and understand their
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significance (for example, whether they are negative or positive) is an important
skill.

For the lines labeled A-J (on the right) in the following listing, convert the
hexadecimal values (in 32-bit two’s-complement form) shown to the right of the
instruction names (sub, mov, and add) into their decimal equivalents:

8048337: 81 ec b8 01 00 00 sub $0x1b8, %esp A.
804833d: 8b 55 08 mov 0x8 (%ebp) , hedx

8048340: 83 c2 14 add $0x14,%edx B.
8048343: 8b 85 58 fe ff ff mov Oxfffffeb8(%ebp),%eax C.
8048349: 03 02 add (%edx) , %eax

804834b: 89 85 74 fe ff ff mov %heax,0xfffffe74 (%ebp) D.
8048351: 8b 55 08 mov 0x8 (%ebp) , hedx

8048354: 83 c2 44 add $0x44, %edx E.
8048357: 8b 85 c8 fe ff ff mov Oxfffffec8(ebp),%eax F.
804835d: 89 02 mov Y%eax, (Yhedx)

804835f: 8b 45 10 mov 0x10 (%ebp) , heax G.
8048362: 03 45 Oc add 0xc (%ebp) , heax .
8048365: 89 85 ec fe ff ff mov %heax,0xfffffeec(febp) I.
804836b: 8b 45 08 mov 0x8 (%ebp) , heax

804836e: 83 cO 20 add $0x20, %eax J.
8048371: 8b 00 mov (%eax) ,%eax

2.2.4 Conversions Between Signed and Unsigned

C allows casting between different numeric data types. For example, suppose
variable x is declared as int and u as unsigned. The expression (unsigned) x
converts the value of x to an unsigned value, and (int) u converts the value of u
to a signed integer. What should be the effect of casting signed value to unsigned,
or vice versa? From a mathematical perspective, one can imagine several different
conventions. Clearly, we want to preserve any value that can be represented in
both forms. On the other hand, converting a negative value to unsigned might yield
zero. Converting an unsigned value that is too large to be represented in two’s-
complement form might yield 7Max. For most implementations of C, however,
the answer to this question is based on a bit-level perspective, rather than on a
numeric one.
For example, consider the following code:

1 short int v = —-12345;
2 unsigned short uv = (unsigned short) v;
3 printf("v = %d, uv = %u\n", v, uv);

When run on a two’s-complement machine, it generates the following output:
v = -12345, uv = 53191

What we see here is that the effect of casting is to keep the bit values identical
but change how these bits are interpreted. We saw in Figure 2.14 that the 16-bit
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two’s-complement representation of —12,345 is identical to the 16-bit unsigned
representation of 53,191. Casting from short int to unsigned short changed the
numeric value, but not the bit representation.

Similarly, consider the following code:

1 unsigned u = 4294967295u; /* UMax_32 */
2 int tu = (int) u;
3 printf("u = %u, tu = %d\n", u, tu);

When run on a two’s-complement machine, it generates the following output:
u = 4294967295, tu = -1

We can see from Figure 2.13 that, for a 32-bit word size, the bit patterns represent-
ing 4,294,967,295 (UMaxs,) in unsigned form and —1 in two’s-complement form
are identical. In casting from unsigned int to int, the underlying bit representa-
tion stays the same.

This is a general rule for how most C implementations handle conversions
between signed and unsigned numbers with the same word size—the numeric
values might change, but the bit patterns do not. Let us capture this principle
in a more mathematical form. Since both B2U,, and B2T,, are bijections, they
have well-defined inverses. Define U2B,, to be B2U ;1, and T2B,, to be BZT;I.
These functions give the unsigned or two’s-complement bit patterns for a numeric
value. That is, given an integer x in the range 0 < x < 2%, the function U2B,,(x)
gives the unique w-bit unsigned representation of x. Similarly, when x is in the
range — 2"~ ! < x <2¥~1, the function T2B,,(x) gives the unique w-bit two’s-
complement representation of x. Observe that for values in the range 0 < x <2¥~1,
both of these functions will yield the same bit representation—the most significant
bit will be 0, and hence it does not matter whether this bit has positive or negative
weight.

Now define the function U2T', as U2T,(x) = B2T ,,(U2B,,(x)). This function
takes a number between 0 and 2 — 1 and yields a number between — 2*~! and
2v=1 _ 1, where the two numbers have identical bit representations, except that
the argument is unsigned, while the result has a two’s-complement representa-
tion. Similarly, for x between — 2v=1and 2¥~1 — 1, the function 72U w> defined as
12U, (x) = B2U ,(T2B,,(x)), yields the number having the same unsigned repre-
sentation as the two’s-complement representation of x.

Pursuing our earlier examples, we see from Figure 2.14 that 72U 4(—12,345)
=153,191, and U2T4(53,191) = —12,345. That is, the 16-bit pattern written in
hexadecimal as 0xCFC7 is both the two’s-complement representation of —12,345
and the unsigned representation of 53,191. Similarly, from Figure 2.13, we see that
T2U3,(—1) =4,294,967,295, and U2T5,(4,294,967,295) = —1. That is, UMax has
the same bit representation in unsigned form as does —1 in two’s-complement
form.

We see, then, that function U2T describes the conversion of an unsigned
number to its 2-complement counterpart, while 72U converts in the opposite
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direction. These describe the effect of casting between these data types in most C
implementations.

Practice Problem 2.19

Using the table you filled in when solving Problem 2.17, fill in the following table
describing the function 72U 4:

X T2U 4(x)

To get a better understanding of the relation between a signed number x and
its unsigned counterpart 72U, (x), we can use the fact that they have identical bit
representations to derive a numerical relationship. Comparing Equations 2.1 and
2.3, we can see that for bit pattern X, if we compute the difference B2U ,(X) —
B2T ,(X), the weighted sums for bits from 0 to w — 2 will cancel each other,
leaving a value: B2U ,(X) — B2T ,(X) = x,,_1 (¥~ 1 — — 2%~y = x 2. This gives
arelationship B2U ,(X) = x,,_{2" + B2T,,(X). If we let x = T2B,,(x), we then have

B2U ,(T2B,,(x)) = T2U ,(x) = x,,_12" + x (2.5)

This relationship is useful for proving relationships between unsigned and two’s-
complement arithmetic. In the two’s-complement representation of x, bit x,,_4
determines whether or not x is negative, giving

2U)
20U, (x) = { *+2% x<0 (2.6)

X, x>0

As examples, Figure 2.15 compares how functions B2U and B2T assign values
to bit patterns for w = 4. For the two’s-complement case, the most significant
bit serves as the sign bit, which we diagram as a gray, leftward-pointing bar.
For the unsigned case, this bit has positive weight, which we show as a black,
rightward-pointing bar. In going from two’s complement to unsigned, the most
significant bit changes its weight from —8 to +8. As a consequence, the values
that are negative in a two’s-complement representation increase by 2% = 16 with
an unsigned representation. Thus, —5 becomes +11, and —1 becomes +15.
Figure 2.16 illustrates the general behavior of function 72U. As it shows, when
mapping a signed number to its unsigned counterpart, negative numbers are con-
verted to large positive numbers, while nonnegative numbers remain unchanged.
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Figure 2.15 Comparing unsigned and two’s-complement representations for w = 4.
The weight of the most significant bit is —8 for two’s complement, and +8 for unsigned,
yielding a net difference of 16.

Conversion from two’s
complement to unsigned.

Function T2U converts

negative numbers to large

positive numbers.

2W
Low-1 2"~1 Unsigned
Two’s 0
complement 0
_2W*1

Practice Problem 2.20

Explain how Equation 2.6 applies to the entries in the table you generated when
solving Problem 2.19.

Going in the other direction, we wish to derive the relationship between an
unsigned number u and its signed counterpart U2T, («), both having bit repre-
sentations i = U2B,,(«). We have

B2T ,,(U2B,,(w)) = U2T ,,(u) = —u,,_12" +u 2.7)

In the unsigned representation of u, bitu,,_ determines whether or not u is greater
than or equal to 2*~!, giving

u, u < 2wl

_ 2w, u> 2w—1

U2T ,(u) = { . (2.8)
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Figure 2.17
Conversion from un-
signed to two’s com-
plement. Function U2T Unsigned 2"~
converts numbers greater

than 2¥~! — 1 to negative

values. 0

2W

+2 1

Two’s
complement

72W*1

This behavior is illustrated in Figure 2.17. For small (< 2*~!) numbers, the conver-
sion from unsigned to signed preserves the numeric value. Large (> 2*~!) numbers
are converted to negative values.

To summarize, we considered the effects of converting in both directions be-
tween unsigned and two’s-complement representations. For values x in the range
0<x <2¥"1 we have 12U, (x) =x and U2T,(x) = x. That is, numbers in this
range have identical unsigned and two’s-complement representations. For val-
ues outside of this range, the conversions either add or subtract 2*. For exam-
ple, we have T2U (1) = —1 + 2* = UMax,,—the negative number closest to
0 maps to the largest unsigned number. At the other extreme, one can see that
72U, (TMin,) = — 2%~ 4+ 2¥ =2»~1 = TMax,, + 1—the most negative number
maps to an unsigned number just outside the range of positive, two’s-complement
numbers. Using the example of Figure 2.14, we can see that 72U 4(—12,345) =
65,536 + —12,345 = 53,191.

2.2.5 Signed vs. Unsigned in C

Asindicated in Figures 2.8 and 2.9, C supports both signed and unsigned arithmetic
for all of its integer data types. Although the Cstandard does not specity a particu-
lar representation of signed numbers, almost all machines use two’s complement.
Generally, most numbers are signed by default. For example, when declaring a
constant such as 12345 or 0x1A2B, the value is considered signed. Adding charac-
ter ‘U’ or ‘u’ as a suffix creates an unsigned constant, e.g., 12345U or 0x1A2Bu.

C allows conversion between unsigned and signed. The rule is that the under-
lying bit representation is not changed. Thus, on a two’s-complement machine, the
effect is to apply the function U2T,, when converting from unsigned to signed, and
T2U,, when converting from signed to unsigned, where w is the number of bits
for the data type.

Conversions can happen due to explicit casting, such as in the following code:

int tx, ty;
unsigned ux, uy;

tx
uy

(int) ux;
(unsigned) ty;

v A W N =



70 Chapter 2 Representing and Manipulating Information
Alternatively, they can happen implicitly when an expression of one type is as-
signed to a variable of another, as in the following code:

int tx, ty;
unsigned ux, uy;

tx
uy = ty; /* Cast to unsigned */

ux; /* Cast to signed */

b A W N =

When printing numeric values with printf, the directives %d, %u, and %x
are used to print a number as a signed decimal, an unsigned decimal, and in
hexadecimal format, respectively. Note that printf does not make use of any type
information, and so it is possible to print a value of type int with directive %u and
a value of type unsigned with directive %d. For example, consider the following

code:

1 int x = -1;

2 unsigned u = 2147483648; /* 2 to the 31lst */
3

4 printf("x = %u = %d\n", x, x);

5 printf("u = %u = %d\n", u, w;

When run on a 32-bit machine, it prints the following:

4294967295
2147483648

-1
-2147483648

X

u

In both cases, printf prints the word first as if it represented an unsigned number,
and second as if it represented a signed number. We can see the conversion
routines in action: T2U3,(—1) = UMaxs, =23* — 1 and U2T+,(23)) =231 - 232 =
— 231 = TMins,.

Some of the peculiar behavior arises due to C’s handling of expressions con-
taining combinations of signed and unsigned quantities. When an operation is
performed where one operand is signed and the other is unsigned, C implicitly
casts the signed argument to unsigned and performs the operations assuming
the numbers are nonnegative. As we will see, this convention makes little dif-
ference for standard arithmetic operations, but it leads to nonintuitive results
for relational operators such as < and >. Figure 2.18 shows some sample rela-
tional expressions and their resulting evaluations, assuming a 32-bit machine us-
ing two’s-complement representation. Consider the comparison -1 < 0U. Since
the second operand is unsigned, the first one is implicitly cast to unsigned, and
hence the expression is equivalent to the comparison 4294967295U < 0U (recall
that 72U ,,(—1) = UMax,,), which of course is false. The other cases can be under-
stood by similar analyses.

Practice Problem 2.21

Assuming the expressions are evaluated on a 32-bit machine that uses two’s-
complement arithmetic, fill in the following table describing the effect of casting
and relational operations, in the style of Figure 2.18:
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Expression Type Evaluation

-2147483647-1 == 21474836480
-2147483647-1 < 2147483647
-2147483647-1U < 2147483647
-2147483647-1 < -2147483647
-2147483647-1U < -2147483647

Web Aside DATA:TMIN Writing TMin in C

In Figure 2.18 and in Problem 2.21, we carefully wrote the value of TMins, as —2147483647-1. Why
not simply write it as either ~2147483648 or 0x80000000? Looking at the C header file 1imits.h, we
see that they use a similar method as we have to write TMins, and TMaxzy:

/* Minimum and maximum values a ‘signed int' can hold. */
#define INT_MAX 2147483647
#define INT_MIN (-INT_MAX - 1)

Unfortunately, a curious interaction between the asymmetry of the two’s-complement representation
and the conversion rules of C force us to write TMins, in this unusual way. Although understanding
this issue requires us to delve into one of the murkier corners of the C language standards, it will help
us appreciate some of the subtleties of integer data types and representations.

2.2.6 Expanding the Bit Representation of a Number

One common operation is to convert between integers having different word sizes
while retaining the same numeric value. Of course, this may not be possible when
the destination data type is too small to represent the desired value. Converting
from a smaller to a larger data type, however, should always be possible. To convert

Expression Type Evaluation
0==0U unsigned 1
-1<0 signed 1
-1<0U unsigned 0*
2147483647 > -2147483647-1 signed 1
2147483647U > -2147483647-1 unsigned 0*
2147483647 > (int) 2147483648U signed 1*
-1>-2 signed 1
(unsigned) -1 > -2 unsigned 1

Figure 2.18 Effects of C promotion rules. Nonintuitive cases marked by “*'. When
either operand of a comparison is unsigned, the other operand is implicitly cast to
unsigned. See Web Aside DATA:TMIN for why we write TMins, as -2147483647-1.
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an unsigned number to a larger data type, we can simply add leading zeros to the
representation; this operation is known as zero extension. For converting a two’s-
complement number to a larger data type, the rule is to perform a sign extension,
adding copies of the most significant bit to the representation. Thus, if our original
value has bit representation [x,, |, x,,_2, - - . , Xo], the expanded representation
1S [X 015 v oo s Xy 1> Xy 1> Xyp—2s - - - » X0J- (We show the sign bit x,,_; in blue to
highlight its role in sign extension.)
As an example, consider the following code:

short sx = -12345; /* —12345 x/
unsigned short usx = sx; /* 53191 */
int X = sX; /* —12345 x/
unsigned ux = usx; /* 53191 */

printf("sx = %d:\t", sx);

show_bytes ((byte_pointer) &sx, sizeof (short));
printf("usx = %u:\t", usx);

9  show_bytes((byte_pointer) &usx, sizeof (unsigned short));
10 printf("x = %d:\t", x);

11 show_bytes ((byte_pointer) &x, sizeof(int));

12 printf("ux = %u:\t", ux);

13 show_bytes((byte_pointer) &ux, sizeof(unsigned));

When run on a 32-bit big-endian machine using a two’s-complement representa-
tion, this code prints the output

sx = -12345: cf c7
usx = b53191: cf c7
X = -12345: ff ff cf c7

ux = b3191: 00 00 cf c7

We see that although the two’s-complement representation of —12,345 and the
unsigned representation of 53,191 are identical for a 16-bit word size, they dif-
fer for a 32-bit word size. In particular, —12,345 has hexadecimal representation
OxFFFFCFC7, while 53,191 has hexadecimal representation 0x0000CFC7. The for-
mer has been sign extended—16 copies of the most significant bit 1, having hexa-
decimal representation OxFFFF, have been added as leading bits. The latter has
been extended with 16 leading zeros, having hexadecimal representation 0x0000.

As an illustration, Figure 2.19 shows the result of applying expanding from
word size w = 3 to w = 4 by sign extension. Bit vector [101] represents the value
—4 + 1= —-3. Applying sign extension gives bit vector [1101] representing the
value —8 +4 + 1 = —3. We can see that, for w = 4, the combined value of the
two most significant bits is —8 + 4 = —4, matching the value of the sign bit for
w = 3. Similarly, bit vectors [111] and [1111] both represent the value —1.

Can we justify that sign extension works? What we want to prove is that

B2Tw+k(['\‘u'fl7 s Xy Xy K25 -+ s X()]) = BZTU}(["‘H'*]’ Xw—2s -+ X()])
—_—

k times
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Figure 2.19

Examples of sign exten-
sion from w =3 to w =4.
For w =4, the combined
weight of the upper 2 bits
is —8 + 4 = —4, matching
that of the sign bit for
w=s 01234567¢

[101]

[1101]

[111]

[1111]

where, in the expression on the left-hand side, we have made k additional copies
of bit x,,_;. The proof follows by induction on k. That is, if we can prove that sign
extending by 1 bit preserves the numeric value, then this property will hold when
sign extending by an arbitrary number of bits. Thus, the task reduces to proving
that

B2T 1 ([xy 1 X015 X2, - - XoD) = B2T ([ 15 X2, - - - > X))
Expanding the left-hand expression with Equation 2.3 gives the following:

w—1
BZTw—O—l([Xu'—l’ Kp—1o Xw—2s =+ +» xO]) = _Xu!—lzw + Z xizl
i=0

w—2
= =2 4,27 4 Y a2
i=0

w—2
= —x, 1 (2w . 2w—1) +3 x2
i=0
w—2
=—x, 2"+ 52
i=0
= BZTw([xwfl’ Xyp—2s «+ v )CO])

The key property we exploit is that 2 — 2%~ =2%=1 Thus, the combined effect
of adding a bit of weight — 2 and of converting the bit having weight — 2*~! to
be one with weight 2*~1 is to preserve the original numeric value.
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Practice Problem 2.22
Show that each of the following bit vectors is a two’s-complement representation
of —5 by applying Equation 2.3:

A. [1011]

B. [11011]

C. [111011]

Observe that the second and third bit vectors can be derived from the first by sign
extension.

One point worth making is that the relative order of conversion from one
data size to another and between unsigned and signed can affect the behavior of
a program. Consider the following code:

short sx = -12345; /* —-12345 */
unsigned uy = sx; /* Mystery! x/

printf("uy = %u:\t", uy);
show_bytes ((byte_pointer) &uy, sizeof (unsigned));

v A W N =

When run on a big-endian machine, this code causes the following output to be
printed:

uy = 4294954951: ff ff cf c7

This shows that when converting from short to unsigned, we first change the
size and then from signed to unsigned. That is, (unsigned) sx is equivalent to
(unsigned) (int) sx, evaluating to 4,294,954,951, not (unsigned) (unsigned
short) sx, which evaluates to 53,191. Indeed this convention is required by the
C standards.

Practice Problem 2.23
Consider the following C functions:

int funl(unsigned word) {
return (int) ((word << 24) >> 24);
}

int fun2(unsigned word) {
return ((int) word << 24) >> 24;

}

Assume these are executed on a machine with a 32-bit word size that uses two’s-
complement arithmetic. Assume also that right shifts of signed values are per-
formed arithmetically, while right shifts of unsigned values are performed logically.
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A. Fill in the following table showing the effect of these functions for several
example arguments. You will find it more convenient to work with a hexa-
decimal representation. Just remember that hex digits 8 through F have their
most significant bits equal to 1.

W funi (w) fun2 (w)

0x00000076
0x87654321
0x000000C9
0xEDCBA987

B. Describe in words the useful computation each of these functions performs.

2.2.7 Truncating Numbers

Suppose that, rather than extending a value with extra bits, we reduce the number
of bits representing a number. This occurs, for example, in the code:

1 int x = 53191,
2 short sx = (short) x; /* —-12345 %/
3 int y = sx; /* —12345 */

On a typical 32-bit machine, when we cast x to be short, we truncate the
32-bit int to be a 16-bit short int. As we saw before, this 16-bit pattern is the
two’s-complement representation of —12,345. When we cast this back to int,
sign extension will set the high-order 16 bits to ones, yielding the 32-bit two’s-
complement representation of —12,345.

When truncating a w-bit number ¥ = [x,,_{, X,_2, - . . , Xo] t0 a k-bit number,
we drop the high-order w — k bits, giving a bit vector X' = [x;_1, X;_2, . . ., X].
Truncating a number can alter its value—a form of overflow. We now investigate
what numeric value will result. For an unsigned number x, the result of truncating
it to k bits is equivalent to computing x mod 2*. This can be seen by applying the
modulus operation to Equation 2.1:

w—1
B2U ,([xy—1s Xw—2» - - - » Xo]) mod 2 = [Z xi2i:| mod 2

=l

=1
|: x,-2’i| mod 2
i=0

k—1
xi2’
0

i=

= B2Uk([.xk7], KXfg—2s « v v s )Co])
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In this derivation, we make use of the property that 2/ mod 2% = 0 for any i > k,
and that YV~ x,2/ < Y4 20 =2F — 1 <2k,

For a two’s-complement number x, a similar argument shows that
BZTw([xw—b X—Ds e+ v s Xo]) mod 2k = B2Uk([xk_1, Xf—Ds oo v s XO]). That iS, x mod
2% can be represented by an unsigned number having bit-level representation
[*k_1> Xk—2, - - - » Xo]- In general, however, we treat the truncated number as being
signed. This will have numeric value U2T(x mod 2F).

Summarizing, the effect of truncation for unsigned numbers is

B2U  ([X4—1» Xp—zs - - - » Xo]) = B2U ,,([Xyy—1> Xyp—2s - - - » Xo]) mod 28, (2.9)
while the effect for two’s-complement numbers is

B2Tk([xk,1, Xf—2s -« )Co]) = U2Tk(B2Uw([Xw71, Xyp—2s «« « s )CO]) mod Zk) (210)

Practice Problem 2.24

Suppose we truncate a 4-bit value (represented by hex digits 0 through F) to a 3-
bit value (represented as hex digits 0 through 7). Fill in the table below showing
the effect of this truncation for some cases, in terms of the unsigned and two’s-
complement interpretations of those bit patterns.

Hex Unsigned Two’s complement

Original Truncated Original Truncated Original Truncated

0 0 0 0
2 2 2 2
9 1 9 =7
B 3 11 =5
F 7 15 -1

Explain how Equations 2.9 and 2.10 apply to these cases.

2.2.8 Advice on Signed vs. Unsigned

As we have seen, the implicit casting of signed to unsigned leads to some non-
intuitive behavior. Nonintuitive features often lead to program bugs, and ones
involving the nuances of implicit casting can be especially difficult to see. Since the
casting takes place without any clear indication in the code, programmers often
overlook its effects.

The following two practice problems illustrate some of the subtle errors that
can arise due to implicit casting and the unsigned data type.
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Practice Problem 2.25

Consider the following code that attempts to sum the elements of an array a, where
the number of elements is given by parameter length:

/* WARNING: This is buggy code */

float sum_elements(float al[l], unsigned length) {
int i;
float result = 0;

for (i = 0; i <= length-1; i++)
result += a[i];
return result;

O ©® N O L AW N =

When run with argument length equal to 0, this code should return 0.0. Instead
it encounters a memory error. Explain why this happens. Show how this code can
be corrected.

Practice Problem 2.26

You are given the assignment of writing a function that determines whether one
string is longer than another. You decide to make use of the string library function
strlen having the following declaration:

/* Prototype for library function strlen */
size_t strlen(const char *s);

Here is your first attempt at the function:

/* Determine whether string s is longer than string t */
/* WARNING: This function is buggy */
int strlonger(char *s, char *t) {

return strlen(s) - strlen(t) > 0;

}

When you test this on some sample data, things do not seem to work quite
right. You investigate further and determine that data type size_t is defined (via
typedef) in header file stdio.h to be unsigned int.

A. For what cases will this function produce an incorrect result?
B. Explain how this incorrect result comes about.

C. Show how to fix the code so that it will work reliably.
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Aside Security vulnerability in getpeername

In 2002, programmers involved in the FreeBSD open source operating systems project realized that
their implementation of the getpeername library function had a security vulnerability. A simplified
version of their code went something like this:

/*
* Illustration of code vulnerability similar to that found in
* FreeBSD's implementation of getpeername ()

*/

/* Declaration of library function memcpy */
void *memcpy(void *dest, void *src, size_t n);

0 N O L AW =

O

/* Kernel memory region holding user-accessible data */

10 #define KSIZE 1024

11 char kbuf [KSIZE];

12

13 /* Copy at most maxlen bytes from kernel region to user buffer */
14 int copy_from_kernel(void *user_dest, int maxlen) {

15 /* Byte count len is minimum of buffer size and maxlen */
16 int len = KSIZE < maxlen 7 KSIZE : maxlen;

17 memcpy (user_dest, kbuf, len);

18 return len;

19 }

In this code, we show the prototype for library function memcpy on line 7, which is designed to copy a
specified number of bytes n from one region of memory to another.

The function copy_from_kernel, starting at line 14, is designed to copy some of the data main-
tained by the operating system kernel to a designated region of memory accessible to the user. Most
of the data structures maintained by the kernel should not be readable by a user, since they may con-
tain sensitive information about other users and about other jobs running on the system, but the region
shown as kbuf was intended to be one that the user could read. The parameter maxlen is intended to be
the length of the buffer allocated by the user and indicated by argument user_dest. The computation
at line 16 then makes sure that no more bytes are copied than are available in either the source or the
destination buffer.

Suppose, however, that some malicious programmer writes code that calls copy_from_kernel with
a negative value of maxlen. Then the minimum computation on line 16 will compute this value for len,
which will then be passed as the parameter n to memcpy. Note, however, that parameter n is declared as
having data type size_t. This data type is declared (via typedef) in the library file stdio.h. Typically
it is defined to be unsigned int on 32-bit machines. Since argument n is unsigned, memcpy will treat
it as a very large, positive number and attempt to copy that many bytes from the kernel region to the
user’s buffer. Copying that many bytes (at least 23!) will not actually work, because the program will
encounter invalid addresses in the process, but the program could read regions of the kernel memory
for which it is not authorized.
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We can see that this problem arises due to the mismatch between data types: in one place the
length parameter is signed; in another place it is unsigned. Such mismatches can be a source of bugs
and, as this example shows, can even lead to security vulnerabilities. Fortunately, there were no reported
cases where a programmer had exploited the vulnerability in FreeBSD. They issued a security advisory,
“FreeBSD-SA-02:38.signed-error,” advising system administrators on how to apply a patch that would
remove the vulnerability. The bug can be fixed by declaring parameter maxlen to copy_from_kernel
to be of type size_t, to be consistent with parameter n of memcpy. We should also declare local variable

len and the return value to be of type size_t.

We have seen multiple ways in which the subtle features of unsigned arith-
metic, and especially the implicit conversion of signed to unsigned, can lead to
errors or vulnerabilities. One way to avoid such bugs is to never use unsigned
numbers. In fact, few languages other than C support unsigned integers. Appar-
ently these other language designers viewed them as more trouble than they are
worth. For example, Java supports only signed integers, and it requires that they
be implemented with two’s-complement arithmetic. The normal right shift oper-
ator >> is guaranteed to perform an arithmetic shift. The special operator >>> is
defined to perform a logical right shift.

Unsigned values are very useful when we want to think of words as just col-
lections of bits with no numeric interpretation. This occurs, for example, when
packing a word with flags describing various Boolean conditions. Addresses are
naturally unsigned, so systems programmers find unsigned types to be helpful.
Unsigned values are also useful when implementing mathematical packages for
modular arithmetic and for multiprecision arithmetic, in which numbers are rep-
resented by arrays of words.

2.3 Integer Arithmetic

Many beginning programmers are surprised to find that adding two positive num-
bers can yield a negative result, and that the comparison x < y can yield a different
result than the comparison x-y < 0. These properties are artifacts of the finite na-
ture of computer arithmetic. Understanding the nuances of computer arithmetic
can help programmers write more reliable code.

2.3.1 Unsigned Addition

Consider two nonnegative integers x and y, such that 0 <x, y <2" — 1. Each of
these numbers can be represented by w-bit unsigned numbers. If we compute their
sum, however, we have a possible range 0 < x + y <2*+! — 2. Representing this
sum could require w + 1 bits. For example, Figure 2.20 shows a plot of the function
x + y when x and y have 4-bit representations. The arguments (shown on the hor-
izontal axes) range from 0 to 15, but the sum ranges from 0 to 30. The shape of the
function is a sloping plane (the function is linear in both dimensions). If we were
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Integer addition

Figure 2.20 Integer addition. With a 4-bit word size, the sum could require 5 bits.

to maintain the sum as a w+1-bit number and add it to another value, we may re-
quire w + 2 bits, and so on. This continued “word size inflation” means we cannot
place any bound on the word size required to fully represent the results of arith-
metic operations. Some programming languages, such as Lisp, actually support
infinite precision arithmetic to allow arbitrary (within the memory limits of the
machine, of course) integer arithmetic. More commonly, programming languages
support fixed-precision arithmetic, and hence operations such as “addition” and
“multiplication” differ from their counterpart operations over integers.

Unsigned arithmetic can be viewed as a form of modular arithmetic. Unsigned
addition is equivalent to computing the sum modulo 2¥. This value can be com-
puted by simply discarding the high-order bit in the w+1-bit representation of
x + y. For example, consider a 4-bit number representation withx =9 and y =12,
having bit representations [1001] and [1100], respectively. Their sum is 21, having
a 5-bit representation [10101]. But if we discard the high-order bit, we get [0101],
that is, decimal value 5. This matches the value 21 mod 16 = 5.

In general, we can see that if x +y < 2%, the leading bit in the w+1-bit
representation of the sum will equal 0, and hence discarding it will not change
the numeric value. On the other hand, if 2¥ <x + y < 2wl the leading bit in
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Figure 2.21 Xx+y
Relation between integer ow+1 — Overflow
addition and unsigned

addition. When x + y is

greater than 2" — 1, the 2%
sum overflows.

0 - Normal

the w+1-bit representation of the sum will equal 1, and hence discarding it is
equivalent to subtracting 2% from the sum. These two cases are illustrated in Figure
2.21. This will give us a value in the range 0 < x 4+ y — 2% < 2%+l 2% = 2% which
is precisely the modulo 2 sum of x and y. Let us define the operation +; for
arguments x and y such that 0 <x, y <2 as

x4y, x4+y<2¥

+* y = 2.11
Y {x+y—2w, QW <x+4y<2wtl (211)

This is precisely the result we get in C when performing addition on two w-bit
unsigned values.

An arithmetic operation is said to overflow when the full integer result cannot
fit within the word size limits of the data type. As Equation 2.11 indicates, overflow
occurs when the two operands sum to 2% or more. Figure 2.22 shows a plot of the
unsigned addition function for word size w = 4. The sum is computed modulo
2% =16. When x + y < 16, there is no overflow, and x +3 y is simply x + y. This is
shown as the region forming a sloping plane labeled “Normal.” When x + y > 16,
the addition overflows, having the effect of decrementing the sum by 16. This is
shown as the region forming a sloping plane labeled “Overflow.”

When executing C programs, overflows are not signaled as errors. At times,
however, we might wish to determine whether overflow has occurred. For exam-
ple, suppose we compute s = x + y, and we wish to determine whether s equals
x + y. We claim that overflow has occurred if and only if s < x (or equivalently,
s < y). To see this, observe that x + y > x, and hence if s did not overflow, we will
surely have s > x. On the other hand, if s did overflow, we have s = x + y — 2%.
Given that y < 2%, we have y — 2% <0, and hence s =x + (y — 2%) < x. In our
earlier example, we saw that 9 +) 12 = 5. We can see that overflow occurred, since
5<0.

Practice Problem 2.27
Write a function with the following prototype:

/* Determine whether arguments can be added without overflow */
int uadd_ok(unsigned x, unsigned y);

This function should return 1 if arguments x and y can be added without causing
overflow.
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Unsigned addition (4-bit word)

W

10

14

Figure 2.22 Unsigned addition. With a 4-bit word size, addition is performed
modulo 16.

Modular addition forms a mathematical structure known as an abelian group,
named after the Danish mathematician Niels Henrik Abel (1802-1829). That is, it
is commutative (that’s where the “abelian” part comes in) and associative; it has
an identity element 0, and every element has an additive inverse. Let us consider
the set of w-bit unsigned numbers with addition operation + . For every value x,
there must be some value -} x such that =% x +! x = 0. When x = 0, the additive
inverse is clearly 0. For x > 0, consider the value 2% — x. Observe that this number
isintherange 0 < 2% — x < 2%, and (x + 2% — x) mod 2" = 2" mod 2" = (. Hence,
it is the inverse of x under +, . These two cases lead to the following equation for
0<x<2™:

2 —x, x>0

_;)C:{ x =0 (2.12)

Practice Problem 2.28

We can represent a bit pattern of length w =4 with a single hex digit. For an
unsigned interpretation of these digits, use Equation 2.12 to fill in the following
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table giving the values and the bit representations (in hex) of the unsigned additive
inverses of the digits shown.

u

X —4x

Hex Decimal Decimal Hex

m g oo o1 O

2.3.2 Two's-Complement Addition

With two’s-complement addition, we must decide what to do when the result is
either too large (positive) or too small (negative) to represent. Given integer
values x and y in the range —w=1 < y < qw-1_ 1, their sum is in the range
—2% <x +y <2% —2, potentially requiring w + 1 bits to represent exactly. As
before, we avoid ever-expanding data sizes by truncating the representation to w
bits. The result is not as familiar mathematically as modular addition, however.
The w-bit two’s-complement sum of two numbers has the exact same bit-level
representation as the unsigned sum. In fact, most computers use the same machine
instruction to perform either unsigned or signed addition. Thus, we can define
two’s-complement addition for word size w, denoted as + , on operands x and y

such that — 2¥—1 < x, y < 2w=1 g
x+ y=U2T, (T2U ,(x) + T2U () (2.13)

By Equation 2.5, we can write 72U ,(x) as x,,_12" + x, and 72U ,,(y) as y,,_12" +
y. Using the property that +, is simply addition modulo 2%, along with the prop-
erties of modular addition, we then have

x+ y=U2T,(T2U ,(x) +, T2U ,(y))
=U2T ,[(xpy—12" + x + yp_12" + y) mod 2%]
= U2T ,[(x + y) mod 2%]

The terms x,,_42" and y,,_{2" drop out since they equal 0 modulo 2*.

To better understand this quantity, let us define z as the integer sum z = x + y,
z'as z/ =zmod 2%, and z” as z” = U2T ,(z'). The value z" is equal to x + y. We
can divide the analysis into four cases, as illustrated in Figure 2.23:

1. —2% <z < —2""!, Thenwe will have z/ = z 4 2". This gives 0 < z/ < — 2%~ ! 4
2w =2%~1 Examining Equation 2.8, we see that z’ is in the range such that
z” = 7. This case is referred to as negative overflow. We have added two
negative numbers x and y (that’s the only way we can have z < — 2*~1) and
obtained a nonnegative result z” = x + y + 2%.

83
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Figure 2.23
Relation between integer
and two’s-complement

Xty

+2%

Positive overflow

- Case 4
addition. When x + y is X +ly
less than — 2%~ there is +2W T -2
a negative overflow. When
it is greater than 2¥~1 41, Case 3
there is a positive overflow. 04 Normal Lo
Case 2
_2W*1 L 1 _2W*1
Case 1
ow ] Negative overflow

2. —2¥~1 <z < 0. Then we will again have z/ =z 4+ 2%, giving — 2¥~1 4 2% =
2wl <7/ < 2", Examining Equation 2.8, we see that z’ is in such a range that
7" =7 — 2% and therefore z”/ = z/ — 2% =z + 2% — 2% =z, That is, our two’s-
complement sum z” equals the integer sum x + y.

3. 0 <z <2""! Then we will have z' = z, giving 0 < z/ < 2*~!, and hence z” =
7/ = z. Again, the two’s-complement sum z” equals the integer sum x + y.

4, 2%~ <z < 2", We will again have z’ = z, giving 2¥~! <z’ <2¥. But in this
range we have z”/ =z — 2% giving z” = x + y — 2. This case is referred to as
positive overflow. We have added two positive numbers x and y (that’s the only
way we can have z > 2*~1) and obtained a negative result z/ = x + y — 2.

By the preceding analysis, we have shown that when operation +; is applied
to values x and y in the range —2*~! < x, y <2*~! — 1, we have

x+y—2" 2"l<x4y Positive overflow
x4y, 2wl < x4 y < 2v=1" Normal
Xx+y+2% x4+y<-—2v]

(2.14)

t —
x+wy_

Negative overflow

As an illustration, Figure 2.24 shows some examples of 4-bit two’s-complement
addition. Each example is labeled by the case to which it corresponds in the
derivation of Equation 2.14. Note that 2* = 16, and hence negative overflow yields
aresult 16 more than the integer sum, and positive overflow yields a result 16 less.
We include bit-level representations of the operands and the result. Observe that
the result can be obtained by performing binary addition of the operands and
truncating the result to four bits.

Figure 2.25 illustrates two’s-complement addition for word size w = 4. The
operands range between —8 and 7. When x + y < —8, two’s-complement addition
has a negative underflow, causing the sum to be incremented by 16. When —8 <
x + y < 8, the addition yields x + y. When x + y > 8, the addition has a negative
overflow, causing the sum to be decremented by 16. Each of these three ranges
forms a sloping plane in the figure.
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X y x+y X+ y Case
-8 -5 -13 3 1
[1000] [1011] [10011] [0011]
-8 -8 -16 0 1
[1000] [1000] [10000] [0000]
-8 5 -3 -3 2
[1000] [0101] [11101] [1101]
2 5 7 7 3
[0010] [0101] [00111] [0111]
5 5 10 —6 4
[0101] [0101] [01010] [1010]

Figure 2.24 Two’s-complement addition examples. The bit-level representation of
the 4-bit two’s-complement sum can be obtained by performing binary addition of the
operands and truncating the result to 4 bits.

Two’s-complement addition (4-bit word)

- Normal
Negative Positive [
overflow o
8 overflow 7]
6
4
2
0 6
—2 4
4 2
0
_6 _2
_8 _4
I~
-8 -6 _\4'\r\,\ -6
-2
0 -8
2 4
6

Figure 2.25 Two’s-complement addition. With a 4-bit word size, addition can have a
negative overflow when x + y < —8 and a positive overflow when x + y > 8.
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Equation 2.14 also lets us identify the cases where overflow has occurred.
When both x and y are negative but x + 'y > 0, we have negative overflow. When
both x and y are positive but x + y < 0, we have positive overflow.

Practice Problem 2.29

Fill in the following table in the style of Figure 2.24. Give the integer values of
the 5-bit arguments, the values of both their integer and two’s-complement sums,
the bit-level representation of the two’s-complement sum, and the case from the
derivation of Equation 2.14.

X y x+y xX+5y Case

[10100]  [10001]
[11000]  [11000]
[10111]  [01000]
[00010]  [00101]

[01100]  [00100]

Practice Problem 2.30

Write a function with the following prototype:

/* Determine whether arguments can be added without overflow */
int tadd_ok(int x, int y);

This function should return 1 if arguments x and y can be added without causing
overflow.

Practice Problem 2.31

Your coworker gets impatient with your analysis of the overflow conditions for
two’s-complement addition and presents you with the following implementation
of tadd_ok:

/* Determine whether arguments can be added without overflow */
/* WARNING: This code is buggy. */
int tadd_ok(int x, int y) {

int sum = x+y;

return (sum-x == y) && (sum-y == x);

You look at the code and laugh. Explain why.
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Practice Problem 2.32

You are assigned the task of writing code for a function tsub_ok, with arguments
x and y, that will return 1 if computing x-y does not cause overflow. Having just
written the code for Problem 2.30, you write the following:

/* Determine whether arguments can be subtracted without overflow */
/* WARNING: This code is buggy. */
int tsub_ok(int x, int y) {
return tadd_ok(x, -y);
}

For what values of x and y will this function give incorrect results? Writing a correct
version of this function is left as an exercise (Problem 2.74).

2.3.3 Two's-Complement Negation

We can see that every number x in the range — 2”1 < x < 2%~ has an additive in-
verse under + as follows. First, for x # — 2v—1 we can see that its additive inverse
is simply —x. That is, we have — 2! < —x <2%"land —x +, x=—x+x =0. For
x = —2¥~1 = TMin,,, on the other hand, —x = 2! cannot be represented as a w-
bit number. We claim that this special value has itself as the additive inverse under
+ . The value of — 2wl +, = 2" ~lis given by the third case of Equation 2.14, since
—2w=lyp _w=l— _ 2w This gives — 2*~! +, = 2w=l= 2w 4 2% — (), From this
analysis, we can define the two’s-complement negation operation -} for x in the
range — 2w—l < pw-lgg

(2.15)

w

. { _ 2w—1, X =— 2w—1
Uy =

—X, x>—2w-1

Practice Problem 2.33

We can represent a bit pattern of length w = 4 with a single hex digit. For a two’s-
complement interpretation of these digits, fill in the following table to determine
the additive inverses of the digits shown:

_t
X 4)C

Hex Decimal Decimal Hex

T O o0 o1 O

What do you observe about the bit patterns generated by two’s-complement
and unsigned (Problem 2.28) negation?
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Web Aside DATA:TNEG Bit-level representation of two’s-complement negation

There are several clever ways to determine the two’s-complement negation of a value represented at the
bit level. These techniques are both useful, such as when one encounters the value Oxfffffffa when
debugging a program, and they lend insight into the nature of the two’s-complement representation.
One technique for performing two’s-complement negation at the bit level is to complement the bits
and then increment the result. In C, we can state that for any integer value x, computing the expressions
-x and ~x + 1 will give identical results.
Here are some examples with a 4-bit word size:

X ~X incr(~x)
[0101] 5 [1010] -6 [l011] -5
[0111] 7 [1000] -8 [1001] -7
[1100] -4 [oo11] 3  [0100] 4
[0000] 0 [1111] -1  [0000] O
[1000] -8 [0111] 7  [1000] -8

For our earlier example, we know that the complement of 0xf is 0x0, and the complement of Oxa
is 0x5, and so Oxfffffffa is the two’s-complement representation of —6.

A second way to perform two’s-complement negation of a number x is based on splitting the bit
vector into two parts. Let k be the position of the rightmost 1, so the bit-level representation of x has the

form [x,, 1, Xy 2, ..., X1, 1, 0, ... 0]. (This is possible as long as x # 0.) The negation is then written
in binary form as [~x,,_1, ~X,,_5, ... ~ X441, 1, 0, .. ., O]. That is, we complement each bit to the left of
bit position k.
We illustrate this idea with some 4-bit numbers, where we highlight the rightmost pattern1, 0, ..., 0
in italics:
X —X

[1100] -4  [0100] 4
[1000] -8 [1000] -8
[0101] 5 Qo -5
[0111] 7 oo -7

2.3.4 Unsigned Multiplication

Integers x and y in the range 0 < x, y <2% — 1 can be represented as w-bit un-
signed numbers, but their product x - y can range between 0 and 2¥ — 1) =
22w — 2w+l 4 1. This could require as many as 2w bits to represent. Instead, un-
signed multiplication in Cis defined to yield the w-bit value given by the low-order
w bits of the 2w-bit integer product. By Equation 2.9, this can be seen to be equiv-
alent to computing the product modulo 2¥. Thus, the effect of the w-bit unsigned
multiplication operation *; is

x *) y=(x-y)mod2" (2.16)
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2.3.5 Two’'s-Complement Multiplication

Integers x and y in the range — 2w=l < y < 2w=1_ 1 can be represented as w-
bit two’s-complement numbers, but their product x - y can range between — 2%~ 1.
vl —1)=—22w-2 pow=land —2w-1. —2w=1 =22%=2 This could require as
many as 2w bits to represent in two’s-complement form—most cases would fit
into 2w — 1 bits, but the special case of 222 requires the full 2w bits (to include
a sign bit of 0). Instead, signed multiplication in C generally is performed by
truncating the 2w-bit product to w bits. By Equation 2.10, the effect of the w-bit
two’s-complement multiplication operation *; is

x* y=U2T,((x - y) mod2") 2.17)

We claim that the bit-level representation of the product operation is identical
for both unsigned and two’s-complement multiplication. That is, given bit vectors ¥
and y of length w, the bit-level representation of the unsigned product B2U ,,(X) **,
B2U ,,(y) is identical to the bit-level representation of the two’s-complement
product B2T ,,(X) *, B2T,,(y). This implies that the machine can use a single type
of multiply instruction to multiply both signed and unsigned integers.

As illustrations, Figure 2.26 shows the results of multiplying different 3-bit
numbers. For each pair of bit-level operands, we perform both unsigned and
two’s-complement multiplication, yielding 6-bit products, and then truncate these
to 3 bits. The unsigned truncated product always equals x - y mod 8. The bit-
level representations of both truncated products are identical for both unsigned
and two’s-complement multiplication, even though the full 6-bit representations
differ.

To show that the low-order bits of the two products (unsigned and two’s
complement) are identical, let x = B2T () and y = B2T,(y) be the two’s-
complement values denoted by these bit patterns, and let x’ = B2U ,(x) and y’ =
B2U ,(y) be the unsigned values. From Equation 2.5, we have x' = x + x,,_;2%,

Mode X y xX-y Truncated x - y
Unsigned 5 [101] 3 [011] 15 [001111] 7 [111]
Two’s comp. -3 [101] 3 [011] -9 [110111] -1 [111]
Unsigned 4 [100] 7 [111] 28 [011100] 4 [100]
Two’s comp. —4 [100] -1 [111] 4 [000100] —4 [100]
Unsigned 3 [011] 3 [011] 9 [001001] [001]
Two’s comp. 3 [011] 3 [011] 9 [001001] 1 [001]

Figure 2.26 Three-bit unsigned and two’s-complement multiplication examples.
Although the bit-level representations of the full products may differ, those of the
truncated products are identical.
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and y' =y + y,,_12". Computing the product of these values modulo 2% gives the
following:

(" y)mod 2" = [(x + x,y—12") - (¥ + y—12")] mod 2" (2.18)
= [x "y + (xw—ly + yw—lx)zw + xw—lyw—lzzw] mod 2"
= (x - y) mod 2%

All of the terms with weight 2" drop out due to the modulus operator, and so we
have shown that the low-order w bits of x - y and x’ - y” are identical.

Practice Problem 2.34

Fill in the following table showing the results of multiplying different 3-bit num-
bers, in the style of Figure 2.26:

Mode X y Xy Truncated x - y
Unsigned [100] [101]
Two’s comp. [100] [101]
Unsigned [010] [111]
Two’s comp. [010] [111]
Unsigned [110] [110]
Two’s comp. [110] [110]

We can see that unsigned arithmetic and two’s-complement arithmetic over
w-bit numbers are isomorphic—the operations +} , =%, and *, have the exact same
effect at the bit level as do +, , -} , and *) .

Practice Problem 2.35

You are given the assignment to develop code for a function tmult_ok that will
determine whether two arguments can be multiplied without causing overflow.
Here is your solution:

/* Determine whether arguments can be multiplied without overflow */
int tmult_ok(int x, int y) {

int p = x*¥y;

/* Either x is zero, or dividing p by x gives y */

return !x || p/x == y;

You test this code for a number of values of x and y, and it seems to work
properly. Your coworker challenges you, saying, “If I can’t use subtraction to
test whether addition has overflowed (see Problem 2.31), then how can you use
division to test whether multiplication has overflowed?”

Devise a mathematical justification of your approach, along the following
lines. First, argue that the case x =0 is handled correctly. Otherwise, consider
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w-bit numbers x (x #0), y, p, and g, where p is the result of performing two’s-
complement multiplication on x and y, and ¢ is the result of dividing p by x.

1. Show that x - y, the integer product of x and y, can be written in the form
x -y=p+ 12", where ¢ # 0 if and only if the computation of p overflows.

2. Show that p can be written in the form p =x - g + r, where |r| < |x|.

3. Show that ¢ =y ifand onlyif r =¢ =0.

Practice Problem 2.36

For the case where data type int has 32 bits, devise a version of tmult_ok (Prob-
lem 2.35) that uses the 64-bit precision of data type long long, without using

division.

Aside Security vulnerability in the XDR library

91

In 2002, it was discovered that code supplied by Sun Microsystems to implement the XDR library, a

widely used facility for sharing data structures between programs, had a security vulnerability arising

from the fact that multiplication can overflow without any notice being given to the program.
Code similar to that containing the vulnerability is shown below:

1 /*

2 * Tllustration of code vulnerability similar to that found in
3 * Sun's XDR library.

4 */

5 void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) {
6 /*

7 * Allocate buffer for ele_cnt objects, each of ele_size bytes
8 * and copy from locations designated by ele_src

9 */

10 void *result = malloc(ele_cnt * ele_size);

11 if (result == NULL)

12 /* malloc failed */

13 return NULL;

14 void *next = result;

15 int i;

16 for (i = 0; i1 < ele_cnt; i++) {

17 /* Copy object i to destination */

18 memcpy (next, ele_src[i], ele_size);

19 /* Move pointer to next memory region */

20 next += ele_size;

21 }

22 return result;

N
w
—
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The function copy_elements is designed to copy ele_cnt data structures, each consisting of ele_
size bytes into a buffer allocated by the function on line 10. The number of bytes required is computed
as ele_cnt * ele_size.

Imagine, however, that a malicious programmer calls this function with ele_cnt being 1,048,577
(220 4+ 1) and ele_size being 4,096 (2!2). Then the multiplication on line 10 will overflow, causing only
4096 bytes to be allocated, rather than the 4,294,971,392 bytes required to hold that much data. The loop
starting at line 16 will attempt to copy all of those bytes, overrunning the end of the allocated buffer,
and therefore corrupting other data structures. This could cause the program to crash or otherwise
misbehave.

The Sun code was used by almost every operating system, and in such widely used programs as
Internet Explorer and the Kerberos authentication system. The Computer Emergency Response Team
(CERT), an organization run by the Carnegie Mellon Software Engineering Institute to track security
vulnerabilities and breaches, issued advisory “CA-2002-25,” and many companies rushed to patch their
code. Fortunately, there were no reported security breaches caused by this vulnerability.

A similar vulnerability existed in many implementations of the library function calloc. These have
since been patched.

Practice Problem 2.37

You are given the task of patching the vulnerability in the XDR code shown above.
You decide to eliminate the possibility of the multiplication overflowing (on a 32-
bit machine, at least) by computing the number of bytes to allocate using data type
long long unsigned. You replace the original call to malloc (line 10) as follows:

long long unsigned asize =
ele_cnt * (long long unsigned) ele_size;
void *result = malloc(asize);

A. Does your code provide any improvement over the original?

B. How would you change the code to eliminate the vulnerability, assuming
data type size_t is the same as unsigned int, and these are 32 bits long?

2.3.6 Multiplying by Constants

On most machines, the integer multiply instruction is fairly slow, requiring 10 or
more clock cycles, whereas other integer operations—such as addition, subtrac-
tion, bit-level operations, and shifting—require only 1 clock cycle. As a conse-
quence, one important optimization used by compilers is to attempt to replace
multiplications by constant factors with combinations of shift and addition oper-
ations. We will first consider the case of multiplying by a power of 2, and then
generalize this to arbitrary constants.

Let x be the unsigned integer represented by bit pattern [x,,_, x,,_2, - - . , Xo]-
Then for any k > 0, we claim the bit-level representation of x2f is given by
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[*w—1> Xw—2s - - - » X0, 0, ..., 0], where k zeros have been added to the right. This
property can be derived using Equation 2.1:

w—1
B2U11J+k([xw—l’ Xyy—2s « - -5 X O, e, 0]) = Z xi21+k
i=0

w—1 '

= [Z xi2':| 2k
i=0

= x2k

For k <w, we can truncate the shifted bit vector to be of length w, giving
[*w—k—1s Xp—k—2+ - - - » X0, 0, ..., 0]. By Equation 2.9, this bit vector has numeric
value x2F mod 2% = x * 2%, Thus, for unsigned variable x, the C expression x << k
is equivalent to x * pwr2k, where pur2k equals 2X. In particular, we can compute
pwr2k as 1U << k.

By similar reasoning, we can show that for a two’s-complement number x
having bit pattern [x,,_1, X,,_2, - - - » Xg], and any k in the range 0 <k < w, bit
pattern [x,_4_1, ..., X, 0, ..., 0] will be the two’s-complement representation
of x x| 2%, Therefore, for signed variable x , the C expression x << k is equivalent

to x * pwr2k, where pur2k equals 2.

Note that multiplying by a power of 2 can cause overflow with either unsigned
or two’s-complement arithmetic. Our result shows that even then we will get the
same effect by shifting.

Given that integer multiplication is much more costly than shifting and adding,
many C compilers try to remove many cases where an integer is being multi-
plied by a constant with combinations of shifting, adding, and subtracting. For
example, suppose a program contains the expression x*14. Recognizing that 14 =
23 +22 4+ 21, the compiler can rewrite the multiplication as (x<<3) + (x<<2) +
(x<<1), replacing one multiplication with three shifts and two additions. The two
computations will yield the same result, regardless of whether x is unsigned or
two’s complement, and even if the multiplication would cause an overflow. (This
can be shown from the properties of integer arithmetic.) Even better, the compiler
can also use the property 14 = 2* — 2! to rewrite the multiplication as (x<<4) -
(x<<1), requiring only two shifts and a subtraction.

Practice Problem 2.38

As we will see in Chapter 3, the LEA instruction can perform computations of
the form (a<<k) + b, where k is either 0, 1, 2, or 3, and b is either 0 or some
program value. The compiler often uses this instruction to perform multiplications
by constant factors. For example, we can compute 3*a as (a<<1) + a.

Considering cases where b is either 0 or equal to a, and all possible values of
k, what multiples of a can be computed with a single LEA instruction?
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Generalizing from our example, consider the task of generating code for
the expression x * K, for some constant K. The compiler can express the binary
representation of K as an alternating sequence of zeros and ones:

[0...001...1)©0...0)---(1...D)].

For example, 14 can be written as [(0 . . . 0)(111)(0)]. Consider a run of ones from
bit position n down to bit position m (n > m). (For the case of 14, we have n =3
and m = 1.) We can compute the effect of these bits on the product using either of
two different forms:

Form A: (x<<n) + (x<<n—1) + -+ + (x<<m)
Form B: (x<<n+1) - (x<<m)

By adding together the results for each run, we are able to compute x * K with-
out any multiplications. Of course, the trade-off between using combinations of
shifting, adding, and subtracting versus a single multiplication instruction depends
on the relative speeds of these instructions, and these can be highly machine de-
pendent. Most compilers only perform this optimization when a small number of
shifts, adds, and subtractions suffice.

Practice Problem 2.39

How could we modify the expression for form B for the case where bit position n
is the most significant bit?

Practice Problem 2.40

For each of the following values of K, find ways to express x * K using only the
specified number of operations, where we consider both additions and subtrac-
tions to have comparable cost. You may need to use some tricks beyond the simple
form A and B rules we have considered so far.

K Shifts Add/Subs Expression

6 2 1
31 1 1
—6 2 1
55 2 2

Practice Problem 2.41

For a run of 1s starting at bit position n down to bit position m (n > m), we saw
that we can generate two forms of code, A and B. How should the compiler decide
which form to use?
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k >> k (Binary) Decimal 12340/2%
0 0011000000110100 12340 12340.0
1 0001100000011010 6170 6170.0
4 0000001100000011 771 771.25
8 0000000000110000 48 48.203125

Figure 2.27 Dividing unsigned numbers by powers of 2. The examples illustrate how
performing a logical right shift by k has the same effect as dividing by 2¥ and then
rounding toward zero.

2.3.7 Dividing by Powers of Two

Integer division on most machines is even slower than integer multiplication—
requiring 30 or more clock cycles. Dividing by a power of 2 can also be performed
using shift operations, but we use a right shift rather than a left shift. The two dif-
ferent shifts—logical and arithmetic—serve this purpose for unsigned and two’s-
complement numbers, respectively.

Integer division always rounds toward zero. For x > 0 and y > 0, the result
should be |x/y]|, where for any real number a, |a] is defined to be the unique
integer a’ such that @’ <a <da’+ 1. As examples, [3.14| =3, |-3.14] = —4, and
3] =3.

Consider the effect of applying a logical right shift by k to an unsigned number.
We claim this gives the same result as dividing by 2€. As examples, Figure 2.27
shows the effects of performing logical right shifts on a 16-bit representation of
12,340 to perform division by 1, 2, 16, and 256. The zeros shifted in from the left are
shown in italics. We also show the result we would obtain if we did these divisions
with real arithmetic. These examples show that the result of shifting consistently
rounds toward zero, as is the convention for integer division.

To show this relation between logical right shifting and dividing by a power
of 2, let x be the unsigned integer represented by bit pattern [x,,_1, X,,_2, - - - » Xpl»
and k be in the range 0 <k < w. Let x” be the unsigned number with w—k-
bit representation [x,,_1, X,,_5, ..., x;], and x” be the unsigned number with
k-bit representation [x;_j, ..., xo]. We claim that x’ = [x/2F]. To see this, by
Equation 2.1, we have x = 3" ' x,2/, x' = YW x,217%, and x” = Y570 6,27, We
can therefore write x as x = 2¥x’ + x”. Observe that 0 < x” < Zf.:& 2i =2k _1,and
hence 0 < x” < 2%, implying that |x”/2%| = 0. Therefore, |x/2%| = [x' 4+ x"/2k] =
x' + |_x”/2kj —

Performing a logical right shift of bit vector [x,,_{, x,,_2, - - . , Xo] by k yields
the bit vector

[0, ey 0, Xy 1> X2 + + + 5 Xi]

This bit vector has numeric value x’. Therefore, for unsigned variable x, the C
expression x >> k is equivalent to x / pwr2k, where pwr2k equals 2k,
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k >> k (Binary) Decimal —12340/2%
0 1100111111001100 —12340 —12340.0
1 1110011111100110 —6170 —6170.0
4 1111110011111100 =772 —=771.25
8 1111111111001111 —49 —48.203125

Figure 2.28 Applying arithmetic right shift. The examples illustrate that arithmetic
right shift is similar to division by a power of 2, except that it rounds down rather than
toward zero.

Now consider the effect of performing an arithmetic right shift on a two’s-
complement number. For a positive number, we have 0 as the most significant bit,
and so the effect is the same as for a logical right shift. Thus, an arithmetic right
shift by  is the same as division by 2¥ for a nonnegative number. As an example of
a negative number, Figure 2.28 shows the effect of applying arithmetic right shift
to a 16-bit representation of —12,340 for different shift amounts. As we can see, the
result is almost the same as dividing by a power of 2. For the case when no rounding
is required (k = 1), the result is correct. But when rounding is required, shifting
causes the result to be rounded downward rather than toward zero, as should be
the convention. For example, the expression -7/2 should yield -3 rather than -4.

Let us better understand the effect of arithmetic right shifting and how we
can use it to perform division by a power of 2. Let x be the two’s-complement
integer represented by bit pattern [x,,_1, X,,_2. - .., XgJ, and k be in the range
0 <k <w. Let x’ be the two’s-complement number represented by the w — k
bits [x,_1, Xpy_2, - - - » X¢), and x” be the unsigned number represented by the
low-order k bits [x;_q, ..., xo]- By a similar analysis as the unsigned case, we
have x =2%x" 4 x”,and 0 < x” < 2%, giving x’ = | x/2¥|. Furthermore, observe that
shifting bit vector [x,, 1, x,,_», - . . , Xo] right arithmetically by k yields the bit vector

[xu'fl? s N Xy Xyy—25 -+ -5 xk]

which is the sign extension from w — k bits to w bits of [x,_1, X2, - .., X
Thus, this shifted bit vector is the two’s-complement representation of |x/2¢].
This analysis confirms our findings from the examples of Figure 2.28.

For x > 0, or when no rounding is required (x” = 0), our analysis shows that
this shifted result is the desired value. For x < 0 and y > 0, however, the result of
integer division should be [x/y], where for any real number a, [a] is defined to
be the unique integer a’ such that ¢’ — 1 < a < d’. That is, integer division should
round negative results upward toward zero. Thus, right shifting a negative number
by k is not equivalent to dividing it by 2 when rounding occurs. This analysis also
confirms our findings from the example of Figure 2.28.

We can correct for this improper rounding by “biasing” the value before
shifting. This technique exploits the property that [x/y] = [(x +y — 1)/y] for
integers x and y such that y > 0. As examples, when x = —30 and y =4, we
have x + y — 1=-27, and [-30/4] = —7 = |-27/4]. When x = —32 and y =4,
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k Bias —12,340 + Bias (Binary) >> k (Binary) Decimal —12340/2%
0 0 1100111111001100 1100111111001100 —12340 —12340.0
1 1 1100111111001101 1110011111100110 —6170 —6170.0
4 15 1100111111011011 1111110011111101 =771 =771.25
8 255 1101000011001011 1111111111010000 —48 —48.203125

Figure 2.29 Dividing two’s-complement numbers by powers of 2. By adding a bias
before the right shift, the result is rounded toward zero.

we have x + y — 1 =—-29, and [-32/4] = —8 = | —29/4]. To see that this relation
holds in general, suppose that x = ky + r, where 0 <r < y, giving(x +y —1)/y =
k+(r+y—1/y,andso [(x+y—1)/yl| =k+ |(r + y —1)/y]. The latter term
will equal 0 when r =0, and 1 when r > 0. That is, by adding a bias of y — 1 to
x and then rounding the division downward, we will get kK when y divides x and
k + 1 otherwise. Thus, for x < 0, if we first add 2¢ — 1 to x before right shifting, we
will get a correctly rounded result.

This analysis shows that for a two’s-complement machine using arithmetic
right shifts, the C expression

(x<0 ? x+(1<<k)-1 : x) >> k

is equivalent to x/pwr2k, where pwr2k equals 2k,

Figure 2.29 demonstrates how adding the appropriate bias before performing
the arithmetic right shift causes the result to be correctly rounded. In the third
column, we show the result of adding the bias value to —12,340, with the lower k
bits (those that will be shifted off to the right) shown in italics. We can see that
the bits to the left of these may or may not be incremented. For the case where no
rounding is required (k = 1), adding the bias only affects bits that are shifted off.
For the cases where rounding is required, adding the bias causes the upper bits to
be incremented, so that the result will be rounded toward zero.

Practice Problem 2.42

Write a function div16 that returns the value x/16 for integer argument x. Your
function should not use division, modulus, multiplication, any conditionals (if or
?:), any comparison operators (e.g., <, >, or ==), or any loops. You may assume
that data type int is 32 bits long and uses a two’s-complement representation, and
that right shifts are performed arithmetically.

We now see that division by a power of 2 can be implemented using logical or
arithmetic right shifts. This is precisely the reason the two types of right shifts are
available on most machines. Unfortunately, this approach does not generalize to
division by arbitrary constants. Unlike multiplication, we cannot express division
by arbitrary constants K in terms of division by powers of 2.
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Practice Problem 2.43
In the following code, we have omitted the definitions of constants M and N:

#define M /* Mystery number 1 */

#define N /* Mystery number 2 */

int arith(int x, int y) {
int result = 0;
result = x*M + y/N; /* M and N are mystery numbers. */
return result;

We compiled this code for particular values of M and N. The compiler opti-
mized the multiplication and division using the methods we have discussed. The
following is a translation of the generated machine code back into C:

/* Translation of assembly code for arith */
int optarith(int x, int y) {

int t = x;

x <<= b;

X —=1t;

if (y < 0) y +=7;

y >>= 3; /* Arithmetic shift */

return x+y;

‘What are the values of M and N?

2.3.8 Final Thoughts on Integer Arithmetic

As we have seen, the “integer” arithmetic performed by computers is really a
form of modular arithmetic. The finite word size used to represent numbers limits
the range of possible values, and the resulting operations can overflow. We have
also seen that the two’s-complement representation provides a clever way to be
able to represent both negative and positive values, while using the same bit-level
implementations as are used to perform unsigned arithmetic—operations such as
addition, subtraction, multiplication, and even division have either identical or
very similar bit-level behaviors whether the operands are in unsigned or two’s-
complement form.

We have seen that some of the conventions in the C language can yield some
surprising results, and these can be sources of bugs that are hard to recognize or
understand. We have especially seen that the unsigned data type, while concep-
tually straightforward, can lead to behaviors that even experienced programmers
do not expect. We have also seen that this data type can arise in unexpected ways,
for example, when writing integer constants and when invoking library routines.
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Practice Problem 2.44

Assume we are running code on a 32-bit machine using two’s-complement arith-
metic for signed values. Right shifts are performed arithmetically for signed values
and logically for unsigned values. The variables are declared and initialized as
follows:

int x = foo(); /* Arbitrary value */
int y = bar(); /* Arbitrary value */
unsigned ux = Xx;
unsigned uy = y;

For each of the following C expressions, either (1) argue that it is true (evalu-
ates to 1) for all values of x and y, or (2) give values of x and y for which it is false
(evaluates to 0):

A x>0 Il (x-1<0)
(x&7) =711 (x<<29 < 0)
(x*x)>=0
x<0 ||l -x<=0
x>0 || -x>=0

X+y == uy+ux

Q@QmmyonNw

X*~y + uy*ux == -Xx

2.4 Floating Point

A floating-point representation encodes rational numbers of the form V = x x 27.
It is useful for performing computations involving very large numbers (| V| > 0),
numbers very close to 0 (| V| « 1), and more generally as an approximation to real
arithmetic.

Up until the 1980s, every computer manufacturer devised its own conventions
for how floating-point numbers were represented and the details of the operations
performed on them. In addition, they often did not worry too much about the
accuracy of the operations, viewing speed and ease of implementation as being
more critical than numerical precision.

All of this changed around 1985 with the advent of IEEE Standard 754, a
carefully crafted standard for representing floating-point numbers and the oper-
ations performed on them. This effort started in 1976 under Intel’s sponsorship
with the design of the 8087, a chip that provided floating-point support for the 8086
processor. They hired William Kahan, a professor at the University of California,
Berkeley, as a consultant to help design a floating-point standard for its future
processors. They allowed Kahan to join forces with a committee generating an
industry-wide standard under the auspices of the Institute of Electrical and Elec-
tronics Engineers (IEEE). The committee ultimately adopted a standard close to
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the one Kahan had devised for Intel. Nowadays, virtually all computers support
what has become known as IEEFE floating point. This has greatly improved the
portability of scientific application programs across different machines.

Aside The IEEE

The Institute of Electrical and Electronic Engineers (IEEE—pronounced “Eye-Triple-Eee”) is a pro-
fessional society that encompasses all of electronic and computer technology. It publishes journals,
sponsors conferences, and sets up committees to define standards on topics ranging from power trans-
mission to software engineering.

In this section, we will see how numbers are represented in the IEEE floating-
point format. We will also explore issues of rounding, when a number cannot be
represented exactly in the format and hence must be adjusted upward or down-
ward. We will then explore the mathematical properties of addition, multiplica-
tion, and relational operators. Many programmers consider floating point to be
at best uninteresting and at worst arcane and incomprehensible. We will see that
since the IEEE format is based on a small and consistent set of principles, it is
really quite elegant and understandable.

2.4.1 Fractional Binary Numbers

A first step in understanding floating-point numbers is to consider binary numbers
having fractional values. Let us first examine the more familiar decimal notation.
Decimal notation uses a representation of the formd,,d,,_; - - - didp.d_1d_» - - - d_,,
where each decimal digit d; ranges between 0 and 9. This notation represents a
value d defined as

d= Y 10" xd

i=—n

The weighting of the digits is defined relative to the decimal point symbol (.”),
meaning that digits to the left are weighted by positive powers of 10, giving integral
values, while digits to the right are weighted by negative powers of 10, giving
fractional values. For example, 12.34,, represents the number 1 x 10! +2 x 10 4+
3x 1071 +4 x 1072 =123,

By analogy, consider a notation of the form b,b,,_1--- biby.b_1b_5 - - -
b_,_1b_,, where each binary digit, or bit, b; ranges between 0 and 1, as is illustrated

in Figure 2.30. This notation represents a number b defined as

b= 2'xb (2.19)

i=—n

The symbol ‘.’ now becomes a binary point, with bits on the left being weighted
by positive powers of 2, and those on the right being weighted by negative powers
of 2. For example, 101.11, represents the number 1 x 22 +0 x 21 +1 x 20+ 1 x
274 1x2 2 =4 4041414+ 1=53
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Figure 2.30 om
Fractional binary repre-
sentation. Digits to the left
of the binary point have
weights of the form 2/, 4
while those to the right

e 5
have weights of the form
121, | 1

2m—1

b, b, b, b, by-b, b, b, b,, b,
172 — |
1/4
1/8
1/2m-"
1/2n

One can readily see from Equation 2.19 that shifting the binary point one
position to the left has the effect of dividing the number by 2. For example, while
101.11, represents the number 5%, 10.111, represents the number 2 + 0 + % +
;11 + % = 2%. Similarly, shifting the binary point one position to the right has the
effect of multiplying the number by 2. For example, 1011.1, represents the number
8+0+2+1+1=1135.

Note that numbers of the form 0.11 - - - 1, represent numbers just below 1. For
example, 0.111111, represents %. We will use the shorthand notation 1.0 — € to
represent such values.

Assuming we consider only finite-length encodings, decimal notation cannot
represent numbers such as % and % exactly. Similarly, fractional binary notation
can only represent numbers that can be written x x 2. Other values can only be
approximated. For example, the number % can be represented exactly as the frac-
tional decimal number 0.20. As a fractional binary number, however, we cannot
represent it exactly and instead must approximate it with increasing accuracy by
lengthening the binary representation:

Representation Value Decimal

0.0, 9 0.0

0.01, i 0.25,9
0.010, Z 0.2519
0.0011, & 0.1875,
0.00110, & 0.1875;
0.001101, B 0.203125;
0.0011010, Z 0.203125,,
0.00110011, =~ 0.19921875
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Practice Problem 2.45
Fill in the missing information in the following table:

Fractional value Binary representation Decimal representation

3 0.001 0.125

3

)

25

16

10.1011
1.001

5.875
3.1875

Practice Problem 2.46

The imprecision of floating-point arithmetic can have disastrous effects. On Febru-
ary 25, 1991, during the first Gulf War, an American Patriot Missile battery in
Dharan, Saudi Arabia, failed to intercept an incoming Iraqi Scud missile. The
Scud struck an American Army barracks and killed 28 soldiers. The U.S. General
Accounting Office (GAO) conducted a detailed analysis of the failure [72] and de-
termined that the underlying cause was an imprecision in a numeric calculation.
In this exercise, you will reproduce part of the GAQO’s analysis.

The Patriot system contains an internal clock, implemented as a counter
that is incremented every 0.1 seconds. To determine the time in seconds, the
program would multiply the value of this counter by a 24-bit quantity that was
a fractional binary approximation to %. In particular, the binary representation

of % is the nonterminating sequence 0.000110011[0011] - - -5, where the portion in
brackets is repeated indefinitely. The program approximated 0.1, as a value x, by
considering just the first 23 bits of the sequence to the right of the binary point:
x =0.00011001100110011001100. (See Problem 2.51 for a discussion of how they
could have approximated 0.1 more precisely.)

A. What is the binary representation of 0.1 — x?
B. What is the approximate decimal value of 0.1 — x?

C. The clock starts at 0 when the system is first powered up and keeps counting
up from there. In this case, the system had been running for around 100 hours.
What was the difference between the actual time and the time computed by
the software?

D. The system predicts where an incoming missile will appear based on its
velocity and the time of the last radar detection. Given that a Scud travels
at around 2000 meters per second, how far off was its prediction?

Normally, a slight error in the absolute time reported by a clock reading would
not affect a tracking computation. Instead, it should depend on the relative time
between two successive readings. The problem was that the Patriot software had
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been upgraded to use a more accurate function for reading time, but not all of
the function calls had been replaced by the new code. As a result, the tracking
software used the accurate time for one reading and the inaccurate time for the
other [100].

2.4.2 IEEE Floating-Point Representation

Positional notation such as considered in the previous section would not be ef-
ficient for representing very large numbers. For example, the representation of
5 x 2190 would consist of the bit pattern 101 followed by 100 zeros. Instead, we
would like to represent numbers in a form x x 2 by giving the values of x and y.

The IEEE floating-point standard represents a number in a form V = (—1)* x
M x 2F:

* The sign s determines whether the number is negative (s = 1) or positive
(s = 0), where the interpretation of the sign bit for numeric value 0 is handled
as a special case.

e The significand M is a fractional binary number that ranges either between 1
and 2 — € or between 0 and 1 — €.

* The exponent E weights the value by a (possibly negative) power of 2.

The bit representation of a floating-point number is divided into three fields to
encode these values:

* The single sign bit s directly encodes the sign s.
* The k-bit exponent field exp = ¢;_1 - - - e1¢y encodes the exponent E.

e The n-bit fraction field frac = f,,_; - - - f1 fy encodes the significand M, but the
value encoded also depends on whether or not the exponent field equals 0.

Figure 2.31 shows the packing of these three fields into words for the two
most common formats. In the single-precision floating-point format (a float in
C), fields s, exp, and frac are 1, k =8, and n =23 bits each, yielding a 32-
bit representation. In the double-precision floating-point format (a double in
C), fields s, exp, and frac are 1, k = 11, and n = 52 bits each, yielding a 64-bit
representation.

The value encoded by a given bit representation can be divided into three
different cases (the latter having two variants), depending on the value of exp.
These are illustrated in Figure 2.32 for the single-precision format.

Case 1: Normalized Values

This is the most common case. It occurs when the bit pattern of exp is neither
all zeros (numeric value 0) nor all ones (numeric value 255 for single precision,
2047 for double). In this case, the exponent field is interpreted as representing a
signed integer in biased form. That is, the exponent value is E = ¢ — Bias where e
is the unsigned number having bit representation e;_1 - - - e1¢y, and Bias is a bias
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Single precision
31 30 2322 0
| s | exp | frac ‘

Double precision

63 62 52 51 32
|s| exp | frac (561:32) ‘
31 0
| frac (31:0) ‘

Figure 2.31 Standard floating-point formats. Floating-point numbers are represented
by three fields. For the two most common formats, these are packed in 32-bit (single
precision) or 64-bit (double precision) words.

1. Normalized
|s| zo0s&=z255 | f |

2. Denormalized
[s[o[o[o]e[e[o]o]o] f |

3a. Infinity

[s[2[z[sffa[ss]s] o]0 o[o]o]o]o[o]o]oo[o] o]0 o[o] o] o[ o[o]0] ] o]

3b. NaN
[s[a[s[a]a[e]+]1]1] #0 |

Figure 2.32 Categories of single-precision, floating-point values. The value of the
exponent determines whether the number is (1) normalized, (2) denormalized, or a
(3) special value.

value equal to 2~ — 1 (127 for single precision and 1023 for double). This yields
exponent ranges from —126 to +127 for single precision and —1022 to +1023 for
double precision.

The fraction field frac is interpreted as representing the fractional value f,
where 0 < f < 1, having binary representation 0.f,_1 - - - f1 fo, that is, with the
binary point to the left of the most significant bit. The significand is defined to be
M =1+ f. This is sometimes called an implied leading 1 representation, because
we can view M to be the number with binary representation 1. f,,_; f,,_5 - - - fo. This
representation is a trick for getting an additional bit of precision for free, since we
can always adjust the exponent E so that significand M is in the range 1 <M <2
(assuming there is no overflow). We therefore do not need to explicitly represent
the leading bit, since it always equals 1.
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Case 2: Denormalized Values

When the exponent field is all zeros, the represented number is in denormalized
form. In this case, the exponent value is £ = 1 — Bias, and the significand value is
M = f, that is, the value of the fraction field without an implied leading 1.

Aside Why set the bias this way for denormalized values?
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Having the exponent value be 1 — Bias rather than simply — Bias might seem counterintuitive. We will

see shortly that it provides for smooth transition from denormalized to normalized values.

Denormalized numbers serve two purposes. First, they provide a way to
represent numeric value 0, since with a normalized number we must always have
M > 1, and hence we cannot represent 0. In fact the floating-point representation
of +0.0 has a bit pattern of all zeros: the sign bit is 0, the exponent field is all
zeros (indicating a denormalized value), and the fraction field is all zeros, giving
M = f =0. Curiously, when the sign bit is 1, but the other fields are all zeros, we
get the value —0.0. With IEEE floating-point format, the values —0.0 and +0.0
are considered different in some ways and the same in others.

A second function of denormalized numbers is to represent numbers that are
very close to 0.0. They provide a property known as gradual underflow in which
possible numeric values are spaced evenly near 0.0.

Case 3: Special Values

A final category of values occurs when the exponent field is all ones. When the
fraction field is all zeros, the resulting values represent infinity, either +0o when
s =0, or —oo when s = 1. Infinity can represent results that overflow, as when we
multiply two very large numbers, or when we divide by zero. When the fraction
field is nonzero, the resulting value is called a “NaN,” short for “Not a Number.”
Such values are returned as the result of an operation where the result cannot be
given as a real number or as infinity, as when computing v/—1 or co — co. They
can also be useful in some applications for representing uninitialized data.

2.4.3 Example Numbers

Figure 2.33 shows the set of values that can be represented in a hypothetical 6-bit
format having k = 3 exponent bits and n = 2 fraction bits. The bias is 2>~1 — 1 =
3. Part A of the figure shows all representable values (other than NaN). The
two infinities are at the extreme ends. The normalized numbers with maximum
magnitude are £14. The denormalized numbers are clustered around 0. These
can be seen more clearly in part B of the figure, where we show just the numbers
between —1.0 and +1.0. The two zeros are special cases of denormalized numbers.
Observe that the representable numbers are not uniformly distributed—they are
denser nearer the origin.

Figure 2.34 shows some examples for a hypothetical 8-bit floating-point format
having k = 4 exponent bits and n = 3 fraction bits. The bias is 2*~! — 1=7. The
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® E E E 4 ®
e ~10 -5 0 +5 +10 oo
[» Denormalized & Normalized = Infinity |
(a) Complete range
-0 +0
4
-1 —0.8 -0.6 —-0.4 -0.2 0 +0.2 +0.4 +0.6 +0.8 +1

[ Denormalized & Normalized = Infinity |

(b) Values between —1.0 and +1.0

Figure 2.33 Representable values for 6-bit floating-point format. There are k =3
exponent bits and n = 2 fraction bits. The bias is 3.

Exponent Fraction Value
Description Bit representation e E 2F f M 2ExM v Decimal
1 0 0 0
Smallest pos. 0 0000 001 0o -6 & 3 : = s 0001953
1 2 2 2 1
0 0000 010 0 -6 & ;3 5 s 0.003906
1 3 3 3 3
00000 011 0 -6 & 33 o 55 0.005859
Largest denorm. 0 0000 111 0 —6 6]—4 % % % 57@ 0.013672
Smallest norm. 0 0001 000 1 -6 & 3 38 & & 0015625
1 1 9 9 9
0 0001 001 1 -6 & i3 o 5 0.017578
. 1 6 14 14 7
00110 110 6 -1 3 LR I L 0875
1 7 15 15 15
00110 111 6 -1 3 ¢ R B 09375
One 00111 000 7 0 1 g 8 8 110
1 9 9 9
00111 001 70 1 i 3 3 3 1125
2 10 10 5
00111 010 70 1 : R 2 3 125
01110 110 4 7 128 & Y 122 224 2240
Largest norm. 01110 111 4 7 128 I B 1220 240 240.0
Infinity 0 1111 000 - - = = = — o —

Figure 2.34 Example nonnegative values for 8-bit floating-point format. There are
k =4 exponent bits and n = 3 fraction bits. The bias is 7.
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figure is divided into three regions representing the three classes of numbers. The
different columns show how the exponent field encodes the exponent E, while the
fraction field encodes the significand M, and together they form the represented
value V =2 x M. Closest to 0 are the denormalized numbers, starting with 0

itself. Denormalized numbers in this format have E =1 — 7 = —6, giving a weight
2F — 6i4' The fractions f and significands M range over the values 0, %, e, %,

.. . 1 7 _ 7
giving numbers V in the range 0 to z; X g = 575.

The smallest normalized numbers in this format also have E=1—-7 = —6,
and the fractions also range over the values 0, %, . %. However, the significands
then range from14+0=1to 1+ % = %, giving numbers V in the range % = 6l
to &35.

Observe the smooth transition between the largest denormalized number 51L2
and the smallest normalized number 5%. This smoothness is due to our definition
of E for denormalized values. By making it 1 — Bias rather than —Bias, we com-
pensate for the fact that the significand of a denormalized number does not have
an implied leading 1.

As we increase the exponent, we get successively larger normalized values,
passing through 1.0 and then to the largest normalized number. This number has
exponent E =7, giving a weight 2€ = 128. The fraction equals %, giving a signifi-
cand M = %. Thus, the numeric value is V = 240. Going beyond this overflows to
+00.

One interesting property of this representation is that if we interpret the bit
representations of the values in Figure 2.34 as unsigned integers, they occur in
ascending order, as do the values they represent as floating-point numbers. This is
no accident—the IEEE format was designed so that floating-point numbers could
be sorted using an integer sorting routine. A minor difficulty occurs when dealing
with negative numbers, since they have a leading 1, and they occur in descending
order, but this can be overcome without requiring floating-point operations to
perform comparisons (see Problem 2.83).

Practice Problem 2.47

Consider a 5-bit floating-point representation based on the IEEE floating-point
format, with one sign bit, two exponent bits (k = 2), and two fraction bits (n = 2).
The exponent bias is 2271 — 1= 1.

The table that follows enumerates the entire nonnegative range for this 5-bit
floating-point representation. Fill in the blank table entries using the following
directions:

e: The value represented by considering the exponent field to be an unsigned
integer

E: The value of the exponent after biasing

2E: The numeric weight of the exponent

f: The value of the fraction

107



108 Chapter 2 Representing and Manipulating Information

M: The value of the significand
2E x M: The (unreduced) fractional value of the number
V: The reduced fractional value of the number

Decimal: The decimal representation of the number

Express the values of 2%, f, M, 2% x M, and V either as integers (when possible)
or as fractions of the form %, where y is a power of 2. You need not fill in entries

2

marked “—".

Bits e E 2F f M 2Ex M Vv Decimal

0 00 00
00001
000 10
00011
00100
00101 1 0 1
00110
00111
01000
01001
01010
010 11
01100 — — — — — — —
01101 — — — — — — —
01110 — — — — — — —
01111 — — — — — — —

1.25

N
Al
£l
Bl

Figure 2.35 shows the representations and numeric values of some important
single- and double-precision floating-point numbers. As with the 8-bit format
shown in Figure 2.34, we can see some general properties for a floating-point
representation with a k-bit exponent and an n-bit fraction:

e The value 0.0 always has a bit representation of all zeros.

¢ The smallest positive denormalized value has a bit representation consisting of
a 1 in the least significant bit position and otherwise all zeros. It has a fraction
(and significand) value M = f =27" and an exponent value E = — 2F=1 42,

. . k—1
The numeric value is therefore V =272 +2,

e The largest denormalized value has a bit representation consisting of an
exponent field of all zeros and a fraction field of all ones. It has a fraction
(and significand) value M = f =1 — 27" (which we have written 1 — ¢) and
an exponent value E = — 2¥=1 4+ 2. The numeric value is therefore V = (1 —

27" x 27 2k_1+2, which is just slightly smaller than the smallest normalized
value.



Section 2.4 Floating Point 109

Single precision Double precision

Description exp frac Value Decimal Value Decimal
Zero 00---00 0---00 0 0.0 0 0.0
Smallest denorm.  00---00 0---01 278 % 27126 14 %1074 2752 271022 4.9 %1073
Largest denorm. 00---00 1---11 (1—e)x27120 12x1073 (1—¢e)x27102 22x107308
Smallest norm. 00---01 0---00 1x 27126 1.2 x 10738 1 x 2—1022 2.2 x 107308
One 01---11 0---00 1x 20 1.0 1% 20 1.0
Largest norm. 11---10 1---11 Q2—e)x2127T  34x10% (2—¢€) x21028  18x 1038

Figure 2.35 Examples of nonnegative floating-point numbers.

e The smallest positive normalized value has a bit representation with a 1 in
the least significant bit of the exponent field and otherwise all zeros. It has a
significand value M = 1 and an exponent value E = — 2~1 42, The numeric
value is therefore V =2-27'+2,

e The value 1.0 has a bit representation with all but the most significant bit of
the exponent field equal to 1 and all other bits equal to 0. Its significand value
is M =1 and its exponent value is E = 0.

e The largest normalized value has a bit representation with a sign bit of 0, the
least significant bit of the exponent equal to 0, and all other bits equal to 1. It
has a fraction value of f =1— 27", giving a significand M =2 — 27" (which
we have written 2 — €). It has an exponent value E = 2¢~! — 1, giving a numeric
value V = (2 — 277 x 227" =1 = (1 — 21y x 227,

One useful exercise for understanding floating-point representations is to con-
vert sample integer values into floating-point form. For example, we saw in Figure
2.14 that 12,345 has binary representation [11000000111001]. We create a normal-
ized representation of this by shifting 13 positions to the right of a binary point,
giving 12345 = 1.1000000111001, x 2!3. To encode this in IEEE single-precision
format, we construct the fraction field by dropping the leading 1 and adding 10
zeros to the end, giving binary representation [10000001110010000000000]. To
construct the exponent field, we add bias 127 to 13, giving 140, which has bi-
nary representation [10001100]. We combine this with a sign bit of 0 to get the
floating-point representation in binary of [01000110010000001110010000000000].
Recall from Section 2.1.4 that we observed the following correlation in the bit-
level representations of the integer value 12345 (0x3039) and the single-precision
floating-point value 12345.0 (0x4640E400):

o o o o 3 o0 3 9
00000000000000000011000000111001
skok ok sk ok ok ok ok ok o o ook
4 6 4 0 E 4 0 O
01000110010000001110010000000000
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We can now see that the region of correlation corresponds to the low-order
bits of the integer, stopping just before the most significant bit equal to 1 (this bit
forms the implied leading 1), matching the high-order bits in the fraction part of
the floating-point representation.

Practice Problem 2.48

As mentioned in Problem 2.6, the integer 3,510,593 has hexadecimal representa-
tion 0x00359141, while the single-precision, floating-point number 3510593.0 has
hexadecimal representation 0x4A564504. Derive this floating-point representa-
tion and explain the correlation between the bits of the integer and floating-point
representations.

Practice Problem 2.49

A. For a floating-point format with an n-bit fraction, give a formula for the
smallest positive integer that cannot be represented exactly (because it
would require an n+1-bit fraction to be exact). Assume the exponent field
size k is large enough that the range of representable exponents does not
provide a limitation for this problem.

B. What is the numeric value of this integer for single-precision format
(n =23)?

2.4.4 Rounding

Floating-point arithmetic can only approximate real arithmetic, since the repre-
sentation has limited range and precision. Thus, for a value x, we generally want
a systematic method of finding the “closest” matching value x’ that can be rep-
resented in the desired floating-point format. This is the task of the rounding
operation. One key problem is to define the direction to round a value that is
halfway between two possibilities. For example, if I have $1.50 and want to round
it to the nearest dollar, should the result be $1 or $2? An alternative approach is
to maintain a lower and an upper bound on the actual number. For example, we
could determine representable values x~ and x* such that the value x is guaran-
teed to lie between them: x~ < x < x™. The IEEE floating-point format defines
four different rounding modes. The default method finds a closest match, while
the other three can be used for computing upper and lower bounds.

Figure 2.36 illustrates the four rounding modes applied to the problem of
rounding a monetary amount to the nearest whole dollar. Round-to-even (also
called round-to-nearest) is the default mode. It attempts to find a closest match.
Thus, it rounds $1.40 to $1 and $1.60 to $2, since these are the closest whole dollar
values. The only design decision is to determine the effect of rounding values
that are halfway between two possible results. Round-to-even mode adopts the
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Mode $1.40 $1.60 $1.50 $2.50 $—1.50
Round-to-even $1 $2 $2 $2 $—2
Round-toward-zero $1 $1 $1 $2 $—1
Round-down $1 $1 $1 $2 $—2
Round-up $2 $2 $2 $3 $—1

Figure 2.36 Illlustration of rounding modes for dollar rounding. The first rounds to
a nearest value, while the other three bound the result above or below.

convention that it rounds the number either upward or downward such that the
least significant digit of the result is even. Thus, it rounds both $1.50 and $2.50
to $2.

The other three modes produce guaranteed bounds on the actual value. These
can be useful in some numerical applications. Round-toward-zero mode rounds
positive numbers downward and negative numbers upward, giving a value x such
that |x| < |x|. Round-down mode rounds both positive and negative numbers
downward, giving a value x~ such that x~ < x. Round-up mode rounds both
positive and negative numbers upward, giving a value x* such that x < x™.

Round-to-even at first seems like it has a rather arbitrary goal—why is there
any reason to prefer even numbers? Why not consistently round values halfway
between two representable values upward? The problem with such a convention
is that one can easily imagine scenarios in which rounding a set of data values
would then introduce a statistical bias into the computation of an average of the
values. The average of a set of numbers that we rounded by this means would
be slightly higher than the average of the numbers themselves. Conversely, if we
always rounded numbers halfway between downward, the average of a set of
rounded numbers would be slightly lower than the average of the numbers them-
selves. Rounding toward even numbers avoids this statistical bias in most real-life
situations. It will round upward about 50% of the time and round downward about
50% of the time.

Round-to-even rounding can be applied even when we are not rounding to
a whole number. We simply consider whether the least significant digit is even
or odd. For example, suppose we want to round decimal numbers to the nearest
hundredth. We would round 1.2349999 to 1.23 and 1.2350001 to 1.24, regardless
of rounding mode, since they are not halfway between 1.23 and 1.24. On the other
hand, we would round both 1.2350000 and 1.2450000 to 1.24, since 4 is even.

Similarly, round-to-even rounding can be applied to binary fractional num-
bers. We consider least significant bit value 0 to be even and 1 to be odd. In general,
the rounding mode is only significant when we have a bit pattern of the form
XX---XYY---Y100---, where X and Y denote arbitrary bit values with the
rightmost Y being the position to which we wish to round. Only bit patterns of
this form denote values that are halfway between two possible results. As exam-
ples, consider the problem of rounding values to the nearest quarter (i.e., 2 bits to
the right of the binary point). We would round 10.00011, (2%) down to 10.00, (2),
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and 10.00110, (21—36) up to 10.01, (2%), because these values are not halfway be-
tween two possible values. We would round 10.11100, (2%) up to 11.00, (3) and

10.10100, (2%) down to 10.10, (2%), since these values are halfway between two
possible results, and we prefer to have the least significant bit equal to zero.

Practice Problem 2.50

Show how the following binary fractional values would be rounded to the nearest
half (1 bit to the right of the binary point), according to the round-to-even rule.
In each case, show the numeric values, both before and after rounding.

A. 10.010,
B. 10.011,
C. 10.110,
D. 11.001,

Practice Problem 2.51
We saw in Problem 2.46 that the Patriot missile software approximated 0.1 as x =
0.00011001100110011001100,. Suppose instead that they had used IEEE round-
to-even mode to determine an approximation x’ to 0.1 with 23 bits to the right of
the binary point.

A. What is the binary representation of x'?

B. What is the approximate decimal value of x" — 0.1?

C. How far off would the computed clock have been after 100 hours of opera-

tion?

D. How far off would the program’s prediction of the position of the Scud
missile have been?

Practice Problem 2.52

Consider the following two 7-bit floating-point representations based on the IEEE
floating point format. Neither has a sign bit—they can only represent nonnegative
numbers.

1. Format A
= There are k = 3 exponent bits. The exponent bias is 3.
= There are n = 4 fraction bits.

2. Format B
= There are k = 4 exponent bits. The exponent bias is 7.
= There are n = 3 fraction bits.

Below, you are given some bit patterns in Format A, and your task is to convert
them to the closest value in Format B. If necessary, you should apply the round-to-
even rounding rule. In addition, give the values of numbers given by the Format A
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and Format B bit patterns. Give these as whole numbers (e.g., 17) or as fractions
(e.g., 17/64).

Format A Format B
Bits Value Bits Value

011 0000 1 0111 000 1
101 1110
010 1001
110 1111
000 0001

2.4.5 Floating-Point Operations

The IEEE standard specifies a simple rule for determining the result of an arith-
metic operation such as addition or multiplication. Viewing floating-point values
x and y as real numbers, and some operation © defined over real numbers, the
computation should yield Round(x © y), the result of applying rounding to the
exact result of the real operation. In practice, there are clever tricks floating-point
unit designers use to avoid performing this exact computation, since the compu-
tation need only be sufficiently precise to guarantee a correctly rounded result.
When one of the arguments is a special value such as —0, oo, or NaN, the stan-
dard specifies conventions that attempt to be reasonable. For example, 1/ — 0 is
defined to yield —oo, while 1/ 4 0 is defined to yield +oo.

One strength of the IEEE standard’s method of specifying the behavior of
floating-point operations is that it is independent of any particular hardware or
software realization. Thus, we can examine its abstract mathematical properties
without considering how it is actually implemented.

We saw earlier that integer addition, both unsigned and two’s complement,
forms an abelian group. Addition over real numbers also forms an abelian group,
but we must consider what effect rounding has on these properties. Let us define
x +'y to be Round(x + y). This operation is defined for all values of x and y,
although it may yield infinity even when both x and y are real numbers due to
overflow. The operation is commutative, with x +' y = y +f x for all values of x and
y. On the other hand, the operation is not associative. For example, with single-
precision floating point the expression (3.14+1e10)-1e10 evaluates to 0.0—the
value 3.14 is lost due to rounding. On the other hand, the expression 3. 14+ (1e10-
1e10) evaluates to 3.14. As with an abelian group, most values have inverses
under floating-point addition, that is, x +/ —x = 0. The exceptions are infinities
(since +0o0 — 0o = NaN), and NaN’s, since NaN +' x = NaN for any x.

The lack of associativity in floating-point addition is the most important group
property that is lacking. It has important implications for scientific programmers
and compiler writers. For example, suppose a compiler is given the following code
fragment:

X
y

a+ b+ c;
b+ c+d;
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The compiler might be tempted to save one floating-point addition by generating
the following code:

t=Db+ c;
X =a+ t;
y =t +d;

However, this computation might yield a different value for x than would the
original, since it uses a different association of the addition operations. In most
applications, the difference would be so small as to be inconsequential. Unfor-
tunately, compilers have no way of knowing what trade-offs the user is willing to
make between efficiency and faithfulness to the exact behavior of the original pro-
gram. As a result, they tend to be very conservative, avoiding any optimizations
that could have even the slightest effect on functionality.

On the other hand, floating-point addition satisfies the following monotonicity
property: if @ > b then x + a > x + b for any values of a, b, and x other than NaN.
This property of real (and integer) addition is not obeyed by unsigned or two’s-
complement addition.

Floating-point multiplication also obeys many of the properties one normally
associates with multiplication. Let us define x *f y to be Round(x x y). This oper-
ation is closed under multiplication (although possibly yielding infinity or NaN),
it is commutative, and it has 1.0 as a multiplicative identity. On the other hand,
it is not associative, due to the possibility of overflow or the loss of precision
due to rounding. For example, with single-precision floating point, the expression
(1e20%1e20) *1e-20 evaluates to +o0o, while 1e20*(1e20*1e-20) evaluates to
1e20. In addition, floating-point multiplication does not distribute over addition.
For example, with single-precision floating point, the expression 1e20*(1e20-
1e20) evaluates to 0.0, while 1e20*1e20-1e20*1e20 evaluates to NaN.

On the other hand, floating-point multiplication satisfies the following mono-
tonicity properties for any values of a, b, and ¢ other than NaN:

a>bandc>0=axc>bx¢
a>bandc<0=axc<bxc¢

In addition, we are also guaranteed that a *' a > 0, as long as a # NaN. As we
saw earlier, none of these monotonicity properties hold for unsigned or two’s-
complement multiplication.

This lack of associativity and distributivity is of serious concern to scientific
programmers and to compiler writers. Even such a seemingly simple task as writing
code to determine whether two lines intersect in 3-dimensional space can be a
major challenge.

2.4.6 Floating Point in C

All versions of C provide two different floating-point data types: float and
double. On machines that support IEEE floating point, these data types corre-
spond to single- and double-precision floating point. In addition, the machines use
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the round-to-even rounding mode. Unfortunately, since the C standards do not
require the machine to use IEEE floating point, there are no standard methods to
change the rounding mode or to get special values such as —0, 400, —oo, or NaN.
Most systems provide a combination of include (‘. ") files and procedure libraries
to provide access to these features, but the details vary from one system to an-
other. For example, the GNU compiler Gcce defines program constants INFINITY
(for +00) and NAN (for NaN) when the following sequence occurs in the program
file:

#define _GNU_SOURCE 1
#include <math.h>

More recent versions of C, including ISO C99, include a third floating-point
data type, long double. For many machines and compilers, this data type is
equivalent to the double data type. For Intel-compatible machines, however, ccc
implements this data type using an 80-bit “extended precision” format, providing
a much larger range and precision than does the standard 64-bit format. The
properties of this format are investigated in Problem 2.85.

Practice Problem 2.53

Fillin the following macro definitions to generate the double-precision values 4o,
—o0, and 0:

#define POS_INFINITY
#define NEG_INFINITY
#define NEG_ZERO

You cannot use any include files (such asmath.h), but you can make use of the
fact that the largest finite number that can be represented with double precision
is around 1.8 x 1038,

When casting values between int, float, and double formats, the program
changes the numeric values and the bit representations as follows (assuming a
32-bit int):

e From int to float, the number cannot overflow, but it may be rounded.

* From int or float to double, the exact numeric value can be preserved be-
cause double has both greater range (i.e., the range of representable values),
as well as greater precision (i.e., the number of significant bits).

* From double to float, the value can overflow to 400 or —oo, since the range
is smaller. Otherwise, it may be rounded, because the precision is smaller.

e From float or double to int the value will be rounded toward zero. For
example, 1.999 will be converted to 1, while —1.999 will be converted to
—1. Furthermore, the value may overflow. The C standards do not specify
a fixed result for this case. Intel-compatible microprocessors designate the
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bit pattern [10 - - - 00] (TMin,, for word size w) as an integer indefinite value.
Any conversion from floating point to integer that cannot assign a reasonable
integer approximation yields this value. Thus, the expression (int) +1e10
yields 21483648, generating a negative value from a positive one.

Web Aside DATA:IA32-FP Intel IA32 floating-point arithmetic

In the next chapter, we will begin an in-depth study of Intel IA32 processors, the processor found
in many of today’s personal computers. Here we highlight an idiosyncrasy of these machines that can
seriously affect the behavior of programs operating on floating-point numbers when compiled with Gcc.

IA32 processors, like most other processors, have special memory elements called registers for
holding floating-point values as they are being computed and used. The unusual feature of IA32 is that
the floating-point registers use a special 80-bit extended-precision format to provide a greater range and
precision than the normal 32-bit single-precision and 64-bit double-precision formats used for values
held in memory. (See Problem 2.85.) All single- and double-precision numbers are converted to this
format as they are loaded from memory into floating-point registers. The arithmetic is always performed
in extended precision. Numbers are converted from extended precision to single- or double-precision
format as they are stored in memory.

This extension to 80 bits for all register data and then contraction to a smaller format for memory
data has some undesirable consequences for programmers. It means that storing a number from a
register to memory and then retrieving it back into the register can cause it to change, due to rounding,
underflow, or overflow. This storing and retrieving is not always visible to the C programmer, leading
to some very peculiar results.

More recent versions of Intel processors, including both IA32 and newer 64-bit machines, provide
direct hardware support for single- and double-precision floating-point operations. The peculiarities
of the historic IA32 approach will diminish in importance with new hardware and with compilers that
generate code based on the newer floating-point instructions.

Aside Ariane 5: the high cost of floating-point overflow

Converting large floating-point numbers to integers is a common source of programming errors. Such
an error had disastrous consequences for the maiden voyage of the Ariane 5 rocket, on June 4, 1996. Just
37 seconds after liftoff, the rocket veered off its flight path, broke up, and exploded. Communication
satellites valued at $500 million were on board the rocket.

A later investigation [69, 39] showed that the computer controlling the inertial navigation system
had sent invalid data to the computer controlling the engine nozzles. Instead of sending flight control
information, it had sent a diagnostic bit pattern indicating that an overflow had occurred during the
conversion of a 64-bit floating-point number to a 16-bit signed integer.

The value that overflowed measured the horizontal velocity of the rocket, which could be more
than 5 times higher than that achieved by the earlier Ariane 4 rocket. In the design of the Ariane 4
software, they had carefully analyzed the numeric values and determined that the horizontal velocity
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would never overflow a 16-bit number. Unfortunately, they simply reused this part of the software in
the Ariane 5 without checking the assumptions on which it had been based.

© Fourmy/REA/SABA/Corbis

Practice Problem 2.54

Assume variables x, f, and d are of type int, float, and double, respectively.
Their values are arbitrary, except that neither f nor d equals +00, —o0, or NaN.
For each of the following C expressions, either argue that it will always be true
(i.e., evaluate to 1) or give a value for the variables such that it is not true (i.e.,
evaluates to 0).

A. x == (int) (double) x

B. x == (int) (float) x

C. d == (double) (float) d
D. f == (float) (double) £
E. £f==-(-1)

F 1.0/2==1/2.0

G. d*d >=0.0

H.

(f+d)-f ==
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2.5 Summary

Computers encode information as bits, generally organized as sequences of bytes.
Different encodings are used for representing integers, real numbers, and charac-
ter strings. Different models of computers use different conventions for encoding
numbers and for ordering the bytes within multi-byte data.

The C language is designed to accommodate a wide range of different imple-
mentations in terms of word sizes and numeric encodings. Most current machines
have 32-bit word sizes, although high-end machines increasingly have 64-bit words.
Most machines use two’s-complement encoding of integers and IEEE encod-
ing of floating point. Understanding these encodings at the bit level, as well as
understanding the mathematical characteristics of the arithmetic operations, is im-
portant for writing programs that operate correctly over the full range of numeric
values.

When casting between signed and unsigned integers of the same size, most
C implementations follow the convention that the underlying bit pattern does
not change. On a two’s-complement machine, this behavior is characterized by
functions 72U, and U2T ,, for a w-bit value. The implicit casting of C gives results
that many programmers do not anticipate, often leading to program bugs.

Due to the finite lengths of the encodings, computer arithmetic has properties
quite different from conventional integer and real arithmetic. The finite length can
cause numbers to overflow, when they exceed the range of the representation.
Floating-point values can also underflow, when they are so close to 0.0 that they
are changed to zero.

The finite integer arithmetic implemented by C, as well as most other pro-
gramming languages, has some peculiar properties compared to true integer arith-
metic. For example, the expression x*x can evaluate to a negative number due
to overflow. Nonetheless, both unsigned and two’s-complement arithmetic satisfy
many of the other properties of integer arithmetic, including associativity, com-
mutativity, and distributivity. This allows compilers to do many optimizations. For
example, in replacing the expression 7*x by (x<<3)-x, we make use of the as-
sociative, commutative, and distributive properties, along with the relationship
between shifting and multiplying by powers of 2.

We have seen several clever ways to exploit combinations of bit-level opera-
tions and arithmetic operations. For example, we saw that with two’s-complement
arithmetic ~x+1 is equivalent to -x. As another example, suppose we want a bit
pattern of the form [0, ..., 0,1, ..., 1], consisting of w — k zeros followed by k
ones. Such bit patterns are useful for masking operations. This pattern can be gen-
erated by the C expression (1<<k)-1, exploiting the property that the desired
bit pattern has numeric value 2f — 1. For example, the expression (1<<8)-1 will
generate the bit pattern OxFF.

Floating-point representations approximate real numbers by encoding num-
bers of the form x x 2Y. The most common floating-point representation is defined
by IEEE Standard 754. It provides for several different precisions, with the most
common being single (32 bits) and double (64 bits). IEEE floating point also has
representations for special values representing plus and minus infinity, as well as
not-a-number.



Homework Problems

Floating-point arithmetic must be used very carefully, because it has only
limited range and precision, and because it does not obey common mathematical
properties such as associativity.

Bibliographic Notes

Reference books on C [48, 58] discuss properties of the different data types and
operations. (Of these two, only Steele and Harbison [48] cover the newer fea-
tures found in ISO C99.) The C standards do not specify details such as pre-
cise word sizes or numeric encodings. Such details are intentionally omitted to
make it possible to implement C on a wide range of different machines. Several
books have been written giving advice to C programmers [59, 70] that warn about
problems with overflow, implicit casting to unsigned, and some of the other pit-
falls we have covered in this chapter. These books also provide helpful advice
on variable naming, coding styles, and code testing. Seacord’s book on security
issues in C and C++ programs [94], combines information about C programs,
how they are compiled and executed, and how vulnerabilities may arise. Books
on Java (we recommend the one coauthored by James Gosling, the creator of
the language [4]) describe the data formats and arithmetic operations supported
by Java.

Most books on logic design [56, 115] have a section on encodings and arith-
metic operations. Such books describe different ways of implementing arithmetic
circuits. Overton’s book on IEEE floating point [78] provides a detailed descrip-
tion of the format as well as the properties from the perspective of a numerical
applications programmer.

Homework Problems

255 ¢

Compile and run the sample code that uses show_bytes (file show-bytes.c) on
different machines to which you have access. Determine the byte orderings used
by these machines.

256 ¢
Try running the code for show_bytes for different sample values.

257 ¢

Write procedures show_short, show_long, and show_double that print the byte
representations of C objects of types short int, long int, and double, respec-
tively. Try these out on several machines.

2.58 oo

Write a procedure is_little_endian that will return 1 when compiled and run
on a little-endian machine, and will return 0 when compiled and run on a big-
endian machine. This program should run on any machine, regardless of its word
size.
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259 oo

Write a C expression that will yield a word consisting of the least significant
byte of x, and the remaining bytes of y. For operands x = 0x89ABCDEF and y =
0x76543210, this would give 0x765432EF.

260 oo

Suppose we number the bytes in a w-bit word from 0 (least significant) to w/8 — 1
(most significant). Write code for the following C function, which will return an
unsigned value in which byte i of argument x has been replaced by byte b:

unsigned replace_byte (unsigned x, int i, unsigned char b);
Here are some examples showing how the function should work:

replace_byte(0x12345678, 2, 0xAB) --> 0x12AB5678
replace_byte (0x12345678, 0, OxAB) --> 0x123456AB

Bit-level integer coding rules

In several of the following problems, we will artificially restrict what programming
constructs you can use to help you gain a better understanding of the bit-level,
logic, and arithmetic operations of C. In answering these problems, your code
must follow these rules:

¢ Assumptions
= Integers are represented in two’s-complement form.
= Right shifts of signed data are performed arithmetically.
= Data type int is w bits long. For some of the problems, you will be given a
specific value for w, but otherwise your code should work as long as w is a
multiple of 8. You can use the expression sizeof (int)<<3 to compute w.

¢ Forbidden
= Conditionals (if or ?:), loops, switch statements, function calls, and macro
invocations.
= Division, modulus, and multiplication.
= Relative comparison operators (<, >, <=, and >=).
= Casting, either explicit or implicit.
¢ Allowed operations
= All bit-level and logic operations.
= Left and right shifts, but only with shift amounts between 0 and w — 1.
= Addition and subtraction.
= Equality (==) and inequality (!=) tests. (Some of the problems do not allow
these.)
= Integer constants INT_MIN and INT_MAX.

Even with these rules, you should try to make your code readable by choosing
descriptive variable names and using comments to describe the logic behind your
solutions. As an example, the following code extracts the most significant byte
from integer argument x:
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/* Get most significant byte from x */
int get_msb(int x) {

/* Shift by w-8 */

int shift_val = (sizeof(int)-1)<<3;

/* Arithmetic shift */

int xright = x >> shift_val;

/* Zero all but LSB */

return xright & OxFF;

261 oo
Write C expressions that evaluate to 1 when the following conditions are true, and
to 0 when they are false. Assume x is of type int.

A. Any bit of x equals 1.
B. Any bit of x equals 0.
C. Any bit in the least significant byte of x equals 1.
D. Any bit in the most significant byte of x equals 0.

Your code should follow the bit-level integer coding rules (page 120), with the
additional restriction that you may not use equality (==) or inequality (!=) tests.

262 oo

Write a function int_shifts_are_arithmetic() that yields 1 when run on a
machine that uses arithmetic right shifts for int’s, and 0 otherwise. Your code
should work on a machine with any word size. Test your code on several machines.

263 &oo

Fill in code for the following C functions. Function srl performs a logical right
shift using an arithmetic right shift (given by value xsra), followed by other oper-
ations not including right shifts or division. Function sra performs an arithmetic
right shift using a logical right shift (given by value xsrl), followed by other
operations not including right shifts or division. You may use the computation
8*sizeof (int) to determine w, the number of bits in data type int. The shift
amount k can range from 0 to w — 1.

unsigned srl(unsigned x, int k) {
/* Perform shift arithmetically */
unsigned xsra = (int) x >> k;
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int sra(int x, int k) {
/* Perform shift logically */
int xsrl = (unsigned) x >> k;

}

264 ¢
Write code to implement the following function:

/* Return 1 when any odd bit of x equals 1; O otherwise.
Assume w=32. */
int any_odd_one(unsigned x);

Your function should follow the bit-level integer coding rules (page 120), except
that you may assume that data type int has w = 32 bits.

265 oo
Write code to implement the following function:

/* Return 1 when x contains an odd number of 1s; O otherwise.
Assume w=32. */
int odd_ones(unsigned x);

Your function should follow the bit-level integer coding rules (page 120), except
that you may assume that data type int has w = 32 bits.

Your code should contain a total of at most 12 arithmetic, bit-wise, and logical
operations.

266 ¢o¢
Write code to implement the following function:

/*

* Generate mask indicating leftmost 1 in x. Assume w=32.
* For example OxFFOO -> 0x8000, and 0x6600 —--> 0x4000.

* If x = 0, then return O.

*/

int leftmost_one(unsigned x);

Your function should follow the bit-level integer coding rules (page 120), except
that you may assume that data type int has w = 32 bits.

Your code should contain a total of at most 15 arithmetic, bit-wise, and logical
operations.

Hint: First transform x into a bit vector of the form [0 --- 011 - - - 1].

267 &¢

You are given the task of writing a procedure int_size_is_32() that yields 1
when run on a machine for which an int is 32 bits, and yields 0 otherwise. You are
not allowed to use the sizeof operator. Here is a first attempt:
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1 /* The following code does not run properly on some machines */
2 int bad_int_size_is_32() {

3 /* Set most significant bit (msb) of 32-bit machine */
4 int set_msb = 1 << 31;

5 /* Shift past msb of 32-bit word */

6 int beyond_msb = 1 << 32;

7

8 /* set_msb is nonzero when word size >= 32

9 beyond_msb is zero when word size <= 32 */

10 return set_msb && !beyond_msb;

o}

When compiled and run on a 32-bit SUN SPARC, however, this procedure returns
0. The following compiler message gives us an indication of the problem:

warning: left shift count >= width of type

A. In what way does our code fail to comply with the C standard?

B. Modify the code to run properly on any machine for which data type int is
at least 32 bits.

C. Modify the code to run properly on any machine for which data type int is
at least 16 bits.

268 ¢¢
Write code for a function with the following prototype:

/*

* Mask with least signficant n bits set to 1

* Examples: n = 6 -——> O0x2F, n = 17 —-> Ox1FFFF
* Assume 1 <= n <=w

*/

int lower_one_mask(int n);

Your function should follow the bit-level integer coding rules (page 120). Be
careful of the case n = w.

269 oo
Write code for a function with the following prototype:

/*

* Do rotating left shift. Assume O <=n < w
* Examples when x = 0x12345678 and w = 32:

* n=4 -> 0x23456781, n=20 —-> 0x67812345
*/

unsigned rotate_left(unsigned x, int n);

Your function should follow the bit-level integer coding rules (page 120). Be
careful of the case n = 0.
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270 oo
Write code for the function with the following prototype:

/*

* Return 1 when x can be represented as an n-bit, 2's complement
* number; O otherwise

* Assume 1 <= n <=y

*/

int fits_bits(int x, int n);
Your function should follow the bit-level integer coding rules (page 120).

271 ¢

You just started working for a company that is implementing a set of procedures
to operate on a data structure where 4 signed bytes are packed into a 32-bit
unsigned. Bytes within the word are numbered from 0 (least significant) to 3
(most significant). You have been assigned the task of implementing a function
for a machine using two’s-complement arithmetic and arithmetic right shifts with
the following prototype:

/* Declaration of data type where 4 bytes are packed
into an unsigned */
typedef unsigned packed_t;

/* Extract byte from word. Return as signed integer */
int xbyte(packed_t word, int bytenum);

That is, the function will extract the designated byte and sign extend it to be a
32-bit int.
Your predecessor (who was fired for incompetence) wrote the following code:

/* Failed attempt at xbyte */
int xbyte(packed_t word, int bytenum)

{
return (word >> (bytenum << 3)) & OxFF;

A. What is wrong with this code?

B. Give a correct implementation of the function that uses only left and right
shifts, along with one subtraction.

272 &¢

You are given the task of writing a function that will copy an integer val into a

buffer buf, but it should do so only if enough space is available in the buffer.
Here is the code you write:

/* Copy integer into buffer if space is available */
/* WARNING: The following code is buggy */
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void copy_int(int val, void *buf, int maxbytes) {
if (maxbytes-sizeof(val) >= 0)
memcpy (buf, (void *) &val, sizeof(val));
}

This code makes use of the library function memcpy. Although its use is a bit
artificial here, where we simply want to copy an int, it illustrates an approach
commonly used to copy larger data structures.

You carefully test the code and discover that it always copies the value to the
buffer, even when maxbytes is too small.

A. Explain why the conditional test in the code always succeeds. Hint: The
sizeof operator returns a value of type size_t.

B. Show how you can rewrite the conditional test to make it work properly.

273 &
Write code for a function with the following prototype:

/* Addition that saturates to TMin or TMax */
int saturating_add(int x, int y);

Instead of overflowing the way normal two’s-complement addition does, sat-
urating addition returns TMax when there would be positive overflow, and TMin
when there would be negative overflow. Saturating arithmetic is commonly used
in programs that perform digital signal processing.

Your function should follow the bit-level integer coding rules (page 120).

274 &¢
Write a function with the following prototype:

/* Determine whether arguments can be subtracted without overflow */
int tsub_ok(int x, int y);

This function should return 1 if the computation x — y does not overflow.

275 &ee¢

Suppose we want to compute the complete 2w-bit representation of x - y, where
both x and y are unsigned, on a machine for which data type unsigned is w bits.
The low-order w bits of the product can be computed with the expression x*y, so
we only require a procedure with prototype

unsigned int unsigned_high_prod(unsigned x, unsigned y);

that computes the high-order w bits of x - y for unsigned variables.
We have access to a library function with prototype

int signed_high_prod(int x, int y);

that computes the high-order w bits of x - y for the case where x and y are in two’s-
complement form. Write code calling this procedure to implement the function
for unsigned arguments. Justify the correctness of your solution.
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Hint: Look at the relationship between the signed product x -y and the
unsigned product x’ - y" in the derivation of Equation 2.18.

276 oo

Suppose we are given the task of generating code to multiply integer variable x
by various different constant factors K. To be efficient, we want to use only the
operations +, —, and <<. For the following values of K, write C expressions to
perform the multiplication using at most three operations per expression.

A. K 17:

B. K = -7
C. K = 60:

D. K —112:
2.77 &¢

Write code for a function with the following prototype:

/* Divide by power of two. Assume 0 <= k < w-1 */
int divide_power2(int x, int k);

The function should compute x/2F with correct rounding, and it should follow the
bit-level integer coding rules (page 120).

278 &¢

Write code for a function mul3div4 that, for integer argument x, computes 3*x/4,
but following the bit-level integer coding rules (page 120). Your code should
replicate the fact that the computation 3*x can cause overflow.

279 666

Write code for a function threefourths which, for integer argument x, computes
the value of %x, rounded toward zero. It should not overflow. Your function should
follow the bit-level integer coding rules (page 120).

280 oo

Write C expressions to generate the bit patterns that follow, where a* represents
k repetitions of symbol a. Assume a w-bit data type. Your code may contain
references to parameters j and k, representing the values of j and k, but not a
parameter representing w.

A. 1vkok
B. 0v—k=itko/

281 ¢

We are running programs on a machine where values of type int are 32 bits. They
are represented in two’s complement, and they are right shifted arithmetically.
Values of type unsigned are also 32 bits.
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We generate arbitrary values x and y, and convert them to unsigned values as
follows:

/* Create some arbitrary values */
int x = random();

int y = random();

/* Convert to unsigned */
unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;

For each of the following C expressions, you are to indicate whether or
not the expression always yields 1. If it always yields 1, describe the underlying
mathematical principles. Otherwise, give an example of arguments that make it
yield 0.

A. (x<y) == (-x>-y)
((x+y)<<4) + y-x == 1T*y+15*x
~x+~y+1 == ~(x+y)

(ux-uy) == -(unsigned) (y-x)

mon0w

((x>>2) << 2) <=x

232 ¢

Consider numbers having a binary representation consisting of an infinite string
of the form 0.y y y y y y - - -, where y is a k-bit sequence. For example, the binary
representation of % is 0.01010101 - - - (y = 01), while the representation of % is
0.001100110011 - - - (y = 0011).

A. Let Y = B2U(y), that is, the number having binary representation y. Give
a formula in terms of Y and k for the value represented by the infinite string.
Hint: Consider the effect of shifting the binary point k positions to the right.

B. What is the numeric value of the string for the following values of y?
(a) 101
(b) 0110
(c) 010011

283 o

Fill in the return value for the following procedure, which tests whether its first
argument is less than or equal to its second. Assume the function f2u returns an
unsigned 32-bit number having the same bit representation as its floating-point
argument. You can assume that neither argument is NaN. The two flavors of zero,
+0 and —0, are considered equal.

int float_le(float x, float y) {
unsigned ux = f2u(x);
unsigned uy = f2u(y);
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/* Get the sign bits */
unsigned sx = ux >> 31;
unsigned sy = uy >> 31;

/* Give an expression using only ux, uy, sx, and sy */
return 5

}

284 ¢

Given a floating-point format with a k-bit exponent and an n-bit fraction, write
formulas for the exponent E, significand M, the fraction f, and the value V for
the quantities that follow. In addition, describe the bit representation.

A. The number 7.0
B. The largest odd integer that can be represented exactly

C. The reciprocal of the smallest positive normalized value

285 ¢

Intel-compatible processors also support an “extended precision” floating-point
format with an 80-bit word divided into a sign bit, kK = 15 exponent bits, a single
integer bit, and n = 63 fraction bits. The integer bit is an explicit copy of the
implied bit in the IEEE floating-point representation. That is, it equals 1 for
normalized values and 0 for denormalized values. Fill in the following table giving
the approximate values of some “interesting” numbers in this format:

Extended precision

Description Value Decimal

Smallest positive denormalized
Smallest positive normalized
Largest normalized

286 ¢
Consider a 16-bit floating-point representation based on the IEEE floating-point
format, with one sign bit, seven exponent bits (k =7), and eight fraction bits
(n = 8). The exponent bias is 2’1 — 1 = 63.

Fill in the table that follows for each of the numbers given, with the following
instructions for each column:

Hex: The four hexadecimal digits describing the encoded form.

M: The value of the significand. This should be a number of the
form x or ’}ﬁ,, where x is an integer, and y is an integral

power of 2. Examples include: 0, %, and ﬁ.
E: The integer value of the exponent.

V: The numeric value represented. Use the notation x or
x x 2%, where x and z are integers.
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As an example, to represent the number %, we would have s =0, M = 47‘17 and
E = —1. Our number would therefore have an exponent field of 0x3E (decimal
value 63 — 1 = 62) and a significand field 0xCO (binary 11000000,), giving a hex
representation 3ECO.

You need not fill in entries marked “—".

Description Hex M E 1%

-0 _
Smallest value > 2

512 —
Largest denormalized

—00 — _ _
Number with hex representation 3BBO —

287 &¢
Consider the following two 9-bit floating-point representations based on the IEEE
floating-point format.

1. Format A
= There is one sign bit.
= There are k =5 exponent bits. The exponent bias is 15.
= There are n = 3 fraction bits.

2. Format B
= There is one sign bit.
= There are k = 4 exponent bits. The exponent bias is 7.
= There are n = 4 fraction bits.

Below, you are given some bit patterns in Format A, and your task is to convert
them to the closest value in Format B. If rounding is necessary, you should round
toward +o0. In addition, give the values of numbers given by the Format A and
Format B bit patterns. Give these as whole numbers (e.g., 17) or as fractions (e.g.,
17/64 or 17/2°).

Format A Format B
Bits Value Bits Value

101111 001 2 10111 0010 2
010110 011
100111 010
0 00000 111
111100 000
010111 100

288 ¢

We are running programs on a machine where values of type int have a 32-
bit two’s-complement representation. Values of type float use the 32-bit IEEE
format, and values of type double use the 64-bit IEEE format.

129



130 Chapter 2 Representing and Manipulating Information

We generate arbitrary integer values x, y, and z, and convert them to values
of type double as follows:

/* Create some arbitrary values */
int x = random();

int y = random();

int z = random();

/* Convert to double */

double dx = (double) x;

double dy = (double) y;

double dz = (double) z;

For each of the following C expressions, you are to indicate whether or
not the expression always yields 1. If it always yields 1, describe the underlying
mathematical principles. Otherwise, give an example of arguments that make
it yield 0. Note that you cannot use an IA32 machine running Gcc to test your
answers, since it would use the 80-bit extended-precision representation for both
float and double.

A. (float) x == (float) dx

B. dx - dy == (double) (x-y)

C. (dx+dy) +dz==dx + (dy + d=z)
D. (dx * dy) * dz == dx * (dy * d=z)
E. dx/dx==dz / dz

289 ¢

You have been assigned the task of writing a C function to compute a floating-
point representation of 2*. You decide that the best way to do this is to directly
construct the IEEE single-precision representation of the result. When x is too
small, your routine will return 0.0. When x is too large, it will return +o0. Fill in the
blank portions of the code that follows to compute the correct result. Assume the
function u2f returns a floating-point value having an identical bit representation
as its unsigned argument.

float fpwr2(int x)
{

/* Result exponent and fraction */
unsigned exp, frac;
unsigned u;

if (x < ) {
/* Too small. Return 0.0 */
exp = ;
frac = ;

} else if (x < ) o
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/* Denormalized result */
exp = ;
frac = H

} else if (x < ) o
/* Normalized result. */
exp = ;
frac = ;

} else {
/* Too big. Return +oo */
exp = ;
frac = ;

/* Pack exp and frac into 32 bits */
u = exp << 23 | frac;

/* Return as float */

return u2f(u);

290 ¢

Around 250 B.C., the Greek mathematician Archimedes proved that 27% <7< %
Had he had access to a computer and the standard library <math .h>, he would have
been able to determine that the single-precision floating-point approximation of
7 has the hexadecimal representation 0x40490FDB. Of course, all of these are just
approximations, since 7 is not rational.

A. What is the fractional binary number denoted by this floating-point value?
B. What is the fractional binary representation of 27—2? Hint: See Problem 2.82.

C. At what bit position (relative to the binary point) do these two approxima-
tions to  diverge?

Bit-level floating-point coding rules

In the following problems, you will write code to implement floating-point func-
tions, operating directly on bit-level representations of floating-point numbers.
Your code should exactly replicate the conventions for IEEE floating-point oper-
ations, including using round-to-even mode when rounding is required.

Toward this end, we define data type float_bits to be equivalent to un-—
signed:

/* Access bit-level representation floating-point number */
typedef unsigned float_bits;

Rather than using data type float in your code, you will use float_bits.
You may use both int and unsigned data types, including unsigned and integer
constants and operations. You may not use any unions, structs, or arrays. Most
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significantly, you may not use any floating-point data types, operations, or con-
stants. Instead, your code should perform the bit manipulations that implement
the specified floating-point operations.

The following function illustrates the use of these coding rules. For argument
f, it returns +0 if f is denormalized (preserving the sign of f) and returns f
otherwise.

/* If f is denorm, return 0. Otherwise, return f */
float_bits float_denorm_zero(float_bits f) {
/* Decompose bit representation into parts */
unsigned sign = £>>31;
unsigned exp = £>>23 & OxFF;
unsigned frac = f & Ox7FFFFF;
if (exp == 0) {
/* Denormalized. Set fraction to 0 */
frac = 0;
}
/* Reassemble bits */
return (sign << 31) | (exp << 23) | frac;

291 oo
Following the bit-level floating-point coding rules, implement the function with
the following prototype:

/* Compute —-f. If f is NaN, then return f. */
float_bits float_negate(float_bits f);

For floating-point number f, this function computes — f. If f is NaN, your func-
tion should simply return f.

Test your function by evaluating it for all 2°~ values of argument f and com-
paring the result to what would be obtained using your machine’s floating-point
operations.

232
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Following the bit-level floating-point coding rules, implement the function with
the following prototype:

/* Compute |f|. If f is NaN, then return f. */
float_bits float_absval(float_bits f);

For floating-point number f, this function computes | f|. If f is NaN, your function
should simply return f.

Test your function by evaluating it for all 232 values of argument £ and com-
paring the result to what would be obtained using your machine’s floating-point
operations.
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293 oo
Following the bit-level floating-point coding rules, implement the function with
the following prototype:

/* Compute 2*xf. If f is NaN, then return f. */
float_bits float_twice(float_bits f);

For floating-point number f, this function computes 2.0 - f. If f is NaN, your
function should simply return f.

Test your function by evaluating it for all 232 values of argument f and com-
paring the result to what would be obtained using your machine’s floating-point
operations.

294 ¢o¢
Following the bit-level floating-point coding rules, implement the function with
the following prototype:

/* Compute 0.5%f. If f is NaN, then return f. */
float_bits float_half(float_bits f);

For floating-point number f, this function computes 0.5 f. If f is NaN, your
function should simply return f.

Test your function by evaluating it for all 232 values of argument £ and com-
paring the result to what would be obtained using your machine’s floating-point
operations.

295 oooe
Following the bit-level floating-point coding rules, implement the function with
the following prototype:

/*

* Compute (int) f.

¥ If conversion causes overflow or f is NaN, return 0x80000000
*/

int float_f2i(float_bits f);

For floating-point number f, this function computes (int) f. Your function
should round toward zero. If f cannot be represented as an integer (e.g., it is
out of range, or it is NaN), then the function should return 0x80000000.

Test your function by evaluating it for all 232 values of argument f and com-
paring the result to what would be obtained using your machine’s floating-point
operations.

296 oo
Following the bit-level floating-point coding rules, implement the function with
the following prototype:

/* Compute (float) i */
float_bits float_i2f(int i);
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(float) i.

Test your function by evaluating it for all
paring the result to what would be obtained using your machine’s floating-point

232

operations.

Solutions to Practice Problems

Solution to Problem 2.1 (page 35)

Understanding the relation between hexadecimal and binary formats will be im-
portant once we start looking at machine-level programs. The method for doing
these conversions is in the text, but it takes a little practice to become familiar.

A. 0x39ATF8 to binary:

Hexadecimal 3 9 A 7 F
Binary 0011 1001 1010 0111 1111

Binary 1100100101111011 to hexadecimal:

Binary 1100 1001 0111 1011
Hexadecimal C 9 7 B

0xD5E4C to binary:

Hexadecimal D 5 E 4 C
Binary 1101 0101 1110 0100 1100

Binary 1001101110011110110101 to hexadecimal:

Binary 10 0110 1110 0111 1011
Hexadecimal 2 6 E 7 B

Solution to Problem 2.2 (page 35)

This problem gives you a chance to think about powers of 2 and their hexadecimal

representations.

n 2" (Decimal) 2" (Hexadecimal)
9 512 0x200

19 524,288 0x80000

14 16,384 0x4000

16 65,536 0x10000

17 131,072 0x20000
5 32 0x20
7 128 0x80

For argument i, this function computes the bit-level representation of

values of argument f and com-

1000

0101
5
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Solution to Problem 2.3 (page 36)

This problem gives you a chance to try out conversions between hexadecimal and
decimal representations for some smaller numbers. For larger ones, it becomes
much more convenient and reliable to use a calculator or conversion program.

Decimal Binary Hexadecimal

0 0000 0000 0x00
167=10-16+7 1010 0111 OxA7
62=3-16+14 0011 1110 0x3E
188=11-16+12 1011 1100 0xBC
3-164+7=55 0011 0111 0x37
8-16+8=136 1000 1000 0x88
15-16 +3 =243 1111 0011 0xF3
5:164+2=82 0101 0010 0x52
10-164+12=172 1010 1100 0xAC
14-164+7=231 11100111 OxE7

Solution to Problem 2.4 (page 37)

When you begin debugging machine-level programs, you will find many cases
where some simple hexadecimal arithmetic would be useful. You can always
convert numbers to decimal, perform the arithmetic, and convert them back, but
being able to work directly in hexadecimal is more efficient and informative.

A. 0x503c + 0x8 = 0x5044. Adding 8 to hex c gives 4 with a carry of 1.

B. 0x503c — 0x40 = Ox4ffc. Subtracting 4 from 3 in the second digit position
requires a borrow from the third. Since this digit is 0, we must also borrow
from the fourth position.

C. 0x503c + 64 = 0x507c. Decimal 64 (2°) equals hexadecimal 0x40.

D. 0x50ea — 0x503c = Oxae. Tosubtract hex c (decimal 12) from hex a (decimal
10), we borrow 16 from the second digit, giving hex e (decimal 14). In
the second digit, we now subtract 3 from hex d (decimal 13), giving hex a
(decimal 10).

Solution to Problem 2.5 (page 45)
This problem tests your understanding of the byte representation of data and the
two different byte orderings.

Little endian: 21 Big endian: 87
Little endian: 21 43 Big endian: 87 65
Little endian: 21 43 65 Big endian: 87 65 43

Recall that show_bytes enumerates a series of bytes starting from the one with
lowest address and working toward the one with highest address. On a little-
endian machine, it will list the bytes from least significant to most. On a big-endian
machine, it will list bytes from the most significant byte to the least.
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Solution to Problem 2.6 (page 46)

This problem is another chance to practice hexadecimal to binary conversion. It
also gets you thinking about integer and floating-point representations. We will
explore these representations in more detail later in this chapter.

A. Using the notation of the example in the text, we write the two strings as
follows:

0 0 3 5 9 1 4 1
00000000001101011001000101000001
ok ok ook ok ok ok ok ok ok ok ok ok o ok ok
4 A 5 6 4 5 0 4
01001010010101100100010100000100

B. With the second word shifted two positions to the right relative to the first,
we find a sequence with 21 matching bits.

C. Wefind all bits of the integer embedded in the floating-point number, except
for the most significant bit having value 1. Such is the case for the example
in the text as well. In addition, the floating-point number has some nonzero
high-order bits that do not match those of the integer.

Solution to Problem 2.7 (page 46)

It prints 61 62 63 64 65 66. Recall also that the library routine strlen does not
count the terminating null character, and so show_bytes printed only through the
character ‘f’.

Solution to Problem 2.8 (page 49)
This problem is a drill to help you become more familiar with Boolean operations.

Operation Result
a [01101001]
b [01010101]
~a [10010110]
~b [10101010]
a&b [01000001]
alb [01111101]
a~b [00111100]

Solution to Problem 2.9 (page 50)

This problem illustrates how Boolean algebra can be used to describe and reason
about real-world systems. We can see that this color algebra is identical to the
Boolean algebra over bit vectors of length 3.

A. Colors are complemented by complementing the values of R, G, and B.
From this, we can see that White is the complement of Black, Yellow is the
complement of Blue, Magenta is the complement of Green, and Cyan is the
complement of Red.
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B. We perform Boolean operations based on a bit-vector representation of the
colors. From this we get the following:

Blue (001) | Green (010) = Cyan (011)
Yellow (110) & Cyan (011) = Green (010)
Red (100) - Magenta (101) = Blue (001)

Solution to Problem 2.10 (page 51)

This procedure relies on the fact that ExcLusive-ORr is commutative and associa-
tive, and that a ~ a = 0 for any a.

Step *X *y

Initially a b

Step 1 a a~b

Step 2 a~(a~by=(@~a)"b=>b a~b

Step 3 b b~(a~b)y=bB"b)"a=a

See Problem 2.11 for a case where this function will fail.

Solution to Problem 2.11 (page 52)

This problem illustrates a subtle and interesting feature of our inplace swap rou-
tine.

A. Both first and last have value k, so we are attempting to swap the middle
element with itself.

B. In this case, arguments x and y to inplace_swap both point to the same
location. When we compute *x ~ *y, we get 0. We then store 0 as the middle
element of the array, and the subsequent steps keep setting this element to
0. We can see that our reasoning in Problem 2.10 implicitly assumed that x
and y denote different locations.

C. Simply replace the testin line 4 of reverse_array to be first < last, since
there is no need to swap the middle element with itself.

Solution to Problem 2.12 (page 53)
Here are the expressions:

A. x & OxFF
B. x ~ ~OxFF
C. x | OXFF

These expressions are typical of the kind commonly found in performing low-level
bit operations. The expression ~OxFF creates a mask where the 8 least-significant
bits equal 0 and the rest equal 1. Observe that such a mask will be generated
regardless of the word size. By contrast, the expression OxFFFFFF00 would only
work on a 32-bit machine.
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Solution to Problem 2.13 (page 53)
These problems help you think about the relation between Boolean operations
and typical ways that programmers apply masking operations. Here is the code:

/* Declarations of functions implementing operations bis and bic */
int bis(int x, int m);
int bic(int x, int m);

/* Compute x|y using only calls to functions bis and bic */
int bool_or(int x, int y) {

int result = bis(x,y);

return result;

}

/* Compute x"y using only calls to functions bis and bic */
int bool_xor(int x, int y) {

int result = bis(bic(x,y), bic(y,x));

return result;

}

The bis operation is equivalent to Boolean Or—a bit is set in z if either this
bit is set in x or it is set in m. On the other hand, bic(x, m) is equivalent to x&~m;
we want the result to equal 1 only when the corresponding bit of x is 1 and of
mis 0.

Given that, we can implement | with a single call to bis. To implement ~, we
take advantage of the property

x"y=x&~y) | (~x&y).

Solution to Problem 2.14 (page 54)

This problem highlights the relation between bit-level Boolean operations and
logic operations in C. A common programming error is to use a bit-level operation
when a logic one is intended, or vice versa.

Expression Value Expression Value
x&y 0x20 X &&y 0x01
xly Ox7F x|ly 0x01

~x | ~y 0xDF Ix ||ty 0x00
x&'y 0x00 x && ~y 0x01

Solution to Problem 2.15 (page 54)
The expressionis ! (x ~ y).

That is, x~y will be zero if and only if every bit of x matches the corresponding
bit of y. We then exploit the ability of ! to determine whether a word contains any
nonzero bit.

There is no real reason to use this expression rather than simply writing x ==
y, but it demonstrates some of the nuances of bit-level and logical operations.
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Solution to Problem 2.16 (page 56)
This problem is a drill to help you understand the different shift operations.

(Logical) (Arithmetic)
X x<<3 x>>2 x>>2
Hex Binary Binary Hex Binary Hex Binary Hex
0xC3 [11000011] [00011000] 0x18 [00110000] 0x30 [11110000] 0xFO
0x75 [01110101] [10101000] 0xA8 [00011101] 0x1D [00011101] 0x1D
0x87 [10000111] [00111000] 0x38 [00100001] 0x21 [11100001] 0xE1
0x66 [01100110] [00110000] 0x30 [00011001] 0x19 [00011001] 0x19

Solution to Problem 2.17 (page 61)
In general, working through examples for very small word sizes is a very good way
to understand computer arithmetic.

The unsigned values correspond to those in Figure 2.2. For the two’s-
complement values, hex digits 0 through 7 have a most significant bit of 0, yielding
nonnegative values, while hex digits 8 through F have a most significant bit of 1,
yielding a negative value.

-

X
Hexadecimal Binary B2U 4(x%) B2T 4(%)
OxE [1110] 24+22421=14 2 422421=22
0x0 [0000] 0 0
0x5 [0101] 22420=5 22420=5
0x8 [1000] 2’=8 -23=-8
0xD [1101] 232422420=13 -23422420=-3
0xF [1111] 22422421 420=15 234224214 20=—1

Solution to Problem 2.18 (page 64)

For a 32-bit machine, any value consisting of eight hexadecimal digits beginning
with one of the digits 8 through f represents a negative number. It is quite com-
mon to see numbers beginning with a string of £’s, since the leading bits of a
negative number are all ones. You must look carefully, though. For example, the
number 0x8048337 has only seven digits. Filling this out with a leading zero gives
0x08048337, a positive number.

8048337: 81 ec b8 01 00 00 sub $0x1b8, %esp A. 440
804833d: 8b 55 08 mov 0x8 (%ebp) , hedx

8048340: 83 c2 14 add $0x14, %edx B. 20
8048343: 8b 85 58 fe ff ff mov Oxfffffeb8(%ebp) ,heax C. -424
8048349: 03 02 add (%hedx) ,%eax

804834b: 89 85 74 fe ff ff mov %heax,0xfffffe74(%ebp) D. -396
8048351: 8b 55 08 mov 0x8 (%ebp) , hedx

8048354: 83 c2 44 add $0x44 , %hedx E. 68

8048357: 8b 85 c8 fe ff ff mov Oxfffffec8(ebp),heax F. -312
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804835d: 89 02 mov
804835f: 8b 45 10 mov
8048362: 03 45 Oc add
8048365: 89 85 ec fe ff ff mov
804836b: 8b 45 08 mov
804836e: 83 cO 20 add
8048371: 8b 00 mov

Solution to Problem 2.19 (page 67)

%heax, (hedx)

0x10 (%ebp) , heax G. 16
0xc (%ebp) , heax H. 12
%heax,Oxfffffeec(febp) I. -276
0x8 (%ebp) , heax

$0x20, heax J. 32
(%eax) ,%eax

The functions 72U and U2T are very peculiar from a mathematical perspective.
It is important to understand how they behave.

We solve this problem by reordering the rows in the solution of Problem 2.17
according to the two’s-complement value and then listing the unsigned value as
the result of the function application. We show the hexadecimal values to make

this process more concrete.

F(hex) x  T2U4x)

0x8 -8 8
0xD -3 13
OxE -2 14
OxF -1 15
0x0 0 0
0x5 5 5

Solution to Problem 2.20 (page 68)

This exercise tests your understanding of Equation 2.6.
For the first four entries, the values of x are negative and T2U 4(x) = x + 24,
For the remaining two entries, the values of x are nonnegative and 72U (x) = x.

Solution to Problem 2.21 (page 70)

This problem reinforces your understanding of the relation between two’s-
complement and unsigned representations, and the effects of the C promotion
rules. Recall that TMins, is —2,147,483,648, and that when cast to unsigned it be-
comes 2,147,483,648. In addition, if either operand is unsigned, then the other
operand will be cast to unsigned before comparing.

Expression Type Evaluation
-2147483647-1 == 21474836480 unsigned 1
-2147483647-1 < 2147483647 signed 1
-2147483647-1U < 2147483647 unsigned 0
-2147483647-1 < -2147483647 signed 1
-2147483647-1U < -2147483647 unsigned 1
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Solution to Problem 2.22 (page 74)
This exercise provides a concrete demonstration of how sign extension preserves
the numeric value of a two’s-complement representation.

A. [1011]: 23421420 = —8+24+1 = =5
B. [11011]: 24423421420 —-164+8+2+1 = =5
C.  [111011 239424423421 420 -324164+84+2+1 = =5

Solution to Problem 2.23 (page 74)

The expressions in these functions are common program “idioms” for extracting
values from a word in which multiple bit fields have been packed. They exploit
the zero-filling and sign-extending properties of the different shift operations.
Note carefully the ordering of the cast and shift operations. In funi, the shifts
are performed on unsigned variable word, and hence are logical. In fun2, shifts
are performed after casting word to int, and hence are arithmetic.

A. W funi (w) fun2 (w)
0x00000076 0x00000076 0x00000076
0x87654321 0x00000021 0x00000021
0x000000C9 0x000000C9 OxFFFFFFC9
OxEDCBA987 0x00000087 OxFFFFFF87

B. Function funl extracts a value from the low-order 8 bits of the argument,
giving an integer ranging between 0 and 255. Function fun2 extracts a value
from the low-order 8 bits of the argument, but it also performs sign extension.
The result will be a number between —128 and 127.

Solution to Problem 2.24 (page 76)

The effect of truncation is fairly intuitive for unsigned numbers, but not for two’s-
complement numbers. This exercise lets you explore its properties using very small
word sizes.

Hex Unsigned Two’s complement
Original Truncated Original Truncated Original Truncated
0 0 0 0 0 0
2 2 2 2 2 2
9 1 9 1 -7 1
B 3 11 3 =5 3
F 7 15 7 -1 -1

As Equation 2.9 states, the effect of this truncation on unsigned values is to
simply find their residue, modulo 8. The effect of the truncation on signed values
is a bit more complex. According to Equation 2.10, we first compute the modulo 8
residue of the argument. This will give values 0 through 7 for arguments 0 through
7, and also for arguments —8 through —1. Then we apply function U275 to these
residues, giving two repetitions of the sequences 0 through 3 and —4 through —1.
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Solution to Problem 2.25 (page 77)

This problem is designed to demonstrate how easily bugs can arise due to the
implicit casting from signed to unsigned. It seems quite natural to pass parameter
length as an unsigned, since one would never want to use a negative length. The
stopping criterion i <= length-1 also seems quite natural. But combining these
two yields an unexpected outcome!

Since parameter length is unsigned, the computation 0 — 1is performed using
unsigned arithmetic, which is equivalent to modular addition. The result is then
UMax. The < comparison is also performed using an unsigned comparison, and
since any number is less than or equal to UMax, the comparison always holds!
Thus, the code attempts to access invalid elements of array a.

The code can be fixed either by declaring length to be an int, or by changing
the test of the for loop to be i < length.

Solution to Problem 2.26 (page 77)

This example demonstrates a subtle feature of unsigned arithmetic, and also the
property that we sometimes perform unsigned arithmetic without realizing it. This
can lead to very tricky bugs.

A. For what cases will this function produce an incorrect result? The function
will incorrectly return 1 when s is shorter than t.

B. Explain how this incorrect result comes about. Since strlen is defined to
yield an unsigned result, the difference and the comparison are both com-
puted using unsigned arithmetic. When s is shorter than t, the difference
strlen(s) - strlen(t) should be negative, but instead becomes a large,
unsigned number, which is greater than 0.

C. Show how to fix the code so that it will work reliably. Replace the test with
the following:

return strlen(s) > strlen(t);

Solution to Problem 2.27 (page 81)
This function is a direct implementation of the rules given to determine whether
or not an unsigned addition overflows.

/* Determine whether arguments can be added without overflow */
int uvadd_ok(unsigned x, unsigned y) {

unsigned sum = x+y;

return sum >= X;

}

Solution to Problem 2.28 (page 82)

This problem is a simple demonstration of arithmetic modulo 16. The easiest way
tosolveitis to convert the hex pattern into its unsigned decimal value. For nonzero
values of x, we must have (- x) + x = 16. Then we convert the complemented
value back to hex.
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u

X -4 X
Hex Decimal Decimal Hex
0 0 0 0
5 5 11 B
8 8 8 8
D 13 3 3
F 15 1 1

Solution to Problem 2.29 (page 86)

This problem is an exercise to make sure you understand two’s-complement
addition.

X y x+y X+ Case

-12 -15 -27 5 1
[10100] [10001] [100101] [00101]

-8 -8 -16 -16 2
[11000] [11000] [110000] [10000]

-9 8 -1 -1 2
[10111] [01000] [111111] [11111]

2 5 7 7 3
[00010] [00101] [000111] [00111]

12 4 16 —-16 4
[01100] [00100] [010000] [10000]

Solution to Problem 2.30 (page 86)

This function is a direct implementation of the rules given to determine whether
or not a two’s-complement addition overflows.

/* Determine whether arguments can be added without overflow */
int tadd_ok(int x, int y) {

int sum = x+y;

int neg over = x < 0 & y < 0 && sum >= O;

int pos_over = x >= 0 && y >= 0 && sum < O0;

return !neg_over && !pos_over;

}

Solution to Problem 2.31 (page 86)

Your coworker could have learned, by studying Section 2.3.2, that two’s-
complement addition forms an abelian group, and so the expression (x+y)-x
will evaluate to y regardless of whether or not the addition overflows, and that
(x+y) -y will always evaluate to x.

Solution to Problem 2.32 (page 87)
This function will give correct values, except when y is TMin. In this case, we will
have -y also equal to TMin, and so function tadd_ok will consider there to be
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negative overflow any time x is negative. In fact, x-y does not overflow for these
cases.

One lesson to be learned from this exercise is that 7Min should be included
as one of the cases in any test procedure for a function.

Solution to Problem 2.33 (page 87)
This problem helps you understand two’s-complement negation using a very small
word size.

For w =4, we have TMin, = —8. So —8 is its own additive inverse, while other
values are negated by integer negation.

X 4 X
Hex Decimal Decimal Hex
0 0 0 0
5 5 -5 B
8 -8 -8 8
D -3 3
F -1 1 1

The bit patterns are the same as for unsigned negation.

Solution to Problem 2.34 (page 90)
This problem is an exercise to make sure you understand two’s-complement

multiplication.

Mode X y X-y Truncated x - y
Unsigned 4 [100] 5 [101] 20 [010100] 4 [100]
Two’s comp. —4 [100] -3 [101] 12 [001100] —4 [100]
Unsigned 2 [010] 7 [111] 14 [001110] 6 [110]
Two’s comp. 2 [010] -1 [111] -2 [111110] -2 [110]
Unsigned 6 [110] 6 [110] 36 [100100] 4 [100]
Two’s comp. -2 [110] -2 [110] 4 [000100] —4 [100]

Solution to Problem 2.35 (page 90)
It’s not realistic to test this function for all possible values of x and y. Even if you
could run 10 billion tests per second, it would require over 58 years to test all
combinations when data type int is 32 bits. On the other hand, it is feasible to test
your code by writing the function with data type short or char and then testing
it exhaustively.

Here’s a more principled approach, following the proposed set of arguments:

1. We know that x - y can be written as a 2w-bit two’s-complement number. Let
u denote the unsigned number represented by the lower w bits, and v denote
the two’s-complement number represented by the upper w bits. Then, based
on Equation 2.3, we can see that x - y = v2" 4 u.
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We also know that u = 72U ,(p), since they are unsigned and two’s-
complement numbers arising from the same bit pattern, and so by Equa-
tion 2.5, we can write u = p + p,,_12%, where p,,_; is the most significant bit
of p. Letting t =v + p,,_1, we have x - y = p + 2%,

When r =0, we have x - y = p; the multiplication does not overflow. When
t # 0, we have x - y # p; the multiplication does overflow.

2. By definition of integer division, dividing p by nonzero x gives a quotient
g and a remainder r such that p =x-¢ +r, and |r| < |x|. (We use absolute
values here, because the signs of x and r may differ. For example, dividing —7
by 2 gives quotient —3 and remainder —1.)

3. Suppose g = y. Then we have x - y =x -y +r + 2". From this, we can see
that r + 2% = 0. But |r| < |x| < 2", and so this identity can hold only if r =0,
in which case r = 0.
Suppose r =t = 0. Then we will have x - y = x - ¢, implying that y = g¢.

When x equals 0, multiplication does not overflow, and so we see that our code
provides a reliable way to test whether or not two’s-complement multiplication
causes overflow.

Solution to Problem 2.36 (page 91)

With 64 bits, we can perform the multiplication without overflowing. We then test
whether casting the product to 32 bits changes the value:

1 /* Determine whether arguments can be multiplied without overflow
2 int tmult_ok(int x, int y) {

3 /* Compute product without overflow */

4 long long pll = (long long) x*y;

5 /* See if casting to int preserves value */

6 return pll == (int) pll;

7}

Note that the casting on the right-hand side of line 4 is critical. If we instead
wrote the line as

long long pll = x*y;

the product would be computed as a 32-bit value (possibly overflowing) and then
sign extended to 64 bits.

Solution to Problem 2.37 (page 92)

A. This change does not help at all. Even though the computation of asize will
be accurate, the call tomalloc will cause this value to be converted to a 32-bit
unsigned number, and so the same overflow conditions will occur.

B. With malloc having a 32-bit unsigned number as its argument, it cannot
possibly allocate a block of more than 232 bytes, and so there is no point
attempting to allocate or copy this much memory. Instead, the function

*/
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should abort and return NULL, as illustrated by the following replacement
to the original call to malloc (line 10):

long long unsigned required_size =
ele_cnt * (long long unsigned) ele_size;
size_t request_size = (size_t) required_size;
if (required_size != request_size)
/* Overflow must have occurred. Abort operation */
return NULL;
void *result = malloc(request_size);
if (result == NULL)
/* malloc failed */
return NULL;

Solution to Problem 2.38 (page 93)
In Chapter 3, we will see many examples of the LEA instruction in action. The
instruction is provided to support pointer arithmetic, but the C compiler often
uses it as a way to perform multiplication by small constants.

For each value of k, we can compute two multiples: 2¥ (when bis 0) and 2 + 1
(when b is a). Thus, we can compute multiples 1, 2, 3,4, 5, 8, and 9.

Solution to Problem 2.39 (page 94)

The expression simply becomes - (x<<m). To see this, let the word size be w so that
n = w—1. Form B states that we should compute (x<<w) - (x<<m), but shifting
x to the left by w will yield the value 0.

Solution to Problem 2.40 (page 94)
This problem requires you to try out the optimizations already described and also
to supply a bit of your own ingenuity.

K Shifts Add/Subs Expression

6 2 1 (x<<2) + (x<<1)
31 1 1 (x<<5) - x
—6 2 1 (x<<1) - (x<<3)
55 2 2 (x<<6) - (x<<3) - x

Observe that the fourth case uses a modified version of form B. We can view
the bit pattern [110111] as having a run of 6 ones with a zero in the middle, and so
we apply the rule for form B, but then we subtract the term corresponding to the
middle zero bit.

Solution to Problem 2.41 (page 94)

Assuming that addition and subtraction have the same performance, the rule is
to choose form A when n = m, either form when n =m + 1, and form B when
n>m+ 1.
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The justification for this rule is as follows. Assume first that m > 1. When
n =m, form A requires only a single shift, while form B requires two shifts
and a subtraction. When n = m + 1, both forms require two shifts and either an
addition or a subtraction. Whenn > m + 1, form B requires only two shifts and one
subtraction, while form A requires n —m + 1 > 2 shifts and n — m > 1 additions.
For the case of m = 1, we get one fewer shift for both forms A and B, and so the
same rules apply for choosing between the two.

Solution to Problem 2.42 (page 97)

The only challenge here is to compute the bias without any testing or conditional
operations. We use the trick that the expression x >> 31 generates a word with all
ones if x is negative, and all zeros otherwise. By masking off the appropriate bits,
we get the desired bias value.

int divi6(int x) {
/* Compute bias to be either 0 (x >= 0) or 15 (x < 0) */
int bias = (x >> 31) & O0xF;
return (x + bias) >> 4;

}

Solution to Problem 2.43 (page 98)
We have found that people have difficulty with this exercise when working di-
rectly with assembly code. It becomes more clear when put in the form shown in
optarith.

We can see that Mis 31; x*M is computed as (x<<5)-x.

We can see that N is 8; a bias value of 7 is added when y is negative, and the
right shift is by 3.

Solution to Problem 2.44 (page 99)

These “C puzzle” problems provide a clear demonstration that programmers must
understand the properties of computer arithmetic:

A x>0) || (x-1<0)
False. Let x be —2,147,483,648 (TMins,). We will then have x-1 equal to
2147483647 (TMaxs)).

B. (x&7) =71 (x<<29<0)
True. If (x & 7) !=7 evaluates to 0, then we must have bit x, equal to 1.
When shifted left by 29, this will become the sign bit.
C. (x*xx)>=0
False. When x is 65,535 (OxFFFF), x*x is —131,071 (0OxFFFE0001).
D. x<0 1l -x<=0
True. If x is nonnegative, then —x is nonpositive.
E. x>0 -x>=0
False. Let x be —2,147,483,648 (TMins,). Then both x and -x are negative.
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F  x+y == uy+tux
True. Two’s-complement and unsigned addition have the same bit-level be-
havior, and they are commutative.

G. x*~y + uy*ux == -x
True. ~y equals —y-1. uy*ux equals x*y. Thus, the left hand side is equivalent
1O Xk—y—xX+x*y.

Solution to Problem 2.45 (page 102)

Understanding fractional binary representations is an important step to under-
standing floating-point encodings. This exercise lets you try out some simple ex-
amples.

Fractional value Binary representation Decimal representation

3 0.001 0.125
3 0.11 0.75
B 1.1001 1.5625
2 10.1011 2.6875
3 1.001 1.125
£L 101.111 5.875
3 11.0011 3.1875

One simple way to think about fractional binary representations is to repre-
sent a number as a fraction of the form 5;. We can write this in binary using the
binary representation of x, with the binary point inserted k positions from the
right. As an example, for %, we have 25;; = 11001,. We then put the binary point
four positions from the right to get 1.1001,.

Solution to Problem 2.46 (page 102)

In most cases, the limited precision of floating-point numbers is not a major
problem, because the relative error of the computation is still fairly low. In this
example, however, the system was sensitive to the absolute error.

A. We can see that 0.1 — x has binary representation

0.000000000000000000000001100[1100] - - -»

B. Comparing this to the binary representation of %, we can see that it is simply

2720 %, which is around 9.54 x 1078,
C. 9.54 x 1078 x 100 x 60 x 60 x 10 ~ 0.343 seconds.
D. 0.343 x 2000 ~ 687 meters.

Solution to Problem 2.47 (page 107)
Working through floating-point representations for very small word sizes helps
clarify how IEEE floating point works. Note especially the transition between
denormalized and normalized values.
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Bits e E 2F f M 2Ex M 1% Decimal
0 00 00 o o0 1 g 0 9 0 0.0
0 00 01 o o 1 i1 o i 0.25
0 00 10 o o0 1 : z z : 0.5
000 11 0 0 1 33 3 2 0.75
0 01 00 r o0 1 g 4 3 1 1.0
00101 r 0 1 3 3 2 1.25
001 10 r o0 1 z ¢ ¢ 3 L5
00111 10 1 31 I ] 1.75
0 10 00 21 2 $ 4 8 2 2.0
010 01 2 1 2 i 3 10 3 2.5
010 10 2 1 2 z ¢ Lz 3 3.0
010 11 2 1 2 3 I n I 35
01100 — — -  —  — — 00 —
01101 - - - = = — NaN —
01110  — — -  —  — — NaN —
011 11 - - - = = — NaN —

Solution to Problem 2.48 (page 110)

Hexadecimal value 0x359141 is equivalent to binary [1101011001000101000001].
Shifting this right 21 places gives 1.101011001000101000001, x 2%!. We form
the fraction field by dropping the leading 1 and adding two Os, giving
[10101100100010100000100]. The exponent is formed by adding bias 127 to 21,
giving 148 (binary [10010100]). We combine this with a sign field of 0 to give a
binary representation

[01001010010101100100010100000100].

We see that the matching bits in the two representations correspond to the
low-order bits of the integer, up to the most significant bit equal to 1 matching the
high-order 21 bits of the fraction:

o o 3 5 9 1 4 1
00000000001101011001000101000001
stk ok ok sk sk ok ok ok ok o ok ok ok ok ok ok ok ok ok ok
4 A 5 6 4 5 0 4
01001010010101100100010100000100

Solution to Problem 2.49 (page 110)
This exercise helps you think about what numbers cannot be represented exactly
in floating point.
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A. The number has binary representation 1, followed by n 0Os, followed by 1,
giving value 2"+1 4 1.

B. When n = 23, the value is 224 + 1 = 16,777,217.
Solution to Problem 2.50 (page 112)

Performing rounding by hand helps reinforce the idea of round-to-even with
binary numbers.

Original Rounded
10.010, 2% 100 2
10011, 23 101 23
10.110, 23 1.0 3
11.001, 3% 110 3

Solution to Problem 2.51 (page 112)

A. Looking at the nonterminating sequence for 1/10, we can see that the
2 bits to the right of the rounding position are 1, and so a better ap-
proximation to 1/10 would be obtained by incrementing x to get x' =
0.00011001100110011001101,, which is larger than 0.1.

B. We can see that x” — 0.1 has binary representation:
0.0000000000000000000000000[1100].

Comparing this to the binary representation of %, we can see that it is
2722 % %, which is around 2.38 x 1078.

C. 238 x 1078 x 100 x 60 x 60 x 10 ~ 0.086 seconds, a factor of 4 less than the
error in the Patriot system.

D. 0.343 x 2000 ~ 171 meters.

Solution to Problem 2.52 (page 112)
This problem tests a lot of concepts about floating-point representations, including
the encoding of normalized and denormalized values, as well as rounding.

Format A Format B
Bits Value Bits Value Comments
011 0000 1 0111 000 1
101 1110 L 1001 111 L
010 1001 z 0110 100 2 Round down
110 1111 3 1011 000 16 Round up
000 0001 5 0001 000 5 Denorm — norm

Solution to Problem 2.53 (page 115)

In general, it is better to use a library macro rather than inventing your own code.
This code seems to work on a variety of machines, however.
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We assume that the value 1e400 overflows to infinity.

#define POS_INFINITY 1e400
#define NEG_INFINITY (-POS_INFINITY)
#define NEG_ZERO (-1.0/POS_INFINITY)

Solution to Problem 2.54 (page 117)

Exercises such as this one help you develop your ability to reason about floating-
point operations from a programmer’s perspective. Make sure you understand
each of the answers.

A.

B.

x == (int) (double) x

Yes, since double has greater precision and range than int.
x == (int) (float) x

No. For example, when x is TMax.

d == (double) (float) d
No. For example, when d is 1e40, we will get 400 on the right.

f == (float) (double) £
Yes, since double has greater precision and range than float.
==-(-1f)
Yes, since a floating-point number is negated by simply inverting its sign bit.
1.0/2==1/2.0
Yes, the numerators and denominators will both be converted to floating-
point representations before the division is performed.
d*d >=0.0
Yes, although it may overflow to +oo.

. (f+d)-£f ==

No, for example when £ is 1.0e20 and d is 1.0, the expression f+d will be
rounded to 1.0e20, and so the expression on the left-hand side will evaluate
to 0.0, while the right-hand side will be 1.0.
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Computers execute machine code, sequences of bytes encoding the low-level op-
erations that manipulate data, manage memory, read and write data on storage
devices, and communicate over networks. A compiler generates machine code
through a series of stages, based on the rules of the programming language, the
instruction set of the target machine, and the conventions followed by the operat-
ing system. The ccc C compiler generates its output in the form of assembly code,
a textual representation of the machine code giving the individual instructions in
the program. Gce then invokes both an assembler and a linker to generate the exe-
cutable machine code from the assembly code. In this chapter, we will take a close
look at machine code and its human-readable representation as assembly code.

When programming in a high-level language such as C, and even more so in
Java, we are shielded from the detailed, machine-level implementation of our pro-
gram. In contrast, when writing programs in assembly code (as was done in the
early days of computing) a programmer must specify the low-level instructions the
program uses to carry out a computation. Most of the time, it is much more produc-
tive and reliable to work at the higher level of abstraction provided by a high-level
language. The type checking provided by a compiler helps detect many program
errors and makes sure we reference and manipulate data in consistent ways. With
modern, optimizing compilers, the generated code is usually at least as efficient
as what a skilled, assembly-language programmer would write by hand. Best of
all, a program written in a high-level language can be compiled and executed on a
number of different machines, whereas assembly code is highly machine specific.

So why should we spend our time learning machine code? Even though com-
pilers do most of the work in generating assembly code, being able to read and
understand it is an important skill for serious programmers. By invoking the com-
piler with appropriate command-line parameters, the compiler will generate a file
showing its output in assembly-code form. By reading this code, we can under-
stand the optimization capabilities of the compiler and analyze the underlying
inefficiencies in the code. As we will experience in Chapter 5, programmers seek-
ing to maximize the performance of a critical section of code often try different
variations of the source code, each time compiling and examining the generated
assembly code to get a sense of how efficiently the program will run. Furthermore,
there are times when the layer of abstraction provided by a high-level language
hides information about the run-time behavior of a program that we need to un-
derstand. For example, when writing concurrent programs using a thread package,
as covered in Chapter 12, it is important to know what region of memory is used to
hold the different program variables. This information is visible at the assembly-
code level. As another example, many of the ways programs can be attacked,
allowing worms and viruses to infest a system, involve nuances of the way pro-
grams store their run-time control information. Many attacks involve exploiting
weaknesses in system programs to overwrite information and thereby take control
of the system. Understanding how these vulnerabilities arise and how to guard
against them requires a knowledge of the machine-level representation of pro-
grams. The need for programmers to learn assembly code has shifted over the
years from one of being able to write programs directly in assembly to one of
being able to read and understand the code generated by compilers.
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In this chapter, we will learn the details of two particular assembly languages
and see how C programs get compiled into these forms of machine code. Reading
the assembly code generated by a compiler involves a different set of skills than
writing assembly code by hand. We must understand the transformations typical
compilers make in converting the constructs of C into machine code. Relative to
the computations expressed in the C code, optimizing compilers can rearrange
execution order, eliminate unneeded computations, replace slow operations with
faster ones, and even change recursive computations into iterative ones. Under-
standing the relation between source code and the generated assembly can often
be a challenge—it’s much like putting together a puzzle having a slightly differ-
ent design than the picture on the box. It is a form of reverse engineering—trying
to understand the process by which a system was created by studying the system
and working backward. In this case, the system is a machine-generated assembly-
language program, rather than something designed by a human. This simplifies
the task of reverse engineering, because the generated code follows fairly reg-
ular patterns, and we can run experiments, having the compiler generate code
for many different programs. In our presentation, we give many examples and
provide a number of exercises illustrating different aspects of assembly language
and compilers. This is a subject where mastering the details is a prerequisite to
understanding the deeper and more fundamental concepts. Those who say “I un-
derstand the general principles, I don’t want to bother learning the details” are
deluding themselves. It is critical for you to spend time studying the examples,
working through the exercises, and checking your solutions with those provided.

Our presentation is based on two related machine languages: Intel IA32, the
dominant language of most computers today, and x86-64, its extension to run on
64-bit machines. Our focus starts with IA32. Intel processors have grown from
primitive 16-bit processors in 1978 to the mainstream machines for today’s desk-
top, laptop, and server computers. The architecture has grown correspondingly,
with new features added and with the 16-bit architecture transformed to become
IA32, supporting 32-bit data and addresses. The result is a rather peculiar design
with features that make sense only when viewed from a historical perspective. It
is also laden with features providing backward compatibility that are not used by
modern compilers and operating systems. We will focus on the subset of the fea-
tures used by gcc and Linux. This allows us to avoid much of the complexity and
arcane features of IA32.

Our technical presentation starts with a quick tour to show the relation be-
tween C, assembly code, and machine code. We then proceed to the details of
IA32, starting with the representation and manipulation of data and the imple-
mentation of control. We see how control constructs in C, such as if, while, and
switch statements, are implemented. We then cover the implementation of pro-
cedures, including how the program maintains a run-time stack to support the
passing of data and control between procedures, as well as storage for local vari-
ables. Next, we consider how data structures such as arrays, structures, and unions
are implemented at the machine level. With this background in machine-level pro-
gramming, we can examine the problems of out of bounds memory references and
the vulnerability of systems to buffer overflow attacks. We finish this part of the
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presentation with some tips on using the GpB debugger for examining the run-time
behavior of a machine-level program.

As we will discuss, the extension of IA32 to 64 bits, termed x86-64, was origi-
nally developed by Advanced Micro Devices (AMD), Intel’s biggest competitor.
Whereas a 32-bit machine can only make use of around 4 gigabytes (232 bytes) of
random-access memory, current 64-bit machines can use up to 256 terabytes (243
bytes). The computer industry is currently in the midst of a transition from 32-
bit to 64-bit machines. Most of the microprocessors in recent server and desktop
machines, as well as in many laptops, support either 32-bit or 64-bit operation.
However, most of the operating systems running on these machines support only
32-bit applications, and so the capabilities of the hardware are not fully utilized.
As memory prices drop, and the desire to perform computations involving very
large data sets increases, 64-bit machines and applications will become common-
place. It is therefore appropriate to take a close look at x86-64. We will see that in
making the transition from 32 to 64 bits, the engineers at AMD also incorporated
features that make the machines better targets for optimizing compilers and that
improve system performance.

We provide Web Asides to cover material intended for dedicated machine-
language enthusiasts. In one, we examine the code generated when code is com-
piled using higher degrees of optimization. Each successive version of the Gcc
compiler implements more sophisticated optimization algorithms, and these can
radically transform a program to the point where it is difficult to understand the re-
lation between the original source code and the generated machine-level program.
Another Web Aside gives a brief presentation of ways to incorporate assembly
code into C programs. For some applications, the programmer must drop down
to assembly code to access low-level features of the machine. One approach is to
write entire functions in assembly code and combine them with C functions during
the linking stage. A second is to use Gcc’s support for embedding assembly code
directly within C programs. We provide separate Web Asides for two different
machine languages for floating-point code. The “x87” floating-point instructions
have been available since the early days of Intel processors. This implementation
of floating point is particularly arcane, and so we advise that only people deter-
mined to work with floating-point code on older machines attempt to study this
section. The more recent “SSE” instructions were developed to support multi-
media applications, but in their more recent versions (version 2 and later), and
with more recent versions of gce, SSE has become the preferred method for map-
ping floating point onto both IA32 and x86-64 machines.

3.1 A Historical Perspective

The Intel processor line, colloquially referred to as x86, has followed a long, evo-
lutionary development. It started with one of the first single-chip, 16-bit micropro-
cessors, where many compromises had to be made due to the limited capabilities
of integrated circuit technology at the time. Since then, it has grown to take ad-
vantage of technology improvements as well as to satisfy the demands for higher
performance and for supporting more advanced operating systems.
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The list that follows shows some models of Intel processors and some of their
key features, especially those affecting machine-level programming. We use the
number of transistors required to implement the processors as an indication of
how they have evolved in complexity (K denotes 1000, and M denotes 1,000,000).

8086: (1978, 29 K transistors). One of the first single-chip, 16-bit microproces-
sors. The 8088, a variant of the 8086 with an 8-bit external bus, formed
the heart of the original IBM personal computers. IBM contracted with
then-tiny Microsoft to develop the MS-DOS operating system. The orig-
inal models came with 32,768 bytes of memory and two floppy drives (no
hard drive). Architecturally, the machines were limited to a 655,360-byte
address space—addresses were only 20 bits long (1,048,576 bytes address-
able), and the operating system reserved 393,216 bytes for its own use.
In 1980, Intel introduced the 8087 floating-point coprocessor (45 K tran-
sistors) to operate alongside an 8086 or 8088 processor, executing the
floating-point instructions. The 8087 established the floating-point model
for the x86 line, often referred to as “x87.”

80286: (1982, 134 K transistors). Added more (and now obsolete) addressing
modes. Formed the basis of the IBM PC-AT personal computer, the
original platform for MS Windows.

i386: (1985,275 K transistors). Expanded the architecture to 32 bits. Added the
flat addressing model used by Linux and recent versions of the Windows
family of operating system. This was the first machine in the series that
could support a Unix operating system.

i486: (1989, 1.2 M transistors). Improved performance and integrated the
floating-point unit onto the processor chip but did not significantly change
the instruction set.

Pentium: (1993, 3.1 M transistors). Improved performance, but only added
minor extensions to the instruction set.

PentiumPro: (1995, 5.5 M transistors). Introduced a radically new processor
design, internally known as the P6 microarchitecture. Added a class of
“conditional move” instructions to the instruction set.

Pentium II: (1997, 7 M transistors). Continuation of the P6 microarchitecture.

Pentium IIL: (1999, 8.2 M transistors). Introduced SSE, a class of instructions
for manipulating vectors of integer or floating-point data. Each datum can
be 1, 2, or 4 bytes, packed into vectors of 128 bits. Later versions of this
chip went up to 24 M transistors, due to the incorporation of the level-2
cache on chip.

Pentium 4: (2000, 42 M transistors). Extended SSE to SSE2, adding new data
types (including double-precision floating point), along with 144 new
instructions for these formats. With these extensions, compilers can use
SSE instructions, rather than x87 instructions, to compile floating-point
code. Introduced the NetBurst microarchitecture, which could operate at
very high clock speeds, but at the cost of high power consumption.
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Pentium 4E: (2004, 125 M transistors). Added hyperthreading, a method to run
two programs simultaneously on a single processor, as well as EM64T,
Intel’s implementation of a 64-bit extension to IA32 developed by Ad-
vanced Micro Devices (AMD), which we refer to as x86-64.

Core 2: (2006,291 M transistors). Returned back to a microarchitecture similar
to P6. First multi-core Intel microprocessor, where multiple processors are
implemented on a single chip. Did not support hyperthreading.

Core i7: (2008, 781 M transistors). Incorporated both hyperthreading and
multi-core, with the initial version supporting two executing programs
on each core and up to four cores on each chip.

Each successive processor has been designed to be backward compatible—
able to run code compiled for any earlier version. As we will see, there are many
strange artifacts in the instruction set due to this evolutionary heritage. Intel has
had several names for their processor line, including /A32, for “Intel Architecture
32-bit,” and most recently Intel64, the 64-bit extension to IA32, which we will refer
to as x86-64. We will refer to the overall line by the commonly used colloquial
name “x86,” reflecting the processor naming conventions up through the i486.

Aside Moore’s law
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If we plot the number of transistors in the different Intel processors versus the year of introduction, and
use a logarithmic scale for the y-axis, we can see that the growth has been phenomenal. Fitting a line
through the data, we see that the number of transistors increases at an annual rate of approximately
38%, meaning that the number of transistors doubles about every 26 months. This growth has been
sustained over the multiple-decade history of x86 microprocessors.
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In 1965, Gordon Moore, a founder of Intel Corporation, extrapolated from the chip technology
of the day, in which they could fabricate circuits with around 64 transistors on a single chip, to predict
that the number of transistors per chip would double every year for the next 10 years. This predication
became known as Moore’s law. As it turns out, his prediction was just a little bit optimistic, but also too
short-sighted. Over more than 45 years, the semiconductor industry has been able to double transistor

counts on average every 18 months.

Similar exponential growth rates have occurred for other aspects of computer technology—disk
capacities, memory-chip capacities, and processor performance. These remarkable growth rates have

been the major driving forces of the computer revolution.

Over the years, several companies have produced processors that are com-
patible with Intel processors, capable of running the exact same machine-level
programs. Chief among these is Advanced Micro Devices (AMD). For years,
AMD lagged just behind Intel in technology, forcing a marketing strategy where
they produced processors that were less expensive although somewhat lower in
performance. They became more competitive around 2002, being the first to break
the 1-gigahertz clock-speed barrier for a commercially available microprocessor,
and introducing x86-64, the widely adopted 64-bit extension to IA32. Although
we will talk about Intel processors, our presentation holds just as well for the
compatible processors produced by Intel’s rivals.

Much of the complexity of x86 is not of concern to those interested in programs
for the Linux operating system as generated by the Gcc compiler. The memory
model provided in the original 8086 and its extensions in the 80286 are obsolete.
Instead, Linux uses what is referred to as flat addressing, where the entire memory
space is viewed by the programmer as a large array of bytes.

As we can see in the list of developments, a number of formats and instructions
have been added to x86 for manipulating vectors of small integers and floating-
point numbers. These features were added to allow improved performance on
multimedia applications, such as image processing, audio and video encoding
and decoding, and three-dimensional computer graphics. In its default invocation
for 32-bit execution, Gcc assumes it is generating code for an 1386, even though
there are very few of these 1985-era microprocessors running any longer. Only by
giving specific command-line options, or by compiling for 64-bit operation, will
the compiler make use of the more recent extensions.

For the next part of our presentation, we will focus only on the IA32 instruc-
tion set. We will then look at the extension to 64 bits via x86-64 toward the end of
the chapter.

3.2 Program Encodings

Suppose we write a C program as two files p1.c and p2.c. We can then compile
this code on an IA32 machine using a Unix command line:

unix> gcc -01 -o p pl.c p2.c



160 Chapter 3 Machine-Level Representation of Programs

The command gcc indicates the geec C compiler. Since this is the default compiler
on Linux, we could also invoke it as simply cc. The command-line option -01
instructs the compiler to apply level-one optimizations. In general, increasing the
level of optimization makes the final program run faster, but at a risk of increased
compilation time and difficulties running debugging tools on the code. As we will
also see, invoking higher levels of optimization can generate code that is so heavily
transformed that the relationship between the generated machine code and the
original source code is difficult to understand. We will therefore use level-one
optimization as a learning tool and then see what happens as we increase the level
of optimization. In practice, level-two optimization (specified with the option -02)
is considered a better choice in terms of the resulting program performance.

The gcc command actually invokes a sequence of programs to turn the source
code into executable code. First, the C preprocessor expands the source code to
include any files specified with #include commands and to expand any macros,
specified with #define declarations. Second, the compiler generates assembly-
code versions of the two source files having names p1.s and p2.s. Next, the
assembler converts the assembly code into binary object-code files p1 .o and p2.o.
Object code is one form of machine code—it contains binary representations of all
of the instructions, but the addresses of global values are not yet filled in. Finally,
the linker merges these two object-code files along with code implementing library
functions (e.g., printf) and generates the final executable code file p. Executable
code is the second form of machine code we will consider—it is the exact form
of code that is executed by the processor. The relation between these different
forms of machine code and the linking process is described in more detail in
Chapter 7.

3.2.1 Machine-Level Code

As described in Section 1.9.2, computer systems employ several different forms
of abstraction, hiding details of an implementation through the use of a sim-
pler, abstract model. Two of these are especially important for machine-level
programming. First, the format and behavior of a machine-level program is de-
fined by the instruction set architecture, or “ISA,” defining the processor state,
the format of the instructions, and the effect each of these instructions will have
on the state. Most ISAs, including IA32 and x86-64, describe the behavior of
a program as if each instruction is executed in sequence, with one instruction
completing before the next one begins. The processor hardware is far more elab-
orate, executing many instructions concurrently, but they employ safeguards to
ensure that the overall behavior matches the sequential operation dictated by the
ISA. Second, the memory addresses used by a machine-level program are vir-
tual addresses, providing a memory model that appears to be a very large byte
array. The actual implementation of the memory system involves a combination
of multiple hardware memories and operating system software, as described in
Chapter 9.

The compiler does most of the work in the overall compilation sequence,
transforming programs expressed in the relatively abstract execution model pro-
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vided by C into the very elementary instructions that the processor executes. The
assembly-code representation is very close to machine code. Its main feature is
that it is in a more readable textual format, as compared to the binary format of
machine code. Being able to understand assembly code and how it relates to the
original C code is a key step in understanding how computers execute programs.
IA32 machine code differs greatly from the original C code. Parts of the
processor state are visible that normally are hidden from the C programmer:

* The program counter (commonly referred to as the “PC,” and called %eip in
IA32) indicates the address in memory of the next instruction to be executed.

e The integer register file contains eight named locations storing 32-bit values.
These registers can hold addresses (corresponding to C pointers) or integer
data. Some registers are used to keep track of critical parts of the program
state, while others are used to hold temporary data, such as the local variables
of a procedure, and the value to be returned by a function.

* The condition code registers hold status information about the most recently
executed arithmetic or logical instruction. These are used to implement con-
ditional changes in the control or data flow, such as is required to implement
if and while statements.

e A set of floating-point registers store floating-point data.

Whereas C provides a model in which objects of different data types can be
declared and allocated in memory, machine code views the memory as simply
a large, byte-addressable array. Aggregate data types in C such as arrays and
structures are represented in machine code as contiguous collections of bytes.
Even for scalar data types, assembly code makes no distinctions between signed or
unsigned integers, between different types of pointers, or even between pointers
and integers.

The program memory contains the executable machine code for the program,
some information required by the operating system, a run-time stack for managing
procedure calls and returns, and blocks of memory allocated by the user (for
example, by using the malloc library function). As mentioned earlier, the program
memory is addressed using virtual addresses. At any given time, only limited
subranges of virtual addresses are considered valid. For example, although the
32-bit addresses of IA32 potentially span a 4-gigabyte range of address values, a
typical program will only have access to a few megabytes. The operating system
manages this virtual address space, translating virtual addresses into the physical
addresses of values in the actual processor memory.

A single machine instruction performs only a very elementary operation. For
example, it might add two numbers stored in registers, transfer data between
memory and a register, or conditionally branch to a new instruction address. The
compiler must generate sequences of such instructions to implement program
constructs such as arithmetic expression evaluation, loops, or procedure calls and
returns.

161
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Aside The ever-changing forms of generated code

In our presentation, we will show the code generated by a particular version of ccc with particular
settings of the command-line options. If you compile code on your own machine, chances are you will be
using a different compiler or a different version of cc and hence will generate different code. The open-
source community supporting Gce keeps changing the code generator, attempting to generate more
efficient code according to changing code guidelines provided by the microprocessor manufacturers.

Our goal in studying the examples shown in our presentation is to demonstrate how to examine
assembly code and map it back to the constructs found in high-level programming languages. You will
need to adapt these techniques to the style of code generated by your particular compiler.

3.2.2 Code Examples

Suppose we write a C code file code. c containing the following procedure defini-

tion:

1 int accum = 0;

2

3 int sum(int x, int y)
4 A

5 int t = x + y;

6 accum += t;

7 return t;

g}

To see the assembly code generated by the C compiler, we can use the “~S” option
on the command line:

unix> gcc -01 -S code.c

This will cause Gcc to run the compiler, generating an assembly file code. s, and go
no further. (Normally it would then invoke the assembler to generate an object-
code file.)

The assembly-code file contains various declarations including the set of lines:

sum:
pushl  %ebp
movl %esp, %ebp
movl 12(%ebp), %eax
addl 8(%ebp), %eax

addl Y%eax, accum
popl %ebp
ret

Each indented line in the above code corresponds to a single machine instruction.
For example, the pushl instruction indicates that the contents of register %ebp
should be pushed onto the program stack. All information about local variable
names or data types has been stripped away. We still see a reference to the global
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variable accum, since the compiler has not yet determined where in memory this
variable will be stored.

If we use the ‘-c’ command-line option, Gcc will both compile and assemble
the code:

unix> gcc -01 -c code.c

This will generate an object-code file code. o that is in binary format and hence
cannot be viewed directly. Embedded within the 800 bytes of the file code.o is a
17-byte sequence having hexadecimal representation

55 89 e5 8b 45 Oc 03 45 08 01 05 00 00 00 00 5d c3

This is the object-code corresponding to the assembly instructions listed above. A
key lesson to learn from this is that the program actually executed by the machine
is simply a sequence of bytes encoding a series of instructions. The machine has
very little information about the source code from which these instructions were
generated.

Aside How do I find the byte representation of a program?
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To generate these bytes, we used a disassembler (to be described shortly) to determine that the code for
sumis 17 bytes long. Then we ran the GNU debugging tool GDB on file code . 0 and gave it the command

(gdb) x/17xb sum

telling it to examine (abbreviated ‘x’) 17 hex-formatted (also abbreviated ‘x’) bytes (abbreviated ‘b’).
You will find that GpB has many useful features for analyzing machine-level programs, as will be

discussed in Section 3.11.

To inspect the contents of machine-code files, a class of programs known as
disassemblers can be invaluable. These programs generate a format similar to
assembly code from the machine code. With Linux systems, the program oBIDUMP
(for “object dump”) can serve this role given the ‘-d’ command-line flag:

unix> objdump -d code.o

The result is (where we have added line numbers on the left and annotations in
italicized text) as follows:

Disassembly of function sum in binary file code.o

1 00000000 <sum>:

Offset  Bytes Equivalent assembly language
2 0: 55 push  Y%ebp
3 1: 89 eb mov %esp, hebp
4 3: 8b 45 Oc mov Oxc (%ebp) , heax
5 6: 03 45 08 add 0x8 (%ebp) , %eax
6 9: 01 05 00 00 00 00 add %heax,0x0
7 f: b&d pop %ebp
8 10: c3 ret
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On the left, we see the 17 hexadecimal byte values listed in the byte sequence
earlier, partitioned into groups of 1 to 6 bytes each. Each of these groups is a
single instruction, with the assembly-language equivalent shown on the right.

Several features about machine code and its disassembled representation are

worth noting:

e TA32 instructions can range in length from 1 to 15 bytes. The instruction

encoding is designed so that commonly used instructions and those with fewer
operands require a smaller number of bytes than do less common ones or ones
with more operands.

The instruction format is designed in such a way that from a given starting
position, there is a unique decoding of the bytes into machine instructions.
For example, only the instruction pushl %ebp can start with byte value 55.

The disassembler determines the assembly code based purely on the byte
sequences in the machine-code file. It does not require access to the source or
assembly-code versions of the program.

The disassembler uses a slightly different naming convention for the instruc-
tions than does the assembly code generated by Gcc. In our example, it has
omitted the suffix ‘1’ from many of the instructions. These suffixes are size
designators and can be omitted in most cases.

Generating the actual executable code requires running a linker on the set

of object-code files, one of which must contain a function main. Suppose in file
main.c we had the following function:

1
2
3
4

int main()
{
return sum(i, 3);

}

Then, we could generate an executable program prog as follows:

unix> gcc -01 -o prog code.o main.c

The file prog has grown to 9,123 bytes, since it contains not just the code for our
two procedures but also information used to start and terminate the program as
well as to interact with the operating system. We can also disassemble the file prog;:

unix> objdump -d prog

The disassembler will extract various code sequences, including the following:

Disassembly of function sum in executable file prog

08048394 <sum>:

Offset Bytes Equivalent assembly language
8048394: 55 push  %ebp
8048395: 89 eb mov %esp, hebp

8048397: 8b 45 Oc mov Oxc (%ebp) , %eax
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804839a: 03 45 08 add 0x8 (%ebp) , heax
804839d: 01 05 18 a0 04 08 add %eax,0x804a018
80483a3: 5d pop %ebp

80483a4: c3 ret

This code is almost identical to that generated by the disassembly of code.c. One
important difference is that the addresses listed along the left are different—the
linker has shifted the location of this code to a different range of addresses. A
second difference is that the linker has determined the location for storing global
variable accum. On line 6 of the disassembly for code. o, the address of accum was
listed as 0. In the disassembly of prog, the address has been set to 0x804a018. This
isshown in the assembly-code rendition of the instruction. It can also be seen in the
last 4 bytes of the instruction, listed from least-significant to most as 18 a0 04 08.

3.2.3 Notes on Formatting

The assembly code generated by Gec is difficult for a human to read. On one hand,
it contains information with which we need not be concerned, while on the other
hand, it does not provide any description of the program or how it works. For
example, suppose the file simple.c contains the following code:

1
2
3
4
5
6

simple.s:

int simple(int *xp, int y)
{

int t = *xp + y;

*Xp = t;

return t;
¥

When ccc is run with flags ‘~S’ and ‘-01’, it generates the following file for

.file
.text

"simple.c"

.globl simple

.type

simple:

pushl
movl
movl
movl
addl
movl
popl
ret
.size
.ident

.section

simple, @function

%ebp

%esp, %ebp
8(%ebp), %edx
12 (%ebp), %heax
(%hedx), %heax
%eax, (%hedx)
%ebp

simple, .-simple
"GCC: (Ubuntu 4.3.2-1ubuntuill) 4.3.2"
.note.GNU-stack,"",@progbits
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All of the lines beginning with ‘.’ are directives to guide the assembler and
linker. We can generally ignore these. On the other hand, there are no explanatory
remarks about what the instructions do or how they relate to the source code.

To provide a clearer presentation of assembly code, we will show it in a form
that omits most of the directives, while including line numbers and explanatory
annotations. For our example, an annotated version would appear as follows:

1 simple:

2 pushl %ebp Save frame pointer

3 movl %esp, %ebp Create new frame pointer
4 movl 8(%ebp), %edx Retrieve xp

5 movl 12(%ebp), %heax  Retrieve y

6 addl (%edx), heax Add *xp to get t

7 movl Y%eax, (hedx) Store t at xp

8 popl %ebp Restore frame pointer

9 ret Return

We typically show only the lines of code relevant to the point being discussed.
Each line is numbered on the left for reference and annotated on the right by a
brief description of the effect of the instruction and how it relates to the computa-
tions of the original C code. This is a stylized version of the way assembly-language
programmers format their code.

Aside ATT versus Intel assembly-code formats

In our presentation, we show assembly code in ATT (named after “AT&T,” the company that operated
Bell Laboratories for many years) format, the default format for ccc, oBipumP, and the other tools we
will consider. Other programming tools, including those from Microsoft as well as the documentation
from Intel, show assembly code in Infel format. The two formats differ in a number of ways. As an
example, Gcc can generate code in Intel format for the sum function using the following command line:

unix> gcc -01 -S -masm=intel code.c
This gives the following assembly code:

Assembly code for simple in Intel format

1 simple:

2 push ebp

3 mov ebp, esp

4 mov edx, DWORD PTR [ebp+8]
5 mov eax, DWORD PTR [ebp+12]
6 add eax, DWORD PTR [edx]

7 mov DWORD PTR [edx], eax

8 pop ebp

9 ret
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We see that the Intel and ATT formats differ in the following ways:

¢ The Intel code omits the size designation suffixes. We see instruction mov instead of mov1.

e The Intel code omits the ‘%’ character in front of register names, using esp instead of %esp.
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* The Intel code has a different way of describing locations in memory, for example ‘DWORD PTR

[ebp+8]’ rather than ‘8(%ebp)’.

¢ Instructions with multiple operands list them in the reverse order. This can be very confusing when

switching between the two formats.

Although we will not be using Intel format in our presentation, you will encounter it in IA32 documen-

tation from Intel and Windows documentation from Microsoft.

3.3 Data Formats

Due to its origins as a 16-bit architecture that expanded into a 32-bit one, Intel
uses the term “word” to refer to a 16-bit data type. Based on this, they refer to 32-
bit quantities as “double words.” They refer to 64-bit quantities as “quad words.”
Most instructions we will encounter operate on bytes or double words.

Figure 3.1 shows the IA32 representations used for the primitive data types of
C. Most of the common data types are stored as double words. This includes both
regular and long int’s, whether or not they are signed. In addition, all pointers
(shown here as char *) are stored as 4-byte double words. Bytes are commonly
used when manipulating string data. As we saw in Section 2.1, more recent ex-
tensions of the C language include the data type long long, which is represented
using 8 bytes. IA32 does not support this data type in hardware. Instead, the com-
piler must generate sequences of instructions that operate on these data 32 bits

C declaration Intel data type Assembly code suffix Size (bytes)
char Byte b 1
short Word W 2

int Double word 1 4
long int Double word 1 4
long long int — — 4
char * Double word 1 4
float Single precision S 4
double Double precision 1 8
long double Extended precision t 10/12

Figure 3.1 Sizes of C data types in 1A32. IA32 does not provide hardware support
for 64-bit integer arithmetic. Compiling code with 1long long data requires generating
sequences of operations to perform the arithmetic in 32-bit chunks.
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at a time. Floating-point numbers come in three different forms: single-precision
(4-byte) values, corresponding to C data type float; double-precision (8-byte)
values, corresponding to C data type double; and extended-precision (10-byte)
values. Gcc uses the data type long double to refer to extended-precision floating-
point values. It also stores them as 12-byte quantities to improve memory system
performance, as will be discussed later. Using the long double data type (intro-
duced in ISO C99) gives us access to the extended-precision capability of x86.
For most other machines, this data type will be represented using the same 8-byte
format of the ordinary double data type.

As the table indicates, most assembly-code instructions generated by Gcc have
a single-character suffix denoting the size of the operand. For example, the data
movement instruction has three variants: movb (move byte), movw (move word),
and movl (move double word). The suffix ‘1’ is used for double words, since 32-bit
quantities are considered to be “long words,” a holdover from an era when 16-bit
word sizes were standard. Note that the assembly code uses the suffix ‘1’ to denote
both a 4-byte integer as well as an 8-byte double-precision floating-point number.
This causes no ambiguity, since floating point involves an entirely different set of
instructions and registers.

3.4 Accessing Information

An IA32 central processing unit (CPU) contains a set of eight registers storing
32-bit values. These registers are used to store integer data as well as pointers.
Figure 3.2 diagrams the eight registers. Their names all begin with %e, but other-
wise, they have peculiar names. With the original 8086, the registers were 16 bits
and each had a specific purpose. The names were chosen to reflect these different
purposes. With flat addressing, the need for specialized registers is greatly reduced.
For the most part, the first six registers can be considered general-purpose regis-

Figure 3.2

IA32 integer registers.
All eight registers can

be accessed as either 16
bits (word) or 32 bits
(double word). The 2 low-
order bytes of the first four
registers can be accessed
independently.

31 15 87 0
%heax %hax || %ah | %hal ||
hecx hex || %ch | %hel ||
%edx %dx || udh | %1 ||
%ebx %bx || woh | bl ||
%hesi %hsi | |
hedi hdi | |
%hesp %Sp | | Stack pointer
%ebp %bp | | Frame pointer
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ters with no restrictions placed on their use. We said “for the most part,” because
some instructions use fixed registers as sources and/or destinations. In addition,
within procedures there are different conventions for saving and restoring the
first three registers (%eax, %ecx, and %edx) than for the next three (%ebx, %edi,
and %esi). This will be discussed in Section 3.7. The final two registers (%ebp and
%esp) contain pointers to important places in the program stack. They should only
be altered according to the set of standard conventions for stack management.

As indicated in Figure 3.2, the low-order 2 bytes of the first four registers
can be independently read or written by the byte operation instructions. This
feature was provided in the 8086 to allow backward compatibility to the 8008 and
8080—two 8-bit microprocessors that date back to 1974. When a byte instruction
updates one of these single-byte “register elements,” the remaining 3 bytes of the
register do not change. Similarly, the low-order 16 bits of each register can be
read or written by word operation instructions. This feature stems from 1A32’s
evolutionary heritage as a 16-bit microprocessor and is also used when operating
on integers with size designator short.

3.4.1 Operand Specifiers

Most instructions have one or more operands, specifying the source values to
reference in performing an operation and the destination location into which to
place the result. IA32 supports a number of operand forms (see Figure 3.3). Source
values can be given as constants or read from registers or memory. Results can be
stored in either registers or memory. Thus, the different operand possibilities can
be classified into three types. The first type, immediate, is for constant values. In
ATT-format assembly code, these are written with a ‘$’ followed by an integer
using standard C notation, for example, $-577 or $0x1F. Any value that fits into
a 32-bit word can be used, although the assembler will use 1- or 2-byte encodings

Type Form Operand value Name
Immediate $Imm Imm Immediate
Register E, R[E,] Register
Memory Imm M[Imm] Absolute
Memory (E.) MIR[E,]] Indirect
Memory Imm (E,) M[Imm + R[E,]] Base + displacement
Memory (Ep,E;) M[R[E,] + R[E]] Indexed
Memory Imm (E, ,E;) M[Imm + R[E;] + R[E;]] Indexed
Memory G,E;,s) MIR[E;] - 5] Scaled indexed
Memory Imm(,E;,s) M[Imm + R[E;] - 5] Scaled indexed
Memory (Ep,E;,s) M[R[E,] + R[E;] - 5] Scaled indexed
Memory Imm (E, ,E;,s) M[Imm + R[E;] + R[E;] - 5] Scaled indexed

Figure 3.3 Operand forms. Operands can denote immediate (constant) values, register
values, or values from memory. The scaling factor s must be either 1, 2, 4, or 8.
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when possible. The second type, register, denotes the contents of one of the
registers, either one of the eight 32-bit registers (e.g., %eax) for a double-word
operation, one of the eight 16-bit registers (e.g., %ax) for a word operation, or
one of the eight single-byte register elements (e.g., %al) for a byte operation. In
Figure 3.3, we use the notation E, to denote an arbitrary register a, and indicate
its value with the reference R[E, ], viewing the set of registers as an array R indexed
by register identifiers.

The third type of operand is a memory reference, in which we access some
memory location according to a computed address, often called the effective ad-
dress. Since we view the memory as a large array of bytes, we use the notation
M,[Addr] to denote a reference to the b-byte value stored in memory starting at
address Addr. To simplify things, we will generally drop the subscript b.

As Figure 3.3 shows, there are many different addressing modes allowing dif-
ferent forms of memory references. The most general form is shown at the bottom
of the table with syntax Imm(E,,E;,s). Such a reference has four components:
an immediate offset Imm, a base register E,, an index register E;, and a scale
factor s, where s must be 1, 2, 4, or 8. The effective address is then computed
as Imm + R[E;] + R[E;] - s. This general form is often seen when referencing el-
ements of arrays. The other forms are simply special cases of this general form
where some of the components are omitted. As we will see, the more complex
addressing modes are useful when referencing array and structure elements.

Practice Problem 3.1

Assume the following values are stored at the indicated memory addresses and

registers:

Address Value Register Value
0x100 0xFF %heax 0x100
0x104 0xAB %hecx 0x1
0x108 0x13 %edx 0x3
0x10C 0x11

Fill in the following table showing the values for the indicated operands:

Operand Value

heax

0x104

$0x108

(%heax)

4 (%eax)

9 (%eax, fhedx)
260 (%hecx, hedx)
0xFC(,%ecx,4)
(%heax,%hedx,4)
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Instruction Effect Description
MOV S, D D« S Move
movb Move byte
movw Move word
movl Move double word
MOVS S, D D <« SignExtend(S) Move with sign extension
movsbw Move sign-extended byte to word
movsbl Move sign-extended byte to double word
movswl Move sign-extended word to double word
MOVZ S, D D < ZeroExtend(S) Move with zero extension
movzbw Move zero-extended byte to word
movzbl Move zero-extended byte to double word
movzwl Move zero-extended word to double word
pushl S R[%esp] < R[%esp] — 4; Push double word
M[R[%esp]] < S
popl D D < M[R[%esp]J; Pop double word

R[%esp] < R[%esp] + 4

Figure 3.4 Data movement instructions.

3.4.2 Data Movement Instructions

Among the most heavily used instructions are those that copy data from one
location to another. The generality of the operand notation allows a simple data
movement instruction to perform what in many machines would require a number
of instructions. Figure 3.4 lists the important data movement instructions. As can
be seen, we group the many different instructions into instruction classes, where
the instructions in a class perform the same operation, but with different operand
sizes. For example, the mMov class consists of three instructions: movb, movw, and
movl. All three of these instructions perform the same operation; they differ only
in that they operate on data of size 1, 2, and 4 bytes, respectively.

The instructions in the Mov class copy their source values to their destinations.
The source operand designates a value that is immediate, stored in a register, or
stored in memory. The destination operand designates a location that is either a
register or a memory address. IA32 imposes the restriction that a move instruction
cannot have both operands refer to memory locations. Copying a value from one
memory location to another requires two instructions—the first to load the source
value into a register, and the second to write this register value to the destination.
Referring to Figure 3.2, the register operands for these instructions can be any
of the eight 32-bit registers (%eax—’%ebp) for movl, any of the eight 16-bit regis-
ters (%ax—%bp) for movw, and any of the single-byte register elements (%ah—%bh,
%al-%bl) for movb. The following Mov instruction examples show the five
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possible combinations of source and destination types. Recall that the source
operand comes first and the destination second:

1 movl $0x4050,%eax Immediate--Register, 4 bytes
2 movw %bp,%sp Register—-—Register, 2 bytes
3 movb (%edi,%ecx),%ah Memory--Register, 1 byte
4 movb $-17, (%esp) Immediate--Memory, 1 byte
5 movl %eax,-12(%ebp) Register--Memory, 4 bytes

Both the movs and the Mmovz instruction classes serve to copy a smaller amount
of source data to a larger data location, filling in the upper bits by either sign
expansion (Movs) or by zero expansion (Movz). With sign expansion, the upper
bits of the destination are filled in with copies of the most significant bit of the
source value. With zero expansion, the upper bits are filled with zeros. As can be
seen, there are three instructions in each of these classes, covering all cases of 1-
and 2-byte source sizes and 2- and 4-byte destination sizes (omitting the redundant
combinations movsww and movzww, of course).

Aside Comparing byte movement instructions

Observe that the three byte-movement instructions movb, movsbl, and movzbl differ from each other
in subtle ways. Here is an example:

1
2
3

Assume initially that jjdh = CD, Jeax = 98765432

movb %dh,%al Jeax = 987654CD
movsbl %dh,%eax Jeax = FFFFFFCD
movzbl %dh,%eax Jeax = 000000CD

In these examples, all set the low-order byte of register %eax to the second byte of %edx. The movb
instruction does not change the other 3 bytes. The movsbl instruction sets the other 3 bytes to either all
ones or all zeros, depending on the high-order bit of the source byte. The movzbl instruction sets the
other 3 bytes to all zeros in any case.

The final two data movement operations are used to push data onto and pop
data from the program stack. As we will see, the stack plays a vital role in the
handling of procedure calls. By way of background, a stack is a data structure
where values can be added or deleted, but only according to a “last-in, first-out”
discipline. We add data to a stack via a push operation and remove it via a pop op-
eration, with the property that the value popped will always be the value that was
most recently pushed and is still on the stack. A stack can be implemented as an
array, where we always insert and remove elements from one end of the array. This
end is called the top of the stack. With IA32, the program stack is stored in some
region of memory. Asillustrated in Figure 3.5, the stack grows downward such that
the top element of the stack has the lowest address of all stack elements. (By con-
vention, we draw stacks upside down, with the stack “top” shown at the bottom
of the figure). The stack pointer %esp holds the address of the top stack element.
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Initially pushl Jeax popl %edx
%heax 0x123 heax 0x123 %heax 0x123
hedx 0 hedx 0 hedx 0x123
%hesp 0x108 hesp 0x104 %hesp 0x108

Stack “bottom”

Stack “bottom”

Stack “bottom”

0x108

0x108

Stack “top”

0x104

0x123

0x123

Stack “top Stack “top”
Figure 3.5 Illlustration of stack operation. By convention, we draw stacks upside
down, so that the “top” of the stack is shown at the bottom. IA32 stacks grow toward
lower addresses, so pushing involves decrementing the stack pointer (register %esp) and
storing to memory, while popping involves reading from memory and incrementing the
stack pointer.

The pushl instruction provides the ability to push data onto the stack, while
the popl instruction popsit. Each of these instructions takes a single operand—the
data source for pushing and the data destination for popping.

Pushing a double-word value onto the stack involves first decrementing the
stack pointer by 4 and then writing the value at the new top of stack address.
Therefore, the behavior of the instruction pushl %ebp is equivalent to that of the
pair of instructions

subl $4,%esp
movl %ebp, (%esp)

Decrement stack pointer

Store Jjebp on stack

except that the pushl instruction is encoded in the machine code as a single byte,
whereas the pair of instructions shown above requires a total of 6 bytes. The first
two columns in Figure 3.5 illustrate the effect of executing the instruction pushl
%eax when %esp is 0x108 and %eax is 0x123. First %esp is decremented by 4, giving
0x104, and then 0x123 is stored at memory address 0x104.

Popping a double word involves reading from the top of stack location and
then incrementing the stack pointer by 4. Therefore, the instruction popl %eax is
equivalent to the following pair of instructions:

movl (%esp),%eax Read Jeax from stack

addl $4,%esp

Increment stack pointer

The third column of Figure 3.5 illustrates the effect of executing the instruction
popl %edx immediately after executing the pushl. Value 0x123 is read from
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memory and written to register %edx. Register %esp is incremented back to 0x108.
As shown in the figure, the value 0x123 remains at memory location 0x104 until it
is overwritten (e.g., by another push operation). However, the stack top is always
considered to be the address indicated by %esp. Any value stored beyond the stack
top is considered invalid.

Since the stack is contained in the same memory as the program code and
other forms of program data, programs can access arbitrary positions within the
stack using the standard memory addressing methods. For example, assuming the
topmost element of the stack is a double word, the instruction movl 4 (%esp) , %edx
will copy the second double word from the stack to register %edx.

Practice Problem 3.2

For each of the following lines of assembly language, determine the appropriate
instruction suffix based on the operands. (For example, mov can be rewritten as
movb, movw, Or movl.)

mov  %eax, (%esp)

:
2 mov  (%eax), %dx

3 mov  $O0xFF, %bl

4 mov  (%esp,%edx,4), %dh
5 push $OxFF

6 mov  %dx, (%eax)

7 pop  %edi

Practice Problem 3.3

Each of the following lines of code generates an error message when we invoke
the assembler. Explain what is wrong with each line.

movb $0xF, (%bl)
movl %ax, (%esp)
movw (%eax),4(%esp)
movb %ah,%sh

movl %eax,$0x123
movl %eax,%dx

movb %si, 8(%ebp)

N O L AW =

3.4.3 Data Movement Example

As an example of code that uses data movement instructions, consider the
data exchange routine shown in Figure 3.6, both as C code and as assembly code
generated by gcc. We omit the portion of the assembly code that allocates space on
the run-time stack on procedure entry and deallocates it prior to return. The details
of this set-up and completion code will be covered when we discuss procedure
linkage. The code we are left with is called the “body.”
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New to C? Some examples of pointers

Function exchange (Figure 3.6) provides a good illustration of the use of pointers in C. Argument xp
is a pointer to an integer, while y is an integer itself. The statement

int x = *xp;

indicates that we should read the value stored in the location designated by xp and store it as a local
variable named x. This read operation is known as pointer dereferencing. The C operator * performs
pointer dereferencing.

The statement

*Xp = V5

does the reverse—it writes the value of parameter y at the location designated by xp. This is also a form
of pointer dereferencing (and hence the operator *), but it indicates a write operation since it is on the
left-hand side of the assignment.

The following is an example of exchange in action:

int a = 4;
int b = exchange(&a, 3);
printf("a = %d, b = %d\n", a, b);

This code will print
a=3,b=4

The C operator & (called the “address of” operator) creates a pointer, in this case to the location holding
local variable a. Function exchange then overwrote the value stored in a with 3 but returned 4 as the
function value. Observe how by passing a pointer to exchange, it could modify data held at some remote
location.

When the body of the procedure starts execution, procedure parameters xp
and y are stored at offsets 8 and 12 relative to the address in register %ebp.
Instructions 1 and 2 read parameter xp from memory and store it in register

(a) C code (b) Assembly code

1 int exchange(int *xp, int y) xp at %ebp+8, y at %ebp+12

2 { 1 movl 8(%ebp) , %edx Get xp

3 int x = *xp; By copying to %eax below, x becomes the return value
4 2 movl (hedx) , %eax Get x at xp

5 *Xp = ¥; 3 movl 12(%ebp), %ecx Get y

6 return x; 4 movl %ecx, (%hedx) Store y at xp

7 }

Figure 3.6 C and assembly code for exchange routine body. The stack set-up and completion portions
have been omitted.
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%edx. Instruction 2 uses register %edx and reads x into register %eax, a direct
implementation of the operation x = *xp in the C program. Later, register %eax
will be used to return a value from this function, and so the return value will be
x. Instruction 3 loads parameter y into register %ecx. Instruction 4 then writes
this value to the memory location designated by xp in register %edx, a direct
implementation of the operation *xp = y. This example illustrates how the mov
instructions can be used to read from memory to a register (instructions 1 to 3),
and to write from a register to memory (instruction 4.)

Two features about this assembly code are worth noting. First, we see that what
we call “pointers” in C are simply addresses. Dereferencing a pointer involves
copying that pointer into a register, and then using this register in a memory
reference. Second, local variables such as x are often kept in registers rather than
stored in memory locations. Register access is much faster than memory access.

Practice Problem 3.4
Assume variables v and p declared with types

src_t v;
dest_t *p;

where src_t and dest_t are data types declared with typedef. We wish to use
the appropriate data movement instruction to implement the operation

*p = (dest_t) v;

where v is stored in the appropriately named portion of register %eax (i.e., %eax,
%ax, or %al), while pointer p is stored in register %edx.

For the following combinations of src_t and dest_t, write a line of assembly
code that does the appropriate transfer. Recall that when performing a cast that
involves both a size change and a change of “signedness” in C, the operation
should change the signedness first (Section 2.2.6).

src_t dest_t Instruction

int int movl %eax, (%edx)
char int

char unsigned

unsigned char int

int char

unsigned unsigned char

unsigned int

Practice Problem 3.5
You are given the following information. A function with prototype

void decodel(int *xp, int *yp, int *zp);
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is compiled into assembly code. The body of the code is as follows:

xp at %ebp+8, yp at l%ebp+12, zp at %ebp+16

1 movl 8(%ebp), %edi
2 movl 12(%ebp) , %edx
3 movl 16 (%ebp) , %ecx
4 movl (%edx), %ebx

5 movl (%ecx), hesi

6 movl (%edi), %heax

7 movl %heax, (%edx)

8 movl %hebx, (Yecx)

9 movl %hesi, (%edi)

Parameters xp, yp, and zp are stored at memory locations with offsets 8, 12, and
16, respectively, relative to the address in register %ebp.

Write C code for decodel that will have an effect equivalent to the assembly
code above.

3.5 Arithmetic and Logical Operations

Figure 3.7 lists some of the integer and logic operations. Most of the operations
are given as instruction classes, as they can have different variants with different
operand sizes. (Only leal has no other size variants.) For example, the instruction
class ADD consists of three addition instructions: addb, addw, and addl, adding
bytes, words, and double words, respectively. Indeed, each of the instruction
classes shown has instructions for operating on byte, word, and double-word data.
The operations are divided into four groups: load effective address, unary, binary,
and shifts. Binary operations have two operands, while unary operations have one
operand. These operands are specified using the same notation as described in
Section 3.4.

3.5.1 Load Effective Address

The load effective address instruction leal is actually a variant of the mov1 instruc-
tion. It has the form of an instruction that reads from memory to a register, but it
does not reference memory at all. Its first operand appears to be a memory refer-
ence, but instead of reading from the designated location, the instruction copies
the effective address to the destination. We indicate this computation in Figure 3.7
using the C address operator &S. This instruction can be used to generate point-
ers for later memory references. In addition, it can be used to compactly describe
common arithmetic operations. For example, if register %edx contains value x,
then the instruction leal 7 (%edx, %edx,4) , %eax will set register %eax to 5Sx + 7.
Compilers often find clever uses of 1leal that have nothing to do with effective
address computations. The destination operand must be a register.
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Instruction Effect Description
leal S,D D <~ &S Load effective address
INC D D« D+1 Increment
DEC D D« D-1 Decrement
NEG D D <« -D Negate
NOT D D <« ~D Complement
ADD S, D D<«<D+S§ Add
SUB S, D D« D-S§ Subtract
mMuL S, D D« DxS§S Multiply
XOR S, D D<«<D-"S Exclusive-or
OR S, D D<«<D]|S Or
AND S, D D<«<D&%S And

SAL k, D D <« D<<k Left shift

SHL  k,D D« D<<k Left shift (same as sAL)
SAR k, D D <« D>,k Arithmetic right shift
SHR k,D D <« D>k Logical right shift

Figure 3.7 Integer arithmetic operations. The load effective address (1eal) instruction
is commonly used to perform simple arithmetic. The remaining ones are more standard
unary or binary operations. We use the notation >>, and >>; to denote arithmetic
and logical right shift, respectively. Note the nonintuitive ordering of the operands with
ATT-format assembly code.

Practice Problem 3.6

Suppose register %eax holds value x and %ecx holds value y. Fill in the table below
with formulas indicating the value that will be stored in register %edx for each of
the given assembly code instructions:

Instruction Result

leal 6(%eax), %edx

leal (%eax,%ecx), hedx
leal (%eax,%ecx,4), %hedx
leal 7 (%eax,%eax,8), %hedx
leal 0xA(,%ecx,4), %edx
leal 9(%eax,%ecx,2), hedx

3.5.2 Unary and Binary Operations

Operations in the second group are unary operations, with the single operand
serving as both source and destination. This operand can be either a register or
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a memory location. For example, the instruction incl (%esp) causes the 4-byte
element on the top of the stack to be incremented. This syntax is reminiscent of
the C increment (++) and decrement (--) operators.

The third group consists of binary operations, where the second operand
is used as both a source and a destination. This syntax is reminiscent of the C
assignment operators, such as x += y. Observe, however, that the source operand
is given first and the destination second. This looks peculiar for noncommutative
operations. For example, the instruction subl %eax,%edx decrements register
%edx by the value in %eax. (It helps to read the instruction as “Subtract %eax from
%edx.”) The first operand can be either an immediate value, a register, or amemory
location. The second can be either a register or a memory location. As with the
movl instruction, however, the two operands cannot both be memory locations.

Practice Problem 3.7

Assume the following values are stored at the indicated memory addresses and
registers:

Address Value Register Value
0x100 OxFF %heax 0x100
0x104 0xAB %hecx 0x1
0x108 0x13 %hedx 0x3
0x10C 0x11

Fill in the following table showing the effects of the following instructions,
both in terms of the register or memory location that will be updated and the
resulting value:

Instruction Destination Value

addl %ecx, (%eax)

subl %edx, 4 (%eax)

imull $16, (%eax,%edx,4)
incl 8(%eax)

decl %ecx

subl %edx, jeax

3.5.3 Shift Operations

The final group consists of shift operations, where the shift amount is given first,
and the value to shift is given second. Both arithmetic and logical right shifts are
possible. The shift amount is encoded as a single byte, since only shift amounts
between 0 and 31 are possible (only the low-order 5 bits of the shift amount are
considered). The shift amount is given either as an immediate or in the single-
byte register element %cl. (These instructions are unusual in only allowing this
specific register as operand.) As Figure 3.7 indicates, there are two names for the

179



180 Chapter 3 Machine-Level Representation of Programs

left shift instruction: saL and sHL. Both have the same effect, filling from the right
with zeros. The right shift instructions differ in that sAr performs an arithmetic
shift (fill with copies of the sign bit), whereas sHR performs a logical shift (fill with
zeros). The destination operand of a shift operation can be either a register or a
memory location. We denote the two different right shift operations in Figure 3.7
as >>, (arithmetic) and >>; (logical).

Practice Problem 3.8
Suppose we want to generate assembly code for the following C function:

int shift_left2_rightn(int x, int n)

{
x <<= 2;
X >>= n;
return x;
}

The code that follows is a portion of the assembly code that performs the
actual shifts and leaves the final value in register %eax. Two key instructions have
been omitted. Parameters x and n are stored at memory locations with offsets 8
and 12, respectively, relative to the address in register %ebp.

1 movl 8(%ebp), %heax Get x
2 x <<= 2
3 movl 12(%ebp), %ecx Get n
4 X >>=n

Fill in the missing instructions, following the annotations on the right. The
right shift should be performed arithmetically.

3.5.4 Discussion

We see that most of the instructions shown in Figure 3.7 can be used for either
unsigned or two’s-complement arithmetic. Only right shifting requires instructions
that differentiate between signed versus unsigned data. This is one of the features
that makes two’s-complement arithmetic the preferred way to implement signed
integer arithmetic.

Figure 3.8 shows an example of a function that performs arithmetic operations
and its translation into assembly code. As before, we have omitted the stack set-
up and completion portions. Function arguments x, y, and z are stored in memory
at offsets 8, 12, and 16 relative to the address in register %ebp, respectively.

The assembly code instructions occur in a different order than in the C source
code. Instructions 2 and 3 compute the expression z*x48 by a combination of 1eal
and shift instructions. Line 5 computes the value of x+y. Line 6 computes the AND
of t1 and OxFFFF. The final multiply is computed by line 7. Since the destination
of the multiply is register %eax, this will be the value returned by the function.
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(a) C code (b) Assembly code

1 int arith(int x, x at %ebp+8, y at %ebp+12, z at %ebp+16

2 int vy, 1 movl 16 (%ebp) , %eax z

3 int z) 2 leal (%eax,%eax,2), %heax  z+3

4 A 3 sall $4, Y%eax t2 = z#48

5 int tl1 = x+y; 4 movl 12(%ebp) , %edx y

6 int t2 = z*48; 5 addl 8(%ebp), %hedx t1 = x+y

7 int t3 = t1 & OxFFFF; 6 andl $65535, %edx t3 = t1&0xFFFF
8 int t4 = t2 * t3; 7 imull  Y%edx, Y%eax Return t4 = t2+t3
9 return t4;

10 }

Figure 3.8 C and assembly code for arithmetic routine body. The stack set-up and completion portions
have been omitted.

In the assembly code of Figure 3.8, the sequence of values in register %eax
corresponds to program values z, 3xz, z*x48, and t4 (as the return value). In gen-
eral, compilers generate code that uses individual registers for multiple program
values and moves program values among the registers.

Practice Problem 3.9

In the following variant of the function of Figure 3.8(a), the expressions have been
replaced by blanks:

1 int arith(int x,

2 int y,

3 int z)

4 A

5 int t1 = ;
6 int t2 = ;
7 int t3 = ;
8 int t4 = ;
9 return té4;

0}

The portion of the generated assembly code implementing these expressions is as
follows:

x at %ebp+8, y at %ebp+12, z at J%ebp+16

1 movl 12(%ebp), %heax
2 xorl 8(%ebp) , %heax
3 sarl $3, %eax

4 notl %eax

5

subl 16 (%ebp) , %eax

Based on this assembly code, fill in the missing portions of the C code.
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Practice Problem 3.10
It is common to find assembly code lines of the form

xorl %edx,%edx

in code that was generated from C where no ExcLusiveE-Or operations were
present.

A. Explain the effect of this particular ExcLUSIVE-OR instruction and what
useful operation it implements.

B. What would be the more straightforward way to express this operation in
assembly code?

C. Compare the number of bytes to encode these two different implementa-
tions of the same operation.

3.5.5 Special Arithmetic Operations

Figure 3.9 describes instructions that support generating the full 64-bit product of
two 32-bit numbers, as well as integer division.

The imull instruction, a member of the IMUL instruction class listed in Fig-
ure 3.7, is known as a “two-operand” multiply instruction. It generates a 32-bit
product from two 32-bit operands, implementing the operations *}, and *%, de-
scribed in Sections 2.3.4 and 2.3.5. Recall that when truncating the product to 32
bits, both unsigned multiply and two’s-complement multiply have the same bit-
level behavior. IA32 also provides two different “one-operand” multiply instruc-
tions to compute the full 64-bit product of two 32-bit values—one for unsigned
(mull), and one for two’s-complement (imull) multiplication. For both of these,
one argument must be in register %eax, and the other is given as the instruction

Instruction Effect Description

imull S R[%edx]R[%eax] < S x R[%eax] Signed full multiply

mull S R[%edx]R[%eax] < S x R[%eax] Unsigned full multiply

cltd R[%edx]R[%eax] < SignExtend(R[%eax]) Convert to quad word

idivli S R[%edx] < R[%edx]R[%eax] mod S; Signed divide
R[%eax] < R[%edx]R[%eax] =+

divl S R[%edx] < R[%edx]R[%eax] mod S; Unsigned divide
R[%eax] < R[%edx]R[%eax] + S

Figure 3.9 Special arithmetic operations. These operations provide full 64-bit multi-
plication and division, for both signed and unsigned numbers. The pair of registers %edx
and %eax are viewed as forming a single 64-bit quad word.
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source operand. The product is then stored in registers %edx (high-order 32 bits)
and %eax (low-order 32 bits). Although the name imull is used for two distinct
multiplication operations, the assembler can tell which one isintended by counting
the number of operands.

As an example, suppose we have signed numbers x and y stored at positions
8 and 12 relative to %ebp, and we want to store their full 64-bit product as 8 bytes
on top of the stack. The code would proceed as follows:

x at %ebp+8, y at %ebp+12

1 movl 12(%ebp), %heax  Put y in Jeax

2 imull  8(%ebp) Multiply by x

3 movl %heax, (%esp) Store low-order 32 bits
4 movl %edx, 4(%esp) Store high-order 32 bits

Observe that the locations in which we store the two registers are correct for
a little-endian machine—the high-order bits in register %edx are stored at offset
4 relative to the low-order bits in %eax. With the stack growing toward lower
addresses, that means that the low-order bits are at the top of the stack.

Our earlier table of arithmetic operations (Figure 3.7) does not list any divi-
sion or modulus operations. These operations are provided by the single-operand
divide instructions similar to the single-operand multiply instructions. The signed
division instruction idivl takes as dividend the 64-bit quantity in registers %edx
(high-order 32 bits) and %eax (low-order 32 bits). The divisor is given as the in-
struction operand. The instruction stores the quotient in register %eax and the
remainder in register %edx.

As an example, suppose we have signed numbers x and y stored at positions 8
and 12 relative to %ebp, and we want to store values x/y and x mod y on the stack.
Gcce generates the following code:

x at %ebp+8, y at %ebp+12

1 movl 8(%ebp) , %hedx Put x in ‘%edx

2 movl %edx, %heax Copy x to ‘%heax

3 sarl $31, %edx Sign extend x in %edx
4 idivl  12(%ebp) Divide by y

5 movl %heax, 4(%esp) Store x / y

6 movl %edx, (%esp) Store x % y

The move instruction on line 1 and the arithmetic shift on line 3 have the
combined effect of setting register %edx to either all zeros or all ones depending
on the sign of x, while the move instruction on line 2 copies x into %eax. Thus, we
have the combined registers %edx and %eax storing a 64-bit, sign-extended version
of x. Following the idivl instruction, the quotient and remainder are copied to
the top two stack locations (instructions 5 and 6).
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A more conventional method of setting up the divisor makes use of the c1td!
instruction. This instruction sign extends %eax into %edx. With this instruction, the
code sequence shown above becomes

x at %ebp+8, y at l%ebp+12

1 movl 8 (%ebp) , heax Load x into %eax

2 cltd Sign extend into jedx
3 idivl  12(%ebp) Divide by y

4 movl %heax, 4(%esp) Store x / y

5 movl %edx, (%esp) Store x % y

We can see that the first two instructions have the same overall effect as the first
three instructions in our earlier code sequence. Different versions of Gcc generate
these two different ways of setting up the dividend for integer division.

Unsigned division makes use of the divl instruction. Typically register %edx
is set to 0 beforehand.

Practice Problem 3.11

Modify the assembly code shown for signed division so that it computes the
unsigned quotient and remainder of numbers x and y and stores the results on
the stack.

Practice Problem 3.12
Consider the following C function prototype, where num_t is a data type declared
using typedef:

void store_prod(num_t *dest, unsigned x, num_t y) {
*dest = x*y;

}

Gcce generates the following assembly code implementing the body of the compu-
tation:

dest at %ebp+8, x at %hebp+12, y at %ebp+16

1 movl 12(%ebp) , %heax

2 movl 20 (%ebp) , %ecx

3 imull  Yeax, %ecx

4 mull 16 (%ebp)

5 leal (%ecx,%edx), %edx
6 movl 8(%ebp), %hecx

7 movl %eax, (fhecx)

8 movl %edx, 4(%ecx)

1. This instruction is called cdq in the Intel documentation, one of the few cases where the ATT-format
name for an instruction bears no relation to the Intel name.
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Observe that this code requires two memory reads to fetch argument y (lines 2
and 4), two multiplies (lines 3 and 4), and two memory writes to store the result
(lines 7 and 8).

A. What data type is num_t?

B. Describe the algorithm used to compute the product and argue that it is
correct.

3.6 Control

So far, we have only considered the behavior of straight-line code, where instruc-
tions follow one another in sequence. Some constructs in C, such as conditionals,
loops, and switches, require conditional execution, where the sequence of opera-
tions that gets performed depends on the outcomes of tests applied to the data.
Machine code provides two basic low-level mechanisms for implementing condi-
tional behavior: it tests data values and then either alters the control flow or the
data flow based on the result of these tests.

Data-dependent control flow is the more general and more common approach
for implementing conditional behavior, and so we will examine this first. Normally,
both statements in C and instructions in machine code are executed sequentially,
in the order they appear in the program. The execution order of a set of machine-
code instructions can be altered with a jump instruction, indicating that control
should pass to some other part of the program, possibly contingent on the result
of some test. The compiler must generate instruction sequences that build upon
this low-level mechanism to implement the control constructs of C.

In our presentation, we first cover the machine-level mechanisms and then
show how the different control constructs of C are implemented with them. We
then return to the use of conditional data transfer to implement data-dependent
behavior.

3.6.1 Condition Codes

In addition to the integer registers, the CPU maintains a set of single-bit condition
code registers describing attributes of the most recent arithmetic or logical opera-
tion. These registers can then be tested to perform conditional branches. The most
useful condition codes are:

CF: Carry Flag. The most recent operation generated a carry out of the most
significant bit. Used to detect overflow for unsigned operations.

ZF: Zero Flag. The most recent operation yielded zero.
SF: Sign Flag. The most recent operation yielded a negative value.

OF: Overflow Flag. The most recent operation caused a two’s-complement
overflow—either negative or positive.
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Instruction Based on Description
CMP Sy, 81 $1-95 Compare
cmpb Compare byte
cmpw Compare word
cmpl Compare double word
TEST Sy, S S1& S, Test
testb Test byte
testw Test word
testl Test double word

Figure 3.10 Comparison and test instructions. These instructions set the condition
codes without updating any other registers.

For example, suppose we used one of the ADD instructions to perform the
equivalent of the C assignment t=a+b, where variables a, b, and t are integers.
Then the condition codes would be set according to the following C expressions:

CF: (unsigned) t < (unsigned) a Unsigned overflow
ZF: (t==0) Zero
SF: (t<0) Negative

OF: (a<0==b<0) && (t<0!=a<0) Signed overflow

The leal instruction does not alter any condition codes, since it is intended
to be used in address computations. Otherwise, all of the instructions listed in
Figure 3.7 cause the condition codes to be set. For the logical operations, such as
XOR, the carry and overflow flags are set to 0. For the shift operations, the carry
flag is set to the last bit shifted out, while the overflow flag is set to 0. For reasons
that we will not delve into, the INc and DEc instructions set the overflow and zero
flags, but they leave the carry flag unchanged.

In addition to the setting of condition codes by the instructions of Figure 3.7,
there are two instruction classes (having 8, 16, and 32-bit forms) that set condition
codes without altering any other registers; these are listed in Figure 3.10. The
cMP instructions set the condition codes according to the differences of their two
operands. They behave in the same way as the suB instructions, except that they
set the condition codes without updating their destinations. With ATT format,
the operands are listed in reverse order, making the code difficult to read. These
instructions set the zero flag if the two operands are equal. The other flags can
be used to determine ordering relations between the two operands. The TEST
instructions behave in the same manner as the AND instructions, except that they
set the condition codes without altering their destinations. Typically, the same
operand is repeated (e.g., testl %eax, %eax to see whether %eax is negative, zero,
or positive), or one of the operands is a mask indicating which bits should be
tested.
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Instruction Synonym Effect Set condition

sete D setz D <« ZF Equal/ zero

setne D setnz D <« ~ZF Not equal / not zero

sets D D <« SF Negative

setns D D <« ~SF Nonnegative

setg D setnle D « ~(SF ~ OF) & ~ZF Greater (signed >)

setge D setnl D « ~(SF ~ OF) Greater or equal (signed >=)
setl D setnge D <« SF "~ OF Less (signed <)

setle D setng D « (SF~0OF) | ZF Less or equal (signed <=)
seta D setnbe D < ~CF & ~ZF Above (unsigned >)

setae D setnb D <« ~CF Above or equal (unsigned >=)
setb D setnae D <« CF Below (unsigned <)

setbe D setna D <« CF | ZF Below or equal (unsigned <=)

Figure 3.11 The seT instructions. Each instruction sets a single byte to 0 or 1 based
on some combination of the condition codes. Some instructions have “synonyms,” i.e.,
alternate names for the same machine instruction.

3.6.2 Accessing the Condition Codes

Rather than reading the condition codes directly, there are three common ways
of using the condition codes: (1) we can set a single byte to 0 or 1 depending
on some combination of the condition codes, (2) we can conditionally jump to
some other part of the program, or (3) we can conditionally transfer data. For the
first case, the instructions described in Figure 3.11 set a single byte to 0 or to 1
depending on some combination of the condition codes. We refer to this entire
class of instructions as the SET instructions; they differ from one another based on
which combinations of condition codes they consider, as indicated by the different
suffixes for the instruction names. It is important to recognize that the suffixes for
these instructions denote different conditions and not different operand sizes. For
example, instructions setl and setb denote “set less” and “set below,” not “set
long word” or “set byte.”

A sET instruction has either one of the eight single-byte register elements
(Figure 3.2) or a single-byte memory location as its destination, setting this byte
to either O or 1. To generate a 32-bit result, we must also clear the high-order 24
bits. A typical instruction sequence to compute the C expression a < b, where a
and b are both of type int, proceeds as follows:

a is in %edx, b is in %eax

1 cmpl %heax, %edx Compare a:b
2 setl %al Set low order byte of Jeax to O or 1
3 movzbl Y%al, %eax Set remaining bytes of Jjeax to 0

The movzbl instruction clears the high-order 3 bytes of %eax.
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For some of the underlying machine instructions, there are multiple possible
names, which we list as “synonyms.” For example, both setg (for “set greater™)
and setnle (for “set not less or equal”) refer to the same machine instruction.
Compilers and disassemblers make arbitrary choices of which names to use.

Although all arithmetic and logical operations set the condition codes, the de-
scriptions of the different SET instructions apply to the case where a comparison
instruction has been executed, setting the condition codes according to the com-
putation t = a-b. More specifically, let a, b, and 7 be the integers represented in
two’s-complement form by variables a, b, and t, respectively, and so t =a -} b,
where w depends on the sizes associated with a and b.

Consider the sete, or “set when equal” instruction. When a = b, we will
have t =0, and hence the zero flag indicates equality. Similarly, consider testing
for signed comparison with the setl, or “set when less,” instruction. When no
overflow occurs (indicated by having OF set to 0), we willhave a < bwhena -} b <
0, indicated by having SF set to 1, and @ > b when a - b > 0, indicated by having
SF set to 0. On the other hand, when overflow occurs, we will have a < b when
a - b> 0 (positive overflow) and a > b when a - b < 0 (negative overflow). We
cannot have overflow when a = b. Thus, when OF is set to 1, we will have a < b if
and only if SF is set to 0. Combining these cases, the ExcLusIVE-OR of the overflow
and sign bits provides a test for whether a < b. The other signed comparison tests
are based on other combinations of SF ~ OF and ZF.

For the testing of unsigned comparisons, we now let a and b be the integers
represented in unsigned form by variables a and b. In performing the computation
t = a-b, the carry flag will be set by the cmp instruction when the a — b <0, and
so the unsigned comparisons use combinations of the carry and zero flags.

It is important to note how machine code distinguishes between signed and
unsigned values. Unlike in C, it does not associate a data type with each program
value. Instead, it mostly uses the same instructions for the two cases, because
many arithmetic operations have the same bit-level behavior for unsigned and
two’s-complement arithmetic. Some circumstances require different instructions
to handle signed and unsigned operations, such as using different versions of
right shifts, division and multiplication instructions, and different combinations
of condition codes.

Practice Problem 3.13
The following C code

int comp(data_t a, data_t b) {
return a COMP b;
}

shows a general comparison between arguments a and b, where we can set the
data type of the arguments by declaring data_t with a typedef declaration, and
we can set the comparison by defining COMP with a #define declaration.
Suppose a is in %edx and b is in %eax. For each of the following instruction
sequences, determine which data types data_t and which comparisons COMP could
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cause the compiler to generate this code. (There can be multiple correct answers;
you should list them all.)

A. cmpl Y%heax, %hedx
setl %al

B. cmpw %hax, %dx
setge %al

C. cmpb %al, %dl
setb %al

D. cmpl Y%eax, %edx
setne  Y%al

Practice Problem 3.14
The following C code

int test(data_t a) {
return a TEST O;
¥

shows a general comparison between argument a and 0, where we can set the
data type of the argument by declaring data_t with a typedef, and the nature
of the comparison by declaring TEST with a #define declaration. For each of the
following instruction sequences, determine which data types data_t and which
comparisons TEST could cause the compiler to generate this code. (There can be
multiple correct answers; list all correct ones.)

A. testl Y%eax, %eax

setne %al
B. testw %ax, %ax
sete %al

C. testb %al, %al

setg %al
D. testw %ax, %ax
seta %al

3.6.3 Jump Instructions and Their Encodings

Under normal execution, instructions follow each other in the order they are
listed. A jump instruction can cause the execution to switch to a completely
new position in the program. These jump destinations are generally indicated in
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Instruction Synonym Jump condition Description
jmp Label 1 Direct jump
jmp *Operand 1 Indirect jump
je  Label jz ZF Equal/ zero
jne Label jnz ~ZF Not equal / not zero
js  Label SF Negative
jns Label ~SF Nonnegative
jg  Label jnle ~(SF ~ OF) & ~ZF Greater (signed >)
jge Label jnl ~(SF ~ OF) Greater or equal (signed >=)
jl1  Label jnge SF ~ OF Less (signed <)
jle Label jng (SF~0F) | ZF Less or equal (signed <=)
ja  Label jnbe ~CF & ~ZF Above (unsigned >)
jae Label jnb ~CF Above or equal (unsigned >=)
jb  Label jnae CF Below (unsigned <)
jbe Label jna CF | ZF Below or equal (unsigned <=)

Figure 3.12 The jump instructions. These instructions jump to a labeled destination
when the jump condition holds. Some instructions have “synonyms,” alternate names
for the same machine instruction.

assembly code by a label. Consider the following (very contrived) assembly-code

sequence:

1 movl $0,%eax Set Jeax to 0

2 jmp .L1 Goto .L1

3 movl (%eax),%edx Null pointer dereference
4 .L1:

5 popl %edx

The instruction jmp .L1 will cause the program to skip over the mov1l instruc-
tion and instead resume execution with the popl instruction. In generating the
object-code file, the assembler determines the addresses of all labeled instruc-
tions and encodes the jump targets (the addresses of the destination instructions)
as part of the jump instructions.

Figure 3.12 shows the different jump instructions. The jmp instruction jumps
unconditionally. It can be either a direct jump, where the jump target is encoded
as part of the instruction, or an indirect jump, where the jump target is read from
a register or a memory location. Direct jumps are written in assembly by giving
a label as the jump target, e.g., the label “.L1” in the code shown. Indirect jumps
are written using ‘*’ followed by an operand specifier using one of the formats
described in Section 3.4.1. As examples, the instruction

jmp *%eax
uses the value in register %eax as the jump target, and the instruction

jmp *(Yeax)
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reads the jump target from memory, using the value in %eax as the read
address.

The remaining jump instructions in the table are conditional—they either
jump or continue executing at the next instruction in the code sequence, depending
on some combination of the condition codes. The names of these instructions
and the conditions under which they jump match those of the ser instructions
(see Figure 3.11). As with the sET instructions, some of the underlying machine
instructions have multiple names. Conditional jumps can only be direct.

Although we will not concern ourselves with the detailed format of machine
code, understanding how the targets of jump instructions are encoded will become
important when we study linking in Chapter 7. In addition, it helps when inter-
preting the output of a disassembler. In assembly code, jump targets are written
using symbolic labels. The assembler, and later the linker, generate the proper
encodings of the jump targets. There are several different encodings for jumps,
but some of the most commonly used ones are PC relative. That is, they encode
the difference between the address of the target instruction and the address of the
instruction immediately following the jump. These offsets can be encoded using 1,
2, or 4 bytes. A second encoding method is to give an “absolute” address, using 4
bytes to directly specify the target. The assembler and linker select the appropriate
encodings of the jump destinations.

As an example of PC-relative addressing, the following fragment of assembly
code was generated by compiling a file silly.c. It contains two jumps: the jle
instruction on line 1 jumps forward to a higher address, while the jg instruction
on line 8 jumps back to a lower one.

1 jle L2 if <=, goto dest2
2 .L5: destl:

3 movl %edx, %heax

4 sarl %eax

5 subl %eax, %edx

6 leal (%edx,%edx,2), %edx

7 testl  Jedx, %edx

8 hES L5 if >, goto destl
9 L2 dest2:

10 movl %edx, %eax

The disassembled version of the “. o” format generated by the assembler is as
follows:

1 8: Te 0d jle 17 <silly+0x17>  Target = dest2
2 a: 89 doO mov %edx, heax destl:

3 c: d1l £8 sar heax

4 e: 29 c2 sub %eax,hedx

5 10: 8d 14 52 lea (%edx,%edx,2) ,%edx

6 13: 85 d2 test %edx , hedx

7 15: 7f £3 ig a <silly+Oxa> Target = destl
8 17: 89 doO mov %edx, heax dest2:
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In the annotations generated by the disassembler on the right, the jump targets
are indicated as 0x17 for the jump instruction on line 1 and Oxa for the jump
instruction on line 7. Looking at the byte encodings of the instructions, however,
we see that the target of the first jump instruction is encoded (in the second byte)
as 0xd (decimal 13). Adding this to 0Oxa (decimal 10), the address of the following
instruction, we get jump target address 0x17 (decimal 23), the address of the
instruction on line 8.

Similarly, the target of the second jump instruction is encoded as 0xf3 (dec-
imal —13) using a single-byte, two’s-complement representation. Adding this to
0x17 (decimal 23), the address of the instruction on line 8, we get Oxa (decimal
10), the address of the instruction on line 2.

As these examples illustrate, the value of the program counter when perform-
ing PC-relative addressing is the address of the instruction following the jump, not
that of the jump itself. This convention dates back to early implementations, when
the processor would update the program counter as its first step in executing an
instruction.

The following shows the disassembled version of the program after linking:

1 804839c: T7e 0d jle 80483ab <silly+0x17>
2 804839e: 89 dO mov %edx , heax

3 80483a0: d1 f8 sar %heax

4 80483a2: 29 c2 sub Y%heax ,hedx

5 80483a4: 8d 14 52 lea (%hedx,%edx,2) ,%edx

6 80483a7: 85 d2 test %edx, fhedx

7 80483a9: Tf £3 ig 804839 <silly+0xa>
8 80483ab: 89 4O mov %edx , heax

The instructions have been relocated to different addresses, but the encodings
of the jump targets in lines 1 and 7 remain unchanged. By using a PC-relative
encoding of the jump targets, the instructions can be compactly encoded (requiring
just 2 bytes), and the object code can be shifted to different positions in memory
without alteration.

Practice Problem 3.15

In the following excerpts from a disassembled binary, some of the information has
been replaced by Xs. Answer the following questions about these instructions.

A. What is the target of the je instruction below? (You don’t need to know
anything about the call instruction here.)

804828f : 74 05 je XXXXXXX
8048291 : e8 1le 00 00 00 call 80482b4

B. What is the target of the jb instruction below?

8048357 : 72 e7 jb XXXXXXX
8048359: c6 05 10 a0 04 08 01 movb  $0x1,0x804a010
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C. What is the address of the mov instruction?

XXXXXXX: 74 12 je 8048391
XXXXXXX: b8 00 00 00 00 mov $0x0, %heax

D. Inthe code thatfollows, the jump targetis encoded in PC-relative form asa 4-
byte, two’s-complement number. The bytes are listed from least significant to
most, reflecting the little-endian byte ordering of IA32. What is the address

of the jump target?
80482bf : e9 e0 ff ff ff jmp XXXXXXX
80482c4: 90 nop
E. Explain the relation between the annotation on the right and the byte coding
on the left.
80482aa: ff 25 fc 9f 04 08 jmp *0x8049ffc

To implement the control constructs of C via conditional control transfer, the
compiler must use the different types of jump instructions we have just seen. We
will go through the most common constructs, starting from simple conditional
branches, and then consider loops and switch statements.

3.6.4 Translating Conditional Branches

The most general way to translate conditional expressions and statements from C
into machine code is to use combinations of conditional and unconditional jumps.
(As an alternative, we will see in Section 3.6.6 that some conditionals can be
implemented by conditional transfers of data rather than control.) For example,
Figure 3.13(a) shows the C code for a function that computes the absolute value
of the difference of two numbers.? Gce generates the assembly code shown as
Figure 3.13(c). We have created a version in C, called gotodiff (Figure 3.13(b)),
that more closely follows the control flow of this assembly code. It uses the goto
statement in C, which is similar to the unconditional jump of assembly code. The
statement goto x_ge_y on line 4 causes a jump to the label x_ge_y (since it occurs
when x > y) on line 7, skipping the computation of y-x on line 5. If the test fails, the
program computes the result as y—x and then transfers unconditionally to the end
of the code. Using goto statements is generally considered a bad programming
style, since their use can make code very difficult to read and debug. We use them
in our presentation as a way to construct C programs that describe the control
flow of assembly-code programs. We call this style of programming “goto code.”

The assembly-code implementation first compares the two operands (line 3),
setting the condition codes. If the comparison result indicates that x is greater

2. Actually, it can return a negative value if one of the subtractions overflows. Our interest here is to
demonstrate machine code, not to implement robust code.
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(a) Original C code (b) Equivalent goto version
1 int absdiff(int x, int y) { 1 int gotodiff(int x, int y) {
2 if (x <y) 2 int result;
3 return y - x; 3 if (x >= y)
4 else 4 goto x_ge_y;
5 return x - y; 5 result = y - Xx;
6 } 6 goto done;
7 X_ge_y:
8 result = x - y;
9 done:
10 return result;
11 }
(c) Generated assembly code
x at %ebp+8, y at lhebp+12
1 movl 8(%ebp), %edx Get x
2 movl 12(%ebp), %heax Get y
3 cmpl %heax, %hedx Compare x:y
4 jge L2 if >= goto x_ge_y
5 subl %edx, %eax Compute result = y-x
6 jmp .L3 Goto done
7 LL2: X_ge_y:
8 subl %eax, %hedx Compute result = x-y
9 movl %edx, %heax Set result as return value
10 .L3: done: Begin completion code

Figure 3.13 Compilation of conditional statements. C procedure absdiff (part (a))
contains an if-else statement. The generated assembly code is shown (part (c)), along
with a C procedure gotodiff (part (b)) that mimics the control flow of the assembly
code. The stack set-up and completion portions of the assembly code have been omitted.

than or equal to y, it then jumps to a block of code that computes x-y (line 8).
Otherwise, it continues with the execution of code that computes y-x (line 5). In
both cases, the computed result is stored in register %eax, and the program reaches
line 10, at which point it executes the stack completion code (not shown).

The general form of an if-else statement in C is given by the template

if (test-expr)
then-statement

else
else-statement

where test-expr is an integer expression that evaluates either to 0O (interpreted as
meaning “false”) or to a nonzero value (interpreted as meaning “true”). Only one
of the two branch statements (then-statement or else-statement) is executed.
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For this general form, the assembly implementation typically adheres to the
following form, where we use C syntax to describe the control flow:

t = test-expr;
if (1t)
goto false;

then-statement

goto done;
false:

else-statement
done:

That is, the compiler generates separate blocks of code for then-statement and

else-statement. It inserts conditional and unconditional branches to make sure the
correct block is executed.

Practice Problem 3.16
When given the C code

1 void cond(int a, int *p)
2 o

3 if (p && a > 0)

4 *p += a;

5 )

Gcce generates the following assembly code for the body of the function:

a %ebp+8, p at %ebp+12

1 movl 8(%ebp), %hedx
2 movl 12(%ebp) , %eax
3 testl  Jeax, %heax

4 je L3

5 testl  Jedx, %edx

6 jle L3

7 addl %hedx, (%eax)

8 .L3:

A. Write a goto version in C that performs the same computation and mimics
the control flow of the assembly code, in the style shown in Figure 3.13(b).
You might find it helpful to first annotate the assembly code as we have done
in our examples.

B. Explain why the assembly code contains two conditional branches, even
though the C code has only one if statement.
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Practice Problem 3.17
An alternate rule for translating if statements into goto code is as follows:

t = test-expr;
if ()
goto true;

else-statement

goto done;
true:

then-statement
done:

A. Rewrite the goto version of absdiff based on this alternate rule.

B. Can you think of any reasons for choosing one rule over the other?

Practice Problem 3.18
Starting with C code of the form

int test(int x, int y) {
int val = ;
if ( ) o
if ( )

val ;

val ;
} else if ( )
val = ;

]
2

3

4

5

6 else
7

8

9

0 return val;
1

}
Gcce generates the following assembly code:

x at %ebp+8, y at l%ebp+12

1 movl 8(%ebp), %heax
2 movl 12(%ebp) , %hedx
3 cmpl $-3, %eax

4 jge L2

5 cmpl %edx, %eax

6 jle L3

7 imull  %edx, %eax

8 jmp L4

9 .L3:

10 leal (%edx,%eax), %eax
11 jmp .L4

.L2:

N
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13 cmpl $2, Jeax
14 jg .L5

15 xorl %hedx, %eax
16 jmp .L4

17 .L5:

18 subl %edx, heax
19 .L4:

Fill in the missing expressions in the C code. To make the code fit into the
C code template, you will need to undo some of the reordering of computations
done by ccc.

3.6.5 Loops

C provides several looping constructs—namely, do-while, while, and for. No
corresponding instructions exist in machine code. Instead, combinations of condi-
tional tests and jumps are used to implement the effect of loops. Most compilers
generate loop code based on the do-while form of a loop, even though this form
is relatively uncommon in actual programs. Other loops are transformed into do-
while form and then compiled into machine code. We will study the translation
of loops as a progression, starting with do-while and then working toward ones
with more complex implementations.

Do-While Loops
The general form of a do-while statement is as follows:

do
body-statement
while (test-expr);

The effect of the loop is to repeatedly execute body-statement, evaluate test-expr,
and continue the loop if the evaluation result is nonzero. Observe that body-
statement is executed at least once.

This general form can be translated into conditionals and goto statements as
follows:

loop:
body-statement
t = test-expr;
if (t)
goto loop;

That is, on each iteration the program evaluates the body statement and then the
test expression. If the test succeeds, we go back for another iteration.

As an example, Figure 3.14(a) shows an implementation of a routine to com-
pute the factorial of its argument, written n!, with a do-while loop. This function
only computes the proper value for n > 0.
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(a) C code (c) Corresponding assembly-language code

1 int fact_do(int n) Argument: n at Y%ebp+8

2 { Registers: n in j%edx, result in jeax

3 int result = 1; 1 movl 8(%ebp), %edx Get n

4 do { 2 movl $1, Y%eax Set result = 1

5 result *= n; 3 L2: loop:

6 n = n-1; 4 imull %edx, %heax Compute result *= n
7 } while (n > 1); 5 subl $1, Y%edx Decrement n

8 return result; 6 cmpl $1, Y%edx Compare n:1

9 } 7 g L2 If >, goto loop

Return result

(b) Register usage

Register Variable Initially

Yheax result 1

Yhedx n n

Figure 3.14 Code for do-while version of factorial program. The C code, the generated
assembly code, and a table of register usage is shown.

Practice Problem 3.19

A. What is the maximum value of n for which we can represent n! with a 32-bit

int?
B. What about for a 64-bit long long int?

The assembly code shown in Figure 3.14(c) shows a standard implementation
of a do-while loop. Following the initialization of register %edx to hold n and %eax
to hold result, the program begins looping. It first executes the body of the loop,
consisting here of the updates to variables result and n (lines 4-5). It then tests
whether n > 1, and, if so, it jumps back to the beginning of the loop. We see here
that the conditional jump (line 7) is the key instruction in implementing a loop. It

determines whether to continue iterating or to exit the loop.

Determining which registers are used for which program values can be chal-
lenging, especially with loop code. We have shown such a mapping in Figure 3.14.
In this case, the mapping is fairly simple to determine: we can see n getting loaded
into register %edx on line 1, getting decremented on line 5, and being tested on

line 6. We therefore conclude that this register holds n.

We can see register jeax getting initialized to 1 (line 2), and being updated
by multiplication on line 4. Furthermore, since %eax is used to return the function
value, it is often chosen to hold program values that are returned. We therefore

conclude that %eax corresponds to program value result.
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Aside Reverse engineering loops

A key to understanding how the generated assembly code relates to the original source code is to find a
mapping between program values and registers. This task was simple enough for the loop of Figure 3.14,
but it can be much more challenging for more complex programs. The C compiler will often rearrange
the computations, so that some variables in the C code have no counterpart in the machine code, and
new values are introduced into the machine code that do not exist in the source code. Moreover, it will
often try to minimize register usage by mapping multiple program values onto a single register.

The process we described for fact_do works as a general strategy for reverse engineering loops.
Look at how registers are initialized before the loop, updated and tested within the loop, and used
after the loop. Each of these provides a clue that can be combined to solve a puzzle. Be prepared for
surprising transformations, some of which are clearly cases where the compiler was able to optimize
the code, and others where it is hard to explain why the compiler chose that particular strategy. In
our experience, Gcc often makes transformations that provide no performance benefit and can even
decrease code performance.

Practice Problem 3.20
For the C code

1
2
3
4
5
6
7
8

int dw_loop(int x, int y, int n) {

do {

X += n;

v *= 1

n--;
} while ((n > 0) && (y < mn));
return x;

}

Gcce generates the following assembly code:

x at %ebp+8, y at %ebp+12, n at %ebp+16

movl 8(%ebp), %heax

movl 12(%ebp), %ecx

movl 16 (%ebp), %edx

.L2:

addl %edx, heax

imull  %edx, %ecx

subl $1, Yedx

testl  Jedx, %edx

jle .L5
cmpl %edx, %hecx
i1 L2

.L5:

A. Make a table of register usage, similar to the one shown in Figure 3.14(b).
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B. Identify test-expr and body-statement in the C code, and the corresponding
lines in the assembly code.

C. Add annotations to the assembly code describing the operation of the pro-
gram, similar to those shown in Figure 3.14(b).

While Loops

The general form of a while statement is as follows:

while (fest-expr)
body-statement

It differs from do-while in that test-expr is evaluated and the loop is potentially
terminated before the first execution of body-statement. There are a number of
ways to translate a while loop into machine code. One common approach, also
used by Gcg, is to transform the code into a do-while loop by using a conditional
branch to skip the first execution of the body if needed:

if (Mtest-expr)
goto done;
do
body-statement
while (test-expr) ;
done:

This, in turn, can be transformed into goto code as

t = test-expr;
if (1)
goto done;
loop:
body-statement
t = test-expr;
if (t)
goto loop;
done:

Using this implementation strategy, the compiler can often optimize the initial
test, for example determining that the test condition will always hold.

As an example, Figure 3.15 shows an implementation of the factorial func-
tion using a while loop (Figure 3.15(a)). This function correctly computes 0! = 1.
The adjacent function fact_while_goto (Figure 3.15(b)) is a C rendition of the
assembly code generated by gcec. Comparing the code generated for fact_while
(Figure 3.15) to that for fact_do (Figure 3.14), we see that they are nearly iden-
tical. The only difference is the initial test (line 3) and the jump around the loop
(line 4). The compiler closely followed our template for converting a while loop
to a do-while loop, and for translating this loop to goto code.
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(a) C code (b) Equivalent goto version
1 int fact_while(int n) 1 int fact_while_goto(int n)
2 A 2 A
3 int result = 1; 3 int result = 1;
4 while (n > 1) { 4 if (n <= 1)
5 result *= n; 5 goto done;
6 n = n-1; 6 loop:
7 } 7 result *= n;
8 return result; 8 n =n-1;
9 % 9 if (n > 1)
10 goto loop;
11 done:
12 return result;
13}
(c) Corresponding assembly-language code
Argument: n at Y%ebp+8
Registers: n in Jedx, result in jeax
movl 8(%ebp), %edx Get n
movl $1, %eax Set result = 1
cmpl $1, Yedx Compare n:1
jle L7 If <=, goto domne
.L10: loop:

imull  Yedx, %eax
subl $1, Yedx
cmpl $1, Yedx
jg .L10

L7 done:

Return result

O VO ©® N O L AW N =

Figure 3.15 C and assembly code for while version of factorial. The fact_while_

Compute result *= n
Decrement n
Compare n:1

If >, goto loop

goto function illustrates the operation of the assembly code version.

Practice Problem 3.21
For the C code

1 int loop_while(int a, int b)
2 o

3 int result = 1;

4 while (a < b) {

5 result *= (a+b);

6 a++;

7 }

8 return result;

o }
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GCC

©® N O L AW N =

AW N = O O

generates the following assembly code:

a at %ebp+8, b at %ebp+12

movl 8(%ebp), %hecx
movl 12(%ebp), %ebx
movl $1, Yeax
cmpl %ebx, Jecx
jge .L11
leal (%ebx,%ecx), %edx
movl $1, Jeax

.L12:
imull  Yedx, %eax
addl $1, Yecx
addl $1, Y%edx
cmpl %hecx, %hebx
ig 112

L11:

In generating this code, Gcc makes an interesting transformation that, in

effect, introduces a new program variable.

A.

=

Register %edx is initialized on line 6 and updated within the loop on line 11.
Consider this to be a new program variable. Describe how it relates to the
variables in the C code.

Create a table of register usage for this function.
Annotate the assembly code to describe how it operates.

Write a goto version of the function (in C) that mimics how the assembly
code program operates.

Practice Problem 3.22

A function, fun_a, has the following overall structure:

int

}
The

fun_a(unsigned x) {
int val = O;

while ( ) {

return 5

Gee C compiler generates the following assembly code:

x at %ebp+8

movl 8(%ebp), %edx
movl $0, Y%eax
testl  Yedx, %edx
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4 je L7

5 .L10:

6 xorl %edx, %heax

7 shrl %hedx Shift right by 1
8 jne .L10

9 L7

10 andl $1, %eax

Reverse engineer the operation of this code and then do the following:

A. Use the assembly-code version to fill in the missing parts of the C code.

B. Describe in English what this function computes.

For Loops

The general form of a for loop is as follows:

for (init-expr; test-expr; update-expr)
body-statement

The Clanguage standard states (with one exception, highlighted in Problem 3.24)
that the behavior of such a loop is identical to the following code, which uses a
while loop:

init-expr;

while (test-expr) {
body-statement
update-expr ;

The program first evaluates the initialization expression init-expr. It enters a loop
where it first evaluates the test condition test-expr, exiting if the test fails, then
executes the body of the loop body-statement, and finally evaluates the update
expression update-expr.

The compiled form of this code is based on the transformation from while to
do-while described previously, first giving a do-while form:

init-expr;

if (!test-expr)
goto done;

do {
body-statement
update-expr ;

} while (test-expr);

done:

203
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This, in turn, can be transformed into goto code as

init-expr;
t = test-expr;
if (1t)
goto done;
loop:
body-statement
update-expr;
t = test-expr;
if ()
goto loop;
done:

As an example, consider a factorial function written with a for loop:

1 int fact_for(int n)

2 o

3 int i;

4 int result = 1;

5 for (i = 2; 1 <= n; i++)
6 result *= i;

7 return result;

8

3

As shown, the natural way of writing a factorial function with a for loop is
to multiply factors from 2 up to n, and so this function is quite different from the
code we showed using either a while or a do-while loop.

We can identify the different components of the for loop in this code as

follows:

init-expr i=2
test-expr i<=n
update-expr i++
body-statement result *=1i;

Substituting these components into the template we have shown yields the
following version in goto code:

1 int fact_for_goto(int n)
2 A

3 int i = 2;

4 int result = 1;
5 if (1(i <= n))
6 goto done;
7 loop:

8 result *= i;

9

it++;
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10 if (i <= n)

11 goto loop;
12 done:

13 return result;
14}

Indeed, a close examination of the assembly code produced by Gcc closely follows
this template:

Argument: n at Y%ebp+8

Registers: n in Jecx, i in %edx, result in %eax

1 movl 8(%ebp), %hecx Get n

2 movl $2, Y%edx Set i to 2 (init)
3 movl $1, %eax Set result to 1

4 cmpl $1, Yecx Compare n:1 (Itest)
5 jle .L14 If <=, goto done

6 LL17: loop:

7 imull %hedx, Yeax Compute result *= i (body)
8 addl $1, Yedx Increment i (update)
9 cmpl %edx, %ecx Compare n:i (test)
10 jge .L17 If >=, goto loop

1 .L14: done:

We see from this presentation that all three forms of loops in C—do-while,
while, and for—can be translated by a single strategy, generating code that con-
tains one or more conditional branches. Conditional transfer of control provides
the basic mechanism for translating loops into machine code.

Practice Problem 3.23

A function fun_b has the following overall structure:

int fun_b(unsigned x) {
int val = 0;
int 1i;

for ( ; ; ) {

}

return val;

}
The Gcee C compiler generates the following assembly code:

x at %ebp+8

1 movl 8(%ebp), %ebx
2 movl $0, Yeax

3 movl $0, %ecx

4 .L13:
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5 leal (%eax,%eax), %edx

6 movl %ebx, %heax

7 andl $1, %eax

8 orl %edx, %heax

9 shrl %ebx Shift right by 1
10 addl $1, Yecx

1 cmpl $32, Y%ecx

12 jne .L13

Reverse engineer the operation of this code and then do the following:

A. Use the assembly-code version to fill in the missing parts of the C code.

B. Describe in English what this function computes.

Practice Problem 3.24

Executing a continue statement in C causes the program to jump to the end of
the current loop iteration. The stated rule for translating a for loop into a while
loop needs some refinement when dealing with continue statements. For example,
consider the following code:

/* Example of for loop using a continue statement */
/* Sum even numbers between 0 and 9 */
int sum = 0;

int 1i;
for (i = 0; 1 < 10; i++) {
if (1 & 1)
continue;
sum += ij;
}

A. What would we get if we naively applied our rule for translating the for loop
into a while loop? What would be wrong with this code?

B. How could you replace the continue statement with a goto statement to
ensure that the while loop correctly duplicates the behavior of the for loop?

3.6.6 Conditional Move Instructions

The conventional way to implement conditional operations is through a condi-
tional transfer of control, where the program follows one execution path when
a condition holds and another when it does not. This mechanism is simple and
general, but it can be very inefficient on modern processors.

An alternate strategy is through a conditional transfer of data. This approach
computes both outcomes of a conditional operation, and then selects one based on
whether or not the condition holds. This strategy makes sense only in restricted
cases, but it can then be implemented by a simple conditional move instruction
that is better matched to the performance characteristics of modern processors.
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We will examine this strategy and its implementation with more recent versions
of TA32 processors.

Starting with the PentiumPro in 1995, recent generations of IA32 processors
have had conditional move instructions that either do nothing or copy a value
to a register, depending on the values of the condition codes. For years, these
instructions have been largely unused. With its default settings, gce did not gen-
erate code that used them, because that would prevent backward compatibility,
even though almost all x86 processors manufactured by Intel and its competitors
since 1997 have supported these instructions. More recently, for systems running
on processors that are certain to support conditional moves, such as Intel-based
Apple Macintosh computers (introduced in 2006) and the 64-bit versions of Linux
and Windows, gce will generate code using conditional moves. By giving special
command-line parameters on other machines, we can indicate to Gcc that the tar-
get machine supports conditional move instructions.

As an example, Figure 3.16(a) shows a variant form of the function
absdiff we used in Figure 3.13 to illustrate conditional branching. This version
uses a conditional expression rather than a conditional statement to illustrate
the concepts behind conditional data transfers more clearly, but in fact ccc

(a) Original C code (b).ImpIementation using conditional
aSSIgnment

1 int absdiff(int x, int y) { 1 int cmovdiff(int x, int y) {

2 return x <y ? y-x : x-y; 2 int tval = y-x;

3 } 3 int rval = x-y;
4 int test = x < y;
5 /* Line below requires
6 single instruction: */
7 if (test) rval = tval;
8 return rval;
9 %

(c) Generated assembly code

x at %ebp+8, y at hebp+12

1 movl 8(%ebp), hecx Get x

2 movl 12(%ebp), %edx  Get y

3 movl %edx, %ebx Copy y

4 subl %hecx, %ebx Compute y-x

5 movl hecx, fheax Copy x

6 subl %edx, %eax Compute x-y and set as return value

7 cmpl %edx, %hecx Compare x:y

8 cmovl %ebx, %heax If <, replace return value with y-x

Figure 3.16 Compilation of conditional statements using conditional assignment.
C function absdiff (a) contains a conditional expression. The generated assembly code
is shown (c), along with a C function cmovdiff (b) that mimics the operation of the
assembly code. The stack set-up and completion portions of the assembly code have
been omitted.
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generates identical code for this version as it does for the version of Figure 3.13. If
we compile this giving Gcc the command-line option ‘-march=1686",% we generate
the assembly code shown in Figure 3.16(c), having an approximate form shown
by the C function cmovdiff shown in Figure 3.16(b). Studying the C version, we
can see that it computes both y-x and x-y, naming these tval and rval, respec-
tively. It then tests whether x is less than y, and if so, copies tval to rval before
returning rval. The assembly code in Figure 3.16(c) follows the same logic. The
key is that the single cmovl instruction (line 8) of the assembly code implements
the conditional assignment (line 7) of cmovdiff. This instruction has the same
syntax as a MoV instruction, except that it only performs the data movement if the
specified condition holds. (The suffix ‘1’ in cmov1 stands for “less,” not for “long.”)

To understand why code based on conditional data transfers can outperform
code based on conditional control transfers (as in Figure 3.13), we must understand
something about how modern processors operate. As we will see in Chapters 4
and 5, processors achieve high performance through pipelining, where an instruc-
tion is processed via a sequence of stages, each performing one small portion of
the required operations (e.g., fetching the instruction from memory, determining
the instruction type, reading from memory, performing an arithmetic operation,
writing to memory, and updating the program counter.) This approach achieves
high performance by overlapping the steps of the successive instructions, such
as fetching one instruction while performing the arithmetic operations for a pre-
vious instruction. To do this requires being able to determine the sequence of
instructions to be executed well ahead of time in order to keep the pipeline full
of instructions to be executed. When the machine encounters a conditional jump
(referred to as a “branch”), it often cannot determine yet whether or not the jump
will be followed. Processors employ sophisticated branch prediction logic to try to
guess whether or not each jump instruction will be followed. As long as it can guess
reliably (modern microprocessor designs try to achieve success rates on the order
of 90%), the instruction pipeline will be kept full of instructions. Mispredicting a
jump, on the other hand, requires that the processor discard much of the work it
has already done on future instructions and then begin filling the pipeline with in-
structions starting at the correct location. As we will see, such a misprediction can
incur a serious penalty, say, 20-40 clock cycles of wasted effort, causing a serious
degradation of program performance.

As an example, we ran timings of the absdiff function on an Intel Core i7
processor using both methods of implementing the conditional operation. In a
typical application, the outcome of the test x < y is highly unpredictable, and so
even the most sophisticated branch prediction hardware will guess correctly only
around 50% of the time. In addition, the computations performed in each of the
two code sequences require only a single clock cycle. As a consequence, the branch
misprediction penalty dominates the performance of this function. For the IA32
code with conditional jumps, we found that the function requires around 13 clock

3. In Gce terminology, the Pentium should be considered model “586” and the PentiumPro should be
considered model “686” of the x86 line.
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cycles per call when the branching pattern is easily predictable, and around 35
clock cycles per call when the branching pattern is random. From this we can infer
that the branch misprediction penalty is around 44 clock cycles. That means time
required by the function ranges between around 13 and 57 cycles, depending on
whether or not the branch is predicted correctly.

Aside How did you determine this penalty?

209

Assume the probability of misprediction is p, the time to execute the code without mispredictionis Tk,
and the misprediction penalty is 7j,p. Then the average time to execute the code as a function of p is
Th0e(p) = (1 = p)Tok + p(Tox + Typ) = Tok + pTyp. We are given Tpk and T,,,, the average time
when p = 0.5, and we want to determine 7j;p. Substituting into the equation, we get 7., = 7,,,,(0.5) =

Tok + 0.5Typ, and therefore Ty;p = 2(7,,,, — Typ)- So, for Tox =13 and T,,,, =35, we get Tj,p =44.

On the other hand, the code compiled using conditional moves requires
around 14 clock cycles regardless of the data being tested. The flow of control
does not depend on data, and this makes it easier for the processor to keep its
pipeline full.

Practice Problem 3.25

Running on a Pentium 4, our code required around 16 cycles when the branching
pattern was highly predictable, and around 31 cycles when the pattern was random.

A. What is the approximate miss penalty?

B. How many cycles would the function require when the branch is mispre-
dicted?

Figure 3.17 illustrates some of the conditional move instructions added to the
1A32 instruction set with the introduction of the PentiumPro microprocessor and
supported by most IA32 processors manufactured by Intel and its competitors
since 1997. Each of these instructions has two operands: a source register or mem-
orylocation §, and a destination register R. As with the different seT (Section 3.6.2)
and jump instructions (Section 3.6.3), the outcome of these instructions depends
on the values of the condition codes. The source value is read from either mem-
ory or the source register, but it is copied to the destination only if the specified
condition holds.

For IA32, the source and destination values can be 16 or 32 bits long. Single-
byte conditional moves are not supported. Unlike the unconditional instructions,
where the operand length is explicitly encoded in the instruction name (e.g., movw
and movl), the assembler can infer the operand length of a conditional move
instruction from the name of the destination register, and so the same instruction
name can be used for all operand lengths.

Unlike conditional jumps, the processor can execute conditional move in-
structions without having to predict the outcome of the test. The processor simply
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Instruction Synonym Move condition Description
cmove S, R cmovz ZF Equal / zero
cmovne S, R cmovnz ~ZF Not equal / not zero
cmovs S, R SF Negative
cmovns S, R ~SF Nonnegative
cmovg S, R cmovnle ~(SF ~ OF) & ~ZF Greater (signed >)
cmovge S, R cmovnl ~(SF ~ OF) Greater or equal (signed >=)
cmovl S,R cmovnge SF ~ OF Less (signed <)
cmovle S,R cmovng (SF~OF) | ZF Less or equal (signed <=)
cmova S, R cmovnbe ~CF & ~ZF Above (unsigned >)
cmovae S, R cmovnb ~CF Above or equal (Unsigned >=)
cmovb S, R cmovnae CF Below (unsigned <)
cmovbe S, R cmovna CF | ZF below or equal (unsigned <=)

Figure 3.17 The conditional move instructions. These instructions copy the source
value § to its destination R when the move condition holds. Some instructions have
“synonyms,” alternate names for the same machine instruction.

reads the source value (possibly from memory), checks the condition code, and
then either updates the destination register or keeps it the same. We will explore
the implementation of conditional moves in Chapter 4.

To understand how conditional operations can be implemented via condi-
tional data transfers, consider the following general form of conditional expression
and assignment:

v = ftest-expr ? then-expr : else-expr;
With traditional IA32, the compiler generates code having a form shown by the
following abstract code:

if (Mtest-expr)
goto false;
vV = true-expr;
goto done;
false:
v = else-expr;
done:

This code contains two code sequences—one evaluating then-expr and one evalu-
ating else-expr. A combination of conditional and unconditional jumps is used to
ensure that just one of the sequences is evaluated.
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For the code based on conditional move, both the then-expr and the else-expr
are evaluated, with the final value chosen based on the evaluation fest-expr. This
can be described by the following abstract code:

vt = then-expr;
v = else-expr;
t = test-expr;

if (t) v = vt;

The final statement in this sequence is implemented with a conditional move—
value vt is copied to v only if test condition t holds.

Not all conditional expressions can be compiled using conditional moves.
Most significantly, the abstract code we have shown evaluates both then-expr and
else-expr regardless of the test outcome. If one of those two expressions could
possibly generate an error condition or a side effect, this could lead to invalid
behavior. As an illustration, consider the following C function:

int cread(int *xp) {
return (xp 7 *xp : 0);

}

At first, this seems like a good candidate to compile using a conditional move
to read the value designated by pointer xp, as shown in the following assembly
code:

Invalid implementation of function cread

xp in register jedx

1 movl $0, %eax Set 0 as return value
2 testl %hedx, %edx Test xp
3 cmovne (%edx), %eax if 10, dereference xp to get return value

This implementation is invalid, however, since the dereferencing of xp by the
cmovne instruction (line 3) occurs even when the test fails, causing a null pointer
dereferencing error. Instead, this code must be compiled using branching code.

A similar case holds when either of the two branches causes a side effect, as
illustrated by the following function:

/* Global variable */
int lcount = 0;
int absdiff_se(int x, int y) {
return x < y 7 (lcount++, y-x) : x-y;

v A W N =

}

This function increments global variable 1count as part of then-expr. Thus,
branching code must be used to ensure this side effect only occurs when the test
condition holds.

Using conditional moves also does not always improve code efficiency. For
example, if either the then-expr or the else-expr evaluation requires a significant
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computation, then this effort is wasted when the corresponding condition does
not hold. Compilers must take into account the relative performance of wasted
computation versus the potential for performance penalty due to branch mispre-
diction. In truth, they do not really have enough information to make this decision
reliably; for example, they do not know how well the branches will follow pre-
dictable patterns. Our experiments with Gcc indicate that it only uses conditional
moves when the two expressions can be computed very easily, for example, with
single add instructions. In our experience, Gce uses conditional control transfers
even in many cases where the cost of branch misprediction would exceed even
more complex computations.

Overall, then, we see that conditional data transfers offer an alternative
strategy to conditional control transfers for implementing conditional operations.
They can only be used in restricted cases, but these cases are fairly common and
provide a much better match to the operation of modern processors.

Practice Problem 3.26

In the following C function, we have left the definition of operation OP incomplete:

#define OP /* Unknown operator */

int arith(int x) {
return x OP 4;

}
When compiled, Gce generates the following assembly code:

Register: x in Jedx
leal 3(%edx), %eax
testl  %edx, %edx
cmovns Y%edx, %eax

AW N =

sarl $2, %eax Return value in Yeax

A. What operation is OP?

B. Annotate the code to explain how it works.

Practice Problem 3.27
Starting with C code of the form

1 int test(int x, int y) {

2 int val = ;

3 if ( ) A

4 if ( )

5 val = ;
6 else

7 val = H
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8 } else if ( )
9 val = ;
10 return val;

11 }

Gee, with the command-line setting ‘-march=i686’, generates the following as-
sembly code:

x at %ebp+8, y at lebp+12

1 movl 8(%ebp), %ebx

2 movl 12(%ebp) , %hecx

3 testl  Jecx, %ecx

4 jle L2

5 movl %ebx, %hedx

6 subl hecx, hedx

7 movl hecx, %heax

8 xorl %ebx, Yeax

9 cmpl hecx, Yhebx

10 cmovl  Y%edx, %eax

11 jmp L4

12 L2:

13 leal 0(,%ebx,4), %edx
14 leal (%ecx,%ebx), %heax
15 cmpl $-2, %ecx

16 cmovge ‘%edx, %eax

17 L4:

Fill in the missing expressions in the C code.

3.6.7 Switch Statements

A switch statement provides a multi-way branching capability based on the
value of an integer index. They are particularly useful when dealing with tests
where there can be a large number of possible outcomes. Not only do they make
the C code more readable, they also allow an efficient implementation using a
data structure called a jump table. A jump table is an array where entry i is the
address of a code segment implementing the action the program should take when
the switch index equals i. The code performs an array reference into the jump
table using the switch index to determine the target for a jump instruction. The
advantage of using a jump table over a long sequence of if-else statements is that
the time taken to perform the switch is independent of the number of switch cases.
Gec selects the method of translating a switch statement based on the number of
cases and the sparsity of the case values. Jump tables are used when there are a
number of cases (e.g., four or more) and they span a small range of values.

Figure 3.18(a) shows an example of a C switch statement. This example has a
number of interesting features, including case labels that do not span a contiguous



(a) Switch statement
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int switch_eg(int x, int n) {
int result = x;

switch (n) {

case 100:
result *= 13;
break;

case 102:
result += 10;
/* Fall through */

case 103:
result += 11;
break;

case 104:

case 106:
result
break;

*
]

result;

default:
result = 0;

return result;

(b) Translation into extended C
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int switch_eg_impl(int x, int n) {
/* Table of code pointers */
static void *jt[7] = {
&&loc_A, &&loc_def, &&loc_B,
&&loc_C, &&loc_D, &&loc_def,
&&loc_D
};

unsigned index = n - 100;
int result;

if (index > 6)
goto loc_def;

/* Multiway branch */
goto *jt[index];

loc_def: /* Default casex/
result = 0;
goto done;

loc_C: /* Case 103 */

result = x;
goto rest;

loc_A: /* Case 100 */
result = x * 13;
goto done;

loc_B: /* Case 102 x/
result = x + 10;
/* Fall through */

rest: /* Finish case 103 */
result += 11;
goto done;

loc_D: /* Cases 104, 106 x/

result = x * Xx;
/* Fall through */

done:
return result;

}

Figure 3.18 Switch statement example with translation into extended C. The translation
shows the structure of jump table jt and how it is accessed. Such tables are supported by Gcc
as an extension to the C language.
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x at %ebp+8, n at %ebp+12
movl 8(%ebp), %hedx
movl 12(%ebp) , %eax

Set up jump table access
subl $100, %eax
cmpl $6, Yeax

ja L2
jmp *.L7(,%eax,4)
Default case
LL2:
movl $0, %eax
jmp .L8
Case 103
.L5:
movl %edx, %heax
jmp .L9
Case 100
.L3:
leal (%hedx,%edx,2), %heax
leal (%edx,%eax,4), %heax
jmp .L8
Case 102
.L4:

leal 10(%edx), %heax
Fall through

.L9:
addl $11, Jeax
jmp .L8
Cases 104, 106
.L6:
movl %hedx, heax
imull  %edx, %eax
Fall through
.L8:

Return result

Section 3.6 Control

Get x
Get n

Compute index = n-100
Compare index:6

If >, goto loc_def
Goto *jt[index]

loc_def:
result = 0;

Goto done

loc_C:
result = x;

Goto rest

loc_A:
result = x*3;
result = x+4*result

Goto done

loc_B:

result = x+10

rest:
result += 11;

Goto done
loc_D
result = x

result *= x

done:

Figure 3.19 Assembly code for switch statement example in Figure 3.18.

range (there are no labels for cases 101 and 105), cases with multiple labels (cases
104 and 106), and cases that fall through to other cases (case 102) because the code
for the case does not end with a break statement.

Figure 3.19 shows the assembly code generated when compiling switch_eg.

The behavior of this code is shown in C as the procedure switch_eg_impl in
Figure 3.18(b). This code makes use of support provided by Gcc for jump tables,
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as an extension to the C language. The array jt contains seven entries, each of
which is the address of a block of code. These locations are defined by labels in
the code, and indicated in the entries in jt by code pointers, consisting of the labels
prefixed by ‘&&.” (Recall that the operator & creates a pointer for a data value. In
making this extension, the authors of Gcc created a new operator && to create
a pointer for a code location.) We recommend that you study the C procedure
switch_eg_impl and how it relates assembly code version.

Our original C code has cases for values 100, 102-104, and 106, but the switch
variable n can be an arbitrary int. The compiler first shifts the range to between
0 and 6 by subtracting 100 from n, creating a new program variable that we call
index in our C version. It further simplifies the branching possibilities by treating
index as an unsigned value, making use of the fact that negative numbers in a
two’s-complement representation map to large positive numbers in an unsigned
representation. It can therefore test whether index is outside of the range 0-6
by testing whether it is greater than 6. In the C and assembly code, there are
five distinct locations to jump to, based on the value of index. These are: loc_
A (identified in the assembly code as .L3), loc_B (.L4), loc_C (.L5), loc_D (.L6),
and loc_def (.L2), where the latter is the destination for the default case. Each
of these labels identifies a block of code implementing one of the case branches.
In both the C and the assembly code, the program compares index to 6 and jumps
to the code for the default case if it is greater.

The key step in executing a switch statement is to access a code location
through the jump table. This occurs in line 16 in the C code, with a goto statement
that references the jump table jt. This computed goto is supported by Gcc as an
extension to the C language. In our assembly-code version, a similar operation
occurs on line 6, where the jmp instruction’s operand is prefixed with ‘*’, indicating
an indirect jump, and the operand specifies a memory location indexed by register
%eax, which holds the value of index. (We will see in Section 3.8 how array
references are translated into machine code.)

Our C code declares the jump table as an array of seven elements, each of
which is a pointer to a code location. These elements span values 0-6 of index,
corresponding to values 100-106 of n. Observe the jump table handles duplicate
cases by simply having the same code label (1oc_D) for entries 4 and 6, and it
handles missing cases by using the label for the default case (Loc_def) as entries
1 and 5.

In the assembly code, the jump table is indicated by the following declarations,
to which we have added comments:

1 .section .rodata

2 .align 4 Align address to multiple of 4
3 .L7:

4 .long .L3 Case 100: loc_A

5 .long L2 Case 101: loc_def

6 .long L4 Case 102: loc_B

7 .long .L5 Case 103: loc_C
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8 .long .L6 Case 104: loc_D
9 .long L2 Case 105: loc_def
10 .long .L6 Case 106: loc_D

These declarations state that within the segment of the object-code file called
“.rodata” (for “Read-Only Data”), there should be a sequence of seven “long”
(4-byte) words, where the value of each word is given by the instruction address
associated with the indicated assembly code labels (e.g., .L3). Label .L7 marks the
start of this allocation. The address associated with this label serves as the base
for the indirect jump (line 6).

The different code blocks (C labels loc_A through loc_D and loc_def) im-
plement the different branches of the switch statement. Most of them simply
compute a value for result and then go to the end of the function. Similarly,
the assembly-code blocks compute a value for register %eax and jump to the po-
sition indicated by label .L8 at the end of the function. Only the code for case
labels 102 and 103 do not follow this pattern, to account for the way that case 102
falls through to 103 in the original C code. This is handled in the assembly code
and switch_eg_impl by having separate destinations for the two cases (loc_C
and loc_B in C, .L5 and .L4 in assembly), where both of these blocks then
converge on code that increments result by 11 (labeled rest in C and .L9 in
assembly).

Examining all of this code requires careful study, but the key point is to see
that the use of a jump table allows a very efficient way to implement a multiway
branch. In our case, the program could branch to five distinct locations with a
single jump table reference. Even if we had a switch statement with hundreds of
cases, they could be handled by a single jump table access.

Practice Problem 3.28

In the C function that follows, we have omitted the body of the switch statement.
In the C code, the case labels did not span a contiguous range, and some cases had
multiple labels.

int switch2(int x) {
int result = 0;
switch (x) {
/* Body of switch statement omitted */
}

return result;

In compiling the function, Gcc generates the assembly code that follows for the
initial part of the procedure and for the jump table. Variable x is initially at offset
8 relative to register %ebp.
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x at %ebp+8 Jump table for switch2

1 movl 8(%ebp) , %heax 1 .L8:
Set up jump table access 2 .long .L3
2 addl $2, Y%eax 3 .long .L2
3 cmpl $6, %eax 4 .long .L4
4 ja L2 5 .long .L5
5 jmp *.18(,%eax,4) 6 .long .L6
7 .long .L6
8 .long L7

Based on this information, answer the following questions:

A. What were the values of the case labels in the switch statement body?
B. What cases had multiple labels in the C code?

Practice Problem 3.29

For a C function switcher with the general structure

1 int switcher(int a, int b, int c)

2 o

3 int answer;

4 switch(a) {

5 case : /* Case A */
6 c = ;

7 /* Fall through */

8 case : /* Case B */
9 answer = ;

10 break;

11 case : /* Case C x/
12 case : /* Case D */
13 answer = ;

14 break;

15 case : /* Case E */
16 answer = ;

17 break;

18 default:

19 answer = ;

20 }

21 return answer;

22 }

Gcc generates the assembly code and jump table shown in Figure 3.20.
Fill in the missing parts of the C code. Except for the ordering of case labels
C and D, there is only one way to fit the different cases into the template.
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a at %ebp+8, b at %ebp+12, c at %ebp+16

1 movl 8(%ebp) , %heax 1 L7

2 cmpl $7, heax 2 .long .L3
3 ja L2 3 .long L2
4 jmp *,L7(,%eax,4) 4 .long .L4
5 .L2: 5 .long L2
6 movl 12(%ebp), %eax 6 .long .L5
7 jmp .L8 7 .long .L6
8 .L5: 8 .long L2
9 movl $4, %eax 9 .long .L4
10 jmp .L8

11 .L6:

12 movl 12(%ebp) , %heax

13 xorl $15, Y%eax

14 movl %heax, 16(%ebp)

15 .L3:

16 movl 16 (%ebp) , %heax

17 addl $112, %eax

18 jmp .L8

19 .L4:

20 movl 16(%ebp) , %heax

21 addl 12(%ebp), %heax

22 sall $2, %eax

23 .1L8:

Figure 3.20 Assembly code and jump table for Problem 3.29.

3.7 Procedures

A procedure call involves passing both data (in the form of procedure parame-
ters and return values) and control from one part of a program to another. In
addition, it must allocate space for the local variables of the procedure on entry
and deallocate them on exit. Most machines, including IA32, provide only simple
instructions for transferring control to and from procedures. The passing of data
and the allocation and deallocation of local variables is handled by manipulating
the program stack.

3.7.1 Stack Frame Structure

TIA32 programs make use of the program stack to support procedure calls. The
machine uses the stack to pass procedure arguments, to store return information,
tosave registers for later restoration, and for local storage. The portion of the stack
allocated for a single procedure call is called a stack frame. Figure 3.21 diagrams
the general structure of a stack frame. The topmost stack frame is delimited by
two pointers, with register %ebp serving as the frame pointer, and register %esp
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Figure 3.21

Stack frame structure. The
stack is used for passing
arguments, for storing
return information, for
saving registers, and for
local storage.

serving as the stack pointer. The stack pointer can move while the procedure is
executing, and hence most information is accessed relative to the frame pointer.
Suppose procedure P (the caller) calls procedure Q (the callee). The arguments
to Q are contained within the stack frame for P. In addition, when P calls Q,
the return address within P where the program should resume execution when
it returns from Q is pushed onto the stack, forming the end of P’s stack frame. The
stack frame for Q starts with the saved value of the frame pointer (a copy of register

Increasing
address

Frame pointer
%ebp

Stack pointer
%hesp

+4+4n

+8

+4

Stack “bottom”

Argument n

Argument 1

Return address

Saved J,ebp

Saved registers,
local variables,
and
temporaries

Argument
build area

Stack “top”

~ Earlier frames

~ Caller’s frame

~ Current frame

%ebp), followed by copies of any other saved register values.
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Procedure Q also uses the stack for any local variables that cannot be stored
in registers. This can occur for the following reasons:

e There are not enough registers to hold all of the local data.

e Some of the local variables are arrays or structures and hence must be accessed
by array or structure references.

e The address operator ‘&’ is applied to a local variable, and hence we must be
able to generate an address for it.

In addition, Q uses the stack frame for storing arguments to any procedures it
calls. As illustrated in Figure 3.21, within the called procedure, the first argument
is positioned at offset 8 relative to %ebp, and the remaining arguments (assuming
their data types require no more than 4 bytes) are stored in successive 4-byte
blocks, so that argument i is at offset 4 4 4i relative to %ebp. Larger arguments
(such as structures and larger numeric formats) require larger regions on the stack.

As described earlier, the stack grows toward lower addresses and the stack
pointer %esp points to the top element of the stack. Data can be stored on and
retrieved from the stack using the pushl and popl instructions. Space for data with
no specified initial value can be allocated on the stack by simply decrementing the
stack pointer by an appropriate amount. Similarly, space can be deallocated by
incrementing the stack pointer.

3.7.2 Transferring Control

The instructions supporting procedure calls and returns are shown in the following
table:

Instruction Description
call  Label Procedure call
call  *Operand Procedure call
leave Prepare stack for return
ret Return from call

The call instruction has a target indicating the address of the instruction
where the called procedure starts. Like jumps, a call can either be direct or indirect.
In assembly code, the target of a direct call is given as a label, while the target of
an indirect call is given by a * followed by an operand specifier using one of the
formats described in Section 3.4.1.

The effect of a call instruction is to push a return address on the stack and
jump to the start of the called procedure. The return address is the address of the
instruction immediately following the call in the program, so that execution will
resume at this location when the called procedure returns. The ret instruction
pops an address off the stack and jumps to this location. The proper use of this
instruction is to have prepared the stack so that the stack pointer points to the
place where the preceding call instruction stored its return address.
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%eip | 0x080483dc %eip | 0x08048394 %eip | 0x080483el
— %esp | 0x££9bc960 —| %esp | 0xff9bc95c —| %esp | 0xf£9bc960
L L L
0x080483e1
(a) Executing call (b) After call (c) After ret

Figure 3.22 Illustration of call and ret functions. The call instruction transfers
control to the start of a function, while the ret instruction returns back to the instruction
following the call.

Figure 3.22 illustrates the execution of the call and ret instructions for the
sum and main functions introduced in Section 3.2.2. The following are excerpts of
the disassembled code for the two functions:

Beginning of function sum
1 08048394 <sum>:
2 8048394: 55 push  %ebp

Return from function sum

3 80483a4: c3 ret

Call to sum from main
4 80483dc: €8 b3 ff ff ff call 8048394 <sum>
5 80483el: 83 c4 14 add $0x14,%esp

In this code, we can see that the call instruction with address 0x080483dc in
main calls function sum. This status is shown in Figure 3.22(a), with the indicated
values for the stack pointer %esp and the program counter %eip. The effect of
the call is to push the return address 0x080483e1 onto the stack and to jump
to the first instruction in function sum, at address 0x08048394 (Figure 3.22(b)).
The execution of function sum continues until it hits the ret instruction at address
0x080483a4. This instruction pops the value 0x080483e1 from the stack and jumps
to this address, resuming the execution of main just after the call instruction in
sum (Figure 3.22(c)).

The leave instruction can be used to prepare the stack for returning. It is
equivalent to the following code sequence:

1 movl Y%ebp, %esp Set stack pointer to beginning of frame
2 popl Y%ebp Restore saved %ebp and set stack ptr to end of caller's frame
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Alternatively, this preparation can be performed by an explicit sequence of
move and pop operations. Register %eax is used for returning the value from any
function that returns an integer or pointer.

Practice Problem 3.30

The following code fragment occurs often in the compiled version of library
routines:

1 call next
2 next:
3 popl Yeax

A. To what value does register %eax get set?
B. Explain why there is no matching ret instruction to this call.

C. What useful purpose does this code fragment serve?

3.7.3 Register Usage Conventions

The set of program registers acts as a single resource shared by all of the proce-
dures. Although only one procedure can be active at a given time, we must make
sure that when one procedure (the caller) calls another (the callee), the callee
does not overwrite some register value that the caller planned to use later. For
this reason, IA32 adopts a uniform set of conventions for register usage that must
be respected by all procedures, including those in program libraries.

By convention, registers %eax, %edx, and %ecx are classified as caller-save
registers. When procedure Q is called by P, it can overwrite these registers without
destroying any data required by P. On the other hand, registers %ebx, %esi, and
%edi are classified as callee-save registers. This means that Q must save the values
of any of these registers on the stack before overwriting them, and restore them
before returning, because P (or some higher-level procedure) may need these
values for its future computations. In addition, registers %ebp and %esp must be
maintained according to the conventions described here.

As an example, consider the following code:

int P(int x)

{
int y = x*x;
int z = Q(y);
return y + z;

A LU AW N =
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Procedure P computes y before calling Q, but it must also ensure that the value
of y is available after Q returns. It can do this by one of two means:

e It can store the value of y in its own stack frame before calling Q; when Q
returns, procedure P can then retrieve the value of y from the stack. In other
words, P, the caller, saves the value.

e It can store the value of y in a callee-save register. If Q, or any procedure
called by Q, wants to use this register, it must save the register value in its
stack frame and restore the value before it returns (in other words, the callee
saves the value). When Q returns to P, the value of y will be in the callee-save
register, either because the register was never altered or because it was saved
and restored.

Either convention can be made to work, as long as there is agreement as to which
function is responsible for saving which value. IA32 follows both approaches,
partitioning the registers into one set that is caller-save, and another set that is
callee-save.

Practice Problem 3.31

The following code sequence occurs right near the beginning of the assembly code
generated by Gcc for a C procedure:

1 subl $12, Yesp

2 movl %ebx, (%esp)

3 movl %esi, 4(%esp)

4 movl %edi, 8(%esp)

5 movl 8(%ebp), %ebx
6 movl 12(%ebp), %edi
7 movl (%ebx), %esi

8 movl (%edi), %eax

9 movl 16 (%ebp) , %edx
10 movl (%hedx), %hecx

We see that just three registers (%ebx, %esi, and %edi) are saved on the stack
(lines 2—4). The program modifies these and three other registers (%eax, %ecx, and
%edx). At the end of the procedure, the values of registers %edi, %esi, and %ebx
are restored (not shown), while the other three are left in their modified states.

Explain this apparent inconsistency in the saving and restoring of register
states.

3.7.4 Procedure Example

As an example, consider the C functions defined in Figure 3.23, where function
caller includes a call to function swap_add. Figure 3.24 shows the stack frame
structure both just before caller calls function swap_add and while swap_add
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1 int swap_add(int *xp, int *yp)
2 o

3 int x = *xp;

4 int y = *yp;

5

6 *Xp = Y5

7 *yp = X;

8 return x + y;

9o }

10

1 int caller()

12 A

13 int argl = 534;

14 int arg2 = 1057;

15 int sum = swap_add(&argl, &arg2);
16 int diff = argl - arg2;

17

18 return sum * diff;

9 %

Figure 3.23 Example of procedure definition and call.

Just before call In body of
. to swap_add swap_add
Frame pointer _
%ebp 0| Saved %ebp Saved %ebp
-4 argl argl
-8 arg?2 arg2
Stack frame
Unused for caller Unused
+4 &arg2 +12 &arg2
%hesp AI:: 0 &argl +8 &argl
Stack pointer +4 | Return address
Frame pointer %ebp 0| Saved %ebp Stack frame
Stack pointer %esp ——> Saved %ebx for swap_add

Figure 3.24 Stack frames for caller and swap_add. Procedure swap_add retrieves
its arguments from the stack frame for caller.

is running. Some of the instructions access stack locations relative to the stack
pointer %esp while others access locations relative to the base pointer %,ebp. These
offsets are identified by the lines shown relative to the two pointers.
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New to C? Passing parameters to a function

Some languages, such as Pascal, provide two different ways to pass parameters to procedures—by
value, where the caller provides the actual parameter value, and by reference, where the caller provides
apointer to the value. In C, all parameters are passed by value, but we can mimic the effect of areference
parameter by explicitly generating a pointer to a value and passing this pointer to a procedure. We can
see this with the call by caller to swap_add (Figure 3.23). By passing pointers to argl and arg2, caller
provides a way for swap_add to modify these values.

One of the ways in which C++ extends C is the inclusion of reference parameters.

The stack frame for caller includes storage for local variables argl and arg2,
at positions —4 and —8 relative to the frame pointer. These variables must be
stored on the stack, since the code must associate an address with them. The
following assembly code from the compiled version of caller shows how it calls

swap_add:

1 caller:

2 pushl  Y%ebp Save old %ebp

3 movl %esp, %ebp Set %ebp as frame pointer
4 subl $24, Yesp Allocate 24 bytes on stack
5 movl $534, -4(%ebp) Set argl to 534

6 movl $1057, -8(%ebp) Set arg2 to 1057

7 leal —8(%ebp) , heax Compute &arg2

8 movl %heax, 4(%esp) Store on stack

9 leal -4(%ebp), %heax  Compute &argl

10 movl %eax, (%hesp) Store on stack

11 call swap_add Call the swap_add function

This code saves a copy of %ebp and sets %ebp to the beginning of the stack frame
(lines 2-3). It then allocates 24 bytes on the stack by decrementing the stack
pointer (recall that the stack grows toward lower addresses). It initializes argl
and arg?2 to 534 and 1057, respectively (lines 5-6), and computes the values of
&arg?2 and &argl and stores these on the stack to form the arguments to swap_
add (lines 7-10). It stores these arguments relative to the stack pointer, at offsets
0 and +4 for later access by swap_add. It then calls swap_add. Of the 24 bytes
allocated for the stack frame, 8 are used for the local variables, 8 are used for
passing parameters to swap_add, and 8 are not used for anything.

Aside Why does Gcc allocate space that never gets used?

We see that the code generated by Gcc for caller allocates 24 bytes on the stack even though it only
makes use of 16 of them. We will see many examples of this apparent wastefulness. cc adheres to
an x86 programming guideline that the total stack space used by the function should be a multiple of
16 bytes. Including the 4 bytes for the saved value of %ebp and the 4 bytes for the return address, caller
uses a total of 32 bytes. The motivation for this convention is to ensure a proper alignment for accessing
data. We will explain the reason for having alignment conventions and how they are implemented in
Section 3.9.3.
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The compiled code for swap_add has three parts: the “setup,” where the stack
frame is initialized; the “body,” where the actual computation of the procedure is
performed; and the “finish,” where the stack state is restored and the procedure
returns.

The following is the setup code for swap_add. Recall that before reaching this
part of the code, the call instruction will have pushed the return address onto the
stack.

1 swap_add:

2 pushl  Y%ebp Save old %ebp

3 movl %esp, %ebp Set ‘%ebp as frame pointer
4 pushl %hebx Save %ebx

Function swap_add requires register %ebx for temporary storage. Since this is
a callee-save register, it pushes the old value onto the stack as part of the stack
frame setup. At this point, the state of the stack is as shown on the right-hand side
of Figure 3.24. Register %ebp has been shifted to serve as the frame pointer for
swap_add.

The following is the body code for swap_add:

5 movl 8(%ebp) , %hedx Get xp

6 movl 12(%ebp), %hecx  Get yp

7 movl (%edx), %ebx Get x

8 movl (%hecx), %heax Get y

9 movl %heax, (%hedx) Store y at xp

10 movl %hebx, (Yecx) Store x at yp

11 addl %ebx, %heax Return value = x+y

This code retrieves its arguments from the stack frame for caller. Since the frame
pointer has shifted, the locations of these arguments has shifted from positions +4
and O relative to the old value of %esp to positions +12 and +8 relative to new value
of %ebp. The sum of variables x and y is stored in register %eax to be passed as the
returned value.

The following is the finishing code for swap_add:

12 popl %ebx Restore %ebx
13 popl %ebp Restore Yebp
14 ret Return

This code restores the values of registers %ebx and %ebp, while also resetting
the stack pointer so that it points to the stored return address, so that the ret
instruction transfers control back to caller.

The following code in caller comes immediately after the instruction calling
swap_add:

12 movl -4 (%ebp), %hedx
13 subl -8(%ebp) , %hedx
14 imull  %edx, %eax

15 leave

16 ret

227



228 Chapter 3 Machine-Level Representation of Programs

This code retrieves the values of argl and arg2 from the stack in order to compute
diff, and usesregister j%eax as the return value from swap_add. Observe the use of
the 1leave instruction to reset both the stack and the frame pointer prior to return.
We have seen in our code examples that the code generated by Gcc sometimes uses
a leave instruction to deallocate a stack frame, and sometimes it uses one or two
poplinstructions. Either approach is acceptable, and the guidelines from Intel and
AMD as to which is preferable change over time.

We can see from this example that the compiler generates code to manage the
stack structure according to a simple set of conventions. Arguments are passed
to a function on the stack, where they can be retrieved using positive offsets
(48, +12, .. .) relative to %ebp. Space can be allocated on the stack either by
using push instructions or by subtracting offsets from the stack pointer. Before
returning, a function must restore the stack to its original condition by restoring
any callee-saved registers and %ebp, and by resetting %esp so that it points to
the return address. It is important for all procedures to follow a consistent set
of conventions for setting up and restoring the stack in order for the program to
execute properly.

Practice Problem 3.32
A C function fun has the following code body:

*p:d;
return x-c;

The IA32 code implementing this body is as follows:

1 movsbl 12(%ebp) ,%edx
2 movl 16 (%ebp) , %heax
3 movl %hedx, (%eax)

4 movswl 8(%ebp),%eax

5 movl 20 (%ebp) , %edx
6 subl heax, %hedx

7 movl %hedx, Yeax

Write a prototype for function fun, showing the types and ordering of the
arguments p, d, x, and c.

Practice Problem 3.33
Given the C function

1 int proc(void)

2 A

3 int x,y;

4 scanf ("%x %x", &y, &x);
5 return x-y;

6 )
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Gcce generates the following assembly code:

1 proc:
2 pushl  Y%ebp
3 movl %esp, %ebp
4 subl $40, Y%esp
5 leal -4 (%ebp), %eax
6 movl %heax, 8(%esp)
7 leal -8(%ebp) , %eax
8 movl %heax, 4(%esp)
9 movl $.LCO, (%esp) Pointer to string "}x }x"
10 call scanf
Diagram stack frame at this point
1 movl -4 (%ebp), %eax
12 subl -8(%ebp), %eax
13 leave
14 ret

Assume that procedure proc starts executing with the following register val-
ues:

Register Value

%esp 0x800040
%ebp 0x800060

Suppose proc calls scanf (line 10), and that scanf reads values 0x46 and
0x53 from the standard input. Assume that the string “%x %x” is stored at memory
location 0x300070.

A. What value does %ebp get set to on line 3?

B. What value does %esp get set to on line 4?

C. At what addresses are local variables x and y stored?
D

. Draw a diagram of the stack frame for proc right after scanf returns. Include
as much information as you can about the addresses and the contents of the
stack frame elements.

E. Indicate the regions of the stack frame that are not used by proc.

3.7.5 Recursive Procedures

The stack and linkage conventions described in the previous section allow pro-
cedures to call themselves recursively. Since each call has its own private space
on the stack, the local variables of the multiple outstanding calls do not interfere
with one another. Furthermore, the stack discipline naturally provides the proper
policy for allocating local storage when the procedure is called and deallocating
it when it returns.
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1 int rfact(int n)

2 A

3 int result;

4 if (n <= 1)

5 result = 1;
6 else

7 result =

8 return result;
9 %

n * rfact(n-1);

Figure 3.25 C code for recursive factorial program.

Figure 3.25 shows the C code for a recursive factorial function. The assembly
code generated by Gcc is shown in Figure 3.26. Let us examine how the machine
code will operate when called with argument n. The set-up code (lines 2-5) creates
a stack frame containing the old version of %ebp, the saved value for callee-save
register %ebx, and 4 bytes to hold the argument when it calls itself recursively, as
illustrated in Figure 3.27. It uses register %ebx to save a copy of n (line 6). It sets the
return value in register %eax to 1 (line 7) in anticipation of the case where n <1,

in which event it will jump to the completion code.

For the recursive case, it computes n — 1, stores it on the stack, and calls itself
(lines 10-12). Upon completion of the code, we can assume (1) register %eax holds

Argument: n at %ebp+8

Registers:
1 rfact:
2 pushl
3 movl
4 pushl
5 subl
6 movl
7 movl
8 cmpl
9 jle
10 leal
11 movl
12 call
13 imull
14 .Lb3:
15 addl
16 popl
17 popl
18 ret

Figure 3.26 Assembly code for the recursive factorial program in Figure 3.25.

n in %ebx, result in

%ebp

%esp, %ebp
%ebx

$4, Yesp
8(%ebp), %ebx
$1, %eax

$1, %ebx

.L53
-1(%ebx), %eax
%heax, (Jesp)
rfact

%ebx, %heax

$4, Yesp
%hebx
%hebp

heax

Save old %ebp

Set %ebp as frame pointer
Save callee save register Jebx

Allocate 4 bytes on stack

Get n

result = 1
Compare n:1

If <=, goto done
Compute n-1

Store at top of stack

Call rfact(n-1)

Compute result = return value * n
done:

Deallocate 4 bytes from stack

Restore J%ebx
Restore Y%ebp

Return result
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Figure 3.27 b

Stack frame for recursive C

factorial function. The : Stack frame
state of the frame is shown > for calling
just before the recursive .8 N procedure
call.

r ) +4 | Return address
rame pointer P

%ebp ——> 0 Saved %ebp

Saved %eb >Stack frame
Stack pointer nebx for rfact
hesp ———> n-1

the value of (n — 1)! and (2) callee-save register %ebx holds the parameter n. It
therefore multiplies these two quantities (line 13) to generate the return value of
the function.

For both cases—the terminal condition and the recursive call—the code pro-
ceeds to the completion section (lines 15-17) to restore the stack and callee-saved
register, and then it returns.

We can see that calling a function recursively proceeds just like any other
function call. Our stack discipline provides a mechanism where each invocation
of a function has its own private storage for state information (saved values of
the return location, frame pointer, and callee-save registers). If need be, it can
also provide storage for local variables. The stack discipline of allocation and
deallocation naturally matches the call-return ordering of functions. This method
of implementing function calls and returns even works for more complex patterns,
including mutual recursion (for example, when procedure P calls Q, which in turn
calls P).

Practice Problem 3.34
For a C function having the general structure

int rfun(unsigned x) {
if ( )
return ;
unsigned nx = ;
int rv = rfun(nx);
return 5

}

Gee generates the following assembly code (with the setup and completion code
omitted):

movl 8(%ebp), %ebx

.
2 movl $0, %eax

3 testl  %ebx, %ebx
4 je L3
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5 movl %ebx, Yeax

6 shrl %heax Shift right by 1
7 movl %heax, (fesp)

8 call rfun

9 movl %ebx, Yedx

10 andl $1, Yedx

11 leal (%edx,%eax), %eax

12 .L3:

A. What value does rfun store in the callee-save register %ebx?
B. Fill in the missing expressions in the C code shown above.

C. Describe in English what function this code computes.

3.8 Array Allocation and Access

Arrays in C are one means of aggregating scalar data into larger data types. C
uses a particularly simple implementation of arrays, and hence the translation
into machine code is fairly straightforward. One unusual feature of C is that we
can generate pointers to elements within arrays and perform arithmetic with these
pointers. These are translated into address computations in machine code.

Optimizing compilers are particularly good at simplifying the address compu-
tations used by array indexing. This can make the correspondence between the C
code and its translation into machine code somewhat difficult to decipher.

3.8.1 Basic Principles

For data type T and integer constant N, the declaration
T A[INT;

has two effects. First, it allocates a contiguous region of L - N bytes in memory,
where L is the size (in bytes) of data type T. Let us denote the starting location
as x,. Second, it introduces an identifier A that can be used as a pointer to the
beginning of the array. The value of this pointer will be x,. The array elements can
be accessed using an integer index ranging between 0 and N—1. Array element i
will be stored at address x, + L - i.

As examples, consider the following declarations:

char A[12];
char *B[8];
double C[6];
double *D[5];
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These declarations will generate arrays with the following parameters:

Array Element size Total size Start address Element i
A 1 12 Xp Xp =+ i
B 4 32 XB XB =+ 4l
C 8 48 X xc+8i
D 4 20 Xp xp+4i

Array A consists of 12 single-byte (char) elements. Array C consists of six
double-precision floating-point values, each requiring 8 bytes. B and D are both
arrays of pointers, and hence the array elements are 4 bytes each.

The memory referencing instructions of IA32 are designed to simplify array
access. For example, suppose E is an array of int’s, and we wish to evaluate E[i],
where the address of E is stored in register %edx and i is stored in register %ecx.
Then the instruction

movl (%edx,%ecx,4),%eax

will perform the address computation x; + 4i, read that memory location, and
copy the result to register %eax. The allowed scaling factors of 1, 2, 4, and 8 cover
the sizes of the common primitive data types.

Practice Problem 3.35

Consider the following declarations:

short S[7];
short *T[3];
short **U[6] ;

long double V[8];
long double *W[4];

Fill in the following table describing the element size, the total size, and the
address of element i for each of these arrays.

Array Element size Total size Start address Element i
S Xs
T XT
U Ay
\ Xy
W Xy

3.8.2 Pointer Arithmetic

C allows arithmetic on pointers, where the computed value is scaled according to
the size of the data type referenced by the pointer. That is, if p is a pointer to data
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of type T, and the value of p is x;, then the expression p+i has value x, + L - i,
where L is the size of data type T.

The unary operators & and * allow the generation and dereferencing of point-
ers. That is, for an expression Expr denoting some object, &Expr is a pointer giving
the address of the object. For an expression A Expr denoting an address, *A Expr
gives the value at that address. The expressions Expr and *&Expr are therefore
equivalent. The array subscripting operation can be applied to both arrays and
pointers. The array reference A[i] is identical to the expression * (A+1i). It com-
putes the address of the ith array element and then accesses this memory location.

Expanding on our earlier example, suppose the starting address of integer
array E and integer index i are stored in registers %edx and %ecx, respectively.
The following are some expressions involving E. We also show an assembly-code
implementation of each expression, with the result being stored in register %eax.

Expression Type Value Assembly code

E int * Xg movl %edx, %eax

E[0] int M[xg] movl (%edx) ,%eax

E[i] int M[xg + 4i] movl (%edx,%ecx,4) ,%eax
&E[2] int *  xg+8 leal 8(%edx) ,%eax

E+i-1 int * xg+4i—4 leal -4 (%edx,%ecx,4) ,heax
*(E+i-3) int * M[xg + 4i — 12] movl -12(%edx, %ecx,4) ,%heax
&E[i]-E int i movl %ecx,%eax

In these examples, the 1leal instruction is used to generate an address, while movl
is used to reference memory (except in the first and last cases, where the former
copies an address and the latter copies the index). The final example shows that
one can compute the difference of two pointers within the same data structure,
with the result divided by the size of the data type.

Practice Problem 3.36

Suppose the address of short integer array S and integer index i are stored in
registers %edx and %ecx, respectively. For each of the following expressions, give
its type, a formula for its value, and an assembly code implementation. The result
should be stored in register jeax if it is a pointer and register element %ax if it is
a short integer.

Expression Type Value Assembly code

S+1
S(3]

&S [i]
S[4*i+1]
S+i-5
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3.8.3 Nested Arrays

The general principles of array allocation and referencing hold even when we
create arrays of arrays. For example, the declaration

int A[5][3];
is equivalent to the declaration

typedef int row3_t[3];
row3_t A[5];

Data type row3_t is defined to be an array of three integers. Array A contains five
such elements, each requiring 12 bytes to store the three integers. The total array
size is then 4 - 5 - 3 = 60 bytes.

Array A can also be viewed as a two-dimensional array with five rows and
three columns, referenced as A[0] [0] through A[4] [2]. The array elements are
ordered in memory in “row major” order, meaning all elements of row 0, which
can be written A[0], followed by all elements of row 1 (A[1]), and so on.

Row Element Address

ATO]  A[0I[0]  x,
ATOIT1]  xy+4
ATOI[2]  x,+8
AC1]  AQL1[0]  x,+12
ATIIT1]  x,+16
AT1112] x4 +20
Al2]  A[21[0]  x,+24
AT21T1]  x,+28
AT21[2]  x,+32
A[3]  A[31[0]  x,+36
ATBIT1]  x,+40
A[B1[2]  x,+44
Al4]  A[41[0]  x,+48
AT41T1]  x,+52
AT41[2]  x,+56

This ordering is a consequence of our nested declaration. Viewing A as an array of
five elements, each of which is an array of three int’s, we first have A[0], followed
by A[1], and so on.

To access elements of multidimensional arrays, the compiler generates code to
compute the offset of the desired element and then uses one of the Mov instructions
with the start of the array as the base address and the (possibly scaled) offset as
an index. In general, for an array declared as

T DIRILCI;
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array element D[i] [j] is at memory address
&[i] [j]1 =xp+ L(C i + j), (3.1

where L is the size of data type T in bytes. As an example, consider the 5 x 3integer
array A defined earlier. Suppose x,, i, and j are at offsets 8, 12, and 16 relative to
%ebp, respectively. Then array element A[i] [j] can be copied to register %eax by
the following code:

A at Yebp+8, i at %ebp+12,j at %ebp+16

1 movl 12(%ebp) , %heax Get 1

2 leal (%eax,%eax,2), %heax Compute 3%i

3 movl 16 (%ebp), %edx Get j

4 sall $2, %edx Compute j*4

5 addl 8(%ebp), %edx Compute x, +4j

6 movl (%hedx,%eax,4), %eax Read from M[x, + 4j + 12i]

As can be seen, this code computes the element’s address as x, +4j + 12i =
x, +4(3i + j) using a combination of shifting, adding, and scaling to avoid more
costly multiplication instructions.

Practice Problem 3.37

Consider the following source code, where M and N are constants declared with

#define:

1 int mat1([M] [N];

2 int mat2[N] [M];

3

4 int sum_element(int i, int j) {

5 return matl[i] [j] + mat2[j][i];
6 %

In compiling this program, ccc generates the following assembly code:

i at %ebp+8, j at Jebp+12
movl 8(%ebp), %hecx
movl 12(%ebp) , %hedx
leal 0(,%ecx,8), %eax
subl hecx, heax
addl hedx, heax
leal (%edx,%edx,4), %edx
addl %hecx, hedx
movl matl(,%eax,4), %eax
addl mat2(,%edx,4), %eax

O 0 N O L AW N =

Use your reverse engineering skills to determine the values of M and N based on
this assembly code.
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3.8.4 Fixed-Size Arrays

The C compiler is able to make many optimizations for code operating on multi-
dimensional arrays of fixed size. For example, suppose we declare data type fix_
matrix to be 16 x 16 arrays of integers as follows:

1 #define N 16
2 typedef int fix_matrix[N][N];

(This example illustrates a good coding practice. Whenever a program uses some
constant as an array dimension or buffer size, it is best to associate a name with
it via a #define declaration, and then use this name consistently, rather than the
numeric value. That way, if an occasion ever arises to change the value, it can be
done by simply modifying the #define declaration.) The code in Figure 3.28(a)
computes element i, k of the product of arrays A and B, according to the formula
2 0< j<n i.j * bji- The C compiler generates code that we then recoded into C,
shown as function fix_prod_ele_opt in Figure 3.28(b). This code contains a
number of clever optimizations. It recognizes that the loop will access just the
elements of row i of array A, and so it creates a local pointer variable, which
we have named Arow, to provide direct access to row i of the array. Arow is
initialized to &A[i] [0], and so array element A[i] [j] can be accessed as Arow[j].
It also recognizes that the loop will access the elements of array B as B[0] [k],
B[1] [k], ... ,B[15] [k] insequence. These elements occupy positions in memory
starting with the address of array element B[0] [k] and spaced 64 bytes apart.
The program can therefore use a pointer variable Bptr to access these successive
locations. In C, this pointer is shown as being incremented by N (16), although in
fact the actual address is incremented by 4 - 16 = 64.

The following is the actual assembly code for the loop. We see that four
variables are maintained in registers within the loop: Arow, Bptr, j, and result.

Registers: Arow in Jesi, Bptr in Jlecx, j in Jjjedx, result in Jebx

1 .L6: loop:

2 movl (%hecx), heax Get *Bptr

3 imull (%esi,%edx,4), %eax Multiply by Arow[j]
4 addl Y%eax, %hebx Add to result

5 addl $1, Yedx Increment j

6 addl $64, %ecx Add 64 to Bptr

7 cmpl $16, %edx Compare j:16

8 jne .L6 If !=, goto loop

As can be seen, register %ecx is incremented by 64 within the loop (line 6).
Machine code considers every pointer to be a byte address, and so in compiling
pointer arithmetic, it must scale every increment by the size of the underlying data

type.
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Practice Problem 3.38
The following C code sets the diagonal elements of one of our fixed-size arrays to

val:

1 /* Set all diagonal elements to val */

2 void fix_set_diag(fix_matrix A, int val) {
3 int i;

4 for (i = 0; 1 < N; i++)

5 A[i] [i] = val;

6

When compiled, Gce generates the following assembly code:

A at Yebp+8, val at l%ebp+12

addl $68, %eax
cmpl $1088, Yeax
jne .L14

1 movl 8(%ebp), %hecx

2 movl 12(%ebp) , %hedx

3 movl $0, Yeax

4 .L14:

5 movl %hedx, (fecx,%eax)
6

7

8

Create a C-code program fix_set_diag_opt that uses optimizations similar
to those in the assembly code, in the same style as the code in Figure 3.28(b). Use
expressions involving the parameter N rather than integer constants, so that your
code will work correctly if N is redefined.

3.8.5 Variable-Size Arrays

Historically, C only supported multidimensional arrays where the sizes (with the
possible exception of the first dimension) could be determined at compile time.
Programmers requiring variable-sized arrays had to allocate storage for these
arrays using functions such as malloc or calloc, and had to explicitly encode
the mapping of multidimensional arrays into single-dimension ones via row-major
indexing, as expressed in Equation 3.1. ISO C99 introduced the capability to have
array dimensions be expressions that are computed as the array is being allocated,
and recent versions of Gce support most of the conventions for variable-sized
arrays in ISO C99.

In the C version of variable-size arrays, we can declare an array
int Alexprl] [expr2], either as a local variable or as an argument to a function,
and then the dimensions of the array are determined by evaluating the expres-
sions exprl and expr2 at the time the declaration is encountered. So, for example,
we can write a function to access element i, j of an n x n array as follows:

1 int var_ele(int n, int A[n][n], int i, int j) {
2 return A[i] [j]1;
3 }
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(a) Original C code

1 /* Compute i,k of fixed matrix product */

2 int fix_prod_ele (fix_matrix A, fix_matrix B, int i, int k) {
3 int j;

4 int result = 0;

5

6 for (j = 0; j < N; j++)

7 result += A[i][j]1 * B[jl[k];

8

9 return result;

10 }

(b) Optimized C code

1 /* Compute i,k of fixed matrix product */
2 int fix_prod_ele_opt(fix_matrix A, fix_matrix B, int i, int k) {
3 int *Arow = &A[i][0];

4 int *Bptr = &B[0] [k];

5 int result = O;

6 int j;

7 for (j =0; j !'=N; j++) {

8 result += Arow[j] * *Bptr;

9 Bptr += N;

10 ¥

11 return result;

12 }

Figure 3.28 Original and optimized code to compute element i, k of matrix product
for fixed-length arrays. The compiler performs these optimizations automatically.

The parameter n must precede the parameter A[n] [n], so that the function can
compute the array dimensions as the parameter is encountered.
Gece generates code for this referencing function as

n at %ebp+8, A at %ebp+12, i at Y%ebp+16, j at %ebp+20

1 movl 8(%ebp), %eax Get n

2 sall $2, Yeax Compute 4%n

3 movl %heax, %hedx Copy 4%n

4 imull  16(%ebp), %edx Compute 4+*n*i

5 movl 20 (%ebp) , %eax Get j

6 sall $2, %eax Compute 4%j

7 addl 12(%ebp) , %eax Compute xy +4 % j

8 movl (%heax,%edx), %eax Read from x) + 4% (n*i—+ j)

As the annotations show, this code computes the address of element i, j as x, +
4(n -i + j). The address computation is similar to that of the fixed-size array
(page 236), except that (1) the positions of the arguments on the stack are shifted
due to the addition of parameter n, and (2) a multiply instruction is used (line 4) to
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/* Compute i,k of variable matrix product */

int var_prod_ele(int n, int A[n][n], int B[n][n], int i, int k) {
int j;
int result = O;

for (j = 0; j < n; j++)
result += A[i][j] * B[jl[k];

return result;

O VO O N O L AW N =

—

}

Figure 3.29 Code to compute element i, k of matrix product for variable-sized
arrays. The compiler performs optimizations similar to those for fixed-size arrays.

compute n - i, rather than an leal instruction to compute 3i. We see therefore that
referencing variable-size arrays requires only a slight generalization over fixed-
size ones. The dynamic version must use a multiplication instruction to scale i by
n, rather than a series of shifts and adds. In some processors, this multiplication
can incur a significant performance penalty, but it is unavoidable in this case.

When variable-sized arrays are referenced within a loop, the compiler can
often optimize the index computations by exploiting the regularity of the access
patterns. For example, Figure 3.29 shows C code to compute element i, k of the
product of two n x n arrays A and B. The compiler generates code similar to what
we saw for fixed-size arrays. In fact, the code bears close resemblance to that of
Figure 3.28(b), except that it scales Bptr, the pointer to element B[j] [k], by the
variable value n rather than the fixed value N on each iteration.

The following is the assembly code for the loop of var_prod_ele:

n stored at %ebp+8
Registers: Arow in %esi, Bptr in %ecx, j in %edx,
result in %ebx, %edi holds 4*n

1 .L30: loop:

2 movl (%hecx), %heax Get *Bptr

3 imull  (%esi,%edx,4), %eax Multiply by Arowl[j]
4 addl %eax, %hebx Add to result

5 addl $1, %edx Increment j

6 addl %edi, %ecx Add 4*n to Bptr

7 cmpl %edx, 8(%ebp) Compare n:j

8 jg .L30 If >, goto loop

We see that the program makes use of both a scaled value 4n (register %edi) for
incrementing Bptr and the actual value of n stored at offset 8 from %ebp to check
the loop bounds. The need for two values does not show up in the C code, due to
the scaling of pointer arithmetic. The code retrieves the value of n from memory on
each iteration to check for loop termination (line 7). This is an example of register
spilling: there are not enough registers to hold all of the needed temporary data,
and hence the compiler must keep some local variables in memory. In this case
the compiler chose to spill r, because it is a “read-only” value—it does not change



Section 3.9 Heterogeneous Data Structures

value within the loop. IA32 must often spill loop values to memory, since the
processor has so few registers. In general, reading from memory can be done more
readily than writing to memory, and so spilling read-only variables is preferable.
See Problem 3.61 regarding how to improve this code to avoid register spilling.

3.9 Heterogeneous Data Structures

C provides two mechanisms for creating data types by combining objects of dif-
ferent types: structures, declared using the keyword struct, aggregate multiple
objects into a single unit; unions, declared using the keyword union, allow an
object to be referenced using several different types.

3.9.1 Structures

The C struct declaration creates a data type that groups objects of possibly
different types into a single object. The different components of a structure are
referenced by names. The implementation of structures is similar to that of arrays
in that all of the components of a structure are stored in a contiguous region of
memory, and a pointer to a structure is the address of its first byte. The compiler
maintains information about each structure type indicating the byte offset of
each field. It generates references to structure elements using these offsets as
displacements in memory referencing instructions.

New to C? Representing an object as a struct

241

The struct data type constructor is the closest thing C provides to the objects of C++ and Java. It
allows the programmer to keep information about some entity in a single data structure, and reference

that information with names.
For example, a graphics program might represent a rectangle as a structure:

struct rect {

int 11x; /* X coordinate of lower-left corner */
int 1ly; /* Y coordinate of lower-left corner */
int color; /* Coding of color */
int width; /* Width (in pixels) */
int height; /* Height (in pixels) */

We could declare a variable r of type struct rect and set its field values as follows:

struct rect r;
r.11x = r.1lly = 0;
r.color O0xFFOOFF;
r.width = 10;
r.height = 20;

where the expression r.11x selects field 11x of structure r.
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Alternatively, we can both declare the variable and initialize its fields with a single statement:
struct rect r = { 0, 0, OxFFOOFF, 10, 20 };

It is common to pass pointers to structures from one place to another rather than copying them.
For example, the following function computes the area of a rectangle, where a pointer to the rectangle
struct is passed to the function:

int area(struct rect *rp)
{

return (krp).width * (*rp).height;
}

The expression (*rp).width dereferences the pointer and selects the width field of the resulting
structure. Parentheses are required, because the compiler would interpret the expression *rp.width as
*(rp.width), which is not valid. This combination of dereferencing and field selection is so common
that C provides an alternative notation using —>. That is, rp->width is equivalent to the expression
(*rp) .width. For example, we could write a function that rotates a rectangle counterclockwise by
90 degrees as

void rotate_left(struct rect *rp)

{
/* Exchange width and height */
int t = rp—>height;
rp—>height = rp->width;
rp—>width = t;
/* Shift to new lower-left corner */
rp—>1lx -= t;
}

The objects of C++ and Java are more elaborate than structures in C, in that they also associate
a set of methods with an object that can be invoked to perform computation. In C, we would simply
write these as ordinary functions, such as the functions area and rotate_left shown above.

As an example, consider the following structure declaration:

struct rec {
int i;
int j;
int a[3];
int *p;

};

This structure contains four fields: two 4-byte int’s, an array consisting of three
4-byte int’s, and a 4-byte integer pointer, giving a total of 24 bytes:

Offset 0 4 8 20 24
Contents i j a[0] al1] al2] P
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Observe that array a is embedded within the structure. The numbers along the
top of the diagram give the byte offsets of the fields from the beginning of the
structure.

To access the fields of a structure, the compiler generates code that adds the
appropriate offset to the address of the structure. For example, suppose variable r
of type struct rec * is in register %edx. Then the following code copies element
r->i to element r->j:

1 movl (%hedx), %eax Get r->i
2 movl heax, 4(%hedx) Store in r->j

Since the offset of field i is 0, the address of this field is simply the value of r. To
store into field j, the code adds offset 4 to the address of r.

To generate a pointer to an object within a structure, we can simply add the
field’s offset to the structure address. For example, we can generate the pointer
&(r->a[1]) by adding offset 8 +4 - 1= 12. For pointer r in register %eax and
integer variable i in register %edx, we can generate the pointer value & (r->a[i])
with the single instruction

Registers: r in J%edx, i in Jjeax
1 leal 8(%edx,%heax,4), %heax Set Yeax to &r->ali]

As a final example, the following code implements the statement
r->p = &r—->alr->i + r->jl;

starting with r in register %edx:

1 movl 4 (%edx), %heax Get r->j

2 addl (%hedx), %eax Add r->i

3 leal 8(%edx,%heax,4), %eax Compute &r->al[r->i + r->j]
4 movl Y%eax, 20 (%hedx) Store in r->p

As these examples show, the selection of the different fields of a structure is
handled completely at compile time. The machine code contains no information
about the field declarations or the names of the fields.

Practice Problem 3.39

Consider the following structure declaration:

struct prob {
int *p;
struct {
int x;
int y;
} s;
struct prob *next;

};

243



244 Chapter 3 Machine-Level Representation of Programs

This declaration illustrates that one structure can be embedded within another,
just as arrays can be embedded within structures, and arrays can be embedded
within arrays.

The following procedure (with some expressions omitted) operates on this
structure:

void sp_init(struct prob *sp)

{
sp—>s.X = H
Sp=>P = >
sp—>next = H
X

A. What are the offsets (in bytes) of the following fields?

p:
S.X!
s.y:
next:

o

How many total bytes does the structure require?
C. The compiler generates the following assembly code for the body of sp_

init:

sp at %ebp+8
movl 8(%ebp), %eax

1

2 movl 8(%eax), %edx
3 movl %edx, 4(%eax)
4 leal 4 (%heax), %hedx
5 movl %edx, (Jeax)
6 movl %eax, 12(%eax)

On the basis of this information, fill in the missing expressions in the code
for sp_init.

3.9.2 Unions

Unions provide a way to circumvent the type system of C, allowing a single object
to be referenced according to multiple types. The syntax of a union declaration is
identical to that for structures, but its semantics are very different. Rather than
having the different fields reference different blocks of memory, they all reference
the same block.

Consider the following declarations:

struct 83 {
char c;
int i[2];
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double v;
};
union U3 {
char c;
int i[2];
double v;

};

When compiled on an IA32 Linux machine, the offsets of the fields, as well as the
total size of data types S3 and U3, are as shown in the following table:

Type c i v Size
S3 0 4 12 20
U3 0 0 0 8

(We will see shortly why i has offset 4 in 83 rather than 1, and we will discuss
why the results would be different for a machine running Microsoft Windows.)
For pointer p of type union U3 *, references p—>c, p—>i[0], and p—>v would all
reference the beginning of the data structure. Observe also that the overall size of
a union equals the maximum size of any of its fields.

Unions can be useful in several contexts. However, they can also lead to nasty
bugs, since they bypass the safety provided by the C type system. One application
is when we know in advance that the use of two different fields in a data structure
will be mutually exclusive. Then, declaring these two fields as part of a union rather
than a structure will reduce the total space allocated.

For example, suppose we want to implement a binary tree data structure
where each leaf node has a double data value, while each internal node has
pointers to two children, but no data. If we declare this as

struct NODE_S {
struct NODE_S *left;
struct NODE_S *right;
double data;

};

then every node requires 16 bytes, with half the bytes wasted for each type of node.
On the other hand, if we declare a node as

union NODE_U {
struct {
union NODE_U xleft;
union NODE_U *right;
} internal;
double data;
};
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then every node will require just 8 bytes. If n is a pointer to a node of type union
NODE *, we would reference the data of a leaf node as n->data, and the children
of an internal node as n->internal.left and n->internal.right.

With this encoding, however, there is no way to determine whether a given
node is a leaf or an internal node. A common method is to introduce an enumer-
ated type defining the different possible choices for the union, and then create a
structure containing a tag field and the union:

typedef enum { N_LEAF, N_INTERNAL } nodetype_t;

struct NODE_T {
nodetype_t type;
union {
struct {
struct NODE_T *left;
struct NODE_T *right;
} internal;
double data;
} info;

};

This structure requires a total of 12 bytes: 4 for type, and either 4 each for
info.internal.left and info.internal.right, or 8 for info.data. In this
case, the savings gain of using a union is small relative to the awkwardness of
the resulting code. For data structures with more fields, the savings can be more
compelling.

Unions can also be used to access the bit patterns of different data types.
For example, the following code returns the bit representation of a float as an
unsigned:

unsigned float2bit(float f)

1
2 A

3 union {

4 float £f;

5 unsigned u;
6 } temp;

7 temp.f = £;

8 return temp.u;
9}

In this code, we store the argument in the union using one data type, and access it
using another. Interestingly, the code generated for this procedure is identical to
that for the following procedure:

unsigned copy(unsigned u)
{

1
2
3 return u;
4
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The body of both procedures is just a single instruction:
1 movl 8(%ebp), %heax

This demonstrates the lack of type information in machine code. The argu-
ment will be at offset 8 relative to %ebp regardless of whether it is a float or an
unsigned. The procedure simply copies its argument as the return value without
modifying any bits.

When using unions to combine data types of different sizes, byte-ordering
issues can become important. For example, suppose we write a procedure that will
create an 8-byte double using the bit patterns given by two 4-byte unsigned’s:

1 double bit2double(unsigned word0, unsigned wordl)
2 o

3 union {

4 double d;

5 unsigned ul2];
6 } temp;

7

8 temp.ul[0] = wordO;
9 temp.ul[1] = wordl;
10 return temp.d;

11 }

On a little-endian machine such as IA32, argument word0 will become the
low-order 4 bytes of d, while word1 will become the high-order 4 bytes. On a big-
endian machine, the role of the two arguments will be reversed.

Practice Problem 3.40

Suppose you are given the job of checking that a C compiler generates the proper
code for structure and union access. You write the following structure declaration:

typedef union {

struct {
short v;
short d;
int s;
}t1;
struct {
int a[2];
char *p;
} t2;
} u_type;

You write a series of functions of the form

void get(u_type *up, TYPE *dest) {
*dest = EXPR;
}
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with different access expressions EXPR, and with destination data type TYPE set
according to type associated with EXPR. You then examine the code generated
when compiling the functions to see if they match your expectations.

Suppose in these functions that up and dest are loaded into registers %eax and
%edx, respectively. Fill in the following table with data type TYPE and sequences
of 1-3 instructions to compute the expression and store the result at dest. Try to
use just registers %eax and %edx, using register %ecx when these do not suffice.

EXPR TYPE Code

up->tl.s int movl 4 (%eax), %eax

movl %eax, (Y%edx)

up—->tl.v

&up—>tl.d

up—>t2.a

up—>t2.alup->t1l.s]

*up->t2.p

3.9.3 Data Alignment

Many computer systems place restrictions on the allowable addresses for the
primitive data types, requiring that the address for some type of object must be a
multiple of some value K (typically 2, 4, or 8). Such alignment restrictions simplify
the design of the hardware forming the interface between the processor and the
memory system. For example, suppose a processor always fetches 8 bytes from
memory with an address that must be a multiple of 8. If we can guarantee that any
double will be aligned to have its address be a multiple of 8, then the value can
be read or written with a single memory operation. Otherwise, we may need to
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perform two memory accesses, since the object might be split across two 8-byte
memory blocks.

The IA32 hardware will work correctly regardless of the alignment of data.
However, Intel recommends that data be aligned to improve memory system
performance. Linux follows an alignment policy where 2-byte data types (e.g.,
short) must have an address that is a multiple of 2, while any larger data types
(e.g., int, int *, float, and double) must have an address that is a multiple of
4. Note that this requirement means that the least significant bit of the address of
an object of type short must equal zero. Similarly, any object of type int, or any
pointer, must be at an address having the low-order 2 bits equal to zero.

Aside A case of mandatory alignment

For most IA32 instructions, keeping data aligned improves efficiency, but it does not affect program
behavior. On the other hand, some of the SSE instructions for implementing multimedia operations
will not work correctly with unaligned data. These instructions operate on 16-byte blocks of data, and
the instructions that transfer data between the SSE unit and memory require the memory addresses to
be multiples of 16. Any attempt to access memory with an address that does not satisfy this alignment
will lead to an exception, with the default behavior for the program to terminate.

This is the motivation behind the IA32 convention of making sure that every stack frame is a
multiple of 16 bytes long (see the aside of page 226). The compiler can allocate storage within a stack
frame in such a way that a block can be stored with a 16-byte alignment.

Aside Alignment with Microsoft Windows

Microsoft Windows imposes a stronger alignment requirement—any primitive object of K bytes, for
K =2,4, or 8§ must have an address that is a multiple of K. In particular, it requires that the address
of adouble or a long long be a multiple of 8. This requirement enhances the memory performance at
the expense of some wasted space. The Linux convention, where 8-byte values are aligned on 4-byte
boundaries was probably good for the 1386, back when memory was scarce and memory interfaces were
only 4 bytes wide. With modern processors, Microsoft’s alignment is a better design decision. Data type
long double, for which Gcc generates IA32 code allocating 12 bytes (even though the actual data type
requires only 10 bytes) has a 4-byte alignment requirement with both Windows and Linux.

Alignment is enforced by making sure that every data type is organized and
allocated in such a way that every object within the type satisfies its alignment
restrictions. The compiler places directives in the assembly code indicating the
desired alignment for global data. For example, the assembly-code declaration of
the jump table beginning on page 217 contains the following directive on line 2:

.align 4

This ensures that the data following it (in this case the start of the jump table) will
start with an address that is a multiple of 4. Since each table entry is 4 bytes long,
the successive elements will obey the 4-byte alignment restriction.
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Library routines that allocate memory, such as malloc, must be designed
so that they return a pointer that satisfies the worst-case alignment restriction
for the machine it is running on, typically 4 or 8. For code involving structures,
the compiler may need to insert gaps in the field allocation to ensure that each
structure element satisfies its alignment requirement. The structure then has some
required alignment for its starting address.

For example, consider the following structure declaration:

struct S1 {

int 1i;

char c;

int j;
s

Suppose the compiler used the minimal 9-byte allocation, diagrammed as
follows:

Offset 0 4 5 9

Contents | i | c | A |

Then it would be impossible to satisfy the 4-byte alignment requirement for both
fields i (offset 0) and j (offset 5). Instead, the compiler inserts a 3-byte gap (shown
here as shaded in blue) between fields c and j:

Offset 0 45 8 12
Contents | i | c | | J

As aresult, j has offset 8, and the overall structure size is 12 bytes. Further-
more, the compiler must ensure that any pointer p of type struct Si* satisfies
a 4-byte alignment. Using our earlier notation, let pointer p have value x,. Then
xp must be a multiple of 4. This guarantees that both p->1i (address x;,) and p->j
(address x;, + 8) will satisfy their 4-byte alignment requirements.

In addition, the compiler may need to add padding to the end of the structure
so that each element in an array of structures will satisfy its alignment requirement.
For example, consider the following structure declaration:

struct S2 {
int 1i;
int j;
char c;
};

If we pack this structure into 9 bytes, we can still satisfy the alignment requirements
for fields i and j by making sure that the starting address of the structure satisfies
a 4-byte alignment requirement. Consider, however, the following declaration:

struct S2 d[4];
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With the 9-byte allocation, it is not possible to satisfy the alignment requirement
for each element of d, because these elements will have addresses x4, x4 + 9,
x4 + 18, and x4 + 27. Instead, the compiler allocates 12 bytes for structure S2,
with the final 3 bytes being wasted space:

Offset 0 4 8 9 12
Contents i j | c | |

That way the elements of d will have addresses x4, x4 + 12, x4 + 24, and x4 + 36.
As long as x4 is a multiple of 4, all of the alignment restrictions will be satisfied.

Practice Problem 3.41

For each of the following structure declarations, determine the offset of each field,
the total size of the structure, and its alignment requirement under Linux/IA32.

A. struct P1 { int i; char c; int j; char d; };
struct P2 { int i; char c; char d; int j; };
struct P3 { short w[3]; char c[3] };
struct P4 { short w[3]; char *c[3] };
struct P3 { struct P1 a[2]; struct P2 *p };

monOw

Practice Problem 3.42
For the structure declaration

struct {
char *a;
short b;
double [
char d;
float e;
char f;
long long g;
void *h;

} foo;

suppose it was compiled on a Windows machine, where each primitive data type
of K bytes must have an offset that is a multiple of K.

A. What are the byte offsets of all the fields in the structure?
B. What is the total size of the structure?

C. Rearrange the fields of the structure to minimize wasted space, and then
show the byte offsets and total size for the rearranged structure.
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3.10 Putting It Together: Understanding Pointers

Pointers are a central feature of the C programming language. They serve as a
uniform way to generate references to elements within different data structures.
Pointers are a source of confusion for novice programmers, but the underlying
concepts are fairly simple. Here we highlight some key principles of pointers and
their mapping into machine code.

e Every pointer has an associated type. This type indicates what kind of object
the pointer points to. Using the following pointer declarations as illustrations,

int *ip;
char **cpp;

variable ip is a pointer to an object of type int, while cpp is a pointer to an
object that itself is a pointer to an object of type char. In general, if the object
has type T, then the pointer has type *7'. The special void * type represents a
generic pointer. For example, the malloc function returns a generic pointer,
which is converted to a typed pointer via either an explicit cast or by the
implicit casting of the assignment operation. Pointer types are not part of
machine code; they are an abstraction provided by C to help programmers
avoid addressing errors.

e Every pointer has a value. This value is an address of some object of the
designated type. The special NULL (0) value indicates that the pointer does
not point anywhere.

e Pointers are created with the & operator. This operator can be applied to any
C expression that is categorized as an lvalue, meaning an expression that can
appear on the left side of an assignment. Examples include variables and the
elements of structures, unions, and arrays. We have seen that the machine-
code realization of the & operator often uses the leal instruction to compute
the expression value, since this instruction is designed to compute the address
of a memory reference.

e Pointers are dereferenced with the * operator. The result is a value having the
type associated with the pointer. Dereferencing is implemented by a memory
reference, either storing to or retrieving from the specified address.

e Arrays and pointers are closely related. The name of an array can be referenced
(but not updated) as if it were a pointer variable. Array referencing (e.g.,
a[3]) has the exact same effect as pointer arithmetic and dereferencing (e.g.,
*(a+3)). Both array referencing and pointer arithmetic require scaling the
offsets by the object size. When we write an expression p+i for pointer p with
value p, the resulting address is computed as p + L - i, where L is the size of
the data type associated with p.

e Casting from one type of pointer to another changes its type but not its value.
One effect of casting is to change any scaling of pointer arithmetic. So for
example, if p is a pointer of type char * having value p, then the expression
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(int *) p+7 computes p + 28, while (int *) (p+7) computes p + 7. (Recall
that casting has higher precedence than addition.)

e Pointers can also point to functions. This provides a powerful capability for
storing and passing references to code, which can be invoked in some other
part of the program. For example, if we have a function defined by the proto-

type
int fun(int x, int *p);

then we can declare and assign a pointer fp to this function by the following
code sequence:

(int) (xfp)(int, int *);
fp = fun;

We can then invoke the function using this pointer:

int y = 1;
int result = fp(3, &y);

The value of a function pointer is the address of the first instruction in the
machine-code representation of the function.

New to C? Function pointers
The syntax for declaring function pointers is especially difficult for novice programmers to understand.
For a declaration such as

int (*f) (intx*);

it helps to read it starting from the inside (starting with “f£”) and working outward. Thus, we see that £
is a pointer, as indicated by “(x£).” It is a pointer to a function that has a single int * as an argument,
as indicated by “ (x£) (int*)”. Finally, we see that it is a pointer to a function that takes an int * as an
argument and returns int.

The parentheses around *£ are required, because otherwise the declaration

int *f(intx*);
would be read as
(int *) f(intx*);

That is, it would be interpreted as a function prototype, declaring a function £ that has an int * as its
argument and returns an int *.
Kernighan & Ritchie [58, Sect. 5.12] present a helpful tutorial on reading C declarations.
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3.11 Life in the Real World: Using the cbB Debugger

The GNU debugger DB provides a number of useful features to support the
run-time evaluation and analysis of machine-level programs. With the examples
and exercises in this book, we attempt to infer the behavior of a program by
just looking at the code. Using GDB, it becomes possible to study the behavior
by watching the program in action, while having considerable control over its
execution.

Figure 3.30 shows examples of some GDB commands that help when working
with machine-level, IA32 programs. It is very helpful to first run oBipUMP to get
a disassembled version of the program. Our examples are based on running GpDB
on the file prog, described and disassembled on page 164. We start Gps with the
following command line:

unix> gdb prog

The general scheme is to set breakpoints near points of interest in the pro-
gram. These can be set to just after the entry of a function, or at a program address.
When one of the breakpoints is hit during program execution, the program will
halt and return control to the user. From a breakpoint, we can examine different
registers and memory locations in various formats. We can also single-step the
program, running just a few instructions at a time, or we can proceed to the next
breakpoint.

As our examples suggest, GDB has an obscure command syntax, but the on-
line help information (invoked within GpB with the help command) overcomes
this shortcoming. Rather than using the command-line interface to GpB, many
programmers prefer using bbb, an extension to GDB that provides a graphic user
interface.

Web Aside ASM:OPT Machine code generated with higher levels of optimization

In our presentation, we have looked at machine code generated with level-one optimization (specified
with the command-line option ‘-01’). In practice, most heavily used programs are compiled with higher
levels of optimization. For example, all of the GNU libraries and packages are compiled with level-two
optimization, specified with the command-line option ‘-02’.

Recent versions of Gcc employ an extensive set of optimizations at level two, making the mapping
between the source code and the generated code more difficult to discern. Here are some examples of
the optimizations that can be found at level two:

e The control structures become more entangled. Most procedures have multiple return points,
and the stack management code to set up and complete a function is intermixed with the code
implementing the operations of the procedure.

* Procedure calls are often inlined, replacing them by the instructions implementing the procedures.
This eliminates much of the overhead involved in calling and returning from a function, and it
enables optimizations that are specific to individual function calls. On the other hand, if we try to
set a breakpoint for a function in a debugger, we might never encounter a call to this function.
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Command Effect
Starting and stopping
quit Exit GDB
run Run your program (give command line arguments here)
kill Stop your program
Breakpoints
break sum Set breakpoint at entry to function sum
break *0x8048394 Set breakpoint at address 0x8048394
delete 1 Delete breakpoint 1
delete Delete all breakpoints
Execution
stepi Execute one instruction
stepi 4 Execute four instructions
nexti Like stepi, but proceed through function calls
continue Resume execution
finish Run until current function returns

Examining code
disas
disas sum
disas 0x8048397
disas 0x8048394 0x80483a4
print /x $eip

Examining data
print $eax
print /x $eax
print /t $eax
print 0x100
print /x 555
print /x ($ebp+8)
print *(int *) Oxff£076bO
print *(int *) ($ebp+8)
x/2w 0xf££076b0
x/20Db sum

Useful information

info frame
info registers
help

Disassemble current function

Disassemble function sum

Disassemble function around address 0x8048397
Disassemble code within specified address range
Print program counter in hex

Print contents of %eax in decimal

Print contents of %eax in hex

Print contents of %eax in binary

Print decimal representation of 0x100

Print hex representation of 555

Print contents of %ebp plus 8 in hex

Print integer at address Oxf££076b0

Print integer at address %ebp + 8

Examine two (4-byte) words starting at address 0xf££076b0
Examine first 20 bytes of function sum

Information about current stack frame
Values of all the registers
Get information about GDB

Figure 3.30 Example GDB commands. These examples illustrate some of the ways GDB
supports debugging of machine-level programs.
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e Recursion is often replaced by iteration. For example, the recursive factorial function rfact (Fig-
ure 3.25) is compiled into code very similar to that generated for the while loop implementation
(Figure 3.15). Again, this can lead to some surprises when we try to monitor program execution
with a debugger.

These optimizations can significantly improve program performance, but they make the mapping
between source and machine code much more difficult to discern. This can make the programs more
difficult to debug. Nonetheless, these higher level optimizations have now become standard, and so
those who study programs at the machine level must become familiar with the possible optimizations
they may encounter.

3.12 Out-of-Bounds Memory References
and Buffer Overflow

We have seen that C does not perform any bounds checking for array references,
and that local variables are stored on the stack along with state information such
as saved register values and return addresses. This combination can lead to serious
program errors, where the state stored on the stack gets corrupted by a write to an
out-of-bounds array element. When the program then tries to reload the register
or execute a ret instruction with this corrupted state, things can go seriously
wrong.

A particularly common source of state corruption is known as buffer overflow.
Typically some character array is allocated on the stack to hold a string, but the
size of the string exceeds the space allocated for the array. This is demonstrated
by the following program example:

1 /* Sample implementation of library function gets() */
2 char *gets(char *s)

3 A

4 int c;

5 char *dest = s;

6 int gotchar = 0; /* Has at least one character been read? */
7 while ((c = getchar()) != '\n' && c != EOF) {

8 xdest++ = c; /* No bounds checking! */

9 gotchar = 1;

10 }

11 xdest++ = '\0'; /* Terminate string */

12 if (c == EOF && !gotchar)

13 return NULL; /* End of file or error */

14 return s;

15}

16
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17 /* Read input line and write it back */
18 void echo()

19 {

20 char buf[8]; /* Way too small! */
21 gets(buf);

22 puts (buf) ;

23}

The preceding code shows an implementation of the library function gets
to demonstrate a serious problem with this function. It reads a line from the
standard input, stopping when either a terminating newline character or some
error condition is encountered. It copies this string to the location designated by
argument s, and terminates the string with a null character. We show the use of
gets in the function echo, which simply reads a line from standard input and
echoes it back to standard output.

The problem with gets is that it has no way to determine whether sufficient
space has been allocated to hold the entire string. In our echo example, we have
purposely made the buffer very small—just eight characters long. Any string
longer than seven characters will cause an out-of-bounds write.

Examining the assembly code generated by Gcc for echo shows how the stack
is organized.

1 echo:

2 pushl  Y%ebp Save Y%ebp on stack

3 movl %esp, %hebp

4 pushl %ebx Save %ebx

5 subl $20, Y%esp Allocate 20 bytes on stack
6 leal -12(%ebp) , %ebx Compute buf as jebp-12

7 movl %ebx, (%esp) Store buf at top of stack
8 call gets Call gets

9 movl %hebx, (%esp) Store buf at top of stack
10 call puts Call puts

1 addl $20, %esp Deallocate stack space

12 popl %ebx Restore Jebx

13 popl %ebp Restore Yebp

14 ret Return

We can see in this example that the program stores the contents of registers %ebp
and %ebx on the stack, and then allocates an additional 20 bytes by subtracting 20
from the stack pointer (line 5). The location of character array buf is computed as
12 bytes below %ebp (line 6), just below the stored value of %ebx, as illustrated in
Figure 3.31. As long as the user types at most seven characters, the string returned
by gets (including the terminating null) will fit within the space allocated for buf.
A longer string, however, will cause gets to overwrite some of the information
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Figure 3.31
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stored on the stack. As the string gets longer, the following information will get
corrupted:

Characters typed Additional corrupted state

0-7 None

8-11 Saved value of %ebx
12-15 Saved value of %ebp
16-19 Return address

20+ Saved state in caller

As this table indicates, the corruption is cumulative—as the number of char-
acters increases, more state gets corrupted. Depending on which portions of the
state are affected, the program can misbehave in several different ways:

e If the stored value of %ebx is corrupted, then this register will not be restored
properly in line 12, and so the caller will not be able to rely on the integrity of
this register, even though it should be callee-saved.

e If the stored value of %ebp is corrupted, then this register will not be restored
properly on line 13, and so the caller will not be able to reference its local
variables or parameters properly.

e If the stored value of the return address is corrupted, then the ret instruction
(line 14) will cause the program to jump to a totally unexpected location.

None of these behaviors would seem possible based on the C code. The impact
of out-of-bounds writing to memory by functions such as gets can only be under-
stood by studying the program at the machine-code level.

Our code for echo is simple but sloppy. A better version involves using the
function fgets, which includes as an argument a count on the maximum number
of bytes to read. Problem 3.68 asks you to write an echo function that can handle
an input string of arbitrary length. In general, using gets or any function that can
overflow storage is considered a bad programming practice. The C compiler even
produces the following error message when compiling a file containing a call to
gets: “The gets function is dangerous and should not be used.” Unfortunately,
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a number of commonly used library functions, including strcpy, strcat, and
sprintf, have the property that they can generate a byte sequence without being
given any indication of the size of the destination buffer [94]. Such conditions can
lead to vulnerabilities to buffer overflow.

Practice Problem 3.43

Figure 3.32 shows a (low-quality) implementation of a function that reads a line
from standard input, copies the string to newly allocated storage, and returns a
pointer to the result.

Consider the following scenario. Procedure getline is called with the return
address equal to 0x8048643, register %ebp equal to Oxbffffc94, register %ebx
equal to 0x1, register %edi is equal to 0x2, and register %esi is equal to 0x3. You
type in the string “ 012345678901234567890123”. The program terminates with

(a) C code

1 /* This is very low-quality code.
2 It is intended to illustrate bad programming practices.
3 See Problem 3.43. */

4 char *getline()

5 o

6 char buf[8];

7 char *result;

8 gets (buf) ;

9 result = malloc(strlen(buf));
10 strcpy(result, buf);

11 return result;

12 }

(b) Disassembly up through call to gets

1 080485c0 <getline>:

2 80485c0: 55 push  Y%ebp

3 80485c1: 89 eb mov %esp, hebp

4 80485c3: 83 ec 28 sub $0x28,%esp

5 80485c6: 89 54 f4 mov %ebx ,—0xc (%ebp)

6 80485c9: 89 75 £8 mov %esi,-0x8 (%ebp)

7 80485cc: 89 74 fc mov %edi,—0x4 (%ebp)
Diagram stack at this point

8 80485cf: 8d 75 ec lea -0x14 (%ebp) ,%esi

9 80485d2: 89 34 24 mov %esi, (hesp)

10 80485d5: e8 a3 ff ff ff call 804857d <gets>

Modify diagram to show stack contents at this point

Figure 3.32 C and disassembled code for Problem 3.43.

259
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a segmentation fault. You run 6pB and determine that the error occurs during the
execution of the ret instruction of getline.

A. Fill in the diagram that follows, indicating as much as you can about the
stack just after executing the instruction at line 7 in the disassembly. Label
the quantities stored on the stack (e.g., “Return address”) on the right, and
their hexadecimal values (if known) within the box. Each box represents 4
bytes. Indicate the position of %ebp.

08 04 86 43 | Return address

Modify your diagram to show the effect of the call to gets (line 10).
To what address does the program attempt to return?

What register(s) have corrupted value(s) when getline returns?

monw

Besides the potential for buffer overflow, what two other things are wrong
with the code for getline?

A more pernicious use of buffer overflow is to get a program to perform
a function that it would otherwise be unwilling to do. This is one of the most
common methods to attack the security of a system over a computer network.
Typically, the program is fed with a string that contains the byte encoding of some
executable code, called the exploit code, plus some extra bytes that overwrite the
return address with a pointer to the exploit code. The effect of executing the ret
instruction is then to jump to the exploit code.

In one form of attack, the exploit code then uses a system call to start up a
shell program, providing the attacker with a range of operating system functions.
In another form, the exploit code performs some otherwise unauthorized task,
repairs the damage to the stack, and then executes ret a second time, causing an
(apparently) normal return to the caller.

As an example, the famous Internet worm of November 1988 used four dif-
ferent ways to gain access to many of the computers across the Internet. One was
a buffer overflow attack on the finger daemon fingerd, which serves requests by
the FINGER command. By invoking FINGER with an appropriate string, the worm
could make the daemon at a remote site have a buffer overflow and execute code
that gave the worm access to the remote system. Once the worm gained access to a
system, it would replicate itself and consume virtually all of the machine’s comput-
ing resources. As a consequence, hundreds of machines were effectively paralyzed
until security experts could determine how to eliminate the worm. The author of
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the worm was caught and prosecuted. He was sentenced to 3 years probation,
400 hours of community service, and a $10,500 fine. Even to this day, however,
people continue to find security leaks in systems that leave them vulnerable to
buffer overflow attacks. This highlights the need for careful programming. Any
interface to the external environment should be made “bullet proof” so that no
behavior by an external agent can cause the system to misbehave.

Aside Worms and viruses

Both worms and viruses are pieces of code that attempt to spread themselves among computers. As
described by Spafford [102], a worm is a program that can run by itself and can propagate a fully working
version of itself to other machines. A virus is a piece of code that adds itself to other programs, including
operating systems. It cannot run independently. In the popular press, the term “virus” is used to refer
to a variety of different strategies for spreading attacking code among systems, and so you will hear
people saying “virus” for what more properly should be called a “worm.”

3.12.1 Thwarting Buffer Overflow Attacks

Buffer overflow attacks have become so pervasive and have caused so many
problems with computer systems that modern compilers and operating systems
have implemented mechanisms to make it more difficult to mount these attacks
and to limit the ways by which an intruder can seize control of a system via a buffer
overflow attack. In this section, we will present ones that are provided by recent
versions of Gce for Linux.

Stack Randomization

In order to insert exploit code into a system, the attacker needs to inject both
the code as well as a pointer to this code as part of the attack string. Generating
this pointer requires knowing the stack address where the string will be located.
Historically, the stack addresses for a program were highly predictable. For all
systems running the same combination of program and operating system version,
the stack locations were fairly stable across many machines. So, for example, if
an attacker could determine the stack addresses used by a common Web server,
it could devise an attack that would work on many machines. Using infectious
disease as an analogy, many systems were vulnerable to the exact same strain of
a virus, a phenomenon often referred to as a security monoculture [93].

The idea of stack randomization is to make the position of the stack vary from
one run of a program to another. Thus, even if many machines are running identical
code, they would all be using different stack addresses. This is implemented by
allocating a random amount of space between 0 and n bytes on the stack at the
start of a program, for example, by using the allocation function alloca, which
allocates space for a specified number of bytes on the stack. This allocated space is
not used by the program, but it causes all subsequent stack locations to vary from
one execution of a program to another. The allocation range n needs to be large
enough to get sufficient variations in the stack addresses, yet small enough that it
does not waste too much space in the program.
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The following code shows a simple way to determine a “typical” stack address:

int main() {
int local;
printf("local at %p\n", &local);
return O;

“n A W N =

This code simply prints the address of a local variable in the main function.
Running the code 10,000 times on a Linux machine in 32-bit mode, the addresses
ranged from Oxff7fa7e0 to Oxffffd7e0, a range of around 223. By comparison,
running on an older Linux system, the same address occurred every time. Running
in 64-bit mode on the newer machine, the addresses ranged from 0x7£££00241914
to Ox7f£ff££98664, a range of nearly 232,

Stack randomization has become standard practice in Linux systems. It is
one of a larger class of techniques known as address-space layout randomization,
or ASLR [95]. With ASLR, different parts of the program, including program
code, library code, stack, global variables, and heap data, are loaded into different
regions of memory each time a program is run. That means that a program running
on one machine will have very different address mappings than the same program
running on other machines. This can thwart some forms of attack.

Overall, however, a persistent attacker can overcome randomization by brute
force, repeatedly attempting attacks with different addresses. A common trick is
to include a long sequence of nop (pronounced “no op,” short for “no operation”)
instructions before the actual exploit code. Executing this instruction has no ef-
fect, other than incrementing the program counter to the next instruction. As long
as the attacker can guess an address somewhere within this sequence, the program
will run through the sequence and then hit the exploit code. The common term for
this sequence is a “nop sled” [94], expressing the idea that the program “slides”
through the sequence. If we set up a 256-byte nop sled, then the randomization
over n =223 can be cracked by enumerating 21> = 32,768 starting addresses, which
is entirely feasible for a determined attacker. For the 64-bit case, trying to enumer-
ate 224 = 16,777,216 is a bit more daunting. We can see that stack randomization
and other aspects of ASLR can increase the effort required to successfully attack a
system, and therefore greatly reduce the rate at which a virus or worm can spread,
but it cannot provide a complete safeguard.

Practice Problem 3.44

Running our stack-checking code 10,000 times on a system running Linux ver-
sion 2.6.16, we obtained addresses ranging from a minimum of 0xffffb754 to a
maximum of Oxffffd754.

A. What is the approximate range of addresses?

B. If we attempted a buffer overrun with a 128-byte nop sled, how many
attempts would it take to exhaustively test all starting addresses?
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Figure 3.33
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been corrupted.

Stack Corruption Detection

A second line of defense is to be able to detect when a stack has been corrupted.
We saw in the example of the echo function (Figure 3.31) that the corruption
typically occurs when we overrun the bounds of a local buffer. In C, there is no
reliable way to prevent writing beyond the bounds of an array. Instead, we can try
to detect when such a write has occurred before any harmful effects can occur.

Recent versions of Gce incorporate a mechanism known as stack protector into
the generated code to detect buffer overruns. The idea is to store a special canary
value* in the stack frame between any local buffer and the rest of the stack state,
as illustrated in Figure 3.33 [32, 94]. This canary value, also referred to as a guard
value, is generated randomly each time the program is run, and so there is no easy
way for an attacker to determine what it is. Before restoring the register state and
returning from the function, the program checks if the canary has been altered by
some operation of this function or one that it has called. If so, the program aborts
with an error.

Recent versions of Gce try to determine whether a function is vulnerable to
a stack overflow, and insert this type of overflow detection automatically. In fact,
for our earlier demonstration of stack overflow, we had to give the command-line
option “~fno-stack-protector” to prevent Gcc from inserting this code. When
we compile the function echo without this option, and hence with stack protector
enabled, we get the following assembly code:

1 echo:

2 pushl  Y%ebp

3 movl %esp, %ebp

4 pushl  Y%ebx

5 subl $20, Yesp

6 movl %gs:20, %eax Retrieve canary
7 movl %heax, —-8(%ebp) Store on stack

4. The term “canary” refers to the historic use of these birds to detect the presence of dangerous gasses
in coal mines.
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8 xorl %eax, %heax Zero out register

9 leal -16(%ebp) , %ebx Compute buf as J%ebp-16

10 movl %ebx, (%esp) Store buf at top of stack
11 call gets Call gets

12 movl %ebx, (%esp) Store buf at top of stack
13 call puts Call puts

14 movl -8(%ebp), %eax Retrieve canary

15 xorl %gs:20, Y%eax Compare to stored value
16 je .L19 If =, goto ok

17 call __stack_chk_fail Stack corrupted!

18 .L19: ok:

19 addl $20, %esp Normal return ...

20 popl %hebx

21 popl %ebp

22 ret

We see that this version of the function retrieves a value from memory (line 6)
and stores it on the stack at offset —8 from %ebp. The instruction argument
%gs :201s an indication that the canary value is read from memory using segmented
addressing, an addressing mechanism that dates back to the 80286 and is seldom
found in programs running on modern systems. By storing the canary in a special
segment, it can be marked as “read only,” so that an attacker cannot overwrite the
stored canary value. Before restoring the register state and returning, the function
compares the value stored at the stack location with the canary value (via the xorl
instruction on line 15.) If the two are identical, the xorl instruction will yield 0,
and the function will complete in the normal fashion. A nonzero value indicates
that the canary on the stack has been modified, and so the code will call an error
routine.

Stack protection does a good job of preventing a buffer overflow attack from
corrupting state stored on the program stack. It incurs only a small performance
penalty, especially because Gce only inserts it when there is a local buffer of
type char in the function. Of course, there are other ways to corrupt the state
of an executing program, but reducing the vulnerability of the stack thwarts many
common attack strategies.

Practice Problem 3.45

The function intlen, along with the functions len and iptoa, provides a very
convoluted way of computing the number of decimal digits required to represent
an integer. We will use this as a way to study some aspects of the gcc stack protector
facility.

int len(char *s) {
return strlen(s);

void iptoa(char *s, int *p)
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int val = *p;
sprintf(s, "%d4d", val);

int intlen(int x) {
int v;
char buf[12];
v = Xx;
iptoa(buf, &v);
return len(buf);

The following show portions of the code for intlen, compiled both with and
without stack protector:

Without protector

movl %ebx, (%esp)
call iptoa

1 subl $36, %esp

2 movl 8(%ebp), %heax

3 movl %heax, -8(%ebp)
4 leal -8(%ebp), %heax
5 movl %heax, 4(%esp)

6 leal -20(%ebp), %ebx
7

8

With protector

1 subl $52, Y%esp

2 movl %gs:20, %eax

3 movl %eax, -8(%ebp)
4 xorl %heax, feax

5 movl 8(%ebp), %heax

6 movl %eax, —24(%ebp)
7 leal -24 (%ebp), %heax
8 movl %eax, 4(%esp)

9 leal -20(%ebp), %ebx
10 movl %ebx, (%esp)

11 call iptoa

A. For both versions: What are the positions in the stack frame for buf, v, and
(when present) the canary value?

B. How would the rearranged ordering of the local variables in the protected
code provide greater security against a buffer overrun attack?
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Limiting Executable Code Regions

A final step is to eliminate the ability of an attacker to insert executable code into
a system. One method is to limit which memory regions hold executable code.
In typical programs, only the portion of memory holding the code generated by
the compiler need be executable. The other portions can be restricted to allow
just reading and writing. As we will see in Chapter 9, the virtual memory space
is logically divided into pages, typically with 2048 or 4096 bytes per page. The
hardware supports different forms of memory protection, indicating the forms
of access allowed by both user programs and by the operating system kernel.
Many systems allow control over three forms of access: read (reading data from
memory), write (storing data into memory), and execute (treating the memory
contents as machine-level code). Historically, the x86 architecture merged the
read and execute access controls into a single 1-bit flag, so that any page marked as
readable was also executable. The stack had to be kept both readable and writable,
and therefore the bytes on the stack were also executable. Various schemes were
implemented to be able to limit some pages to being readable but not executable,
but these generally introduced significant inefficiencies.

More recently, AMD introduced an “NX” (for “no-execute”) bit into the
memory protection for its 64-bit processors, separating the read and execute access
modes, and Intel followed suit. With this feature, the stack can be marked as being
readable and writable, but not executable, and the checking of whether a page is
executable is performed in hardware, with no penalty in efficiency.

Some types of programs require the ability to dynamically generate and ex-
ecute code. For example, “just-in-time” compilation techniques dynamically gen-
erate code for programs written in interpreted languages, such as Java, to improve
execution performance. Whether or not we can restrict the executable code to just
that part generated by the compiler in creating the original program depends on
the language and the operating system.

The techniques we have outlined—randomization, stack protection, and lim-
iting which portions of memory can hold executable code—are three of the most
common mechanisms used to minimize the vulnerability of programs to buffer
overflow attacks. They all have the properties that they require no special effort
on the part of the programmer and incur very little or no performance penalty.
Each separately reduces the level of vulnerability, and in combination they be-
come even more effective. Unfortunately, there are still ways to attack computers
[81, 94], and so worms and viruses continue to compromise the integrity of many
machines.

Web Aside ASM:EASM Combining assembly code with C programs

Although a C compiler does a good job of converting the computations we express in a program into
machine code, there are some features of a machine that cannot be accessed by a C program. For
example, IA32 machines have a condition code PF (for “parity flag”) that is set to 1 when there is an
even number of ones in the low-order 8 bits of the computed result. Computing this information in C
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requires at least seven shifting, masking, and exclusive-or operations (see Problem 2.65). It is ironic
that the hardware performs this computation as part of every arithmetic or logical operation, but there

is no way for a C program to determine the value of the PF condition code.

There are two ways to incorporate assembly code into C programs. First, we can write an entire
function as a separate assembly-code file and let the assembler and linker combine this with code we
have written in C. Second, we can use the inl/ine assembly feature of cc, where brief sections of assembly
code can be incorporated into a C program using the asm directive. This approach has the advantage

that it minimizes the amount of machine-specific code.

Of course, including assembly code in a C program makes the code specific to a particular class of
machines (such as IA32), and so it should only be used when the desired feature can only be accessed

in this way.

3.13 x86-64: Extending IA32 to 64 Bits

Intel’s IA32 instruction set architecture (ISA) has been the dominant instruction
format for the world’s computers for many years. IA32 has been the platform of
choice for most Windows, Linux, and, since 2006, even Macintosh computers. The
TA32 format used today was, for the most part, defined in 1985 with the introduc-
tion of the 1386 microprocessor, extending the 16-bit instruction set defined by the
original 8086 to 32 bits. Even though subsequent processor generations have in-
troduced new instruction types and formats, many compilers, including Gcc, have
avoided using these features in the interest of maintaining backward compatibility.
For example, we saw in Section 3.6.6 that the conditional move instructions, intro-
duced by Intel in 1995, can yield significant efficiency improvements over more
traditional conditional branches, yet in most configurations Gcce will not generate
these instructions.

A shift is underway to a 64-bit version of the Intel instruction set. Originally
developed by Advanced Micro Devices (AMD) and named x86-64, it is now
supported by most processors from AMD (who now call it AMD64) and by Intel,
who refer to it as Intel64. Most people still refer to it as “x86-64,” and we follow this
convention. (Some vendors have shortened this to simply “x64”.) Newer versions
of Linux and Windows support this extension, although systems still run only 32-
bit versions of these operating systems. In extending Gcc to support x86-64, the
developers saw an opportunity to also make use of some of the instruction-set
features that had been added in more recent generations of IA32 processors.

This combination of new hardware and revised compiler makes x86-64 code
substantially different in form and in performance than IA32 code. In creating
the 64-bit extension, the AMD engineers adopted some of the features found in
reduced instruction set computers (RISC) [49] that made them the favored targets
for optimizing compilers. For example, there are now 16 general-purpose registers,
rather than the performance-limiting 8 of the original 8086. The developers of Gcc
were able to exploit these features, as well as those of more recent generations
of the IA32 architecture, to obtain substantial performance improvements. For
example, procedure parameters are now passed via registers rather than on the
stack, greatly reducing the number of memory read and write operations.
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This section serves as a supplement to our description of 1A32, describing
the extensions in both the hardware and the software support to accommodate
x86-64. We assume readers are already familiar with IA32. We start with a brief
history of how AMD and Intel arrived at x86-64, followed by a summary of the
main features that distinguish x86-64 code from IA32 code, and then work our
way through the individual features.

3.13.1 History and Motivation for x86-64

Over the many years since introduction of the 1386 in 1985, the capabilities of
microprocessors have changed dramatically. In 1985, a fully configured high-end
desktop computer, such as the Sun-3 workstation sold by Sun Microsystems, had
at most 8 megabytes of random-access memory (RAM) and 100 megabytes of
disk storage. It used a Motorola 68020 microprocessor (Intel microprocessors of
that era did not have the necessary features and performance for high-end ma-
chines) with a 12.5-megahertz clock and ran around 4 million instructions per
second. Nowadays, a typical high-end desktop system has 4 gigabytes of RAM
(512x increase), 1 terabyte of disk storage (10,000 increase), and a nearly 4-
gigahertz clock, running around 5 billion instructions per second (1250 x increase).
Microprocessor-based systems have become pervasive. Even today’s supercom-
puters are based on harnessing the power of many microprocessors computing in
parallel. Given these large quantitative improvements, it is remarkable that the
world’s computing base mostly runs code that is binary compatible with machines
that existed back in 1985 (except that they did not have nearly enough memory
to handle today’s operating systems and applications).

The 32-bit word size of the IA32 has become a major limitation in growing
the capacity of microprocessors. Most significantly, the word size of a machine
defines the range of virtual addresses that programs can use, giving a 4-gigabyte
virtual address space in the case of 32 bits. It is now feasible to buy more than
this amount of RAM for a machine, but the system cannot make effective use
of it. For applications that involve manipulating large data sets, such as scientific
computing, databases, and data mining, the 32-bit word size makes life difficult
for programmers. They must write code using out-of-core algorithms,” where the
data reside on disk and are explicitly read into memory for processing.

Further progress in computing technology requires shifting to a larger word
size. Following the tradition of growing word sizes by doubling, the next logical
step is 64 bits. In fact, 64-bit machines have been available for some time. Digital
Equipment Corporation introduced its Alpha processor in 1992, and it became
a popular choice for high-end computing. Sun Microsystems introduced a 64-bit
version of its SPARC architecture in 1995. At the time, however, Intel was not
a serious contender for high-end computers, and so the company was under less
pressure to switch to 64 bits.

5. The physical memory of a machine is often referred to as core memory, dating to an era when each
bit of a random-access memory was implemented with a magnetized ferrite core.
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Intel’s first foray into 64-bit computers were the Itanium processors, based
on a totally new instruction set, known as “IA64.” Unlike Intel’s historic strategy
of maintaining backward compatibility as it introduced each new generation of
microprocessor, IA64 is based on a radically new approach jointly developed
with Hewlett-Packard. Its Very Large Instruction Word (VLIW) format packs
multiple instructions into bundles, allowing higher degrees of parallel execution.
Implementing IA64 proved to be very difficult, and so the first Itanium chips did
not appear until 2001, and these did not achieve the expected level of performance
on real applications. Although the performance of Itanium-based systems has
improved, they have not captured a significant share of the computer market.
Itanium machines can execute IA32 code in a compatibility mode, but not with
very good performance. Most users have preferred to make do with less expensive,
and often faster, IA32-based systems.

Meanwhile, Intel’s archrival, Advanced Micro Devices (AMD), saw an op-
portunity to exploit Intel’s misstep with IA64. For years, AMD had lagged just
behind Intel in technology, and so they were relegated to competing with Intel on
the basis of price. Typically, Intel would introduce a new microprocessor at a price
premium. AMD would come along 6 to 12 months later and have to undercut
Intel significantly to get any sales—a strategy that worked but yielded very low
profits. In 2003, AMD introduced a 64-bit microprocessor based on its “x86-64”
instruction set. As the name implies, x86-64 is an evolution of the Intel instruc-
tion set to 64 bits. It maintains full backward compatibility with IA32, but it adds
new data formats, as well as other features that enable higher capacity and higher
performance. With x86-64, AMD captured some of the high-end market that had
historically belonged to Intel. AMD’s recent generations of processors have in-
deed proved very successful as high-performance machines. Most recently, AMD
has renamed this instruction set AM D64, but “x86-64" persists as a favored name.

Intel realized that its strategy of a complete shift from IA32 to [A64 was
not working, and so began supporting their own variant of x86-64 in 2004 with
processors in the Pentium 4 Xeon line. Since they had already used the name
“IA64” to refer to Itanium, they then faced a difficulty in finding their own
name for this 64-bit extension. In the end, they decided to describe x86-64 as an
enhancement to IA32, and so they referred to it as IA32-EM64T, for “Enhanced
Memory 64-bit Technology.” In late 2006, they adopted the name Intel64.

On the compiler side, the developers of Gce steadfastly maintained binary
compatibility with the 1386, even as useful features were being added to the IA32
instruction set, including conditional moves and a more modern set of floating-
point instructions. These features would only be used when code was compiled
with special settings of command-line options. Switching to x86-64 as a target
provided an opportunity for Gce to give up backward compatibility and instead
exploit these newer features even with standard command-line options.

In this text, we use “IA32” to refer to the combination of hardware and
Gee code found in traditional 32-bit versions of Linux running on Intel-based
machines. We use “x86-64" to refer to the hardware and code combination running
on the newer 64-bit machines from AMD and Intel. In the worlds of Linux and
Gcc, these two platforms are referred to as “i386” and “x86_64,” respectively.
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3.13.2 An Overview of x86-64

The combination of the new hardware supplied by Intel and AMD, and the new
versions of Gcc targeting these machines makes x86-64 code substantially different
from that generated for IA32 machines. The main features include:

e Pointers and long integers are 64 bits long. Integer arithmetic operations
support 8, 16, 32, and 64-bit data types.

¢ The set of general-purpose registers is expanded from 8 to 16.

® Much of the program state is held in registers rather than on the stack. Integer
and pointer procedure arguments (up to 6) are passed via registers. Some
procedures do not need to access the stack at all.

¢ Conditional operations are implemented using conditional move instructions
when possible, yielding better performance than traditional branching code.

¢ Floating-point operations are implemented using the register-oriented in-
struction set introduced with SSE version 2, rather than the stack-based ap-
proach supported by IA32.

Data Types

Figure 3.34 shows the sizes of different C data types for x86-64, and compares
them to the sizes for IA32 (rightmost column). We see that pointers (shown here
as data type char *) require 8 bytes rather than 4. These are referred to as quad
words by Intel, since they are 4 times longer than the nominal 16-bit “word.”
In principle, this gives programs the ability to access 2% bytes, or 16 exabytes,
of memory (around 18.4 x 10'® bytes). That seems like an astonishing amount
of memory, but keep in mind that 4 gigabytes seemed like an extremely large
amount of memory when the first 32-bit machines appeared in the late 1970s. In
practice, most machines do not really support the full address range—the current

Assembly x86-64

C declaration Intel data type code suffix  size (bytes) IA32 Size
char Byte b 1 1
short Word W 2 2
int Double word 1 4 4
long int Quad word q 8 4
long long int Quad word q 8 8
char * Quad word q 8 4
float Single precision s 4 4
double Double precision d 8 8
long double Extended precision t 10/16 10/12

Figure 3.34 Sizes of standard data types with x86-64. These are compared to the
sizes for IA32. Both long integers and pointers require 8 bytes, as compared to 4 for IA32.
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generations of AMD and Intel x86-64 machines support 256 terabytes (2*8 bytes)
of virtual memory—but allocating a full 64 bits for pointers is a good idea for
long-term compatibility.

We also see that the prefix “long” changes integers to 64 bits, allowing a
considerably larger range of values. In fact, data type long becomes identical
to long long. Moreover, the hardware provides registers that can hold 64-bit
integers and instructions that can operate on these quad words.

As with TA32, the long prefix also changes a floating-point double to use
the 80-bit format supported by IA32 (Section 2.4.6). These are stored in memory
with an allocation of 16 bytes for x86-64, compared to 12 bytes for IA32. This
improves the performance of memory read and write operations, which typically
fetch 8 or 16 bytes at a time. Whether 12 or 16 bytes are allocated, only the low-
order 10 bytes are actually used. Moreover, the long double data type is only
supported by an older class of floating-point instructions that have some idiosyn-
cratic properties (see Web Aside DATA:1A32-FP), while both the float and double
data types are supported by the more recent SSE instructions. The long double
data type should only be used by programs requiring the additional precision and
range the extended-precision format provides over the double-precision format.

Practice Problem 3.46

As shown in Figure 6.17(b), the cost of DRAM, the memory technology used
to implement the main memories of microprocessors, has dropped from around
$8,000 per megabyte in 1980 to around $0.06 in 2010, roughly a factor of 1.48
every year, or around 51 every 10 years. Let us assume these trends will continue
indefinitely (which may not be realistic), and that our budget for a machine’s
memory is around $1,000, so that we would have configured a machine with
128 kilobytes in 1980 and with 16.3 gigabytes in 2010.

A. Estimate when our $1,000 budget would pay for 256 terabytes of memory.
B. Estimate when our $1,000 budget would pay for 16 exabytes of memory.

C. How much earlier would these transition points occur if we raised our
DRAM budget to $10,000?

Assembly-Code Example

In Section 3.2.3, we presented the IA32 assembly code generated by Gcc for a
function simple. Below is the C code for simple_1, similar to simple, except that
it uses long integers:

long int simple_l(long int *xp, long int y)
{

long int t = *xp + y;

*Xp = t;

return t;
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When Gcc is run on an x86-64 Linux machine with the command line
unix> gcc -01 -S -m32 code.c

it generates code that is compatible with any IA32 machine (we annotate the code
to highlight which instructions read (R) data from memory and which instructions
write (W) data to memory):

IA32 implementation of function simple_1.
xp at %ebp+8, y at %ebp+12

1 simple_1:

2 pushl %ebp Save frame pointer (W)
3 movl %esp, %ebp Create new frame pointer

4 movl 8(%ebp) , hedx Retrieve xp (R)
5 movl 12(%ebp), %eax  Retrieve yp (R)
6 addl (%edx), %heax Add *xp to get t (R)
7 movl %eax, (%hedx) Store t at xp (W)
8 popl %ebp Restore frame pointer (R)
9 ret Return (R)

When we instruct Gcce to generate x86-64 code
unix> gcc -01 -S -m64 code.c
(on most machines, the flag -m64 is not required), we get very different code:

x86-64 version of function simple_I1.

xp in Jrdi, y in Jrsi

1 simple_1:

2 movq %rsi, Yrax Copy y

3 addq (%rdi), %rax Add *xp to get t (R)
4 movq %rax, (%rdi) Store t at xp (W)
5 ret Return (R)

Some of the key differences include:

* Instead of movl and addl instructions, we see movq and addq. The pointers
and variables declared as long integers are now 64 bits (quad words) rather
than 32 bits (long words).

* We see the 64-bit versions of registers (e.g., %rsi and %rdi, rather than %esi
and %edi). The procedure returns a value by storing it in register %rax.

e No stack frame gets generated in the x86-64 version. This eliminates the
instructions that set up (lines 2-3) and remove (line 8) the stack frame in the
IA32 code.

e Arguments xp and y are passed in registers (%rdi and %rsi, respectively)
rather than on the stack. This eliminates the need to fetch the arguments from
memory.
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The net effect of these changes is that the IA32 code consists of eight instruc-
tions making seven memory references (five reads, two writes), while the x86-64
code consists of four instructions making three memory references (two reads,
one write). The relative performance of the two versions depends greatly on the
hardware on which they are executed. Running on an Intel Pentium 4E, one of
the first Intel machines to support x86-64, we found that the IA32 version requires
around 18 clock cycles per call to simple_1, while the x86-64 version requires only
12. This 50% performance improvement on the same machine with the same C
code is quite striking. On a newer Intel Core i7 processor, we found that both ver-
sions required around 12 clock cycles, indicating no performance improvement.
On other machines we have tried, the performance difference lies somewhere be-
tween these two extremes. In general, x86-64 code is more compact, requires fewer
memory accesses, and runs more efficiently than the corresponding IA32 code.

3.13.3 Accessing Information

Figure 3.35 shows the set of general-purpose registers under x86-64. Compared to
the registers for IA32 (Figure 3.2), we see a number of differences:

e The number of registers has been doubled to 16.

e All registers are 64 bits long. The 64-bit extensions of the IA32 registers are
named %rax, %rcx, %rdx, %rbx, %rsi, %rdi, %rsp, and %rbp. The new registers
are named %r8—r15.

e The low-order 32 bits of each register can be accessed directly. This gives us
the familiar registers from IA32: %eax, %ecx, %edx, %ebx, %esi, %edi, %esp,
and %ebp, as well as eight new 32-bit registers: %r8d—Jr15d.

e The low-order 16 bits of each register can be accessed directly, as is the case
for IA32. The word-size versions of the new registers are named %r8w—r15w.

e The low-order 8 bits of each register can be accessed directly. This is true
in IA32 only for the first four registers (%al, %cl, %d1l, %bl). The byte-size
versions of the other IA32 registers are named %sil, %dil, %spl, and %bpl.
The byte-size versions of the new registers are named %r8b—7r15b.

¢ For backward compatibility, the second byte of registers %rax, %rcx, %rdx, and
%rbx can be directly accessed by instructions having single-byte operands.

As with TA32, most of the registers can be used interchangeably, but there
are some special cases. Register %rsp has special status, in that it holds a pointer
to the top stack element. Unlike in IA32, however, there is no frame pointer
register; register %rbp is available for use as a general-purpose register. Particular
conventions are used for passing procedure arguments via registers and for how
registers are to be saved and restored during procedure calls, as is discussed
in Section 3.13.4. In addition, some arithmetic instructions make special use of
registers %rax and %rdx.

For the most part, the operand specifiers of x86-64 are just the same as those
in TA32 (see Figure 3.3), except that the base and index register identifiers must
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63 31 15 87 0

f%rax fheax %hax || %ah | %al || Return value

%rbx %ebx %bx || %bh | %bl || Callee saved

f%rex fhecx %hex || %ch | %cl || 4th argument
%rdx %edx %dx || %dh | %dl || 3rd argument
%rsi fhesi %si | 2nd argument

Yrdi Yedi Ydi | | 1st argument
%rbp %ebp %bp | | Callee saved
hrsp %esp %Sp | | Stack pointer
%r8 %r8d %r8w | | 5th argument
%r9 %r9d %rw | | 6th argument
%r10 %r10d %r10w | | Caller saved
Yril Yrild Yrilw | | Caller saved
Yri2 Yri2d Yri2w | | Callee saved
%r13 %r13d %r13w | | Callee saved
Yrid Yri4d Yridw | | Callee saved
%ril5 %ri15d %r15w | | Callee saved

Figure 3.35 Integer registers. The existing eight registers are extended to 64-bit versions, and eight new
registers are added. Each register can be accessed as either 8 bits (byte), 16 bits (word), 32 bits (double word),
or 64 bits (quad word).
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use the ‘r’ version of a register (e.g., %rax) rather than the ‘e’ version. In addition
to the IA32 addressing forms, some forms of PC-relative operand addressing are
supported. With IA32, this form of addressing is only supported for jump and
other control transfer instructions (see Section 3.6.3). This mode is provided to
compensate for the fact that the offsets (shown in Figure 3.3 as Imm) are only 32
bits long. By viewing this field as a 32-bit two’s-complement number, instructions
can access data within a window of around £2.15 x 10 relative to the program
counter. With x86-64, the program counter is named %rip.

As an example of PC-relative data addressing, consider the following proce-
dure, which calls the function simple_1 examined earlier:

567;
763;

long int gvall
long int gval2

long int call_simple_1(Q)

{
long int z = simple_l(&gvall, 12L);
return z + gval2;

This code references global variables gvall and gval2. When this function
is compiled, assembled, and linked, we get the following executable code (as
generated by the disassembler objdump):
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1 0000000000400541 <call_simple_1>:

2 400541: be Oc 00 00 00 mov $0xc, hesi Load 12 as 2nd argument

3 400546: bf 20 10 60 00 mov $0x601020, %edi Load &gvall as 1st argument
4 40054b: e8 c3 ff ff ff callg 400513 <simple_1> Call simple_1

5 400550: 48 03 05 d1 Oa 20 00 add 0x200adl (%rip) ,%rax Add gval? to result

6 400557: c3 retq Return

The instruction on line 3 stores the address of global variable gvall in register
%rdi. It does this by copying the constant value 0x601020 into register %edi. The
upper 32 bits of %rdi are automatically set to zero. The instruction on line 5
retrieves the value of gval2 and adds it to the value returned by the call to
simple_1. Here we see PC-relative addressing—the immediate value 0x200ad1
is added to the address of the following instruction to get 0x200ad1 + 0x400557
= 0x601028.

Figure 3.36 documents some of the data movement instructions available with
x86-64 beyond those found in IA32 (see Figure 3.4). Some instructions require the
destination to be a register, indicated by R. Others can have either a register or
a memory location as destination, indicated by D. Most of these instructions fall
within a class of instructions seen with IA32. The movabsq instruction, on the other
hand, has no counterpart in IA32. This instruction can copy a full 64-bit immediate
value toits destination register. When the movq instruction has an immediate value
asitssource operand, it is limited to a 32-bit value, which is sign-extended to 64 bits.
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Instruction Effect Description
movabsq I, R R<«1 Move absolute quad word
MOV S, D D« S Move
movq Move quad word
MOVS S, D D <« SignExtend(S) Move with sign extension
movsbq Move sign-extended byte to quad word
movswq Move sign-extended word to quad word
movslq Move sign-extended double word to quad word
MOVZ S, D D < ZeroExtend(S) Move with zero extension
movzbq Move zero-extended byte to quad word
movzwq Move zero-extended word to quad word
pushq S R[%rsp] < R[%rsp] — 8; Push quad word
M[R[%rsp]] < S
popq D D < M[R[%rsp]]; Pop quad word

R[%rsp] < R[%rsp]+ 8

Figure 3.36 Data movement instructions. These supplement the movement instructions of 1A32
(Figure 3.4). The movabsq instruction only allows immediate data (shown as I) as the source value.
Others allow immediate data, a register, or memory (shown as S). Some instructions require the
destination to be a register (shown as R), while others allow both register and memory destinations

(shown as D).

Moving from a smaller data size to a larger one can involve either sign ex-

tension (Movs) or zero extension (Movz). Perhaps unexpectedly, instructions that
move or generate 32-bit register values also set the upper 32 bits of the register
to zero. Consequently there is no need for an instruction movzlq. Similarly, the
instruction movzbq has the exact same behavior as movzbl when the destination
is a register—both set the upper 56 bits of the destination register to zero. This
is in contrast to instructions that generate 8- or 16-bit values, such as movb; these
instructions do not alter the other bits in the register. The new stack instructions
pushq and popq allow pushing and popping of 64-bit values.

Practice Problem 3.47

The following C function converts an argument of type src_t to a return value of
type dst_t, where these two types are defined using typedef:

dest_t cvt(src_t x)

{

dest_t y = (dest_t) x;
return y;
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Assume argument x is in the appropriately named portion of register %rdi
(i.e., %rdi, %edi, %di, or %dil), and that some form of data movement instruction
is to be used to perform the type conversion and to copy the value to the ap-
propriately named portion of register %rax. Fill in the following table indicating
the instruction, the source register, and the destination register for the following
combinations of source and destination type:

src_t dest_t Instruction S D
long long movq %rdi hrax
int long

char long

unsigned int unsigned long

unsigned char unsigned long

long int

unsigned long unsigned

Arithmetic Instructions

In Figure 3.7, we listed a number of arithmetic and logic instructions, using a class
name, such as “ADpD”, to represent instructions for different operand sizes, such as
addb (byte), addw (word), and addl (long word). To each of these classes we now
add instructions that operate on quad words with the suffix ‘q’. Examples of these
quad-word instructions include leaq (load effective address), incq (increment),
addq (add), and salq (shift left). These quad-word instructions have the same
argument types as their shorter counterparts. As mentioned earlier, instructions
that generate 32-bit register results, such as add1, also set the upper 32 bits of the
register to zero. Instructions that generate 16-bit results, such as addw, only affect
their 16-bit destination registers, and similarly for instructions that generate 8-bit
results. As with the movq instruction, immediate operands are limited to 32-values,
which are sign extended to 64 bits.

When mixing operands of different sizes, Gcc must choose the right combina-
tions of arithmetic instructions, sign extensions, and zero extensions. These depend
on subtle aspects of type conversion and the behavior of the instructions for dif-
ferent operand sizes. This is illustrated by the following C function:

1 long int gfun(int x, int y)

2 {

3 long int t1 = (long) x + y; /* 64-bit addition */
4 long int t2 = (long) (x + y); /+* 32-bit addition */
5 return t1 | t2;

6 ¥

Given that integers are 32 bits and long integers are 64, the two additions in
this function proceed as follows. Recall that casting has higher precedence than
addition, and so line 3 calls for x to be converted to 64 bits, and by operand
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promotion y is also converted. Value t1 is then computed using 64-bit addition.
On the other hand, t2 is computed in line 4 by performing 32-bit addition and
then extending this value to 64 bits.

The assembly code generated for this function is as follows:

1 gfun:
x in %rdi, y in %rsi
2 leal (%rsi,%rdi), %heax  Compute t2 as 32-bit sum of x and y
cltq is equivalent to movslq jeax,jrax
3 cltq Sign extend to 64 bits
4 movslq Yesi,%rsi Convert y to long
5 movslq ‘Yedi,%rdi Convert x to long
6 addq %rdi, %rsi Compute t1 (64-bit addition)
7 orq %rsi, %rax Set t1 | t2 as return value
8 ret Return

Local value t2 is computed with an leal instruction (line 2), which uses
32-bit arithmetic. It is then sign-extended to 64 bits using the cltq instruction,
which we will see is a special instruction equivalent to executing the instruction
movslq %eax, %rax. The movslq instructions on lines 4-5 take the lower 32 bits
of the arguments and sign extend them to 64 bits in the same registers. The addq
instruction on line 6 then performs 64-bit addition to get t1.

Practice Problem 3.48
A C function arithprob with arguments a, b, ¢, and d has the following body:

return a*b + cx*d;
It compiles to the following x86-64 code:

1 arithprob:

2 movslqg ‘ecx,%rcx

3 imulq  %rdx, %rcx

4 movsbl %sil,%esi

5 imull  %edi, %esi

6 movslq ‘Yesi,%rsi

7 leaq (%rex,%rsi), %rax
8 ret

The arguments and return value are all signed integers of various lengths.
Arguments a, b, ¢, and d are passed in the appropriate regions of registers %rdi,
%rsi, %rdx, and %rcx, respectively. Based on this assembly code, write a function
prototype describing the return and argument types for arithprob.

Figure 3.37 show instructions used to generate the full 128-bit product of two
64-bit words, as well as ones to support 64-bit division. They are similar to their 32-
bit counterparts (Figure 3.9). Several of these instructions view the combination
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Instruction Effect Description
imulg S R[%rdx]R[%rax] < S x R[%rax] Signed full multiply
mulg S R[%rdx]R[%rax] < S x R[%rax] Unsigned full multiply
cltq R[%rax] < SignExtend(R[%eax]) Convert %eax to quad word
cqto R[%rdx]R[%rax] < SignExtend(R[%rax]) Convert to oct word
idivg S R[%rdx] < R[%rdx]R[%rax] mod S; Signed divide
R[%rax] < R[%rdx]R[%hrax] +
divg S R[%rdx] < R[%rdx]R[%rax] mod S; Unsigned divide
R[%rax] < R[%rdx]R[%rax] =+ S

Figure 3.37 Special arithmetic operations. These operations support full 64-bit
multiplication and division, for both signed and unsigned numbers. The pair of registers
%rdx and %rax are viewed as forming a single 128-bit oct word.

of registers %rdx and %rax as forming a 128-bit oct word. For example, the imulq
and mulq instructions store the result of multiplying two 64-bit values—the first
as given by the source operand and the second from register %rax.

The two divide instructions idivq and divq start with %rdx:%rax as the
128-bit dividend and the source operand as the 64-bit divisor. They then store
the quotient in register %rax and the remainder in register %rdx. Preparing the
dividend depends on whether unsigned (divq) or signed (idivq) division is to be
performed. In the former case, register %rdx is simply set to zero. In the latter
case, the instruction cqto is used to perform sign extension, copying the sign
bit of %rax into every bit of %rdx.® Figure 3.37 also shows an instruction cltq
to sign extend register %eax to %rax.” This instruction is just a shorthand for the
instruction movslq %eax, %rax.

3.13.4 Control

The control instructions and methods of implementing control transfers in x86-64
are the same as those in IA32 (Section 3.6.) As shown in Figure 3.38, two new
instructions, cmpq and testq, are added to compare and test quad words, aug-
menting those for byte, word, and double word sizes (Figure 3.10). gcc uses both
conditional data transfer and conditional control transfer, since all x86-64 ma-
chines support conditional moves.

To illustrate the similarity between IA32 and x86-64 code, consider the as-
sembly code generated by compiling an integer factorial function implemented
with a while loop (Figure 3.15), as is shown in Figure 3.39. As can be seen, these

6. ATT-format instruction cqto is called cqo in Intel and AMD documentation.
7. Instruction cltq is called cdge in Intel and AMD documentation.
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Instruction Based on Description
CMP Sy, 81 $1-95 Compare
cmpq Compare quad word
TEST Sy, S S1& S, Test
testq Test quad word

Figure 3.38 64-bit comparison and test instructions. These instructions set the
condition codes without updating any other registers.

(a) 1A32 version

1 fact_while:
n at %ebp+8

2 pushl  Y%ebp Save frame pointer

3 movl %esp, %ebp Create new frame pointer
4 movl 8(%ebp), %edx Get n

5 movl $1, %eax Set result = 1

6 cmpl $1, Yedx Compare n:1

7 jle L7 If <=, goto done

8 .L10: loop:

9 imull  %edx, %eax Compute result *= n
10 subl $1, %edx Decrement n

11 cmpl $1, Yedx Compare n:1

12 jg .L10 If >, goto loop

13 LT done:

14 popl %ebp Restore frame pointer
15 ret Return result

(b) x86-64 version

1 fact_while:

n in %rdi

2 movl $1, %eax Set result = 1

3 cmpl $1, Y%edi Compare n:1

4 jle L7 If <=, goto done

5 .L10: loop:

6 imull %edi, %heax Compute result *= n
7 subl $1, %edi Decrement n

8 cmpl $1, Y%edi Compare n:1

9 jg .L10 If >, goto loop

10 L7: done:

11 rep (See explanation in aside)
12 ret Return result

Figure 3.39 1A32 and x86-64 versions of factorial. Both were compiled from the C
code shown in Figure 3.15.
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two versions are very similar. They differ only in how arguments are passed (on
the stack vs. in registers), and the absence of a stack frame or frame pointer in the
x86-64 code.

Aside Why is there a rep instruction in this code?

On line 11 of the x86-64 code, we see the instruction rep precedes the return instruction ret. Looking at
the Intel and AMD documentation for the rep instruction, we find that it is normally used to implement
a repeating string operation [3, 29]. It seems completely inappropriate here. The answer to this puzzle
can be seen in AMD’s guidelines to compiler writers [1]. They recommend using the combination of
rep followed by ret to avoid making the ret instruction be the destination of a conditional jump
instruction. Without the rep instruction, the jg instruction would proceed to the ret instruction when
the branch is not taken. According to AMD, their processors cannot properly predict the destination
of a ret instruction when it is reached from a jump instruction. The rep instruction serves as a form
of no-operation here, and so inserting it as the jump destination does not change behavior of the code,
except to make it faster on AMD processors.

Practice Problem 3.49
A function fun_c has the following overall structure:
long fun_c(unsigned long x) {

long val = 0;

int i;

for ( ; ; ) {

return ;

}

The Gee C compiler generates the following assembly code:

1 fun_c:
x in J%rdi
2 movl $0, Y%ecx
3 movl $0, %edx
4 movabsq $72340172838076673, Jrsi
5 .L2:
6 movq %rdi, %rax
7 andq %hrsi, Yrax
8 addq %hrax, hrex
9 shrq %rdi Shift right by 1
10 addl $1, %edx
11 cmpl $8, Yedx

12 jne .L2
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13 movq hrex, hrax
14 sarq $32, Yrax
15 addq hrex, Jhrax
16 movq %rax, %rdx
17 sarq $16, %rdx
18 addq hrax, %hrdx
19 movq %rdx, %rax
20 sarq $8, Y%rax
21 addq %rdx, %rax
22 andl $255, Jeax
23 ret

Reverse engineer the operation of this code. You will find it useful to convert the
decimal constant on line 4 to hexadecimal.

A. Use the assembly-code version to fill in the missing parts of the C code.

B. Describe in English what this code computes.

Procedures

We have already seen in our code samples that the x86-64 implementation of
procedure calls differs substantially from that of IA32. By doubling the register
set, programs need not be so dependent on the stack for storing and retrieving
procedure information. This can greatly reduce the overhead for procedure calls
and returns.

Here are some of the highlights of how procedures are implemented with
x86-64:

e Arguments (up to the first six) are passed to procedures via registers, rather
than on the stack. This eliminates the overhead of storing and retrieving values
on the stack.

* The callq instruction stores a 64-bit return address on the stack.

* Many functions do not require a stack frame. Only functions that cannot keep
all local variables in registers need to allocate space on the stack.

e Functions can access storage on the stack up to 128 bytes beyond (i.e., at a
lower address than) the current value of the stack pointer. This allows some
functions to store information on the stack without altering the stack pointer.

e There is no frame pointer. Instead, references to stack locations are made
relative to the stack pointer. Most functions allocate their total stack storage
needs at the beginning of the call and keep the stack pointer at a fixed position.

e As with IA32, some registers are designated as callee-save registers. These
must be saved and restored by any procedure that modifies them.
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Operand Argument Number
size (bits) 1 2 3 4 5 6
64 %rdi %rsi %rdx hrex %r8 %r9
32 %edi %esi %edx hecx %r8d %r9d
16 %di %si %dx %hecx %r8w hrow
8 %dil %sil %dl %el %r8b %rob

Figure 3.40 Registers for passing function arguments. The registers are used in a

specified order and named according to the argument sizes.

Argument Passing

Up tosix integral (i.e., integer and pointer) arguments can be passed via registers.
The registers are used in a specified order, with the name used for a register de-
pending on the size of the data type being passed. These are shown in Figure 3.40.
Arguments are allocated to these registers according to their ordering in the ar-
gument list. Arguments smaller than 64 bits can be accessed using the appropriate
subsection of the 64-bit register. For example, if the first argument is 32 bits, it can
be accessed as %edi.

As an example of argument passing, consider the following C function having

eight arguments:

void proc(long

int
short
char
{
*alp += al;
*a2p += a2;
*a3p += a3;
*adp += a4;
}

al,
a2,
a3,
a4,

long
int

*alp,
*a2p,

short *a3p,

char

*adp)

The arguments include a range of different-sized integers (64, 32, 16, and 8 bits)
as well as different types of pointers, each of which is 64 bits.

This function is implemented in x86-64 as follows:

x86-64 implementation of function proc

Arguments passed as follows:

al in Jrdi
alp in Jrsi
a2 in Jedx
a2p in Jrcx
a3 in Jr8w

a3p in %r9

(64
(64
(32
(64
(16
(64

bits)
bits)
bits)
bits)
bits)
bits)
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a4 at %rsp+8 (8 bits)

a4p at rsp+16 (64 bits)
1 proc:
2 movq 16 (%rsp), %rl0  Fetch adp (64 bits)
3 addq %rdi, (%rsi) *alp += al (64 bits)
4 addl %edx, (%hrcx) *a2p += a2 (32 bits)
5 addw %r8w, (%hr9) *a3p += a3 (16 bits)
6 movzbl 8(%rsp), %eax Fetch a4 (8 bits)
7 addb %al, (%r10) *adp += a4 (8 bits)
8 ret

The first six arguments are passed in registers, while the last two are at positions 8
and 16 relative to the stack pointer. Different versions of the ADD instruction are
used according to the sizes of the operands: addq for al (long), addl for a2 (int),
addw for a3 (short), and addb for a4 (char).

Practice Problem 3.50

A C function incrprob has arguments g, t, and x of different sizes, and each may
be signed or unsigned. The function has the following body:

*t += X;
*q += *xt;

It compiles to the following x86-64 code:

1 incrprob:

2 addl (hrdx), %edi
3 movl %wedi, (Yrdx)
4 movslq %edi,%rdi

5 addq %rdi, (%rsi)
6 ret

Determine all four valid function prototypes for incrprob by determining the
ordering and possible types of the three parameters.

Stack Frames

We have already seen that many compiled functions do not require a stack frame.
If all of the local variables can be held in registers, and the function does not call
any other functions (sometimes referred to as a leaf procedure, in reference to the
tree structure of procedure calls), then the only need for the stack is to save the
return address.

On the other hand, there are several reasons a function may require a stack
frame:

¢ There are too many local variables to hold in registers.
e Some local variables are arrays or structures.
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e The function uses the address-of operator (&) to compute the address of a
local variable.

* The function must pass some arguments on the stack to another function.

* The function needs to save the state of a callee-save register before modify-
ing it.

When any of these conditions hold, we find the compiled code for the function
creating a stack frame. Unlike the code for IA32, where the stack pointer fluctuates
back and forth as values are pushed and popped, the stack frames for x86-64
procedures usually have a fixed size, set at the beginning of the procedure by
decrementing the stack pointer (register %rsp). The stack pointer remains at a
fixed position during the call, making it possible to access data using offsets relative
to the stack pointer. As a consequence, the frame pointer (register %ebp) seen in
TA32 code is no longer needed.

Whenever one function (the caller) calls another (the callee), the return ad-
dress gets pushed onto the stack. By convention, we consider this part of the
caller’s stack frame, in that it encodes part of the caller’s state. But this infor-
mation gets popped from the stack as control returns to the caller, and so it does
not affect the offsets used by the caller for accessing values within the stack frame.

The following function illustrates many aspects of the x86-64 stack discipline.
Despite the length of this example, it is worth studying carefully.

long int call_proc()

{
long x1 = 1; int x2 = 2;
short x3 = 3; char x4 = 4;
proc(xl, &x1, x2, &x2, x3, &x3, x4, &x4);
return (x1+x2)*(x3-x4);
}

Gece generates the following x86-64 code.

x86-64 implementation of call_proc

1 call_proc:

2 subq $32, Yrsp Allocate 32-byte stack frame
3 movq $1, 16(%rsp) Store 1 in &x1

4 movl $2, 24 (%rsp) Store 2 in &x2

5 movw $3, 28(%rsp) Store 3 in &x3

6 movb $4, 31(%rsp) Store 4 in &x4

7 leaq 24 (%rsp), hrcx  Pass &x2 as argument 4
8 leaq 16 (%rsp), %hrsi  Pass &x1 as argument 2
9 leaq 31(%rsp), %rax Compute &x4

10 movq %rax, 8(%rsp) Pass &x4 as argument 8
11 movl $4, (Ursp) Pass 4 as argument 7
12 leaq 28(%rsp), %r9 Pass &x3 as argument 6
13 movl $3, %r8d Pass 3 as argument 5
14 movl $2, %edx Pass 2 as argument 3
15 movl $1, %edi Pass 1 as argument 1
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Figure 3.41

Stack frame structure for
call_proc. The frame

16 call proc Call

17 movswl 28(%rsp),%eax Get x3 and convert to int
18 movsbl 31(Y%rsp),%edx Get x4 and convert to int
19 subl %edx, %heax Compute x3-x4

20 cltq Sign extend to long int
21 movslqg 24 (Y%rsp),%rdx Get x2

22 addq 16 (%rsp), %rdx  Compute x1+x2

23 imulq  %rdx, %rax Compute (x1+x2)* (x3-x4)
24 addq $32, Yrsp Deallocate stack frame

25 ret Return

Figure 3.41(a) illustrates the stack frame set up during the execution of call_
proc. Function call_proc allocates 32 bytes on the stack by decrementing the
stack pointer. It uses bytes 16-31 to hold local variables x1 (bytes 16-23), x2 (bytes
24-27), x3 (bytes 28-29), and x4 (byte 31). These allocations are sized according
to the variable types. Byte 30 is unused. Bytes 0—7 and 8-15 of the stack frame are
used to hold the seventh and eighth arguments to call_proc, since there are not
enough argument registers. The parameters are allocated eight bytes each, even
though parameter x4 requires only a single byte. In the code for call_proc, we
can see instructions initializing the local variables and setting up the parameters
(both in registers and on the stack) for the call to call_proc. After proc returns,
the local variables are combined to compute the final expression, which is returned
in register %rax. The stack space is deallocated by simply incrementing the stack
pointer before the ret instruction.

Figure 3.41(b) illustrates the stack during the execution of proc. The call
instruction pushed the return address onto the stack, and so the stack pointer
is shifted down by 8 relative to its position during the execution of call_proc.

is required to hold local
variables x1 through x4,
as well as the seventh and
eighth arguments to proc.
During the execution of
proc (b), the stack pointer
is shifted down by 8.

31 28

24 X4| | x3 | x2

16 x1
Stack pointer 8 Argument 8
%rsp —> 0 Argument 7
(a) Before call to proc

32 X4| | x3 | x2

24 x1

16 Argument 8
Stack pointer 8 Argument 7
%rsp —> 0 Return address

(b) During call to proc
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Hence, within the code for proc, arguments 7 and 8 are accessed by offsets of 8
and 16 from the stack pointer.

Observe how call_proc changed the stack pointer only once during its execu-
tion. Gce determined that 32 bytes would suffice for holding all local variables and
for holding the additional arguments to proc. Minimizing the amount of move-
ment by the stack pointer simplifies the compiler’s task of generating reference to
stack elements using offsets from the stack pointer.

Register Saving Conventions

We saw in IA32 (Section 3.7.3) that some registers used for holding temporary
values are designated as caller-saved, where a function is free to overwrite their
values, while others are callee-saved, where a function must save their values on the
stack before writing to them. With x86-64, the following registers are designated
as being callee-saved: %rbx, %rbp, and %r12-%r1i5.

Aside Are there any caller-saved temporary registers?

287

Of the 16 general-purpose registers, we’ve seen that 6 are designated for passing arguments, 6 are for
callee-saved temporaries, 1 (%rax) holds the return value for a function, and 1 (%rsp) serves as the
stack pointer. Only %r10 and %r11 are left as caller-saved temporary registers. Of course, an argument
register can be used when there are fewer than six arguments or when the function is done using that

argument, and %rax can be used multiple times before the final result is generated.

We illustrate the use of callee-saved registers with a somewhat unusual version
of a recursive factorial function:

/* Compute x! and store at resultp */
void sfact_helper(long int x, long int *resultp)

{
if (x <= 1)
*resultp = 1;
else {
long int nresult;
sfact_helper(x-1, &nresult);
*resultp = x * nresult;
}
}

To compute the factorial of a value x, this function would be called at the top
level as follows:

long int sfact(long int x)

{
long int result;
sfact_helper(x, &result);
return result;
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Figure 3.42

Stack frame for function

The x86-64 code for sfact_helper is shown below.

Arguments: x in Jrdi, resultp in Jrsi
sfact_helper:

]
2 movq
3 movq
4 subq
5 movq
6 movq
7 cmpq
s g
9 movq

10 jmp

11 .L14:

12 leaq

13 leaq

14 call

15 movq

16 imulq

17 movq

18 .L16:

19 movq

20 movq

21 addq

22 ret

%rbx, -16(%rsp)
%rbp, -8(Jrsp)
$40, %rsp

%rdi, %rbx
%rsi, %rbp

$1, %rdi

.L14

$1, (Yrsi)

.L16

16 (%rsp), %rsi
-1(%rdi), %rdi
sfact_helper
%rbx, %rax

16 (%rsp), %rax
%rax, (%rbp)

24 (%rsp), %rbx
32(%rsp), %rbp
$40, Y%rsp

Save Jrbx (callee save)
Save Jrbp (callee save)
Allocate 40 bytes on stack
Copy x to Yrbx

Copy resultp to %rbp
Compare x:1

If >, goto recur

Store 1 in *resultp

Goto done

recur:

Compute &nresult as second argument
Compute xml = x-1 as first argument
Call sfact_helper(xml, &nresult)
Copy x

Compute x*nresult

Store at resultp

done:

Restore Jrbx
Restore %rbp
Deallocate stack

Return

Figure 3.42 illustrates how sfact_helper uses the stack to store the values of
callee-saved registers and to hold the local variable nresult. This implementation

Stack pointer

sfact_helper. This
function decrements the
stack pointer after saving

some of the state.

%rsp —>= 0

-8 Saved rbp

-16 Saved %rbx

(a) Before decrementing the stack pointer

Stack pointer T
Y%rsp —> 0

+32 Saved Yrbp

+24 Saved %rbx
+16 nresult
8 Unused
Unused

(b) After decrementing the stack pointer
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has the interesting feature that the two callee-saved registers it uses (%rbx and
%rbp) are saved on the stack (lines 2-3) before the stack pointer is decremented
(line 4) to allocate the stack frame. As a consequence, the stack offset for %rbx
shifts from —16 at the beginning to +24 at the end (line 19). Similarly, the offset

for %rbp shifts from —8 to +32.

Being able to access memory beyond the stack pointer is an unusual feature of
x86-64. It requires that the virtual memory management system allocate memory
for that region. The x86-64 ABI [73] specifies that programs can use the 128 bytes
beyond (i.e., at lower addresses than) the current stack pointer. The ABI refers to
this area as the red zone. It must be kept available for reading and writing as the

stack pointer moves.

Practice Problem 3.51
For the C program

long int local_array(int i)

{
long int al4] = {2L, 3L, 5L, 7L};
int idx = i & 3;
return al[idx];

}

Gce generates the following code:

x86-64 implementation of local_array
Argument: i in Jedi

local_array:

1

2 movq $2, -40(%rsp)

3 movq $3, -32(%rsp)

4 movq $5, -24(%rsp)

5 movq $7, -16(%rsp)

6 andl $3, %edi

7 movq -40 (%rsp,%rdi,8), %rax
8 ret

A. Draw a diagram indicating the stack locations used by this function and their

offsets relative to the stack pointer.

=

Annotate the assembly code to describe the effect of each instruction.

C. What interesting feature does this example illustrate about the x86-64 stack

discipline?
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Practice Problem 3.52
For the recursive factorial program

long int rfact(long int x)

{
if (x <= 0)
return 1;
else {
long int xml = x-1;
return x * rfact(xml);
}
}

Gcce generates the following code:

x86-64 implementation of recursive factorial function rfact

Argument x in Jrdi

1 rfact:

2 pushg  Yrbx

3 movq Jrdi, %rbx
4 movl $1, Yeax

5 testq  %rdi, Y%rdi
6 jle .L11

7 leaq -1(%rdi), %rdi
8 call rfact

9 imulq  %rbx, %rax
10 .L11:

11 popq hrbx

12 ret

What value does the function store in %rbx?
What are the purposes of the pushq (line 2) and popq (line 11) instructions?

Annotate the assembly code to describe the effect of each instruction.

oSN »

How does this function manage the stack frame differently from others we
have seen?

3.13.5 Data Structures

Data structures follow the same principles in x86-64 as they do in IA32: arrays
are allocated as sequences of identically sized blocks holding the array elements,
structures are allocated as sequences of variably sized blocks holding the structure
elements, and unions are allocated as a single block big enough to hold the largest
union element.
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One difference is that x86-64 follows a more stringent set of alignment re-
quirements. For any scalar data type requiring K bytes, its starting address must
be a multiple of K. Thus, data types long and double as well as pointers, must be
aligned on 8-byte boundaries. In addition, data type long double uses a 16-byte
alignment (and size allocation), even though the actual representation requires
only 10 bytes. These alignment conditions are imposed to improve memory sys-
tem performance—the memory interface is designed in most processors to read
or write aligned blocks that are 8 or 16 bytes long.

Practice Problem 3.53

For each of the following structure declarations, determine the offset of each field,
the total size of the structure, and its alignment requirement under x86-64.

A. struct P1 { int i; char c; long j; char d; };
B. struct P2 { long i; char c; char d; int j; };
C. struct P3 { short w[3]; char c[3] };

D. struct P4 { short w[3]; char *c[3] };

E. struct P3 { struct P1 a[2]; struct P2 *p };

3.13.6 Concluding Observations about x86-64

Both AMD and the authors of Gce deserve credit for moving x86 processors into
a new era. The formulation of both the x86-64 hardware and the programming
conventions changed the processor from one that relied heavily on the stack to
hold program state to one where the most heavily used part of the state is held
in the much faster and expanded register set. Finally, x86 has caught up to ideas
developed for RISC processors in the early 1980s!

Processors capable of running either IA32 or x86-64 code are becoming com-
monplace. Many current desktop and laptop systems are still running 32-bit ver-
sions of their operating systems, and these machines are restricted to running
only 32-bit applications, as well. Machines running 64-bit operating systems, and
therefore capable of running both 32- and 64-bit applications, have become the
widespread choice for high-end machines, such as for database servers and scien-
tific computing. The biggest drawback in transforming applications from 32 bits
to 64 bits is that the pointer variables double in size, and since many data struc-
tures contain pointers, this means that the overall memory requirement can nearly
double. The transition from 32- to 64-bit applications has only occurred for ones
having memory needs that exceed the 4-gigabyte address space limitation of IA32.
History has shown that applications grow to use all available processing power and
memory size, and so we can reliably predict that 64-bit processors running 64-bit
operating systems and applications will become increasingly more commonplace.
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3.14 Machine-Level Representations of
Floating-Point Programs

Thus far, we have only considered programs that represent and operate on inte-
ger data types. In order to implement programs that make use of floating-point
data, we must have some method of storing floating-point data and additional in-
structions to operate on floating-point values, to convert between floating-point
and integer values, and to perform comparisons between floating-point values.
We also require conventions on how to pass floating-point values as function ar-
guments and to return them as function results. We call this combination of storage
model, instructions, and conventions the floating-point architecture for a machine.

Due toitslong evolutionary heritage, x86 processors provide multiple floating-
point architectures, of which two are in current use. The first, referred to as “x87,”
dates back to the earliest days of Intel microprocessors and until recently was the
standard implementation. The second, referred to as “SSE,” is based on recent
additions to x86 processors to support multimedia applications.

Web Aside ASM:X87 The x87 floating-point architecture

The historical x87 floating-point architecture is one of the least elegant features of the x87 architecture.
In the original Intel machines, floating point was performed by a separate coprocessor, a unit with its
own registers and processing capabilities that executes a subset of the instructions. This coprocessor
was implemented as a separate chip, named the 8087, 80287, and 1387, to accompany the processor chips
8086, 80286, and 1386, respectively, and hence the colloquial name “x87.” All x86 processors support
the x87 architecture, and so this continues to be a possible target for compiling floating-point code.

x87 instructions operate on a shallow stack of floating-point registers. In a stack model, some
instructions read values from memory and push them onto the stack; others pop operands from the
stack, perform an operation, and then push the result; while others pop values from the stack and store
them to memory. This approach has the advantage that there is a simple algorithm by which a compiler
can map the evaluation of arithmetic expressions into stack code.

Modern compilers can make many optimizations that do not fit well within a stack model, for
example, making use of a single computed result multiple times. Consequently, the x87 architecture
implements an odd hybrid between a stack and a register model, where the different elements of the
stack can be read and written explicitly, as well as shifted up and down by pushing and popping. In
addition, the x87 stack is limited to a depth of eight values; when additional values are pushed, the
ones at the bottom are simply discarded. Hence, the compiler must keep track of the stack depth.
Furthermore, a compiler must treat all floating-point registers as being caller-save, since their values
might disappear off the bottom if other procedures push more values onto the stack.

Web Aside ASM:SSE  The SSE floating-point architecture

Starting with the Pentium 4, the SSE2 instruction set, added to support multimedia applications,
becomes a viable floating-point architecture for compiled C code. Unlike the stack-based architecture
of x87, SSE-based floating point uses a straightforward register-based approach, a much better target
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for optimizing compilers. With SSE2, floating-point code is similar to integer code, except that it uses a
different set of registers and instructions. When compiling for x86-64, ccc generates SSE code. On the
other hand, its default is to generate x87 code for IA32, but it can be directed to generate SSE code by
a suitable setting of the command-line parameters.

3.15 Summary

In this chapter, we have peered beneath the layer of abstraction provided by the
C language to get a view of machine-level programming. By having the compiler
generate an assembly-code representation of the machine-level program, we gain
insights into both the compiler and its optimization capabilities, along with the ma-
chine, its data types, and its instruction set. In Chapter 5, we will see that knowing
the characteristics of a compiler can help when trying to write programs that have
efficient mappings onto the machine. We have also gotten a more complete picture
of how the program stores data in different memory regions. In Chapter 12, we
will see many examples where application programmers need to know whether
a program variable is on the run-time stack, in some dynamically allocated data
structure, or part of the global program data. Understanding how programs map
onto machines makes it easier to understand the differences between these kinds
of storage.

Machine-level programs, and their representation by assembly code, differ
in many ways from C programs. There is minimal distinction between different
data types. The program is expressed as a sequence of instructions, each of which
performs a single operation. Parts of the program state, such as registers and the
run-time stack, are directly visible to the programmer. Only low-level operations
are provided to support data manipulation and program control. The compiler
must use multiple instructions to generate and operate on different data structures
and to implement control constructs such as conditionals, loops, and procedures.
We have covered many different aspects of C and how it gets compiled. We
have seen that the lack of bounds checking in C makes many programs prone to
buffer overflows. This has made many systems vulnerable to attacks by malicious
intruders, although recent safeguards provided by the run-time system and the
compiler help make programs more secure.

We have only examined the mapping of C onto IA32 and x86-64, but much
of what we have covered is handled in a similar way for other combinations of
language and machine. For example, compiling C++ is very similar to compiling
C. In fact, early implementations of C++ first performed a source-to-source con-
version from C++ to C and generated object-code by running a C compiler on the
result. C++ objects are represented by structures, similar to a C struct. Methods
are represented by pointers to the code implementing the methods. By contrast,
Java is implemented in an entirely different fashion. The object code of Java is a
special binary representation known as Java byte code. This code can be viewed as
a machine-level program for a virtual machine. As its name suggests, this machine
is not implemented directly in hardware. Instead, software interpreters process
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the byte code, simulating the behavior of the virtual machine. Alternatively, an
approach known as just-in-time compilation dynamically translates byte code se-
quences into machine instructions. This approach provides faster execution when
code is executed multiple times, such as in loops. The advantage of using byte code
as the low-level representation of a program is that the same code can be “exe-
cuted” on many different machines, whereas the machine code we have considered
runs only on x86 machines.

Bibliographic Notes

Both Intel and AMD provide extensive documentation on their processors. This
includes general descriptions of an assembly-language programmer’s view of the
hardware [2, 27], as well as detailed references about the individual instructions
[3, 28, 29]. Reading the instruction descriptions is complicated by the facts that
(1) all documentation is based on the Intel assembly-code format, (2) there are
many variations for each instruction due to the different addressing and execution
modes, and (3) there are no illustrative examples. Still, these remain the authori-
tative references about the behavior of each instruction.

The organization amd64 . org has been responsible for defining the Application
Binary Interface (ABI) for x86-64 code running on Linux systems [73]. This inter-
face describes details for procedure linkages, binary code files, and a number of
other features that are required for machine-code programs to execute properly.

As we have discussed, the ATT format used by Gcc is very different from the
Intel format used in Intel documentation and by other compilers (including the
Microsoft compilers). Blum’s book [9] is one of the few references based on ATT
format, and it provides an extensive description of how to embed assembly code
into C programs using the asm directive.

Muchnick’s book on compiler design [76] is considered the most comprehen-
sive reference on code-optimization techniques. It covers many of the techniques
we discuss here, such as register usage conventions and the advantages of gener-
ating code for loops based on their do-while form.

Much has been written about the use of buffer overflow to attack systems over
the Internet. Detailed analyses of the 1988 Internet worm have been published
by Spafford [102] as well as by members of the team at MIT who helped stop its
spread [40]. Since then a number of papers and projects have generated ways both
to create and to prevent buffer overflow attacks. Seacord’s book [94] provides a
wealth of information about buffer overflow and other attacks on code generated
by C compilers.

Homework Problems

3.54 ¢
A function with prototype

int decode2(int x, int y, int z);

is compiled into IA32 assembly code. The body of the code is as follows:



Homework Problems

x at %ebp+8, y at lebp+12, z at Jebp+16

1 movl 12(%ebp), %hedx
2 subl 16 (%ebp) , %hedx
3 movl %edx, %heax

4 sall $31, Yeax

5 sarl $31, Y%eax

6 imull  8(%ebp), %edx
7 xorl %edx, %heax

Parameters x, y, and z are stored at memory locations with offsets 8, 12, and 16
relative to the address in register %ebp. The code stores the return value in register
%heax.

Write C code for decode?2 that will have an effect equivalent to our assembly
code.

3.5 ¢
The following code computes the product of x and y and stores the result in
memory. Data type 11_t is defined to be equivalent to long long.

typedef long long 11_t;

void store_prod(ll_t *dest, int x, 11_t y) {
*dest = x*y;

}
Gcce generates the following assembly code implementing the computation:

dest at %ebp+8, x at %ebp+12, y at %ebp+16

1 movl 16 (%ebp) , %esi
2 movl 12(%ebp), %heax
3 movl %eax, %hedx

4 sarl $31, JYedx

5 movl 20 (%ebp), %ecx
6 imull  %eax, %ecx

7 movl %edx, Y%ebx

8 imull  Y%esi, Y%ebx

9 addl %ebx, Yecx

10 mull %esi

11 leal (%ecx,%edx), %edx
12 movl 8(%ebp), %hecx
13 movl %heax, (%hecx)
14 movl %edx, 4(%ecx)

This code uses three multiplications to implement the multiprecision arith-
metic required to implement 64-bit arithmetic on a 32-bit machine. Describe the
algorithm used to compute the product, and annotate the assembly code to show
how it realizes your algorithm. Hint: See Problem 3.12 and its solution.
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3.56 ¢¢
Consider the following assembly code:

x at %ebp+8, n at %ebp+12

1 movl 8(%ebp), %hesi
2 movl 12(%ebp), %ebx
3 movl $-1, %edi

4 movl $1, Yedx

5 .L2:

6 movl %edx, %eax

7 andl %hesi, Yeax

8 xorl %eax, %hedi

9 movl %ebx, lecx

10 sall %cl, %edx

1 testl  Yedx, %edx

12 jne .L2

13 movl hedi, %eax

The preceding code was generated by compiling C code that had the following

overall form:

1 int loop(int x, int n)

2 o

3 int result = ;

4 int mask;

5 for (mask = ; mask ; mask =
6 result ~= ;

7 }

8 return result;

9 }

Your task is to fill in the missing parts of the C code to get a program equivalent

to the generated assembly code. Recall that the result of the function is returned
in register %eax. You will find it helpful to examine the assembly code before,
during, and after the loop to form a consistent mapping between the registers and

the program variables.

A. Which registers hold program values x, n, result, and mask?
What are the initial values of result and mask?
What is the test condition for mask?

How does mask get updated?

mgonNw

How does result get updated?
F. Fill in all the missing parts of the C code.

3.57 ¢e

In Section 3.6.6, we examined the following code as a candidate for the use of

conditional data transfer:
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int cread(int #*xp) {
return (xp 7 *xp : 0);

}

We showed a trial implementation using a conditional move instruction but argued
that it was not valid, since it could attempt to read from a null address.

Write a C function cread_alt that has the same behavior as cread, except
that it can be compiled to use conditional data transfer. When compiled with the
command-line option ‘-march=1686’, the generated code should use a conditional
move instruction rather than one of the jump instructions.

3.58 ¢

The code that follows shows an example of branching on an enumerated type
value in a switch statement. Recall that enumerated types in C are simply a way
tointroduce a set of names having associated integer values. By default, the values
assigned to the names go from zero upward. In our code, the actions associated
with the different case labels have been omitted.

/* Enumerated type creates set of constants numbered O and upward */
typedef enum {MODE_A, MODE_B, MODE_C, MODE_D, MODE_E} mode_t;

int switch3(int #*pl, int *p2, mode_t action)
{

int result = 0O;

switch(action) {

case MODE_A:

case MODE_B:
case MODE_C:
case MODE_D:
case MODE_E:
default:

}

return result;

The part of the generated assembly code implementing the different actions
is shown in Figure 3.43. The annotations indicate the argument locations, the
register values, and the case labels for the different jump destinations. Register
%edx corresponds to program variable result and is initialized to —1.

Fill in the missing parts of the C code. Watch out for cases that fall through.
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Arguments: pl at %ebp+8, p2 at Jebp+12, action at Yebp+16
Registers: result in %edx (initialized to -1)

The jump targets:

1 L7 MODE_E
2 movl $17, Yhedx

3 jmp .L19

4 .L13: MODE_A
5 movl 8(%ebp), %heax

6 movl (%eax), %hedx

7 movl 12(%ebp), %hecx

8 movl (%ecx), heax

9 movl 8(%ebp), %hecx

10 movl %heax, (%hecx)

11 jmp .L19

12 .L14: MODE_B
13 movl 12(%ebp), %hedx

14 movl (%edx), %eax

15 movl heax, %hedx

16 movl 8(%ebp), %hecx

17 addl (%hecx), hedx

18 movl 12(%ebp), %heax

19 movl %hedx, (feax)

20 jmp .L19

21 .L15: MODE_C
22 movl 12(%ebp) , %edx

23 movl $15, (Yedx)

24 movl 8(%ebp), %hecx

25 movl (%ecx), hedx

26 jmp .L19

27 .L16: MODE_D
28 movl 8(%ebp), %edx

29 movl (hedx), %heax

30 movl 12(%ebp), %ecx

31 movl %heax, (%hecx)

32 movl $17, %edx

33 .L19: default
34 movl %edx, %heax Set return value

Figure 3.43 Assembly code for Problem 3.58. This code implements the different
branches of a switch statement.

3.59 e¢e

This problem will give you a chance to reverse engineer a switch statement from
machine code. In the following procedure, the body of the switch statement has
been removed:
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1 int switch_prob(int x, int n)
2 o

3 int result = x;

4

5 switch(n) {

6

7 /* Fill in code here */
8 }

9

10 return result;

11 }

Figure 3.44 shows the disassembled machine code for the procedure. We can
see in lines 4 and 5 that parameters x and n are loaded into registers %eax and
%edx, respectively.

The jump table resides in a different area of memory. We can see from the
indirect jump on line 9 that the jump table begins at address 0x80485d0. Using
the GpB debugger, we can examine the six 4-byte words of memory comprising
the jump table with the command x/6w 0x80485d0. GDB prints the following:

(gdb) x/6w 0x80485d0
0x80485d0: 0x08048438 0x08048448 0x08048438 0x0804843d
0x8048560: 0x08048442 0x08048445

Fill in the body of the switch statement with C code that will have the same
behavior as the machine code.

1 08048420 <switch_prob>:

> 8048420: 55 push  %ebp

3 8048421: 89 eb mov %esp, hebp

4 8048423: 8b 45 08 mov 0x8 (%ebp) , heax

5 8048426: 8b 55 Oc mov Oxc (%ebp) , hedx

6 8048429: 83 ea 32 sub $0x32, %edx

7 804842c: 83 fa 05 cmp $0x5, %hedx

8 804842f: 77 17 ja 8048448 <switch_prob+0x28>
9 8048431: ff 24 95 4O 85 04 08 jmp *0x80485d0 (, %edx,4)

10 8048438: «cl1 e0 02 shl $0x2, %eax

11 804843b: eb Oe jmp 804844b <switch_prob+0x2b>
12 804843d: «c1 £8 02 sar $0x2, heax

13 8048440: eb 09 jmp 804844b <switch_prob+0x2b>
14 8048442: 8d 04 40 lea (%eax,%eax,?2) ,%eax

15 8048445: O0f af cO imul  %eax,’%eax

16 8048448: 83 c0 Oa add $0xa, bheax

17 804844b: 5d pop %ebp

18 804844c: c3 ret

Figure 3.44 Disassembled code for Problem 3.59.
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3.60 ¢o¢
Consider the following source code, where R, S, and T are constants declared with
#define:

int A[R][SI[T];

int store_ele(int i, int j, int k, int *dest)

{
xdest = A[i][j][k];
return sizeof (4);
}
In compiling this program, Gce generates the following assembly code:
i at %ebp+8, j at %ebp+12, k at %ebp+16, dest at %ebp+20
1 movl 12(%ebp) , %edx
2 leal (%edx,%edx,4), %eax
3 leal (%edx,%eax,2), %eax
4 imull  $99, 8(%ebp), %edx
5 addl %hedx, Yeax
6 addl 16 (%ebp) , %eax
7 movl A(,%eax,4), %hedx
8 movl 20 (%ebp), %eax
9 movl %hedx, (feax)
10 movl $1980, Yeax

A. Extend Equation 3.1 from two dimensions to three to provide a formula for
the location of array element A[i] [] [k].

B. Use your reverse engineering skills to determine the values of R, S, and T
based on the assembly code.

3.61 ¢e¢

The code generated by the C compiler for var_prod_ele (Figure 3.29) cannot fit
all of the values it uses in the loop in registers, and so it must retrieve the value of
n from memory on each iteration. Write C code for this function that incorporates
optimizations similar to those performed by Gcc, but such that the compiled code
does not spill any loop values into memory.

Recall that the processor only has six registers available to hold temporary
data, since registers %ebp and %esp cannot be used for this purpose. One of these
registers must be used to hold the result of the multiply instruction. Hence, you
must reduce the number of values in the loop from six (result, Arow, Bcol, j, n,
and 4#n) to five.

You will need to find a strategy that works for your particular compiler. Keep
trying different strategies until you find one that works.

3.62 ¢¢
The following code transposes the elements of an M x M array, where M is a
constant defined by #define:
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void transpose(Marray_t A) {
int i, j;
for (i = 0; 1 < M; i++)
for (j = 0; j < i; j++) {
int t = A[i]1[j];
ATi1[3]1 = A[j1[il;
A[j1[1] = t;

}

When compiled with optimization level -02, gcc generates the following code for
the inner loop of the function:

1 .L3:

2 movl (%ebx), %heax

3 movl (%esi,%ecx,4), %hedx
4 movl Y%eax, (%hesi,%ecx,4)
5 addl $1, Yecx

6 movl %edx, (%ebx)

7 addl $52, %ebx

8 cmpl hedi, ‘%hecx

9 j1 L3

A. What is the value of M?
B. What registers hold program values i and j?

C. Write a C code version of transpose that makes use of the optimizations
that occur in this loop. Use the parameter Min your code rather than numeric
constants.

3.63 ¢¢

Consider the following source code, where E1 and E2 are macro expressions de-
clared with #define that compute the dimensions of array A in terms of parameter
n. This code computes the sum of the elements of column j of the array.

1 int sum_col(int n, int A[E1(n)][E2(n)], int j) {
2 int i;

3 int result = O;

4 for (i = 0; 1 < E1(n); i++)

5 result += A[i]l[j];

6 return result;

7

b
In compiling this program, Gce generates the following assembly code:

n at %ebpt8, A at %ebp+12, j at }ebp+16
1 movl 8(%ebp), %heax
2 leal (%eax,%eax), %edx
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3 leal (%edx,%eax), %ecx
4 movl %edx, %ebx

5 leal 1(%edx), %eax

6 movl $0, Y%edx

7 testl Jeax, %eax

8 jle L3

9 leal 0(,%ecx,4), %esi
10 movl 16 (%ebp), %edx
11 movl 12(%ebp), %ecx
12 leal (%ecx,%edx,4), %eax
13 movl $0, %edx

14 movl $1, %hecx

15 addl $2, J%ebx

16 L4:

17 addl (%heax), %edx

18 addl $1, %ecx

19 addl %esi, %eax

20 cmpl hebx, %hecx

21 jne .L4

22 .L3:

23 movl %hedx, %eax

Use your reverse engineering skills to determine the definitions of E1 and E2.

3.64 ¢¢
For this exercise, we will examine the code generated by Gee for functions that have
structures as arguments and return values, and from this see how these language
features are typically implemented.

The following C code has a function word_sum having structures as argument
and return values, and a function prod that calls word_sum:

typedef
int
int
} stri;

typedef
int
int
} str2;

struct {
a;
*p;

struct {
sum;
diff;

str2 word_sum(strl s1) {

str2 result;

result.sum
result.diff

sl.a + *sl.p;
sl.a - *sl.p;



Homework Problems

return result;

}
int prod(int x, int y)
{
strl si;
str2 s2;
sl.a = x;
sl.p = &y;
s2 = word_sum(sl);
return s2.sum * s2.diff;
}

Gcce generates the following code for these two functions:
1 prod:

1 word_sum: 2 pushl  %ebp

2 pushl  Yebp 3 movl %esp, %hebp

3 movl %esp, %ebp 4 subl $20, Yesp

4 pushl  %ebx 5 leal 12(%ebp) , %edx
5 movl 8(%ebp), %heax 6 leal -8(%ebp), %ecx
6 movl 12(%ebp), %ebx 7 movl 8(%ebp) , %heax
7 movl 16 (%ebp) , %edx 8 movl heax, 4(%esp)
8 movl (%edx), %edx 9 movl %edx, 8(%esp)
9 movl %ebx, %ecx 10 movl hecx, (hesp)
10 subl %edx, %ecx 1 call word_sum

11 movl %ecx, 4(%eax) 12 subl $4, Yesp

12 addl %ebx, %edx 13 movl -4 (%ebp) , %heax
13 movl %edx, (%eax) 14 imull  -8(%ebp), %eax
14 popl %hebx 15 leave

15 popl %ebp 16 ret

16 ret $4
The instruction ret $4 is like a normal return instruction, but it increments

the stack pointer by 8 (4 for the return address plus 4 additional), rather than 4.

A. We can see in lines 5-7 of the code for word_sum that it appears as if three
values are being retrieved from the stack, even though the function has only
a single argument. Describe what these three values are.

B. We can see in line 4 of the code for prod that 20 bytes are allocated in the
stack frame. These get used as five fields of 4 bytes each. Describe how each
of these fields gets used.

C. How would you describe the general strategy for passing structures as argu-
ments to a function?

D. How would you describe the general strategy for handling a structure as a
return value from a function?
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3.65 ¢¢e¢
In the following code, A and B are constants defined with #define:

typedef struct {
short x[A][B]; /* Unknown constants A and B */
int y;

} stri;

typedef struct {
char array(B];
int t;
short s[B];
int u;

} str2;

void setVal(strl *p, str2 xq) {
int vl = gq—>t;
int v2 = g->u;
p~>y = vi+v2;

}

Gece generates the following code for the body of setVal:

1 movl 12(%ebp) , %eax
2 movl 36 (%heax), %edx
3 addl 12 (%eax), %hedx
4 movl 8(%ebp), %heax
5 movl %edx, 92(%eax)
What are the values of A and B? (The solution is unique.)
3.66 6o

You are charged with maintaining a large C program, and you come across the
following code:

1 typedef struct {

2 int left;

3 a_struct al[CNT];
4 int right;

5 } b_struct;
6

7

8

void test(int i, b_struct *bp)

{
9 int n = bp—>left + bp->right;
10 a_struct *ap = &bp->alil;
11 ap—>x[ap->idx] = n;



1
2
3
4
5
6
7
8

9
10
11
12

00000000 <test>:

0:

10:
16:
18:
lc:
1d:

Figure 3.45 Disassembled code for Problem 3.66.
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55
89
8b
8b
8d
03
8b
03
89
5d
c3

eb
45
4d
04
44
91
11
54

08

Oc

80

81 04

b8 00 00 00

81 08

push
mov
mov
mov
lea
add
mov
add
mov
pop
ret

Homework Problems

%ebp

%hesp, hebp

0x8 (%ebp) , heax

0xc (%ebp) , %hecx
(%eax,%eax,4) ,%eax
0x4 (%ecx, heax,4) ,%heax
0xb8 (%ecx) ,%hedx
(%ecx) , hedx
%edx,0x8(Jecx, %eax,4)
%ebp

The declarations of the compile-time constant CNT and the structure a_struct

are in a file for which you do not have the necessary access privilege. Fortunately,
you have a copy of the ‘. o’ version of code, which you are able to disassemble with
the oBJDUMP program, yielding the disassembly shown in Figure 3.45.

A. The value of CNT.

Using your reverse engineering skills, deduce the following.

B. A complete declaration of structure a_struct. Assume that the only fields

3.67 6o
Consider the following union declaration:

union ele {
struct {

};

in this structure are idx and x.

int *p;
int y;

} el;
struct {

int x;
union ele *next;

} e2;

This declaration illustrates that structures can be embedded within unions.

linked list having these unions as list elements:

void proc (union ele *up)

{

up->

= *(up—)

) - up—>

The following procedure (with some expressions omitted) operates on a
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A. What would be the offsets (in bytes) of the following fields:

el.p:
el.y:
e2.x:
e2.next:

B. How many total bytes would the structure require?

C. The compiler generates the following assembly code for the body of proc:

up at %ebp+8

movl
movl
movl
movl
subl
movl

AN L AW N =

8(%ebp), %hedx
4 (%edx), hecx
(%ecx), %heax
(%heax), %heax
(%hedx), %heax
Y%eax, 4(%hecx)

On the basis of this information, fill in the missing expressions in the code
for proc. Hint: Some union references can have ambiguous interpretations.
These ambiguities get resolved as you see where the references lead. There
is only one answer that does not perform any casting and does not violate
any type constraints.

3.68 ¢

Write a function good_echo that reads a line from standard input and writes it to
standard output. Your implementation should work for an input line of arbitrary
length. You may use the library function fgets, but you must make sure your
function works correctly even when the input line requires more space than you
have allocated for your buffer. Your code should also check for error conditions
and return when one is encountered. Refer to the definitions of the standard I/O
functions for documentation [48, 58].

3.69 ¢

The following declaration defines a class of structures for use in constructing

binary trees:

struct ELE {
long val;

N O L AW N =

};

typedef struct ELE *tree_ptr;

tree_ptr left;
tree_ptr right;



For a function with the following prototype:
long trace(tree_ptr tp);

Gece generates the following x86-64 code:

1 trace:

tp in %rdi
2 movl $0, %eax
3 testq  %rdi, %rdi
4 je L3
5 .L5:
6 movq (%rdi), %rax
7 movq 16 (%rdi), %rdi
8 testq  %rdi, %rdi
9 jne .L5
10 .L3:
11 rep
12 ret

A. Generate a C version of the function, using a while loop.

B. Explain in English what this function computes.

3.70 ¢¢

Homework Problems

Using the same tree data structure we saw in Problem 3.69, and a function with

the prototype
long traverse(tree_ptr tp);
Gcc generates the following x86-64 code:

1 traverse:
tp in J%rdi

2 movq %rbx, -24(%rsp)
3 movq %rbp, -16(%rsp)
4 movq %r12, -8(%rsp)
5 subq $24, Yrsp

6 movq %rdi, %rbp

7 movabsq $-9223372036854775808, Jrax
8 testq  %rdi, %rdi

9 je .L9

10 movq (%rdi), %rbx

11 movq 8(%rdi), %rdi
12 call traverse

13 movq hrax, hri2

14 movq 16 (%rbp) , %rdi

15 call traverse
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16 cmpq hrax, hri2

17 cmovge %rl2, jrax

18 cmpq %rbx, %rax

19 cmovl  Y%rbx, %rax

20 .L9:

21 movq (%rsp), %rbx
22 movq 8(%rsp), %rbp
23 movq 16 (%rsp), %ri2
24 addq $24, %rsp

25 ret

A. Generate a C version of the function.

B. Explain in English what this function computes.

Solutions to Practice Problems

Solution to Problem 3.1 (page 170)
This exercise gives you practice with the different operand forms.

Operand Value Comment

%heax 0x100 Register

0x104 0xAB Absolute address
$0x108 0x108 Immediate
(heax) OxFF Address 0x100
4 (%eax) 0xAB Address 0x104
9 (%eax, hedx) 0x11 Address 0x10C
260 (%hecx, hedx) 0x13 Address 0x108
0xFC(,%ecx,4) OxFF Address 0x100
(%eax,%edx,4) 0x11 Address 0x10C

Solution to Problem 3.2 (page 174)
As we have seen, the assembly code generated by ccc includes suffixes on the
instructions, while the disassembler does not. Being able to switch between these
two forms is an important skill to learn. One important feature is that memory
references in 1A32 are always given with double-word registers, such as %eax,
even if the operand is a byte or single word.

Here is the code written with suffixes:

movl  Y%eax, (%esp)

movw  (%eax), %dx

movb  $0xFF, %bl

movb  (%esp,%edx,4), %dh
pushl $O0xFF

movw  %dx, (%eax)

popl  %edi

N O L AW =



Solution to Problem 3.3 (page 174)

Solutions to Practice Problems

Since we will rely on Gce to generate most of our assembly code, being able to

write correct assembly code is not a critical skill. Nonetheless, this exercise will

help you become more familiar with the different instruction and operand types.
Here is the code with explanations of the errors:

N OO L AW N =

Solution to Problem 3.4 (page 176)

movb $0xF, (%bl)
movl %ax, (%esp)
movw (%eax),4(%esp)
movb %ah,%sh

movl %eax,$0x123
movl %eax,%dx

movb %si, 8(%ebp)

Cannot use /bl as address register

Mismatch between instruction suffix and register ID

Cannot have both source and destination be memory references
No register named J;sh

Cannot have immediate as destination

Destination operand incorrect size

Mismatch between instruction suffix and register ID

This exercise gives you more experience with the different data movement instruc-
tions and how they relate to the data types and conversion rules of C.

src_t dest_t Instruction

int int movl %eax, (%edx)
char int movsbl %al, (%edx)
char unsigned movsbl %al, (%edx)
unsigned char int movzbl %al, (%edx)
int char movb %al, (%edx)
unsigned unsigned char movb %al, (%edx)
unsigned int movl %eax, (%edx)

Solution to Problem 3.5 (page 176)

Reverse engineering is a good way to understand systems. In this case, we want
to reverse the effect of the C compiler to determine what C code gave rise to this
assembly code. The best way is to run a “simulation,” starting with values x, y, and
z at the locations designated by pointers xp, yp, and zp, respectively. We would
then get the following behavior:

xp at %ebp+8, yp at %hebp+12, zp at %ebp+16

movl
movl
movl
movl
movl
movl
movl
movl

O 0 N O L AW N =

movl

8(%ebp), %hedi

12(%ebp), %edx
16 (%ebp) , %hecx

(%hedx), %ebx
(%ecx), hesi
(%hedi), %heax
%eax, (hedx)
%ebx, (hecx)
%esi, (%hedi)

Get xp
Get yp
Get zp
Get y
Get z
Get x
Store x at yp
Store y at zp

Store z at xp
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From this, we can generate the following C code:

void decodel(int *xp, int *yp, int *zp)

{

int tx *Xp;
int ty = *yp;

int tz = *zp;

*yp = tx;
*zp = ty;
*Xp = tz;

Solution to Problem 3.6 (page 178)

This exercise demonstrates the versatility of the leal instruction and gives you
more practice in deciphering the different operand forms. Although the operand
forms are classified as type “Memory” in Figure 3.3, no memory access occurs.

Instruction Result
leal 6(%eax), %edx 6+x
leal (%eax,%ecx), hedx xX+y
leal (%eax,%ecx,4), %edx x+4y
leal 7 (Yeax,%eax,8), %edx 7+ 9x
leal 0xA(,%ecx,4), %edx 10+ 4y

leal 9(%eax,%ecx,2), %edx 9+x+2y

Solution to Problem 3.7 (page 179)

This problem gives you a chance to test your understanding of operands and the
arithmetic instructions. The instruction sequence is designed so that the result of
each instruction does not affect the behavior of subsequent ones.

Instruction Destination Value
addl %ecx, (heax) 0x100 0x100
subl %edx,4 (%eax) 0x104 0xA8
imull $16, (Yieax,%edx,4) 0x10C 0x110
incl 8(%eax) 0x108 0x14
decl %ecx hecx 0x0
subl %edx,%eax Y%eax 0xFD

Solution to Problem 3.8 (page 180)

This exercise gives you a chance to generate a little bit of assembly code. The
solution code was generated by Gcc. By loading parameter n in register %ecx, it
can then use byte register %c1 to specify the shift amount for the sarl instruction:
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1 movl 8(%ebp), %eax Get x
2 sall $2, %eax X <<= 2
3 movl 12(%ebp), %hecx Get n
4 sarl %cl, %heax x >>=n

Solution to Problem 3.9 (page 181)
This problem is fairly straightforward, since each of the expressions is imple-
mented by a single instruction and there is no reordering of the expressions.

int t1 = x7y;
int t2 = t1 >> 3;
int t3 = ~t2;
int t4 t3-z;

©® N O O»n

Solution to Problem 3.10 (page 182)
A. This instruction is used to set register %edx to zero, exploiting the property
that x ~ x =0 for any x. It corresponds to the C statement x = 0.

B. A more direct way of setting register %edx to zero is with the instruction movl
$0, %edx.

C. Assembling and disassembling this code, however, we find that the version
with xorl requires only 2 bytes, while the version with mov1 requires 5.

Solution to Problem 3.11 (page 184)

We can simply replace the c1td instruction with one that sets register %edx to 0,
and use divl rather than idivl as our division instruction, yielding the following
code:

x at %ebp+8, y at %ebp+12

movl 8 (%ebp) , heax Load x into Jjeax

movl $0, %edx Set high-order bits to 0
divl 12 (%ebp) Unsigned divide by y
movl %eax, 4(%hesp) Store x / y

movl %edx, (%esp) Store x % y

Solution to Problem 3.12 (page 184)

A. We can see that the program is performing multiprecision operations on
64-bit data. We can also see that the 64-bit multiply operation (line 4) uses
unsigned arithmetic, and so we conclude that num_t is unsigned long long.

B. Let x denote the value of variable x, and let y denote the value of y, which
we can write as y = yj, - 22 4 y;, where y, and y, are the values represented
by the high- and low-order 32 bits, respectively. We can therefore compute
x-y=x-y, 2%+ x-y. The full representation of the product would be
96 bits long, but we require only the low-order 64 bits. We can therefore let s
be the low-order 32 bits of x - y, and ¢ be the full 64-bit product x - y;, which
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we can split into high- and low-order parts #, and 7,. The final result has 7, as
the low-order part, and s + ¢, as the high-order part.

Here is the annotated assembly code:

dest at %ebp+8, x at %ebp+12, y at %ebp+16

movl 12(%ebp) , %eax Get x

movl 20(%ebp) , %hecx Get y_h

imull %heax, hecx Compute s = x*y_h
mull 16 (%ebp) Compute t = x*y_1
leal (%hecx,%edx), %edx Add s to t_h
movl 8(%ebp), %hecx Get dest

movl %eax, (hecx) Store t_1

movl %edx, 4(%ecx) Store s+t_h

Solution to Problem 3.13 (page 188)

It is important to understand that assembly code does not keep track of the type
of a program value. Instead, the different instructions determine the operand
sizes and whether they are signed or unsigned. When mapping from instruction
sequences back to C code, we must do a bit of detective work to infer the data
types of the program values.

A. The suffix ‘1’ and the register identifiers indicate 32-bit operands, while the

comparison is for a two’s complement ‘<’. We can infer that data_t must be
int.

. The suffix ‘w’ and the register identifiers indicate 16-bit operands, while the

comparison is for a two’s-complement ‘>=". We can infer that data_t must
be short.

. The suffix ‘v’ and the register identifiers indicate 8-bit operands, while the

comparison is for an unsigned ‘<’. We can infer that data_t must be un-
signed char.

. The suffix ‘1’ and the register identifiers indicate 32-bit operands, while

the comparison is for ‘!=’, which is the same whether the arguments are
signed, unsigned, or pointers. We can infer that data_t could be either int,
unsigned, or some form of pointer. For the first two cases, they could also
have the long size designator.

Solution to Problem 3.14 (page 189)
This problem is similar to Problem 3.13, except that it involves TEST instructions
rather than cMmp instructions.

A. The suffix ‘1’ and the register identifiers indicate 32-bit operands, while the

comparison is for ‘! =", which is the same for signed or unsigned. We can infer
that data_t must be either int, unsigned, or some type of pointer. For the
first two cases, they could also have the long size designator.

. The suffix ‘w’ and the register identifier indicate 16-bit operands, while the

comparison is for ‘==", which is the same for signed or unsigned. We can infer
that data_t must be either short or unsigned short.
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C. The suffix ‘b’ and the register identifier indicate an 8-bit operand, while the
comparison is for two’s complement ‘>’. We can infer that data_t must be
char.

D. The suffix ‘w’ and the register identifier indicate 16-bit operands, while the
comparison is for unsigned °>’. We can infer that data_t must be unsigned
short.

Solution to Problem 3.15 (page 192)

This exercise requires you to examine disassembled code in detail and reason
about the encodings for jump targets. It also gives you practice in hexadecimal
arithmetic.

A. The je instruction has as target 0x8048291 + 0x05. As the original disas-
sembled code shows, this is 0x8048296:

804828 : 74 05 je 8048296
8048291 : e8 1le 00 00 00 call 80482b4

B. The jb instruction has as target 0x8048359 — 25 (since 0xe7 is the 1-byte,
two’s-complement representation of —25). As the original disassembled
code shows, this is 0x8048340:

8048357 : 72 e7 jb 8048340
8048359: c6 05 10 a0 04 08 01 movb  $0x1,0x804a010

C. According to the annotation produced by the disassembler, the jump target
is at absolute address 0x8048391. According to the byte encoding, this must
be at an address 0x12 bytes beyond that of the mov instruction. Subtracting
these gives address 0x804837£, as confirmed by the disassembled code:

804837d: T4 12 je 8048391
804837f: b8 00 00 00 00 mov $0x0, jeax

D. Reading the bytes in reverse order, we see that the target offset is
Oxffffffe0, or decimal —32. Adding this to 0x80482c4 (the address of the
nop instruction) gives address 0x80482a4:

80482bf : e9 e0 ff ff ff jmp 80482a4
80482c4: 90 nop

E. An indirect jump is denoted by instruction code ff 25. The address from
which the jump target is to be read is encoded explicitly by the following
4 bytes. Since the machine is little endian, these are given in reverse order
as fc 9f 04 08.

Solution to Problem 3.16 (page 195)

Annotating assembly code and writing C code that mimics its control flow are good
first steps in understanding assembly-language programs. This problem gives you
practice for an example with simple control flow. It also gives you a chance to
examine the implementation of logical operations.
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A. Here is the C code:

void goto_cond(int a, int *p) {

1

2 if (p == 0)

3 goto done;
4 if (a <= 0)

5 goto done;
6 *P += a;

7 done:

8 return;

9o}

B. The first conditional branch is part of the implementation of the && ex-
pression. If the test for p being non-null fails, the code will skip the test of
a>o0.

Solution to Problem 3.17 (page 196)

This is an exercise to help you think about the idea of a general translation rule
and how to apply it.

A. Converting to this alternate form involves only switching around a few lines
of the code:

int gotodiff_alt(int x, int y) {
int result;
if (x <7y
goto true;
result = x - y;

1

2

3

4

5

6 goto done;

7 true:

8 result = y - x;
9 done:

0 return result;
1

}

B. In most respects, the choice is arbitrary. But the original rule works better
for the common case where there is no else statement. For this case, we can
simply modify the translation rule to be as follows:

t = test-expr;
if (1t)
goto done;
then-statement
done:

A translation based on the alternate rule is more cumbersome.

Solution to Problem 3.18 (page 196)

This problem requires that you work through a nested branch structure, where
you will see how our rule for translating if statements has been applied. For the
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most part, the machine code is a straightforward translation of the C code. The
only difference is that the initialization expression (line 2 in the C code) has been
moved down (line 15 in the assembly code) so that it only gets computed when it
is certain that this will be the returned value.

1 int test(int x, int y) {
2 int val = x7y;

3 if (x < -3) {

4 if (y < x)

5 val = x*y;
6 else

7 val = x+y;
8 } else if (x > 2)
9 val = x-y;

10 return val;

11 }

Solution to Problem 3.19 (page 198)

A. If we build up a table of factorials computed with data type int, we get the

following:

n n! OK?
1 1 Y
2 2 Y
3 6 Y
4 24 Y
5 120 Y
6 720 Y
7 5,040 Y
8 40,320 Y
9 362,880 Y

10 3,628,800 Y

11 39,916,800 Y

12 479,001,600 Y

13 1,932,053,504 Y

14 1,278,945,280 N

We can see that 14! has overflowed, since the numbers stopped growing. As
we learned in Problem 2.35, we can also test whether or not the computation
of n!has overflowed by computing n!/n and seeing whether it equals (n — 1)!.

B. Doing the computation with data type long long lets us go up to 20!, yielding
2,432,902,008,176,640,000.
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Solution to Problem 3.20 (page 199)

The code generated when compiling loops can be tricky to analyze, because the
compiler can perform many different optimizations on loop code, and because it
can be difficult to match program variables with registers. We start practicing this
skill with a fairly simple loop.

A. The register usage can be determined by simply looking at how the argu-
ments get fetched.

Register usage

Register Variable Initially

%eax x
hecx
%hedx n n

B. The body-statement portion consists of lines 3 through 5 in the C code and
lines 5 through 7 in the assembly code. The test-expr portion is on line 6 in
the C code. In the assembly code, it is implemented by the instructions on
lines 8 through 11.

C. The annotated code is as follows:

x at %ebp+8, y at %ebp+12, n at Yebp+16
movl 8(%ebp), %heax Get x

1

2 movl 12(%ebp), %hecx Get y

3 movl 16(%ebp), %edx Get n

4 .L2: loop:

5 addl Y%edx, %heax x +=n

6 imull  Y%edx, %ecx y *=n

7 subl $1, %edx n--

8 testl  %edx, %edx Test n

9 jle L5 If <= 0, goto done
10 cmpl %edx, %hecx Compare y:n

11 jl .L2 If <, goto loop
12 .L5: done:

As with the code of Problem 3.16, two conditional branches are required to
implement the && operation.

Solution to Problem 3.21 (page 201)
This problem demonstrates how the transformations made by the compiler can
make it difficult to decipher the generated assembly code.

A. We can see that the register is initialized to a + b and then incremented on
each iteration. Similarly, the value of a (held in register %ecx) is incremented
on each iteration. We can therefore see that the value in register %edx will
always equal a + b. Let us call this apb (for “a plus b”).



B. Here is a table of register usage:

Register Program value Initial value
hecx a a
%hebx b b
heax result 1
%hedx apb a+b

C. The annotated code is as follows:

Arguments: a at %ebp+8, b at Jebp+12

Solutions to Practice Problems

Registers: a in Jlecx, b in Jebx, result in Jeax, Jedx set to apb (a+b)

1 movl 8(%ebp), %hecx
2 movl 12(%ebp) , %ebx
3 movl $1, Y%eax

4 cmpl %ebx, %hecx

5 jge .L11

6 leal (%ebx,%ecx), %edx
7 movl $1, Y%eax

8 .L12:

9 imull  %edx, %eax

10 addl $1, Yecx

1 addl $1, Y%edx

12 cmpl %hecx, hebx

13 g .L12

14 LL11:

Return result

D. The equivalent goto code is as follows:

—_

2 A

3 int result = 1;
4 if (a >= b)

5 goto done;
6

7 int apb = atb;
8 loop:

9 result *= apb;
10 at+;

11 apb++;

12 if (b > a)

13 goto loop;
14 done:

15 return result;

int loop_while_goto(int a, int b)

Get a

Get b

Set result = 1
Compare a:b

If >=, goto done
Compute apb = a+b
Set result = 1

loop:

Compute result *= apb
Compute a++

Compute apb++

Compare b:a

If >, goto loop

done:

/* apb has same value as at+b in original code */
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Solution to Problem 3.22 (page 202)
Being able to work backward from assembly code to C code is a prime example
of reverse engineering.

A. Here is the original C code:

int fun_a(unsigned x) {
int val = 0;

while (x) {
val ~= x;
x >>=1;
}

return val & 0Ox1;

}

B. This code computes the parity of argument x. That is, it returns 1 if there is
an odd number of ones in x and 0 if there is an even number.

Solution to Problem 3.23 (page 205)
This problem is trickier than Problem 3.22, since the code within the loop is more
complex and the overall operation is less familiar.

A. Here is the original C code:

int fun_b(unsigned x) {

int val = 0;

int i;

for (i = 0; i < 32; i++) {
val = (val << 1) | (x & 0x1);
x >>= 1;

}

return val;

}

B. This code reverses the bits in x, creating a mirror image. It does this by
shifting the bits of x from left to right, and then filling these bits in as it
shifts val from right to left.

Solution to Problem 3.24 (page 206)
Our stated rule for translating a for loop into a while loop is just a bit too
simplistic—this is the only aspect that requires special consideration.

A. Applying our translation rule would yield the following code:

/* Naive translation of for loop into while loop */
/* WARNING: This is buggy code */

int sum = 0;

int i = 0;
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while (i < 10) {
if (1 & 1)
/* This will cause an infinite loop */
continue;
sum += i;
i++;

}

This code has an infinite loop, since the continue statement would prevent
index variable i from being updated.

B. The general solution is to replace the continue statement with a goto
statement that skips the rest of the loop body and goes directly to the update
portion:

/* Correct translation of for loop into while loop */
int sum = 0;
int i = 0;
while (i < 10) {
if (1 & 1)
goto update;
sum += i;
update:
i++;

}

Solution to Problem 3.25 (page 209)
This problem reinforces our method of computing the misprediction penalty.
A. We can apply our formula directly to get 7,p =2(31 — 16) = 30.
B. When misprediction occurs, the function will require around 16 + 30 = 46

cycles.

Solution to Problem 3.26 (page 212)
This problem provides a chance to study the use of conditional moves.

A. The operator is °/°. We see this is an example of dividing by a power of 2 by
right shifting (see Section 2.3.7). Before shifting by k = 2, we must add a bias
of 2F — 1 =3 when the dividend is negative.

B. Here is an annotated version of the assembly code:

Computation by function arith

Register: x in Y%edx

1 leal 3(%edx), %eax temp = x+3

2 testl  Y%edx, Y%edx Test x

3 cmovns jedx, %eax If >= 0, temp = x

4 sarl $2, %eax Return temp >> 2 (= x/4)
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The program creates a temporary value equal to x + 3, in anticipation of
x being negative and therefore requiring biasing. The cmovns instruction
conditionally changes this number to x when x > 0, and then it is shifted by
2 to generate x /4.

Solution to Problem 3.27 (page 212)

This problem is similar to Problem 3.18, except that some of the conditionals have
been implemented by conditional data transfers. Although it might seem daunting
to fit this code into the framework of the original C code, you will find that it follows
the translation rules fairly closely.

1
2
3
4
5
6
7
8
9
0
1

1
1

int test(int x, int y) {
int val = 4%*x;

if (y > 0) {
if (x <y)
val = x-y;
else
val = x7y;
} else if (y < -2)
val = x+y;

return val;

}

Solution to Problem 3.28 (page 217)

This problem gives you a chance to reason about the control flow of a switch
statement. Answering the questions requires you to combine information from
several places in the assembly code.

1.

2.

Line 2 of the assembly code adds 2 to x to set the lower range of the cases to
zero. That means that the minimum case label is —2.

Lines 3 and 4 cause the program to jump to the default case when the adjusted
case value is greater than 6. This implies that the maximum case label is
—24+6=4.

In the jump table, we see that the entry on line 3 (case value —1) has the same
destination (.L2) as the jump instruction on line 4, indicating the default case
behavior. Thus, case label —1 is missing in the switch statement body.

In the jump table, we see that the entries on lines 6 and 7 have the same
destination. These correspond to case labels 2 and 3.

From this reasoning, we draw the following two conclusions:

A. The case labels in the switch statement body had values —2, 0, 1,2, 3, and 4.
B. The case with destination .L6 had labels 2 and 3.

Solution to Problem 3.29 (page 218)

The key to reverse engineering compiled switch statements is to combine the
information from the assembly code and the jump table to sort out the different
cases. We can see from the ja instruction (line 3) that the code for the default case
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has label .L2. We can see that the only other repeated label in the jump table is
.L4, and so this must be the code for the cases C and D. We can see that the code
falls through at line 14, and so label .L6 must match case A and label .L3 must
match case B. That leaves only label .L2 to match case E.

The original C code is as follows. Observe how the compiler optimized the
case where a equals 4 by setting the return value to be 4, rather than a.

1 int switcher(int a, int b, int c)
2 o

3 int answer;

4 switch(a) {

6 case b:

7 c=b "~ 15;

8 /* Fall through */

9 case O:

10 answer = ¢ + 112;

11 break;

12 case 2:

13 case 7:

14 answer = (c + b) << 2;
15 break;

16 case 4:

17 answer = a; /* equivalently, answer = 4 */
18 break;

19 default:

20 answer = b;

21 }

22 return answer;

23}

Solution to Problem 3.30 (page 223)

This is another example of an assembly-code idiom. At first it seems quite
peculiar—a call instruction with no matching ret. Then we realize that it is not
really a procedure call after all.

A. Jeax is set to the address of the popl instruction.

B. Thisis not a true procedure call, since the control follows the same ordering
as the instructions and the return address is popped from the stack.

C. This is the only way in IA32 to get the value of the program counter into an
integer register.

Solution to Problem 3.31 (page 224)

This problem makes concrete the discussion of register usage conventions. Reg-
isters %edi, %esi, and %ebx are callee-save. The procedure must save them on the
stack before altering their values and restore them before returning. The other
three registers are caller-save. They can be altered without affecting the behavior
of the caller.
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Solution to Problem 3.32 (page 228)

One step in learning to read IA32 code is to become very familiar with the way
arguments are passed on the stack. The key to solving this problem is to note that
the storage of d at p is implemented by the instruction at line 3 of the assembly
code, from which you work backward to determine the types and positions of
arguments d and p. Similarly, the subtraction is performed at line 6, and from this
you can work backward to determine the types and positions of arguments x and c.

The following is the function prototype:

int fun(short c, char d, int *p, int x);

As this example shows, reverse engineering is like solving a puzzle. It’s important
to identify the points where there is a unique choice, and then work around these
points to fill in the rest of the details.

Solution to Problem 3.33 (page 228)

Being able to reason about how functions use the stack is a critical part of under-
standing compiler-generated code. As this example illustrates, the compiler may
allocate a significant amount of space that never gets used.

A. We started with %esp having value 0x800040. The pushl instruction on line 2
decrements the stack pointer by 4, giving 0x80003C, and this becomes the
new value of %ebp.

B. Line 4 decrements the stack pointer by 40 (hex 0x28), yielding 0x800014.

C. We can see how the two leal instructions (lines 5 and 7) compute the
arguments to pass to scanf, while the two mov1l instructions (lines 6 and 8)
store them on the stack. Since the function arguments appear on the stack at
increasingly positive offsets from %esp, we can conclude that line 5 computes
&x, while line 7 computes line &y. These have values 0x800038 and 0x800034,
respectively.

D. The stack frame has the following structure and contents:

0x80003C 0x800060 | <—— Y%ebp
0x800038 0x53 | x
0x800034 0x46

0x800030

0x80002C

0x800028

0x800024

0x800020

0x80001C 0x800038

0x800018 0x800034

0x800014 0x300070 | <—— Yesp

E. Byte addresses 0x800020 through 0x800033 are unused.
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Solution to Problem 3.34 (page 231)

This problem provides a chance to examine the code for a recursive function. An
important lesson to learn is that recursive code has the exact same structure as the
other functions we have seen. The stack and register-saving disciplines suffice to
make recursive functions operate correctly.

A. Register %ebx holds the value of parameter x, so that it can be used to
compute the result expression.

B. The assembly code was generated from the following C code:

int rfun(unsigned x) {
if (x == 0)
return O;
unsigned nx = x>>1;
int rv = rfun(nx);
return (x & Ox1) + rv;

}

C. Like the code of Problem 3.49, this function computes the sum of the bits in
argument x. It recursively computes the sum of all but the least significant
bit, and then it adds the least significant bit to get the result.

Solution to Problem 3.35 (page 233)

This exercise tests your understanding of data sizes and array indexing. Observe
that a pointer of any kind is 4 bytes long. For IA32, gcc allocates 12 bytes for data
type long double, even though the actual format requires only 10 bytes.

Array Element size Total size Start address Element i
S 2 14 Xg xg+2i
T 4 12 X7 xt+4i
U 4 24 Xy xg +4i
v 12 96 Xy xy +12i
W 4 16 Xy xy +4i

Solution to Problem 3.36 (page 234)

This problem is a variant of the one shown for integer array E. It is important to
understand the difference between a pointer and the object being pointed to. Since
data type short requires 2 bytes, all of the array indices are scaled by a factor of 2.
Rather than using movl, as before, we now use movw.

Expression Type Value Assembly

S+1 short * xg+2 leal 2(%edx) ,%eax

S[3] short M[xg + 6] movw 6 (%edx) , %ax

&s[i] short *  xg+2i leal (%edx,%ecx,2),%eax
S[4*i+1] short M[xs + 8i 4 2] movw 2(%edx,%ecx,8) ,%hax
S+i-5 short * xg+2i —10 leal -10(%edx,%ecx,2) ,%eax
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Solution to Problem 3.37 (page 236)

This problem requires you to work through the scaling operations to determine
the address computations, and to apply Equation 3.1 for row-major indexing. The
first step is to annotate the assembly code to determine how the address references
are computed:

1 movl 8(%ebp), %hecx Get 1

2 movl 12(%ebp), %edx Get j

3 leal 0(,%ecx,8), %heax 8*i

4 subl %ecx, heax 8%i-i = 7*i
5 addl %hedx, Yeax 7¥i+j

6 leal (%edx,%edx,4), %edx 5%

7 addl %ecx, %hedx 5%j+i

8 movl matl(,%eax,4), %eax matl[7*i+j]
9 addl mat2(,%edx,4), %eax mat2[5xj+1]

We can see that the reference to matrix mat1 is at byte offset 4(7i 4 j), while the
reference to matrix mat2 is at byte offset 4(5;j + i). From this, we can determine
that mat1 has 7 columns, while mat2 has 5, giving M =5and N =7.

Solution to Problem 3.38 (page 238)
This exercise requires that you be able to study compiler-generated assembly code
to understand what optimizations have been performed. In this case, the compiler
was clever in its optimizations.

Let us first study the following C code, and then see how it is derived from the
assembly code generated for the original function.

/* Set all diagonal elements to val */
void fix_set_diag_opt(fix_matrix A, int val) {
int *Abase = &A[0][0];
int index = 0;
do {
Abase[index] = val;
index += (N+1);
} while (index != (N+1)*N);
}

O 0 N O L AW N =

This function introduces a variable Abase, of type int *, pointing to the start
of array A. This pointer designates a sequence of 4-byte integers consisting of
elements of A in row-major order. We introduce an integer variable index that
steps through the diagonal elements of A, with the property that diagonal elements
iandi + larespaced N + 1elements apartin the sequence, and that once we reach
diagonal element N (index value N(N + 1)), we have gone beyond the end.

The actual assembly code follows this general form, but now the pointer
increments must be scaled by a factor of 4. We label register %eax as holding a
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value index4 equal to index in our C version, but scaled by a factor of 4. For
N =16, we can see that our stopping point for index4 will be 4 - 16(16 + 1) = 1088.

A at Yebp+8, val at J%ebp+12

1 movl 8(%ebp), %hecx Get Abase = &A[0][0]

2 movl 12(%ebp), %edx Get val

3 movl $0, Y%eax Set index4 to 0

4 .L14: loop:

5 movl %edx, (Yhecx,%eax) Set Abase[index4/4] to val
6 addl $68, %eax index4 += 4(N+1)

7 cmpl $1088, Yeax Compare index4:4N(N+1)

8 jne .L14 If I=, goto loop

Solution to Problem 3.39 (page 243)

This problem gets you to think about structure layout and the code used to access
structure fields. The structure declaration is a variant of the example shown in
the text. It shows that nested structures are allocated by embedding the inner
structures within the outer ones.

A. The layout of the structure is as follows:

Offset 0 4 8 12 16
Contents p s.X s.y next

B. Ituses 16 bytes.

C. As always, we start by annotating the assembly code:

sp at %ebp+8

1 movl 8(%ebp), %heax Get sp

2 movl 8(%eax), %hedx Get sp->s.y

3 movl %hedx, 4(Yeax) Store in sp->s.x

4 leal 4 (%heax), %hedx Compute &(sp->s.x)

5 movl %edx, (Yeax) Store in sp—>p

6 movl %eax, 12(%eax)  Store sp in sp->next

From this, we can generate C code as follows:

void sp_init(struct prob *sp)

{
sp—>s.X = sp—>s.V;
sp—>p = &(sp->s.%x);
sp—>next = sp;

b

Solution to Problem 3.40 (page 247)
Structures and unions involve a simple set of concepts, but it takes practice to be
comfortable with the different referencing patterns and their implementations.
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EXPR TYPE Code

up->tl.s int movl 4 (%eax), %heax

movl %eax, (%edx)

up—>tl.v short movw (%eax), %ax

movw %ax, (%edx)

&up->t1.d short * leal 2(%eax), %eax
movl %eax, (%edx)

up->t2.a int * movl %eax, (%edx)

up->t2.alup->t1.s] int movl 4 (%eax), %ecx
movl (%eax,%ecx,4), %eax
movl %eax, (%edx)

*up->t2.p char movl 8(%eax), %heax
movb (%eax), %al
movb %al, (%edx)

Solution to Problem 3.41 (page 251)

Understanding structure layout and alignment is very important for understand-
ing how much storage different data structures require and for understanding the
code generated by the compiler for accessing structures. This problem lets you
work out the details of some example structures.

A. struct P1 { int i; char c; int j; char d; };

i c j d Total Alignment
0 4 8 12 16 4

B. struct P2 { int i; char c; char d; int j; };

i c j d Total Alignment
0 4 5 8 12 4

C. struct P3 { short w[3]; char c[3] };

w ¢ Total Alignment

0 6 10 2

D. struct P4 { short w[3]; char *c[3] };

w c Total Alignment

0 8 20 4

E. struct P3 { struct P1 a[2]; struct P2 *p };

a p Total Alignment
0 32 36 4




Solutions to Practice Problems

Solution to Problem 3.42 (page 251)
This is an exercise in understanding structure layout and alignment.

A. Here are the object sizes and byte offsets:

Field a b c d e f g h

Size 4 2 8 1 4 1 8 4
Offset 0 4 8 16 20 24 32 40

B. The structure is a total of 48 bytes long. The end of the structure must be
padded by 4 bytes to satisfy the 8-byte alignment requirement.

C. One strategy that works, when all data elements have a length equal to a
power of two, is to order the structure elements in descending order of size.
This leads to a declaration,

struct {
double c;
long long g;
float e;
char *a;
void *h ;
short b;
char d;
char f;

} foo;

with the following offsets, for a total of 32 bytes:

Field c g e a h b d f

Size 8 8 4 4 4 2 1 1
Offset 0 8 16 20 24 28 30 31

Solution to Problem 3.43 (page 259)

This problem covers a wide range of topics, such as stack frames, string represen-
tations, ASCII code, and byte ordering. It demonstrates the dangers of out-of-
bounds memory references and the basic ideas behind buffer overflow.

A. Stack after line 7:

08 04 86 43 |Return address
hebp —> | bf ff fc 94 | Saved Jebp
00 00 00 03 |Saved %edi
00 00 00 02 |Saved jesi
00 00 00 01 |Saved %ebx
buf [4-7]

buf [0-3]
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B. Stack after line 10:

08 04 86 00 | Return address
%ebp —> | 33 32 31 30 | Saved %ebp
39 38 37 36 |Saved %edi
35 34 33 32 | Saved %esi
31 30 39 38 | Saved %ebx
37 36 35 34 |buf[4-7]

33 32 31 30 |buf[0-3]

C. The program is attempting to return to address 0x08048600. The low-order
byte was overwritten by the terminating null character.

D. The saved values of the following registers were altered:

Register Value
%ebp 33323130
%hedi 39383736
hesi 35343332
%hebx 31303938

These values will be loaded into the registers before getline returns.

E. The call tomalloc should have had strlen(buf)+1 as its argument, and the
code should also check that the returned value is not equal to NULL.

Solution to Problem 3.44 (page 262)

A. This corresponds to a range of around 2'® addresses.

B. A 128-byte nopsled would cover 27 addresses with each test, and so we would
only require 2° = 64 attempts.

This example clearly shows that the degree of randomization in this version of
Linux would provide only minimal deterrence against an overflow attack.

Solution to Problem 3.45 (page 264)
This problem gives you another chance to see how IA32 code manages the stack,
and to also better understand how to defend against buffer overflow attacks.

A. For the unprotected code, we can see that lines 4 and 6 compute the positions
of v and buf to be at offsets —8 and —20 relative to %ebp. In the protected
code, the canary is stored at offset —8 (line 3), while v and buf are at offsets
—24 and —20 (lines 7 and 9).

B. In the protected code, local variable v is positioned closer to the top of the
stack than buf, and so an overrun of buf will not corrupt the value of v.
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In fact, buf is positioned so that any buffer overrun will corrupt the canary
value.

Solution to Problem 3.46 (page 271)

Achieving a factor of 51 price improvement every 10 years over 3 decades has been
truly remarkable, and it helps explain why computers have become so pervasive
in our society.

A. Assuming the baseline of 16.3 gigabytes in 2010, 256 terabytes represents an
increase by a factor of 1.608 x 10*, which would take around 25 years, giving
us 2035.

B. Sixteen exabytes is an increase of 1.054 x 10° over 16.3 gigabytes. This would
take around 53 years, giving us 2063.

C. Increasing the budget by a factor of 10 cuts about 6 years off our schedule,
making it possible to meet the two memory-size goals in years 2029 and 2057,
respectively.

These numbers, of course, should not be taken too literally. It would require
scaling memory technology well beyond what are believed to be fundamental
physical limits of the current technology. Nonetheless, it indicates that, within the
lifetimes of many readers of this book, there will be systems with exabyte-scale
memory systems.

Solution to Problem 3.47 (page 276)

This problem illustrates some of the subtleties of type conversion and the different
move instructions. In some cases, we make use of the property that the movl
instruction will set the upper 32 bits of the destination register to zeros. Some
of the problems have multiple solutions.

src_t dest_t Instruction S D Explanation

long long movq %rdi %hrax No conversion

int long movslq %hedi %hrax Sign extend

char long movsbq %hdil %hrax Sign extend
unsigned int unsigned long movl %hedi %heax Zero extend to 64 bits
unsigned char unsigned long  movzbq %dil %hrax Zero extend to 64
unsigned char unsigned long movzbl %dil %heax Zero extend to 64 bits
long int movslq %hedi %hrax Sign extend to 64 bits
long int movl %hedi %heax Zero extend to 64 bits
unsigned long unsigned movl %hedi %heax Zero extend to 64 bits

We show that the long to int conversion can use either movslq or movl, even

though one will sign extend the upper 32 bits, while the other will zero extend
it. This is because the values of the upper 32 bits are ignored for any subsequent
instruction having %eax as an operand.
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Solution to Problem 3.48 (page 278)
We can step through the code for arithprob and determine the following:

1. The first movslgq instruction sign extends d to a long integer prior to its multi-
plication by c. This implies that d has type int and c has type long.

2. The movsbl instruction (line 4) sign extends b to an integer prior to its multi-
plication by a. This means that b has type char and a has type int.

3. The sum is computed using a leaq instruction, indicating that the return value
has type long.

From this, we can determine that the unique prototype for arithprob is
long arithprob(int a, char b, long c, int d);

Solution to Problem 3.49 (page 281)
This problem demonstrates a clever way to count the number of 1 bits in a word.
It uses several tricks that look fairly obscure at the assembly-code level.

A. Here is the original C code:

long fun_c(unsigned long x) {
long val = 0;
int i;
for (i = 0; i < 8; i++) {
val += x & 0x0101010101010101L;

x >>= 1;
}
val += (val >> 32);
val += (val >> 16);
val += (val >> 8);

return val & OxFF;

}

B. This code sums the bits in x by computing 8 single-byte sums in parallel, using
all 8 bytes of val. It then sums the two halves of val, then the two low-order
16 bits, and then the 2 low-order bytes of this sum to get the final amount in
the low-order byte. It masks off the high-order bits to get the final result. This
approach has the advantage that it requires only 8 iterations, rather than the
more typical 64.

Solution to Problem 3.50 (page 284)
We can step through the code for incrprob and determine the following:

1. The addl instruction fetches a 32-bit integer from the location given by the
third argument register and adds it to the 32-bit version of the first argument
register. From this, we can infer that t is the third argument and x is the first
argument. We can see that t must be a pointer to a signed or unsigned integer,
but x could be either signed or unsigned, and it could either be 32 bits or 64
(since when adding it to *t, the code should truncate it to 32 bits).
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2. The movslq instruction sign extends the sum (a copy of *t) to a long integer.
From this, we can infer that t must be a pointer to a signed integer.

3. The addq instruction adds the sign-extended value of the previous sum to the
location indicated by the second argument register. From this, we can infer
that q is the second argument and that it is a pointer to a long integer.

There are four valid prototypes for incrprob, depending on whether or not
x is long, and whether it is signed or unsigned. We show these as four different
prototypes:

void incrprob_s(int x, long *q, int *t);

void incrprob_u(unsigned x, long *q, int *t);

void incrprob_sl(long x, long *q, int *t);
void incrprob_ul(unsigned long x, long *q, int *t);

Solution to Problem 3.51 (page 289)
This function is an example of a leaf function that requires local storage. It can
use space beyond the stack pointer for its local storage, never altering the stack

pointer.

A. Stack locations used:

Stack pointer
%rsp —> 0

1
2
3
4
5
6
7
8

-8
-16

Unused

Unused

a[3]

al2]

al1]

a[0]

x86-64 implementation of local_array

Argument i in jedi

local_array:

movq
movq
movq
movq
andl
movq
ret

$2, -40(%rsp)

$3, -32(%rsp)

$5, -24(%rsp)

$7, -16(%rsp)

$3, %edi
-40(%rsp,%rdi,8), %rax

Store

2
Store 3
Store 5
Store 7
Compute
Compute

Return

in
in
in

in

idx

alo]
al1]
al2]
al3]

=1

& 3

al[idx] as return value

C. The function never changes the stack pointer. It stores all of its local values
in the region beyond the stack pointer.

Solution to Problem 3.52 (page 290)

A. Register %rbx is used to hold the parameter x.
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B. Since %rbxis callee-saved, it must be stored on the stack. Since this is the only
use of the stack for this function, the code uses push and pop instructions to
save and restore the register.

C. x86-64 implementation of recursive factorial function rfact

Argument: x in Jrdi

1 rfact:

2 pushq  J%rbx Save %rbx (callee save)
3 movq %rdi, %rbx Copy x to %rbx

4 movl $1, Y%eax result = 1

5 testq  %rdi, %rdi Test x

6 jle .L11 If <=0, goto done

7 leaq -1(%rdi), %rdi Compute xml = x-1

8 call rfact Call rfact(xmi)

9 imulq  %rbx, %rax Compute result = x*rfact(xmi)
10 .L11: done:

11 pPorq %rbx Restore Yrbx

12 ret Return

D. Instead of explicitly decrementing and incrementing the stack pointer, the
code can use pushq and popq to both modify the stack pointer and to save
and restore register state.

Solution to Problem 3.53 (page 291)
This problem is similar to Problem 3.41, but updated for x86-64.

A. struct P1 { int i; char c; long j; char d; };

i c j d Total Alignment
0 4 8 16 24 8

B. struct P2 { long i; char c; char d; int j; };

i c d j Total Alignment
0 8 9 12 16 8

C. struct P3 { short w[3]; char c[3] };

w c Total Alignment

0 6 10 2

D. struct P4 { short w[3]; char *c[3] };

w c Total Alignment

0 8 32 8

E. struct P3 { struct P1 a[2]; struct P2 *p };

a p Total Alignment
0 48 56 8
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Modern microprocessors are among the most complex systems ever created by
humans. A single silicon chip, roughly the size of a fingernail, can contain a
complete high-performance processor, large cache memories, and the logic re-
quired to interface it to external devices. In terms of performance, the processors
implemented on a single chip today dwarf the room-sized supercomputers that
cost over $10 million just 20 years ago. Even the embedded processors found in
everyday appliances such as cell phones, personal digital assistants, and handheld
game systems are far more powerful than the early developers of computers ever
envisioned.

Thus far, we have only viewed computer systems down to the level of machine-
language programs. We have seen that a processor must execute a sequence of
instructions, where each instruction performs some primitive operation, such as
adding two numbers. An instruction is encoded in binary form as a sequence of
1 or more bytes. The instructions supported by a particular processor and their
byte-level encodings are known as its instruction-set architecture (ISA). Different
“families” of processors, such as Intel IA32, IBM/Freescale PowerPC, and the
ARM processor family have different ISAs. A program compiled for one type
of machine will not run on another. On the other hand, there are many different
models of processors within a single family. Each manufacturer produces proces-
sors of ever-growing performance and complexity, but the different models remain
compatible at the ISA level. Popular families, such as IA32, have processors sup-
plied by multiple manufacturers. Thus, the ISA provides a conceptual layer of
abstraction between compiler writers, who need only know what instructions are
permitted and how they are encoded, and processor designers, who must build
machines that execute those instructions.

In this chapter, we take a brief look at the design of processor hardware. We
study the way a hardware system can execute the instructions of a particular ISA.
This view will give you a better understanding of how computers work and the
technological challenges faced by computer manufacturers. One important con-
cept is that the actual way a modern processor operates can be quite different
from the model of computation implied by the ISA. The ISA model would seem
to imply sequential instruction execution, where each instruction is fetched and
executed to completion before the next one begins. By executing different parts
of multiple instructions simultaneously, the processor can achieve higher perfor-
mance than if it executed just one instruction at a time. Special mechanisms are
used to make sure the processor computes the same results as it would with se-
quential execution. This idea of using clever tricks to improve performance while
maintaining the functionality of a simpler and more abstract model is well known
in computer science. Examples include the use of caching in Web browsers and
information retrieval data structures such as balanced binary trees and hash tables.

Chances are you will never design your own processor. This is a task for
experts working at fewer than 100 companies worldwide. Why, then, should you
learn about processor design?

e [tis intellectually interesting and important. There is an intrinsic value in learn-
ing how things work. It is especially interesting to learn the inner workings of
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a system that is such a part of the daily lives of computer scientists and engi-
neers and yet remains a mystery to many. Processor design embodies many of
the principles of good engineering practice. It requires creating a simple and
regular structure to perform a complex task.

e Understanding how the processor works aids in understanding how the overall
computer system works. In Chapter 6, we will look at the memory system and
the techniques used to create an image of a very large memory with a very
fast access time. Seeing the processor side of the processor-memory interface
will make this presentation more complete.

e Although few people design processors, many design hardware systems that
contain processors. This has become commonplace as processors are embed-
ded into real-world systems such as automobiles and appliances. Embedded-
system designers must understand how processors work, because these sys-
tems are generally designed and programmed at a lower level of abstraction
than is the case for desktop systems.

* You just might work on a processor design. Although the number of companies
producing microprocessors is small, the design teams working on those pro-
cessors are already large and growing. There can be over 1000 people involved
in the different aspects of a major processor design.

In this chapter, we start by defining a simple instruction set that we use as
a running example for our processor implementations. We call this the “Y86”
instruction set, because it was inspired by the IA32 instruction set, which is
colloquially referred to as “x86.” Compared with IA32, the Y86 instruction set has
fewer data types, instructions, and addressing modes. It also has a simpler byte-
level encoding. Still, it is sufficiently complete to allow us to write simple programs
manipulating integer data. Designing a processor to implement Y86 requires us
to face many of the challenges faced by processor designers.

We then provide some background on digital hardware design. We describe
the basic building blocks used in a processor and how they are connected together
and operated. This presentation builds on our discussion of Boolean algebra and
bit-level operations from Chapter 2. We also introduce a simple language, HCL
(for “Hardware Control Language”), to describe the control portions of hardware
systems. We will later use this language to describe our processor designs. Even if
you already have some background in logic design, read this section to understand
our particular notation.

As a first step in designing a processor, we present a functionally correct,
but somewhat impractical, Y86 processor based on sequential operation. This
processor executes a complete Y86 instruction on every clock cycle. The clock
must run slowly enough to allow an entire series of actions to complete within
one cycle. Such a processor could be implemented, but its performance would be
well below what could be achieved for this much hardware.

With the sequential design as a basis, we then apply a series of transforma-
tions to create a pipelined processor. This processor breaks the execution of each
instruction into five steps, each of which is handled by a separate section or stage
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of the hardware. Instructions progress through the stages of the pipeline, with one
instruction entering the pipeline on each clock cycle. As a result, the processor can
be executing the different steps of up to five instructions simultaneously. Making
this processor preserve the sequential behavior of the Y86 ISA requires handling
a variety of hazard conditions, where the location or operands of one instruction
depend on those of other instructions that are still in the pipeline.

We have devised a variety of tools for studying and experimenting with
our processor designs. These include an assembler for Y86, a simulator for run-
ning Y86 programs on your machine, and simulators for two sequential and one
pipelined processor design. The control logic for these designs is described by files
in HCL notation. By editing these files and recompiling the simulator, you can al-
ter and extend the simulator’s behavior. A number of exercises are provided that
involve implementing new instructions and modifying how the machine processes
instructions. Testing code is provided to help you evaluate the correctness of your
modifications. These exercises will greatly aid your understanding of the material
and will give you an appreciation for the many different design alternatives faced
by processor designers.

Web Aside ARCH:VLOG presents a representation of our pipelined Y86 proces-
sor in the Verilog hardware description language. This involves creating modules
for the basic hardware building blocks and for the overall processor structure. We
automatically translate the HCL description of the control logic into Verilog. By
first debugging the HCL description with our simulators, we eliminate many of the
tricky bugs that would otherwise show up in the hardware design. Given a Verilog
description, there are commercial and open-source tools to support simulation
and logic synthesis, generating actual circuit designs for the microprocessors. So,
although much of the effort we expend here is to create pictorial and textual de-
scriptions of a system, much as one would when writing software, the fact that
these designs can be automatically synthesized demonstrates that we are indeed
creating a system that can be realized as hardware.

4.1 The Y86 Instruction Set Architecture

Defining an instruction set architecture, such as Y86, includes defining the differ-
ent state elements, the set of instructions and their encodings, a set of programming
conventions, and the handling of exceptional events.

4.1.1 Programmer-Visible State

As Figure 4.1 illustrates, each instruction in a Y86 program can read and modify
some part of the processor state. This is referred to as the programmer-visible
state, where the “programmer” in this case is either someone writing programs
in assembly code or a compiler generating machine-level code. We will see in our
processor implementations that we do not need to represent and organize this
state in exactly the manner implied by the ISA, as long as we can make sure that
machine-level programs appear to have access to the programmer-visible state.
The state for Y86 is similar to that for IA32. There are eight program registers:
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. ; CC: .
RF: Program registers Condition Stat: Program status

feax st codes 1
hecx %hedi DMEM: Memory

Yedx hesp PC
%hebx %ebp | |

Figure 4.1 Y86 programmer-visible state. As with IA32, programs for Y86 access and
modify the program registers, the condition code, the program counter (PC), and the
memory. The status code indicates whether the program is running normally, or some
special event has occurred.

%eax, hecx, %hedx, %hebx, %hesi, %edi, %esp, and %ebp. Each of these stores a
word. Register %esp is used as a stack pointer by the push, pop, call, and return
instructions. Otherwise, the registers have no fixed meanings or values. There are
three single-bit condition codes, ZF, SF, and OF, storing information about the
effect of the most recent arithmetic or logical instruction. The program counter
(PC) holds the address of the instruction currently being executed.

The memory is conceptually a large array of bytes, holding both program
and data. Y86 programs reference memory locations using virtual addresses. A
combination of hardware and operating system software translates these into the
actual, or physical, addresses indicating where the values are actually stored in
memory. We will study virtual memory in more detail in Chapter 9. For now, we
can think of the virtual memory system as providing Y86 programs with an image
of a monolithic byte array.

A final part of the program state is a status code Stat, indicating the overall
state of program execution. It will indicate either normal operation, or that some
sort of exception has occurred, such as when an instruction attempts to read
from an invalid memory address. The possible status codes and the handling of
exceptions is described in Section 4.1.4.

4.1.2 Y86 Instructions

Figure 4.2 gives a concise description of the individual instructions in the Y86 ISA.
We use this instruction set as a target for our processor implementations. The set
of Y86 instructions is largely a subset of the IA32 instruction set. It includes only
4-byte integer operations, has fewer addressing modes, and includes a smaller set
of operations. Since we only use 4-byte data, we can refer to these as “words”
without any ambiguity. In this figure, we show the assembly-code representation
of the instructions on the left and the byte encodings on the right. The assembly-
code format is similar to the ATT format for IA32.
Here are some further details about the different Y86 instructions.

e The TA32 movl instruction is split into four different instructions: irmovl,
rrmovl, mrmovl, and rmmovl, explicitly indicating the form of the source and
destination. The source is either immediate (i), register (r), or memory (m).
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Figure 4.2

Y86 instruction set.
Instruction encodings
range between 1 and

6 bytes. An instruction
consists of a 1-byte
instruction specifier,
possibly a 1-byte register
specifier, and possibly a 4-
byte constant word. Field
fn specifies a particular
integer operation (OP1),
data movement condition
(cmovXX), or branch
condition (jXX). All
numeric values are shown
in hexadecimal.

Byte 0 1 3
halt

o

rrmovl A, 1B | 2] 0 [rA[rB]
irmovl V, 1B | 3] 0| F |rB]

rmmovl rA, D(rB) | 4| 0 [rA|rB]

mrmovl D(rB), rA | 5| 0 |rA|rB]

OP1 rA, rB

jXX Dest |7 || Dest
cmovXX rA, rB

call Dest Ex Dest
ret

pushl rA
et [ao]a[7]

It is designated by the first character in the instruction name. The destination
is either register (r) or memory (m). It is designated by the second character
in the instruction name. Explicitly identifying the four types of data transfer
will prove helpful when we decide how to implement them.

The memory references for the two memory movement instructions have
a simple base and displacement format. We do not support the second index
register or any scaling of a register’s value in the address computation.

As with TA32, we do not allow direct transfers from one memory location
to another. In addition, we do not allow a transfer of immediate data to
memory.

There are four integer operation instructions, shown in Figure 4.2 as OP1.
These are addl, subl, andl, and xorl. They operate only on register data,
whereas IA32 also allows operations on memory data. These instructions set
the three condition codes ZF, SF, and OF (zero, sign, and overflow).

The seven jump instructions (shown in Figure 4.2 as jXX) are jmp, jle, j1, je,
jne, jge, and jg. Branches are taken according to the type of branch and the
settings of the condition codes. The branch conditions are the same as with
IA32 (Figure 3.12).
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e There are six conditional move instructions (shown in Figure 4.2 as cmovXX):
cmovle, cmovl, cmove, cmovne, cmovge, and cmovg. These have the same
format as the register-register move instruction rrmovl, but the destination
register is updated only if the condition codes satisfy the required constraints.

e The call instruction pushes the return address on the stack and jumps to the
destination address. The ret instruction returns from such a call.

e The pushl and popl instructions implement push and pop, just as they do in
1A32.

e The halt instruction stops instruction execution. IA32 has a comparable
instruction, called hlt. IA32 application programs are not permitted to use
this instruction, since it causes the entire system to suspend operation. For
Y86, executing the halt instruction causes the processor to stop, with the
status code set to HLT. (See Section 4.1.4.)

4.1.3 Instruction Encoding

Figure 4.2 also shows the byte-level encoding of the instructions. Each instruction
requires between 1 and 6 bytes, depending on which fields are required. Every
instruction has an initial byte identifying the instruction type. This byte is split
into two 4-bit parts: the high-order, or code, part, and the low-order, or function,
part. As you can see in Figure 4.2, code values range from 0 to 0xB. The function
values are significant only for the cases where a group of related instructions share
a common code. These are given in Figure 4.3, showing the specific encodings of
the integer operation, conditional move, and branch instructions. Observe that
rrmovl has the same instruction code as the conditional moves. It can be viewed
as an “unconditional move” just as the jmp instruction is an unconditional jump,
both having function code 0.

As shown in Figure 4.4, each of the eight program registers has an associated
register identifier (ID) ranging from 0 to 7. The numbering of registers in Y86
matches what is used in IA32. The program registers are stored within the CPU
in a register file, a small random-access memory where the register IDs serve

Operations Branches Moves

addl jmp‘ 7‘ 0 ‘ jne‘ 7‘ 4 ‘ rrmovl cmovne

=

subl jle‘ 7 ‘ 1‘ jge‘ 7 ‘5 ‘ cmovle| 2 | 1 cmovge | 2

andl

jl ‘ 7‘ 2 ‘ jg ‘ 7 ‘6 ‘ cmovl | 2 | 2 cmovg | 2 | 6

je cmove | 2

Figure 4.3 Function codes for Y86 instruction set. The code specifies a particular
integer operation, branch condition, or data transfer condition. These instructions are
shown as OP1, jXX, and cmovXX in Figure 4.2.

xorl

]
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Number Register name

o

heax
hecx
%hedx
%hebx
hesp
%ebp
%hesi
%hedi
No register

TN O O WN e

Figure 4.4 Y86 program register identifiers. Each of the eight program registers has
an associated identifier (ID) ranging from 0 to 7. ID OxF in a register field of an instruction
indicates the absence of a register operand.

as addresses. ID value OxF is used in the instruction encodings and within our
hardware designs when we need to indicate that no register should be accessed.

Some instructions are just 1 byte long, but those that require operands have
longer encodings. First, there can be an additional register specifier byte, specifying
either one or two registers. These register fields are called rA and rB in Figure 4.2.
As the assembly-code versions of the instructions show, they can specify the
registers used for data sources and destinations, as well as the base register used in
an address computation, depending on the instruction type. Instructions that have
no register operands, such as branches and call, do not have a register specifier
byte. Those that require just one register operand (irmovl, pushl, and popl) have
the other register specifier set to value 0xF. This convention will prove useful in
our processor implementation.

Some instructions require an additional 4-byte constant word. This word can
serve as the immediate data for irmovl, the displacement for rmmovl and mrmovl
address specifiers, and the destination of branches and calls. Note that branch and
call destinations are given as absolute addresses, rather than using the PC-relative
addressing seen in IA32. Processors use PC-relative addressing to give more
compact encodings of branch instructions and to allow code to be copied from
one part of memory to another without the need to update all of the branch target
addresses. Since we are more concerned with simplicity in our presentation, we
use absolute addressing. As with IA32, all integers have a little-endian encoding.
When the instruction is written in disassembled form, these bytes appear in reverse
order.

As an example, let us generate the byte encoding of the instruction rmmovl
%esp,0x12345(%edx) in hexadecimal. From Figure 4.2, we can see that rmmovl
has initial byte 40. We can also see that source register %esp should be encoded
in the rA field, and base register %edx should be encoded in the rB field. Using the
register numbers in Figure 4.4, we get a register specifier byte of 42. Finally, the
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displacement is encoded in the 4-byte constant word. We first pad 0x12345 with
leading zeros to fill out 4 bytes, giving a byte sequence of 00 01 23 45. We write
this in byte-reversed order as 45 23 01 00. Combining these, we get an instruction
encoding of 404245230100.

One important property of any instruction set is that the byte encodings must
have a unique interpretation. An arbitrary sequence of bytes either encodes a
unique instruction sequence or is not a legal byte sequence. This property holds
for Y86, because every instruction has a unique combination of code and function
in its initial byte, and given this byte, we can determine the length and meaning of
any additional bytes. This property ensures that a processor can execute an object-
code program without any ambiguity about the meaning of the code. Even if the
code is embedded within other bytes in the program, we can readily determine
the instruction sequence as long as we start from the first byte in the sequence.
On the other hand, if we do not know the starting position of a code sequence, we
cannot reliably determine how to split the sequence into individual instructions.
This causes problems for disassemblers and other tools that attempt to extract
machine-level programs directly from object-code byte sequences.

Practice Problem 4.1

Determine the byte encoding of the Y86 instruction sequence that follows. The
line “.pos 0x100” indicates that the starting address of the object code should be
0x100.

.pos 0x100 # Start code at address 0x100

irmovl $15,%ebx # Load 15 into %ebx
rrmovl Y%ebx,%ecx # Copy 15 to Y%ecx
loop: # loop:

rmmovl %ecx,-3(%ebx) # Save %ecx at address 15-3 = 12
addl  Yebx,%ecx # Increment %ecx by 15
jmp loop # Goto loop

Practice Problem 4.2

For each byte sequence listed, determine the Y86 instruction sequence it encodes.
If there is some invalid byte in the sequence, show the instruction sequence up
to that point and indicate where the invalid value occurs. For each sequence, we
show the starting address, then a colon, and then the byte sequence.

A. 0x100:30f3fcffff££40630008000000
0x200:206£80080200000030£30200000090
0x300:50540700000010£0b01£
0x400:6113730004000000
0x500:6362a0f0

monOw
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Aside Comparing IA32 to Y86 instruction encodings

Compared with the instruction encodings used in IA32, the encoding of Y86 is much simpler but also
less compact. The register fields occur only in fixed positions in all Y86 instructions, whereas they are
packed into various positions in the different IA32 instructions. We use a 4-bit encoding of registers,
even though there are only eight possible registers. IA32 uses just 3 bits. Thus, IA32 can pack a push
or pop instruction into just 1 byte, with a 5-bit field indicating the instruction type and the remaining 3
bits for the register specifier. IA32 can encode constant values in 1, 2, or 4 bytes, whereas Y86 always
requires 4 bytes.

Aside RISC and CISC instruction sets

IA32 is sometimes labeled as a “complex instruction set computer” (CISC—pronounced “sisk”),
and is deemed to be the opposite of ISAs that are classified as “reduced instruction set computers”
(RISC—pronounced “risk”). Historically, CISC machines came first, having evolved from the earliest
computers. By the early 1980s, instruction sets for mainframe and minicomputers had grown quite large,
as machine designers incorporated new instructions to support high-level tasks, such as manipulating
circular buffers, performing decimal arithmetic, and evaluating polynomials. The first microprocessors
appeared in the early 1970s and had limited instruction sets, because the integrated-circuit technology
then posed severe constraints on what could be implemented on a single chip. Microprocessors evolved
quickly and, by the early 1980s, were following the path of increasing instruction-set complexity set by
mainframes and minicomputers. The x86 family took this path, evolving into IA32, and more recently
into x86-64. Even the x86 line continues to evolve as new classes of instructions are added based on the
needs of emerging applications.

The RISC design philosophy developed in the early 1980s as an alternative to these trends. A group
of hardware and compiler experts at IBM, strongly influenced by the ideas of IBM researcher John
Cocke, recognized that they could generate efficient code for a much simpler form of instruction set. In
fact, many of the high-level instructions that were being added to instruction sets were very difficult to
generate with a compiler and were seldom used. A simpler instruction set could be implemented with
much less hardware and could be organized in an efficient pipeline structure, similar to those described
later in this chapter. IBM did not commercialize this idea until many years later, when it developed the
Power and PowerPC ISAs.

The RISC concept was further developed by Professors David Patterson, of the University of
California at Berkeley, and John Hennessy, of Stanford University. Patterson gave the name RISC to
this new class of machines, and CISC to the existing class, since there had previously been no need to
have a special designation for a nearly universal form of instruction set.

Comparing CISC with the original RISC instruction sets, we find the following general character-
istics:

CISC Early RISC

A large number of instructions. The Intel Many fewer instructions. Typically less than 100.
document describing the complete set of
instructions [28, 29] is over 1200 pages long.

Some instructions with long execution times. No instruction with a long execution time.
These include instructions that copy an entire Some early RISC machines did not even have
block from one part of memory to another an integer multiply instruction, requiring
and others that copy multiple registers to and compilers to implement multiplication as a

from memory. sequence of additions.
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Early RISC

Variable-length encodings. IA32 instructions
can range from 1 to 15 bytes.

Multiple formats for specifying operands. In
[A32, a memory operand specifier can have
many different combinations of displacement,
base and index registers, and scale factors.

Arithmetic and logical operations can be applied
to both memory and register operands.

Implementation artifacts hidden from machine-
level programs. The ISA provides a clean
abstraction between programs and how they
get executed.

Condition codes. Special flags are set as a
side effect of instructions and then used for
conditional branch testing.

Stack-intensive procedure linkage. The stack
is used for procedure arguments and return
addresses.

Fixed-length encodings. Typically all instructions
are encoded as 4 bytes.

Simple addressing formats. Typically just base
and displacement addressing.

Arithmetic and logical operations only use
register operands. Memory referencing is only
allowed by load instructions, reading from
memory into a register, and store instructions,
writing from a register to memory. This
convention is referred to as a load/store
architecture.

Implementation artifacts exposed to machine-
level programs. Some RISC machines
prohibit particular instruction sequences
and have jumps that do not take effect until
the following instruction is executed. The
compiler is given the task of optimizing
performance within these constraints.

No condition codes. Instead, explicit test
instructions store the test results in normal
registers for use in conditional evaluation.

Register-intensive procedure linkage. Registers
are used for procedure arguments and return
addresses. Some procedures can thereby
avoid any memory references. Typically, the
processor has many more (up to 32) registers.

The Y86 instruction set includes attributes of both CISC and RISC instruction sets. On the CISC
side, it has condition codes, variable-length instructions, and stack-intensive procedure linkages. On
the RISC side, it uses a load-store architecture and a regular encoding. It can be viewed as taking a
CISC instruction set (IA32) and simplifying it by applying some of the principles of RISC.

Aside The RISC versus CISC controversy

Through the 1980s, battles raged in the computer architecture community regarding the merits of RISC
versus CISC instruction sets. Proponents of RISC claimed they could get more computing power for
a given amount of hardware through a combination of streamlined instruction set design, advanced
compiler technology, and pipelined processor implementation. CISC proponents countered that fewer
CISC instructions were required to perform a given task, and so their machines could achieve higher
overall performance.

Major companies introduced RISC processor lines, including Sun Microsystems (SPARC), IBM
and Motorola (PowerPC), and Digital Equipment Corporation (Alpha). A British company, Acorn
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Computers Ltd., developed its own architecture, ARM (originally an acronym for “Acorn RISC
Machine”), which is widely used in embedded applications, such as cellphones.

In the early 1990s, the debate diminished as it became clear that neither RISC nor CISC in their
purest forms were better than designs that incorporated the best ideas of both. RISC machines evolved
and introduced more instructions, many of which take multiple cycles to execute. RISC machines
today have hundreds of instructions in their repertoire, hardly fitting the name “reduced instruction
set machine.” The idea of exposing implementation artifacts to machine-level programs proved to be
short-sighted. As new processor models were developed using more advanced hardware structures,
many of these artifacts became irrelevant, but they still remained part of the instruction set. Still, the
core of RISC design is an instruction set that is well-suited to execution on a pipelined machine.

More recent CISC machines also take advantage of high-performance pipeline structures. As we
will discuss in Section 5.7, they fetch the CISC instructions and dynamically translate them into a
sequence of simpler, RISC-like operations. For example, an instruction that adds a register to memory
is translated into three operations: one to read the original memory value, one to perform the addition,
and a third to write the sum to memory. Since the dynamic translation can generally be performed well
in advance of the actual instruction execution, the processor can sustain a very high execution rate.

Marketing issues, apart from technological ones, have also played a major role in determining the
success of different instruction sets. By maintaining compatibility with its existing processors, Intel with
x86 made it easy to keep moving from one generation of processor to the next. As integrated-circuit
technology improved, Intel and other x86 processor manufacturers could overcome the inefficiencies
created by the original 8086 instruction set design, using RISC techniques to produce performance
comparable to the best RISC machines. As we saw in Section 3.13, the evolution of IA32 into x86-64
provided an opportunity to incorporate several features of RISC into x86. In the areas of desktop and
laptop computing, x86 has achieved total domination, and it is increasingly popular for high-end server
machines.

RISC processors have done very well in the market for embedded processors, controlling such
systems as cellular telephones, automobile brakes, and Internet appliances. In these applications, saving
on cost and power is more important than maintaining backward compatibility. In terms of the number
of processors sold, this is a very large and growing market.

4.1.4 Y86 Exceptions

The programmer-visible state for Y86 (Figure 4.1) includes a status code Stat
describing the overall state of the executing program. The possible values for this
code are shown in Figure 4.5. Code value 1, named AOK, indicates that the program
is executing normally, while the other codes indicate that some type of exception
has occurred. Code 2, named HLT, indicates that the processor has executed ahalt
instruction. Code 3, named ADR, indicates that the processor attempted to read
from or write to an invalid memory address, either while fetching an instruction
or while reading or writing data. We limit the maximum address (the exact limit
varies by implementation), and any access to an address beyond this limit will
trigger an ADR exception. Code 4, named INS, indicates that an invalid instruction
code has been encountered.
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Value Name Meaning
1 AOK Normal operation
2 HLT halt instruction encountered
3 ADR Invalid address encountered
4 INS Invalid instruction encountered

Figure 4.5 Y86 status codes. In our design, the processor halts for any code other than
ACK.

For Y86, we will simply have the processor stop executing instructions when it
encounters any of the exceptions listed. In a more complete design, the processor
would typically invoke an exception handler, a procedure designated to handle
the specific type of exception encountered. As described in Chapter 8, exception
handlers can be configured to have different effects, such as aborting the program
or invoking a user-defined signal handler.

4.1.5 Y86 Programs

Figure 4.6 shows IA32 and Y86 assembly code for the following C function:

int Sum(int *Start, int Count)
{
int sum = O;
while (Count) {
sum += *Start;
Start++;
Count--;
}
return sum;

}

The IA32 code was generated by the Gcec compiler. The Y86 code is essentially the
same, except that Y86 sometimes requires two instructions to accomplish what
can be done with a single IA32 instruction. If we had written the program using
array indexing, however, the conversion to Y86 code would be more difficult,
since Y86 does not have scaled addressing modes. This code follows many of the
programming conventions we have seen for IA32, including the use of the stack
and frame pointers. For simplicity, it does not follow the IA32 convention of having
some registers designated as callee-save registers. This is just a programming
convention that we can either adopt or ignore as we please.

Figure 4.7 shows an example of a complete program file written in Y86 as-
sembly code. The program contains both data and instructions. Directives indicate
where to place code or data and how to align it. The program specifies issues such
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IA32 code

O 0V © N O L AW N =

12

13
14
15
16
17

Y86 code
int Sum(int *Start, int Count) int Sum(int *Start, int Count)
Sum: 1 Sum:
pushl %ebp 2 pushl 7%ebp
movl %esp,’%ebp 3 rrmovl %esp,%ebp
movl 8(%ebp),%ecx ecx = Start 4 mrmovl 8(%ebp) ,%ecx ecx = Start
movl 12(%ebp),%edx edx = Count 5 mrmovl 12(%ebp),%edx  edx = Count
xorl %eax,’%eax sum = 0 6 xorl Y%eax,’%eax sum = 0
testl %edx,%edx 7 andl  Yedx,%edx Set condition codes
je .L34 8 je End
.L35: 9 Loop:
addl (%ecx),%heax add #*Start to sum 10 mrmovl (Y%ecx),%esi get *Start
11 addl Y%esi,%eax add to sum
addl $4,%ecx Start++ 12 irmovl $4,%ebx
13 addl %ebx,%ecx Start++
decl %edx Count—- 14 irmovl $-1,%ebx
15 addl %ebx,%edx Count—-—
jnz .L35 Stop when 0 16 jne Loop Stop when 0
.L34: 17 End:
movl %ebp,%esp 18 rrmovl %ebp,%esp
popl %ebp 19 popl %ebp
ret 20 ret

Figure 4.6 Comparison of Y86 and IA32 assembly programs. The Sum function computes the sum of an
integer array. The Y86 code differs from the IA32 mainly in that it may require multiple instructions to perform
what can be done with a single IA32 instruction.

as stack placement, data initialization, program initialization, and program termi-
nation.

In this program, words beginning with “.” are assembler directives telling the
assembler to adjust the address at which it is generating code or to insert some
words of data. The directive .pos 0 (line 2) indicates that the assembler should
begin generating code starting at address 0. This is the starting address for all Y86
programs. The next two instructions (lines 3 and 4) initialize the stack and frame
pointers. We can see that the label Stack is declared at the end of the program
(line 47), to indicate address 0x100 using a . pos directive (line 46). Our stack will
therefore start at this address and grow toward lower addresses. We must ensure
that the stack does not grow so large that it overwrites the code or other program
data.

Lines 9 to 13 of the program declare an array of four words, having values
0xd, 0xc0, 0xb00, and 0xa000. The label array denotes the start of this array, and
is aligned on a 4-byte boundary (using the .align directive). Lines 17 to 6 show
a “main” procedure that calls the function Sum on the four-word array and then
halts.



1 # Execution begins at address 0

2 .pos O

3 init: irmovl Stack, %esp # Set up stack pointer
4 irmovl Stack, %ebp # Set up base pointer
5 call Main # Execute main program
6 halt # Terminate program
7

8 # Array of 4 elements

9 .align 4

10 array: .long Oxd

11 .long 0xcO

12 .long 0xb00

13 .long 0xa000

14

15 Main:  pushl %ebp

16 rrmovl Y%esp,%ebp

17 irmovl $4,%eax

18 pushl %eax # Push 4

19 irmovl array,’%edx

20 pushl %edx # Push array

21 call Sum # Sum(array, 4)

22 rrmovl %ebp,%esp

23 popl %ebp

24 ret

25

26 # int Sum(int *Start, int Count)

27 Sum: pushl %ebp

28 rrmovl %esp,%ebp

29 mrmovl 8(%ebp) ,%ecx # ecx = Start

30 mrmovl 12(%ebp) ,%edx # edx = Count

31 xorl %eax,’eax # sum = 0

32 andl %edx, fhedx # Set condition codes
33 je End

34 Loop: mrmovl (%ecx),%esi # get *Start

35 addl Yesi,%eax # add to sum

36 irmovl $4,%ebx #

37 addl %ebx,%ecx # Start++

38 irmovl $-1,%ebx #

39 addl Y%ebx,%edx # Count—-—

40 jne Loop # Stop when O

41 End: rrmovl Y%ebp,%esp

42 popl %ebp

43 ret

44

45 # The stack starts here and grows to lower addresses
46 .pos 0x100

47 Stack:

Figure 4.7 Sample program written in Y86 assembly code. The Sum function is called
to compute the sum of a four-element array.
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As this example shows, since our only tool for creating Y86 code is an assem-
bler, the programmer must perform tasks we ordinarily delegate to the compiler,
linker, and run-time system. Fortunately, we only do this for small programs, for
which simple mechanisms suffice.

Figure 4.8 shows the result of assembling the code shown in Figure 4.7 by an
assembler we call yas. The assembler output is in ASCII format to make it more
readable. On lines of the assembly file that contain instructions or data, the object
code contains an address, followed by the values of between 1 and 6 bytes.

We have implemented an instruction set simulator we call v1s, the purpose
of which is to model the execution of a Y86 machine-code program, without
attempting to model the behavior of any specific processor implementation. This
form of simulation is useful for debugging programs before actual hardware is
available, and for checking the result of either simulating the hardware or running
the program on the hardware itself. Running on our sample object code, yis
generates the following output:

Stopped in 52 steps at PC = Ox11.
Changes to registers:

Status 'HLT', CC Z=1 S=0 0=0

%heax: 0x00000000 0x0000abcd
%hecx: 0x00000000 0x00000024
%ebx: 0x00000000 Oxffffffff
%esp: 0x00000000 0x00000100
%ebp: 0x00000000 0x00000100
%hesi: 0x00000000 0x0000a000
Changes to memory:

0x00e8: 0x00000000 0x000000£8
0x00ec: 0x00000000 0x0000003d
0x00£0: 0x00000000 0x00000014
0x00f4: 0x00000000 0x00000004
0x00£8: 0x00000000 0x00000100
0x00fc: 0x00000000 0x00000011

The first line of the simulation output summarizes the execution and the
resulting values of the PC and program status. In printing register and memory
values, it only prints out words that change during simulation, either in registers
or in memory. The original values (here they are all zero) are shown on the left,
and the final values are shown on the right. We can see in this output that register
%eax contains Oxabcd, the sum of the four-element array passed to subroutine Sum.
In addition, we can see that the stack, which starts at address 0x100 and grows
toward lower addresses, has been used, causing changes to words of memory at
addresses 0xe8 through 0xfc. This is well away from 0x7c, the maximum address
of the executable code.



0x000:
0x000:
0x006:
0x00c:
0x011:

0x014:
0x014:
0x018:
0x01c:
0x020:

0x024:
0x026:
0x028:
0x02e:
0x030:
0x036:
0x038:
0x03d:
0x03f:
0x041:

0x042:
0x044:
0x046:
0x04c:
0x052:
0x054:
0x056:
0x05b:
0x061:
0x063:
0x069:
0x06b:
0x071:
0x073:
0x078:
0x07a:
0x07c:

0x100:
0x100:

30£400010000
30£500010000
8024000000
00

04000000
c0000000
000b0000
00200000

a0bf

2045
30£004000000
a00f
30£214000000
a02f
8042000000
2054

b05f

90

a0bf

2045
501508000000
50250c000000
6300

6222
7378000000
506100000000
6060
30£304000000
6031
30f3ffffffff
6032
745000000
2054

bO5f

90

Section 4.1

# Execution begins at address 0
.pos O

irmovl Stack,
irmovl Stack,
call Main

halt

init: %esp

#
%ebp #
#
#

of 4 elements
.align 4
.long Oxd
.long 0xcO
.long 0xb00
.long 0xa000

# Array

array:

Main:  pushl %ebp

rrmovl %esp,%ebp

irmovl $4,%eax

pushl %eax #
irmovl array,%edx

pushl %edx #
call Sum #
rrmovl %ebp,%esp

popl %ebp

ret

# int Sum(int *Start, int
pushl %ebp

rrmovl %esp,%ebp
mrmovl 8(%ebp) ,%ecx
mrmovl 12(%ebp) ,%edx
xorl %eax,%eax

andl  %edx,%edx

je End

mrmovl (%ecx),%esi
addl %esi,%eax
irmovl $4,%ebx

addl %ebx,%ecx
irmovl $-1,%ebx

addl Y%ebx,%edx

jne Loop

rrmovl %ebp,%esp
popl %ebp

ret

Sum:

H O H H

Loop:

HOH H O OH OB

End:

# The stack starts here and grows
.pos 0x100
Stack:

The Y86 Instruction Set Architecture

Set up stack pointer
Set up base pointer
Execute main program
Terminate program

Push 4

Push array
Sum(array, 4)

Count)

ecx = Start
edx = Count
sum = 0

Set condition codes
*Start

to sum

get
add

Start++

Count--
Stop when 0O

to lower addresses

Figure 4.8 Output of YAs assembler. Each line includes a hexadecimal address and
between 1 and 6 bytes of object code.
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Practice Problem 4.3
Write Y86 code to implement a recursive sum function rSum, based on the follow-

ing C code:
int rSum(int *Start, int Count)
{
if (Count <= 0)
return O;
return *Start + rSum(Start+1, Count-1);
}

You might find it helpful to compile the C code on an IA32 machine and then
translate the instructions to Y86.

Practice Problem 4.4

Modify the Y86 code for the Sum function (Figure 4.6) to implement a function
AbsSum that computes the sum of absolute values of an array. Use a conditional
jump instruction within your inner loop.

Practice Problem 4.5

Modify the Y86 code for the Sum function (Figure 4.6) to implement a function
AbsSum that computes the sum of absolute values of an array. Use a conditional
move instruction within your inner loop.

4.1.6 Some Y86 Instruction Details

Most Y86 instructions transform the program state in a straightforward manner,
and so defining the intended effect of each instruction is not difficult. Two unusual
instruction combinations, however, require special attention.

The pushl instruction both decrements the stack pointer by 4 and writes a
register value to memory. It is therefore not totally clear what the processor should
do when executing the instruction pushl %esp, since the register being pushed is
being changed by the same instruction. Two different conventions are possible:
(1) push the original value of %esp, or (2) push the decremented value of %esp.

For the Y86 processor, let us adopt the same convention as is used with IA32,
as determined in the following problem.

Practice Problem 4.6

Let us determine the behavior of the instruction pushl %esp for an IA32 proces-
sor. We could try reading the Intel documentation on this instruction, but a simpler
approach is to conduct an experiment on an actual machine. The C compiler would
not normally generate this instruction, so we must use hand-generated assembly
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code for this task. Here is a test function we have written (Web Aside ASM:EASM
describes how to write programs that combine C code with hand-written assembly
code):

1 .text

2 .globl pushtest

3 pushtest:

4 pushl  %ebp

5 movl %esp, %hebp

6 movl %esp, %heax Copy stack pointer

7 pushl  Yesp Push stack pointer

8 popl %hedx Pop it back

9 subl %edx,%eax  Subtract new from old stack pointer
10 leave Restore stack & frame pointers
11 ret

In our experiments, we find that function pushtest always returns zero. What
does this imply about the behavior of the instruction pushl %esp under IA32?

A similar ambiguity occurs for the instruction popl %esp. It could either set
%esp to the value read from memory or to the incremented stack pointer. As
with Problem 4.6, let us run an experiment to determine how an IA32 machine
would handle this instruction, and then design our Y86 machine to follow the same
convention.

Practice Problem 4.7

The following assembly-code function lets us determine the behavior of the in-
struction popl %esp for IA32:

1 .text

2 .globl poptest

3 poptest:

4 pushl  Y%ebp

5 movl %esp, %ebp

6 pushl $0xabcd Push test value

7 popl %hesp Pop to stack pointer

8 movl %hesp, %eax  Set popped value as return value
9 leave Restore stack and frame pointers
10 ret

We find this function always returns Oxabcd. What does this imply about the
behavior of popl %esp? What other Y86 instruction would have the exact same
behavior?
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Aside Getting the details right: Inconsistencies across x86 models

Problems 4.6 and 4.7 are designed to help us devise a consistent set of conventions for instructions that
push or pop the stack pointer. There seems to be little reason why one would want to perform either
of these operations, and so a natural question to ask is “Why worry about such picky details?”

Several useful lessons can be learned about the importance of consistency from the following
excerpt from the Intel documentation of the pop instruction [29]:

For TA-32 processors from the Intel 286 on, the PUSH ESP instruction pushes the value of the ESP
register as it existed before the instruction was executed. (This is also true for Intel 64 architecture,
real-address and virtual-8086 modes of IA-32 architecture.) For the Intel® 8086 processor, the
PUSH SP instruction pushes the new value of the SP register (that is the value after it has been
decremented by 2).

What this note states is that different models of x86 processors do different things when instructed to
push the stack pointer register. Some push the original value, while others push the decremented value.
(Interestingly, there is no corresponding ambiguity about popping to the stack pointer register.) There
are two drawbacks to this inconsistency:

¢ It decreases code portability. Programs may have different behavior depending on the processor
model. Although the particular instruction is not at all common, even the potential for incompat-
ibility can have serious consequences.

¢ It complicates the documentation. As we see here, a special note is required to try to clarify the
differences. The documentation for x86 is already complex enough without special cases such as
this one.

We conclude, therefore, that working out details in advance and striving for complete consistency can
save a lot of trouble in the long run.

4.2 Logic Design and the Hardware Control Language HCL

In hardware design, electronic circuits are used to compute functions on bits and
to store bits in different kinds of memory elements. Most contemporary circuit
technology represents different bit values as high or low voltages on signal wires. In
current technology, logic value 1 is represented by a high voltage of around 1.0 volt,
while logic value 0 is represented by a low voltage of around 0.0 volts. Three major
components are required to implement a digital system: combinational logic to
compute functions on the bits, memory elements to store bits, and clock signals to
regulate the updating of the memory elements.

In this section, we provide a brief description of these different components.
We also introduce HCL (for “hardware control language”), the language that
we use to describe the control logic of the different processor designs. We only
describe HCL informally here. A complete reference for HCL can be found in
Web Aside ARCH:HCL.
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Aside Modern logic design

At one time, hardware designers created circuit designs by drawing schematic diagrams of logic circuits
(first with paper and pencil, and later with computer graphics terminals). Nowadays, most designs
are expressed in a hardware description language (HDL), a textual notation that looks similar to a
programming language but that is used to describe hardware structures rather than program behaviors.
The most commonly used languages are Verilog, having a syntax similar to C, and VHDL, having
a syntax similar to the Ada programming language. These languages were originally designed for
expressing simulation models of digital circuits. In the mid-1980s, researchers developed logic synthesis
programs that could generate efficient circuit designs from HDL descriptions. There are now a number
of commerecial synthesis programs, and this has become the dominant technique for generating digital
circuits. This shift from hand-designed circuits to synthesized ones can be likened to the shift from
writing programs in assembly code to writing them in a high-level language and having a compiler
generate the machine code.

Our HCL language expresses only the control portions of a hardware design, with only a limited set
of operations and with no modularity. As we will see, however, the control logic is the most difficult part
of designing a microprocessor. We have developed tools that can directly translate HCL into Verilog,
and by combining this code with Verilog code for the basic hardware units, we can generate HDL
descriptions from which actual working microprocessors can be synthesized. By carefully separating
out, designing, and testing the control logic, we can create a working microprocessor with reasonable
effort. Web Aside ARCH:VLOG describes how we can generate Verilog versions of a Y86 processor.

4.2.1 Logic Gates

Logic gates are the basic computing elements for digital circuits. They generate an
output equal to some Boolean function of the bit values at their inputs. Figure 4.9
shows the standard symbols used for Boolean functions AND, Or, and Notr. HCL
expressions are shown below the gates for the operators in C (Section 2.1.9):
&& for AND, || for Or, and ! for Not. We use these instead of the bit-level C
operators &, |, and ~, because logic gates operate on single-bit quantities, not
entire words. Although the figure illustrates only two-input versions of the AND
and OR gates, it is common to see these being used as n-way operations for n > 2.
We still write these in HCL using binary operators, though, so the operation of a
three-input AND gate with inputs a, b, and c is described with the HCL expression
a&&b&&c.

Logic gates are always active. If some input to a gate changes, then within
some small amount of time, the output will change accordingly.

Figure 4.9

And Or Not
Logic gate types. Each a—] a
gate generates output b — out DD out a~1>cr out
equal to some Boolean t= 1
function of its inputs. out=agkb out=allb o
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Figure 4.10

Combinational circuit to a
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output will equal 1T when

both inputs are 0, or both z e

are 1.
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Bit equal

4.2.2 Combinational Circuits and HCL Boolean Expressions

By assembling a number of logic gates into a network, we can construct compu-
tational blocks known as combinational circuits. Two restrictions are placed on
how the networks are constructed:

¢ The outputs of two or more logic gates cannot be connected together. Other-
wise, the two could try to drive the wire in opposite directions, possibly causing
an invalid voltage or a circuit malfunction.

® The network must be acyclic. That is, there cannot be a path through a series
of gates that forms a loop in the network. Such loops can cause ambiguity in
the function computed by the network.

Figure 4.10 shows an example of a simple combinational circuit that we will
find useful. It has two inputs, a and b. It generates a single output eq, such that
the output will equal 1 if either a and b are both 1 (detected by the upper AND
gate) or are both 0 (detected by the lower AND gate). We write the function of
this network in HCL as

bool eq = (a && b) || (la && !'b);

This code simply defines the bit-level (denoted by data type bool) signal eq as a
function of inputs a and b. As this example shows, HCL uses C-style syntax, with
‘=" associating a signal name with an expression. Unlike C, however, we do not
view this as performing a computation and assigning the result to some memory
location. Instead, it is simply a way to give a name to an expression.

Practice Problem 4.8

Write an HCL expression for a signal xor, equal to the ExcLusIVE-OR of inputs a
and b. What is the relation between the signals xor and eq defined above?

Figure 4.11 shows another example of a simple but useful combinational
circuit known as a multiplexor (commonly referred to asa “MUX”). A multiplexor
selects a value from among a set of different data signals, depending on the value
of a control input signal. In this single-bit multiplexor, the two data signals are the
input bits a and b, while the control signal is the input bit s. The output will equal
awhen sis 1, and it will equal b when s is 0. In this circuit, we can see that the two
AND gates determine whether to pass their respective data inputs to the Or gate.
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Figure 4.11 s
Single-bit multiplexor

circuit. The output will

equal input a if the control

signal s is 1 and will equal b
input b when s is 0.

Bit MUX

out

The upper AND gate passes signal b when s is 0 (since the other input to the gate
is !'s), while the lower AND gate passes signal a when sis 1. Again, we can write an
HCL expression for the output signal, using the same operations as are present in
the combinational circuit:

bool out = (s && a) || (!s && b);

Our HCL expressions demonstrate a clear parallel between combinational
logic circuits and logical expressions in C. They both use Boolean operations to
compute functions over their inputs. Several differences between these two ways
of expressing computation are worth noting:

e Since a combinational circuit consists of a series of logic gates, it has the
property that the outputs continually respond to changes in the inputs. If
some input to the circuit changes, then after some delay, the outputs will
change accordingly. In contrast, a C expression is only evaluated when it is
encountered during the execution of a program.

* Logical expressions in C allow arguments to be arbitrary integers, interpreting
0 as FALSE and anything else as TRUE. In contrast, our logic gates only operate
over the bit values 0 and 1.

e Logical expressions in C have the property that they might only be partially
evaluated. If the outcome of an AND or Or operation can be determined
by just evaluating the first argument, then the second argument will not be
evaluated. For example, with the C expression

(a && 'a) && func(b,c)

the function func will not be called, because the expression (a && !a) evalu-
ates to 0. In contrast, combinational logic does not have any partial evaluation
rules. The gates simply respond to changing inputs.

4.2.3 Word-Level Combinational Circuits and HCL Integer Expressions

By assembling large networks of logic gates, we can construct combinational
circuits that compute much more complex functions. Typically, we design circuits
that operate on data words. These are groups of bit-level signals that represent an
integer or some control pattern. For example, our processor designs will contain
numerous words, with word sizes ranging between 4 and 32 bits, representing
integers, addresses, instruction codes, and register identifiers.
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Figure 4.12 bgy — eGs1
Word-level equality test Bit equal
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(a) Bit-level implementation (b) Word-level abstraction

Combinational circuits to perform word-level computations are constructed
using logic gates to compute the individual bits of the output word, based on the
individual bits of the input words. For example, Figure 4.12 shows a combinational
circuit that tests whether two 32-bit words A and B are equal. That is, the output will
equal 1 if and only if each bit of A equals the corresponding bit of B. This circuit
is implemented using 32 of the single-bit equality circuits shown in Figure 4.10.
The outputs of these single-bit circuits are combined with an AND gate to form
the circuit output.

In HCL, we will declare any word-level signal as an int, without specifying
the word size. This is done for simplicity. In a full-featured hardware description
language, every word can be declared to have a specificnumber of bits. HCL allows
words to be compared for equality, and so the functionality of the circuit shown
in Figure 4.12 can be expressed at the word level as

bool Eq = (A == B);

where arguments A and B are of type int. Note that we use the same syntax
conventions as in C, where ‘=" denotes assignment, while ‘==" denotes the equality
operator.

As is shown on the right side of Figure 4.12, we will draw word-level circuits
using medium-thickness lines to represent the set of wires carrying the individual
bits of the word, and we will show the resulting Boolean signal as a dashed line.

Practice Problem 4.9

Suppose you want to implement a word-level equality circuit using the EXCLUSIVE-
ORr circuits from Problem 4.8 rather than from bit-level equality circuits. Design
such a circuit for a 32-bit word consisting of 32 bit-level ExcLUSIVE-OR circuits and
two additional logic gates.
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(a) Bit-level implementation

B
MUX Out
A
int Out = [
s : A;
1l : B;

1;

(b) Word-level abstraction

Figure 4.13 shows the circuit for a word-level multiplexor. This circuit gener-
ates a 32-bit word Out equal to one of the two input words, A or B, depending on
the control input bit s. The circuit consists of 32 identical subcircuits, each having a
structure similar to the bit-level multiplexor from Figure 4.11. Rather than simply
replicating the bit-level multiplexor 32 times, the word-level version reduces the

number of inverters by generating !s once and reusing it at each bit position.

We will use many forms of multiplexors in our processor designs. They allow
us to select a word from a number of sources depending on some control condi-
tion. Multiplexing functions are described in HCL using case expressions. A case
expression has the following general form:

[
select.1 : expr_l
select2 .  expr2
select k  :  exprk
]

The expression contains a series of cases, where each case i consists of a Boolean
expression select;, indicating when this case should be selected, and an integer
expression expr;, indicating the resulting value.
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Figure 4.14

Four-way multiplexor.
The different combinations

Unlike the switch statement of C, we do not require the different selection
expressions to be mutually exclusive. Logically, the selection expressions are eval-
uated in sequence, and the case for the first one yielding 1 is selected. For example,
the word-level multiplexor of Figure 4.13 can be described in HCL as

]
—

int Out
: A;
. B;

= 0

1;

In this code, the second selection expression is simply 1, indicating that this case
should be selected if no prior one has been. This is the way to specify a default
case in HCL. Nearly all case expressions end in this manner.

Allowing nonexclusive selection expressions makes the HCL code more read-
able. An actual hardware multiplexor must have mutually exclusive signals con-
trolling which input word should be passed to the output, such as the signals s and
!'s in Figure 4.13. To translate an HCL case expression into hardware, a logic syn-
thesis program would need to analyze the set of selection expressions and resolve
any possible conflicts by making sure that only the first matching case would be
selected.

The selection expressions can be arbitrary Boolean expressions, and there can
be an arbitrary number of cases. This allows case expressions to describe blocks
where there are many choices of input signals with complex selection criteria. For
example, consider the diagram of a four-way multiplexor shown in Figure 4.14.
This circuit selects from among the four input words A, B, C, and D based on
the control signals s1 and sO, treating the controls as a 2-bit binary number.
We can express this in HCL using Boolean expressions to describe the different
combinations of control bit patterns:

int Out4 = [

Isl && !sO : A; # 00
sl : B; # 01
1s0 . C; # 10
1 : D; # 11

1;

The comments on the right (any text starting with # and running for the rest of
the line is a comment) show which combination of s1 and sO will cause the case to

of control signals s1 and

input is transmitted to the

output.

D
sO determine which data C
B
A

MUX4 Out4
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be selected. Observe that the selection expressions can sometimes be simplified,
since only the first matching case is selected. For example, the second expression
can be written !s1, rather than the more complete !s1 && s0, since the only other
possibility having s1 equal to 0 was given as the first selection expression. Similarly,
the third expression can be written as !s0, while the fourth can simply be written
as 1.

As a final example, suppose we want to design a logic circuit that finds the
minimum value among a set of words A, B, and C, diagrammed as follows:

B MIN3 Min3

We can express this using an HCL case expression as

int Min3 = [
A<=B && A<=C : A;
B <= A && B <= C : B;
1 1 C;
1;

Practice Problem 4.10

Write HCL code describing a circuit that for word inputs A, B, and C selects the
median of the three values. That is, the output equals the word lying between the
minimum and maximum of the three inputs.

Combinational logic circuits can be designed to perform many different types
of operations on word-level data. The detailed design of these is beyond the
scope of our presentation. One important combinational circuit, known as an
arithmetic/logic unit (ALU), is diagrammed at an abstract level in Figure 4.15.
This circuit has three inputs: two data inputs labeled A and B, and a control
input. Depending on the setting of the control input, the circuit will perform
different arithmetic or logical operations on the data inputs. Observe that the four

Y —»{A Y —»{A Y —» A Y — A
X+Y X-Y X&Y XY
X —»(B X —»B X —»B X —»B

Figure 4.15 Arithmetic/logic unit (ALU). Depending on the setting of the function
input, the circuit will perform one of four different arithmetic and logical operations.

> f4—oO
> fA—
> fA— 1
> A—w

cr
cr
cr
cr
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operations diagrammed for this ALU correspond to the four different integer
operations supported by the Y86 instruction set, and the control values match
the function codes for these instructions (Figure 4.3). Note also the ordering
of operands for subtraction, where the A input is subtracted from the B input.
This ordering is chosen in anticipation of the ordering of arguments in the subl
instruction.

4.2.4 Set Membership

In our processor designs, we will find many examples where we want to compare
one signal against a number of possible matching signals, such as to test whether
the code for some instruction being processed matches some category of instruc-
tion codes. As a simple example, suppose we want to generate the signals s1 and
s0 for the four-way multiplexor of Figure 4.14 by selecting the high- and low-order
bits from a 2-bit signal code, as follows:

code Control | s0

J

MUX4 Out4

> W OO0

In this circuit, the 2-bit signal code would then control the selection among the
four data words A, B, C, and D. We can express the generation of signals s1 and sO
using equality tests based on the possible values of code:

bool s1 = code == 2 || code == 3;

bool sO = code == 1 || code == 3;

A more concise expression can be written that expresses the property that s1
is 1 when code is in the set {2, 3}, and s0O is 1 when code is in the set {1, 3}:

bool sl = code in { 2, 3 };
bool sO = code in { 1, 3 };
The general form of a set membership test is

iexpr in {iexpry, iexpr,, ..., iexpr;}
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where the value being tested, iexpr, and the candidate matches, iexpr through
iexpry, are all integer expressions.

4.2.5 Memory and Clocking

Combinational circuits, by their very nature, do not store any information. Instead,
they simply react to the signals at their inputs, generating outputs equal to some
function of the inputs. To create sequential circuits, that is, systems that have state
and perform computations on that state, we must introduce devices that store
information represented as bits. Our storage devices are all controlled by a single
clock, a periodic signal that determines when new values are to be loaded into the
devices. We consider two classes of memory devices:

Clocked registers (or simply registers) store individual bits or words. The clock
signal controls the loading of the register with the value at its input.

Random-access memories (or simply memories) store multiple words, using
an address to select which word should be read or written. Examples
of random-access memories include (1) the virtual memory system of
a processor, where a combination of hardware and operating system
software make it appear to a processor that it can access any word within
a large address space; and (2) the register file, where register identifiers
serve as the addresses. In an IA32 or Y86 processor, the register file holds
the eight program registers (%eax, %ecx, etc.).

As we can see, the word “register” means two slightly different things when
speaking of hardware versus machine-language programming. In hardware, a
register is directly connected to the rest of the circuit by its input and output
wires. In machine-level programming, the registers represent a small collection
of addressable words in the CPU, where the addresses consist of register IDs.
These words are generally stored in the register file, although we will see that the
hardware can sometimes pass a word directly from one instruction to another to
avoid the delay of first writing and then reading the register file. When necessary
to avoid ambiguity, we will call the two classes of registers “hardware registers”
and “program registers,” respectively.

Figure 4.16 gives a more detailed view of a hardware register and how it
operates. For most of the time, the register remains in a fixed state (shown as
x), generating an output equal to its current state. Signals propagate through the
combinational logic preceding the register, creating a new value for the register
input (shown as y), but the register output remains fixed as long as the clock is low.
As the clock rises, the input signals are loaded into the register as its next state
(y), and this becomes the new register output until the next rising clock edge. A
key point is that the registers serve as barriers between the combinational logic
in different parts of the circuit. Values only propagate from a register input to its
output once every clock cycle at the rising clock edge. Our Y86 processors will
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State = x State =y

Input =y Output = x Rising Output = y
-—) clock -—)

x J— Ay
Figure 4.16 Register operation. The register outputs remain held at the current register

state until the clock signal rises. When the clock rises, the values at the register inputs are
captured to become the new register state.

use clocked registers to hold the program counter (PC), the condition codes (CC),
and the program status (Stat).
The following diagram shows a typical register file:

valA
—

_sreA | A valw
Register — .
Read ports f?le W dstw  Write port
valB
srcB | B

1

clock

This register file has two read ports, named A and B, and one write port, named
W. Such a multiported random-access memory allows multiple read and write
operations to take place simultaneously. In the register file diagrammed, the circuit
can read the values of two program registers and update the state of a third. Each
port has an address input, indicating which program register should be selected,
and a data output or input giving a value for that program register. The addresses
are register identifiers, using the encoding shown in Figure 4.4. The two read ports
have address inputs srcA and srcB (short for “source A” and “source B”) and data
outputs valA and valB (short for “value A” and “value B”). The write port has
address input dstW (short for “destination W”) and data input valW (short for
“value W”).

The register file is not a combinational circuit, since it has internal storage. In
our implementation, however, data can be read from the register file as if it were
a block of combinational logic having addresses as inputs and the data as outputs.
When either srcA or srcB is set to some register ID, then, after some delay, the
value stored in the corresponding program register will appear on either valA or
valB. For example, setting srcA to 3 will cause the value of program register %ebx
to be read, and this value will appear on output valA.

The writing of words to the register file is controlled by the clock signal in
a manner similar to the loading of values into a clocked register. Every time the
clock rises, the value on input valW is written to the program register indicated by
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the register ID on input dstW. When dstW is set to the special ID value 0xF, no
program register is written. Since the register file can be both read and written, a
natural question to ask is “What happens if we attempt to read and write the same
register simultaneously?” The answer is straightforward: if we update a register
while using the same register ID on the read port, we would observe a transition
from the old value to the new. When we incorporate the register file into our
processor design, we will make sure that we take this property into consideration.

Our processor has a random-access memory for storing program data, as
illustrated below:

data out
OITOF <cresreresnee; 1
read - >
Data
. memor
Wit y clock

[

address data in

This memory has a single address input, a data input for writing, and a data output
for reading. Like the register file, reading from our memory operates in a manner
similar to combinational logic: If we provide an address on the address input and
set the write control signal to 0, then after some delay, the value stored at that
address will appear on data out. The error signal will be set to 1 if the address is
out of range and to 0 otherwise. Writing to the memory is controlled by the clock:
we set address to the desired address, data in to the desired value, and write to
1. When we then operate the clock, the specified location in the memory will be
updated, as long as the address is valid. As with the read operation, the error signal
will be set to 1 if the address is invalid. This signal is generated by combinational
logic, since the required bounds checking is purely a function of the address input
and does not involve saving any state.

Aside Real-life memory design
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The memory system in a full-scale microprocessor is far more complex than the simple one we assume
in our design. It consists of several forms of hardware memories, including several random-access
memories plus magnetic disk, as well as a variety of hardware and software mechanisms for managing

these devices. The design and characteristics of the memory system are described in Chapter 6.

Nonetheless, our simple memory design can be used for smaller systems, and it provides us with

an abstraction of the interface between the processor and memory for more complex systems.

Our processor includes an additional read-only memory for reading instruc-
tions. In most actual systems, these memories are merged into a single memory
with two ports: one for reading instructions and the other for reading or writing
data.
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4.3 Sequential Y86 Implementations

Now we have the components required to implement a Y86 processor. As a first
step, we describe a processor called SEQ (for “sequential” processor). On each
clock cycle, SEQ performs all the steps required to process a complete instruction.
This would require a very long cycle time, however, and so the clock rate would be
unacceptably low. Our purpose in developing SEQ is to provide a first step toward
our ultimate goal of implementing an efficient, pipelined processor.

4.3.1 Organizing Processing into Stages

In general, processing an instruction involves a number of operations. We organize
them in a particular sequence of stages, attempting to make all instructions follow
a uniform sequence, even though the instructions differ greatly in their actions.
The detailed processing at each step depends on the particular instruction being
executed. Creating this framework will allow us to design a processor that makes
best use of the hardware. The following is an informal description of the stages
and the operations performed within them:

Fetch: The fetch stage reads the bytes of an instruction from memory, using the
program counter (PC) as the memory address. From the instruction it
extracts the two 4-bit portions of the instruction specifier byte, referred
to as icode (the instruction code) and ifun (the instruction function).

It possibly fetches a register specifier byte, giving one or both of the
register operand specifiers rA and rB. It also possibly fetches a 4-byte
constant word valC. It computes valP to be the address of the instruction
following the current one in sequential order. That is, valP equals the
value of the PC plus the length of the fetched instruction.

Decode: The decode stage reads up to two operands from the register file, giving
values valA and/or valB. Typically, it reads the registers designated by
instruction fields rA and rB, but for some instructions it reads register
%hesp.

Execute: In the execute stage, the arithmetic/logic unit (ALU) either performs the
operation specified by the instruction (according to the value of ifun),
computes the effective address of a memory reference, or increments or
decrements the stack pointer. We refer to the resulting value as valE. The
condition codes are possibly set. For a jump instruction, the stage tests
the condition codes and branch condition (given by ifun) to see whether
or not the branch should be taken.

Memory: The memory stage may write data to memory, or it may read data from
memory. We refer to the value read as valM.

Write back: The write-back stage writes up to two results to the register file.

PCupdate: The PC s set to the address of the next instruction.

The processor loops indefinitely, performing these stages. In our simplified im-
plementation, the processor will stop when any exception occurs: it executes a



Section 4.3 Sequential Y86 Implementations

1 0x000: 30£209000000 | irmovl $9, Yedx

2 0x006: 30£315000000 | irmovl $21, Y%ebx

3 0x00c: 6123 | subl %edx, %ebx # subtract

4 0x00e: 30£480000000 | irmovl $128,%esp # Problem 4.11
5 0x014: 404364000000 | rmmovl %esp, 100(%ebx) # store

6 0x0la: a02f | pushl %edx # push

7 0x01c: b0OOf | popl Yeax # Problem 4.12
8 0x0le: 7328000000 | je done # Not taken

9 0x023: 8029000000 | call proc # Problem 4.16
10 0x028: | done:

1 0x028: 00 | halt

12 0x029: | proc:

13 0x029: 90 | ret # Return

Figure 4.17 Sample Y86 instruction sequence. We will trace the processing of these
instructions through the different stages.

halt or invalid instruction, or it attempts to read or write an invalid address. In
a more complete design, the processor would enter an exception-handling mode
and begin executing special code determined by the type of exception.

As can be seen by the preceding description, there is a surprising amount of
processing required to execute a single instruction. Not only must we perform the
stated operation of the instruction, we must also compute addresses, update stack
pointers, and determine the next instruction address. Fortunately, the overall flow
can be similar for every instruction. Using a very simple and uniform structure is
important when designing hardware, since we want to minimize the total amount
of hardware, and we must ultimately map it onto the two-dimensional surface of an
integrated-circuit chip. One way to minimize the complexity is to have the different
instructions share as much of the hardware as possible. For example, each of our
processor designs contains a single arithmetic/logic unit that is used in different
ways depending on the type of instruction being executed. The cost of duplicating
blocks of logic in hardware is much higher than the cost of having multiple copies
of code in software. It is also more difficult to deal with many special cases and
idiosyncrasies in a hardware system than with software.

Our challenge is to arrange the computing required for each of the different
instructions to fit within this general framework. We will use the code shown in
Figure 4.17 to illustrate the processing of different Y86 instructions. Figures 4.18
through 4.21 contain tables describing how the different Y86 instructions proceed
through the stages. It is worth the effort to study these tables carefully. They are
in a form that enables a straightforward mapping into the hardware. Each line in
these tables describes an assignment to some signal or stored state (indicated by
the assignment operation <). These should be read as if they were evaluated in
sequence from top to bottom. When we later map the computations to hardware,
we will find that we do not need to perform these evaluations in strict sequential
order.
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Stage

OP1TrA, rB

rrmovl rA, rB

irmovl V, rB

Fetch

Decode

Execute

Memory

‘Write back

PC update

icode:ifun < M;[PC]
rA:rB < M;[PC + 1]
valP < PC +2

valA < R[rA]
valB < R[rB]

valE < valB OP valA
Set CC

R[rB] « valE

PC <« valP

icode:ifun < M;[PC]
rA:rB < M;[PC + 1]

valP < PC +2
valA < R[rA]

valkE < 0 + valA

R[rB] <« valE

PC « valP

icode:ifun < M;[PC]
rA:rB < M;[PC + 1]
valC < My[PC + 2]
valP < PC+6

valkE < 0 + valC

R[rB] <« valE

PC « valP

Figure 4.18 Computations in sequential implementation of Y86 instructions OP1,
rrmovl, and irmovl. These instructions compute a value and store the result in a
register. The notation icode : ifun indicates the two components of the instruction byte,
while rA : rB indicates the two components of the register specifier byte. The notation
M [x] indicates accessing (either reading or writing) 1 byte at memory location x, while
My[x] indicates accessing 4 bytes.

Figure 4.18 shows the processing required for instruction types OP1 (integer
and logical operations), rrmovl (register-register move), and irmovl (immediate-
register move). Let us first consider the integer operations. Examining Figure 4.2,
we can see that we have carefully chosen an encoding of instructions so that the
four integer operations (addl, subl, andl, and xorl) all have the same value of
icode. We can handle them all by an identical sequence of steps, except that the
ALU computation must be set according to the particular instruction operation,
encoded in ifun.

The processing of an integer-operation instruction follows the general pattern
listed above. In the fetch stage, we do not require a constant word, and so valP
is computed as PC + 2. During the decode stage, we read both operands. These
are supplied to the ALU in the execute stage, along with the function specifier
ifun, so that valE becomes the instruction result. This computation is shown as the
expression valB OP valA, where OP indicates the operation specified by ifun. Note
the ordering of the two arguments—this order is consistent with the conventions
of Y86 (and IA32). For example, the instruction subl %eax,%edx is supposed to
compute the value R[%edx] — R[%eax]. Nothing happens in the memory stage for
these instructions, but valE is written to register rB in the write-back stage, and the
PC s set to valP to complete the instruction execution.
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Aside Tracing the execution of a subl instruction

As an example, let us follow the processing of the subl instruction on line 3 of the object code shown
in Figure 4.17. We can see that the previous two instructions initialize registers %edx and %ebx to 9 and
21, respectively. We can also see that the instruction is located at address 0x00c and consists of 2 bytes,
having values 0x61 and 0x23. The stages would proceed as shown in the following table, which lists the
generic rule for processing an 0P1 instruction (Figure 4.18) on the left, and the computations for this

specific instruction on the right.

Generic Specific
Stage OP1 rA, rB subl %edx, %ebx
Fetch icode:ifun <~ M{[PC]  icode:ifun < M{[0x00c]=6:1
rA:rB < M{[PC + 1] rA:rB < M;[0x00d]=2:3
valP <~ PC 42 valP < 0x00c + 2 = 0x00e
Decode valA < R[rA] valA < R[/%edx] =9
valB < R[rB] valB < R[%ebx] =21
Execute valE < valB OP valA valE <21 —-9=12
Set CC ZF < 0,SF < 0,0F < 0
Memory
Write back R[rB] < valE R[%ebx] < valE = 12
PC update PC « valP PC « valP = 0x00e

As this trace shows, we achieve the desired effect of setting register %ebx to 12, setting all three condition
codes to zero, and incrementing the PC by 2.

Executing an rrmovl instruction proceeds much like an arithmetic operation.
We do not need to fetch the second register operand, however. Instead, we set the
second ALU input to zero and add this to the first, giving valE = valA, which is
then written to the register file. Similar processing occurs for irmovl, except that
we use constant value valC for the first ALU input. In addition, we must increment
the program counter by 6 for irmovl due to the long instruction format. Neither
of these instructions changes the condition codes.

Practice Problem 4.11

Fill in the right-hand column of the following table to describe the processing of
the irmovl instruction on line 4 of the object code in Figure 4.17:
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Stage

Generic Specific
irmovl V, rB irmovl $128, %esp

Fetch

Decode

Execute

Memory

Write back

PC update

icode:ifun < M;[PC]
rA:rB < M{[PC + 1]
valC < My[PC + 2]
valP < PC+6

valE < 0 + valC

R[rB] < valE

PC « valP

How does this instruction execution modify the registers and the PC?

Figure 4.19 shows the processing required for the memory write and read in-
structions rmmovl and mrmovl. We see the same basic flow as before, but using the
ALU to add valC to valB, giving the effective address (the sum of the displacement

Stage

rmmovl rA, D(rB) mrmovl D(rB), rA

Fetch

Decode

Execute

Memory

Write back

PC update

icode:ifun <~ M{[PC]  icode:ifun < M{[PC]
rA:rB < M;[PC + 1] rA:rB < M;[PC + 1]

valC < My[PC + 2] valC < My[PC + 2]

valP < PC+6 valP < PC+6

valA < R[rA]

valB < R[rB] valB < R[rB]

valE < valB + valC valE < valB + valC

My[valE] < valA valM <« My[valE]
R[rA] < valM

PC « valP PC <« valP

Figure4.19 Computationsin sequential implementation of Y86 instructions rmmov1l
and mrmovl. These instructions read or write memory.
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and the base register value) for the memory operation. In the memory stage we
either write the register value valA to memory, or we read valM from memory.

Aside Tracing the execution of an rmmov1l instruction

Let us trace the processing of the rmmov1l instruction on line 5 of the object code shown in Figure 4.17.
We can see that the previous instruction initialized register %esp to 128, while %ebx still holds 12, as
computed by the subl instruction (line 3). We can also see that the instruction is located at address
0x014 and consists of 6 bytes. The first 2 have values 0x40 and 0x43, while the final 4 are a byte-reversed
version of the number 0x00000064 (decimal 100). The stages would proceed as follows:

Generic Specific
Stage rmmovl rA, D(rB) rmmovl %esp, 100 (%ebx)
Fetch icode:ifun < M4[PC] icode:ifun <— M{[0x014]=4:0
rA:rB < M{[PC + 1] rA:rB < M;[0x015]=4:3
valC < My[PC + 2] valC < M,[0x016] = 100
valP <~ PC+6 valP <- 0x014 + 6 = 0x01a
Decode valA < R[rA] valA < R[%esp] = 128
valB < R[rB] valB < R[%ebx] = 12
Execute valE < valB + valC valE < 12+ 100 =112
Memory My[valE] < valA My[112] < 128
Write back
PC update PC <« valP PC < 0x01a

As this trace shows, the instruction has the effect of writing 128 to memory address 112 and incrementing
the PC by 6.

Figure 4.20 shows the steps required to process pushl and popl instructions.
These are among the most difficult Y86 instructions to implement, because they in-
volve both accessing memory and incrementing or decrementing the stack pointer.
Although the two instructions have similar flows, they have important differences.

The pushl instruction starts much like our previous instructions, but in the
decode stage we use %esp as the identifier for the second register operand, giving
the stack pointer as value valB. In the execute stage, we use the ALU to decrement
the stack pointer by 4. This decremented value is used for the memory write
address and is also stored back to %esp in the write-back stage. By using valE as the
address for the write operation, we adhere to the Y86 (and IA32) convention that
pushl should decrement the stack pointer before writing, even though the actual
updating of the stack pointer does not occur until after the memory operation has
completed.
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Stage

pushl rA

popl rA

Fetch

Decode

Execute

Memory

‘Write back

PC update

icode:ifun < M;[PC]
rA:rB < M{[PC + 1]
valP < PC +2

valA < R[rA]
valB < R[%esp]

valkE < valB + (—4)

My[valE] < valA

R[%esp] < valE

PC « valP

icode:ifun < M;[PC]
rA:rB < M;[PC + 1]
valP < PC +2

valA < R[%esp]
valB < R[%esp]

valkE < valB + 4

valM <« My[valA]

R[%esp] < valE
R[rA] < valM

PC « valP

Figure 4.20 Computations in sequential implementation of Y86 instructions pushl
and popl. These instructions push and pop the stack.

Aside Tracing the execution of a pushl instruction

Let us trace the processing of the pushl instruction on line 6 of the object code shown in Figure 4.17.
At this point, we have 9 in register %edx and 128 in register %esp. We can also see that the instruction is
located at address 0x0O1a and consists of 2 bytes having values 0xa0 and 0x28. The stages would proceed

as follows:
Generic Specific
Stage pushl rA pushl %edx
Fetch icode:ifun < My[PC] icode:ifun < M[0x01la]=a:0
rA:rB < M{[PC + 1] rA:rB < M[0x01b]=2:8
valP < PC +2 valP < 0x01a +2 = 0x01c
Decode valA < R[rA] valA < R[%edx] =9
valB < R[%esp] valB < R[%esp] = 128
Execute valE < valB + (—4) valE < 128 + (—4) =124
Memory My[valE] < valA My[124] < 9

Write back R[%esp] < valE

PC update PC « valP

R[%esp] < 124

PC < 0x01c
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As this trace shows, the instruction has the effect of setting %esp to 124, writing 9 to address 124, and

incrementing the PC by 2.

The popl instruction proceeds much like pushl, except that we read two
copies of the stack pointer in the decode stage. This is clearly redundant, but we
will see that having the stack pointer as both valA and valB makes the subsequent
flow more similar to that of other instructions, enhancing the overall uniformity
of the design. We use the ALU to increment the stack pointer by 4 in the execute
stage, but use the unincremented value as the address for the memory operation.
In the write-back stage, we update both the stack pointer register with the incre-
mented stack pointer, and register rA with the value read from memory. Using
the unincremented stack pointer as the memory read address preserves the Y86
(and IA32) convention that popl should first read memory and then increment
the stack pointer.

Practice Problem 4.12

Fill in the right-hand column of the following table to describe the processing of
the popl instruction on line 7 of the object code in Figure 4.17:

Generic Specific
Stage popl rA popl %eax
Fetch icode:ifun <~ M{[PC]

rA:rB < M;[PC + 1]

valP < PC + 2

Decode valA < R[%esp]
valB < R[%esp]

Execute valE < valB + 4

Memory valM « My[valA]

Write back R[%esp] < valE
R[rA] < valM

PC update PC <« valP

What effect does this instruction execution have on the registers and the PC?
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Practice Problem 4.13

What would be the effect of the instruction pushl %esp according to the steps
listed in Figure 4.20? Does this conform to the desired behavior for Y86, as
determined in Problem 4.6?

Practice Problem 4.14

Assume the two register writes in the write-back stage for popl occur in the order
listed in Figure 4.20. What would be the effect of executing popl %esp? Does this
conform to the desired behavior for Y86, as determined in Problem 4.7?

Figure 4.21 indicates the processing of our three control transfer instructions:
the different jumps, call, and ret. We see that we can implement these instruc-
tions with the same overall flow as the preceding ones.

As with integer operations, we can process all of the jumps in a uniform
manner, since they differ only when determining whether or not to take the
branch. A jump instruction proceeds through fetch and decode much like the
previous instructions, except that it does not require a register specifier byte. In
the execute stage, we check the condition codes and the jump condition to deter-
mine whether or not to take the branch, yielding a 1-bit signal Cnd. During the
PC update stage, we test this flag, and set the PC to valC (the jump target) if the
flag is 1, and to valP (the address of the following instruction) if the flag is 0. Our
notation x ? a : b is similar to the conditional expression in C—it yields @ when x
is nonzero and b when x is zero.

Stage jXX Dest call Dest ret

Fetch icode:ifun < M{[PC] icode:ifun <~ M{[PC]  icode:ifun < M{[PC]
valC < My[PC + 1] valC <« My[PC + 1]
valP < PC+5 valP < PC+5 valP < PC+1

Decode valA < R[%esp]

valB < R[%esp] valB < R[%esp]

Execute valE < valB + (—4) valE < valB + 4
Cnd < Cond(CC, ifun)

Memory My[valE] < valP valM <« My[valA]

Write back R[%esp] < valE R[%esp] < valE

PC update PC < Cnd ? valC : valP PC « valC PC « valM

Figure 4.21 Computations in sequential implementation of Y86 instructions jXX,

call, and ret. These instructions cause control transfers.
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Aside Tracing the execution of a je instruction

Let us trace the processing of the je instruction on line 8 of the object code shown in Figure 4.17. The
condition codes were all set to zero by the subl instruction (line 3), and so the branch will not be taken.
The instruction is located at address 0xO1e and consists of 5 bytes. The first has value 0x73, while the
remaining 4 are a byte-reversed version of the number 0x00000028, the jump target. The stages would

proceed as follows:

Generic Specific
Stage jXX Dest je 0x028
Fetch icode:ifun < M{[PC] icode:ifun <— M;[0x01e]=7:3

valC < My[PC + 1]

valP < PC+5
Decode
Execute
Cnd <« Cond(CC, ifun)
Memory
Write back

PC update PC < Cnd? valC : valP

valC < M,4[0x01£f] = 0x028
valP < 0x01e + 5 = 0x023

Cnd <« Cond({0, 0, 0), 3) =0

PC <0 ? 0x028: 0x023 = 0x023

As this trace shows, the instruction has the effect of incrementing the PC by 5.

Practice Problem 4.15

We can see by the instruction encodings (Figures 4.2 and 4.3) that the rmmovl
instruction is the unconditional version of a more general class of instructions
that include the conditional moves. Show how you would modify the steps for the
rrmovl instruction below to also handle the six conditional move instructions.
You may find it useful to see how the implementation of the jXX instructions
(Figure 4.21) handles conditional behavior.

Stage cmovXX rA, rB
Fetch icode:ifun < M[PC]
rA:rB < M;[PC + 1]
valP < PC +2
Decode valA < R[rA]
Execute valE < 0 + valA
Memory
Write back
R[rB] <« valE

PC update PC « valP
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Instructions call and ret bear some similarity to instructions pushl and popl,
except that we push and pop program counter values. With instruction call, we
push valP, the address of the instruction that follows the call instruction. During
the PC update stage, we set the PC to valC, the call destination. With instruction
ret, we assign valM, the value popped from the stack, to the PC in the PC update
stage.

Practice Problem 4.16

Fill in the right-hand column of the following table to describe the processing of
the call instruction on line 9 of the object code in Figure 4.17:

Generic Specific
Stage call Dest call 0x029
Fetch icode:ifun < M{[PC]

valC <~ My[PC + 1]

valP <~ PC +5
Decode

valB < R[%esp]
Execute valE < valB + (—4)
Memory Mg[valE] < valP

Write back R[%esp] < valkE

PC update PC < valC

What effect would this instruction execution have on the registers, the PC, and
the memory?

We have created a uniform framework that handles all of the different types of
Y86 instructions. Even though the instructions have widely varying behavior, we
can organize the processing into six stages. Our task now is to create a hardware
design that implements the stages and connects them together.

Aside Tracing the execution of a ret instruction

Let us trace the processing of the ret instruction on line 13 of the object code shown in Figure 4.17.
The instruction address is 0x029 and is encoded by a single byte 0x90. The previous call instruction
set %esp to 124 and stored the return address 0x028 at memory address 124. The stages would proceed

as follows:
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Generic Specific
Stage ret ret
Fetch icode:ifun < M;[PC] icode:ifun <— M;[0x029] =9:0
valP < PC +1 valP <— 0x029 + 1 = 0x02a
Decode valA < R[%esp] valA < R[%esp] =124
valB < R[%esp] valB <— R[%esp] = 124
Execute valE < valB + 4 valE < 124 +4 =128
Memory valM <« My[valA] valM < My[124] = 0x028
Write back R[%esp] < valE R[%esp] < 128
PC update PC <« valM PC <« 0x028

375

As this trace shows, the instruction has the effect of setting the PC to 0x028, the address of the halt

instruction. It also sets %esp to 128.

4.3.2 SEQ Hardware Structure

The computations required to implement all of the Y86 instructions can be orga-
nized as a series of six basic stages: fetch, decode, execute, memory, write back,
and PCupdate. Figure 4.22 shows an abstract view of a hardware structure that can
perform these computations. The program counter is stored in a register, shown
in the lower left-hand corner (labeled “PC”). Information then flows along wires
(shown grouped together as a heavy black line), first upward and then around to
the right. Processing is performed by hardware units associated with the different
stages. The feedback paths coming back down on the right-hand side contain the
updated values to write to the register file and the updated program counter. In
SEQ, all of the processing by the hardware units occurs within a single clock cycle,
as is discussed in Section 4.3.3. This diagram omits some small blocks of combi-
national logic as well as all of the control logic needed to operate the different
hardware units and to route the appropriate values to the units. We will add this
detail later. Our method of drawing processors with the flow going from bottom
to top is unconventional. We will explain the reason for our convention when we
start designing pipelined processors.
The hardware units are associated with the different processing stages:

Fetch: Using the program counter register as an address, the instruction
memory reads the bytes of an instruction. The PC incrementer computes
valP, the incremented program counter.
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Figure 4.22 PC newPC
Abstract view of SEQ,
a sequential implemen-
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processed during exe-
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starting with an instruction
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Decode: The register file has two read ports, A and B, via which register values
valA and valB are read simultaneously.

Execute: The execute stage uses the arithmetic/logic (ALU) unit for different
purposes according to the instruction type. For integer operations, it
performs the specified operation. For other instructions, it serves as
an adder to compute an incremented or decremented stack pointer, to
compute an effective address, or simply to pass one of its inputs to its
outputs by adding zero.

The condition code register (CC) holds the three condition-code bits.
New values for the condition codes are computed by the ALU. When
executing a jump instruction, the branch signal Cnd is computed based
on the condition codes and the jump type.

Memory: The data memory reads or writes a word of memory when executing a

memory instruction. The instruction and data memories access the same
memory locations, but for different purposes.

Write back: The register file has two write ports. Port E is used to write values
computed by the ALU, while port M is used to write values read from
the data memory.

Figure 4.23 gives a more detailed view of the hardware required to implement
SEQ (although we will not see the complete details until we examine the individual
stages). We see the same set of hardware units as earlier, but now the wires are
shown explicitly. In this figure, as well as in our other hardware diagrams, we use
the following drawing conventions:

* Hardware units are shown as light blue boxes. These include the memories,
the ALU, and so forth. We will use the same basic set of units for all of our
processor implementations. We will treat these units as “black boxes” and not
go into their detailed designs.

e Control logic blocks are drawn as gray rounded rectangles. These blocks serve
to select from among a set of signal sources, or to compute some Boolean func-
tion. We will examine these blocks in complete detail, including developing
HCL descriptions.

e Wire names are indicated in white round boxes. These are simply labels on the
wires, not any kind of hardware element.

* Word-wide data connections are shown as medium lines. Each of these lines
actually represents a bundle of 32 wires, connected in parallel, for transferring
a word from one part of the hardware to another.

* Byte and narrower data connections are shown as thin lines. Each of these lines
actually represents a bundle of four or eight wires, depending on what type of
values must be carried on the wires.

e Single-bit connections are shown as dotted lines. These represent control values
passed between the units and blocks on the chip.

All of the computations we have shown in Figures 4.18 through 4.21 have the
property that each line represents either the computation of a specific value, such
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Figure 4.23 Hardware structure of SEQ, a sequential implementation. Some of the
control signals, as well as the register and control word connections, are not shown.
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Stage Computation OP1rA, 1B mrmovl D(rB), rA
Fetch icode, ifun icode:ifun <« M;[PC] icode:ifun < M;[PC]
rA, rB rA:rB < M{[PC + 1] rA:rB < M{[PC + 1]
valC valC < My[PC + 2]
valP valP < PC +2 valP < PC+6
Decode valA, srcA valA < R[rA]
valB, srcB valB < R[rB] valB < R[rB]
Execute valkE valE < valB OP valA valkE < valB + valC

Cond. codes Set CC

Memory read/write valM <« My[valE]
Write back E port, dstE R[rB] «— valE

M port, dstM R[rA] < valM
PC update PC PC <« valP PC « valP

Figure 4.24 Identifying the different computation steps in the sequential imple-
mentation. The second column identifies the value being computed or the operation
being performed in the stages of SEQ. The computations for instructions OP1 and mrmovl
are shown as examples of the computations.

as valP, or the activation of some hardware unit, such as the memory. These com-
putations and actions are listed in the second column of Figure 4.24. In addition
to the signals we have already described, this list includes four register ID signals:
srcA, the source of valA; srcB, the source of valB; dstE, the register to which valk
gets written; and dstM, the register to which valM gets written.

The two right-hand columns of this figure show the computations for the
OP1 and mrmovl instructions to illustrate the values being computed. To map the
computations into hardware, we want to implement control logic that will transfer
the data between the different hardware units and operate these units in such a way
that the specified operations are performed for each of the different instruction
types. That is the purpose of the control logic blocks, shown as gray rounded boxes
in Figure 4.23. Our task is to proceed through the individual stages and create
detailed designs for these blocks.

4.3.3 SEQ Timing

In introducing the tables of Figures 4.18 through 4.21, we stated that they should
be read as if they were written in a programming notation, with the assignments
performed in sequence from top to bottom. On the other hand, the hardware
structure of Figure 4.23 operates in a fundamentally different way, with a single
clock transition triggering a flow through combinational logic to execute an entire
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instruction. Let us see how the hardware can implement the behavior listed in
these tables.

Our implementation of SEQ consists of combinational logic and two forms
of memory devices: clocked registers (the program counter and condition code
register) and random-access memories (the register file, the instruction memory,
and the data memory). Combinational logic does not require any sequencing or
control—values propagate through a network of logic gates whenever the inputs
change. As we have described, we also assume that reading from a random-
access memory operates much like combinational logic, with the output word
generated based on the address input. This is a reasonable assumption for smaller
memories (such as the register file), and we can mimic this effect for larger circuits
using special clock circuits. Since our instruction memory is only used to read
instructions, we can therefore treat this unit as if it were combinational logic.

We are left with just four hardware units that require an explicit control
over their sequencing—the program counter, the condition code register, the data
memory, and the register file. These are controlled via a single clock signal that
triggers the loading of new values into the registers and the writing of values to the
random-access memories. The program counter is loaded with a new instruction
address every clock cycle. The condition code register is loaded only when an
integer operation instruction is executed. The data memory is written only when
an rmmovl, pushl, or call instruction is executed. The two write ports of the
register file allow two program registers to be updated on every cycle, but we can
use the special register ID 0xF as a port address to indicate that no write should
be performed for this port.

This clocking of the registers and memories is all that is required to control
the sequencing of activities in our processor. Our hardware achieves the same
effect as would a sequential execution of the assignments shown in the tables
of Figures 4.18 through 4.21, even though all of the state updates actually occur
simultaneously and only as the clock rises to start the next cycle. This equivalence
holds because of the nature of the Y86 instruction set, and because we have
organized the computations in such a way that our design obeys the following
principle:

The processor never needs to read back the state updated by an instruction in
order to complete the processing of this instruction.

This principle is crucial to the success of our implementation. As an illustration,
suppose we implemented the pushl instruction by first decrementing %esp by 4
and then using the updated value of %esp as the address of a write operation.
This approach would violate the principle stated above. It would require reading
the updated stack pointer from the register file in order to perform the memory
operation. Instead, our implementation (Figure 4.20) generates the decremented
value of the stack pointer as the signal valE and then uses this signal both as the
data for the register write and the address for the memory write. As a result, it
can perform the register and memory writes simultaneously as the clock rises to
begin the next clock cycle.
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As another illustration of this principle, we can see that some instructions
(the integer operations) set the condition codes, and some instructions (the jump
instructions) read these condition codes, but no instruction must both set and then
read the condition codes. Even though the condition codes are not set until the
clock rises to begin the next clock cycle, they will be updated before any instruction
attempts to read them.

Figure 4.25 shows how the SEQ hardware would process the instructions at
lines 3 and 4 in the following code sequence, shown in assembly code with the
instruction addresses listed on the left:

0x000: irmovl $0x100,%ebx # %ebx <—— 0x100

0x006: irmovl $0x200,%edx # %edx <—-— 0x200
0x00c: addl %edx,%ebx # %ebx <-— 0x300 CC <-- 000
0x00e: je dest # Not taken

0x013: rmmovl %ebx,0(%edx) # M[0x200] <-- 0x300
0x019: dest: halt

AN L AW N =

Each of the diagrams labeled 1 through 4 shows the four state elements plus
the combinational logic and the connections among the state elements. We show
the combinational logic as being wrapped around the condition code register,
because some of the combinational logic (such as the ALU) generates the input
to the condition code register, while other parts (such as the branch computation
and the PC selection logic) have the condition code register as input. We show the
register file and the data memory as having separate connections for reading and
writing, since the read operations propagate through these units as if they were
combinational logic, while the write operations are controlled by the clock.

The color coding in Figure 4.25 indicates how the circuit signals relate to the
different instructions being executed. We assume the processing starts with the
condition codes, listed in the order ZF, SF, and OF, set to 100. At the beginning of
clock cycle 3 (point 1), the state elements hold the state as updated by the second
irmovl instruction (line 2 of the listing), shown in light gray. The combinational
logic is shown in white, indicating that it has not yet had time to react to the
changed state. The clock cycle begins with address 0x00c¢ loaded into the program
counter. This causes the addl instruction (line 3 of the listing), shown in blue, to
be fetched and processed. Values flow through the combinational logic, including
the reading of the random-access memories. By the end of the cycle (point 2),
the combinational logic has generated new values (000) for the condition codes,
an update for program register %ebx, and a new value (0x00e) for the program
counter. At this point, the combinational logic has been updated according to the
addl instruction (shown in blue), but the state still holds the values set by the
second irmovl instruction (shown in light gray).

As the clock rises to begin cycle 4 (point 3), the updates to the program
counter, the register file, and the condition code register occur, and so we show
these in blue, but the combinational logic has not yet reacted to these changes, and
so we show this in white. In this cycle, the je instruction (line 4 in the listing), shown
in dark gray, is fetched and executed. Since condition code ZF is 0, the branch is not
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Figure 4.25 Tracing two cycles of execution by SEQ. Each cycle begins with the state
elements (program counter, condition code register, register file, and data memory)
set according to the previous instruction. Signals propagate through the combinational

logic creating new values for the state elements. These values are loaded into the state
elements to start the next cycle.
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taken. By the end of the cycle (point 4), a new value of 0x013 has been generated
for the program counter. The combinational logic has been updated according to
the je instruction (shown in dark gray), but the state still holds the values set by
the addl instruction (shown in blue) until the next cycle begins.

As this example illustrates, the use of a clock to control the updating of the
state elements, combined with the propagation of values through combinational
logic, suffices to control the computations performed for each instruction in our
implementation of SEQ. Every time the clock transitions from low to high, the
processor begins executing a new instruction.

4.3.4 SEQ Stage Implementations

In this section, we devise HCL descriptions for the control logic blocks required
to implement SEQ. A complete HCL description for SEQ is given in Web Aside
ARCH:HCL. We show some example blocks here, while others are given as practice
problems. We recommend that you work these practice problems as a way to check
your understanding of how the blocks relate to the computational requirements
of the different instructions.

Part of the HCL description of SEQ that we do not include here is a definition
of the different integer and Boolean signals that can be used as arguments to the
HCL operations. These include the names of the different hardware signals, as
well as constant values for the different instruction codes, function codes, register
names, ALU operations, and status codes. Only those that must be explicitly
referenced in the control logic are shown. The constants we use are documented
in Figure 4.26. By convention, we use uppercase names for constant values.

In addition to the instructions shown in Figures 4.18 to 4.21, we include the
processing for the nop and halt instructions. The nop instruction simply flows
through stages without much processing, except to increment the PC by 1. The
halt instruction causes the processor status to be set to HLT, causing it to halt
operation.

Fetch Stage

Asshown in Figure 4.27, the fetch stage includes the instruction memory hardware
unit. This unit reads 6 bytes from memory at a time, using the PC as the address of
the first byte (byte 0). This byte is interpreted as the instruction byte and is split (by
the unit labeled “Split”) into two 4-bit quantities. The control logic blocks labeled
“icode” and “ifun” then compute the instruction and function codes as equaling
either the values read from memory or, in the event that the instruction address
is not valid (as indicated by the signal imem_error), the values corresponding to
a nop instruction. Based on the value of icode, we can compute three 1-bit signals
(shown as dashed lines):

instr_valid: Does this byte correspond to a legal Y86 instruction? This signal is
used to detect an illegal instruction.

need_regids: Does this instruction include a register specifier byte?
need_valC: Does this instruction include a constant word?
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Name Value (Hex) Meaning

INOP 0 Code for nop instruction

THALT 1 Code for halt instruction
IRRMOVL 2 Code for rrmovl instruction
IIRMOVL 3 Code for irmovl instruction
IRMMOVL 4 Code for rmmov1 instruction
IMRMOVL 5 Code for mrmovl instruction
I0PL 6 Code for integer operation instructions
IJXX 7 Code for jump instructions

ICALL 8 Code for call instruction

IRET 9 Code for ret instruction

IPUSHL A Code for pushl instruction
IPOPL B Code for popl instruction

FNONE 0 Default function code

RESP 4 Register ID for %esp

RNONE F Indicates no register file access
ALUADD 0 Function for addition operation
SAOK 1 Status code for normal operation
SADR 2 Status code for address exception
SINS 3 Status code for illegal instruction exception
SHLT 4 Status code for halt

Figure 4.26 Constant values used in HCL descriptions. These values represent the
encodings of the instructions, function codes, register IDs, ALU operations, and status
codes.

The signals instr_valid and imem_error (generated when the instruction address
is out of bounds) are used to generate the status code in the memory stage.

As an example, the HCL description for need_regids simply determines
whether the value of icode is one of the instructions that has a register specifier
byte:

bool need_regids =
icode in { IRRMOVL, IOPL, IPUSHL, IPOPL,
IIRMOVL, IRMMOVL, IMRMOVL };

Practice Problem 4.17
Write HCL code for the signal need_valC in the SEQ implementation.
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As Figure 4.27 shows, the remaining 5 bytes read from the instruction memory
encode some combination of the register specifier byte and the constant word.
These bytes are processed by the hardware unit labeled “Align” into the register
fields and the constant word. When the computed signal need_regids is 1, then
byte 1is splitinto register specifiers rA and rB. Otherwise, these two fields are set to
0xF (RNONE), indicating there are no registers specified by this instruction. Recall
also (Figure 4.2) that for any instruction having only one register operand, the
other field of the register specifier byte will be 0xF (RNONE). Thus, we can assume
that the signals rA and rB either encode registers we want to access or indicate
that register access is not required. The unit labeled “Align” also generates the
constant word valC. This will either be bytes 1 to 4 or bytes 2 to 5, depending on
the value of signal need_regids.

The PC incrementer hardware unit generates the signal valP, based on the
current value of the PC, and the two signals need_regids and need_valC. For PC
value p, need_regids value r, and need_valC value i, the incrementer generates
the value p +1+4+r + 4i.

Decode and Write-Back Stages

Figure 4.28 provides a detailed view of logic that implements both the decode
and write-back stages in SEQ. These two stages are combined because they both
access the register file.

The register file has four ports. It supports up to two simultaneous reads (on
ports A and B) and two simultaneous writes (on ports E and M). Each port has
both an address connection and a data connection, where the address connection
is a register ID, and the data connection is a set of 32 wires serving as either an
output word (for a read port) or an input word (for a write port) of the register
file. The two read ports have address inputs srcA and srcB, while the two write
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Cnd valA valB valM valE
A B J
Register M
file E
dstE dstM srcA srcB

‘ _______ @8 %@EB e

icode rA 1B

Figure 4.28 SEQ decode and write-back stage. The instruction fields are decoded to
generate register identifiers for four addresses (two read and two write) used by the
register file. The values read from the register file become the signals valA and valB. The
two write-back values valE and valM serve as the data for the writes.

ports have address inputs dstE and dstM. The special identifier 0xF (RNONE) on an
address port indicates that no register should be accessed.

The four blocks at the bottom of Figure 4.28 generate the four different
register IDs for the register file, based on the instruction code icode, the register
specifiers rA and rB, and possibly the condition signal Cnd computed in the execute
stage. Register ID srcA indicates which register should be read to generate valA.
The desired value depends on the instruction type, as shown in the first row for the
decode stage in Figures 4.18 to 4.21. Combining all of these entries into a single
computation gives the following HCL description of srcA (recall that RESP is the
register ID of %esp):

# Code from SEQ
int srcA = [
icode in { IRRMOVL, IRMMOVL, IOPL, IPUSHL 1} : rA;
icode in { IPOPL, IRET } : RESP;
1 : RNONE; # Don't need register
1;

Practice Problem 4.18

The register signal srcB indicates which register should be read to generate the
signal valB. The desired value is shown as the second step in the decode stage in
Figures 4.18 to 4.21. Write HCL code for srcB.

Register ID dstE indicates the destination register for write port E, where the
computed value valE is stored. This is shown in Figures 4.18 to 4.21 as the first
step in the write-back stage. If we ignore for the moment the conditional move
instructions, then we can combine the destination registers for all of the different
instructions to give the following HCL description of dstE:
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# WARNING: Conditional move not implemented correctly here
int dstE = [

icode in { IRRMOVL } : rB

icode in { IIRMOVL, IOPL} : rB

icode in { IPUSHL, IPOPL, ICALL, IRET } : RESP;

1 : RNONE; # Don't write any register
1;

We will revisit this signal and how to implement conditional moves when we
examine the execute stage.

Practice Problem 4.19

Register ID dstM indicates the destination register for write port M, where valM,
the value read from memory, is stored. This is shown in Figures 4.18 to 4.21 as the
second step in the write-back stage. Write HCL code for dstM.

Practice Problem 4.20

Only the popl instruction uses both register file write ports simultaneously. For
the instruction popl %esp, the same address will be used for both the E and M
write ports, but with different data. To handle this conflict, we must establish a
priority among the two write ports so that when both attempt to write the same
register on the same cycle, only the write from the higher-priority port takes place.
Which of the two ports should be given priority in order to implement the desired
behavior, as determined in Problem 4.7?

Execute Stage

The execute stage includes the arithmetic/logic unit (ALU). This unit performs the
operation ADD, SUBTRACT, AND, or EXCLUSIVE-OR on inputs aluA and aluB based
on the setting of the alufun signal. These data and control signals are generated
by three control blocks, as diagrammed in Figure 4.29. The ALU output becomes
the signal valE.

Figure 4.29 Cnd valE
SEQ execute stage. The
ALU either performs the
. . cond
operation for an integer
peration instruction or fun.
it acts as an adder. The s

condition code registers
are set according to the Set ALU ALU

ALU value. The condition CC 1 C
code values are tested to |
determine whether or not ) .

icode ifun valC valA valB

a branch should be taken.
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In Figures 4.18 to 4.21, the ALU computation for each instruction is shown as
the first step in the execute stage. The operands are listed with aluB first, followed
by aluA to make sure the subl instruction subtracts valA from valB. We can see
that the value of aluA can be valA, valC, or either —4 or +4, depending on the
instruction type. We can therefore express the behavior of the control block that
generates aluA as follows:

int aluA = [
icode in { IRRMOVL, IOPL } : valA;
icode in { IIRMOVL, IRMMOVL, IMRMOVL } : valC;
icode in { ICALL, IPUSHL } : -4;
icode in { IRET, IPOPL } : 4;
# Other instructions don't need ALU

1;

Practice Problem 4.21

Based on the first operand of the first step of the execute stage in Figures 4.18 to
4.21, write an HCL description for the signal aluB in SEQ.

Looking at the operations performed by the ALU in the execute stage, we
can see that it is mostly used as an adder. For the OP1 instructions, however, we
want it to use the operation encoded in the ifun field of the instruction. We can
therefore write the HCL description for the ALU control as follows:

int alufun = [
icode == IOPL : ifun;
1 : ALUADD;

1;

The execute stage also includes the condition code register. Our ALU gen-
erates the three signals on which the condition codes are based—zero, sign, and
overflow—every time it operates. However, we only want to set the condition
codes when an OP1 instruction is executed. We therefore generate a signal set_cc
that controls whether or not the condition code register should be updated:

bool set_cc = icode in { IOPL };

The hardware unit labeled “cond” uses a combination of the condition codes
and the function code to determine whether a conditional branch or data transfer
should take place (Figure 4.3). It generates the Cnd signal used both for the setting
of dstE with conditional moves, and in the next PC logic for conditional branches.
For other instructions, the Cnd signal may be set to either 1 or 0, depending on
the instruction’s function code and the setting of the condition codes, but it will
be ignored by the control logic. We omit the detailed design of this unit.
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Practice Problem 4.22

The conditional move instructions, abbreviated cmovXX, have instruction code
IRRMOVL. As Figure 4.28 shows, we can implement these instructions by making
use of the Cnd signal, generated in the execute stage. Modify the HCL code for
dstE to implement these instructions.

Memory Stage

The memory stage has the task of either reading or writing program data. As
shown in Figure 4.30, two control blocks generate the values for the memory
address and the memory input data (for write operations). Two other blocks
generate the control signals indicating whether to perform a read or a write
operation. When a read operation is performed, the data memory generates the
value valM.

The desired memory operation for each instruction type is shown in the
memory stage of Figures 4.18 to 4.21. Observe that the address for memory reads
and writes is always valE or valA. We can describe this block in HCL as follows:

int mem_addr = [
icode in { IRMMOVL, IPUSHL, ICALL, IMRMOVL } : valE;
icode in { IPOPL, IRET } : valA;
# Other instructions don't need address

1;

Practice Problem 4.23

Looking at the memory operations for the different instructions shown in Fig-
ures 4.18 to 4.21, we can see that the data for memory writes is always either valA
or valP. Write HCL code for the signal mem_data in SEQ.
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We want to set the control signal mem_read only for instructions that read
data from memory, as expressed by the following HCL code:

bool mem_read = icode in { IMRMOVL, IPOPL, IRET };

Practice Problem 4.24

We want to set the control signal mem_write only for instructions that write data
to memory. Write HCL code for the signal mem_write in SEQ.

A final function for the memory stage is to compute the status code Stat result-
ing from the instruction execution, according to the values of icode, imem_error,
instr_valid generated in the fetch stage, and the signal dmem_error generated by
the data memory.

Practice Problem 4.25

Write HCL code for Stat, generating the four status codes SAOK, SADR, SINS, and
SHLT (see Figure 4.26).

PC Update Stage

The final stage in SEQ generates the new value of the program counter. (See
Figure 4.31.) As the final steps in Figures 4.18 to 4.21 show, the new PC will be
valC, valM, or valP, depending on the instruction type and whether or not a branch
should be taken. This selection can be described in HCL as follows:

int new_pc = [
# Call. Use instruction constant
icode == ICALL : valC;
# Taken branch. Use instruction constant
icode == IJXX && Cnd : valC;
# Completion of RET instruction. Use value from stack
icode == IRET : valM;
# Default: Use incremented PC

1 : valP;
1

Figure 4.31
SEQ PC update stage.
The next value of the PC
. New
is selected from among [ PC ]
the signals valC, valM, and T T t t 1
valP, depending on the ‘
instruction code and the icode Cnd valC valM valP

branch flag.
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Surveying SEQ

We have now stepped through a complete design for a Y86 processor. We have
seen that by organizing the steps required to execute each of the different in-
structions into a uniform flow, we can implement the entire processor with a small
number of different hardware units and with a single clock to control the sequenc-
ing of computations. The control logic must then route the signals between these
units and generate the proper control signals based on the instruction types and
the branch conditions.

The only problem with SEQ is that it is too slow. The clock must run slowly
enough so that signals can propagate through all of the stages within a single
cycle. As an example, consider the processing of a ret instruction. Starting with an
updated program counter at the beginning of the clock cycle, the instruction must
be read from the instruction memory, the stack pointer must be read from the
register file, the ALU must decrement the stack pointer, and the return address
must be read from the memory in order to determine the next value for the
program counter. All of this must be completed by the end of the clock cycle.

This style of implementation does not make very good use of our hardware
units, since each unit is only active for a fraction of the total clock cycle. We will
see that we can achieve much better performance by introducing pipelining.

4.4 General Principles of Pipelining

Before attempting to design a pipelined Y86 processor, let us consider some
general properties and principles of pipelined systems. Such systems are familiar
to anyone who has been through the serving line at a cafeteria or run a car through
an automated car wash. In a pipelined system, the task to be performed is divided
into a series of discrete stages. In a cafeteria, this involves supplying salad, a
main dish, dessert, and beverage. In a car wash, this involves spraying water and
soap, scrubbing, applying wax, and drying. Rather than having one customer run
through the entire sequence from beginning to end before the next can begin,
we allow multiple customers to proceed through the system at once. In a typical
cafeteria line, the customers maintain the same order in the pipeline and pass
through all stages, even if they do not want some of the courses. In the case of
the car wash, a new car is allowed to enter the spraying stage as the preceding car
moves from the spraying stage to the scrubbing stage. In general, the cars must
move through the system at the same rate to avoid having one car crash into the
next.

A key feature of pipelining is that it increases the throughput of the system,
that is, the number of customers served per unit time, but it may also slightly
increase the latency, that is, the time required to service an individual customer.
For example, a customer in a cafeteria who only wants a salad could pass through
a nonpipelined system very quickly, stopping only at the salad stage. A customer
in a pipelined system who attempts to go directly to the salad stage risks incurring
the wrath of other customers.
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Figure 4.32
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4.4.1 Computational Pipelines

Shifting our focus to computational pipelines, the “customers” are instructions and
the stages perform some portion of the instruction execution. Figure 4.32 shows
an example of a simple nonpipelined hardware system. It consists of some logic
that performs a computation, followed by a register to hold the results of this
computation. A clock signal controls the loading of the register at some regular
time interval. An example of such a system is the decoder in a compact disk (CD)
player. The incoming signals are the bits read from the surface of the CD, and
the logic decodes these to generate audio signals. The computational block in the
figure is implemented as combinational logic, meaning that the signals will pass
through a series of logic gates, with the outputs becoming some function of the
inputs after some time delay.

In contemporary logic design, we measure circuit delays in units of picosec-
onds (abbreviated “ps”), or 10712 seconds. In this example, we assume the combi-
national logic requires 300 picoseconds, while the loading of the register requires
20 ps. Figure 4.32 also shows a form of timing diagram known as a pipeline dia-
gram. In this diagram, time flows from left to right. A series of instructions (here
named I1,I2,and I3)are written from top to bottom. The solid rectangles indicate
the times during which these instructions are executed. In this implementation, we
must complete one instruction before beginning the next. Hence, the boxes do not
overlap one another vertically. The following formula gives the maximum rate at
which we could operate the system:

1 instruction . 1000 picosecond 3.12 GIPS

Throughput = -
(20 4 300) picosecond 1 nanosecond

We express throughput in units of giga-instructions per second (abbreviated
GIPS), or billions of instructions per second. The total time required to perform
a single instruction from beginning to end is known as the /atency. In this system,
the latency is 320 ps, the reciprocal of the throughput.
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Figure 4.33 Three-stage pipelined computation hardware. The computation is split
into stages A, B, and C. On each 120-ps cycle, each instruction progresses through one
stage.

Suppose we could divide the computation performed by our system into three
stages, A, B, and C, where each requires 100 ps, as illustrated in Figure 4.33. Then
we could put pipeline registers between the stages so that each instruction moves
through the system in three steps, requiring three complete clock cycles from
beginning to end. As the pipeline diagram in Figure 4.33 illustrates, we could allow
I2 to enter stage A as soon as I1 moves from A to B, and so on. In steady state, all
three stages would be active, with one instruction leaving and a new one entering
the system every clock cycle. We can see this during the third clock cycle in the
pipeline diagram where I1 is in stage C, I2is in stage B, and I3 is in stage A. In
this system, we could cycle the clocks every 100 + 20 = 120 picoseconds, giving
a throughput of around 8.33 GIPS. Since processing a single instruction requires
3 clock cycles, the latency of this pipeline is 3 x 120 = 360 ps. We have increased
the throughput of the system by a factor of 8.33/3.12 =2.67 at the expense of
some added hardware and a slight increase in the latency (360/320 = 1.12). The
increased latency is due to the time overhead of the added pipeline registers.

4.4.2 A Detailed Look at Pipeline Operation

To better understand how pipelining works, let us look in some detail at the timing
and operation of pipeline computations. Figure 4.34 shows the pipeline diagram
for the three-stage pipeline we have already looked at (Figure 4.33). The transfer
of the instructions between pipeline stages is controlled by a clock signal, as shown
above the pipeline diagram. Every 120 ps, this signal rises from 0 to 1, initiating
the next set of pipeline stage evaluations.
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Figure 4.34
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Figure 4.35 traces the circuit activity between times 240 and 360, as instruction
I1 (shown in dark gray) propagates through stage C, I2 (shown in blue) propa-
gates through stage B, and I3 (shown in light gray) propagates through stage A.
Just before the rising clock at time 240 (point 1), the values computed in stage A
for instruction I2 have reached the input of the first pipeline register, but its state
and output remain set to those computed during stage A for instruction I1. The
values computed in stage B for instruction I1 have reached the input of the second
pipeline register. As the clock rises, these inputs are loaded into the pipeline reg-
isters, becoming the register outputs (point 2). In addition, the input to stage A
is set to initiate the computation of instruction I3. The signals then propagate
through the combinational logic for the different stages (point 3). As the curved
wavefronts in the diagram at point 3 suggest, signals can propagate through differ-
ent sections at different rates. Before time 360, the result values reach the inputs
of the pipeline registers (point 4). When the clock rises at time 360, each of the
instructions will have progressed through one pipeline stage.

We can see from this detailed view of pipeline operation that slowing down
the clock would not change the pipeline behavior. The signals propagate to the
pipeline register inputs, but no change in the register states will occur until the
clock rises. On the other hand, we could have disastrous effects if the clock
were run too fast. The values would not have time to propagate through the
combinational logic, and so the register inputs would not yet be valid when the
clock rises.

As with our discussion of the timing for the SEQ processor (Section 4.3.3),
we see that the simple mechanism of having clocked registers between blocks of
combinational logic suffices to control the flow of instructions in the pipeline. As
the clock rises and falls repeatedly, the different instructions flow through the
stages of the pipeline without interfering with one another.

4.4.3 Limitations of Pipelining

The example of Figure 4.33 shows an ideal pipelined system in which we are able
to divide the computation into three independent stages, each requiring one-third
of the time required by the original logic. Unfortunately, other factors often arise
that diminish the effectiveness of pipelining.
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One clock cycle of pipeline
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Figure 4.36 shows a system in which we divide the computation into three stages
as before, but the delays through the stages range from 50 to 150 ps. The sum of
the delays through all of the stages remains 300 ps. However, the rate at which we
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Figure 4.36 Limitations of pipelining due to nonuniform stage delays. The system
throughput is limited by the speed of the slowest stage.

can operate the clock is limited by the delay of the slowest stage. As the pipeline
diagram in this figure shows, stage A will be idle (shown as a white box) for 100 ps
every clock cycle, while stage C will be idle for 50 ps every clock cycle. Only
stage B will be continuously active. We must set the clock cycle to 150 + 20 =170
picoseconds, giving a throughput of 5.88 GIPS. In addition, the latency would
increase to 510 ps due to the slower clock rate.

Devising a partitioning of the system computation into a series of stages
having uniform delays can be a major challenge for hardware designers. Often,
some of the hardware units in a processor, such as the ALU and the memories,
cannot be subdivided into multiple units with shorter delay. This makes it difficult
to create a set of balanced stages. We will not concern ourselves with this level of
detail in designing our pipelined Y86 processor, but it is important to appreciate
the importance of timing optimization in actual system design.

Practice Problem 4.26

Suppose we analyze the combinational logic of Figure 4.32 and determine that it
can be separated into a sequence of six blocks, named A to F, having delays of 80,
30, 60, 50, 70, and 10 ps, respectively, illustrated as follows:

80 ps 30 ps 60 ps 50 ps 70 ps 10 ps 20 ps

Clock
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We can create pipelined versions of this design by inserting pipeline registers
between pairs of these blocks. Different combinations of pipeline depth (how
many stages) and maximum throughput arise, depending on where we insert the
pipeline registers. Assume that a pipeline register has a delay of 20 ps.

A. Inserting a single register gives a two-stage pipeline. Where should the
register be inserted to maximize throughput? What would be the throughput
and latency?

B. Where should two registers be inserted to maximize the throughput of a
three-stage pipeline? What would be the throughput and latency?

C. Where should three registers be inserted to maximize the throughput of a
four-stage pipeline? What would be the throughput and latency?

D. What is the minimum number of stages that would yield a design with the
maximum achievable throughput? Describe this design, its throughput, and
its latency.

Diminishing Returns of Deep Pipelining

Figure 4.37 illustrates another limitation of pipelining. In this example, we have
divided the computation into six stages, each requiring 50 ps. Inserting a pipeline
register between each pair of stages yields a six-stage pipeline. The minimum
clock period for this system is 50 4+ 20 = 70 picoseconds, giving a throughput of
14.29 GIPS. Thus, in doubling the number of pipeline stages, we improve the
performance by a factor of 14.29/8.33 = 1.71. Even though we have cut the time
required for each computation block by a factor of 2, we do not get a doubling of
the throughput, due to the delay through the pipeline registers. This delay becomes
a limiting factor in the throughput of the pipeline. In our new design, this delay
consumes 28.6% of the total clock period.

Modern processors employ very deep (15 or more stages) pipelines in an
attempt to maximize the processor clock rate. The processor architects divide the
instruction execution into a large number of very simple steps so that each stage
can have a very small delay. The circuit designers carefully design the pipeline
registers to minimize their delay. The chip designers must also carefully design the

50ps 20ps 50ps 20ps 50ps 20ps 50ps 20ps 50ps 20ps 50ps 20ps
Comb. Comb. Comb. Comb. Comb. Comb.
logic logic logic logic logic logic
I
Clock Delay = 420 ps, Throughput = 14.29 GIPS
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Figure 4.37 Limitations of pipelining due to overhead. As the combinational logic is split into shorter

blocks, the delay due to register updating becomes a limiting factor.
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clock distribution network to ensure that the clock changes at the exact same time
across the entire chip. All of these factors contribute to the challenge of designing
high-speed microprocessors.

Practice Problem 4.27

Suppose we could take the system of Figure 4.32 and divide it into an arbitrary
number of pipeline stages k, each having a delay of 300/ &, and with each pipeline
register having a delay of 20 ps.

A. What would be the latency and the throughput of the system, as functions
of k?

B. What would be the ultimate limit on the throughput?

4.4.4 Pipelining a System with Feedback

Up to this point, we have considered only systems in which the objects passing
through the pipeline—whether cars, people, or instructions—are completely in-
dependent of one another. For a system that executes machine programs such
as IA32 or Y86, however, there are potential dependencies between successive
instructions. For example, consider the following Y86 instruction sequence:

3 , hedx

1 irmovl $50,%eax

2 addl Y%eax,%ebx

3 mrmovl 100 (%ebx) ,%edx

In this three-instruction sequence, there is a data dependency between each succes-
sive pair of instructions, as indicated by the circled register names and the arrows
between them. The irmovl instruction (line 1) stores its result in %eax, which then
must be read by the addl instruction (line 2); and this instruction stores its result
in %ebx, which must then be read by the mrmov1 instruction (line 3).

Another source of sequential dependencies occurs due to the instruction
control flow. Consider the following Y86 instruction sequence:

1 loop:

2 subl %edx,%ebx
3 jne targ

4 irmovl $10,%edx
5 jmp loop
6 targ:
7 halt
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Figure 4.38

Limitations of pipelining
due to logical depen- >
dencies. In going from an — Combinational
unpipelined system with logic
feedback (a) to a pipelined
one (c), we change its
computational behavior, Clock
as can be seen by the two
pipeline diagrams

(a) Hardware: Unpipelined with feedback

(b and d).
I1 | >
12 >
13 < |
Time

(b) Pipeline diagram

A

Comb. Comb. Comb.
—» logic logic logic
A B C

Clock
(c) Hardware: Three-stage pipeline with feedback

nfAl Bl chk

12 Al B |/C

I3 A B C

14 S Al B[ cf
Time

(d) Pipeline diagram

The jne instruction (line 3) creates a control dependency since the outcome
of the conditional test determines whether the next instruction to execute will be
the irmovl instruction (line 4) or the halt instruction (line 7). In our design for
SEQ, these dependencies were handled by the feedback paths shown on the right-
hand side of Figure 4.22. This feedback brings the updated register values down
to the register file and the new PC value down to the PC register.

Figure 4.38 illustrates the perils of introducing pipelining into a system con-
taining feedback paths. In the original system (Figure 4.38(a)), the result of each
instruction is fed back around to the next instruction. This is illustrated by the
pipeline diagram (Figure 4.38(b)), where the result of I1 becomes an input to
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I2, and so on. If we attempt to convert this to a three-stage pipeline in the most
straightforward manner (Figure 4.38(c)), we change the behavior of the system.
As Figure 4.38(c) shows, the result of 11 becomes an input to I4. In attempting to
speed up the system via pipelining, we have changed the system behavior.

When we introduce pipelining into a Y86 processor, we must deal with feed-
back effects properly. Clearly, it would be unacceptable to alter the system be-
havior as occurred in the example of Figure 4.38. Somehow we must deal with the
data and control dependencies between instructions so that the resulting behavior
matches the model defined by the ISA.

4.5 Pipelined Y86 Implementations

We are finally ready for the major task of this chapter—designing a pipelined Y86
processor. We start by making a small adaptation of the sequential processor SEQ
to shift the computation of the PC into the fetch stage. We then add pipeline
registers between the stages. Our first attempt at this does not handle the dif-
ferent data and control dependencies properly. By making some modifications,
however, we achieve our goal of an efficient pipelined processor that implements
the Y86 ISA.

4.5.1 SEQ+: Rearranging the Computation Stages

As a transitional step toward a pipelined design, we must slightly rearrange the
order of the five stages in SEQ so that the PC update stage comes at the beginning
of the clock cycle, rather than at the end. This transformation requires only
minimal change to the overall hardware structure, and it will work better with
the sequencing of activities within the pipeline stages. We refer to this modified
design as “SEQ+.”

We can move the PC update stage so that its logic is active at the beginning of
the clock cycle by making it compute the PC value for the current instruction.
Figure 4.39 shows how SEQ and SEQ+ differ in their PC computation. With
SEQ (Figure 4.39(a)), the PC computation takes place at the end of the clock
cycle, computing the new value for the PC register based on the values of signals

?

Ne
PC. PC ]
'y
N N S I | 1
icode Cnd valC valM valP |picode| cnd [ pvaim | pvaic [ pvaiP |
(a) SEQ new PC computation (b) SEQ+ PC selection

Figure 4.39 Shifting the timing of the PC computation. With SEQ+, we compute
the value of the program counter for the current state as the first step in instruction
execution.
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computed during the current clock cycle. With SEQ+ (Figure 4.39(b)), we create
state registers to hold the signals computed during an instruction. Then, as a
new clock cycle begins, the values propagate through the exact same logic to
compute the PC for the now-current instruction. We label the registers “pIcode,”
“pCnd,” and so on, to indicate that on any given cycle, they hold the control signals
generated during the previous cycle.

Figure 4.40 shows a more detailed view of the SEQ+ hardware. We can see
that it contains the exact same hardware units and control blocks that we had in
SEQ (Figure 4.23), but with the PC logic shifted from the top, where it was active
at the end of the clock cycle, to the bottom, where it is active at the beginning.

Aside Where is the PC in SEQ+?

401

One curious feature of SEQ+ is that there is no hardware register storing the program counter. Instead,
the PC is computed dynamically based on some state information stored from the previous instruction.
This is a small illustration of the fact that we can implement a processor in a way that differs from the
conceptual model implied by the ISA, as long as the processor correctly executes arbitrary machine-
language programs. We need not encode the state in the form indicated by the programmer-visible state,
as long as the processor can generate correct values for any part of the programmer-visible state (such
as the program counter). We will exploit this principle even more in creating a pipelined design. Out-
of-order processing techniques, as described in Section 5.7, take this idea to an extreme by executing

instructions in a completely different order than they occur in the machine-level program.

The shift of state elements from SEQ to SEQ+ is an example of a general
transformation known as circuit retiming [65]. Retiming changes the state repre-
sentation for a system without changing its logical behavior. It is often used to
balance the delays between different stages of a system.

4.5.2 Inserting Pipeline Registers

In our first attempt at creating a pipelined Y86 processor, we insert pipeline
registers between the stages of SEQ+ and rearrange signals somewhat, yielding
the PIPE- processor, where the “~” in the name signifies that this processor has
somewhat less performance than our ultimate processor design. The structure of
PIPE-is illustrated in Figure 4.41. The pipeline registers are shown in this figure
as black boxes, each containing different fields that are shown as white boxes. As
indicated by the multiple fields, each pipeline register holds multiple bytes and
words. Unlike the labels shown in rounded boxes in the hardware structure of the
two sequential processors (Figures 4.23 and 4.40), these white boxes represent
actual hardware components.

Observe that PIPE- uses nearly the same set of hardware units as our sequen-
tial design SEQ (Figure 4.40), but with the pipeline registers separating the stages.
The differences between the signals in the two systems is discussed in Section 4.5.3.
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Figure 4.40 SEQ+ hardware structure. Shifting the PC computation from the end of
the clock cycle to the beginning makes it more suitable for pipelining.
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Figure 4.41 Hardware structure of PIPE-, an initial pipelined implementation. By

inserting pipeline registers into SEQ+ (Figure 4.40), we create a five-stage pipeline. There

are several shortcomings of this version that we will deal with shortly.
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The pipeline registers are labeled as follows:

F holds a predicted value of the program counter, as will be discussed shortly.

D sits between the fetch and decode stages. It holds information about the most
recently fetched instruction for processing by the decode stage.

E sits between the decode and execute stages. It holds information about the
most recently decoded instruction and the values read from the register
file for processing by the execute stage.

M sits between the execute and memory stages. It holds the results of the
most recently executed instruction for processing by the memory stage.
It also holds information about branch conditions and branch targets for
processing conditional jumps.

W sits between the memory stage and the feedback paths that supply the
computed results to the register file for writing and the return address
to the PC selection logic when completing a ret instruction.

Figure 4.42 shows how the following code sequence would flow through our
five-stage pipeline, where the comments identify the instructions as I1 to I5 for
reference:

irmovl $1,%eax # I1
irmovl $2,%ebx # I2
irmovl $3,%ecx # I3
irmovl $4,%edx # I4
halt # I5

v A W N =

The right side of the figure shows a pipeline diagram for this instruction
sequence. As with the pipeline diagrams for the simple pipelined computation
units of Section 4.4, this diagram shows the progression of each instruction through
the pipeline stages, with time increasing from left to right. The numbers along the
top identify the clock cycles at which the different stages occur. For example, in
cycle 1, instruction I1 is fetched, and it then proceeds through the pipeline stages,
with its result being written to the register file after the end of cycle 5. Instruction
I2is fetched in cycle 2, and its result is written back after the end of cycle 6, and
so on. At the bottom, we show an expanded view of the pipeline for cycle 5. At
this point, there is an instruction in each of the pipeline stages.

From Figure 4.42, we can also justify our convention of drawing processors
so that the instructions flow from bottom to top. The expanded view for cycle 5
shows the pipeline stages with the fetch stage on the bottom and the write-back
stage on the top, just as do our diagrams of the pipeline hardware (Figure 4.41).
If we look at the ordering of instructions in the pipeline stages, we see that they
appear in the same order as they do in the program listing. Since normal program
flow goes from top to bottom of a listing, we preserve this ordering by having the
pipeline flow go from bottom to top. This convention is particularly useful when
working with the simulators that accompany this text.
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1 2 3 4 5 6 7 8 9

irmovl $1,%eax #I1 F E M | W

irmovl $2, %ebx #I2 F D E M w

irmovl $3,%ecx #13 = D E M w

irmovl $4,%edx #14 FElbp |l E|lmMI|w

halt #I5 F D E M W
Cycle 5

Il

I2

I3

I4

I5

Figure 4.42 Example of instruction flow through pipeline.

4.5.3 Rearranging and Relabeling Signals

Our sequential implementations SEQ and SEQ+ only process one instruction at
a time, and so there are unique values for signals such as valC, srcA, and valE. In
our pipelined design, there will be multiple versions of these values associated
with the different instructions flowing through the system. For example, in the
detailed structure of PIPE—, there are four white boxes labeled “stat” that hold
the status codes for four different instructions. (See Figure 4.41.) We need to take
great care to make sure we use the proper version of a signal, or else we could
have serious errors, such as storing the result computed for one instruction at the
destination register specified by another instruction. We adopt a naming scheme
where a signal stored in a pipeline register can be uniquely identified by prefixing
its name with that of the pipe register written in uppercase. For example, the four
status codes are named D_stat, E_stat, M_stat, and W_stat. We also need to refer
to some signals that have just been computed within a stage. These are labeled
by prefixing the signal name with the first character of the stage name, written
in lowercase. Using the status codes as examples, we can see control logic blocks
labeled “stat” in the fetch and memory stages. The outputs of these blocks are
therefore named f_stat and m_stat. We can also see that the actual status of the
overall processor Stat is computed by a block in the write-back stage, based on
the status value in pipeline register W.
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Aside What is the difference between signals M_stat and m_stat?

With our naming system, the uppercase prefixes “D,” “E,” “M,” and “W” refer to pipeline registers,
and so M_stat refers to the status code field of pipeline register M. The lowercase prefixes “f,” “d,”
“e,” “m,” and “w” refer to the pipeline stages, and so m_stat refers to the status signal generated in the
memory stage by a control logic block.

Understanding this naming convention is critical to understanding the operation of our pipelined
Processors.

The decode stages of SEQ+ and PIPE- both generate signals dstE and dstM
indicating the destination register for values valE and valM. In SEQ+, we could
connect these signals directly to the address inputs of the register file write ports.
With PIPE-, these signals are carried along in the pipeline through the execute and
memory stages, and are directed to the register file only once they reach the write-
back stage (shown in the more detailed views of the stages). We do this to make
sure the write port address and data inputs hold values from the same instruction.
Otherwise, the write back would be writing the values for the instruction in the
write-back stage, but with register IDs from the instruction in the decode stage.
As a general principle, we want to keep all of the information about a particular
instruction contained within a single pipeline stage.

One block of PIPE- that is not present in SEQ+ in the exact same form is the
block labeled “Select A” in the decode stage. We can see that this block generates
the value valA for the pipeline register E by choosing either valP from pipeline
register D or the value read from the A port of the register file. This block is
included to reduce the amount of state that must be carried forward to pipeline
registers E and M. Of all the different instructions, only the call requires valP
in the memory stage. Only the jump instructions require the value of valP in the
execute stage (in the event the jump is not taken). None of these instructions
requires a value read from the register file. Therefore, we can reduce the amount
of pipeline register state by merging these two signals and carrying them through
the pipeline as a single signal valA. This eliminates the need for the block labeled
“Data” in SEQ (Figure 4.23) and SEQ+ (Figure 4.40), which served a similar
purpose. In hardware design, it is common to carefully identify how signals get
used and then reduce the amount of register state and wiring by merging signals
such as these.

As shown in Figure 4.41, our pipeline registers include a field for the status
code Stat, initially computed during the fetch stage and possibly modified during
the memory stage. We will discuss how to implement the processing of exceptional
events in Section 4.5.9, after we have covered the implementation of normal in-
struction execution. Suffice it to say at this point that the most systematic approach
is to associate a status code with each instruction as it passes through the pipeline,
as we have indicated in the figure.

4.5.4 Next PC Prediction

We have taken some measures in the design of PIPE- to properly handle control
dependencies. Our goal in the pipelined design is to issue a new instruction on
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every clock cycle, meaning that on each clock cycle, a new instruction proceeds
into the execute stage and will ultimately be completed. Achieving this goal would
yield a throughput of one instruction per cycle. To do this, we must determine
the location of the next instruction right after fetching the current instruction.
Unfortunately, if the fetched instruction is a conditional branch, we will not
know whether or not the branch should be taken until several cycles later, after
the instruction has passed through the execute stage. Similarly, if the fetched
instruction is a ret, we cannot determine the return location until the instruction
has passed through the memory stage.

With the exception of conditional jump instructions and ret, we can deter-
mine the address of the next instruction based on information computed during
the fetch stage. For call and jmp (unconditional jump), it will be valC, the con-
stant word in the instruction, while for all others it will be valP, the address of the
next instruction. We can therefore achieve our goal of issuing a new instruction
every clock cycle in most cases by predicting the next value of the PC. For most in-
struction types, our prediction will be completely reliable. For conditional jumps,
we can predict either that a jump will be taken, so that the new PC value would be
valC, or we can predict that it will not be taken, so that the new PC value would
be valP. In either case, we must somehow deal with the case where our prediction
was incorrect and therefore we have fetched and partially executed the wrong
instructions. We will return to this matter in Section 4.5.11.

This technique of guessing the branch direction and then initiating the fetching
of instructions according to our guess is known as branch prediction. It is used in
some form by virtually all processors. Extensive experiments have been conducted
on effective strategies for predicting whether or not branches will be taken [49,
Section 2.3]. Some systems devote large amounts of hardware to this task. In our
design, we will use the simple strategy of predicting that conditional branches are
always taken, and so we predict the new value of the PC to be valC.

Aside Other branch prediction strategies

Our design uses an always taken branch prediction strategy. Studies show this strategy has around a
60% success rate [47, 120]. Conversely, a never taken (NT) strategy has around a 40% success rate. A
slightly more sophisticated strategy, known as backward taken, forward not-taken (BTFNT), predicts
that branches to lower addresses than the next instruction will be taken, while those to higher addresses
will not be taken. This strategy has a success rate of around 65 %. This improvement stems from the fact
that loops are closed by backward branches, and loops are generally executed multiple times. Forward
branches are used for conditional operations, and these are less likely to be taken. In Problems 4.54 and
4.55, you can modify the Y86 pipeline processor to implement the NT and BTFNT branch prediction
strategies.

As we saw in Section 3.6.6, mispredicted branches can degrade the performance of a program
considerably, thus motivating the use of conditional data transfer rather than conditional control
transfer when possible.

We are still left with predicting the new PC value resulting from a ret in-
struction. Unlike conditional jumps, we have a nearly unbounded set of possible
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results, since the return address will be whatever word is on the top of the stack.
In our design, we will not attempt to predict any value for the return address.
Instead, we will simply hold off processing any more instructions until the ret
instruction passes through the write-back stage. We will return to this part of the
implementation in Section 4.5.11.

Aside Return address prediction with a stack

With most programs, it is very easy to predict return addresses, since procedure calls and returns occur
in matched pairs. Most of the time that a procedure is called, it returns to the instruction following the
call. This property is exploited in high-performance processors by including a hardware stack within
the instruction fetch unit that holds the return address generated by procedure call instructions. Every
time a procedure call instruction is executed, its return address is pushed onto the stack. When a return
instruction is fetched, the top value is popped from this stack and used as the predicted return address.
Like branch prediction, a mechanism must be provided to recover when the prediction was incorrect,
since there are times when calls and returns do not match. In general, the prediction is highly reliable.
This hardware stack is not part of the programmer-visible state.

The PIPE- fetch stage, diagrammed at the bottom of Figure 4.41, is responsi-
ble for both predicting the next value of the PC and for selecting the actual PC for
the instruction fetch. We can see the block labeled “Predict PC” can choose either
valP, as computed by the PC incrementer or valC, from the fetched instruction.
This value is stored in pipeline register F as the predicted value of the program
counter. The block labeled “Select PC” is similar to the block labeled “PC” in the
SEQ+ PC selection stage (Figure 4.40). It chooses one of three values to serve as
the address for the instruction memory: the predicted PC, the value of valP for
a not-taken branch instruction that reaches pipeline register M (stored in regis-
ter M_valA), or the value of the return address when a ret instruction reaches
pipeline register W (stored in W_valM).

We will return to the handling of jump and return instructions when we
complete the pipeline control logic in Section 4.5.11.

4.5.5 Pipeline Hazards

Our structure PIPE-is a good start at creating a pipelined Y86 processor. Recall
from our discussion in Section 4.4.4, however, that introducing pipelining into a
system with feedback can lead to problems when there are dependencies between
successive instructions. We must resolve this issue before we can complete our
design. These dependencies can take two forms: (1) data dependencies, where the
results computed by one instruction are used as the data for a following instruction,
and (2) control dependencies, where one instruction determines the location of
the following instruction, such as when executing a jump, call, or return. When
such dependencies have the potential to cause an erroneous computation by the
pipeline, they are called hazards. Like dependencies, hazards can be classified
as either data hazards or control hazards. In this section, we concern ourselves
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# progl 1 2 3 4 5 6 7 8 9 10 11
0x000: irmovl $10,%edx F E M W
0x006: irmovl $3,%eax F D E M W
0x00c: nop F D E M | W
0x00d: nop F D E M | W
0x00e: nop F D E M W
0x00f: addl %edx,’%eax F D E M w
0x011: halt F D E M W
Cycle 6
w
R[%eax]+ 3
Cycle 7
D
valA «— R[/edx] = 10
valB «— R[/,eax] = 3

Figure 4.43 Pipelined execution of progl without special pipeline control. In cycle 6, the second irmovl
writes its result to program register %eax. The addl instruction reads its source operands in cycle 7, so it gets
correct values for both %edx and %eax.

with data hazards. Control hazards will be discussed as part of the overall pipeline
control (Section 4.5.11).

Figure 4.43 illustrates the processing of a sequence of instructions we refer to
as progl by the PIPE- processor. Let us assume in this example and successive
ones that the program registers initially all have value 0. The code loads values
10 and 3 into program registers %edx and %eax, executes three nop instructions,
and then adds register %edx to %eax. We focus our attention on the potential data
hazards resulting from the data dependencies between the two irmov1l instructions
and the addl instruction. On the right-hand side of the figure, we show a pipeline
diagram for the instruction sequence. The pipeline stages for cycles 6 and 7 are
shown highlighted in the pipeline diagram. Below this, we show an expanded view
of the write-back activity in cycle 6 and the decode activity during cycle 7. After
the start of cycle 7, both of the irmov1l instructions have passed through the write-
back stage, and so the register file holds the updated values of %edx and %eax.
As the addl instruction passes through the decode stage during cycle 7, it will
therefore read the correct values for its source operands. The data dependencies
between the two irmovl instructions and the addl instruction have not created
data hazards in this example.
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# prog2 1 3 4 5 6 7 8 9 10
0x000: irmovl $10,%edx F E M W
0x006: irmovl $3,%eax F D E M | W
0x00c: nop F D E M | W
0x00d: nop F D E M | W
0x00e: addl %edx,%eax F D E M | w
0x010: halt = D E M W
Cycle 6
W
Rl%eax]+— 3
D
valA < R[Vedx] = 10_}— B
valB «— R[/eax] = 0

Figure 4.44 Pipelined execution of prog2 without special pipeline control. The
write to program register %eax does not occur until the start of cycle 7, and so the addl
instruction gets the incorrect value for this register in the decode stage.

We saw that prog1 will flow through our pipeline and get the correct results,
because the three nop instructions create a delay between instructions with data
dependencies. Let us see what happens as these nop instructions are removed.
Figure 4.44 illustrates the pipeline flow of a program, named prog2, containing
two nop instructions between the two irmovl instructions generating values for
registers %edx and %eax, and the addl instruction having these two registers as
operands. In this case, the crucial step occurs in cycle 6, when the addl instruc-
tion reads its operands from the register file. An expanded view of the pipeline
activities during this cycle is shown at the bottom of the figure. The first irmovl
instruction has passed through the write-back stage, and so program register %edx
has been updated in the register file. The second irmovl instruction is in the write-
back stage during this cycle, and so the write to program register %,eax only occurs
at the start of cycle 7 as the clock rises. As a result, the incorrect value zero would
be read for register %eax (recall that we assume all registers are initially 0), since
the pending write for this register has not yet occurred. Clearly we will have to
adapt our pipeline to handle this hazard properly.

Figure 4.45 shows what happens when we have only one nop instruction
between the irmovl instructions and the addl instruction, yielding a program
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# prog3 1 2 3 4 5 6 7 8 9
0x000: irmovl $10,%edx F E M W
0x006: irmovl $3,%eax F D E M W
0x00c: nop F D E M| W
0x00d: addl %edx,%eax F D E M W
0x00f: halt E D E M W
Cycle 5
W
R[%edx]+— 10
M
M_valE = 3
M_dstE = %eax
D
Error
valA «+— R[Yedx] = o?
valB «— R[}eax] = 0

Figure4.45 Pipelined execution of prog3 without special pipeline control. In cycle 5,
the addl instruction reads its source operands from the register file. The pending write
to register %edx is still in the write-back stage, and the pending write to register %eax is
still in the memory stage. Both operands valA and valB get incorrect values.

prog3. Now we must examine the behavior of the pipeline during cycle 5 as the
addl instruction passes through the decode stage. Unfortunately, the pending
write to register %edx is still in the write-back stage, and the pending write to
%eax is still in the memory stage. Therefore, the addl instruction would get the
incorrect values for both operands.

Figure 4.46 shows what happens when we remove all of the nop instructions
between the irmovl instructions and the addl instruction, yielding a program
prog4. Now we must examine the behavior of the pipeline during cycle 4 as the
addl instruction passes through the decode stage. Unfortunately, the pending
write to register %edx is still in the memory stage, and the new value for %eax
is just being computed in the execute stage. Therefore, the add1 instruction would
get the incorrect values for both operands.

These examples illustrate that a data hazard can arise for an instruction
when one of its operands is updated by any of the three preceding instructions.
These hazards occur because our pipelined processor reads the operands for an
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# progé 1 2 3 4 5 6 7 8
0x000: irmovl $10,%edx F D E M W
0x006: irmovl $3,%eax F D E M w
0x00c: addl %edx,’%eax F D E M W
0x00e: halt E D E M W
Cycle 4
M
M_valE = 10
M_dstE = Y%edx
E
e vaE«—0+3=3
E_dstE = %eax
D
Error
valA +— R[Yedx] = 0?
valB «— R[/eax] = 0

Figure4.46 Pipelined execution of prog4 without special pipeline control. In cycle 4,
the addl instruction reads its source operands from the register file. The pending write
to register %edx is still in the memory stage, and the new value for register %eax is just
being computed in the execute stage. Both operands valA and valB get incorrect values.

instruction from the register file in the decode stage but does not write the results
for the instruction to the register file until three cycles later, after the instruction
passes through the write-back stage.

Aside Enumerating classes of data hazards

Hazards can potentially occur when one instruction updates part of the program state that will be read
by a later instruction. For Y86, the program state includes the program registers, the program counter,
the memory, the condition code register, and the status register. Let us look at the hazard possibilities
in our proposed design for each of these forms of state.

Program registers: These are the hazards we have already identified. They arise because the register
file is read in one stage and written in another, leading to possible unintended interactions
between different instructions.

Program counter: Conflicts between updating and reading the program counter give rise to control
hazards. No hazard arises when our fetch-stage logic correctly predicts the new value of
the program counter before fetching the next instruction. Mispredicted branches and ret
instructions require special handling, as will be discussed in Section 4.5.11.
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Memory: Writes and reads of the data memory both occur in the memory stage. By the time an
instruction reading memory reaches this stage, any preceding instructions writing memory
will have already done so. On the other hand, there can be interference between instructions
writing data in the memory stage and the reading of instructions in the fetch stage, since the
instruction and data memories reference a single address space. This can only happen with
programs containing self-modifying code, where instructions write to a portion of memory
from which instructions are later fetched. Some systems have complex mechanisms to detect
and avoid such hazards, while others simply mandate that programs should not use self-
modifying code. We will assume for simplicity that programs do not modify themselves, and
therefore we do not need to take special measures to update the instruction memory based
on updates to the data memory during program execution.

Condition code register: These are written by integer operations in the execute stage. They are read
by conditional moves in the execute stage and by conditional jumps in the memory stage. By
the time a conditional move or jump reaches the execute stage, any preceding integer operation
will have already completed this stage. No hazards can arise.

Status register: The program status can be affected by instructions as they flow through the pipeline.
Our mechanism of associating a status code with each instruction in the pipeline enables
the processor to come to an orderly halt when an exception occurs, as will be discussed in
Section 4.5.9.

This analysis shows that we only need to deal with register data hazards, control hazards, and
making sure exceptions are handled properly. A systematic analysis of this form is important when
designing a complex system. It can identify the potential difficulties in implementing the system, and it
can guide the generation of test programs to be used in checking the correctness of the system.

4.5.6 Avoiding Data Hazards by Stalling

One very general technique for avoiding hazards involves stalling, where the
processor holds back one or more instructions in the pipeline until the hazard
condition no longer holds. Our processor can avoid data hazards by holding back
an instruction in the decode stage until the instructions generating its source
operands have passed through the write-back stage. The details of this mechanism
will be discussed in Section 4.5.11. It involves simple enhancements to the pipeline
control logic. The effect of stalling is diagrammed in Figures 4.47 (prog2) and 4.48
(prog4). (We omit prog3 from this discussion, since it operates similarly to the
other two examples.) When the add1 instruction is in the decode stage, the pipeline
control logic detects that at least one of the instructions in the execute, memory,
or write-back stage will update either register %edx or register %eax. Rather than
letting the add1 instruction pass through the stage with the incorrect results, it stalls
the instruction, holding it back in the decode stage for either one (for prog2) or
three (for prog4) extra cycles. For all three programs, the addl instruction finally
gets correct values for its two source operands in cycle 7 and then proceeds down
the pipeline.
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# prog2
0x000:
0x006:
0x00c:
0x00d:

0x00e:
0x010:

1 2 3 4 5 6 7 8 9 10 1
irmovl $10,%edx F D E M W
irmovl $3,%eax F D E M W
nop F D E M [ W
nop F D E M| W
bubble r E M w
addl %edx,%eax | = D ElmI|w
halt FIF[D|]E|[M]|w|

Figure 4.47 Pipelined execution of prog?2 using stalls. After decoding the addl instruction in cycle 6,
the stall control logic detects a data hazard due to the pending write to register %eax in the write-back
stage. It injects a bubble into execute stage and repeats the decoding of the addl instruction in cycle 7. In
effect, the machine has dynamically inserted a nop instruction, giving a flow similar to that shown for prog1

(Figure 4.43).
# progé 1 2 4 5 6 7 8 9 10 11
0x000: irmovl $10,%edx F D E M W
0x006: irmovl $3,%eax F D E M W

bubble E M | W

bubble E M | W

bubble ’* r E M W
0x00c: addl %edx,%eax F D D E M| w
0x00e: halt E F F E D E M w

Figure 4.48 Pipelined execution of prog4 using stalls. After decoding the addl instruction in cycle 4, the
stall control logic detects data hazards for both source registers. It injects a bubble into the execute stage and
repeats the decoding of the addl instruction on cycle 5. It again detects hazards for both source registers,
injects a bubble into the execute stage, and repeats the decoding of the add1l instruction on cycle 6. Still, it
detects a hazard for source register %eax, injects a bubble into the execute stage, and repeats the decoding
of the addl instruction on cycle 7. In effect, the machine has dynamically inserted three nop instructions,
giving a flow similar to that shown for prog1 (Figure 4.43).

In holding back the addl instruction in the decode stage, we must also hold
back the halt instruction following it in the fetch stage. We can do this by keeping
the program counter at a fixed value, so that the halt instruction will be fetched
repeatedly until the stall has completed.

Stalling involves holding back one group of instructions in their stages while
allowing other instructions to continue flowing through the pipeline. What then
should we do in the stages that would normally be processing the add1 instruction?
We handle these by injecting a bubble into the execute stage each time we hold
an instruction back in the decode stage. A bubble is like a dynamically generated
nop instruction—it does not cause any changes to the registers, the memory, the
condition codes, or the program status. These are shown as white boxes in the
pipeline diagrams of Figures 4.47 and 4.48. In these figures, the arrow between
the box labeled “D” for the addl instruction and the box labeled “E” for one of
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the pipeline bubbles indicates that a bubble was injected into the execute stage in
place of the addl instruction that would normally have passed from the decode to
the execute stage. We will look at the detailed mechanisms for making the pipeline
stall and for injecting bubbles in Section 4.5.11.

In using stalling to handle data hazards, we effectively execute programs
prog2 and prog4 by dynamically generating the pipeline flow seen for prog1 (Fig-
ure 4.43). Injecting one bubble for prog2 and three for prog4 has the same effect as
having three nop instructions between the second irmovl instruction and the addl
instruction. This mechanism can be implemented fairly easily (see Problem 4.51),
but the resulting performance is not very good. There are numerous cases in which
one instruction updates a register and a closely following instruction uses the same
register. This will cause the pipeline to stall for up to three cycles, reducing the
overall throughput significantly.

4.5.7 Avoiding Data Hazards by Forwarding

Our design for PIPE- reads source operands from the register file in the decode
stage, but there can also be a pending write to one of these source registers in
the write-back stage. Rather than stalling until the write has completed, it can
simply pass the value that is about to be written to pipeline register E as the
source operand. Figure 4.49 shows this strategy with an expanded view of the

# prog2 1 3 4 5 6 7 8 9 10
0x000: irmovl $10,%edx F E M W
0x006: irmovl $3,%eax F D E M | W
0x00c: nop E D E M w
0x00d: nop F D E M | W
0x00e: addl %edx,’%eax F D E M W
0x010: halt E D E M w
Cycle 6
M
W_dStE = %eax Rlscax] +— 3
W_valE = 3
D A 4
srcA = jedx valA +— R[/edx] = 10
srcB = Jeax valB +— W_valE = 3

Figure 4.49 Pipelined execution of prog?2 using forwarding. In cycle 6, the decode-
stage logic detects the presence of a pending write to register %eax in the write-back
stage. It uses this value for source operand valB rather than the value read from the
register file.
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# prog3 1 2 3 4 5 6 7 8 9
0x000: irmovl $10,%edx F D E M W
0x006: irmovl $3,%eax F D E M W
0x00c: nop F D E M [ W
0x00d: addl %edx,’%eax F D E M W
0x00£f: halt = D E M W
Cycle 5
W
W_dSstE = %edx RlVedx]+ 10
W_valE = 10
M
M_dstE = Yeax
M_valE = 3
D
srcA = Yedx valA<«—W_valE = 10
srcB = Jeax valB <+ M_valE = 3

Figure 4.50 Pipelined execution of prog3 using forwarding. In cycle 5, the decode-
stage logic detects a pending write to register %edx in the write-back stage and to register
%eax in the memory stage. It uses these as the values for valA and valB rather than the
values read from the register file.

pipeline diagram for cycle 6 of prog2. The decode-stage logic detects that register
%eax is the source register for operand valB, and that there is also a pending
write to %eax on write port E. It can therefore avoid stalling by simply using the
data word supplied to port E (signal W_valE) as the value for operand valB. This
technique of passing a result value directly from one pipeline stage to an earlier
one is commonly known as data forwarding (or simply forwarding, and sometimes
bypassing). It allows the instructions of prog2 to proceed through the pipeline
without any stalling. Data forwarding requires adding additional data connections
and control logic to the basic hardware structure.

As Figure 4.50 illustrates, data forwarding can also be used when there is
a pending write to a register in the memory stage, avoiding the need to stall
for program prog3. In cycle 5, the decode-stage logic detects a pending write to
register %edx on port E in the write-back stage, as well as a pending write to register
%eax thatis on its way to port E but s still in the memory stage. Rather than stalling
until the writes have occurred, it can use the value in the write-back stage (signal
W_valE) for operand valA and the value in the memory stage (signal M_valE) for
operand valB.
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# progd 1 3 4 5 6 7 8
0x000: irmovl $10,%edx F E M W
0x006: irmovl $3,%eax F D E M w
0x00c: addl %edx,’%eax F D E M W
0x00e: halt F D E M | w
Cycle 4
M
M_dstE = %edx
M_valE = 10
E
E_dstE = Jeax
e vaE+«—0+3=3
D
srcA = Yedx valA <= M_valE = 10
srcB = Jeax valB<+—e_valE = 3

Figure 4.57 Pipelined execution of prog4 using forwarding. In cycle 4, the decode-
stage logic detects a pending write to register %edx in the memory stage. It also detects
that a new value is being computed for register %eax in the execute stage. It uses these
as the values for valA and valB rather than the values read from the register file.

To exploit data forwarding to its full extent, we can also pass newly computed
values from the execute stage to the decode stage, avoiding the need to stall for
program prog4, as illustrated in Figure 4.51. In cycle 4, the decode-stage logic
detects a pending write to register %edx in the memory stage, and also that the
value being computed by the ALU in the execute stage will later be written to
register %eax. It can use the value in the memory stage (signal M_valE) for operand
valA. It can also use the ALU output (signal e_valE) for operand valB. Note that
using the ALU output does not introduce any timing problems. The decode stage
only needs to generate signals valA and valB by the end of the clock cycle so that
pipeline register E can be loaded with the results from the decode stage as the
clock rises to start the next cycle. The ALU output will be valid before this point.

The uses of forwarding illustrated in programs prog2 to progé all involve
the forwarding of values generated by the ALU and destined for write port E.
Forwarding can also be used with values read from the memory and destined for
write port M. From the memory stage, we can forward the value that has just been
read from the data memory (signal m_valM). From the write-back stage, we can
forward the pending write to port M (signal W_valM). This gives a total of five
different forwarding sources (e_valE, m_valM, M_valE, W_valM, and W_valE) and
two different forwarding destinations (valA and valB).

417
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The expanded diagrams of Figures 4.49 to 4.51 also show how the decode-
stage logic can determine whether to use a value from the register file or to use
a forwarded value. Associated with every value that will be written back to the
register file is the destination register ID. The logic can compare these IDs with
the source register IDs srcA and srcB to detect a case for forwarding. It is possible
to have multiple destination register IDs match one of the source IDs. We must
establish a priority among the different forwarding sources to handle such cases.
This will be discussed when we look at the detailed design of the forwarding logic.

Figure 4.52 shows the structure of PIPE, an extension of PIPE- that can
handle data hazards by forwarding. Comparing this to the structure of PIPE-
(Figure 4.41), we can see that the values from the five forwarding sources are fed
back to the two blocks labeled “Sel+Fwd A” and “Fwd B” in the decode stage.
The block labeled “Sel+Fwd A” combines the role of the block labeled “Select A”
in PIPE- with the forwarding logic. It allows valA for pipeline register E to be
either the incremented program counter valP, the value read from the A port
of the register file, or one of the forwarded values. The block labeled “Fwd B”
implements the forwarding logic for source operand valB.

4.5.8 Load/Use Data Hazards

One class of data hazards cannot be handled purely by forwarding, because mem-
ory reads occur late in the pipeline. Figure 4.53 illustrates an example of a load/use
hazard, where one instruction (the mrmovl at address 0x018) reads a value from
memory for register %eax while the next instruction (the addl at address 0x01e)
needs this value as a source operand. Expanded views of cycles 7 and 8 are shown
in the lower part of the figure, where we assume all program registers initially have
value 0. The addl instruction requires the value of the register in cycle 7, but it is
not generated by the mrmov1l instruction until cycle 8. In order to “forward” from
the mrmovl to the addl, the forwarding logic would have to make the value go
backward in time! Since this is clearly impossible, we must find some other mech-
anism for handling this form of data hazard. (The data hazard for register %ebx,
with the value being generated by the irmovl instruction at address 0x012 and
used by the addl instruction at address 0x01e, can be handled by forwarding.)

As Figure 4.54 demonstrates, we can avoid a load/use data hazard with a
combination of stalling and forwarding. This requires modifications of the con-
trol logic, but it can use existing bypass paths. As the mrmovl instruction passes
through the execute stage, the pipeline control logic detects that the instruction
in the decode stage (the addl) requires the result read from memory. It stalls the
instruction in the decode stage for one cycle, causing a bubble to be injected into
the execute stage. As the expanded view of cycle 8 shows, the value read from
memory can then be forwarded from the memory stage to the addl instruction
in the decode stage. The value for register %ebx is also forwarded from the write-
back to the memory stage. As indicated in the pipeline diagram by the arrow from
the box labeled “D” in cycle 7 to the box labeled “E” in cycle 8, the injected bub-
ble replaces the addl instruction that would normally continue flowing through
the pipeline.
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Figure 4.52 Hardware structure of PIPE, our final pipelined implementation. The additional bypassing
paths enable forwarding the results from the three preceding instructions. This allows us to handle most forms

of data hazards without stalling the pipeline.
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# progh 3 4 5 6 7 8 9 10 11
0x000: irmovl $128,%edx E M W
0x006: irmovl $3,%ecx D E M W
0x00c: rmmovl %ecx, 0(%edx) F D E M W
0x012: irmovl $10,%ebx = D E M w
0x018: mrmovl 0(%edx),%eax # Load %eax F D E M w
0x0le: addl %ebx,%eax # Use Yeax E D E M w
0x020: halt = D E M W
Cycle 7 Cycle 8
M M
M_dstE = %ebx M_dstM = %eax
M_valE =10 — | m_valM+-M[128] = 3
D
v Error
valA <= M_valE = 10 ¥
valB +— R[/eax] = 0

Figure 4.53 Example of load/use data hazard. The addl instruction requires the value of register %eax
during the decode stage in cycle 7. The preceding mrmovl reads a new value for this register during the
memory stage in cycle 8, which is too late for the addl instruction.

This use of a stall to handle a load/use hazard is called a load interlock. Load
interlocks combined with forwarding suffice to handle all possible forms of data
hazards. Since only load interlocks reduce the pipeline throughput, we can nearly
achieve our throughput goal of issuing one new instruction on every clock cycle.

4.5.9 Exception Handling

As we will discuss in Chapter 8, a variety of activities in a processor can lead
to exceptional control flow, where the normal chain of program execution gets
broken. Exceptions can be generated either internally, by the executing program,
or externally, by some outside signal. Our instruction set architecture includes
three different internally generated exceptions, caused by (1) a halt instruction,
(2) an instruction with an invalid combination of instruction and function code,
and (3) an attempt to access an invalid address, either for instruction fetch or
data read or write. A more complete processor design would also handle external
exceptions, such as when the processor receives a signal that the network interface
has received a new packet, or the user has clicked a mouse button. Handling
exceptions correctly is a challenging aspect of any microprocessor design. They can
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# progb 1 3 4 5 6 7 8 9 10 11 12
0x000: irmovl $128,%edx F E M Y
0x006: irmovl $3,%ecx F D E M w
0x00c: rmmovl %ecx, 0(%edx) F D E M W
0x012: irmovl $10,%ebx F D E M [ W
0x018: mrmovl 0(%edx),%eax # Load %eax F D E M W
bubble |-> E M w
0x0le: addl %ebx,%eax # Use Jeax | F D E M W
0x020: halt F F D E M w
Cycle 8
W
W_dstE = %ebx
W_valE =10
M
M_dstM = %eax

m_valM <« M[128] = 3 |—

D

valA«+—W_valE = 10
valB<+— m_valM = 3
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Figure 4.54 Handling a load/use hazard by stalling. By stalling the addl instruction for one cycle in the
decode stage, the value for valB can be forwarded from the mrmov1 instruction in the memory stage to the

addl instruction in the decode stage.

occur at unpredictable times, and they require creating a clean break in the flow
of instructions through the processor pipeline. Our handling of the three internal
exceptions gives just a glimpse of the true complexity of correctly detecting and
handling exceptions.

Let us refer to the instruction causing the exception as the excepting instruc-
tion. In the case of an invalid instruction address, there is no actual excepting
instruction, but it is useful to think of there being a sort of “virtual instruction”
at the invalid address. In our simplified ISA model, we want the processor to halt
when it reaches an exception and to set the appropriate status code, as listed in Fig-
ure 4.5. It should appear that all instructions up to the excepting instruction have
completed, but none of the following instructions should have any effect on the
programmer-visible state. In a more complete design, the processor would con-
tinue by invoking an exception handler, a procedure that is part of the operating
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Aow N =

system, but implementing this part of exception handling is beyond the scope of
our presentation.

In a pipelined system, exception handling involves several subtleties. First, it is
possible to have exceptions triggered by multiple instructions simultaneously. For
example, during one cycle of pipeline operation, we could have a halt instruction
in the fetch stage, and the data memory could report an out-of-bounds data
address for the instruction in the memory stage. We must determine which of these
exceptions the processor should report to the operating system. The basic rule is to
put priority on the exception triggered by the instruction that is furthest along the
pipeline. In the example above, this would be the out-of-bounds address attempted
by the instruction in the memory stage. In terms of the machine-language program,
the instruction in the memory stage should appear to execute before one in the
fetch stage, and therefore only this exception should be reported to the operating
system.

A second subtlety occurs when an instruction is first fetched and begins
execution, causes an exception, and later is canceled due to a mispredicted branch.
The following is an example of such a program in its object code form:

0x000: 6300 | xorl Y%eax,’%eax

0x002: 740e000000 | jne Target # Not taken

0x007: 30£f001000000 | irmovl $1, %eax # Fall through

0x00d: 00 | halt

0x00e: | Target:

0x00e: ff | .byte OxFF # Invalid instruction code

In this program, the pipeline will predict that the branch should be taken,
and so it will fetch and attempt to use a byte with value 0xFF as an instruction
(generated in the assembly code using the . byte directive). The decode stage will
therefore detect an invalid instruction exception. Later, the pipeline will discover
that the branch should not be taken, and so the instruction at address 0x00e
should never even have been fetched. The pipeline control logic will cancel this
instruction, but we want to avoid raising an exception.

A third subtlety arises because a pipelined processor updates different parts
of the system state in different stages. It is possible for an instruction following
one causing an exception to alter some part of the state before the excepting
instruction completes. For example, consider the following code sequence, in
which we assume that user programs are not allowed to access addresses greater
than 0xc0000000 (as is the case for 32-bit versions of Linux):

irmovl $1,%eax

xorl Y%esp,%esp # Set stack pointer to O and CC to 100
pushl %eax # Attempt to write to Oxfffffffc
addl Yeax,%eax # (Should not be executed) Would set CC to 000

The pushl instruction causes an address exception, because decrementing the
stack pointer causes it to wrap around to Oxfffffffc. This exception is detected in
the memory stage. On the same cycle, the add1 instruction is in the execute stage,
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and it will cause the condition codes to be set to new values. This would violate
our requirement that none of the instructions following the excepting instruction
should have had any effect on the system state.

In general, we can both correctly choose among the different exceptions and
avoid raising exceptions for instructions that are fetched due to mispredicted
branches by merging the exception-handling logic into the pipeline structure. That
is the motivation for us to include a status code Statin each of our pipeline registers
(Figures 4.41 and 4.52). If an instruction generates an exception at some stage in
its processing, the status field is set to indicate the nature of the exception. The
exception status propagates through the pipeline with the rest of the information
for that instruction, until it reaches the write-back stage. At this point, the pipeline
control logic detects the occurrence of the exception and stops execution.

To avoid having any updating of the programmer-visible state by instructions
beyond the excepting instruction, the pipeline control logic must disable any
updating of the condition code register or the data memory when an instruction in
the memory or write-back stages has caused an exception. In the example program
above, the control logic would detect that the pushl in the memory stage has
caused an exception, and therefore the updating of the condition code register by
the add1 instruction would be disabled.

Let us consider how this method of handling exceptions deals with the sub-
tleties we have mentioned. When an exception occurs in one or more stages of a
pipeline, the information is simply stored in the status fields of the pipeline reg-
isters. The event has no effect on the flow of instructions in the pipeline until an
excepting instruction reaches the final pipeline stage, except to disable any updat-
ing of the programmer-visible state (the condition code register and the memory)
by later instructions in the pipeline. Since instructions reach the write-back stage
in the same order as they would be executed in a nonpipelined processor, we are
guaranteed that the first instruction encountering an exception will arrive first in
the write-back stage, at which point program execution can stop and the status
code in pipeline register W can be recorded as the program status. If some in-
struction is fetched but later canceled, any exception status information about the
instruction gets canceled as well. No instruction following one that causes an ex-
ception can alter the programmer-visible state. The simple rule of carrying the
exception status together with all other information about an instruction through
the pipeline provides a simple and reliable mechanism for handling exceptions.

4.5.10 PIPE Stage Implementations

We have now created an overall structure for PIPE, our pipelined Y86 processor
with forwarding. It uses the same set of hardware units as the earlier sequential
designs, with the addition of pipeline registers, some reconfigured logic blocks, and
additional pipeline control logic. In this section, we go through the design of the
different logic blocks, deferring the design of the pipeline control logic to the next
section. Many of the logic blocks are identical to their counterparts in SEQ and
SEQ-+, except that we must choose proper versions of the different signals from the
pipeline registers (written with the pipeline register name, written in uppercase,
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as a prefix) or from the stage computations (written with the first character of the
stage name, written in lowercase, as a prefix).

As an example, compare the HCL code for the logic that generates the srcA
signal in SEQ to the corresponding code in PIPE:

# Code from SEQ
int srcA = [
icode in { IRRMOVL, IRMMOVL, IOPL, IPUSHL } : rA;
icode in { IPOPL, IRET } : RESP;
1 : RNONE; # Don't need register
1;

# Code from PIPE
int d_srcA = [
D_icode in { IRRMOVL, IRMMOVL, IOPL, IPUSHL 1} : D_rA;
D_icode in { IPOPL, IRET } : RESP;
1 : RNONE; # Don't need register
1;

They differ only in the prefixes added to the PIPE signals: “D_" for the source
values, to indicate that the signals come from pipeline register D, and “d_" for the
result value, to indicate that it is generated in the decode stage. To avoid repetition,
we will not show the HCL code here for blocks that only differ from those in SEQ
because of the prefixes on names. As a reference, the complete HCL code for
PIPE is given in Web Aside ARCH:HCL.

PC Selection and Fetch Stage

Figure 4.55 provides a detailed view of the PIPE fetch stage logic. As discussed
earlier, this stage must also select a current value for the program counter and
predict the next PC value. The hardware units for reading the instruction from
memory and for extracting the different instruction fields are the same as those
we considered for SEQ (see the fetch stage in Section 4.3.4).

The PC selection logic chooses between three program counter sources. As a
mispredicted branch enters the memory stage, the value of valP for this instruction
(indicating the address of the following instruction) is read from pipeline register
M (signal M_valA). When a ret instruction enters the write-back stage, the return
address is read from pipeline register W (signal W_valM). All other cases use the
predicted value of the PC, stored in pipeline register F (signal F_predPC):

int f_pc = [
# Mispredicted branch. Fetch at incremented PC
M_icode == IJXX && 'M_Cnd : M_valA;
# Completion of RET instruction.
W_icode == IRET : W_valM;
# Default: Use predicted value of PC
1 : F_predPC;
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M_icode
M_Bch
. . M_valA
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| regids ”‘
p-~|icode| ifun
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Figure 4.55 PIPE PC selection and fetch logic. Within the one cycle time limit, the
processor can only predict the address of the next instruction.

The PC prediction logic chooses valC for the fetched instruction when it is
either a call or a jump, and valP otherwise:

int f_predPC = [
f_icode in { IJXX, ICALL } : f_valC;
1 : f_valP;

1;

The logic blocks labeled “Instr valid,” “Need regids,” and “Need valC” are
the same as for SEQ, with appropriately named source signals.

Unlike in SEQ, we must split the computation of the instruction status into
two parts. In the fetch stage, we can test for a memory error due to an out-of-range
instruction address, and we can detect an illegal instruction or a halt instruction.
Detecting an invalid data address must be deferred to the memory stage.

Practice Problem 4.28

Write HCL code for the signal f_stat, providing the provisional status for the
fetched instruction.
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e_dstE
e_valE

M_dstE
M_valE
M_dstM

m_valM
W_dstM
W_valM
W_dstE
W_valE

| |stat |icode| ifunl | valC | valA | | valB |dstE|dstM|srcA|sch| |
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T d_srcB
d_srcA
(dstE ] dstM] srcA] srcB]
L
[
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Figure 4.56 PIPE decode and write-back stage logic. No instruction requires both valP and the value read
from register port A, and so these two can be merged to form the signal valA for later stages. The block labeled
“Sel+Fwd A" performs this task and also implements the forwarding logic for source operand valA. The block

labeled “Fwd B” implements the forwarding logic for source operand valB. The register write locations are

specified by the dstE and dstM signals from the write-back stage rather than from the decode stage, since it

is writing the results of the instruction currently in the write-back stage.

Decode and Write-Back Stages

Figure 4.56 gives a detailed view of the decode and write-back logic for PIPE. The
blocks labeled “dstE”, “dstM”, “srcA”, and “srcB” are very similar to their coun-
terparts in the implementation of SEQ. Observe that the register IDs supplied
to the write ports come from the write-back stage (signals W_dstE and W_dstM),
rather than from the decode stage. This is because we want the writes to occur to

the destination registers specified by the instruction in the write-back stage.

Practice Problem 4.29

The block labeled “dstE” in the decode stage generates the register ID for the E
port of the register file, based on fields from the fetched instruction in pipeline
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register D. The resulting signal is named d_dstE in the HCL description of PIPE.
Write HCL code for this signal, based on the HCL description of the SEQ signal
dstE. (See the decode stage for SEQ in Section 4.3.4.) Do not concern yourself
with the logic to implement conditional moves yet.

Most of the complexity of this stage is associated with the forwarding logic.
As mentioned earlier, the block labeled “Sel+Fwd A” serves two roles. It merges
the valP signal into the valA signal for later stages in order to reduce the amount
of state in the pipeline register. It also implements the forwarding logic for source
operand valA.

The merging of signals valA and valP exploits the fact that only the call and
jump instructions need the value of valP in later stages, and these instructions
do not need the value read from the A port of the register file. This selection is
controlled by the icode signal for this stage. When signal D_icode matches the
instruction code for either call or jXX, this block should select D_valP as its
output.

As mentioned in Section 4.5.7, there are five different forwarding sources,
each with a data word and a destination register ID:

Data word Register ID Source description

e valE e_dstE ALU output

m_valM M_dstM Memory output

M_valE M_dstE Pending write to port E in memory stage
W_valM W_dstM Pending write to port M in write-back stage
W_valE W_dstE Pending write to port E in write-back stage

If none of the forwarding conditions hold, the block should select d_rvalA, the
value read from register port A as its output.

Putting all of this together, we get the following HCL description for the new
value of valA for pipeline register E:

int d_valA = [
D_icode in { ICALL, IJXX } : D_valP; # Use incremented PC

d_srcA == e_dstE : e_valE; # Forward valE from execute
d_srcA == M_dstM : m_valM; # Forward valM from memory
d_srcA == M_dstE : M_valE; # Forward valE from memory
d_srcA == W_dstM : W_valM; # Forward valM from write back
d_srcA == W_dstE : W_valE; # Forward valE from write back

1 : d_rvalA; # Use value read from register file

The priority given to the five forwarding sources in the above HCL code is
very important. This priority is determined in the HCL code by the order in which
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# progé 1 2 3 4 5 6 7 8
0x000: irmovl $10,%edx F E M W
0x006: irmovl $3,%edx F D E M W
0x00c: rrmovl %edx,%eax F D E M W
0x00e: halt F D E M W
Cycle 4
M
M_dstE = %edx
M_valE =10
E
E_dstE = Yedx X
e vaE+—0+3=3
D v
SrcA = Jedx | valA<+—e_valE = 3

Figure 4.57 Demonstration of forwarding priority. In cycle 4, values for %edx are

available from both the execute and memory stages. The forwarding logic should choose
the one in the execute stage, since it represents the most recently generated value for
this register.

the five destination register IDs are tested. If any order other than the one shown
were chosen, the pipeline would behave incorrectly for some programs. Figure
4.57 shows an example of a program that requires a correct setting of priority
among the forwarding sources in the execute and memory stages. In this program,
the first two instructions write to register %edx, while the third uses this register
as its source operand. When the rrmovl instruction reaches the decode stage in
cycle 4, the forwarding logic must choose between two values destined for its
source register. Which one should it choose? To set the priority, we must consider
the behavior of the machine-language program when it is executed one instruction
at a time. The first irmovl instruction would set register %edx to 10, the second
would set the register to 3, and then the rrmovl instruction would read 3 from
%edx. To imitate this behavior, our pipelined implementation should always give
priority to the forwarding source in the earliest pipeline stage, since it holds the
latest instruction in the program sequence setting the register. Thus, the logic in
the HCL code above first tests the forwarding source in the execute stage, then
those in the memory stage, and finally the sources in the write-back stage.

The forwarding priority between the two sources in either the memory or the
write-back stages are only a concern for the instruction popl %esp, since only this
instruction can write two registers simultaneously.
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Practice Problem 4.30

Suppose the order of the third and fourth cases (the two forwarding sources
from the memory stage) in the HCL code for d_valA were reversed. Describe the
resulting behavior of the rrmovl instruction (line 5) for the following program:

irmovl $5, Y%edx
irmovl $0x100,%esp
rmmovl %edx,O(%esp)
popl %esp

rrmovl %esp,%eax

“ A W N =

Practice Problem 4.31

Suppose the order of the fifth and sixth cases (the two forwarding sources from the
write-back stage) in the HCL code for d_valA were reversed. Write a Y86 program
that would be executed incorrectly. Describe how the error would occur and its
effect on the program behavior.

Practice Problem 4.32

Write HCL code for the signal d_valB, giving the value for source operand valB
supplied to pipeline register E.

One small part of the write-back stage remains. As shown in Figure 4.52, the
overall processor status Stat is computed by a block based on the status value in
pipeline register W. Recall from Section 4.1.1 that the code should indicate either
normal operation (AOK) or one of the three exception conditions. Since pipeline
register W holds the state of the most recently completed instruction, it is natural
to use this value as an indication of the overall processor status. The only special
case to consider is when there is a bubble in the write-back stage. This is part of
normal operation, and so we want the status code to be AOK for this case as well:

int Stat = [
W_stat == SBUB : SAOQOK;
1 : W_stat;

1;

Execute Stage

Figure 4.58 shows the execute stage logic for PIPE. The hardware units and the
logic blocks are identical to those in SEQ, with an appropriate renaming of signals.
We can see the signals e_valE and e_dstE directed toward the decode stage as one of
the forwarding sources. One difference is that the logic labeled “Set CC,” which
determines whether or not update the condition codes, has signals m_stat and
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[ ]stat icode] [cnd|  vaE vaA | |dstE [dstv]
e_valE
e_dstE
cond o-ond {Ea
1
cc ALU‘\t*‘ ALU
fun.
— L1
W_stat Set [ ALU ] [ ALU]
m_stat L CC | A B
i i :
[ |stat ficode| itun| | vaic vaA | vaB | [dstE|astm|srcA|srcB|

Figure 4.58 PIPE execute stage logic. This part of the design is very similar to the logic
in the SEQ implementation.

W_stat as inputs. These signals are used to detect cases where an instruction
causing an exception is passing through later pipeline stages, and therefore any
updating of the condition codes should be suppressed. This aspect of the design is
discussed in Section 4.5.11.

Practice Problem 4.33

Our second case in the HCL code for d_valA uses signal e_dstE to see whether
to select the ALU output e_valE as the forwarding source. Suppose instead that
we use signal E_dstE, the destination register ID in pipeline register E for this
selection. Write a Y86 program that would give an incorrect result with this
modified forwarding logic.

Memory Stage

Figure 4.59 shows the memory stage logic for PIPE. Comparing this to the memory
stage for SEQ (Figure 4.30), we see that, as noted before, the block labeled “Data”
in SEQ is not present in PIPE. This block served to select between data sources
valP (for call instructions) and valA, but this selection is now performed by the
block labeled “Sel+Fwd A” in the decode stage. Most other blocks in this stage
are identical to their counterparts in SEQ, with an appropriate renaming of the
signals. In this figure, you can also see that many of the values in pipeline registers
and M and W are supplied to other parts of the circuit as part of the forwarding
and pipeline control logic.
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W_valE
W_valM
W_dstE
W_icode | > W.dstM
| | stat |icode| | valE | valM | |dstE |dstM|
m_stat
E‘ﬂ dmem_error
stat m_valM
_J Mem. read i data out
read Data M_dstE
¢———————— M_dstM
Mem. ] memory
write write
. J ( [} data in
Addr
M_icode ‘ M_valA
M_Cnd : M_valE
[ |statficode] [cnd] | vae | vama | ]astE[astmf

Figure 4.59 PIPE memory stage logic. Many of the signals from pipeline registers M and W are passed down
to earlier stages to provide write-back results, instruction addresses, and forwarded results.

Practice Problem 4.34

In this stage, we can complete the computation of the status code Stat by detecting
the case of an invalid address for the data memory. Write HCL code for the signal
m_stat.

4.5.11 Pipeline Control Logic

We are now ready to complete our design for PIPE by creating the pipeline control
logic. This logic must handle the following four control cases for which other
mechanisms, such as data forwarding and branch prediction, do not suffice:

Processing ret: The pipeline must stall until the ret instruction reaches the
write-back stage.

Load/use hazards: The pipeline must stall for one cycle between an instruction
that reads a value from memory and an instruction that uses this value.

Mispredicted branches: By the time the branch logic detects that a jump should
not have been taken, several instructions at the branch target will have
started down the pipeline. These instructions must be removed from the
pipeline.

Exceptions: When an instruction causes an exception, we want to disable the
updating of the programmer-visible state by later instructions and halt
execution once the excepting instruction reaches the write-back stage.

We will go through the desired actions for each of these cases and then develop
control logic to handle all of them.
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# prog7
0x000:
0x006:
0x020:

0x00b:

irmovl Stack,%edx F D

call proc

ret

bubble
bubble
bubble

irmovl $10,%edx # Return point

Desired Handling of Special Control Cases

For the ret instruction, consider the following example program. This program
is shown in assembly code, but with the addresses of the different instructions on
the left for reference:

0x000: irmovl Stack,%esp # Initialize stack pointer
0x006: call Proc # procedure call

0x00b: irmovl $10,%edx # return point

0x011: halt

0x020: .pos 0x20

0x020: Proc: # Proc:

0x020: ret # return immediately
0x021: rrmovl %edx,%ebx # not executed

0x030: .pos 0x30

0x030: Stack: # Stack: Stack pointer

Figure 4.60 shows how we want the pipeline to process the ret instruction.
As with our earlier pipeline diagrams, this figure shows the pipeline activity with
time growing to the right. Unlike before, the instructions are not listed in the
same order they occur in the program, since this program involves a control flow
where instructions are not executed in a linear sequence. Look at the instruction
addresses to see from where the different instructions come in the program.

As this diagram shows, the ret instruction is fetched during cycle 3 and
proceeds down the pipeline, reaching the write-back stage in cycle 7. While it
passes through the decode, execute, and memory stages, the pipeline cannot do
any useful activity. Instead, we want to inject three bubbles into the pipeline. Once
the ret instruction reaches the write-back stage, the PC selection logic will set the
program counter to the return address, and therefore the fetch stage will fetch the
irmovl instruction at the return point (address 0x00b).

o
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mom|Z|»~
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E M | W
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om|g|s

Figure 4.60 Simplified view of ret instruction processing. The pipeline should stall while the ret passes
through the decode, execute, and memory stages, injecting three bubbles in the process. The PC selection
logic will choose the return address as the instruction fetch address once the ret reaches the write-back stage
(cycle 7).
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# prog7 1 3 4 5 6 7 8 9 10 11
0x000: irmovl Stack,%edx P £ M W
0x006: call proc F D E M [ W
0x020: ret Flo|e|[m]|w]
0x021: rrmovl %edx,%ebx # Not executed F
bubble Liop[e|[m]|w]|
0x021: rrmovl %edx,%ebx # Not executed F
bubble L E|lm|w]
0x021: rrmovl Y%edx,%ebx # Not executed F
bubble Lo |le|m|w
0x00b: irmovl $10,%edx # Return point B D E M | W

Figure 4.61 Actual processing of the ret instruction. The fetch stage repeatedly fetches the rrmovl
instruction following the ret instruction, but then the pipeline control logic injects a bubble into the decode
stage rather than allowing the rrmov1l instruction to proceed. The resulting behavior is equivalent to that
shown in Figure 4.60.

Figure 4.61 shows the actual processing of the ret instruction for the example
program. The key observation here is that there is no way to inject a bubble into the
fetch stage of our pipeline. On every cycle, the fetch stage reads some instruction
from the instruction memory. Looking at the HCL code for implementing the PC
prediction logic in Section 4.5.10, we can see that for the ret instruction the new
value of the PC is predicted to be valP, the address of the following instruction. In
our example program, this would be 0x021, the address of the rrmov1l instruction
following the ret. This prediction is not correct for this example, nor would it be
for most cases, but we are not attempting to predict return addresses correctly
in our design. For three clock cycles, the fetch stage stalls, causing the rrmovl
instruction to be fetched but then replaced by a bubble in the decode stage. This
process is illustrated in Figure 4.61 by the three fetches, with an arrow leading
down to the bubbles passing through the remaining pipeline stages. Finally, the
irmovl instruction is fetched on cycle 7. Comparing Figure 4.61 with Figure 4.60,
we see that our implementation achieves the desired effect, but with a slightly
peculiar fetching of an incorrect instruction for 3 consecutive cycles.

For a load/use hazard, we have already described the desired pipeline opera-
tion in Section 4.5.8, as illustrated by the example of Figure 4.54. Only the mrmovl
and popl instructions read data from memory. When either of these is in the ex-
ecute stage, and an instruction requiring the destination register is in the decode
stage, we want to hold back the second instruction in the decode stage and inject
a bubble into the execute stage on the next cycle. After this, the forwarding logic
will resolve the data hazard. The pipeline can hold back an instruction in the de-
code stage by keeping pipeline register D in a fixed state. In doing so, it should also
keep pipeline register F in a fixed state, so that the next instruction will be fetched
asecond time. In summary, implementing this pipeline flow requires detecting the
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# prog8 1 3 4 5 6 7 8 9 10
0x000: xorl %eax,’%heax F E M W
0x002: jne target # Not taken F D E M | W |
0x00e: irmovl $2,%edx # Target F D
bubble L E | M [w|
0x014: irmovl $3,%ebx # Target+1 | F
bubble L b E M | W
0x007: irmovl $1,%eax # Fall through F E M W
0x00d: halt F|IDJIE | MW

Figure 4.62 Processing mispredicted branch instructions. The pipeline predicts
branches will be taken and so starts fetching instructions at the jump target. Two
instructions are fetched before the misprediction is detected in cycle 4 when the jump
instruction flows through the execute stage. In cycle 5, the pipeline cancels the two
target instructions by injecting bubbles into the decode and execute stages, and it also
fetches the instruction following the jump.

hazard condition, keeping pipeline register F and D fixed, and injecting a bubble
into the execute stage.

To handle a mispredicted branch, consider the following program, shown in
assembly code, but with the instruction addresses shown on the left for reference:

0x000: xorl Y%eax,%eax

0x002: jne target # Not taken
0x007: irmovl $1, Y%eax # Fall through
0x00d: halt

0x00e: target:

0x00e: irmovl $2, %edx # Target
0x014: irmovl $3, J%ebx # Target+1
OxO1la: halt

Figure 4.62 shows how these instructions are processed. As before, the instruc-
tions are listed in the order they enter the pipeline, rather than the order they occur
in the program. Since the jump instruction is predicted as being taken, the instruc-
tion at the jump target will be fetched in cycle 3, and the instruction following this
one will be fetched in cycle 4. By the time the branch logic detects that the jump
should not be taken during cycle 4, two instructions have been fetched that should
not continue being executed. Fortunately, neither of these instructions has caused
a change in the programmer-visible state. That can only occur when an instruction
reaches the execute stage, where it can cause the condition codes to change. We
can simply cancel (sometimes called instruction squashing) the two misfetched in-
structions by injecting bubbles into the decode and execute instructions on the
following cycle while also fetching the instruction following the jump instruction.
The two misfetched instructions will then simply disappear from the pipeline. As
we will discuss in Section 4.5.11, a simple extension to the basic clocked register
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design will enable us to inject bubbles into pipeline registers as part of the pipeline
control logic.

For an instruction that causes an exception, we must make the pipelined im-
plementation match the desired ISA behavior, with all prior instructions complet-
ing and with none of the following instructions having any effect on the program
state. Achieving these effects is complicated by the facts that (1) exceptions are
detected during two different stages (fetch and memory) of program execution,
and (2) the program state is updated in three different stages (execute, memory,
and write-back).

Our stage designs include a status code stat in each pipeline register to track
the status of each instruction as it passes through the pipeline stages. When an
exception occurs, we record that information as part of the instruction’s status
and continue fetching, decoding, and executing instructions as if nothing were
amiss. As the excepting instruction reaches the memory stage, we take steps to pre-
vent later instructions from modifying programmer-visible state by (1) disabling
the setting of condition codes by instructions in the execute stage, (2) injecting
bubbles into the memory stage to disable any writing to the data memory, and
(3) stalling the write-back stage when it has an excepting instruction, thus bringing
the pipeline to a halt.

The pipeline diagram in Figure 4.63 illustrates how our pipeline control han-
dles the situation where an instruction causing an exception is followed by one that
would change the condition codes. On cycle 6, the pushl instruction reaches the
memory stage and generates a memory error. On the same cycle, the addl instruc-
tion in the execute stage generates new values for the condition codes. We disable

# progl0 1 3 4 5 6 7 8 9 10
0x000: irmovl $1,%eax F £ M W
0x006: xorl Yesp,%esp #CC = 100 F D E M [ W
0x008: pushl %eax Flole|[m|w|w|w]| |w]
0x00a: addl %eax,%eax F D E
0x00c: irmovl $2,%eax F D E |
Cycle 6
M
mem_error = 1 |M
E
New CC =000 | v

435

Figure 4.63 Processing invalid memory reference exception. On cycle 6, the invalid memory reference by
the pushl instruction causes the updating of the condition codes to be disabled. The pipeline starts injecting

bubbles into the memory stage and stalling the excepting instruction in the write-back stage.
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Condition Trigger

Processing ret IRET € {D_icode, E_icode, M_icode}

Load/use hazard E_icode € {IMRMOVL, IPOPL} && E_dstM € {d_srcA, d_srcB}
Mispredicted branch E.icode = []JXX && !'e_Cnd

Exception m_stat € {SADR, SINS, SHLT} | | W_stat € {SADR, SINS, SHLT}

Figure 4.64 Detection conditions for pipeline control logic. Four different conditions
require altering the pipeline flow by either stalling the pipeline or canceling partially
executed instructions.

the setting of condition codes when an excepting instruction is in the memory or
write-back stage (by examining the signals m_stat and W_stat and then setting the
signal set_cc to zero). We can also see the combination of injecting bubbles into
the memory stage and stalling the excepting instruction in the write-back stage
in the example of Figure 4.63—the pushl instruction remains stalled in the write-
back stage, and none of the subsequent instructions get past the execute stage.

By this combination of pipelining the status signals, controlling the setting of
condition codes, and controlling the pipeline stages, we achieve the desired behav-
ior for exceptions: all instructions prior to the excepting instruction are completed,
while none of the following instructions has any effect on the programmer-visible
state.

Detecting Special Control Conditions

Figure 4.64 summarizes the conditions requiring special pipeline control. It gives
expressions describing the conditions under which the three special cases arise.
These expressions are implemented by simple blocks of combinational logic that
must generate their results before the end of the clock cycle in order to control
the action of the pipeline registers as the clock rises to start the next cycle. During
a clock cycle, pipeline registers D, E, and M hold the states of the instructions
that are in the decode, execute, and memory pipeline stages, respectively. As
we approach the end of the clock cycle, signals d_srcA and d_srcB will be set to
the register IDs of the source operands for the instruction in the decode stage.
Detecting a ret instruction as it passes through the pipeline simply involves
checking the instruction codes of the instructions in the decode, execute, and
memory stages. Detecting a load/use hazard involves checking the instruction
type (mrmovl or popl) of the instruction in the execute stage and comparing its
destination register with the source registers of the instruction in the decode stage.
The pipeline control logic should detect a mispredicted branch while the jump
instruction is in the execute stage, so that it can set up the conditions required to
recover from the misprediction as the instruction enters the memory stage. When a
jump instruction is in the execute stage, the signal e_Cnd indicates whether or not
the jump should be taken. We detect an excepting instruction by examining the
instruction status values in the memory and write-back stages. For the memory
stage, we use the signal m_stat, computed within the stage, rather than M_stat
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State = x State =y
Input = y Output = x Rising Output = y
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State = x State = nop
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p
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Figure 4.65 Additional pipeline register operations. (a) Under normal conditions, the
state and output of the register are set to the value at the input when the clock rises.
(b) When operated in stall mode, the state is held fixed at its previous value. (c) When
operated in bubble mode, the state is overwritten with that of a nop operation.

from the pipeline register. This internal signal incorporates the possibility of a
data memory address error.

Pipeline Control Mechanisms

Figure 4.65 shows low-level mechanisms that allow the pipeline control logic to
hold back an instruction in a pipeline register or to inject a bubble into the pipeline.
These mechanisms involve small extensions to the basic clocked register described
in Section 4.2.5. Suppose that each pipeline register has two control inputs stall
and bubble. The settings of these signals determine how the pipeline register is
updated as the clock rises. Under normal operation (Figure 4.65(a)), both of these
inputs are set to 0, causing the register to load its input as its new state. When
the stall signal is set to 1 (Figure 4.65(b)), the updating of the state is disabled.
Instead, the register will remain in its previous state. This makes it possible to
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Pipeline register

Condition F D E M w
Processing ret stall bubble normal normal normal
Load/use hazard stall stall bubble normal normal

Mispredicted branch normal bubble bubble normal normal

Figure 4.66 Actions for pipeline control logic. The different conditions require altering
the pipeline flow by either stalling the pipeline or by canceling partially executed
instructions.

hold back an instruction in some pipeline stage. When the bubble signal is set to 1
(Figure 4.65(c)), the state of the register will be set to some fixed reset configuration
giving a state equivalent to that of a nop instruction. The particular pattern of ones
and zeros for a pipeline register’s reset configuration depends on the set of fields
in the pipeline register. For example, to inject a bubble into pipeline register D, we
want the icode field to be set to the constant value INOP (Figure 4.26). To inject
a bubble into pipeline register E, we want the icode field to be set to INOP and
the dstE, dstM, srcA, and srcB fields to be set to the constant RNONE. Determining
the reset configuration is one of the tasks for the hardware designer in designing
a pipeline register. We will not concern ourselves with the details here. We will
consider it an error to set both the bubble and the stall signals to 1.

The table in Figure 4.66 shows the actions the different pipeline stages should
take for each of the three special conditions. Each involves some combination of
normal, stall, and bubble operations for the pipeline registers.

In terms of timing, the stall and bubble control signals for the pipeline registers
are generated by blocks of combinational logic. These values must be valid as the
clock rises, causing each of the pipeline registers to either load, stall, or bubble
as the next clock cycle begins. With this small extension to the pipeline register
designs, we can implement a complete pipeline, including all of its control, using
the basic building blocks of combinational logic, clocked registers, and random-
access memories.

Combinations of Control Conditions

In our discussion of the special pipeline control conditions so far, we assumed that
at most one special case could arise during any single clock cycle. A common bugin
designing a system is to fail to handle instances where multiple special conditions
arise simultaneously. Let us analyze such possibilities. We need not worry about
combinations involving program exceptions, since we have carefully designed
our exception-handling mechanism to consider other instructions in the pipeline.
Figure 4.67 diagrams the pipeline states that cause the other three special control
conditions. These diagrams show blocks for the decode, execute, and memory
stages. The shaded boxes represent particular constraints that must be satisfied
for the condition to arise. A load/use hazard requires that the instruction in the
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Figure 4.67 Load/use Mispredict ret 1 ret 2 ret 3
Pipeline states for special M M M M M| ret

control conditions. The E| Load El 1xx E E| ret E | bubble
two pairs indicated can D| Use D D| ret D| bubble | D| bubble

arise simultaneously. Y T CombinationA 11

Combination B

execute stage reads a value from memory into a register, and that the instruction
in the decode stage has this register as a source operand. A mispredicted branch
requires the instruction in the execute stage to have a jump instruction. There are
three possible cases for ret—the instruction can be in either the decode, execute,
or memory stage. As the ret instruction moves through the pipeline, the earlier
pipeline stages will have bubbles.

We can see by these diagrams that most of the control conditions are mutually
exclusive. For example, it is not possible to have a load/use hazard and a mispre-
dicted branch simultaneously, since one requires a load instruction (mrmovl or
popl) in the execute stage, while the other requires a jump. Similarly, the second
and third ret combinations cannot occur at the same time as a load/use hazard or
a mispredicted branch. Only the two combinations indicated by arrows can arise
simultaneously.

Combination A involves a not-taken jump instruction in the execute stage and
aret instruction in the decode stage. Setting up this combination requires the ret
to be at the target of a not-taken branch. The pipeline control logic should detect
that the branch was mispredicted and therefore cancel the ret instruction.

Practice Problem 4.35

Write a Y86 assembly-language program that causes combination A to arise and
determines whether the control logic handles it correctly.

Combining the control actions for the combination A conditions (Figure 4.66),
we get the following pipeline control actions (assuming that either a bubble or a
stall overrides the normal case):

Pipeline register
Condition F D E M w

Processing ret stall bubble normal normal normal
Mispredicted branch normal bubble bubble normal normal

Combination stall bubble bubble normal normal

That is, it would be handled like a mispredicted branch, but with a stall in the
fetch stage. Fortunately, on the next cycle, the PC selection logic will choose the
address of the instruction following the jump, rather than the predicted program



440 Chapter 4 Processor Architecture

counter, and so it does not matter what happens with the pipeline register F. We
conclude that the pipeline will correctly handle this combination.

Combination B involves a load/use hazard, where the loading instruction sets
register %esp, and the ret instruction then uses this register as a source operand,
since it must pop the return address from the stack. The pipeline control logic
should hold back the ret instruction in the decode stage.

Practice Problem 4.36

Write a Y86 assembly-language program that causes combination B to arise and
completes with a halt instruction if the pipeline operates correctly.

Combining the control actions for the combination B conditions (Figure 4.66),
we get the following pipeline control actions:

Pipeline register

Condition F D E M w

Processing ret stall bubble normal normal normal
Load/use hazard stall stall bubble normal normal
Combination stall bubble-+stall bubble normal normal
Desired stall stall bubble normal normal

If both sets of actions were triggered, the control logic would try to stall the ret
instruction to avoid the load/use hazard but also inject a bubble into the decode
stage due to the ret instruction. Clearly, we do not want the pipeline to perform
both sets of actions. Instead, we want it to just take the actions for the load/use
hazard. The actions for processing the ret instruction should be delayed for one
cycle.

This analysis shows that combination B requires special handling. In fact, our
original implementation of the PIPE control logic did not handle this combination
correctly. Even though the design had passed many simulation tests, it had a subtle
bug that was uncovered only by the analysis we have just shown. When a program
having combination B was executed, the control logic would set both the bubble
and the stall signals for pipeline register D to 1. This example shows the importance
of systematic analysis. It would be unlikely to uncover this bug by just running
normal programs. If left undetected, the pipeline would not faithfully implement
the ISA behavior.

Control Logic Implementation

Figure 4.68 shows the overall structure of the pipeline control logic. Based on
signals from the pipeline registers and pipeline stages, the control logic generates
stall and bubble control signals for the pipeline registers, and also determines
whether the condition code registers should be updated. We can combine the
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Figure 4.68 PIPE pipeline control logic. This logic overrides the normal flow of instructions through the
pipeline to handle special conditions such as procedure returns, mispredicted branches, load/use hazards,

and program exceptions.

detection conditions of Figure 4.64 with the actions of Figure 4.66 to create HCL
descriptions for the different pipeline control signals.

Pipeline register F must be stalled for either a load/use hazard or a ret
instruction:

bool F_stall =
# Conditions for a load/use hazard
E_icode in { IMRMOVL, IPOPL } &&
E_dstM in { d_srcA, d_srcB } ||
# Stalling at fetch while ret passes through pipeline
IRET in { D_icode, E_icode, M_icode };

Practice Problem 4.37
Write HCL code for the signal D_stall in the PIPE implementation.

Pipeline register D must be set to bubble for a mispredicted branch or a ret
instruction. As the analysis in the preceding section shows, however, it should
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not inject a bubble when there is a load/use hazard in combination with a ret
instruction:

bool D_bubble =
# Mispredicted branch
(E_icode == IJXX && 'e_Cnd) ||
# Stalling at fetch while ret passes through pipeline
# but not condition for a load/use hazard
! (E_icode in { IMRMOVL, IPOPL }
&% E_dstM in { d_srcA, d_srcB })
&& IRET in { D_icode, E_icode, M_icode };

Practice Problem 4.38
Write HCL code for the signal E_bubble in the PIPE implementation.

Practice Problem 4.39

Write HCL code for the signal set_cc in the PIPE implementation. This should
only occur for OP1 instructions, and should consider the effects of program excep-
tions.

Practice Problem 4.40

Write HCL code for the signals M_bubble and W_stall in the PIPE implemen-
tation. The latter signal requires modifying the exception condition listed in Fig-
ure 4.64.

This covers all of the special pipeline control signal values. In the complete
HCL code for PIPE, all other pipeline control signals are set to zero.

Aside Testing the design

As we have seen, there are many ways to introduce bugs into a design even for a simple microprocessor.
With pipelining, there are many subtle interactions between the instructions at different pipeline stages.
We have seen that many of the design challenges involve unusual instructions (such as popping to the
stack pointer) or unusual instruction combinations (such as a not-taken jump followed by a ret). We
also see that exception handling adds an entirely new dimension to the possible pipeline behaviors.
How then can we be sure that our design is correct? For hardware manufacturers, this is a dominant
concern, since they cannot simply report an error and have users download code patches over the
Internet. Even a simple logic design error can have serious consequences, especially as microprocessors
are increasingly used to operate systems that are critical to our lives and health, such as automotive
antilock braking systems, heart pacemakers, and aircraft control systems.
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Simply simulating a design while running a number of “typical” programs is not a sufficient means
of testing a system. Instead, thorough testing requires devising ways of systematically generating many
tests that will exercise as many different instructions and instruction combinations as possible. In
creating our Y86 processor designs, we also devised a number of testing scripts, each of which generates
many different tests, runs simulations of the processor, and compares the resulting register and memory
values to those produced by our vIs instruction set simulator. Here is a brief description of the scripts:

optest: Runs 49 tests of different Y86 instructions with different source and destination registers

jtest: Runs 64 tests of the different jump and call instructions, with different combinations of whether
or not the branches are taken

cmtest: Runs 28 tests of the different conditional move instructions, with different control combi-
nations

htest: Runs 600 tests of different data hazard possibilities, with different combinations of source
and destination instructions, and with different numbers of nop instructions between the
instruction pairs

ctest: Tests 22 different control combinations, based on an analysis similar to what we did in Sec-
tion 4.5.11

etest: Tests 12 different combinations of instructions causing exceptions and instructions following
it that could alter the programmer-visible state

The key idea of this testing method is that we want to be as systematic as possible, generating tests that
create the different conditions that are likely to cause pipeline errors.

Aside Formally verifying our design

Even when a design passes an extensive set of tests, we cannot be certain that it will operate correctly for
all possible programs. The number of possible programs we could test is unimaginably large, even if we
only consider tests consisting of short code segments. Newer methods of formal verification, however,
hold the promise that we can have tools that rigorously consider all possible behaviors of a system and
determine whether or not there are any design errors.

We were able to apply formal verification to an earlier version of our Y86 processors [13]. We
set up a framework to compare the behavior of the pipelined design PIPE to the unpipelined version
SEQ. That is, it was able to prove that for an arbitrary Y86 program, the two processors would have
identical effects on the programmer-visible state. Of course, our verifier cannot actually run all possible
programs, since there are an infinite number of them. Instead, it uses a form of proof by induction,
showing a consistency between the two processors on a cycle-by-cycle basis. Carrying out this analysis
requires reasoning about the hardware using symbolic methods in which we consider all program values
to be arbitrary integers, and we abstract the ALU as a sort of “black box,” computing some unspecified
function over its arguments. We assume only that the ALUs for SEQ and PIPE compute identical
functions.

We used the HCL descriptions of the control logic to generate the control logic for our symbolic
processor models, and so we could catch any bugs in the HCL code. Being able to show that SEQ and
PIPE are identical does not guarantee that either of them faithfully implements the Y86 instruction set
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architecture. However, it would uncover any bug due to an incorrect pipeline design, and this is the
major source of design errors.

In our experiments, we verified not only the version of PIPE we have considered in this chapter but
also several variants that we give as homework problems, in which we add more instructions, modify
the hardware capabilities, or use different branch prediction strategies. Interestingly, we found only one
bug in all of our designs, involving control combination B (described in Section 4.5.11) for our solution
to the variant described in Problem 4.57. This exposed a weakness in our testing regime that caused us
to add additional cases to the ctest testing script.

Formal verification is still in an early stage of development. The tools are often difficult to use, and
they do not have the capacity to verify large-scale designs. We were able to verify our Y86 processors
in part because of their relative simplicity. Even then, it required several weeks of effort and multiple
runs of the tools, each requiring up to eight hours of computer time. This is an active area of research,
with some tools becoming commercially available, and some in use at companies such as Intel, AMD,
and IBM.

Web Aside ARCH:VLOG Verilog implementation of a pipelined Y86 processor

As we have mentioned, modern logic design involves writing textual representations of hardware
designs in a hardware description language. The design can then be tested by both simulation and by a
variety of formal verification tools. Once we have confidence in the design, we can use logic synthesis
tools to translate the design into actual logic circuits.

We have developed models of our Y86 processor designs in the Verilog hardware description
language. These designs combine modules implementing the basic building blocks of the processor,
along with control logic generated directly from the HCL descriptions. We have been able to synthesize
some of these designs, download the logic circuit descriptions onto field-programmable gate array
(FPGA) hardware, and run the processors on actual Y86 programs.

4.5.12 Performance Analysis

We can see that the conditions requiring special action by the pipeline control
logic all cause our pipeline to fall short of the goal of issuing a new instruction on
every clock cycle. We can measure this inefficiency by determining how often a
bubble gets injected into the pipeline, since these cause unused pipeline cycles. A
return instruction generates three bubbles, a load/use hazard generates one, and
a mispredicted branch generates two. We can quantify the effect these penalties
have on the overall performance by computing an estimate of the average number
of clock cycles PIPE would require per instruction it executes, a measure known
as the CPI (for “cycles per instruction”). This measure is the reciprocal of the
average throughput of the pipeline, but with time measured in clock cycles rather
than picoseconds. It is a useful measure of the architectural efficiency of a design.

If we ignore the performance implications of exceptions (which, by definition,
will only occur rarely), another way to think about CPI is to imagine we run the
processor on some benchmark program and observe the operation of the execute
stage. On each cycle, the execute stage would either process an instruction, and
this instruction would then continue through the remaining stages to completion,
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or it would process a bubble, injected due to one of the three special cases. If
the stage processes a total of C; instructions and C;, bubbles, then the processor
has required around C; 4+ C,, total clock cycles to execute C; instructions. We say
“around” because we ignore the cycles required to start the instructions flowing
through the pipeline. We can then compute the CP1I for this benchmark as follows:

GG, [

CPI =10+

14 ]
That s, the CPIequals 1.0 plus a penalty term C,,/ C; indicating the average number
of bubbles injected per instruction executed. Since only three different instruction
types can cause a bubble to be injected, we can break this penalty term into three
components:

CPI=10+Ip+mp+rp

where [p (for “load penalty”) is the average frequency with which bubbles are in-
jected while stalling for load/use hazards, mp (for “mispredicted branch penalty”)
is the average frequency with which bubbles are injected when canceling instruc-
tions due to mispredicted branches, and rp (for “return penalty”) is the average
frequency with which bubbles are injected while stalling for ret instructions. Each
of these penalties indicates the total number of bubbles injected for the stated
reason (some portion of C,) divided by the total number of instructions that were
executed (C;).

To estimate each of these penalties, we need to know how frequently the
relevant instructions (load, conditional branch, and return) occur, and for each of
these how frequently the particular condition arises. Let us pick the following set
of frequencies for our CPI computation (these are comparable to measurements
reported in [47] and [49]):

* Load instructions (mrmovl and popl) account for 25% of all instructions
executed. Of these, 20% cause load/use hazards.

¢ Conditional branches account for 20% of all instructions executed. Of these,
60% are taken and 40% are not taken.

e Return instructions account for 2% of all instructions executed.

We can therefore estimate each of our penalties as the product of the fre-
quency of the instruction type, the frequency the condition arises, and the number
of bubbles that get injected when the condition occurs:

Instruction Condition

Cause Name frequency frequency Bubbles Product
Load/Use Ip 0.25 0.20 1 0.05
Mispredict mp 0.20 0.40 2 0.16
Return rp 0.02 1.00 3 0.06
Total Penalty 0.27

The sum of the three penalties is 0.27, giving a CPI of 1.27.
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Our goal was to design a pipeline that can issue one instruction per cycle,
giving a CPI of 1.0. We did not quite meet this goal, but the overall performance
is still quite good. We can also see that any effort to reduce the CPI further should
focus on mispredicted branches. They account for 0.16 of our total penalty of 0.27,
because conditional branches are common, our prediction strategy often fails, and
we cancel two instructions for every misprediction.

Practice Problem 4.41

Suppose we use a branch prediction strategy that achieves a success rate of 65%,
such as backward taken, forward not-taken, as described in Section 4.5.4. What
would be the impact on CPI, assuming all of the other frequencies are not affected?

Practice Problem 4.42

Let us analyze the relative performance of using conditional data transfers versus
conditional control transfers for the programs you wrote for Problems 4.4 and 4.5.
Assume we are using these programs to compute the sum of the absolute values
of a very long array, and so the overall performance is determined largely by the
number of cycles required by the inner loop. Assume our jump instructions are
predicted as being taken, and that around 50% of the array values are positive.

A. On average, how many instructions are executed in the inner loops of the
two programs?

B. On average, how many bubbles would be injected into the inner loop of the
two programs?

C. What is the average number of clock cycles required per array element for
the two programs?

4.5.13 Unfinished Business

We have created a structure for the PIPE pipelined microprocessor, designed the
control logic blocks, and implemented pipeline control logic to handle special
cases where normal pipeline flow does not suffice. Still, PIPE lacks several key
features that would be required in an actual microprocessor design. We highlight
a few of these and discuss what would be required to add them.

Multicycle Instructions

All of the instructions in the Y86 instruction set involve simple operations such as
adding numbers. These can be processed in a single clock cycle within the execute
stage. In a more complete instruction set, we would also need to implement
instructions requiring more complex operations such as integer multiplication
and division, and floating-point operations. In a medium-performance processor
such as PIPE, typical execution times for these operations range from 3 or 4



Section 4.5 Pipelined Y86 Implementations

cycles for floating-point addition up to 32 for integer division. To implement these
instructions, we require both additional hardware to perform the computations
and a mechanism to coordinate the processing of these instructions with the rest
of the pipeline.

One simple approach to implementing multicycle instructions is to simply
expand the capabilities of the execute stage logic with integer and floating-point
arithmetic units. An instruction remains in the execute stage for as many clock
cycles as it requires, causing the fetch and decode stages to stall. This approach is
simple to implement, but the resulting performance is not very good.

Better performance can be achieved by handling the more complex opera-
tions with special hardware functional units that operate independently of the
main pipeline. Typically, there is one functional unit for performing integer mul-
tiplication and division, and another for performing floating-point operations. As
an instruction enters the decode stage, it can be issued to the special unit. While the
unit performs the operation, the pipeline continues processing other instructions.
Typically, the floating-point unit is itself pipelined, and thus multiple operations
can execute concurrently in the main pipeline and in the different units.

The operations of the different units must be synchronized to avoid incorrect
behavior. For example, if there are data dependencies between the different
operations being handled by different units, the control logic may need to stall
one part of the system until the results from an operation handled by some other
part of the system have been completed. Often, different forms of forwarding are
used to convey results from one part of the system to other parts, just as we saw
between the different stages of PIPE. The overall design becomes more complex
than we have seen with PIPE, but the same techniques of stalling, forwarding, and
pipeline control can be used to make the overall behavior match the sequential
ISA model.

Interfacing with the Memory System

In our presentation of PIPE, we assumed that both the instruction fetch unit
and the data memory could read or write any memory location in one clock
cycle. We also ignored the possible hazards caused by self-modifying code where
one instruction writes to the region of memory from which later instructions are
fetched. Furthermore, we reference memory locations according to their virtual
addresses, and these require a translation into physical addresses before the actual
read or write operation can be performed. Clearly, it is unrealistic to do all of this
processing in a single clock cycle. Even worse, the memory values being accessed
may reside on disk, requiring millions of clock cycles to read into the processor
memory.

As will be discussed in Chapters 6 and 9, the memory system of a processor
uses a combination of multiple hardware memories and operating system soft-
ware to manage the virtual memory system. The memory system is organized as a
hierarchy, with faster but smaller memories holding a subset of the memory being
backed up by slower and larger memories. At the level closest to the processor,
the cache memories provide fast access to the most heavily referenced memory
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locations. A typical processor has two first-level caches—one for reading instruc-
tions and one for reading and writing data. Another type of cache memory, known
as a translation look-aside buffer, or TLB, provides a fast translation from virtual
to physical addresses. Using a combination of TLBs and caches, it is indeed pos-
sible to read instructions and read or write data in a single clock cycle most of
the time. Thus, our simplified view of memory referencing by our processors is
actually quite reasonable.

Although the caches hold the most heavily referenced memory locations,
there will be times when a cache miss occurs, where some reference is made to
a location that is not held in the cache. In the best case, the missing data can be
retrieved from a higher-level cache or from the main memory of the processor,
requiring 3 to 20 clock cycles. Meanwhile, the pipeline simply stalls, holding the
instruction in the fetch or memory stage until the cache can perform the read
or write operation. In terms of our pipeline design, this can be implemented by
adding more stall conditions to the pipeline control logic. A cache miss and the
consequent synchronization with the pipeline is handled completely by hardware,
keeping the time required down to a small number of clock cycles.

In some cases, the memory location being referenced is actually stored in the
disk memory. When this occurs, the hardware signals a page fault exception. Like
other exceptions, this will cause the processor to invoke the operating system’s
exception handler code. This code will then set up a transfer from the disk to
the main memory. Once this completes, the operating system will return back
to the original program, where the instruction causing the page fault will be re-
executed. This time, the memory reference will succeed, although it might cause a
cache miss. Having the hardware invoke an operating system routine, which then
returns control back to the hardware, allows the hardware and system software
to cooperate in the handling of page faults. Since accessing a disk can require
millions of clock cycles, the several thousand cycles of processing performed by
the OS page fault handler has little impact on performance.

From the perspective of the processor, the combination of stalling to han-
dle short-duration cache misses and exception handling to handle long-duration
page faults takes care of any unpredictability in memory access times due to the
structure of the memory hierarchy.

Aside State-of-the-art microprocessor design

A five-stage pipeline, such as we have shown with the PIPE processor, represented the state of the art in
processor design in the mid-1980s. The prototype RISC processor developed by Patterson’s research
group at Berkeley formed the basis for the first SPARC processor, developed by Sun Microsystems
in 1987. The processor developed by Hennessy’s research group at Stanford was commercialized by
MIPS Technologies (a company founded by Hennessy) in 1986. Both of these used five-stage pipelines.
The Intel 1486 processor also uses a five-stage pipeline, although with a different partitioning of
responsibilities among the stages, with two decode stages and a combined execute/memory stage [33].

These pipelined designs are limited to a throughput of at most one instruction per clock cycle. The
CPI (for “cycles per instruction”) measure described in Section 4.5.12 can never be less than 1.0. The
different stages can only process one instruction at a time. More recent processors support superscalar
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operation, meaning that they can achieve a CPI less than 1.0 by fetching, decoding, and executing
multiple instructions in parallel. As superscalar processors have become widespread, the accepted
performance measure has shifted from CPI to its reciprocal—the average number of instructions
executed per cycle, or IPC. It can exceed 1.0 for superscalar processors. The most advanced designs
use a technique known as out-of-order execution to execute multiple instructions in parallel, possibly
in a totally different order than they occur in the program, while preserving the overall behavior implied
by the sequential ISA model. This form of execution is described in Chapter 5 as part of our discussion
of program optimization.

Pipelined processors are not just historical artifacts, however. The majority of processors sold are
used in embedded systems, controlling automotive functions, consumer products, and other devices
where the processor is not directly visible to the system user. In these applications, the simplicity of
a pipelined processor, such as the one we have explored in this chapter, reduces its cost and power
requirements compared to higher-performance models.

More recently, as multicore processors have gained a following, some have argued that we could
get more overall computing power by integrating many simple processors on a single chip rather

than a smaller number of more complex ones. This strategy is sometimes referred to as “many-core”
processors [10].

4.6 Summary

We have seen that the instruction set architecture, or ISA, provides a layer of
abstraction between the behavior of a processor—in terms of the set of instructions
and their encodings—and how the processor is implemented. The ISA provides
a very sequential view of program execution, with one instruction executed to
completion before the next one begins.

We defined the Y86 instruction set by starting with the IA32 instructions and
simplifying the data types, address modes, and instruction encoding considerably.
The resulting ISA has attributes of both RISC and CISC instruction sets. We then
organized the processing required for the different instructions into a series of
five stages, where the operations at each stage vary according to the instruction
being executed. From this, we constructed the SEQ processor, in which an en-
tire instruction is executed every clock cycle by having it flow through all five
stages.

Pipelining improves the throughput performance of a system by letting the
different stages operate concurrently. At any given time, multiple operations are
being processed by the different stages. In introducing this concurrency, we must
be careful to provide the same program-level behavior as would a sequential
execution of the program. We introduced pipelining by reordering parts of SEQ
to get SEQ+, and then adding pipeline registers to create the PIPE- pipeline.
We enhanced the pipeline performance by adding forwarding logic to speed the
sending of a result from one instruction to another. Several special cases require
additional pipeline control logic to stall or cancel some of the pipeline stages.

Our design included rudimentary mechanisms to handle exceptions, where
we make sure that only instructions up to the excepting instruction affect the
programmer-visible state. Implementing a complete handling of exceptions would
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be significantly more challenging. Properly handling exceptions gets even more
complex in systems that employ greater degrees of pipelining and parallelism.

In this chapter, we have learned several important lessons about processor
design:

* Managing complexity is a top priority. We want to make optimum use of the
hardware resources to get maximum performance at minimum cost. We did
this by creating a very simple and uniform framework for processing all of the
different instruction types. With this framework, we could share the hardware
units among the logic for processing the different instruction types.

e We do not need to implement the ISA directly. A direct implementation of the
ISA would imply a very sequential design. To achieve higher performance,
we want to exploit the ability in hardware to perform many operations si-
multaneously. This led to the use of a pipelined design. By careful design and
analysis, we can handle the various pipeline hazards, so that the overall effect
of running a program exactly matches what would be obtained with the ISA
model.

® Hardware designers must be meticulous. Once a chip has been fabricated,
it is nearly impossible to correct any errors. It is very important to get the
designright on the first try. This means carefully analyzing different instruction
types and combinations, even ones that do not seem to make sense, such
as popping to the stack pointer. Designs must be thoroughly tested with
systematic simulation test programs. In developing the control logic for PIPE,
our design had a subtle bug that was uncovered only after a careful and
systematic analysis of control combinations.

Web Aside ARCH:HCL HCL descriptions of Y86 processors

In this chapter, we have looked at portions of the HCL code for several simple logic designs, and for
the control logic for Y86 processors SEQ and PIPE. For reference, we provide documentation of the
HCL language and complete HCL descriptions for the control logic of the two processors. Each of
these descriptions requires only 5-7 pages of HCL code, and it is worthwhile to study them in their
entirety.

4.6.1 Y86 Simulators

The lab materials for this chapter include simulators for the SEQ and PIPE
processors. Each simulator has two versions:

e The GUI (graphic user interface) version displays the memory, program code,
and processor state in graphic windows. This provides a way to readily see how
the instructions flow through the processors. The control panel also allows you
to reset, single-step, or run the simulator interactively.

e The text version runs the same simulator, but it only displays information by
printing to the terminal. This version is not as useful for debugging, but it
allows automated testing of the processor.



Homework Problems

The control logic for the simulators is generated by translating the HCL
declarations of the logic blocks into C code. This code is then compiled and linked
with the rest of the simulation code. This combination makes it possible for you
to test out variants of the original designs using the simulators. Testing scripts are
also available that thoroughly exercise the different instructions and the different
hazard possibilities.

Bibliographic Notes

For those interested in learning more about logic design, Katz’s logic design
textbook [56] is a standard introductory text, emphasizing the use of hardware
description languages.

Hennessy and Patterson’s computer architecture textbook [49] provides ex-
tensive coverage of processor design, including both simple pipelines, such as the
one we have presented here, and more advanced processors that execute more
instructions in parallel. Shriver and Smith [97] give a very thorough presentation
of an Intel-compatible IA32 processor manufactured by AMD.

Homework Problems

443 <

In Section 3.4.2, the IA32 pushl instruction was described as decrementing the
stack pointer and then storing the register at the stack pointer location. So, if
we had an instruction of the form pushl REG, for some register REG, it would be
equivalent to the code sequence:

subl $4,%esp Decrement stack pointer
movl REG, (%esp) Store REG on stack

A. In light of analysis done in Problem 4.6, does this code sequence correctly
describe the behavior of the instruction pushl %esp? Explain.

B. How could you rewrite the code sequence so that it correctly describes both
the cases where REG is %esp as well as any other register?

444 ¢

In Section 3.4.2, the IA32 popl instruction was described as copying the result from
the top of the stack to the destination register and then incrementing the stack
pointer. So, if we had an instruction of the form popl REG, it would be equivalent
to the code sequence:

movl (%esp),REG Read REG from stack
addl $4,%esp Increment stack pointer

A. In light of analysis done in Problem 4.7, does this code sequence correctly
describe the behavior of the instruction popl %esp? Explain.
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B. How could you rewrite the code sequence so that it correctly describes both
the cases where REG is %esp as well as any other register?

4.45 oo¢
Your assignment will be to write a Y86 program to perform bubblesort. For ref-
erence, the following C function implements bubblesort using array referencing:

/* Bubble sort: Array version */
void bubble_a(int *data, int count) {
int i, last;
for (last = count-1; last > 0; last——) {
for (i = 0; i < last; i++)
if (datal[i+1] < datali]) {
/* Swap adjacent elements */
int t = datal[i+1];
datal[i+1] = datalil;
datali] = t;

A. Write and test a C version that references the array elements with pointers,
rather than using array indexing.

B. Write and test a Y86 program consisting of the function and test code. You
may find it useful to pattern your implementation after IA32 code generated
by compiling your C code. Although pointer comparisons are normally done
using unsigned arithmetic, you can use signed arithmetic for this exercise.

446 &¢
Modify the code you wrote for Problem 4.46 to implement the test and swap in
the inner loop of the bubblesort function using conditional moves.

447 &

In our example Y86 programs, such as the Sum function shown in Figure 4.6, we
encounter many cases (e.g., lines 12 and 13 and lines 14 and 15) in which we want
to add a constant value to a register. This requires first using an irmovl instruction
to set a register to the constant, and then an addl instruction to add this value to
the destination register. Suppose we want to add a new instruction iadd1 with the
following format:

Byte 0 1 2 3 4 5
iadd1 V,iB8  [c|o[F[mB] Vv

This instruction adds the constant value V to register rB. Describe the computa-
tions performed to implement this instruction. Use the computations for irmovl
and OP1 (Figure 4.18) as a guide.
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4.48 ¢
As described in Section 3.7.2, the IA32 instruction leave can be used to prepare
the stack for returning. It is equivalent to the following Y86 code sequence:

1 rrmovl Yebp, %esp Set stack pointer to beginning of frame
2 popl  Yebp Restore saved J%ebp and set stack ptr to end of caller's frame

Suppose we add this instruction to the Y86 instruction set, using the following
encoding:

Byte 0 1 2 3 4 5
leave

Describe the computations performed to implement this instruction. Use the
computations for popl (Figure 4.20) as a guide.

4.49 oo

The file seq-full.hcl contains the HCL description for SEQ, along with the dec-
laration of a constant ITADDL having hexadecimal value C, the instruction code for
iaddl. Modify the HCL descriptions of the control logic blocks to implement the
iaddl instruction, as described in Homework Problem 4.47. See the lab material
for directions on how to generate a simulator for your solution and how to test it.

4.50 oo

The file seq-full.hcl also contains the declaration of a constant ILEAVE having
hexadecimal value D, the instruction code for leave, as well as the declaration
of a constant REBP having value 7, the register ID for %ebp. Modify the HCL
descriptions of the control logic blocks to implement the leave instruction, as
described in Homework Problem 4.48. See the lab material for directions on how
to generate a simulator for your solution and how to test it.

4.51 oee
Suppose we wanted to create a lower-cost pipelined processor based on the struc-
ture we devised for PIPE- (Figure 4.41), without any bypassing. This design would
handle all data dependencies by stalling until the instruction generating a needed
value has passed through the write-back stage.

The file pipe-stall.hcl contains a modified version of the HCL code for
PIPE in which the bypassing logic has been disabled. That is, the signals e_valA
and e_valB are simply declared as follows:

## DO NOT MODIFY THE FOLLOWING CODE.
## No forwarding. valA is either valP or value from register file
int d_valA = [
D_icode in { ICALL, IJXX } : D_valP; # Use incremented PC
1 : d_rvalA; # Use value read from register file

1;

## No forwarding. valB is value from register file
int d_valB = d_rvalB;
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Modify the pipeline control logic at the end of this file so that it correctly handles
all possible control and data hazards. As part of your design effort, you should
analyze the different combinations of control cases, as we did in the design of the
pipeline control logic for PIPE. You will find that many different combinations
can occur, since many more conditions require the pipeline to stall. Make sure
your control logic handles each combination correctly. See the lab material for
directions on how to generate a simulator for your solution and how to test it.

452 oo

The file pipe-full.hcl contains a copy of the PIPE HCL description, along with a
declaration of the constant value ITADDL. Modify this file to implement the iaddl
instruction, as described in Homework Problem 4.47. See the lab material for
directions on how to generate a simulator for your solution and how to test it.

4.53 ooe

The file pipe-full.hcl also contains declarations of constants ILEAVE and REBP.
Modify this file to implement the leave instruction, as described in Homework
Problem 4.48. See the lab material for directions on how to generate a simulator
for your solution and how to test it.

4.54 o6

The file pipe-nt .hcl contains a copy of the HCL code for PIPE, plus a declaration
of the constant J_YES with value 0, the function code for an unconditional jump
instruction. Modify the branch prediction logic so that it predicts conditional
jumps as being not-taken while continuing to predict unconditional jumps and
call as being taken. You will need to devise a way to get valC, the jump target
address, to pipeline register M to recover from mispredicted branches. See the lab
material for directions on how to generate a simulator for your solution and how
to test it.

455 o¢e

The file pipe-btfnt.hcl contains a copy of the HCL code for PIPE, plus a decla-
ration of the constant J_YES with value 0, the function code for an unconditional
jump instruction. Modify the branch prediction logic so that it predicts conditional
jumps as being taken when valC < valP (backward branch) and as being not-taken
when valC > valP (forward branch). (Since Y86 does not support unsigned arith-
metic, you should implement this test using a signed comparison.) Continue to
predict unconditional jumps and call as being taken. You will need to devise a
way to get both valC and valP to pipeline register M to recover from mispredicted
branches. See the lab material for directions on how to generate a simulator for
your solution and how to test it.

456 6o

In our design of PIPE, we generate a stall whenever one instruction performs a
load, reading a value from memory into a register, and the next instruction has
this register as a source operand. When the source gets used in the execute stage,
this stalling is the only way to avoid a hazard.
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For cases where the second instruction stores the source operand to memory,
such as with an rmmov1 or pushl instruction, this stalling is not necessary. Consider
the following code examples:

1 mrmovl O(%ecx),%edx # Load 1
2 pushl Yedx # Store 1
3 nop

4 popl %edx # Load 2
5 rmmovl %eax,O0(%edx) # Store 2

In lines 1 and 2, the mrmovl instruction reads a value from memory into
%edx, and the pushl instruction then pushes this value onto the stack. Our design
for PIPE would stall the pushl instruction to avoid a load/use hazard. Observe,
however, that the value of jedx is not required by the pushl instruction until it
reaches the memory stage. We can add an additional bypass path, as diagrammed
in Figure 4.69, to forward the memory output (signal m_valM) to the valA field

| | stat |icode| | valE | valM | |dstE |dstM|
stat dmem_error
3 data out m_valM
— Mem. read Dat
d ata
';Ej; - memory M_dstM
write write data in
Addr
[ |stat|icode] [cnd| | vae | vaa | ]astE[astmf
E_icode r;fm
e_Cnd — —
(cse]
) cond E_valA
1 ALU
cc ALU \_ fun.
? 1 1 E_srcA
W_stat (Set ) [ ALU ] [ ALU ]
m_stat L CC J A B
! ] j
[ |stat|icode| itun| | vac | vama | vaB | |astE|dstm[srca]srcB|

Figure 4.69 Execute and memory stages capable of load forwarding. By adding a
bypass path from the memory output to the source of valA in pipeline register M, we can
use forwarding rather than stalling for one form of load/use hazard. This is the subject
of Homework Problem 4.56.
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in pipeline register M. On the next clock cycle, this forwarded value can then be
written to memory. This technique is known as load forwarding.

Note that the second example (lines 4 and 5) in the code sequence above
cannot make use of load forwarding. The value loaded by the popl instruction is
used as part of the address computation by the next instruction, and this value is
required in the execute stage rather than the memory stage.

A. Write a logic formula describing the detection condition for a load/use haz-
ard, similar to the one given in Figure 4.64, except that it will not cause a
stall in cases where load forwarding can be used.

B. The file pipe-1f.hcl contains a modified version of the control logic for
PIPE. It contains the definition of a signal e_valA to implement the block
labeled “Fwd A” in Figure 4.69. It also has the conditions for a load/use haz-
ard in the pipeline control logic set to zero, and so the pipeline control logic
will not detect any forms of load/use hazards. Modify this HCL description
to implement load forwarding. See the lab material for directions on how to
generate a simulator for your solution and how to test it.

4.57 ¢o¢

Our pipelined design is a bit unrealistic in that we have two write ports for the
register file, but only the popl instruction requires two simultaneous writes to the
register file. The other instructions could therefore use a single write port, sharing
this for writing valE and valM. The following figure shows a modified version of the
write-back logic, in which we merge the write-back register IDs (W_dstE and W_
dstM) into a single signal w_dstE and the write-back values (W_valE and W_valM)
into a single signal w_valE:

w_valE

Stat w_dstE
E‘j dstE

stat

valE |

W_icode <—
[}

[ ]stat [icode] | vae | vam | |dstE astm] |

The logic for performing the merges is written in HCL as follows:

## Set E port register ID

int w_dstE = [
## writing from valM
W_dstM != RNONE : W_dstM;
1: W_dstE;

1;

## Set E port value

int w_valE = [
W_dstM != RNONE : W_valM;
1: W_valE;

1;
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The control for these multiplexors is determined by dstE—when it indicates
there is some register, then it selects the value for port E, and otherwise it selects
the value for port M.

In the simulation model, we can then disable register port M, as shown by the
following HCL code:

## Disable register port M
## Set M port register ID
int w_dstM = RNONE;

## Set M port value
int w_valM = O;

The challenge then becomes to devise a way to handle popl. One method is
to use the control logic to dynamically process the instruction popl rA so that it
has the same effect as the two-instruction sequence

iaddl $4, %esp
mrmovl -4(%esp), rA

(See Homework Problem 4.47 for a description of the 1addl instruction.) Note the
ordering of the two instructions to make sure popl %esp works properly. You can
do this by having the logic in the decode stage treat popl the same as it would the
iaddl listed above, except that it predicts the next PC to be equal to the current
PC. On the next cycle, the popl instruction is refetched, but the instruction code
is converted to a special value IPOP2. This is treated as a special instruction that
has the same behavior as the mrmovl instruction listed above.

The file pipe-1w.hcl contains the modified write-port logic described above.
It contains a declaration of the constant IPOP2 having hexadecimal value E. It
also contains the definition of a signal f_icode that generates the icode field for
pipeline register D. This definition can be modified to insert the instruction code
IPOP2 the second time the popl instruction is fetched. The HCL file also contains
a declaration of the signal f_pc, the value of the program counter generated in the
fetch stage by the block labeled “Select PC” (Figure 4.55).

Modify the control logic in this file to process popl instructions in the manner
we have described. See the lab material for directions on how to generate a
simulator for your solution and how to test it.

4.58 oo
Compare the performance of the two versions of bubblesort (Problems 4.45 and
4.46). Explain why one version performs better than the other.

Solutions to Practice Problems

Solution to Problem 4.1 (page 341)

Encoding instructions by hand is rather tedious, but it will solidify your under-
standing of the idea that assembly code gets turned into byte sequences by the
assembler. In the following output from our Y86 assembler, each line shows an
address and a byte sequence that starts at that address:
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N O L AwWwN =

0x100:
0x100:
0x106:
0x108:
0x108:
0x10e:
0x110:

| .pos 0x100 # Start code at address 0x100

30£30£000000 | irmovl $15,%ebx # Load 15 into %ebx
2031 | rrmovl %ebx,%ecx # Copy 15 to %ecx

| loop: # loop:
4013fdffffff | rmmovl %ecx,-3(%ebx) # Save %ecx at address 15-3 = 12
6031 | addl  Y%ebx,%ecx #  Increment jecx by 15
7008010000 | jmp loop #  Goto loop

Several features of this encoding are worth noting:

e Decimal 15 (line 2) has hex representation 0x0000000f. Writing the bytes in
reverse order gives 0f 00 00 00.

* Decimal —3 (line 5) has hex representation Oxfffffffd. Writing the bytes in
reverse order gives fd ff ff ff.

® The code starts at address 0x100. The first instruction requires 6 bytes, while
the second requires 2. Thus, the loop target will be 0x00000108. Writing these
bytes in reverse order gives 08 01 00 00.

Solution to Problem 4.2 (page 341)

Decoding a byte sequence by hand helps you understand the task faced by a
processor. It must read byte sequences and determine what instructions are to
be executed. In the following, we show the assembly code used to generate each
of the byte sequences. To the left of the assembly code, you can see the address
and byte sequence for each instruction.

A. Some operations with immediate data and address displacements:

0x100: 30f3fcffffff | irmovl $-4,%ebx
0x106: 406300080000 | rmmovl %esi,0x800 (%ebx)
0x10c: 00 | halt

B. Code including a function call:

0x200: a06f | pushl %esi
0x202: 8008020000 | call proc
0x207: 00 | halt

0x208: | proc:

0x208: 30£30a000000 | irmovl $10,%ebx
0x20e: 90 | ret

C. Code containing illegal instruction specifier byte 0x£0:

0x300: 505407000000 | mrmovl 7 (%esp) ,%ebp

0x306: 10 | nop

0x307: f£0 | .byte OxfO # invalid instruction code
0x308: bO1f | popl Y%ecx
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D. Code containing a jump operation:

0x400: | loop:

0x400: 6113 | subl %ecx, %ebx
0x402: 7300040000 | je loop

0x407: 00 | halt

E. Code containing an invalid second byte in a pushl instruction:

0x500: 6362 | xorl %esi,%edx
0x502: a0 | .byte Oxa0 # pushl instruction code
0x503: f0 | .byte 0xf0O # Invalid register specifier byte

Solution to Problem 4.3 (page 350)

As suggested in the problem, we adapted the code generated by Gce for an TA32
machine:

# int Sum(int *Start, int Count)
rSum:  pushl %ebp

rrmovl %esp,%ebp

pushl %ebx

mrmovl 8(%ebp) ,%ebx

mrmovl 12(%ebp),%eax

andl Y%eax,%eax

jle L38

irmovl $-1,%edx

addl %edx,%eax

pushl J%eax # Push Count

irmovl $4,%edx

rrmovl %ebx,%eax

addl %edx,%eax

pushl %eax

call rSum

mrmovl (%ebx) ,%edx

Save value of %ebx
Get Start
Get Count
Test value of Count

H H H H H

If <= 0, goto zreturn

+H*

Count——

+H*

Push Start+1
Sum(Start+1, Count-1)

+*

addl %edx,%eax # Add *Start
jmp L39 # goto done

L38: xorl Y%eax,’%eax # zreturn:

L39: mrmovl -4(%ebp),%ebx # done: Restore J%ebx
rrmovl %ebp,%esp # Deallocate stack frame
popl %ebp # Restore Jebp

ret

Solution to Problem 4.4 (page 350)
This problem gives you a chance to try your hand at writing assembly code.

int AbsSum(int *Start, int Count)
1 AbsSum:
2 pushl %ebp

459
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3 rrmovl Y%esp,%ebp

4 mrmovl 8(%ebp),%ecx ecx = Start
5 mrmovl 12(%ebp) ,%edx edx = Count
6 irmovl $0, %eax sum = 0

7 andl %edx, %hedx

8 je End

9 Loop:

10 mrmovl (%ecx),%esi get x = x*Start
11 irmovl $0,%edi 0

12 subl %esi,%edi -x

13 jle Pos Skip if -x <= 0
14 rrmovl Y%edi,%esi x = -x

15 Pos:

16 addl Y%esi,%eax add x to sum
17 irmovl $4,%ebx

18 addl %ebx,%ecx Start++

19 irmovl $-1,%ebx

20 addl Y%ebx,%edx Count—-

21 jne Loop Stop when 0
22 End:

23 popl %ebp

24 ret

Solution to Problem 4.5 (page 350)
This problem gives you a chance to try your hand at writing assembly code with
conditional moves. We show only the code for the loop. The rest is the same as for

Problem 4.4:

9 Loop:

10 mrmovl (%ecx),%esi get x = xStart
1 irmovl $0,%edi 0

12 subl %esi,%edi -x

13 cmovg %edi,%esi if -x > 0 then x = —x
14 addl %esi,%eax add x to sum
15 irmovl $4,%ebx

16 addl %ebx,%ecx Start++

17 irmovl $-1,%ebx

18 addl Y%ebx,%edx Count—-

19 jne Loop Stop when 0

Solution to Problem 4.6 (page 350)
Although it is hard to imagine any practical use for this particular instruction, it is
important when designing a system to avoid any ambiguities in the specification.
We want to determine a reasonable convention for the instruction’s behavior and
make sure each of our implementations adheres to this convention.

The subl instruction in this test compares the starting value of %esp to the
value pushed onto the stack. The fact that the result of this subtraction is zero
implies that the old value of %esp gets pushed.
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Solution to Problem 4.7 (page 351)

It is even more difficult to imagine why anyone would want to pop to the stack
pointer. Still, we should decide on a convention and stick with it. This code
sequence pushes Oxabcd onto the stack, pops to %esp, and returns the popped
value. Since the result equals Oxabcd, we can deduce that popl %esp sets the stack
pointer to the value read from memory. It is therefore equivalent to the instruction
mrmovl (%esp) ,%esp.

Solution to Problem 4.8 (page 354)
The Excrusive-Or function requires that the 2 bits have opposite values:

bool xor = (la & b) || (a & !'b);

In general, the signals eq and xor will be complements of each other. That is, one
will equal 1 whenever the other is 0.

Solution to Problem 4.9 (page 356)

The outputs of the ExcLUSIVE-OR circuits will be the complements of the bit equal-
ity values. Using DeMorgan’s laws (Web Aside DATA:BOOL), we can implement
AND using Or and Nor, yielding the following circuit:

b3y — | eqay
Xor
gy —
b30 ] ! edszo
Xor
30—
| -
by — ! eq
Xor
a;—
bo— l'eqg
Xor
g —

Solution to Problem 4.10 (page 359)
This design is a simple variant of the one to find the minimum of the three inputs:

int Med3 = [

A <=B & B <= C : B;
C <=B && B <= A : B;
B<=A&& A<=C : A;
C<=A&& A<=B : A;
1 : C;
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Solution to Problem 4.11 (page 367)
These exercises help make the stage computations more concrete. We can see
from the object code that this instruction is located at address 0x00e. It consists of
6 bytes, with the first two being 0x30 and 0x84. The last 4 bytes are a byte-reversed
version of 0x00000080 (decimal 128).

Generic Specific
Stage irmovl V, rB irmovl $128, %esp
Fetch icode:ifun < M;[PC] icode:ifun < M[0x00e]=3:0

rA:rB < M;[PC + 1]
valC < My[PC + 2]

valP < PC +6
Decode
Execute valk < 0 + valC
Memory

Write back R[rB] < valE

PC update PC « valP

rA:rB < M,[0x00f] = 8:4
valC « M4[0x010] = 128
valP < 0x00e + 6 = 0x014

valE < 0+ 128 =128

R[%esp] < valE =128

PC <« valP = 0x014

This instruction sets register %esp to 128 and increments the PC by 6.

Solution to Problem 4.12 (page 371)

We can see that the instruction is located at address 0xO1c and consists of 2 bytes
with values 0xb0 and 0x08. Register %esp was set to 124 by the pushl instruction
(line 6), which also stored 9 at this memory location.

Generic Specific
Stage popl rA popl %eax
Fetch icode:ifun <~ M{[PC]  icode:ifun < M[0x01c]=Db:0

rA:rB < M{[PC + 1]

valP < PC +2

Decode valA < R[%esp]
valB < R[%esp]

Execute valE < valB + 4

rA:rB < M;[0x01d]=0:8

valP < 0x01c +2 = 0x01e

valA < R[%esp] =124
valB < R[%esp] = 124

valE < 124 +4 =128
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Memory valM < My[valA]  valM < My[124]=9

Write back R[%esp] < valE R[%esp] < 128
R[rA] < valM R[%eax] < 9

PC update PC < valP PC « 0x01e

The instruction sets %eax to 9, sets %esp to 128, and increments the PC by 2.

Solution to Problem 4.13 (page 372)

Tracing the steps listed in Figure 4.20 with rA equal to %esp, we can see that in
the memory stage, the instruction will store valA, the original value of the stack
pointer, to memory, just as we found for TA32.

Solution to Problem 4.14 (page 372)

Tracing the steps listed in Figure 4.20 with rA equal to %esp, we can see that both
of the write-back operations will update %esp. Since the one writing valM would
occur last, the net effect of the instruction will be to write the value read from
memory to %esp, just as we saw for IA32.

Solution to Problem 4.15 (page 373)

Implementing conditional moves requires only minor changes from register-to-
register moves. We simply condition the write-back step on the outcome of the
conditional test:

Stage cmovXX rA, rB

Fetch icode:ifun < M;[PC]
rA:rB < M;[PC + 1]
valP < PC +2

Decode valA < R[rA]

Execute valE < 0 + valA

Cnd < Cond(CC, ifun)
Memory

Write back if (Cnd)
R[rB] <« valE

PC update PC « valP

Solution to Problem 4.16 (page 374)

We can see that this instruction is located at address 0x023 and is 5 bytes long.
The first byte has value 0x80, while the last four are a byte-reversed version
of 0x00000029, the call target. The stack pointer was set to 128 by the popl
instruction (line 7).
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Stage

Generic
call Dest

Specific
call 0x029

Fetch

Decode

Execute

Memory

Write back

PC update

icode:ifun < M;[PC]

valC < My[PC + 1]
valP <~ PC+5

valB < R[%esp]

valkE < valB + —4

My[valE] < valP

R[%esp] < valE

PC « valC

icode:ifun < M;[0x023]=8:0

valC < M,[0x024] = 0x029
valP < 0x023 + 5 = 0x028

valB < R[%esp] =128

valE < 128+ —4 =124

My[124] < 0x028

R[%esp] < 124

PC < 0x029

The effect of this instruction is to set %esp to 124, to store 0x028 (the return
address) at this memory address, and to set the PC to 0x029 (the call target).

Solution to Problem 4.17 (page 384)

All of the HCL code in this and other practice problems is straightforward, but
trying to generate it yourself will help you think about the different instructions
and how they are processed. For this problem, we can simply look at the set of
Y86 instructions (Figure 4.2) and determine which have a constant field.

bool need_valC =
icode in { IIRMOVL, IRMMOVL, IMRMOVL, IJXX, ICALL };

Solution to Problem 4.18 (page 386)

This code is similar to the code for srcA.

int srcB = [

icode in { IOPL, IRMMOVL, IMRMOVL 1} : rB;
icode in { IPUSHL, IPOPL, ICALL, IRET } : RESP;

1
1;

Solution to Problem 4.19 (page 387)

: RNONE;

# Don't need register

This code is similar to the code for dstE.

int dstM = [

icode in { IMRMOVL, IPOPL } : rA;

1
1;

: RNONE;

# Don't write any register
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Solution to Problem 4.20 (page 387)

As we found in Practice Problem 4.14, we want the write via the M port to take
priority over the write via the E port in order to store the value read from memory
into %esp.

Solution to Problem 4.21 (page 388)
This code is similar to the code for aluA.

int aluB = [
icode in { IRMMOVL, IMRMOVL, IOPL, ICALL,
IPUSHL, IRET, IPOPL } : valB;
icode in { IRRMOVL, IIRMOVL } : O;
# Other instructions don't need ALU

1;

Solution to Problem 4.22 (page 389)

Implementing conditional moves is surprisingly simple: we disable writing to the
register file by setting the destination register to RNONE when the condition does
not hold.

int dstE = [
icode in { IRRMOVL } && Cnd : rB;
icode in { IIRMOVL, IOPL} : rB;
icode in { IPUSHL, IPOPL, ICALL, IRET } : RESP;
1 : RNONE; # Don't write any register
1;

Solution to Problem 4.23 (page 389)
This code is similar to the code for mem_addr.

int mem_data = [
# Value from register
icode in { IRMMOVL, IPUSHL } : valA;
# Return PC
icode == ICALL : valP;
# Default: Don't write anything
1;

Solution to Problem 4.24 (page 390)
This code is similar to the code for mem_read.

bool mem_write = icode in { IRMMOVL, IPUSHL, ICALL };

Solution to Problem 4.25 (page 390)
Computing the Stat field requires collecting status information from several stages:
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## Determine instruction status
int Stat = [
imem_error || dmem_error : SADR;
linstr_valid: SINS;
icode == IHALT : SHLT;
1 : SAOK;
1

Solution to Problem 4.26 (page 396)

This problem is an interesting exercise in trying to find the optimal balance among
a set of partitions. It provides a number of opportunities to compute throughputs
and latencies in pipelines.

A. For a two-stage pipeline, the best partition would be to have blocks A, B,
and C in the first stage and D, E, and F in the second. The first stage has
a delay 170 ps, giving a total cycle time of 170 4+ 20 = 190 picoseconds. We
therefore have a throughput of 5.26 GOPS and a latency of 380 ps.

B. For a three-stage pipeline, we should have blocks A and B in the first stage,
blocks C and D in the second, and blocks E and F in the third. The first
two stages have a delay of 110 ps, giving a total cycle time of 130 ps and a
throughput of 7.69 GOPS. The latency is 390 ps.

C. For a four-stage pipeline, we should have block A in the first stage, blocks B
and C in the second, block D in the third, and blocks E and F in the fourth.
The second stage requires 90 ps, giving a total cycle time of 110 ps and a
throughput of 9.09 GOPS. The latency is 440 ps.

D. The optimal design would be a five-stage pipeline, with each block in its
own stage, except that the fifth stage has blocks E and F. The cycle time is
80 4 20 = 100 picoseconds, for a throughput of around 10.00 GOPS and a
latency of 500 ps. Adding more stages would not help, since we cannot run
the pipeline any faster than one cycle every 100 ps.

Solution to Problem 4.27 (page 398)
Each stage would have combinational logic requiring 300/k ps, and a pipeline
register requiring 20 ps.

A. The total latency would be 300 + 20k ps, while the throughput (in GIPS)
would be
1000 1000k
30 420 300+ 20K

B. As we let k go to infinity, the throughput becomes 1000/20 = 50 GIPS. Of
course, this would give us an infinite latency, as well.

This exercise quantifies the diminishing returns of deep pipelining. As we try to
subdivide the logic into many stages, the latency of the pipeline registers becomes
a limiting factor.
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Solution to Problem 4.28 (page 425)

This code is very similar to the corresponding code for SEQ, except that we cannot
yet determine whether the data memory will generate an error signal for this
instruction.

# Determine status code for fetched instruction
int f_stat = [

imem_error: SADR;

linstr_valid : SINS;

f_icode == IHALT : SHLT;

1 : SAOK;
1;

Solution to Problem 4.29 (page 426)
This code simply involves prefixing the signal names in the code for SEQ with
“d_” and “D_”.

int d_dstE = [
D_icode in { IRRMOVL, IIRMOVL, IOPL} : D_rB;
D_icode in { IPUSHL, IPOPL, ICALL, IRET } : RESP;
1 : RNONE; # Don't write any register

1;

Solution to Problem 4.30 (page 429)

The rrmovl instruction (line 5) would stall for one cycle due to a load-use hazard
caused by the popl instruction (line 4). As it enters the decode stage, the popl
instruction would be in the memory stage, giving both M_dstE and M_dstM equal
to %esp. If the two cases were reversed, then the write back from M_valE would
take priority, causing the incremented stack pointer to be passed as the argument
to the rrmovl instruction. This would not be consistent with the convention for
handling popl %esp determined in Practice Problem 4.7.

Solution to Problem 4.31 (page 429)
This problem lets you experience one of the important tasks in processor design—
devising test programs for a new processor. In general, we should have test pro-
grams that will exercise all of the different hazard possibilities and will generate
incorrect results if some dependency is not handled properly.

For this example, we can use a slightly modified version of the program shown
in Practice Problem 4.30:

irmovl $5, %edx

]
2 irmovl $0x100,%esp
3 rmmovl %edx,0(%esp)
4 popl %esp

5 nop

6 nop

7

rrmovl %esp,%eax
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The two nop instructions will cause the popl instruction to be in the write-back
stage when the rrmovl instruction is in the decode stage. If the two forwarding
sources in the write-back stage are given the wrong priority, then register %eax
will be set to the incremented program counter rather than the value read from
memory.

Solution to Problem 4.32 (page 429)
This logic only needs to check the five forwarding sources:

int d_valB = [

d_srcB == e_dstE : e_valE; # Forward valE from execute
d_srcB == M_dstM : m_vallM; # Forward valM from memory
d_srcB == M_dstE : M_valE; # Forward valE from memory
d_srcB == W_dstM : W_vallM; # Forward valM from write back
d_srcB == W_dstE : W_valE; # Forward valE from write back

1 : d_rvalB; # Use value read from register file
1;
Solution to Problem 4.33 (page 430)
This change would not handle the case where a conditional move fails to satisfy
the condition, and therefore sets the dstE value to RNONE. The resulting value could

get forwarded to the next instruction, even though the conditional transfer does
not occur.

irmovl $0x123,%eax

;
2 irmovl $0x321,%edx

3 xorl %ecx,hecx # CC = 100

4 cmovne ‘eax,khedx # Not transferred
5 addl Y%edx,%edx # Should be 0x642
6 halt

This code initializes register %edx to 0x321. The conditional data transfer does not
take place, and so the final addl instruction should double the value in %edx to
0x642. With the altered design, however, the conditional move source value 0x321
gets forwarded into ALU input valA, while input valB correctly gets operand value
0x123. These inputs get added to produce result 0x444.

Solution to Problem 4.34 (page 431)
This code completes the computation of the status code for this instruction.

## Update the status

int m_stat = [
dmem_error : SADR;
1 : M_stat;

1;

Solution to Problem 4.35 (page 439)

The following test program is designed to set up control combination A (Fig-
ure 4.67) and detect whether something goes wrong:
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1 # Code to generate a combination of not-taken branch and ret
2 irmovl Stack, %esp

3 irmovl rtnp,’%eax

4 pushl %eax # Set up return pointer

5 xorl Y%eax,’%eax # Set Z condition code

6 jne target # Not taken (First part of combination)
7 irmovl $1,%eax # Should execute this

8 halt

9 target: ret # Second part of combination

10 irmovl $2,%ebx # Should not execute this

11 halt

12 rtop: irmovl $3,%edx # Should not execute this

13 halt

14 .pos 0x40

15 Stack:

This program is designed so that if something goes wrong (for example, if the
ret instruction is actually executed), then the program will execute one of the
extra irmovl instructions and then halt. Thus, an error in the pipeline would cause
some register to be updated incorrectly. This code illustrates the care required to
implement a test program. It must set up a potential error condition and then
detect whether or not an error occurs.

Solution to Problem 4.36 (page 440)

The following test program is designed to set up control combination B (Fig-
ure 4.67). The simulator will detect a case where the bubble and stall control signals
for a pipeline register are both set to zero, and so our test program need only set
up the combination for it to be detected. The biggest challenge is to make the
program do something sensible when handled correctly.

# Test instruction that modifies J%esp followed by ret

1

2 irmovl mem,%ebx

3 mrmovl O(%ebx),%esp # Sets Jesp to point to return point
4 ret # Returns to return point

5 halt #

6 rtopt: irmovl $5,%esi # Return point

7 halt

8 .pos 0x40

9 mem: .long stack # Holds desired stack pointer

10 .pos 0x50

11 stack: .long rtnpt # Top of stack: Holds return point

This program uses two initialized word in memory. The first word (mem) holds the
address of the second (stack—the desired stack pointer). The second word holds
the address of the desired return point for the ret instruction. The program loads
the stack pointer into %esp and executes the ret instruction.
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Solution to Problem 4.37 (page 441)

From Figure 4.66, we can see that pipeline register D must be stalled for a load/use
hazard.

bool D_stall =
# Conditions for a load/use hazard
E_icode in { IMRMOVL, IPOPL } &&
E_dstM in { d_srcA, d_srcB };

Solution to Problem 4.38 (page 442)
From Figure 4.66, we can see that pipeline register E must be set to bubble for a
load/use hazard or for a mispredicted branch:

bool E_bubble =
# Mispredicted branch
(E_icode == IJXX && 'e_Cnd) ||
# Conditions for a load/use hazard
E_icode in { IMRMOVL, IPOPL } &&
E_dstM in { d_srcA, d_srcB};

Solution to Problem 4.39 (page 442)
This control requires examining the code of the executing instruction and checking
for exceptions further down the pipeline.

## Should the condition codes be updated?
bool set_cc = E_icode == IOPL &&
# State changes only during normal operation
Im_stat in { SADR, SINS, SHLT } && !'W_stat in { SADR, SINS, SHLT };

Solution to Problem 4.40 (page 442)
Injecting a bubble into the memory stage on the next cycle involves checking for
an exception in either the memory or the write-back stage during the current cycle.

# Start injecting bubbles as soon as exception passes through memory stage
bool M_bubble = m_stat in { SADR, SINS, SHLT } || W_stat in { SADR, SINS, SHLT };

For stalling the write-back stage, we check only the status of the instruction
in this stage. If we also stalled when an excepting instruction was in the memory
stage, then this instruction would not be able to enter the write-back stage.

bool W_stall = W_stat in { SADR, SINS, SHLT };

Solution to Problem 4.41 (page 446)

We would then have a misprediction frequency of 0.35, giving mp = 0.20 x 0.35 x
2 =0.14, giving an overall CPI of 1.25. This seems like a fairly marginal gain, but
it would be worthwhile if the cost of implementing the new branch prediction
strategy were not too high.
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Solution to Problem 4.42 (page 446)

This simplified analysis, where we focus on the inner loop, is a useful way to
estimate program performance. As long as the array is sufficiently large, the time
spent in other parts of the code will be negligible.

A. The inner loop of the code using the conditional jump has 11 instructions, all
of which are executed when the array element is zero or negative, and 10 of
which are executed when the array element is positive. The average is 10.5.
The inner loop of the code using the conditional move has 10 instructions,
all of which are executed every time.

B. The loop-closing jump will be predicted correctly, except when the loop
terminates. For a very long array, this one misprediction will have negligible
effect on the performance. The only other source of bubbles for the jump-
based code is the conditional jump depending on whether or not the array
element is positive. This will cause two bubbles, but it only occurs 50% of
the time, so the average is 1.0. There are no bubbles in the conditional move
code.

C. Our conditional jump code requires an average of 10.5 + 1.0 = 11.5 cycles
per array element (11 cycles in the best case and 12 cycles in the worst),
while our conditional move code requires 10.0 cycles in all cases.

Our pipeline has a branch misprediction penalty of only two cycles—far better
than those for the deep pipelines of higher-performance processors. As a result,
using conditional moves does not affect program performance very much.
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The biggest speedup you’ll ever get with a program will be
when you first get it working.

—John K. Ousterhout

The primary objective in writing a program must be to make it work correctly
under all possible conditions. A program that runs fast but gives incorrect results
serves no useful purpose. Programmers must write clear and concise code, not only
so that they can make sense of it, but also so that others can read and understand
the code during code reviews and when modifications are required later.

On the other hand, there are many occasions when making a program run
fast is also an important consideration. If a program must process video frames or
network packets in real time, then a slow-running program will not provide the
needed functionality. When a computation task is so demanding that it requires
days or weeks to execute, then making it run just 20% faster can have significant
impact. In this chapter, we will explore how to make programs run faster via
several different types of program optimization.

Writing an efficient program requires several types of activities. First, we
must select an appropriate set of algorithms and data structures. Second, we
must write source code that the compiler can effectively optimize to turn into
efficient executable code. For this second part, it is important to understand the
capabilities and limitations of optimizing compilers. Seemingly minor changes in
how a program is written can make large differences in how well a compiler can
optimize it. Some programming languages are more easily optimized than others.
Some features of C, such as the ability to perform pointer arithmetic and casting,
make it challenging for a compiler to optimize. Programmers can often write their
programs in ways that make it easier for compilers to generate efficient code. A
third technique for dealing with especially demanding computations is to divide
a task into portions that can be computed in parallel, on some combination of
multiple cores and multiple processors. We will defer this aspect of performance
enhancement to Chapter 12. Even when exploiting parallelism, it is important that
each parallel thread execute with maximum performance, and so the material of
this chapter remains relevant in any case.

In approaching program development and optimization, we must consider
how the code will be used and what critical factors affect it. In general, program-
mers must make a trade-off between how easy a program is to implement and
maintain, and how fast it runs. At an algorithmic level, a simple insertion sort can
be programmed in a matter of minutes, whereas a highly efficient sort routine
may take a day or more to implement and optimize. At the coding level, many
low-level optimizations tend to reduce code readability and modularity, making
the programs more susceptible to bugs and more difficult to modify or extend.
For code that will be executed repeatedly in a performance-critical environment,
extensive optimization may be appropriate. One challenge is to maintain some
degree of elegance and readability in the code despite extensive transformations.

We describe a number of techniques for improving code performance. Ideally,
a compiler would be able to take whatever code we write and generate the most
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efficient possible machine-level program having the specified behavior. Modern
compilers employ sophisticated forms of analysis and optimization, and they keep
getting better. Even the best compilers, however, can be thwarted by optimization
blockers—aspects of the program’s behavior that depend strongly on the execu-
tion environment. Programmers must assist the compiler by writing code that can
be optimized readily.

The first step in optimizing a program is to eliminate unnecessary work, mak-
ing the code perform its intended task as efficiently as possible. This includes
eliminating unnecessary function calls, conditional tests, and memory references.
These optimizations do not depend on any specific properties of the target ma-
chine.

To maximize the performance of a program, both the programmer and the
compiler require a model of the target machine, specifying how instructions are
processed and the timing characteristics of the different operations. For example,
the compiler must know timing information to be able to decide whether it should
use a multiply instruction or some combination of shifts and adds. Modern com-
puters use sophisticated techniques to process a machine-level program, executing
many instructions in parallel and possibly in a different order than they appear in
the program. Programmers must understand how these processors work to be
able to tune their programs for maximum speed. We present a high-level model
of such a machine based on recent designs of Intel and AMD processors. We also
devise a graphical data-flow notation to visualize the execution of instructions by
the processor, with which we can predict program performance.

With this understanding of processor operation, we can take a second
step in program optimization, exploiting the capability of processors to provide
instruction-level parallelism, executing multiple instructions simultaneously. We
cover several program transformations that reduce the data dependencies be-
tween different parts of a computation, increasing the degree of parallelism with
which they can be executed.

We conclude the chapter by discussing issues related to optimizing large pro-
grams. We describe the use of code profilers—tools that measure the performance
of different parts of a program. This analysis can help find inefficiencies in the code
and identify the parts of the program on which we should focus our optimization
efforts. Finally, we present an important observation, known as Amdahl’s law,
which quantifies the overall effect of optimizing some portion of a system.

In this presentation, we make code optimization look like a simple linear
process of applying a series of transformations to the code in a particular order.
In fact, the task is not nearly so straightforward. A fair amount of trial-and-
error experimentation is required. This is especially true as we approach the later
optimization stages, where seemingly small changes can cause major changes in
performance, while some very promising techniques prove ineffective. As we
will see in the examples that follow, it can be difficult to explain exactly why a
particular code sequence has a particular execution time. Performance can depend
on many detailed features of the processor design for which we have relatively
little documentation or understanding. This is another reason to try a number of
different variations and combinations of techniques.
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Studying the assembly-code representation of a program is one of the most
effective means for gaining an understanding of the compiler and how the gen-
erated code will run. A good strategy is to start by looking carefully at the code
for the inner loops, identifying performance-reducing attributes such as excessive
memory references and poor use of registers. Starting with the assembly code, we
can also predict what operations will be performed in parallel and how well they
will use the processor resources. As we will see, we can often determine the time
(or at least a lower bound on the time) required to execute a loop by identifying
critical paths, chains of data dependencies that form during repeated executions
of a loop. We can then go back and modify the source code to try to steer the
compiler toward more efficient implementations.

Most major compilers, including Gcc, are continually being updated and im-
proved, especially in terms of their optimization abilities. One useful strategy is to
do only as much rewriting of a program as is required to get it to the point where
the compiler can then generate efficient code. By this means, we avoid compro-
mising the readability, modularity, and portability of the code as much as if we had
to work with a compiler of only minimal capabilities. Again, it helps to iteratively
modify the code and analyze its performance both through measurements and by
examining the generated assembly code.

To novice programmers, it might seem strange to keep modifying the source
code in an attempt to coax the compiler into generating efficient code, but this
is indeed how many high-performance programs are written. Compared to the
alternative of writing code in assembly language, this indirect approach has the
advantage that the resulting code will still run on other machines, although per-
haps not with peak performance.

5.1 Capabilities and Limitations of Optimizing Compilers

Modern compilers employ sophisticated algorithms to determine what values are
computed in a program and how they are used. They can then exploit opportuni-
ties to simplify expressions, to use a single computation in several different places,
and to reduce the number of times a given computation must be performed. Most
compilers, including Gcc, provide users with some control over which optimiza-
tions they apply. As discussed in Chapter 3, the simplest control is to specify the
optimization level. For example, invoking Gce with the command-line flag ‘-01’
will cause it to apply a basic set of optimizations. As discussed in Web Aside
ASM:OPT, invoking Gce with flag ‘-02’ or ‘-03’ will cause it to apply more extensive
optimizations. These can further improve program performance, but they may ex-
pand the program size and they may make the program more difficult to debug
using standard debugging tools. For our presentation, we will mostly consider code
compiled with optimization level 1, even though optimization level 2 has become
the accepted standard for most Gee users. We purposely limit the level of opti-
mization to demonstrate how different ways of writing a function in C can affect
the efficiency of the code generated by a compiler. We will find that we can write
C code that, when compiled just with optimization level 1, vastly outperforms a
more naive version compiled with the highest possible optimization levels.
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Compilers must be careful to apply only safe optimizations to a program,
meaning that the resulting program will have the exact same behavior as would
an unoptimized version for all possible cases the program may encounter, up to
the limits of the guarantees provided by the C language standards. Constraining
the compiler to perform only safe optimizations eliminates possible sources of
undesired run-time behavior, but it also means that the programmer must make
more of an effort to write programs in a way that the compiler can then transform
into efficient machine-level code. To appreciate the challenges of deciding which
program transformations are safe or not, consider the following two procedures:

void twiddlel(int *xp, int *yp)

1
2 o

3 *XP += *yp;

4 *Xp = *yp;

5 %

6

7 void twiddle2(int *xp, int *yp)
8 {

9 *Xp += 2% *yp;

0}

At first glance, both procedures seem to have identical behavior. They both
add twice the value stored at the location designated by pointer yp to that desig-
nated by pointer xp. On the other hand, function twiddle2 is more efficient. It
requires only three memory references (read *xp, read *yp, write *xp), whereas
twiddlel requires six (two reads of *xp, two reads of *yp, and two writes of *xp).
Hence, if a compiler is given procedure twiddlel to compile, one might think
it could generate more efficient code based on the computations performed by
twiddle2.

Consider, however, the case in which xp and yp are equal. Then function
twiddlel will perform the following computations:

3 *xp += *xp; /* Double value at xp */
4 *xp += *xp; /* Double value at xp */

The result will be that the value at xp will be increased by a factor of 4. On the
other hand, function twiddle2 will perform the following computation:

9 *xXp += 2% xxp; /* Triple value at xp */

The result will be that the value at xp will be increased by a factor of 3. The compiler
knows nothing about how twiddlel will be called, and so it must assume that
arguments xp and yp can be equal. It therefore cannot generate code in the style
of twiddle2 as an optimized version of twiddlel.

The case where two pointers may designate the same memory location is
known as memory aliasing. In performing only safe optimizations, the compiler
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must assume that different pointers may be aliased. As another example, for a
program with pointer variables p and q, consider the following code sequence:

x = 1000; y = 3000;

*q =vy; /% 3000 */

*p = x; /% 1000 */

tl = xq; /* 1000 or 3000 */

The value computed for t1 depends on whether or not pointers p and q are
aliased—if not, it will equal 3000, but if so it will equal 1000. This leads to one
of the major optimization blockers, aspects of programs that can severely limit
the opportunities for a compiler to generate optimized code. If a compiler cannot
determine whether or not two pointers may be aliased, it must assume that either
case is possible, limiting the set of possible optimizations.

Practice Problem 5.1

The following problem illustrates the way memory aliasing can cause unexpected
program behavior. Consider the following procedure to swap two values:

1 /* Swap value x at xp with value y at yp */
2 void swap(int *xp, int *yp)

3 {

4 *Xp = *Xp + *yp; /* xty */

5 ¥yp = *Xp — *yp; /* xty-y = x */

6 *Xp = *Xp — *yp; /* xty-x =y */

7}

If this procedure is called with xp equal to yp, what effect will it have?

A second optimization blocker is due to function calls. As an example, con-
sider the following two procedures:

int £(0);
int func1() {

return £() + £ + £ + £Q;

int func2() {
return 4*f();

O 0 N O L A W N =
-

}

It might seem at first that both compute the same result, but with func2 calling £
only once, whereas func1 calls it four times. It is tempting to generate code in the
style of func2 when given func1 as the source.
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Consider, however, the following code for £:

int counter = 0;

1
2

3 int £O {
4 return counter++;
5

}

This function has a side effect—it modifies some part of the global program state.
Changing the number of times it gets called changes the program behavior. In
particular, a call to func1 would return 0 4+ 1+ 2 4+ 3 = 6, whereas a call to func2
would return 4 - 0 = 0, assuming both started with global variable counter set to 0.
Most compilers do not try to determine whether a function is free of side ef-
fects and hence is a candidate for optimizations such as those attempted in func2.
Instead, the compiler assumes the worst case and leaves function calls intact.

Aside Optimizing function calls by inline substitution

As described in Web Aside Asm:0PT, code involving function calls can be optimized by a process known
as inline substitution (or simply “inlining”), where the function call is replaced by the code for the body
of the function. For example, we can expand the code for func1 by substituting four instantiations of
function f£:

/* Result of inlining f in funcl */

1

2 int funclin() {

3 int t = counter++; /* +0 */
4 t += counter++; /* +1 x/
5 t += counter++; /* +2 x/
6 t += counter++; /* +3 x/
7 return t;

8

This transformation both reduces the overhead of the function calls and allows further optimization of
the expanded code. For example, the compiler can consolidate the updates of global variable counter
in funclin to generate an optimized version of the function:

/* Optimization of inlined code */

1

2 int funclopt() {

3 int t = 4 * counter + 6;
4 counter = t + 4;

5 return t;

6 X

This code faithfully reproduces the behavior of func1i for this particular definition of function f.

Recent versions of Gce attempt this form of optimization, either when directed to with the
command-line option ‘-finline’ or for optimization levels 2 or higher. Since we are considering
optimization level 1 in our presentation, we will assume that the compiler does not perform inline
substitution.



480 Chapter 5 Optimizing Program Performance

Among compilers, Gce is considered adequate, but not exceptional, in terms
of its optimization capabilities. It performs basic optimizations, but it does not per-
form the radical transformations on programs that more “aggressive” compilers
do. As a consequence, programmers using GcCc must put more effort into writing
programs in a way that simplifies the compiler’s task of generating efficient code.

5.2 Expressing Program Performance

We introduce the metric cycles per element, abbreviated “CPE,” as a way to
express program performance in a way that can guide us in improving the code.
CPE measurements help us understand the loop performance of an iterative
program at a detailed level. Itis appropriate for programs that perform a repetitive
computation, such as processing the pixels in an image or computing the elements
in a matrix product.

The sequencing of activities by a processor is controlled by a clock providing
a regular signal of some frequency, usually expressed in gigahertz (GHz), billions
of cycles per second. For example, when product literature characterizes a system
as a “4 GHz” processor, it means that the processor clock runs at 4.0 x 10° cycles
per second. The time required for each clock cycle is given by the reciprocal of
the clock frequency. These typically are expressed in nanoseconds (1 nanosecond
is 10~ seconds), or picoseconds (1 picosecond is 10712 seconds). For example,
the period of a 4 GHz clock can be expressed as either 0.25 nanoseconds or 250
picoseconds. From a programmer’s perspective, it is more instructive to express
measurements in clock cycles rather than nanoseconds or picoseconds. That way,
the measurements express how many instructions are being executed rather than
how fast the clock runs.

Many procedures contain a loop that iterates over a set of elements. For
example, functions psuml and psum?2 in Figure 5.1 both compute the prefix sum

of a vector of length n. For a vector a = (ag, ay, . . ., a,_1), the prefix sum p =
(pPo> P1s - - - » Pn—1) 1s defined as
Po=4do
(5.1)

pi=pi-1ta,1<i<n

Function psum1 computes one element of the result vector per iteration. The
second uses a technique known as loop unrolling to compute two elements per
iteration. We will explore the benefits of loop unrolling later in this chapter. See
Problems 5.11, 5.12, and 5.21 for more about analyzing and optimizing the prefix-
sum computation.

The time required by such a procedure can be characterized as a constant plus
afactor proportional to the number of elements processed. For example, Figure 5.2
shows a plot of the number of clock cycles required by the two functions for a
range of values of n. Using a least squares fit, we find that the run times (in clock
cycles) for psuml and psum2 can be approximated by the equations 496 + 10.0n
and 500 + 6.5n, respectively. These equations indicate an overhead of 496 to 500
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/* Compute prefix sum of vector a */
void psuml(float a[], float p[], long int n)

{
long int i;
pl0] = alo0];
for (i = 1; i < n; i++)
plil = pli-11 + alil;
}
void psum2(float a[], float p[l, long int n)
{
long int i;
plo] = al0];
for (i = 1; i < n-1; i+=2) {
float mid_val = p[i-1] + alil;
plil = mid_val;
pli+1] = mid_val + al[i+1];
}
/* For odd n, finish remaining element */
if (i < n)
plil = pli-1] + a[il;
}

Figure 5.1 Prefix-sum functions. These provide examples for how we express program
performance.
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Figure 5.2 Performance of prefix-sum functions. The slope of the lines indicates the
number of clock cycles per element (CPE).
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cycles due to the timing code and to initiate the procedure, set up the loop, and
complete the procedure, plus a linear factor of 6.5 or 10.0 cycles per element. For
large values of n (say, greater than 200), the run times will be dominated by the
linear factors. We refer to the coefficients in these terms as the effective number of
cycles per element, abbreviated “CPE.” We prefer measuring the number of cycles
per element rather than the number of cycles per iteration, because techniques such
as loop unrolling allow us to use fewer iterations to complete the computation,
but our ultimate concern is how fast the procedure will run for a given vector
length. We focus our efforts on minimizing the CPE for our computations. By this
measure, psum2, with a CPE of 6.50, is superior to psum1, with a CPE of 10.0.

Aside What is a least squares fit?

For a set of data points (x1, y1), - . . (x,,, y,), we often try to draw a line that best approximates the X-Y
trend represented by this data. With a least squares fit, we look for a line of the form y = mx + b that
minimizes the following error measure:

E(m,b)="Y_ (mx;+b—y)>

i=1,n

An algorithm for computing m and b can be derived by finding the derivatives of E(m, b) with respect
to m and b and setting them to 0.

Practice Problem 5.2

Later in this chapter, we will start with a single function and generate many differ-
ent variants that preserve the function’s behavior, but with different performance
characteristics. For three of these variants, we found that the run times (in clock
cycles) can be approximated by the following functions:

Version 1: 60 + 351
Version 2: 136 + 4n
Version 3: 157 4+ 1.25n

For what values of n would each version be the fastest of the three? Remember
that n will always be an integer.

5.3 Program Example

To demonstrate how an abstract program can be systematically transformed into
more efficient code, we will use a running example based on the vector data
structure shown in Figure 5.3. A vector is represented with two blocks of memory:
the header and the data array. The header is a structure declared as follows:
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len| len o 1 2 len—1

aaeal o [ [ ] - []

Figure 5.3 Vector abstract data type. A vector is represented by header information
plus array of designated length.

code/opt/vec.h
1 /* Create abstract data type for vector */
2 typedef struct {
3 long int len;
4 data_t *data;
5 } vec_rec, *vec_ptr;
code/opt/vec.h

The declaration uses data type data_t to designate the data type of the un-
derlying elements. In our evaluation, we measure the performance of our code for
integer (C int), single-precision floating-point (C float), and double-precision
floating-point (C double) data. We do this by compiling and running the program
separately for different type declarations, such as the following for data type int:

typedef int data_t;

We allocate the data array block to store the vector elements as an array of
len objects of type data_t.

Figure 5.4 shows some basic procedures for generating vectors, accessing vec-
tor elements, and determining the length of a vector. An important feature to note
is that get_vec_element, the vector access routine, performs bounds checking for
every vector reference. This code is similar to the array representations used in
many other languages, including Java. Bounds checking reduces the chances of
program error, but it can also slow down program execution.

As an optimization example, consider the code shown in Figure 5.5, which
combines all of the elements in a vector into a single value according to some
operation. By using different definitions of compile-time constants IDENT and
0P, the code can be recompiled to perform different operations on the data. In
particular, using the declarations

#tdefine IDENT O
#define OP +

it sums the elements of the vector. Using the declarations

#tdefine IDENT 1
#define OP *

it computes the product of the vector elements.
In our presentation, we will proceed through a series of transformations of
the code, writing different versions of the combining function. To gauge progress,
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code/opt/vec.c

1 /* Create vector of specified length */

2 vec_ptr new_vec(long int len)

3 {

4 /* Allocate header structure */

5 vec_ptr result = (vec_ptr) malloc(sizeof (vec_rec));
6 if (!result)

7 return NULL; /#* Couldn't allocate storage */

8 result->len = len;

9 /* Allocate array */

10 if (len > 0) {

1 data_t *data = (data_t *)calloc(len, sizeof(data_t));
12 if (!data) {

13 free((void *) result);

14 return NULL; /* Couldn't allocate storage */
15 }

16 result->data = data;

17 ¥

18 else

19 result—->data = NULL;

20 return result;

21 }

22

23 /*

24 * Retrieve vector element and store at dest.

25 * Return 0 (out of bounds) or 1 (successful)

26 */

27 int get_vec_element(vec_ptr v, long int index, data_t *dest)
28 o

29 if (index < 0 || index >= v->len)

30 return O;

31 *dest = v—>datal[index];

32 return 1;

33 }

34

35 /* Return length of vector */
36  long int vec_length(vec_ptr v)

37 {
38 return v->len;
39}

code/opt/vec.c

Figure 5.4 Implementation of vector abstract data type. In the actual program, data
type data_t is declared to be int, float, or double.
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1 /* Implementation with maximum use of data abstraction */
2 void combinel(vec_ptr v, data_t *dest)

3 o

4 long int i;

5

6 *dest = IDENT;

7 for (i = 0; i < vec_length(v); i++) {
8 data_t val;

9 get_vec_element (v, i, &val);

10 *dest = *dest OP val;

11 }

12}

Figure 5.5 Initial implementation of combining operation. Using different declara-
tions of identity element IDENT and combining operation OP, we can measure the routine
for different operations.

we will measure the CPE performance of the functions on a machine with an
Intel Core 17 processor, which we will refer to as our reference machine. Some
characteristics of this processor were given in Section 3.1. These measurements
characterize performance in terms of how the programs run on just one particular
machine, and so there is no guarantee of comparable performance on other
combinations of machine and compiler. However, we have compared the results
with those for a number of different compiler/processor combinations and found
them quite comparable.

As we proceed through a set of transformations, we will find that many lead
to only minimal performance gains, while others have more dramatic effects.
Determining which combinations of transformations to apply is indeed part of
the “black art” of writing fast code. Some combinations that do not provide
measurable benefits are indeed ineffective, while others are important as ways to
enable further optimizations by the compiler. In our experience, the best approach
involves a combination of experimentation and analysis: repeatedly attempting
different approaches, performing measurements, and examining the assembly-
code representations to identify underlying performance bottlenecks.

As a starting point, the following are CPE measurements for combinel run-
ning on our reference machine, trying all combinations of data type and combining
operation. For single-precision and double-precision floating-point data, our ex-
periments on this machine gave identical performance for addition, but differing
performance for multiplication. We therefore report five CPE values: integer ad-
dition and multiplication, floating-point addition, single-precision multiplication
(labeled “F *”), and double-precision multiplication (labeled “D *”).

Integer Floating point
Function = Page Method + * + F * D *

combinel 485  Abstract unoptimized 29.02 2921 2740 2790 27.36
combinel 485  Abstract -01 12.00 12.00 12.00 12.01 13.00

485
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We can see that our measurements are somewhat imprecise. The more likely
CPE number for integer sum and product is 29.00, rather than 29.02 or 29.21.
Rather than “fudging” our numbers to make them look good, we will present the
measurements we actually obtained. There are many factors that complicate the
task of reliably measuring the precise number of clock cycles required by some
code sequence. It helps when examining these numbers to mentally round the
results up or down by a few hundredths of a clock cycle.

The unoptimized code provides a direct translation of the C code into machine
code, often with obvious inefficiencies. By simply giving the command-line option
‘-01’, we enable a basic set of optimizations. As can be seen, this significantly
improves the program performance—more than a factor of two—with no effort
on behalf of the programmer. In general, it is good to get into the habit of enabling
at least this level of optimization. For the remainder of our measurements, we use
optimization levels 1 and higher in generating and measuring our programs.

5.4 Eliminating Loop Inefficiencies

Observe that procedure combinel, as shown in Figure 5.5, calls function vec_
length as the test condition of the for loop. Recall from our discussion of how
to translate code containing loops into machine-level programs (Section 3.6.5)
that the test condition must be evaluated on every iteration of the loop. On the
other hand, the length of the vector does not change as the loop proceeds. We
could therefore compute the vector length only once and use this value in our test
condition.

Figure 5.6 shows a modified version called combine2, which calls vec_length
at the beginning and assigns the result to a local variable length. This transfor-
mation has noticeable effect on the overall performance for some data types and

/* Move call to vec_length out of loop */

.
2 void combine2(vec_ptr v, data_t *dest)
30 o
4 long int i;

5 long int length = vec_length(v);
6

7 *dest = IDENT;

8 for (i = 0; i < length; i++) {

9 data_t val;

10 get_vec_element (v, i, &val);

1 *dest = *dest OP val;

12 ¥

13}

Figure 5.6 Improving the efficiency of the loop test. By moving the call to vec_
length out of the loop test, we eliminate the need to execute it on every iteration.
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operations, and minimal or even none for others. In any case, this transformation is
required to eliminate inefficiencies that would become bottlenecks as we attempt
further optimizations.

Integer Floating point
Function Page  Method + * + F * D %
combinel 485  Abstract -01 12.00 12.00 12.00 12.01 13.00

combine? 486 Move vec_length 8.03 8.09 10.09 11.09 12.08

This optimization is an instance of a general class of optimizations known as
code motion. They involve identifying a computation that is performed multiple
times (e.g., within a loop), but such that the result of the computation will not
change. We can therefore move the computation to an earlier section of the code
that does not get evaluated as often. In this case, we moved the call to vec_length
from within the loop to just before the loop.

Optimizing compilers attempt to perform code motion. Unfortunately, as dis-
cussed previously, they are typically very cautious about making transformations
that change where or how many times a procedure is called. They cannot reliably
detect whether or not a function will have side effects, and so they assume that
it might. For example, if vec_length had some side effect, then combinel and
combine2 could have different behaviors. To improve the code, the programmer
must often help the compiler by explicitly performing code motion.

As an extreme example of the loop inefficiency seen in combine1, consider the
procedure lower1 shown in Figure 5.7. This procedure is styled after routines sub-
mitted by several students as part of a network programming project. Its purpose
is to convert all of the uppercase letters in a string to lowercase. The procedure
steps through the string, converting each uppercase character to lowercase. The
case conversion involves shifting characters in the range ‘A’ to ‘Z’ to the range ‘a’
to ‘z.

The library function strlen is called as part of the loop test of loweri. Al-
though strlenis typically implemented with special x86 string-processing instruc-
tions, its overall execution is similar to the simple version that is also shown in
Figure 5.7. Since strings in C are null-terminated character sequences, strlen can
only determine the length of a string by stepping through the sequence until it
hits a null character. For a string of length n, strlen takes time proportional to n.
Since strlen is called in each of the n iterations of lower1, the overall run time
of lower1 is quadratic in the string length, proportional to n?.

This analysis is confirmed by actual measurements of the functions for differ-
ent length strings, as shown in Figure 5.8 (and using the library version of strlen).
The graph of the run time for lower1 rises steeply as the string length increases
(Figure 5.8(a)). Figure 5.8(b) shows the run times for seven different lengths (not
the same as shown in the graph), each of which is a power of 2. Observe that for
lowerl each doubling of the string length causes a quadrupling of the run time.
This is a clear indicator of a quadratic run time. For a string of length 1,048,576,
lowerl requires over 13 minutes of CPU time.
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1 /* Convert string to lowercase: slow */
2 void lowerl(char *s)

3 o

4 int i;

5

6 for (i = 0; i < strlen(s); i++)

7 if (s[i] >= 'A' && s[i] <= 'Z")
8 s[i] -= ("A' - 'a');

9 %

10

11 /* Convert string to lowercase: faster */
12 void lower2(char *s)

13 o

14 int i;

15 int len = strlen(s);

16

17 for (i = 0; i < len; i++)

18 if (s[i] >= 'A' && s[i] <= 'Z")
19 s[i] -= ("A' - 'a');

20}

21

22 /* Sample implementation of library function strlen */
23 /% Compute length of string */

24 size_t strlen(const char *s)

25 A

26 int length = 0;

27 while (*s != '\0') {

28 S++;

29 length++;

30 }

31 return length;

32 }

Figure 5.7 Lowercase conversion routines. The two procedures have radically different
performance.

Function lower2 shown in Figure 5.7 is identical to that of lowerl, except
that we have moved the call to strlen out of the loop. The performance im-
proves dramatically. For a string length of 1,048,576, the function requires just 1.5
milliseconds—over 500,000 times faster than lower1. Each doubling of the string
length causes a doubling of the run time—a clear indicator of linear run time. For
longer strings, the run-time improvement will be even greater.

In an ideal world, a compiler would recognize that each call to strlen in
the loop test will return the same result, and thus the call could be moved out of
the loop. This would require a very sophisticated analysis, since strlen checks
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Function 16,384 32,768 65,536 131,072 262,144 524,288 1,048,576
lowerl 0.19 0.77 3.08 12.34 49.39 198.42 791.22
lower2 0.0000 0.0000 0.0001 0.0002 0.0004 0.0008 0.0015
(b)

Figure 5.8 Comparative performance of lowercase conversion routines. The original
code lowerl has a quadratic run time due to an inefficient loop structure. The modified
code lower2 has a linear run time.

the elements of the string and these values are changing as lower1 proceeds. The
compiler would need to detect that even though the characters within the string are
changing, none are being set from nonzero to zero, or vice versa. Such an analysis
is well beyond the ability of even the most sophisticated compilers, even if they
employ inlining, and so programmers must do such transformations themselves.
This example illustrates a common problem in writing programs, in which a
seemingly trivial piece of code has a hidden asymptotic inefficiency. One would
not expect a lowercase conversion routine to be a limiting factor in a program’s
performance. Typically, programs are tested and analyzed on small data sets, for
which the performance of lower1 is adequate. When the program is ultimately
deployed, however, it is entirely possible that the procedure could be applied to
strings of over one million characters. All of a sudden this benign piece of code
has become a major performance bottleneck. By contrast, the performance of
lower2 will be adequate for strings of arbitrary length. Stories abound of major
programming projects in which problems of this sort occur. Part of the job of a
competent programmer is to avoid ever introducing such asymptotic inefficiency.
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Practice Problem 5.3
Consider the following functions:

int min(int x, int y) { return x <y ? x : y; }
int max(int x, int y) { return x <y ?y : x; }
void incr(int *xp, int v) { *xp += v; }

int square(int x) { return x*x; }

The following three code fragments call these functions:
A. for (i = min(x, y); i < max(x, y); incr(&i, 1))

t += square(i);

B. for (i = max(x, y) - 1; i >= min(x, y); incr(&i, -1))
t += square(i);

C. int low = min(x, y);
int high = max(x, y);

for (i = low; i < high; incr(&i, 1))
t += square(i);

Assume x equals 10 and y equals 100. Fill in the following table indicating the
number of times each of the four functions is called in code fragments A—C:

Code min max incr square

A.
B.
C.

5.5 Reducing Procedure Calls

As we have seen, procedure calls can incur overhead and also block most forms of
program optimization. We can see in the code for combine?2 (Figure 5.6) that get _
vec_element is called on every loop iteration to retrieve the next vector element.
This function checks the vector index i against the loop bounds with every vector
reference, a clear source of inefficiency. Bounds checking might be a useful feature
when dealing with arbitrary array accesses, but a simple analysis of the code for
combine2 shows that all references will be valid.

Suppose instead that we add a function get_vec_start to our abstract data
type. This function returns the starting address of the data array, as shown in
Figure 5.9. We could then write the procedure shown as combine3 in this figure,
having no function calls in the inner loop. Rather than making a function call to
retrieve each vector element, it accesses the array directly. A purist might say that
this transformation seriously impairs the program modularity. In principle, the
user of the vector abstract data type should not even need to know that the vector
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code/opt/vec.c

1 data_t *get_vec_start(vec_ptr v)
2 A
3 return v->data;
4}
code/opt/vec.c
1 /* Direct access to vector data */
2 void combine3(vec_ptr v, data_t *dest)
3 o
4 long int i;
5 long int length = vec_length(v);
6 data_t *data = get_vec_start(v);
7
8 *dest = IDENT;
9 for (i = 0; i < length; i++) {
10 *dest = *dest OP datal[i];
11 }
12 }

Figure 5.9 Eliminating function calls within the loop. The resulting code runs much
faster, at some cost in program modularity.

contents are stored as an array, rather than as some other data structure such as a
linked list. A more pragmatic programmer would argue that this transformation
is a necessary step toward achieving high-performance results.

Integer Floating point

Function Page  Method + * + F * D *

combine?2 486 Move vec_length  8.03 8.09 10.09 11.09 12.08
combine3 491 Direct data access 6.01 8.01 1001 11.01 12.02

The resulting improvement is surprisingly modest, only improving the per-
formance for integer sum. Again, however, this inefficiency would become a bot-
tleneck as we attempt further optimizations. We will return to this function later
(Section 5.11.2) and see why the repeated bounds checking by combine?2 does not
make its performance much worse. For applications in which performance is a sig-
nificant issue, one must often compromise modularity and abstraction for speed.
It is wise to include documentation on the transformations applied, as well as the
assumptions that led to them, in case the code needs to be modified later.

5.6 Eliminating Unneeded Memory References

The code for combine3 accumulates the value being computed by the combining
operation at the location designated by the pointer dest. This attribute can be
seen by examining the assembly code generated for the compiled loop. We show
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here the x86-64 code generated for data type float and with multiplication as the
combining operation:

combine3: data_t = float, OP = *

i in %rdx, data in Y%rax, dest in %rbp

1 .L498: loop:

2 movss (%rbp), %xmmO Read product from dest

3 mulss  (Y%rax,%rdx,4), %xmmO Multiply product by datal[i]
4 movss %xmm0, (%rbp) Store product at dest

5 addq $1, Yrdx Increment i

6 cmpq %rdx, %rl2 Compare i:1imit

7 jg .L498 If >, goto loop

Aside Understanding x86-64 floating-point code

We cover floating-point code for x86-64, the 64-bit version of the Intel instruction set in Web Aside
ASM:SSE, but the program examples we show in this chapter can readily be understood by anyone
familiar with IA32 code. Here, we briefly review the relevant aspects of x86-64 and its floating-point
instructions.

The x86-64 instruction set extends the 32-bit registers of IA32, such as %eax, %edi, and %esp, to
64-bit versions, with ‘r’ replacing ‘e’, e.g., %rax, %rdi, and %rsp. Eight more registers are available,
named %r8-J%r15, greatly improving the ability to hold temporary values in registers. Suffix ‘q’ is used
on integer instructions (e.g., addg, cmpq) to indicate 64-bit operations.

Floating-point data are held in a set of XMM registers, named %xmmO—%xmm15. Each of these
registers is 128 bits long, able to hold four single-precision (float) or two double-precision (double)
floating-point numbers. For our initial presentation, we will only make use of instructions that operate
on single values held in SSE registers.

The movss instruction copies one single-precision number. Like the various Mov instructions of
TIA32, both the source and the destination can be memory locations or registers, but it uses XMM
registers, rather than general-purpose registers. The mulss instruction multiplies single-precision num-
bers, updating its second operand with the product. Again, the source and destination operands can be
memory locations or XMM registers.

We see in this loop code that the address corresponding to pointer dest is held
in register %rbp (unlike in IA32, where %ebp has special use as a frame pointer,
its 64-bit counterpart %rbp can be used to hold arbitrary data). On iteration i, the
program reads the value at this location, multiplies it by datal[i], and stores the
result back at dest. This reading and writing is wasteful, since the value read from
dest at the beginning of each iteration should simply be the value written at the
end of the previous iteration.

We can eliminate this needless reading and writing of memory by rewriting the
code in the style of combine4 in Figure 5.10. We introduce a temporary variable
acc that is used in the loop to accumulate the computed value. The result is stored
at dest only after the loop has been completed. As the assembly code that follows
shows, the compiler can now use register %xmmO to hold the accumulated value.
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1 /* Accumulate result in local variable */
2 void combine4(vec_ptr v, data_t *dest)
3 o

4 long int i;

5 long int length = vec_length(v);

6 data_t *data = get_vec_start(v);

7 data_t acc = IDENT;

8

9 for (i = 0; i < length; i++) {

10 acc = acc 0P datal[i];

11 }

12 *dest = acc;

13}

Figure 5.10 Accumulating result in temporary. Holding the accumulated value in local
variable acc (short for “accumulator”) eliminates the need to retrieve it from memory
and write back the updated value on every loop iteration.

Compared to the loop in combine3, we have reduced the memory operations per
iteration from two reads and one write to just a single read.

combine4: data_t = float, OP = *

i in %rdx, data in %rax, limit in %rbp, acc in JxmmO

1 .1L488: loop:

2 mulss (%rax,%rdx,4), %xmmO Multiply acc by datal[i]
3 addq $1, %rdx Increment i

4 cmpq %rdx, %rbp Compare limit:i

5 jg .1L488 If >, goto loop

We see a significant improvement in program performance, as shown in the
following table:

Integer Floating point
Function = Page Method + * + F * D %
combine3 491  Direct data access 6.01 801 10.01 11.01 12.02

combine4 493  Accumulate in temporary 2.00 3.00 3.00 4.00 5.00

All of our times improve by at least a factor of 2.4 x, with the integer addition case
dropping to just two clock cycles per element.

Aside Expressing relative performance

493

The best way to express a performance improvement is as a ratio of the form 7,,;/T,,.,,, where T,;,; is
the time required for the original version and 7,,,,, is the time required by the modified version. This
will be a number greater than 1.0 if any real improvement occurred. We use the suffix ‘x’ to indicate

such a ratio, where the factor “2.4x” is expressed verbally as “2.4 times.”
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The more traditional way of expressing relative change as a percentage works well when the change
is small, but its definition is ambiguous. Should it be 100 - (7,;; — T},e1)/ T;rey OF possibly 100 - (T,,;; —
Tyew)/ Toia> OF something else? In addition, it is less instructive for large changes. Saying that “perfor-
mance improved by 140%” is more difficult to comprehend than simply saying that the performance
improved by a factor of 2.4.

Again, one might think that a compiler should be able to automatically trans-
form the combine3 code shown in Figure 5.9 to accumulate the value in a register,
as it does with the code for combine4 shown in Figure 5.10. In fact, however, the
two functions can have different behaviors due to memory aliasing. Consider, for
example, the case of integer data with multiplication as the operation and 1 as the
identity element. Let v = [2, 3, 5] be a vector of three elements and consider the
following two function calls:

combine3(v, get_vec_start(v) + 2);
combine4 (v, get_vec_start(v) + 2);

That is, we create an alias between the last element of the vector and the destina-
tion for storing the result. The two functions would then execute as follows:

Function Initial Before loop i=0 i=1 i=2 Final

combine3  [2,3, 5] [2.3.1] 2.3.2] [2.3,6] [2.3.36] [2.3.36]
combined  [2,3,5] 2.3, 5] 2.3.5] [2.3,5] [2.3.5] [2.3.30]

As shown previously, combine3 accumulates its result at the destination,
which in this case is the final vector element. This value is therefore set first to
1, then to 2 - 1 =2, and then to 3 -2 = 6. On the final iteration, this value is then
multiplied by itself to yield a final value of 36. For the case of combine4, the vector
remains unchanged until the end, when the final element is set to the computed
result1-2-3-5=30.

Of course, our example showing the distinction between combine3 and
combine4 is highly contrived. One could argue that the behavior of combine4
more closely matches the intention of the function description. Unfortunately, a
compiler cannot make a judgment about the conditions under which a function
might be used and what the programmer’s intentions might be. Instead, when
given combine3 to compile, the conservative approach is to keep reading and
writing memory, even though this is less efficient.

Practice Problem 5.4

When we use Gce to compile combine3 with command-line option ‘-02’, we get
code with substantially better CPE performance than with -01:



Function  Page

Method

Section 5.6 Eliminating Unneeded Memory References

Integer Floating point

+ * + F * D *

combine3 491
combine3 491
combined4 493

Compiled -01
Compiled -02

6.01 801 10.01 11.01 12.02
3.00 3.00 3.00 402 503

Accumulate in temporary 2.00  3.00 3.00 4.00 5.00

We achieve performance comparable to that for combine4, except for the case
of integer sum, but even it improves significantly. On examining the assembly code
generated by the compiler, we find an interesting variant for the inner loop:

combine3: data_t = float, OP = *, compiled —-02

i in %rdx, data in Y%rax, limit in Jrbp, dest at %rx12

Product in %xmmO

.L560:
mulss
addq

cmpq
movss

je

AN L AW N =

(%rax,%rdx,4), %xmmO

$1, %rdx
%rdx, %rbp
%xmmO, (%ri12)
.L560

loop:
Multiply product by datal[il]
Increment i
Compare limit:1
Store product at dest
If >, goto loop

We can compare this to the version created with optimization level 1:

combine3: data_t = float, OP = *, compiled -01

i in %rdx, data in %rax, dest in %rbp

.1498:
movss
mulss

addq

cmpq

!
2
3
4 movss
5
6
7 jg

(%rbp), %xmmO
(%rax,%rdx,4), %xmmO
%xmm0, (%rbp)

$1, %rdx

Y%rdx, %ri2

.L498

loop:
Read product from dest
Multiply product by datal[i]
Store product at dest
Increment i
Compare i:1imit

If >, goto loop

We see that, besides some reordering of instructions, the only difference is
that the more optimized version does not contain the movss implementing the
read from the location designated by dest (line 2).

A. How does the role of register %xmmO differ in these two loops?

B. Will the more optimized version faithfully implement the C code of com-
bine3, including when there is memory aliasing between dest and the vector

data?

C. Explain either why this optimization preserves the desired behavior, or give
an example where it would produce different results than the less optimized

code.
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With this final transformation, we reached a point where we require just 2-5
clock cycles for each element to be computed. This is a considerable improvement
over the original 11-13 cycles when we first enabled optimization. We would now
like to see just what factors are constraining the performance of our code and how
we can improve things even further.

5.7 Understanding Modern Processors

Up to this point, we have applied optimizations that did not rely on any features
of the target machine. They simply reduced the overhead of procedure calls and
eliminated some of the critical “optimization blockers” that cause difficulties
for optimizing compilers. As we seek to push the performance further, we must
consider optimizations that exploit the microarchitecture of the processor, that is,
the underlying system design by which a processor executes instructions. Getting
every last bit of performance requires a detailed analysis of the program as well as
code generation tuned for the target processor. Nonetheless, we can apply some
basic optimizations that will yield an overall performance improvement on a large
class of processors. The detailed performance results we report here may not hold
for other machines, but the general principles of operation and optimization apply
to a wide variety of machines.

To understand ways to improve performance, we require a basic understand-
ing of the microarchitectures of modern processors. Due to the large number of
transistors that can be integrated onto a single chip, modern microprocessors em-
ploy complex hardware that attempts to maximize program performance. One
result is that their actual operation is far different from the view that is perceived
by looking at machine-level programs. At the code level, it appears as if instruc-
tions are executed one at a time, where each instruction involves fetching values
from registers or memory, performing an operation, and storing results back to
a register or memory location. In the actual processor, a number of instructions
are evaluated simultaneously, a phenomenon referred to as instruction-level paral-
lelism. In some designs, there can be 100 or more instructions “in flight.” Elaborate
mechanisms are employed to make sure the behavior of this parallel execution
exactly captures the sequential semantic model required by the machine-level
program. This is one of the remarkable feats of modern microprocessors: they
employ complex and exotic microarchitectures, in which multiple instructions can
be executed in parallel, while presenting an operational view of simple sequential
instruction execution.

Although the detailed design of a modern microprocessor is well beyond
the scope of this book, having a general idea of the principles by which they
operate suffices to understand how they achieve instruction-level parallelism. We
will find that two different lower bounds characterize the maximum performance
of a program. The latency bound is encountered when a series of operations
must be performed in strict sequence, because the result of one operation is
required before the next one can begin. This bound can limit program performance
when the data dependencies in the code limit the ability of the processor to
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Figure 5.11 Instructi ol
Block diagram of a nstruction contro
modern processor. The Fetch Address
instruction control unit Retirement control
is responsible for reading unit Instruction
instructions from memory . nstruction |.Instructions cache
and generating a sequence file decode
of primitive operations.
The execution unit then L [operations
performs the operations Register Prediction
and indicates whether the updates OK?
branches were correctly
predicted. , , , , |
Branch FP mul/div FP add Functional
+integer +integer +integer units
Operation results Addr. Addr.
Data Data
Data
cache
Execution

exploit instruction-level parallelism. The throughput bound characterizes the raw
computing capacity of the processor’s functional units. This bound becomes the
ultimate limit on program performance.

5.7.1 Overall Operation

Figure 5.11 shows a very simplified view of a modern microprocessor. Our hy-
pothetical processor design is based loosely on the structure of the Intel Core i7
processor design, which is often referred to by its project code name “Nehalem”
[99]. The Nehalem microarchitecture typifies the high-end processors produced by
a number of manufacturers since the late 1990s. It is described in the industry as
being superscalar, which means it can perform multiple operations on every clock
cycle, and out-of-order, meaning that the order in which instructions execute need
not correspond to their ordering in the machine-level program. The overall design
has two main parts: the instruction control unit (ICU), which is responsible for
reading a sequence of instructions from memory and generating from these a set
of primitive operations to perform on program data, and the execution unit (EU),
which then executes these operations. Compared to the simple in-order pipeline
we studied in Chapter 4, out-of-order processors require far greater and more
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complex hardware, but they are better at achieving higher degrees of instruction-
level parallelism.

The ICU reads the instructions from an instruction cache—a special high-
speed memory containing the most recently accessed instructions. In general,
the ICU fetches well ahead of the currently executing instructions, so that it has
enough time to decode these and send operations down to the EU. One problem,
however, is that when a program hits a branch,! there are two possible directions
the program might go. The branch can be faken, with control passing to the branch
target. Alternatively, the branch can be not taken, with control passing to the next
instruction in the instruction sequence. Modern processors employ a technique
known as branch prediction, in which they guess whether or not a branch will be
taken and also predict the target address for the branch. Using a technique known
as speculative execution, the processor begins fetching and decoding instructions
at where it predicts the branch will go, and even begins executing these operations
before it has been determined whether or not the branch prediction was correct.
If it later determines that the branch was predicted incorrectly, it resets the state
to that at the branch point and begins fetching and executing instructions in the
other direction. The block labeled “Fetch control” incorporates branch prediction
to perform the task of determining which instructions to fetch.

The instruction decoding logic takes the actual program instructions and con-
verts them into a set of primitive operations (sometimes referred to as micro-
operations). Each of these operations performs some simple computational task
such as adding two numbers, reading data from memory, or writing data to mem-
ory. For machines with complex instructions, such as x86 processors, an instruction
can be decoded into a variable number of operations. The details of how instruc-
tions are decoded into sequences of more primitive operations varies between
machines, and this information is considered highly proprietary. Fortunately, we
can optimize our programs without knowing the low-level details of a particular
machine implementation.

In a typical x86 implementation, an instruction that only operates on registers,
such as

addl %eax,’%edx

is converted into a single operation. On the other hand, an instruction involving
one or more memory references, such as

addl %eax,4(%edx)

yields multiple operations, separating the memory references from the arithmetic
operations. This particular instruction would be decoded as three operations: one
to load a value from memory into the processor, one to add the loaded value to the

1. We use the term “branch” specifically to refer to conditional jump instructions. Other instructions
that can transfer control to multiple destinations, such as procedure return and indirect jumps, provide
similar challenges for the processor.
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value in register %eax, and one to store the result back to memory. This decoding
splits instructions to allow a division of labor among a set of dedicated hardware
units. These units can then execute the different parts of multiple instructions in
parallel.

The EU receives operations from the instruction fetch unit. Typically, it can
receive a number of them on each clock cycle. These operations are dispatched to
a set of functional units that perform the actual operations. These functional units
are specialized to handle specific types of operations. Our figure illustrates a typical
set of functional units, based on those of the Intel Core i7. We can see that three
functional units are dedicated to computation, while the remaining two are for
reading (load) and writing (store) memory. Each computational unit can perform
multiple different operations: all can perform at least basic integer operations,
such as addition and bit-wise logical operations. Floating-point operations and
integer multiplication require more complex hardware, and so these can only be
handled by specific functional units.

Reading and writing memory is implemented by the load and store units. The
load unit handles operations that read data from the memory into the processor.
This unit has an adder to perform address computations. Similarly, the store unit
handles operations that write data from the processor to the memory. It also has
an adder to perform address computations. As shown in the figure, the load and
store units access memory via a data cache, a high-speed memory containing the
most recently accessed data values.

With speculative execution, the operations are evaluated, but the final results
are not stored in the program registers or data memory until the processor can
be certain that these instructions should actually have been executed. Branch
operations are sent to the EU, not to determine where the branch should go, but
rather to determine whether or not they were predicted correctly. If the prediction
was incorrect, the EU will discard the results that have been computed beyond the
branch point. It will also signal the branch unit that the prediction was incorrect
and indicate the correct branch destination. In this case, the branch unit begins
fetching at the new location. As we saw in Section 3.6.6, such a misprediction incurs
a significant cost in performance. It takes a while before the new instructions can
be fetched, decoded, and sent to the execution units.

Within the ICU, the retirement unit keeps track of the ongoing processing and
makes sure that it obeys the sequential semantics of the machine-level program.
Our figure shows a register file containing the integer, floating-point, and more
recently SSE registers as part of the retirement unit, because this unit controls
the updating of these registers. As an instruction is decoded, information about
it is placed into a first-in, first-out queue. This information remains in the queue
until one of two outcomes occurs. First, once the operations for the instruction
have completed and any branch points leading to this instruction are confirmed as
having been correctly predicted, the instruction can be retired, with any updates to
the program registers being made. If some branch point leading to this instruction
was mispredicted, on the other hand, the instruction will be flushed, discarding
any results that may have been computed. By this means, mispredictions will not
alter the program state.
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As we have described, any updates to the program registers occur only as
instructions are being retired, and this takes place only after the processor can be
certain that any branches leading to this instruction have been correctly predicted.
To expedite the communication of results from one instruction to another, much
of this information is exchanged among the execution units, shown in the figure as
“Operation results.” As the arrows in the figure show, the execution units can send
results directly to each other. This is a more elaborate form of the data forwarding
techniques we incorporated into our simple processor design in Section 4.5.7.

The most common mechanism for controlling the communication of operands
among the execution units is called register renaming. When an instruction that up-
dates register r is decoded, a tag ¢ is generated giving a unique identifier to the re-
sult of the operation. An entry (r, t) is added to a table maintaining the association
between program register r and tag z for an operation that will update this register.
When a subsequent instruction using register r as an operand is decoded, the oper-
ation sent to the execution unit will contain 7 as the source for the operand value.
When some execution unit completes the first operation, it generates a result (v, )
indicating that the operation with tag r produced value v. Any operation waiting
for ¢ as a source will then use v as the source value, a form of data forwarding. By
this mechanism, values can be forwarded directly from one operation to another,
rather than being written to and read from the register file, enabling the second
operation to begin as soon as the first has completed. The renaming table only
contains entries for registers having pending write operations. When a decoded
instruction requires a register r, and there is no tag associated with this register,
the operand is retrieved directly from the register file. With register renaming, an
entire sequence of operations can be performed speculatively, even though the
registers are updated only after the processor is certain of the branch outcomes.

Aside The history of out-of-order processing

Out-of-order processing was first implemented in the Control Data Corporation 6600 processor in
1964. Instructions were processed by ten different functional units, each of which could be operated
independently. In its day, this machine, with a clock rate of 10 Mhz, was considered the premium
machine for scientific computing.

IBM first implemented out-of-order processing with the IBM 360/91 processor in 1966, but just to
execute the floating-point instructions. For around 25 years, out-of-order processing was considered
an exotic technology, found only in machines striving for the highest possible performance, until
IBM reintroduced it in the RS/6000 line of workstations in 1990. This design became the basis for
the IBM/Motorola PowerPC line, with the model 601, introduced in 1993, becoming the first single-
chip microprocessor to use out-of-order processing. Intel introduced out-of-order processing with its
PentiumPro model in 1995, with an underlying microarchitecture similar to that of the Core i7.

5.7.2 Functional Unit Performance

Figure 5.12 documents the performance of some of the arithmetic operations for
an Intel Core i7, determined by both measurements and by reference to Intel liter-
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Integer Single-precision Double-precision
Operation Latency Issue Latency Issue Latency Issue
Addition 1 0.33 3 1 3 1
Multiplication 3 1 4 1 5 1
Division 11-21 5-13 10-15 6-11 10-23 6-19

Figure 5.12 Latency and issue time characteristics of Intel Core i7 arithmetic
operations. Latency indicates the total number of clock cycles required to perform
the actual operations, while issue time indicates the minimum number of cycles between
two operations. The times for division depend on the data values.

ature [26]. These timings are typical for other processors as well. Each operation
is characterized by its latency, meaning the total time required to perform the op-
eration, and the issue time, meaning the minimum number of clock cycles between
two successive operations of the same type.

We see that the latencies increase as the word sizes increase (e.g., from single
to double precision), for more complex data types (e.g., from integer to floating
point), and for more complex operations (e.g., from addition to multiplication).

We see also that most forms of addition and multiplication operations have
issue times of 1, meaning that on each clock cycle, the processor can start a new
one of these operations. This short issue time is achieved through the use of
pipelining. A pipelined function unit is implemented as a series of stages, each
of which performs part of the operation. For example, a typical floating-point
adder contains three stages (and hence the three-cycle latency): one to process
the exponent values, one to add the fractions, and one to round the result. The
arithmetic operations can proceed through the stages in close succession rather
than waiting for one operation to complete before the next begins. This capability
can be exploited only if there are successive, logically independent operations to
be performed. Functional units with issue times of 1 cycle are said to be fully
pipelined: they can start a new operation every clock cycle. The issue time of
0.33 given for integer addition is due to the fact that the hardware has three fully
pipelined functional units capable of performing integer addition. The processor
has the potential to perform three additions every clock cycle. We see also that
the divider (used for integer and floating-point division, as well as floating-point
square root) is not fully pipelined—its issue time is just a few cycles less than
its latency. What this means is that the divider must complete all but the last few
steps of a division before it can begin a new one. We also see the latencies and issue
times for division are given as ranges, because some combinations of dividend and
divisor require more steps than others. The long latency and issue times of division
make it a comparatively costly operation.

A more common way of expressing issue time is to specify the maximum
throughput of the unit, defined as the reciprocal of the issue time. A fully pipelined
functional unit has a maximum throughput of one operation per clock cycle, while
units with higher issue times have lower maximum throughput.
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Circuit designers can create functional units with wide ranges of performance
characteristics. Creating a unit with short latency or with pipelining requires
more hardware, especially for more complex functions such as multiplication and
floating-point operations. Since there is only a limited amount of space for these
units on the microprocessor chip, CPU designers must carefully balance the num-
ber of functional units and their individual performance to achieve optimal overall
performance. They evaluate many different benchmark programs and dedicate
the most resources to the most critical operations. As Figure 5.12 indicates, inte-
ger multiplication and floating-point multiplication and addition were considered
important operations in design of the Core i7, even though a significant amount
of hardware is required to achieve the low latencies and high degree of pipelin-
ing shown. On the other hand, division is relatively infrequent and difficult to
implement with either short latency or full pipelining.

Both the latencies and the issue times (or equivalently, the maximum through-
put) of these arithmetic operations can affect the performance of our combining
functions. We can express these effects in terms of two fundamental bounds on

the CPE values:

Integer Floating point
Bound + * + F x D =
Latency 1.00 3.00 3.00 4.00 5.00

Throughput 1.00 1.00 1.00 1.00 1.00

The latency bound gives a minimum value for the CPE for any function
that must perform the combining operation in a strict sequence. The throughput
bound gives a minimum bound for the CPE based on the maximum rate at which
the functional units can produce results. For example, since there is only one
multiplier, and it has an issue time of 1 clock cycle, the processor cannot possibly
sustain a rate of more than one multiplication per clock cycle. We noted earlier that
the processor has three functional units capable of performing integer addition,
and so we listed the issue time for this operation as 0.33. Unfortunately, the need
to read elements from memory creates an additional throughput bound for the
CPE of 1.00 for the combining functions. We will demonstrate the effect of both
of the latency and throughput bounds with different versions of the combining
functions.

5.7.3 An Abstract Model of Processor Operation

Asatool for analyzing the performance of a machine-level program executing on a
modern processor, we will use a data-flow representation of programs, a graphical
notation showing how the data dependencies between the different operations
constrain the order in which they are executed. These constraints then lead to
critical paths in the graph, putting a lower bound on the number of clock cycles
required to execute a set of machine instructions.
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Before proceeding with the technical details, it is instructive to examine the
CPE measurements obtained for function combine4, our fastest code up to this
point:

Integer Floating point

Function Page  Method + * + Fx D=
combine4 493  Accumulate in temporary  2.00 3.00 3.00 4.00 5.00

Latency bound 1.00 3.00 3.00 4.00 5.00
Throughput bound 1.00 1.00 1.00 1.00 1.00

We can see that these measurements match the latency bound for the processor,
except for the case of integer addition. This is not a coincidence—it indicates
that the performance of these functions is dictated by the latency of the sum
or product computation being performed. Computing the product or sum of n
elements requires around L - n 4+ K clock cycles, where L is the latency of the
combining operation and K represents the overhead of calling the function and
initiating and terminating the loop. The CPE is therefore equal to the latency
bound L.

From Machine-Level Code to Data-Flow Graphs

Our data-flow representation of programs is informal. We only want to use it as
a way to visualize how the data dependencies in a program dictate its perfor-
mance. We present the data-flow notation by working with combine4 (Figure 5.10,
page 493) as an example. We focus just on the computation performed by the loop,
since this is the dominating factor in performance for large vectors. We consider
the case of floating-point data with multiplication as the combining operation,
although other combinations of data type and operation have nearly identical
structure. The compiled code for this loop consists of four instructions, with reg-
isters %rdx holding loop index i, %rax holding array address data, %rcx holding
loop bound limit, and %xmmO holding accumulator value acc.

combine4: data_t = float, OP = *

i in %rdx, data in Y%rax, limit in Yrbp, acc in jxmmO

1 .1L488: loop:

2 mulss (Y%rax,%rdx,4), %xmmO Multiply acc by datal[i]
3 addq $1, Yrdx Increment i

4 cmpq %rdx, %rbp Compare limit:i

5 jig .L488 If >, goto loop

As Figure 5.13 indicates, with our hypothetical processor design, the four in-
structions are expanded by the instruction decoder into a series of five operations,
with the initial multiplication instruction being expanded into a load operation
to read the source operand from memory, and a mul operation to perform the
multiplication.
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Figure 5.13

Graphical representation
of inner-loop code for
combine4. Instructions
are dynamically translated
into one or two operations,
each of which receives
values from other opera-
tions or from registers and
produces values for other
operations and for regis-
ters. We show the target of '
the final instruction as the
label 1oop. It jumps to the
first instruction shown.

Yrdx

%rax| %rbp %xmm0|

mulss (%rax,’%rdx,4), %xmmO

addq $1,%rdx

cmpq %rdx, %rbp

jg loop

1
Yrdx

y
%rax| %rbp %xmm0|

As astep toward generating a data-flow graph representation of the program,
the boxes and lines along the left-hand side of Figure 5.13 show how the registers
are used and updated by the different operations, with the boxes along the top
representing the register values at the beginning of the loop, and those along the
bottom representing the values at the end. For example, register Jrax is only used
asasource value by the load operation in performing its address calculation, and so
the register has the same value at the end of the loop as at the beginning. Similarly,
register %rcx is only used by the cmp operation. Register %rdx, on the other hand,
is both used and updated within the loop. Its initial value is used by the load and
add operations; its new value is generated by the add operation, which is then
used by the cmp operation. Register %xmm0 is also updated within the loop by the
mul operation, which first uses the initial value as a source value.

Some of the operations in Figure 5.13 produce values that do not correspond
to registers. We show these as arcs between operations on the right-hand side.
The load operation reads a value from memory and passes it directly to the
mul operation. Since these two operations arise from decoding a single mulss
instruction, there is no register associated with the intermediate value passing
between them. The cmp operation updates the condition codes, and these are
then tested by the jg operation.

For a code segment forming a loop, we can classify the registers that are
accessed into four categories:

Read-only: These are used as source values, either as data or to compute
memory addresses, but they are not modified within the loop. The read-
only registers for the loop combine4 are %rax and %rcx.

Write-only: These are used as the destinations of data-movement operations.
There are no such registers in this loop.

Local: These are updated and used within the loop, but there is no dependency
from one iteration to another. The condition code registers are examples
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Figure 5.14

Abstracting combine4
operations as data-flow
graph. (a) We rearrange
the operators of Figure 5.13
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data dependencies, and

|'mem0 %rax | %rbp %rdx|

load | %xmm0| %rdx |

then (b) show only those cmp [ mul add ]
operations that use values

from one iteration to

produce new values for “ | cumo| | terax |
the next. 4 4

%xmmO Yrdx

(a) (b)

for this loop: they are updated by the cmp operation and used by the |l
operation, but this dependency is contained within individual iterations.

Loop: These are both used as source values and as destinations for the loop,
with the value generated in one iteration being used in another. We can
see that %rdx and %xmm0 are loop registers for combine4, corresponding
to program values i and acc.

As we will see, the chains of operations between loop registers determine the
performance-limiting data dependencies.

Figure 5.14 shows further refinements of the graphical representation of Fig-
ure 5.13, with a goal of showing only those operations and data dependencies that
affect the program execution time. We see in Figure 5.14(a) that we rearranged
the operators to show more clearly the flow of data from the source registers at
the top (both read-only and loop registers), and to the destination registers at the
bottom (both write-only and loop registers).

In Figure 5.14(a), we also color operators white if they are not part of some
chain of dependencies between loop registers. For this example, the compare
(cmp) and branch (jl) operations do not directly affect the flow of data in the
program. We assume that the Instruction Control Unit predicts that branch will be
taken, and hence the program will continue looping. The purpose of the compare
and branch operations is to test the branch condition and notify the ICU if it is
not. We assume this checking can be done quickly enough that it does not slow
down the processor.

In Figure 5.14(b), we have eliminated the operators that were colored white
on the left, and we have retained only the loop registers. What we have left is an
abstract template showing the data dependencies that form among loop registers
due to one iteration of the loop. We can see in this diagram that there are two
data dependencies from one iteration to the next. Along one side, we see the
dependencies between successive values of program value acc, stored in register
%xmm0. The loop computes a new value for acc by multiplying the old value by
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Figure 5.15 Critical path
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a data element, generated by the load operation. Along the other side, we see
the dependencies between successive values of loop index i. On each iteration,
the old value is used to compute the address for the load operation, and it is also
incremented by the add operation to compute the new value.

Figure 5.15 shows the data-flow representation of n iterations by the inner
loop of function combine4. We can see that this graph was obtained by simply
replicating the template shown on the right-hand side of Figure 5.14 n times. We
can see that the program has two chains of data dependencies, corresponding to
the updating of program values acc and i with operations mul and add, respec-
tively. Given that single-precision multiplication has a latency of 4 cycles, while
integer addition has latency 1, we can see that the chain on the left will form a
critical path, requiring 4n cycles to execute. The chain on the left would require
only n cycles to execute, and so it does not limit the program performance.

Figure 5.15 demonstrates why we achieved a CPE equal to the latency bound
of 4 cycles for combine4, when performing single-precision floating-point multi-
plication. When executing the function, the floating-point multiplier becomes the
limiting resource. The other operations required during the loop—manipulating
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and testing loop index i, computing the address of the next data elements, and
reading data from memory—proceed in parallel with the multiplier. As each suc-
cessive value of acc is computed, it is fed back around to compute the next value,
but this will not be completed until four cycles later.

The flow for other combinations of data type and operation are identical to
those shown in Figure 5.15, but with a different data operation forming the chain of
data dependencies shown on the left. For all of the cases where the operation has
a latency L greater than 1, we see that the measured CPE is simply L, indicating
that this chain forms the performance-limiting critical path.

Other Performance Factors

For the case of integer addition, on the other hand, our measurements of combine4
show a CPE of 2.00, slower than the CPE of 1.00 we would predict based on the
chains of dependencies formed along either the left- or the right-hand side of the
graph of Figure 5.15. This illustrates the principle that the critical paths in a data-
flow representation provide only a /lower bound on how many cycles a program
will require. Other factors can also limit performance, including the total number
of functional units available and the number of data values that can be passed
among the functional units on any given step. For the case of integer addition as
the combining operation, the data operation is sufficiently fast that the rest of the
operations cannot supply data fast enough. Determining exactly why the program
requires 2.00 cycles per element would require a much more detailed knowledge
of the hardware design than is publicly available.

To summarize our performance analysis of combine4: our abstract data-flow
representation of program operation showed that combine4 has a critical path of
length L - n caused by the successive updating of program value acc, and this path
limits the CPE to at least L. This is indeed the CPE we measure for all cases except
integer addition, which has a measured CPE of 2.00 rather than the CPE of 1.00
we would expect from the critical path length.

It may seem that the latency bound forms a fundamental limit on how fast
our combining operations can be performed. Our next task will be to restructure
the operations to enhance instruction-level parallelism. We want to transform the
program in such a way that our only limitation becomes the throughput bound,
yielding CPEs close to 1.00.

Practice Problem 5.5

Suppose we wish to write a function to evaluate a polynomial, where a polynomial
of degree n is defined to have a set of coefficients a, a;, ay, . . . , a,. For a value x,
we evaluate the polynomial by computing

ag + apx + apx® + - - - + a,x" (5.2)

This evaluation can be implemented by the following function, having as argu-
ments an array of coefficients a, a value x, and the polynomial degree, degree
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(the value n in Equation 5.2). In this function, we compute both the successive
terms of the equation and the successive powers of x within a single loop:

1 double poly(double a[], double x, int degree)

2 A

3 long int i;

4 double result = al[0];

5 double xpwr = x; /* Equals x"i at start of loop */
6 for (i = 1; i <= degree; it++) {

7 result += al[i] * xpwr;

8 XpWr = X * Xpwr;

9 }

10 return result;
11

12 }

A. For degree n, how many additions and how many multiplications does this
code perform?

B. On our reference machine, with arithmetic operations having the latencies
shown in Figure 5.12, we measure the CPE for this function to be 5.00. Ex-
plain how this CPE arises based on the data dependencies formed between
iterations due to the operations implementing lines 7-8 of the function.

Practice Problem 5.6

Let us continue exploring ways to evaluate polynomials, as described in Prob-
lem 5.5. We can reduce the number of multiplications in evaluating a polyno-
mial by applying Horner’s method, named after British mathematician William
G. Horner (1786-1837). The idea is to repeatedly factor out the powers of x to get
the following evaluation:

ag+ x(ag+x(ay+ - -+ x(a,_1 +xa,) ) (5.3)

Using Horner’s method, we can implement polynomial evaluation using the fol-
lowing code:

1 /* Apply Horner's method */

2 double polyh(double a[], double x, int degree)
3 {

4 long int i;

5 double result = aldegree];

6 for (i = degree-1; i >= 0; i--)

7 result = a[i] + x*result;

8 return result;

o ¥
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A. For degree n, how many additions and how many multiplications does this
code perform?

B. On our reference machine, with the arithmetic operations having the laten-
cies shown in Figure 5.12, we measure the CPE for this function to be 8.00.
Explain how this CPE arises based on the data dependencies formed be-
tween iterations due to the operations implementing line 7 of the function.

C. Explain how the function shown in Problem 5.5 can run faster, even though
it requires more operations.

5.8 Loop Unrolling

Loop unrolling is a program transformation that reduces the number of iterations
for a loop by increasing the number of elements computed on each iteration. We
saw an example of this with the function psum2 (Figure 5.1), where each iteration
computes two elements of the prefix sum, thereby halving the total number of
iterations required. Loop unrolling can improve performance in two ways. First,
it reduces the number of operations that do not contribute directly to the program
result, such as loop indexing and conditional branching. Second, it exposes ways
in which we can further transform the code to reduce the number of operations
in the critical paths of the overall computation. In this section, we will examine
simple loop unrolling, without any further transformations.

Figure 5.16 shows a version of our combining code using two-way loop un-
rolling. The first loop steps through the array two elements at a time. That is, the
loop index i is incremented by 2 on each iteration, and the combining operation
is applied to array elements i and i + 1 in a single iteration.

In general, the vector length will not be a multiple of 2. We want our code
to work correctly for arbitrary vector lengths. We account for this requirement in
two ways. First, we make sure the first loop does not overrun the array bounds.
For a vector of length n, we set the loop limit to be n — 1. We are then assured that
the loop will only be executed when the loop index i satisfiesi <n — 1, and hence
the maximum array indexi + 1 will satisfyi +1<(n — 1) +1=n.

We can generalize this idea to unroll a loop by any factor k. To do so, we
set the upper limit to be n — k + 1, and within the loop apply the combining
operation to elements i throughi + k — 1. Loop index i is incremented by & in each
iteration. The maximum array index i 4+ k — 1 will then be less than n. We include
the second loop to step through the final few elements of the vector one at a time.
The body of this loop will be executed between 0 and k — 1 times. For k =2, we
could use a simple conditional statement to optionally add a final iteration, as we
did with the function psum2 (Figure 5.1). For k > 2, the finishing cases are better
expressed with a loop, and so we adopt this programming convention for k =2
as well.
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1 /* Unroll loop by 2 */

2 void combineb(vec_ptr v, data_t *dest)
3 o

4 long int i;

5 long int length = vec_length(v);

6 long int limit = length-1;

7 data_t *data = get_vec_start(v);

8 data_t acc = IDENT;

9

10 /* Combine 2 elements at a time */
11 for (i = 0; i < limit; i+=2) {

12 acc = (acc OP datal[i]) OP datali+1];
13 }

14

15 /* Finish any remaining elements */
16 for (; i < length; i++) {

17 acc = acc 0P datal[i];

18 ¥

19 *dest = acc;

20}

Figure 5.16 Unrolling loop by factor k = 2. Loop unrolling can reduce the effect of
loop overhead.

Practice Problem 5.7
Modify the code for combine5 to unroll the loop by a factor k = 5.

When we measure the performance of unrolled code for unrolling factors
k =2 (combineb) and k = 3, we get the following results:

Integer Floating point
Function Page Method + * + F D *
combine4 493 No unrolling 2.00 3.00 3.00 4.00 5.00

combineb 510 Unroll by x2 2.00 1.50 3.00 4.00 5.00
Unroll by x3 1.00 1.00 3.00 4.00 5.00

Latency bound 1.00 3.00 3.00 4.00 5.00
Throughput bound 1.00 1.00 1.00 1.00 1.00

We see that CPEs for both integer addition and multiplication improve, while
those for the floating-point operations do not. Figure 5.17 shows CPE measure-
ments when unrolling the loop by up to a factor of 6. We see that the trends we
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Figure 5.17 6.00
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observed for unrolling by 2 and 3 continue—it does not help the floating-point
operations, while both integer addition and multiplication drop down to CPEs of
1.00. Several phenomena contribute to these measured values of CPE. For the case
of integer addition, we see that unrolling by a factor of 2 makes no difference, but
unrolling by a factor of 3 drops the CPE to 1.00, achieving both the latency and the
throughput bounds for this operation. This result can be attributed to the benefits
of reducing loop overhead operations. By reducing the number of overhead op-
erations relative to the number of additions required to compute the vector sum,
we can reach the point where the one-cycle latency of integer addition becomes
the performance-limiting factor.

The improving CPE for integer multiplication is surprising. We see that for un-
rolling factor k between 1 and 3, the CPE is 3.00/ k. It turns out that the compiler is
making an optimization based on a reassociation transformation, altering the order
in which values are combined. We will cover this transformation in Section 5.9.2.
The fact that gce applies this transformation to integer multiplication but not to
floating-point addition or multiplication is due to the associativity properties of
the different operations and data types, as will also be discussed later.

To understand why the three floating-point cases do not improve by loop
unrolling, consider the graphical representation for the inner loop, shown in
Figure 5.18 for the case of single-precision multiplication. We see here that the
mulss instructions each get translated into two operations: one to load an array
element from memory, and one to multiply this value by the accumulated value.
We see here that register %xmmO gets read and written twice in each execution of
the loop. We can rearrange, simplify, and abstract this graph, following the process
shown in Figure 5.19 to obtain the template shown in Figure 5.19(b). We then
replicate this template n/2 times to show the computation for a vector of length
n, obtaining the data-flow representation shown in Figure 5.20. We see here that
there is still a critical path of n mul operations in this graph—there are half as many
iterations, but each iteration has two multiplication operations in sequence. Since
the critical path was the limiting factor for the performance of the code without
loop unrolling, it remains so with simple loop unrolling.

—O—— double *
—{— float *
—A— float +
—4¢— int *
—X—int +
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Figure 5.18

Graphical representation
of inner-loop code for
combineb. Each iteration
has twomulss instructions,
each of which is translated
into a load and a mul
operation.

Figure 5.19

Abstracting combineb
operations as data-flow
graph. We rearrange, sim-
plify, and abstract the
representation of Fig-

ure 5.18 to show the data
dependencies between
successive iterations (a).
We see that each iteration
must perform two multipli-
cations in sequence (b).

| %rax| %rbp | %rdx %xmm0|
\ ' v
| %rax | %rbp | %rdx |%xmm0|
|%Xmm0 %rax| %rbp %rdx|
load |«

A

Lmul

[

load _L

Aside Getting the compiler to unroll loops

mulss (%rax,’%rdx,4), %xmmO

mulss 4(%rax,%rdx,4), %xmmO

addq $2,%rdx
cmpq %rdx, %rbp

jg loop

datal[/] m

datali+1]
(o -

Loop unrolling can easily be performed by a compiler. Many compilers do it routinely whenever the
optimization level is set sufficiently high. gcc will perform loop unrolling when invoked with command-

line option ‘~funroll-loops’.



Figure 5.20

Data-flow representation
of combineb operating
on a vector of length

n. Even though the loop
has been unrolled by a
factor of 2, there are still n
mul operations along the
critical path.

Critical path

data[0]

datal[1]

—

datal[2]

datal[3]

data[n-2]

datal[n-1]

5.9 Enhancing Parallelism

Section 5.9 Enhancing Parallelism

At this point, our functions have hit the bounds imposed by the latencies of the
arithmetic units. As we have noted, however, the functional units performing
addition and multiplication are all fully pipelined, meaning that they can start new
operations every clock cycle. Our code cannot take advantage of this capability,
even with loop unrolling, since we are accumulating the value as a single variable
acc. We cannot compute a new value for acc until the preceding computation has
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completed. Even though the functional unit can start a new operation every clock
cycle, it will only start one every L cycles, where L is the latency of the combining
operation. We will now investigate ways to break this sequential dependency and
get performance better than the latency bound.

5.9.1 Multiple Accumulators

For a combining operation that is associative and commutative, such as integer
addition or multiplication, we can improve performance by splitting the set of
combining operations into two or more parts and combining the results at the
end. For example, let P, denote the product of elements ay, a4, . . ., a,_1:

n—1
Pn = l_[ a;
i=0

Assuming n is even, we can also write this as P, = PE,, x PO,,, where PE,, is the
product of the elements with even indices, and PO, is the product of the elements
with odd indices:

n/2—1
PEn = l_[ a;
i=0

n/2—1
PO, =[] aun
i=0

Figure 5.21 shows code that uses this method. It uses both two-way loop unrolling,
to combine more elements per iteration, and two-way parallelism, accumulating
elements with even index in variable acc0 and elements with odd index in variable
accl. As before, we include a second loop to accumulate any remaining array
elements for the case where the vector length is not a multiple of 2. We then apply
the combining operation to accO and acc1 to compute the final result.

Comparing loop unrolling alone to loop unrolling with two-way parallelism,
we obtain the following performance:

Integer Floating point
Function Page  Method + * + Fx D=x
combine4 493  Accumulate in temporary  2.00 3.00 3.00 4.00 5.00
combineb 510  Unroll by x2 200 150 3.00 4.00 5.00
combine6 515  Unroll x2, parallelism x2 1.50 150 1.50 2.00 2.50
Latency bound 1.00 3.00 3.00 4.00 5.00
Throughput bound 1.00 1.00 1.00 1.00 1.00

Figure 5.22 demonstrates the effect of applying this transformation to achieve k-
way loop unrolling and k-way parallelism for values up to kK = 6. We can see that
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Figure 5.21

/* Unroll loop by 2, 2-way parallelism */

void combine6(vec_ptr v, data_t *dest)

{

3

long int i;

long int length = vec_length(v);
long int limit = length-1;
data_t *data = get_vec_start(v);
data_t accO = IDENT;

data_t accl = IDENT;

/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {
accO = accO OP datalil;
accl = accl OP datali+1];

/* Finish any remaining elements */
for (; i < length; i++) {

accO = accO OP datal[il;
}

*dest = accO OP accil;
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Unrolling loop by 2 and using two-way parallelism. This approach makes
use of the pipelining capability of the functional units.

the CPE:s for all of our combining cases improve with increasing values of k. For
integer multiplication, and for the floating-point operations, we see a CPE value of
L/k,where L is the latency of the operation, up to the throughput bound of 1.00.
We also see integer addition reaching its throughput bound of 1.00 with £ = 3. Of
course, we also reached this bound for integer addition with standard unrolling.

Figure 5.22

CPE performance for -
way loop unrolling with
k-way parallelism. All of
the CPEs improve with