

 2

iOS 7 by Tutorials

By the raywenderlich.com Tutorial Team

Christine Abernathy, Soheil Moayedi Azarpour, Colin Eberhardt, Charlie
Fulton, Matt Galloway, Greg Heo, Matthijs Hollemans, Felipe Laso Marsetti,
Jeremy Olson, Pietro Rea, Marin Todorov, Cesare Rocchi, Jamie Syke, Chris

Wagner

Copyright © 2013 Razeware LLC.

All rights reserved. No part of this book or corresponding materials (such as
text, images, or source code) may be reproduced or distributed by any
means without prior written permission of the copyright owner.

This book and all corresponding materials (such as source code) are provided
on an "as is" basis, without warranty of any kind, express or implied,
including but not limited to the warranties of merchantability, fitness for a
particular purpose, and noninfringement. In no event shall the authors or
copyright holders be liable for any claim, damages or other liability, whether
in action of contract, tort or otherwise, arising from, out of or in connec- tion
with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this book are the
property of their respective owners.

 3

Table of Contents: Overview

Introduction ... 15!
Section I: Design ... 29!

Chapter 1: Designing for iOS 7 .. 31!
Chapter 2: UIKit Dynamics and Motion Effects 71!
Chapter 3: Custom View Controller Transitions 106!
Chapter 4: Beginning Text Kit .. 137!
Chapter 5: Intermediate Text Kit .. 169!
Chapter 6: Transitioning to iOS 7‑Quick Start 209!
Chapter 7: Transitioning to iOS 7‑What’s New with Auto
 Layout .. 243!
Chapter 8: Transitioning to iOS 7‑Advanced Topics 275!

Section II: What’s New in Xcode 5 ... 303!
Chapter 9: What’s New in Xcode 5 305!
Chapter 10: What’s New in Objective-C and
Foundation ... 325
Chapter 11: Unit Testing in Xcode 5 347!
Chapter 12: Beginning Source Control in Xcode 5 367!
Chapter 13: Intermediate Source Control in Xcode 5 385!
Chapter 14: Beginning Continous Integration in
Xcode 5 .. 407!
Chapter 15: Intermediate Continuous Integration in
Xcode 5 .. 431!

Section III: Major New Features .. 459!

 4

Chapter 16: Networking with NSURLSession 461!
Chapter 17: Beginning Multitasking 503!
Chapter 18: Intermediate Multitasking 525!
Chapter 19: JavaScript Core ... 569!
Chapter 20: Airdrop .. 597!
Chapter 21: Peer-to-Peer Connectivity 627!

Section IV: Minor New Features .. 668!
Chapter 22: What’s New in AV Foundation 669!
Chapter 23: What’s New in MapKit 692!
Chapter 24: What’s New in CoreLocation 721!

Section V: Bonus Chapters ... 755!
Chapter 25: Beginning Inter-App Audio 756!
Chapter 26: Intermediate Inter-App Audio 783!
Chapter 27: What’s New in PassKit, Part 1 812!
Chapter 28: What’s New in PassKit, Part 2 826!
Chapter 29: Introduction to iAd ... 845!

Conclusion .. 873!

 5

Table of Contents: Extended

Introduction ... 15!
About this book .. 15!
What you need .. 17!
Who this book is for .. 18!
How to use this book ... 18!
Book overview .. 19!
Book source code and forums ... 23!
Book updates ... 23!
License .. 24!
Acknowledgements .. 24!
About the authors .. 25!
About the editors ... 27!
About the artists ... 28!

Section I: Design ... 29!
Chapter 1: Designing for iOS 7 ... 31!

Developers are designers, too .. 32!
Say Hello to design ... 33!
Designing for iOS 7 is different ... 35!
Focus on function .. 37!
Focus on the basics .. 38!
Focus on the content .. 51!
Focus on interactions ... 60!
Make a dent in the universe .. 68!
Challenges .. 68!

Chapter 2: UIKit Dynamics and Motion Effects 71!
Getting started .. 71!
Dynamics in real world apps ... 85!
Motion effects ... 100!
Challenges .. 103!

Chapter 3: Custom View Controller Transitions 106!
Getting started .. 107!
A custom present transition .. 108!
A custom dismiss transition ... 118!
Navigation controller transitions ... 124!
Interactive transitions .. 128!
Challenge .. 134!

Chapter 4: Beginning Text Kit ... 137!

 6

Getting started .. 138!
Dynamic type ... 139!
Letterpress effects ... 144!
Exclusion paths ... 146!
Dynamic text formatting and storage ... 149!
Where to go from here? .. 166!
Challenges .. 167!

Chapter 5: Intermediate Text Kit ... 169!
Getting started .. 169!
Text Kit architecture .. 171!
Layout configurations .. 172!
Rendering the text ... 173!
Adding a multi-column layout ... 177!
Adding text styling .. 181!
Performance .. 186!
Adding a table of contents .. 190!
Adding chapter navigation ... 193!
Adding images ... 196!
Adding dictionary lookups ... 198!
Challenges .. 206!

Chapter 6: Transitioning to iOS 7‑Quick Start 209!
Getting started .. 209!
Why bother? .. 212!
First steps in Xcode 5 .. 213!
Fixing the table views ... 219!
Asset catalogs .. 226!
Tint color .. 231!
Data entry forms ... 233!
Challenges .. 239!

Chapter 7: Transitioning to iOS 7‑What’s New with Auto
Layout .. 243!

The status bar and your content ... 243!
Using Auto Layout for easier layout .. 252!
Challenges .. 272!

Chapter 8: Transitioning to iOS 7‑Advanced Topics 275!
Inline date picker ... 275!
Dimming the tint color ... 285!
Search bar in the navigation bar ... 288!
Blur effects .. 289!
Back to iOS 6 ... 296!
Where to go from here? .. 298!

 7

Challenges .. 299!

Section II: What’s New in Xcode 5 ... 303!
Chapter 9: What’s New in Xcode 5 .. 305!

Asset catalogs .. 305!
Image slicing ... 307!
Auto Layout improvements ... 308!
Preview window ... 310!
Automatic configuration ... 311!
Language improvements .. 314!
Documentation improvements .. 315!
Debugging improvements .. 316!
Testing improvements .. 319!
Source control improvements ... 322!
Performance improvements ... 323!
Where to go from here? .. 324!

Chapter 10: What’s New in Objective-C and Foundation 325!
Modules ... 326!
New return type - instancetype .. 329!
No more explicit bridging — sometimes .. 331!
New Foundations ... 332!
Challenges .. 343!

Chapter 11: Unit Testing in Xcode 5 ... 347!
Unit testing fundamentals ... 347!
The starter project ... 351!
Where to go from here? .. 363!
Challenges .. 363!
XCTest Assertions Reference .. 365!

Chapter 12: Beginning Source Control in Xcode 5 367!
Getting started .. 368!
Committing changes in Xcode 5 .. 374!
Viewing your project history ... 377!
Adding the project to GitHub ... 378!
Challenges .. 384!

Chapter 13: Intermediate Source Control in Xcode 5 385!
Working with remote repositories .. 385!
A branch-based workflow ... 392!
Pulling remote changes ... 395!
Merging vs. Rebasing ... 397!
Finishing the app .. 403!
Where to go from here? .. 405!
Challenge .. 406!

 8

Chapter 14: Beginning Continous Integration in Xcode 5 407!
What is continuous integration? .. 407!
OS X Server ... 409!
Xcode ... 417!
Bots ... 419!
Where to go from here? .. 428!
Challenges .. 429!

Chapter 15: Intermediate Continuous Integration in Xcode 5 .. 431!
Hardware .. 431!
Reviewing and Managing Bots ... 434!
Best practices for bots .. 443!
Best practices for release management .. 444!
Automatically Upload to TestFlight .. 451!
Automatically Upload dSYM to Crashlytics ... 456!
Some Things to Consider .. 457!
Where to go from here? .. 457!
Challenge .. 458!

Section III: Major New Features .. 459!
Chapter 16: Networking with NSURLSession 461!

NSURLSession vs NSURLConnection ... 462!
NSURLConnection vs AFNetworking ... 463!
Introducing Byte Club ... 464!
Getting started .. 464!
The NSURLSession suite of classes .. 473!
Sharing notes with NSURLSession ... 478!
Posting photos with NSURLSessionTask delegates .. 490!
Challenges .. 499!

Chapter 17: Beginning Multitasking ... 503!
Multitasking in iOS 7: an overview .. 504!
The new app switcher ... 505!
Getting started .. 507!
Setting up MAMP ... 508!
A brief tour of the app .. 510!
Adding background fetching .. 513!
Challenges .. 522!

Chapter 18: Intermediate Multitasking ... 525!
Background transfers .. 525!
Silent push notifications .. 542!
Where To Go From Here? ... 566!
Challenges .. 567!

 9

Chapter 19: JavaScript Core .. 569!
Introducing JavaScriptCore ... 570!
Getting started .. 572!
Building Xork .. 577!
Memory management gotchas ... 586!
Challenges .. 594!

Chapter 20: Airdrop ... 597!
AirDrop Quick Start .. 601!
Getting started .. 602!
Sharing plain text .. 609!
Sharing attributed string data .. 611!
Sharing URLs ... 613!
Sharing media and documents .. 614!
Sharing documents .. 616!
Registering UTIs .. 617!
URL Handling .. 619!
Where to go from here? .. 624!
Challenges .. 624!

Chapter 21: Peer-to-Peer Connectivity ... 627!
Peer-to-peer: an overview .. 628!
Getting started .. 629!
Peer-to-peer: the easy way .. 634!
Sending Data ... 642!
Peer-to-peer: the programmatic way ... 648!
Securing your session .. 664!
Challenges .. 665!

Section IV: Minor New Features .. 668!
Chapter 22: What’s New in AV Foundation 669!

Getting started .. 670!
Working with the camera .. 670!
Adding Speech Synthesis ... 683!
Zooming images ... 686!
Challenges .. 688!

Chapter 23: What’s New in MapKit .. 692!
Getting started .. 693!
Enabling 3D mode ... 694!
Calculating the route ... 696!
Using the directions API .. 704!
Map cameras ... 710!
Map snapshots ... 714!
Challenges .. 718!

 10

Chapter 24: What’s New in CoreLocation 721!
Overview ... 721!
Region Monitoring ... 722!
Getting started .. 728!
Advertising as an iBeacon ... 733!
Listening for iBeacons ... 741!
Scaling considerations .. 752!
Where to go from here? .. 753!
Challenge .. 753!

Section V: Bonus Chapters ... 755!
Chapter 25: Beginning Inter-App Audio 756!

Getting started .. 756!
Basics of Inter-App Audio .. 757!
Publishing an audio unit .. 760!
Plugging in the guitar ... 768!
Challenges .. 781!

Chapter 26: Intermediate Inter-App Audio 783!
What is Core Audio? .. 783!
Creating a hub app .. 786!
Sending MIDI events ... 805!
Challenges .. 810!

Chapter 27: What’s New in PassKit, Part 1 812!
Getting started .. 813!
Visual updates to passes in iOS 7 .. 818!
Fixing iOS 6 issues .. 819!
Passbook improvement in iOS 7 ... 823!
Challenges .. 825!

Chapter 28: What’s New in PassKit, Part 2 826!
Pushing Passbook integration further ... 826!
Challenges .. 842!

Chapter 29: Introduction to iAd .. 845!
Getting Started .. 846!
The iAd workflow .. 847!
Signing up for iAd ... 847!
Integrating iAd into your app ... 849!
Types of Advertisements .. 849!
Linking to the iAd framework .. 850!
Adding a banner ... 851!
Adding interstitial ads .. 852!
Adding IAB medium rectangle .. 854!

 11

Pre-roll video advertisements ... 857!
Settings for testing .. 858!
Enabling iAd in your app ... 859!
Adding a banner programmatically ... 861!
Ad Mediation ... 863!
Challenges .. 870!

Conclusion .. 873!

 12

Dedications

"To God first, my loving husband James, my awesome Mum, encouraging
Dad, and all family and friends who are the reason every day's a delight."

–Christine Abernathy

“Specially to my wife, Elnaz, for her support and encouragement and my
wonderful son, Kian.”

–Soheil Azarpour

"To my lovely wife Susan, and children, Jessica, Lauren, Abbie and
William."

–Colin Eberhardt

“To my savior and Lord Jesus Christ with whom all things are possible, and
to the amazing boys and wife I am blessed to have.”

–Charlie Fulton

“To my family and friends for all their encouragement and support.”

–Matt Galloway

“To the crazy ones, the misfits, the rebels and the troublemakers.”

–Matthijs Hollemans

"To God, thank you for the blessed life I get to live every day. To my
beautiful girlfriend Nathalie, I love you my little Magikarp! And, to my

amazing nephews Leo and Tiziano :)"

–Felipe Laso Marsetti

 13

“To my very best friend and the love of my life, Mindy Olson.”

–Jeremy Olson

“To my wonderful wife Emily. Thank you for listening to my crazy ideas
and supporting me no matter what.”

–Pietro Rea

"To my wife, my kid and Bob Dylan".

–Cesare Rocchi

“To my parents - ever so supportive and loving. To Mirjam.”

–Marin Torodov

"To my amazing, always supportive wife Sam and our perfect baby boy
Hayden"

-Chris Wagner

iOS 7 delivers one of the most massive and exciting set of changes that we’ve seen
so far as developers.

The new design direction of iOS 7 means a massive disruption in the App Store is
underway. Customers will be looking for apps that “fit in” with the new iOS 7 style
and make use of the new technology. This means tons of great opportunity for you
– the type of opportunity seen only once 3 to 5 years!

On top of the new design direction, iOS 7 brings a ton of new APIs and frameworks
to learn about. However, trying to get a handle on all the new technology while
trying to get your apps updated at the same time can be quite challenging!

That’s why ever since the first day of WWDC, the Tutorial Team and I have been
hard at work researching all of the new APIs and distilling them into a form that
makes it quick and easy for you to get up to speed. That way you can focus on
what you do best – making great apps!

So get ready for your personal tour through the amazing new features in iOS 7. By
the time you are done, your iOS knowledge will be completely up-to-date, and
you’ll be ready to take advantage of the amazing new opportunities that iOS 7
brings.

Sit back, relax, and prepare for some fun and high quality tutorials!

About this book
This is our third book in the iOS by Tutorials series. We started with iOS 5 by
Tutorials back in 2011, and the book was so popular that we’ve made a book for
the new APIs of each major iOS version ever since. It’s been quite a ride!

Each year, we aim to take a critical look at what we did the previous year and
determine what we can do better. This year, we decided to increase our focus on
three aspects: design, engagement, and practice.

Introduction
By Ray Wenderlich

iOS 7 by Tutorials Introduction

 16

Increased focus on design
One of the most important features of iOS 7 is the new minimalistic design style
that brings an increased focus on content, typography, and animation.

We wanted our book to reflect this new design direction, so this year the book
includes five new elements on design:

1. Designing for iOS 7 chapter. We teamed up with guest author Jeremy Olson,
an Apple design award winner who has had several apps in the top 100 of the
App Store. Jeremy wrote the first chapter of the book, “Designing for iOS 7”,
which will give you an overview of what it takes to make your app look and feel
great on iOS 7. And the best part is it’s written with a programmer audience in
mind!

2. Chapters on design-oriented APIs. iOS 7 comes with many other APIs that
help you create your app in the “iOS 7 style”, such as UIKit Dynamics and
custom view controller transitions. We’ve taken special care on these topics so
you can add these cool new techniques to your toolbelt and give your apps a
sense of liveliness and fun.

3. Transitioning to iOS 7 chapters. One of the biggest questions many
developers will have while transitioning their iOS 6 apps to iOS 7 involve how to
deal with the many technical challenges that arise along the way. We made this
topic front and center in this book, and included three detailed chapters that
shows you this very process step by step using practical examples.

4. Custom designed sample projects. In previous years, most of our sample
projects were designed by ourselves; a team of programmers with a lot of heart
and technical prowess…but not necessarily the best designers in the world. So
this year, we teamed up with designer Jamie Syke, who designed each of the
sample projects in our book to fit in well with the iOS 7 style. We hope that the
example designs give you some inspiration for your own apps.

5. A redesigned book cover. You might have noticed the book cover itself looks
different this year! We hope you like it – Jamie designed it to reiterate the focus
we’re placing on design in this book.

Increased focus on engagement
In our previous books we’ve noticed that we were so eager to pack in a ton of
useful material, our books and chapters were sometimes overly long. For example,
both iOS 5 and iOS 6 by Tutorials were too big to fit in a single printed volume!

We know your time is valuable, and we don’t want to take more time than
necessary to cover a new topic. So this year we made more of an effort to keep our
chapters concise and readable, so you can master new topics as quickly as possible.

Note that this book is still long, since we didn’t want to sacrifice on the number of
topics covered or the level of technical detail. However, you will notice that most
chapters are shorter and more to the point than before.

iOS 7 by Tutorials Introduction

 17

One exception to this is Chapter 2, “Transitioning to iOS 7”. This was such an
important topic that we really took our time there and went into great detail. We
think you’ll enjoy the result.

Increased focus on practice
Following a tutorial is one thing, but applying its concepts yourself is completely
different. This year, we wanted to do more to help you make the transition from
following along with the tutorials to applying the knowledge in your own apps.

As such, for the first time we are including challenges at the end of every chapter.
The challenges have been designed to help you practice the material you just
learned, with hints to walk you through the process.

If you get stuck, don’t worry - we have included the solutions to the challenges with
the book so you can check your answers. But try not to cheat! !

Note that this is the first time we’re trying challenges in our books, so we’re curious
about the difficulty level. Were they too easy? Too hard? Just about right? Let us
know so we can improve next time!

We hope you enjoy the challenges, and that they help you solidfy the material.

Did we succeed?
After you finish reading this book, please let me know if you think this new focus on
design, engagement, and practice has helped to improve the book. You can email
me anytime at ray@raywenderlich.com.

We hope you enjoy this book, and we can’t wait to see your new iOS 7 apps!

What you need
To follow along with the tutorials in this book, you need the following:

• A Mac running OS X Mountain Lion or later. You need a Mac running OS X
Mountain Lion or later so you can install the latest version of Xcode.

• Xcode 5 or later. Xcode is the main development tool for iOS. You need to use
Xcode 5 or later in this book, because Xcode 5 is the first version of Xcode that
supports Sprite Kit and iOS 7 development. You can download the latest version
of Xcode for free on the Mac app store here:
https://itunes.apple.com/app/xcode/id497799835?mt=12

• One or more devices (iPhone, iPad, or iPod Touch) running iOS 7 or later,
and a paid membership to the iOS development program [optional]. For
most of the chapters in the book, you can run your code on the iOS 7 Simulator
that comes with Xcode. However, there are a few chapters later in the book that
require a real device for testing (and sometimes multiple devices).

iOS 7 by Tutorials Introduction

 18

• A Mac with OS X Mavericks Server [optional]. To follow along with the
Continuous Integration chapters, you will need a Mac running OS X server. See
those chapters for more details.

If you don’t have the latest version of Xcode installed already, be sure to do that
before continuing with the book.

Who this book is for
This book is for intermediate or advanced iOS developers who already know the
basics of iOS development but want to upgrade their skills for iOS 7.

If you’re a complete beginner, you can still follow along with the book because the
instructions are always in a step-by-step manner, but there may be some missing
gaps in your knowledge. You might want to go through our iOS Apprentice series
before you go through this book, which covers the basics of Objective-C and iOS
development:

http://www.raywenderlich.com/store/ios-apprentice

How to use this book
This book can be read from cover to cover, but we don’t recommend using it this
way unless you have a lot of time and are the type of person who just “needs to
know everything”. (It’s okay, a lot of our tutorial team is like that, too!)

Instead, we suggest a pragmatic approach – pick and choose the subjects that
interest you the most, or the ones you need for your projects, and jump directly to
those chapters. Most chapters are self-contained, so you can go through them in
non-sequential order.

Looking for some recommendations of important chapters to start with? Here’s our
suggested Core Reading List:

• Chapter 1, “Designing for iOS 7”

• Chapter 6, “Transitioning to iOS 7: Quick Start”

• Chapter 9, “What’s New in Xcode 5”

• Chapter 16, “Networking with NSURLSession”

• Chapter 17, “Beginning Multitasking”

That covers the “Big 5” topics of iOS 7, and from there you can dig into other topics
that are particularly interesting to you.

iOS 7 by Tutorials Introduction

 19

Book overview
iOS 7 has a host of killer new APIs that you’ll want to start using in your apps right
away. Here’s what you’ll be learning about in this book:

Section I: Design
In this section, you will learn how to design your apps to look great on iOS 7, along
with the practical nuts and bolts of doing so. You will also learn about the new APIs
in iOS 7 that are related to design, like UIKit dynamics, custom view controller
transitions, and Text Kit.

Here’s a quick overview of the chapters in this section:

1. Chapter 1, Designing for iOS 7: Before you dive into the code, you’ll learn
how to design your apps to fit in well with the new iOS 7 style.

2. Chapter 2, UIKit Dynamics: You’ll learn how to create user interfaces that feel
real by adding physics behaviors like gravity, attachments (springs), and forces.

3. Chapter 3, Custom View Controller Transitions: You’ll learn how to use your
own custom animations when switching between view controllers in your apps.

4. Chapter 4, Beginning Text Kit: You’ll learn how to support dynamic type in
your apps and make text fields with exclusion paths and dynamic text
highlighting.

5. Chapter 5, Intermediate Text Kit: You’ll learn how the Text Kit rendering
system works, and apply your knowledge to create your own eBook reader.

6. Chapters 6-8, Transitioning to iOS 7, Parts 1-3: You’ll learn the nuts and
bolts of taking an app designed in the skeuomorphic iOS 6 style and converting it
to the new minimalistic iOS 7 style.

Section II: What’s New in Xcode 5
In this section, you’ll learn about the new features in Xcode 5 that are useful when
making any type of app. In particular, you’ll learn about unit testing, source
control, continuous integration, and more.

iOS 7 by Tutorials Introduction

 20

Here’s a quick overview of the chapters in this section:

9. Chapter 9, What’s New in Xcode 5: Get a quick overview of the new features
in the Xcode development environment itself, like asset catalogs and image
slicing.

10. Chapter 10, What’s New in Objective-C and Foundation: Get a quick
overview of new language features like modules, and important new Foundation
APIs you should be aware of.

11. Chapter 11, Unit Testing in Xcode 5: Xcode 5 includes a new unit testing
framework called XCUnit. Learn how to use it to add unit tests to your apps.

12. Chapter 12, Beginning Source Control in Xcode 5: Learn how to maintain
your project under source control in Xcode 5 and upload your project to GitHub.

13. Chapter 13, Intermediate Source Control in Xcode 5: Learn about some
more advanced features of source control in Xcode 5 like branching, merging,
and resolving conflicts.

14. Chapter 14, Beginning Continuous Integration in Xcode 5: Learn how to
set up a continuous integration server and create a simple automated bot to
build and run your project.

15. Chapter 15, Intermediate Continuous Integration in Xcode 5: Learn how
to set up a beautiful web-based scoreboard and automatically distribute your
builds to TestFlight.

iOS 7 by Tutorials Introduction

 21

Section III: Major New Features
In this section, you’ll learn about the biggest and most important new features and
frameworks in iOS 7 not already covered in this book. For example, you’ll learn
about a new way to write networking code, a new way to keep your app’s data up
to date, and much more.

Here’s a quick overview of the chapters in this section:

16. Chapter 16, Networking with NSURLSession: Learn how to write
networking code with the new NSURLSession suite of classes, which are a great
alternative to NSURLConnection and other similar third-party networking libraries.

17. Chapter 17, Beginning Multitasking: Learn how to keep your app’s data up
to date in the background with background fetching.

18. Chapter 18, Intermediate Multitasking: Learn how to download large files
in the background and get notified of updates with silent push notifications.

19. Chapter 19, JavaScriptCore Framework: Learn how you can mix JavaScript
with your native code in real time from your apps.

20. Chapter 20, AirDrop: Learn how to share data in an even simpler way with
Apple’s new AirDrop support, built right into a UIActivityViewController.

21. Chapter 21, Peer-to-Peer Connectivity: If you want even more control,
learn how to drop down into the peer-to-peer connectivity framework, which
gives you complete control of the process of discovering and sharing information
with nearby devices.

iOS 7 by Tutorials Introduction

 22

Section IV: Minor New Features
In this section, you’ll learn about some minor improvements to existing APIs you
know and love, such as AVFoundation, MapKit, and Core Location.

Here’s a quick overview of the chapters in this section:

22. Chapter 22, What’s New in AVFoundation: Learn about the new bar code
detection, video zooming, and speech synthesis capabilities in AVFoundation.

23. Chapter 23, What’s New in MapKit: Learn about the new directions,
snapshot, and camera features in MapKit.

24. Chapter 24, What’s New in Core Location: Learn how to make an iOS app
that acts as a beacon broadcasting a location, and a companion app to use the
beacon.

Section V: Bonus Chapters
And that’s not all – we also squeezed in some bonus chapters for you!

iOS 7 by Tutorials Introduction

 23

25. Chapter 25, Beginning Inter-App Audio: Learn how to connect the audio
output of one app to the audio input of another app to create a suite of
connected audio apps.

26. Chapter 26, Intermediate Inter-App Audio: Take a deeper dive into Core
Audio, including what audio graphs are and how to wire one up to process audio.

27. Chapter 27, What’s New in PassKit, Part 1: Learn how to make your passes
look great in the new iOS 7 style.

28. Chapter 28, What’s New in PassKit, Part 2: Learn about pass bundles, QR
codes, how to use beacons to activate passes, and more.

29. Chapter 29, Introduction to iAd: Learn how to integrate iAd into your apps,
whether it be banner ads, interstitials, or pre-roll video ads.

Book source code and forums
This book comes with the source code for each of the chapters – it’s shipped with
the PDF. Some of the chapters have starter projects or other required resources, so
you’ll definitely want to have them on hand as you go through the book.

We’ve also set up an official forum for the book at raywenderlich.com/forums. This
is a great place to ask any questions you have about the book, about making apps
with iOS 7 in general, share challenge solutions, or to submit any errors you may
find.

Book updates
Great news: since you purchased the PDF version of this book, you get access to
updates to the book for free!

The best way to get notifications for updates to the book is to sign up for our
monthly newsletter. This includes a list of the tutorials published on
raywenderlich.com that month, any important news like book updates or new

iOS 7 by Tutorials Introduction

 24

books, and a list of our favorite iOS-related links for that month. You can sign up
here:

http://www.raywenderlich.com/newsletter

License
By purchasing iOS 7 by Tutorials, you have the following license:

• You are allowed to use and/or modify the source code in the iOS 7 by Tutorials in
as many apps as you want, with no attribution required.

• You are allowed to use and/or modify all art, images, or designs that are included
in iOS 7 by Tutorials in as many apps as you want, but must include this
attribution line somewhere inside your app: “Artwork/images/designs: from iOS 7
by Tutorials book, available at http://www.raywenderlich.com”.

• The source code included in iOS 7 by Tutorials is for your own personal use only.
You are NOT allowed to distribute or sell the source code in iOS 7 by Tutorials
without prior authorization.

• This book is for your own personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, co-workers, or students;
they would need to purchase their own copy.

All materials provided with this book are provided on an “as is” basis, without
warranty of any kind, express or implied, including but not limited to the warranties
of merchantability, fitness for a particular purpose and non-infringement. In no
event shall the authors or copyright holders be liable for any claim, damages or
other liability, whether in an action of contract, tort or otherwise, arising from, out
of or in connection with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the property
of their respective owners.

Acknowledgements
We would like to thank many people for their assistance in making this possible:

• Our families: For bearing with us in this crazy time as we worked all hours of the
night to get this book ready for publication!

• Everyone at Apple: For developing an amazing operating system and set of
APIs, for constantly inspiring us to improve our apps and skills, and for making it
possible for many developers to have their dream jobs!

• And most importantly, the readers of raywenderlich.com — especially you!
Thank you so much for reading our site and purchasing this book. Your continued
readership and support is what makes this all possible!

iOS 7 by Tutorials Introduction

 25

About the authors

Christine Abernathy is an Engineer on the Developer
Advocacy team at Facebook. In this role, she is focused on
helping grow the mobile developer ecosystem with emphasis on
Android, iOS, and the mobile web.

Soheil Azarpour is an iOS developer. He has worked on
several iOS applications for clients and his own. His hobby is
coding. He enjoys making apps, hanging out with his family,
and watching movies.

Colin Eberhardt has been writing code and tutorials for many
years, covering a wide range of technologies and platforms.
Most recently he has turned his attention to iOS. Colin is CTO
of ShinobiControls, creators of charts, grids and other powerful
iOS controls.

Charlie Fulton is a full time iOS developer. He has worked
with many languages and technologies for many years, and is
currently specializing in iOS development. In his spare time,
Charlie enjoys hunting, fishing, gaming and hanging out with
his family. He likes to slap people with fish in IRC.

Matt Galloway is the founder of SwipeStack, a mobile
development company based in London, UK which create apps
for clients and also a few of their own. He is also author of
Effective Objective-C 2.0 and writes on his blog at
http://www.galloway.me.uk/

Greg Heo is an indie developer and tech partner at Ferocious
Apps. He likes caffeine, codes with two-space tabs, and can be
found at his standing desk at all hours of the day.

iOS 7 by Tutorials Introduction

 26

Matthijs Hollemans is an independent designer and developer
who loves to create awesome software for the iPad and iPhone.
He also enjoys teaching others to do the same, which is why he
wrote The iOS Apprentice series of eBooks. In his spare time,
Matthijs is learning to play jazz piano (it's hard!) and likes to go
barefoot running when the sun is out. Check out his blog at
http://www.hollance.com.

Felipe Laso Marsetti is an iOS developer working at Lextech
Global Services. In his spare time Felipe enjoys learning new
languages and frameworks, playing violin or guitar, cooking
and also video games. You can follow him on Twitter as
@Airjordan12345, ADN as @iFeli, or on his blog at http://ife.li.

Jeremy Olson is the founder of Tapity, which has
made Grades (a 2011 Apple Design award winner),
and Languages (recently released, and got into the top 10).
You can follow him on Twitter as @jerols or check out his work
at: http://tapity.com/

Pietro Rea is an iOS developer based out of New York City. He
started writing code in high school and is currently specializing
in Objective-C and iOS. He currently develops mobile apps for
the Huffington Post. Check out his
blog: http://www.pietrorea.com

Cesare Rocchi is a speaker, writer, UX designer and developer
specializing in web and mobile applications. He began working
on interactive applications while he was a researcher in the
academia. He runs Studio Magnolia, an interactive studio that
creates compelling web and mobile applications. He blogs at
http://upbeat.it.

Marin Todorov is an independent iOS developer and
publisher, with background in various platforms and languages.
He has published several books, written about iOS development
on his blog, and authored an online game programming course.
He loves to read, travel, and ... write code. Visit his web
site: http://www.touch-code-magazine.com.

iOS 7 by Tutorials Introduction

 27

Chris Wagner currently works as the lead iOS developer
at Infusionsoft and started “programming” by playing with
QBASIC and the Lego Mindstorms kit (thanks Dad). After
graduating with a Computer Systems Engineering degree from
ASU he worked as a Java web app developer before moving on
to leading multiple iOS development teams.

About the editors

Chris Belanger was the editor for this book. He has been a
coder for over a quarter century, which makes him feel kind
of old. He’s also a prolific writer, dabbles in electronic and
organic music composition, and occasionally even manages
to get real work done as a developer of real-time control
systems.

Greg Heo was a tech editor for this book. He is an indie
developer and tech partner at Ferocious Apps. He likes
caffeine, semicolons, and the Oxford comma.

Mic Pringle was a tech editor for this book. He is a
Yorkshire-born developer with a passion for aesthetics and
the user experience. Currently working at The Infinite Kind,
he's been handcrafting exquisite iOS apps since 2011.
When not knee-deep in Objective-C, he enjoys spending
time with his wife and daughter, as well as attending the
odd football match.

Ray Wenderlich was the final pass editor for this book. He
is an iPhone developer and gamer, and the founder of
Razeware LLC. Ray is passionate about both making apps
and teaching others the techniques to make them. He and
the Tutorial Team have written a bunch of tutorials about
iOS development available at
http://www.raywenderlich.com.

iOS 7 by Tutorials Introduction

 28

About the artists

Jamie Syke designed the sample projects for this book.
Jamie is a User Interface and Web Designer who has spent
the last 6 years honing his skills in Manchester, UK. His
focus has been on creating clean, functional designs with a
emphasis on user experience. He currently works as Lead
Designer for online ticketing platform Fatsoma and is
available for freelance work at http://syke.co.

Vicki Wenderlich created many of the illustrations in this
book. Vicki discovered a love of digital art three years ago,
and has been making app art and digital illustrations ever
since. She is passionate about helping people pursue their
dreams, and makes free app art for developers available on
her website, http://www.vickiwenderlich.com.

In this section, you will learn how to design your apps to look great on iOS 7, along
with the practical nuts and bolts of doing so. You will also learn about the new APIs
in iOS 7 that are related to design, like UIKit dynamics, custom view controller
transitions, and Text Kit.

Chapter 1: Designing for iOS 7

Chapter 2: UIKit Dynamics

Chapter 3: Custom View Controller Transitions

Chapter 4: Beginning Text Kit

Chapter 5: Intermediate Text Kit

Chapter 6: Transitioning to iOS 7 – Quick Start

Chapter 7: Transitioning to iOS 7 – What’s New with Auto
Layout

Chapter 8: Transitioning to iOS 7 – Advanced Topics

Section I: Design

The new design of iOS 7 is a dramatic change from the skeuomorphic style of iOS
6. Love it or hate it, it was a much needed shake up. It changes everything, and
customers are going to look for and expect apps that fit in with this new design
style.

The best part about the new design in iOS 7 is that it represents a huge opportunity
for small developers. The massive players who once dominated the App Store are
going to have a tough time transitioning to iOS 7 without alienating millions of iOS
6 users or completely rethinking their apps from the ground up — something
established players are often slow to do.

The nimble guys are going to win here, making this possibly the most exciting time
to be building apps.

But this doesn’t mean that success is going to fall into your lap. An overnight
success takes about a year of hard work, as they say. Tens of thousands of
developers are going to be jumping onto the iOS 7 bandwagon, all hoping for fame
and fortune. How will you be different?

As always, the number one differentiator will be an app designed not only to be
usable but also enjoyable to use. With a drastic de-emphasis on heavy visuals,
delighting users on iOS 7 will be a much different task than on iOS 6.

Personally, I have designed a lot of apps in iOS 6 (including an Apple Design Award
winner) and the new design of iOS 7 has me really excited. It brings tons of

Chapter 1: Designing for iOS 7
By Jeremy Olson

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 32

opportunities for new looks and new ideas, and my goal in this chapter is to give
you a solid starting point to designing apps that look great in iOS 7.

This chapter starts out with the basics and then moves on to help you design apps
that stand out from the crowd — and push the platform forward.

Developers are designers, too

I designed the screen on the left for an app called Languages. As the developer was playing
with the code, he came up with the much improved version on the right.

Since this entire book is about code, I’m assuming you, dear reader, are primarily a
developer as opposed to being a designer. That’s okay! Although I am primarily a
designer, I’m also a closet coder as well; I think it’s always good to dabble outside
your comfort zone once in a while.

My favorite coders are ones who display at least a smidgen of a design instinct.
Why? Because development is so closely related to design — and, inevitably, coders
end up making plenty of design decisions whether they realize it or not.

This becomes even more important when working with iOS 7 and its emphasis on
things like transitions and dynamics — things a designer can’t easily communicate
through mockups. Developers are going to end up doing a lot of those design
experiments themselves. That’s a good thing, though, because developers have a
lot of great ideas too, and design is definitely a skill that can be learned.

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 33

Now that iOS 7 has taken the spotlight off of visually rich interfaces, maybe this will
be a good opportunity for developers to start doing more interface design
themselves. Reading this chapter is a great way to get started!

Say Hello to design

As a developer, you’re probably used to thinking about how to implement your app
— should I use a UITableView or a UICollectionView to display this list of items;
should I use iCloud or roll my own sync solution?

You are about to explore a whole new world that goes far beyond implementation.

Design is a world where you think about what an app should do, how it should
behave, how it should look, and even how it should make the user feel. It’s a world
where you free yourself from the bonds of logic to explore the endless possibilities
of what an app could be.

That’s really the essence of design: it’s an expedition where you explore the
possible ways your app could look and work. As you explore, you consider which
ideas help realize your goals along with the goals of the users you are designing
for.

It’s a lot of fun and it’s a nice break from the technically-oriented world of code,
since you probably still spend most of your time there.

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 34

Why design?

If you’re like many developers, as soon as you have a basic idea of what you want
to build, your first instinct is to dive into Xcode and begin coding.

But just like your code can really benefit from some initial planning before you start
coding like which data structure to use, or whether to go with plists or Core Data,
your user interface can really benefit from some initial planning too.

You want to be thinking about things like navigation, layout and interaction early on
in the process. Sure, you can always go back and refactor, but it’ll certainly take a
lot more time and effort than identifying issues early in the blueprint stage where
you simply change things on paper.

You need to think of design as something to consider early in the process. It’s not
as simple as building an initial version with “programmer art” and then slapping on
a coat of paint right before launch.

Don’t get me wrong; Xcode is a great tool to explore more detailed design decisions
like animations and transitions, and it’s a great way to find out if your “big picture”
design decisions have any merit. But design isn’t about tools. Rather, I’m talking
about a way of thinking that focuses on user goals, ease-of-use and delight, rather
than mere implementation.

What can you expect from spending more time on design?

• More downloads. Users have come to expect thoughtfully designed apps and are
more likely to download them, not to mention that your App Store screenshot is
probably the number one factor in a customer’s decision to download your app —
or to keep browsing.

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 35

• More reviews. The press gets hundreds of emails a day and has no time to look
at poorly designed apps. Well-designed apps stick out from the crowd.

• Higher chance of being featured. Apple’s culture revolves around design; good
luck getting your app featured without reflecting that design culture. All of the
apps I’ve designed have been featured by Apple, which I attribute primarily to a
heavy and upfront focus on design.

Designing for iOS 7 is different

My team realized that redesigning our upcoming app Hours for iOS 7 was a worthwhile
investment.

Designing for iOS 7 is different. Apps designed for iOS 6 will soon look like
dinosaurs unless their interface is overhauled. Apps specifically designed for iOS 7
will have an edge in the market because:

• Users will come to expect apps that fit in with the iOS 7 environment.

• The press won’t want to cover apps that look old.

• Apple will be more likely to feature apps that embrace their new design
principles.

The best designers don’t merely follow trends; they need to create apps that feel
comfortable in the environment in which they’re used — in this case, that’s iOS 7.
This will be tricky, since iOS 7 is the most opinionated version of iOS ever released.

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 36

It even feels limiting in some ways; things that you were free to do before —
heavily stylized buttons, rich metaphors, and the like — just don’t fit in any more.

A cynic would imagine the App Store a year from now, filled with apps that look
essentially the same except for their color — flat, textureless, and boring:

That was sort of how I felt when I first encountered iOS 7. Since then, I have
become quite optimistic about the future of design in Apple’s latest offering in the
following ways:

• New focus: The whole point in stripping down the visuals is to focus on the
content and interactions. That’s something you don’t always get from glancing at
the screenshots.

• Diversity will come: The best iOS 7 apps will not simply mimic the look of apps
like Settings and Calendar. The best apps will use the new design language as a
starting point and then innovate on top of that, just as the best apps did in iOS 6.
As the platform matures, so will the visual diversity in apps.

So let’s unpack this thing together and discover what constitutes a great app in iOS
7.

The key to iOS 7 design: focus

As I began to design apps for iOS 7, I tried to think about what word ties
everything together. I would now say that the key word is focus.

Contrary to popular belief, iOS 7 is not about flat design; it contains a surprising
number of non-flat elements and is in fact more three-dimensional than previous
versions of iOS in many ways. Instead, iOS 7 is about removing distractions to
focus on the three key concepts Apple uses to describe their new design
philosophy:

1. Clarity: focus on the basics of graphic design to deliver focused functionality

2. Deference: focus on content

3. Depth: focus on the interactions

These fundamental concepts drive much of the structure of this chapter as I believe
the best iOS 7 apps will take these three principles and interpret them in their own
unique way.

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 37

Focus on function
Great app design starts long before taking out your sketchbook or firing up
Photoshop; instead, it starts with the question “Who is this app for — and what
problem does it solve?”

App definition statement
An app definition statement is just what it sounds like: a one-sentence definition of
who the app is for and what it does for them.

For my app, Hours, the statement went something like this:

“An app for professional business people to take the pain out of keeping track of
their billable hours.”

Or, simply, “Taking the pain out of time tracking.”

An app that does everything is an app that does nothing

This kind of statement helps you focus on solving one problem really well. If you
can’t come up with one sentence that describes the essence of your app, your app
is probably too big and will end up being impossible to implement well — and even
harder for users to understand and share with their friends.

An app designed for everyone is an app designed for no one
A design statement also saves us from the trap of designing for “everyone”. When
you design for everyone, you design for no one. But if you design with one
particular group of people in mind and make sure that it works really well for them,

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 38

chances are it will also work for other groups of people, since empathizing with a
particular group breeds thoughtful design.

Use this statement as a litmus test for every feature, button, and interaction in
your app — if it doesn’t work towards the goal set in your definition statement, kill
it.

Focus on the basics
Since iOS 7 de-emphasizes heavy user interface elements such as rich textures,
gradients, and chrome, you need to make sure you nail the basic principles of
graphic design as that’s pretty much all you have to work with. Steven Bradley puts
it thusly:

“The thing is when you strip away the skeuomorphic ornamentation and realism,
what you’re left with is the fundamentals. Unfortunately too many flat designs
focused solely on the flat and skipped the part about fundamental design
principles.”

Let’s not fall into that trap. While I can’t adequately cover all the fundamentals of
design, I can at least talk about some basic graphic design principles to get you
started.

Contrast

Contrast is the visual difference between two elements; this could be through color,
texture, or other elements of style. The text on the left has high contrast because
the color of the text is very different than the color of the background, making it
very visible. The text on the right has very low contrast with its background,
making it nearly invisible. Notice how your eye is automatically drawn to the box on
the left. The drawing power of high contrast elements should be used to advantage
in your designs.

Contrast is a very powerful tool and must be used discriminately. If there are too
many high contrast elements on the screen, the user’s eye won’t know where to go.

Contrast can be used for:

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 39

• Highlighting: Call out the elements that matter the most for the task
at hand and de-emphasize the less important elements.

• Eye candy: Provide visual vibrancy and weight to the design as a
whole.

• State: Show which elements are active or can be tapped.
• Readability: Ensure that text is easy to read.

Take a look at the screenshot below. There is obviously something amiss in the
user interface; but what exactly is wrong — and how you would fix it?

Jot down anything you notice that seems off about this design before you keep
reading. Hint: it has to do with contrast!

Here is an annotated version of the screenshot with the problems I noticed:

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 40

While design is very subjective, certain fundamental rules like the proper use of
contrast, are very objective and should never be broken.

Here’s another version of the same design that has contrast applied appropriately:

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 41

Ahh…that looks much better! This new design is much more aesthetic, professional
— and functional.

Repetition

Repetition is just what it sounds like: the same object or style repeating itself. If
two things are related, they should share a similar visual style. A UI that lacks
repetition will look confusing because humans use patterns to make sense of the
world.

Again, take a look at the screenshot below. Yes, it looks unprofessional, but why?

As before, jot down anything you notice that seems off before reading on. Hint: it
has a lot to do with repetition!

Here is an annotated version of the screenshot with the problems I noticed:

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 42

This screen has some repetition so it doesn’t completely confuse users, but it lacks
professionalism and looks disorganized at first glance.

Adding a little repetition goes a long way:

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 43

Appropriate use of repetition makes this app much easier to skim visually and pull
out the required information — not to mention much more professional looking in
general.

Alignment

Alignment is about lining up objects with each other to visually connect them in a
coherent way. This is one of the areas that any programmer would do well to study
up on because alignment errors are probably the most common issues I see when
programmers implement design.

The basic idea of alignment is that no element should ever be placed on the screen
arbitrarily; every element should be visually connected to at least one other
element. This could mean one of two things:

• Edge alignment: one or more edges line up vertically or horizontally.

• Center alignment: centers line up vertically or horizontally.

Take a look at the screenshot below and see if you can identify some alignment
issues (you may find it useful to print this out and draw lines):

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 44

From a distance, the screen above might look okay, but if you look closely, you’ll
notice that the errors in alignment make the screen look disheveled and
amateurish. Here’s what I came up with:

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 45

The red lines indicate horizontal alignment. Most elements on the screen are not
precisely aligned to any other element, resulting in an unhealthy number of lines.
What makes matters worse is that the lines don’t seem to have any consistent
pattern or equal spacing.

This line exercise is tremendously helpful, especially when you’re just beginning to
hone your eyes to pixel perfect alignment. If your vertical or horizontal alignment
looks like the example above, don’t fret — alignment isn’t rocket science. A few
pixel nudges here and there and voila:

Notice how the properly aligned design not only has far fewer red lines but also
spaces the lines in even patterns that will be easy on the eyes of users.

Proximity

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 46

Proximity says that if elements are related, they should be close together. If
elements are not related, they should be farther apart on the screen.

Developers are often very concerned about using the screen as efficiently as
possible and filling up every pixel of the screen with stuff. While this might be
efficient, it also generates a confusing mess because whitespace — the space on
the screen without stuff — is your most powerful tool for organizing elements into
logical sections, helping your user to effortlessly make sense of the content.

See if you can identify the proximity issues on the screen below:

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 47

Here’s what I came up with:

It’s clear that improper proximity of unrelated items can make things very
confusing. How would you solve these problems? Here’s my take at a solution,
although there are always lots of different ways to solve design issues:

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 48

The functions of the elements of an app are far clearer when everything is grouped
properly!

Typography

In iOS 7’s minimalistic aesthetic, typography takes center stage and can even be a
defining factor in your app’s personality. Steve Jobs famously made typography a
core design consideration way back in the original Macintosh system; that legacy
continues at Apple and in iOS today.

Here are some general rules of thumb to consider when using typography in your
app:

• Use a maximum of three font styles. A font style is a combination of font-
family, such as Times or Helvetica, color, size, and modifiers like bold and italic.

Moving the label
closer to the list
below it and
adding some
extra space
above it ensures
the user

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 49

Don’t use more than two or three font styles on one screen and try to stick to
three or four styles in your whole app to maintain consistency.

• Use centered text sparingly. Sometimes you absolutely need to center text,
such as on the Navigation Bar title, but as a rule of thumb it’s best to avoid it
whenever possible. Text layouts that are left- or right-justified generally look
more professional.

• Keep your font choices simple. Fonts like Impact have their place, but super
stylized fonts generally don’t lend themselves to legible user interfaces.

• Plan ahead for resizing of text. The Dynamic Type feature of iOS 7 permits
users to scale the system-wide text size using the Settings app. Be sure to test
your app with all font sizes available to users and be sure to offer the optimal
experience for each one. To learn more, see Chapter 5, “Beginning Text Kit”.

• Use serif fonts for large blocks of text. Fonts such as Georgia or Times New
Roman have little embellishments or serifs on most of the letters and help draw
the reader’s eye along the text. Generally, if you have a lot of text in a single
block, serif fonts make the text much more readable.

• Use sans serif fonts for small amounts of text. Sans serif fonts like Helvetica
Neue, Apple’s preferred font in iOS 7, don’t have embellishments on letters; they
look cleaner and lend themselves well to smaller pieces of text such as headings
and controls.

• Use contrasting font-families on the same screen. If you use Helvetica Neue in
your app, don’t use Calibri on the same screen; they’re far too similar and look like
visual errors to the user. If you are going to be using two different font families
on the same screen, make them very different.

• Use variations of one font-family on the same screen. If your primary font is
very versatile — such as Helvetica Neue — you can stick to that one font most of
the time and just use variations such as light, bold, italic, and varying colors and sizes
to accomplish your typographical goals.

Although that’s a sizeable list of things to keep in mind, it barely scratches the
surface of typography. Your overarching goal is consistency; your app will feel
wrong if the font sizes are inconsistent or only some headings are bolded. Your use
of typography should add to the character of your app and help convey the content
— without getting in the way.

What is wrong with the typography on the screen below?

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 50

Here are some of my thoughts:

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 51

Here is my proposed solution:

This app has become far prettier and more usable just by changing the typography.

At this point, you’ve learned about the five basics of design: contrast, repetition,
alignment, proximity, and typography. Remember – focusing on the basics is
especially important in iOS 7, because when you strip away the ornamentation, the
design basics and the user’s content are all that’s left.

To learn more about these basic design principles, I highly recommend The Non-
Designers Design Book by Robin Williams.

Focus on the content
One of the fundamental tenets of iOS 7 design is what Apple calls deference: de-
emphasizing the chrome around the content in order to emphasize the content
itself. This seems like a no-brainer but is actually quite tricky to get right – so we’re
dedicating a large portion of this chapter to this topic.

Remove unnecessary details
Great design is more about subtraction than addition. While cool ideas are
important, it is often more important — and exponentially more difficult — to kill
those cool ideas in order to keep the app focused.

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 52

De-emphasize chrome
“Chrome” refers to the bits of your app that aren’t part of the content themself,
such as the navigation bar and the tab bar. iOS 7 greatly discourages the use of
chrome, with some apps even going so far as to remove it altogether. When
reducing the amount of chrome in your design, consider the following points:

Is chrome needed?
Reconsider if you even really need chrome in the first place. Could the content be
the navigation?

Apple’s Reminders app removes all signs of chrome, allowing the user to navigate
with the content alone. Instead of tapping a back button, users tap on the bottom
deck of cards to go back a level; the animation of the cards make this new
navigation paradigm easy to understand.

Use simple backgrounds
Instead of heavy textures, use simple, transparent backgrounds that hint at the
content underneath; Apple’s frosted glass effect is a really nice example of this.
Play with color variations or subtle textures to add uniqueness or branding to your
chrome.

Apple tends to make the chrome in their iOS 7 apps the same color as the app’s
primary background in an attempt to make the chrome disappear. This may work in
some cases but keep in mind that doing this could very well have the opposite
effect because it causes the chrome to visually blend with the content, making it
harder distinguish the two. When chrome and content look the same, they both

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 53

look equally as important – defeating the purpose of hiding the chrome. In other
words, a contrasting background for chrome may not always be a bad thing.

Notice how the Status Bar is always blended with the Navigation Bar; always strive
to blend these two elements together in a tasteful way.

Hide the chrome when possible
Think about ways that you can hide any chrome that isn’t being used. Safari uses
this to great advantage, as it’s an example of an app where you want the user to be
intensely focused on the content and not be distracted by the navigation UI.

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 54

Safari in iOS 7 hides its already minimal chrome as you begin to scroll down a website (left)
and reveals it again when you scroll up or tap the top bar (right).

Simplify UI elements
iOS 7 challenges you to question every background, texture, shadow and border.
The idea is to eliminate any unnecessary ornamentation so the user can focus on
the elements that really matter. While ornamentation can be useful, using it
sparingly will help your apps feel more at home in iOS 7.

Because iOS 7 interfaces tend to be so minimal, any extra visual weight such as
gradients, borders, or realistic detail draws tremendous attention; therefore use
these elements only when you need to call out certain items by giving them a
bolder visual treatment.

Borderless buttons
My initial reaction to Apple’s directive to design borderless buttons was an emphatic
“No!”. However, it turns out that borderless buttons work really well in certain
places, such as navigation bars. In a simplified navigation bar background, borders
just add visual noise and are unnecessary — as long as you make it clear which
elements can be tapped or interacted with. Apple typically uses color to indicate
interactivity on the navigation bar; I’ll cover that in more depth a little later on.

Most buttons and widgets below the navigation bar still generally require borders to
differentiate between interactive and non-interactive items, as shown below:

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 55

The borders Apple uses in iOS 7 tend to be thin but distinct. Apple’s buttons
generally use transparent backgrounds for their unselected state and simple colored
backgrounds for their selected state. Experiment with things such as border weight,
background color, transparency, the radius of the rounded corners, or subtle
shadows and textures when seeking a unique button style for your app.

Using color to indicate interactivity
Apple mentions the use of color to indicate interactivity in an app. This works on
occasion, such as in the navigation bar, but even Apple is inconsistent in applying
this principle so take it with a heavy grain of salt. For example, in the Clock app
below, the red color on the navigation bar indicates that the Edit and + buttons are
interactive, but on the tab bar the red color instead indicates which tab is selected:

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 56

Apple uses color to indicate interactivity in an attempt to make it clear what is and
isn’t interactive without using borders around buttons. However, don’t feel obliged
to follow this rather inconsistent guideline if the interactivity of your app’s elements
is clear — even without the use of color.

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 57

Minimize realistic details and skeuomorphism

A mockup (left) of how the popular Limelight app (right) might look in iOS 7

I’ve read enough design arguments about skeuomorphism to cover a few lifetimes,
so I won’t open that can of worms too far. However, I do want to crack the lid ever
so slightly and talk about the role of skeuomorphism in iOS design.

What is skeuomorphism? Well, there’s quite a bit of debate on that topic. To put it
simply, skeuomorphism takes design cues from the real world and applies them to
your digital designs.

Skeuomorphism is by no means absent in iOS 7. For example, the buttons in iOS 7
are still skeuomorphs even without their familiar gradients and glares, as buttons
are elements that exist in the real world.

iOS 7 re-vamps skeuomorphic elements by de-emphasizing realistic details like faux
leather, gradients, and shadows. Mind you, it doesn’t eliminate them altogether!
The light look and feel of iOS 7 means that apps with a heavy-looking UI such as
Grades or Tweetbot will have a hard time fitting in. However, I’m quite sure that
the hit iOS 7 apps will contain plenty of textures, metaphor, and realism; they’ll
just look quite different from the heavily detailed apps of iOS 6.

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 58

Skeuomorphism is one of the many tools in a designer’s toolbox. It isn’t going
away; you’ll just have to explore new ways of using it in this minimalistic
environment.

Some experiments I have been doing with the design of Grades for iOS 7.

The best apps will find a sweet spot between the old, heavily detailed styles, and
the new minimalist look; you can still maintain a sense of uniqueness with subtle
visuals without going overboard.

Make content king
Now that you have de-emphasized the UI, how can you emphasize the content?

Use the whole screen
Avoid unnecessary UI elements that only serve to frame the content; you want to
give your content as much room as possible so that it takes center stage in your
app.

Make the content define the screen
Yahoo’s weather app does a great job at defining the entire feel of the app based on
the current weather using gorgeous photography. Apple’s blurred glass effect is
perfect for allowing the graphical content to shine through the whole screen.

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 59

The various screens of Yahoo’s weather app, where the content defines the design.

Make it visually interesting
The station art in iTunes Radio changes perspective as you scroll it across the
screen. iOS 7 minimizes overbearing visual UI in order to maximize content — so
take the opportunity to make your content visually interesting.

iTunes Radio eschews flashy UI elements, and instead adds embellishment to the content
itself.

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 60

Focus on interactions
App design is about to undergo a radical shift in direction. Previously, apps could
stand out based on eye-popping visuals. But with iOS 7, photorealistic wood,
buttons that pop out of the screen, and rich icons are a lot less relevant.

So how do you stand out on iOS 7? How do you create an app with a delightful
personality without mind-blowing graphics? In short, app design in the new
paradigm will be less about how your app looks and a lot more about how it works
and feels. I think the de-emphasis of visuals in iOS 7 will generate a renaissance of
innovation in touch interaction design.

Juxtaposing the unofficial Instagram for iOS 7 mockup (left) next to Instagram for iOS 6
(right) highlights the use of much simpler visuals.

Simpler visuals make it easier to quickly experiment with novel animations,
transitions, and interaction patterns, as resizing and morphing simple shapes is at
least a thousand times easier than dealing with textures and bevels. The next round
of standout apps will leverage that one feature alone to create interactions you’ve
never experienced before.

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 61

Touch is magic

Touch is magic: it tricks you into thinking that you are manipulating physical
objects instead of moving pixels around a screen. Apple knows this fact well; it’s
why the very first iPhone had 1:1 scrolling and bouncy effects.

A computer can be cold, but making that computer a window into a physical world
that the user can manipulate creates friendly, familiar, and immersive experiences.
However, any lag or hiccup in the delivery of that experience immediately shatters
the illusion; the magic show ends with a puff of smoke.

Didn’t iOS 7 kill metaphor and realistic details? Actually, no, it didn’t. While the
prominence of realistic visuals is discouraged, realism is strongly encouraged
through user interaction and dynamic physical effects. In fact, iOS 7 has a physics
engine built in for the sole purpose of creating interfaces that feel more “real”.

Great design will happen a lot less frequently in Photoshop and a lot more often in
tools like Xcode and Quartz Composer; these tools allow you to explore how the
app feels, not just how it looks.

Direct manipulation
Direct manipulation is the idea of performing functions in real-time by interacting
with objects on the screen, rather than tapping a button in one place and seeing
the result in another. Swiping to scroll, pinching to zoom, and dragging and
dropping objects are all examples of direct manipulation.

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 62

iOS 7 Photos doesn’t have the arrow buttons anymore to move between photos; instead,
the natural swipe action alone takes care of that task.

When looking through pictures, which feels more natural and satisfying — tapping
the arrow button or swiping the current picture over to see the next one? To ask
the question is to answer it. Humans are very tactile creatures — successful
designers create interfaces that reflect that.

Realism extends to the way that people visualize data. People visualize time as a linear,
connected entity, not as disparate items in a list.

Realistic interfaces require objects for the user to manipulate, so you need to turn
your abstract functions into physical objects. For example, my team had to think
about how we were going to represent time entries in our Hours app. Instead of
representing time as entries in a list, Hours treats time as a physical block on a
timeline. This makes it easier to visualize — and manipulate — the individual time
elements.

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 63

Physics and animation
What a shame it would have been for Apple to nail 1:1 scrolling but not follow
through with the inertia and bounciness you have come to know and love. Direct
manipulation goes hand in hand with physics and animation; the goal is to make
the interactions feel real.

In the future, apps that neglect physics will quickly feel stale and static. UI
designers have only begun to explore the use of physics in touch user interfaces,
but here are several ideas to get you started:

The iOS 7 lock screen will bounce differently based on how high it is when you let it go

• Dynamics: Instead of thinking about digital animations, think in terms of physical
principles. When you push a ball on a physical surface it doesn’t start at one
speed and maintain that speed until it reaches its destination. Instead, the ball
accelerates as you begin pushing it and then decelerates as friction brings it to a
stop. When an object falls 10 feet it bounces higher than it would if it fell two
feet. Your interface should behave the same way; fortunately, Apple’s new UIKit
Dynamics API makes this easy for you. To learn more, check out Chapter 3,
“UIKit Dynamics and Motion Effects”.

• Continuity: Instead of thinking about each screen as a clean slate, start thinking
about which items should persist from screen to screen and how you can
realistically animate them from one state to the next through actions such as
moving, resizing, zooming, or morphing.

• Bounciness: It’s not just for scrolling anymore. Depending on how flexible you
want your digital objects to feel, bounciness could add a fun playful touch. When
an object expands, does it expand linearly from one size to another or does it

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 64

expand to be a little oversized, based on the momentum of the animation, then
shrink back down to the final size? When you zoom in, do you zoom in a little
further than necessary and then bounce back a bit? This animated GIF illustrates
bounciness in my app Hours: http://tapity.com/quartz-composer-key-to-ios-7-
design/

Working in three dimensions
Ironically, the OS that people are calling “flat” is turning out to be the most three-
dimensional of all. Despite pulling back on three-dimensional effects like bevels and
shines, one of the three main guiding principles of iOS 7 is depth.

Depth can take a few forms:

3D Effects
The addition of parallax effects make it it clear that Apple wants you to show off the
three-dimensionality of your app through interesting visual effects. You can see
parallax effects at work when you tilt the screen and the perspective of the UI
changes relative to the degree of tile, or when the station art changes perspective
as you scroll through station art in iRadio.

Parallax adds a level of dimensionality to interfaces by responding to the physical
orientation of the device.

To learn more about adding parallax effects to your app, check out Chapter 3,
“UIKit Dynamics and Motion Effects”.

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 65

Layers
Tilt your iPhone and you will see that the icons are not actually sitting on the
background — the parallax effect reveals they’re floating above it instead. Bring up
Control Center and the frosted glass makes it very apparent that Control Center is a
layer above all the icons. Think about your interface in layers and use 3D effects to
make the purpose of the layers clear to your user.

The frosted-glass effect provides a subtle layering effect to Control Center.

Zooming user interfaces
It’s evident from the way the screen zooms into apps when you tap their icon, to
the way Photos zooms into years, then collections, then moments, then photos,
that Apple has fully embraced the zooming interface paradigm. They’ve made it
incredibly easy to do so in your apps as well. I think some of the coolest UI
innovation will come from developers who experiment with this concept and take it
to a level not yet dreamed of.

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 66

The zooming interface paradigm is alive and well in iOS 7; tapping an icon zooms in to the
appropriate application.

Gestures and navigation
Apps like Clear have only scratched the surface of using touch to navigate apps.
Clear eliminated nearly all of the UI and replaced it with swipe and pinch gestures;
it’s quite fun to use once you learn the appropriate gestures.

Clear: where gestures are the UI.

However, some functions might not map well to gestures; unnatural gestures are
hard to remember and no fun to use. Also, users are likely to forget unfamiliar

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 67

gestures for apps that aren’t used at least daily. Experiment with gestures and
include them where it makes sense, but don’t arbitrarily make buttons the enemy in
favor of control-free gesture-driven UI.

iOS 7 introduced a new pattern: swipe to go back. You can still tap the back button but
swiping can be a lot easier, especially on the iPhone 5’s taller screen.

While there are some exceptions, gestures can be compared to keyboard shortcuts.
They can make life more convenient for the power user who knows them, but
generally they shouldn’t be the only way to do something.

Personality
To stand out, your iOS 7 app must have a unique and delightful personality. Looks
are still important, but how the app feels and works is equally, if not more, critical
in defining the personality of your app.

In addition, an app’s personality can be developed through:

• Audio: Audio is a vast, unexplored territory with a few pioneers like
Tapbots, who include subtle clicks and beeps in their apps.

• Words: Who would have thought an error message could make
someone’s day? Witty or humorous copy can be one of the best ways
to exude personality.

• Icons: Your app’s icon is generally the first impression the user has of
your app. Since it lives in digital perpetuity on the user’s home screen,
it’s worth the investment in time and energy to get it right. The icon
should capture the app’s personality in miniature.

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 68

Personality really comes down to all the little details that turn a good app into a
great one. The drive to perfect every pixel, optimize every interaction, and sprinkle
the app with thoughtful touches, from delightful animations to witty error
messages; these are the things that turn good apps into great apps.

Check out littlebigdetails.com for lots of great “little details” that make a big
difference in the overall user experience. Charming users gets harder with every
digital generation; apps with winning personalities are the apps that become
blogged about, talked about, read about, and most importantly — downloaded.

Make a dent in the universe
“Not going to lie. iOS7 has made me really excited about work again. Really cool
stuff in the pipeline (at least I think so).”

— Mark Jardine, designer of Tweetbot

This is possibly the most exciting time in years to be an app designer. As Marco
Arment pointed out, the App Store is fertile ground again. This radical design shift
means that the next few years will see a new crop of top apps in each category.
These apps will put a unique twist on Apple’s principles of clarity, deference, and
depth to create user interfaces no one has ever seen before.

The best part of this is that you could create these apps! No, it won’t be easy
pickings. Yes, the competition will be fierce. But now is a better time than any to
buckle down and pour your blood, sweat, and tears into something great,
something that maybe — just maybe — will let you make your own dent in the
universe.

Challenges
For the first time in our iOS by Tutorials series, we are including one or more
challenges at the end of each chapter.

We have tried to make each challenge short and simple, and we provide you with
step-by-step hints along the way. We highly recommend you do these challenges –
it’s a great way to practice what you learned in the chapter.

This chapter just has one challenge – to take an iOS 6 app, and redesign it for iOS
7. Enjoy!

Challenge 1: Redesign this app!
The screenshot below shows an iOS 6 app. It’s in pretty poor shape and needs your
help:

iOS 7 by Tutorials Chapter 1: Designing for iOS 7

 69

Your challenge is to apply everything you have learned about contrast, repetition,
alignment, proximity, typography and Apple’s new design principles to not only fix
this app’s issues, but redesign it for iOS 7.

You have lots of choices on how to redesign the app. You can use Xcode itself, a
program like Photoshop, or simply with a piece of paper and some colored pencils.

Before you start on your new design, try to identify all the problems with the
original design. Here are a few hints to get you started:

• Do you notice any issues with alignment?

• Are related concepts grouped together?

• Would any of the “rules of thumb” of typography apply here?

• What would the app look like if ornamentation was removed?

The resources for this chapter include the solution I came up with, but note that
design is by its very nature wholly subjective; there’s no single solution to this
challenge. When you’re done, be sure to visit the book’s forums to share and
compare your solutions with others: http://www.raywenderlich.com/forums

You have probably come to realize that iOS 7 is something of a paradox; while
you’re being encouraged to do away with real-world metaphors and
skeuomorphism, Apple encourages you at the same time to create user interfaces
that feel real.

What does this mean in practice? The design goals of iOS 7 encourage you to
create digital interfaces that react to touch, gestures, and changes in orientation as
if they were physical objects far beyond a simple collection of pixels. The end result
gives the user a deeper connection with the interface than is possible through skin-
deep skeuomorphism.

This sounds like a daunting task, as it is much easier to make a digital interface
look real, than it is to make it feel real. However, you have some nifty new tools on
your side: UIKit Dynamics and Motion Effects.

UIKit Dynamics is a full physics engine integrated into UIKit. It allows you to
create interfaces that feel real by adding behaviors such as gravity, attachments
(springs) and forces. You define the physical traits that you would like your
interface elements to adopt, and the dynamics engine takes care of the rest.

Motion Effects allows you to create cool parallax effects like you see when you tilt
the iOS 7 home screen. Basically you can harness the data supplied by the phone’s
accelerometer in order to create interfaces that react to changes in phone
orientation.

When used together, motion and dynamics form a powerhouse of user experience
tools that make your digital interfaces come to life. Your users will connect with
your app at a deeper level by seeing it respond to their actions in a natural,
dynamic way.

Getting started
UIKit dynamics can be a lot of fun; the best way to start learning about them is to
jump in feet-first with some small examples.

Chapter 2: UIKit Dynamics and
Motion Effects
By Colin Eberhardt

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 72

Open Xcode, select File / New / Project … then select iOS\Application\Single
View Application and name your project DynamicsPlayground. Once the project
has been created, open ViewController.m and add the following code to the end
of viewDidLoad:

UIView* square = [[UIView alloc] initWithFrame:
 CGRectMake(100, 100, 100, 100)];
square.backgroundColor = [UIColor grayColor];
[self.view addSubview:square];

The above code simply adds a square UIView to the interface.

Build and run your app, and you’ll see a lonely square sitting on your screen, as
shown below:

If you’re running your app on a physical device, try tilting your phone, turning it
upside-down, or even shaking it. What happens? Nothing? That’s right —
everything is working as designed. When you add a view to your interface you
expect it to remain firmly stuck in place as defined by its frame — until you add
some dynamic realism to your interface!

Adding gravity
Still working in ViewController.m, add the following instance variables:

UIDynamicAnimator* _animator;
UIGravityBehavior* _gravity;

Add the following to the end of viewDidLoad:

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 73

_animator = [[UIDynamicAnimator alloc]
 initWithReferenceView:self.view];

_gravity = [[UIGravityBehavior alloc] initWithItems:@[square]];
[_animator addBehavior:_gravity];

I’ll explain this in a moment. For now, build and run your application. You should
see your square slowly start to accelerate in a downward motion until it drops off
the bottom of the screen, as so:

In the code you just added, there are a couple of dynamics classes at play here:

• UIDynamicAnimator is the UIKit physics engine. This class keeps track of the
various behaviors that you add to the engine, such as gravity, and provides the
overall context. When you create an instance of an animator, you pass in a
reference view that the animator uses to define its coordinate system.

• UIGravityBehavior models the behavior of gravity and exerts forces on one or
more items, allowing you to model physical interactions. When you create an
instance of a behavior, you associate it with a set of items — typically views. This
way you can select which items are influenced by the behavior, in this case which
items the gravitational forces affect.

Most behaviors have a number of configuration properties; for example, the gravity
behavior allows you to change its angle and magnitude. Try modifying these
properties to make your objects fall up, sideways, or diagonally with varying rates
of acceleration.

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 74

NOTE: A quick word on units: in the physical world, gravity (g) is expressed in
meters per second squared and is approximately equal to 9.8 m/s2. Using
Newton’s second law, you can compute how far an object will fall under
gravity’s influence with the following formula:

distance = 0.5 × g × time2

In UIKit Dynamics, the formula is the same but the units are different. Rather
than meters, you work with units of thousands of pixels per second squared.
Using Newton’s second law you can still work out exactly where your view will
be at any time based on the gravity components you supply.

Do you really need to know all this? Not really; all you really need to know is
that a bigger value for g means things will fall faster, but it never hurts to
understand the math underneath.

Setting boundaries
Although you can’t see it, the square continues to fall even after it disappears off
the bottom of your screen. In order to keep it within the bounds of the screen you
need to define a boundary.

Add another instance variable in ViewController.m:

UICollisionBehavior* _collision;

Add these lines to the bottom of viewDidLoad:

_collision = [[UICollisionBehavior alloc]
 initWithItems:@[square]];
_collision.translatesReferenceBoundsIntoBoundary = YES;
[_animator addBehavior:_collision];

The above code creates a collision behavior, which defines one or more boundaries
with which the associated items interact.

Rather than explicitly adding boundary co-ordinates, the above code sets the
translatesReferenceBoundsIntoBoundary property to YES. This causes the boundary
to use the bounds of the reference view supplied to the UIDynamicAnimator.

Build and run; you’ll see the square collide with the bottom of the screen, bounce a
little, then come to rest, as so:

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 75

That’s some pretty impressive behavior, especially when you consider just how little
code you’ve added at this point.

Handling collisions
Next up you’ll add an immovable barrier that the falling square will collide and
interact with.

Insert the following code to viewDidLoad just after the lines that add the square to
the view:

UIView* barrier = [[UIView alloc]
 initWithFrame:CGRectMake(0, 300, 130, 20)];
barrier.backgroundColor = [UIColor redColor];
[self.view addSubview:barrier];

Build and run your app; you’ll see a red “barrier” extending halfway across the
screen. However, it turns out the barrier isn’t that effective as the square falls
straight through the barrier:

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 76

That’s not quite the effect you were looking for, but it does provide an important
reminder: dynamics only affect views that have been associated with behaviors.

Time for a quick diagram:

UIDynamicAnimator is associated with a reference view that provides the coordinate
system. You then add one or more behaviors that exert forces on the items they
are associated with. Most behaviors can be associated with multiple items, and each
item can be associated with multiple behaviors. The above diagram shows the
current behaviors and their associations within your app.

Neither of the behaviors in your current code is “aware” of the barrier, so as far as
the underling dynamics engine is concerned, the barrier doesn’t even exist.

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 77

Making objects respond to collisions
To make the square collide with the barrier, find the line that initializes the collision
behavior and replace it with the following:

_collision = [[UICollisionBehavior alloc]
 initWithItems:@[square, barrier]];

The collision object needs to know about every view it should interact with;
therefore adding the barrier to the list of items allows the collision object to act
upon the barrier as well.

Build and run your app; the two objects collide and interact, as shown in the
following screenshot:

The collision behavior forms a “boundary” around each item that it’s associated
with; this changes them from objects that can pass through each other into
something more solid.

Updating the earlier diagram, you can see that the collision behavior is now
associated with both views:

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 78

However, there’s still something not quite right with the interaction between the
two objects. The barrier is supposed to be immovable, but when the two objects
collide in your current configuration the barrier is knocked out of place and starts
spinning towards the bottom of the screen.

Even more oddly, the barrier bounces off the bottom of the screen and doesn’t
quite settle down like the square – this makes sense because the gravity behavior
doesn’t interact with the barrier. This also explains why the barrier doesn’t move
until the square collides with it.

Looks like you need a different approach to the problem. Since the barrier view is
immovable, there isn’t any need to for the dynamics engine to be aware of its
existence. But how will the collision be detected?

Invisible boundaries and collisions
Change the collision behavior initialization back to its original form so that it’s only
aware of the square:

_collision = [[UICollisionBehavior alloc]
 initWithItems:@[square]];

Next, add a boundary as follows:

// add a boundary that coincides with the top edge
CGPoint rightEdge = CGPointMake(barrier.frame.origin.x +
 barrier.frame.size.width,
 barrier.frame.origin.y);
[_collision addBoundaryWithIdentifier:@"barrier"
 fromPoint:barrier.frame.origin
 toPoint:rightEdge];

The above code adds an invisible boundary that coincides with the top edge of the
barrier view. The red barrier remains visible to the user but not to the dynamics
engine, while the boundary is visible to the dynamics engine but not the user. As

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 79

the square falls, it appears to interact with the barrier, but it actually hits the
immovable boundary line instead.

Build and run your app to see this in action, as below:

The square now bounces off the boundary, spins a little, and then continues its
journey towards the bottom of the screen where it comes to rest.

By now the power of UIKit Dynamics is becoming rather clear: you can accomplish
quite a lot with only a few lines of code. There’s a lot going on under the hood; the
next section shows you some of the details of how the dynamic engine interacts
with the objects in your app.

Behind the scenes of collisions
Each dynamic behavior has an action property where you supply a block to be
executed with every step of the animation. Add the following code to viewDidLoad:

_collision.action = ^{
 NSLog(@"%@, %@",
 NSStringFromCGAffineTransform(square.transform),
 NSStringFromCGPoint(square.center));
};

The above code logs the center and transform properties for the falling square.
Build and run your app, and you’ll see these log messages in the Xcode console
window.

For the first ~400 milliseconds you should see log messages like the following:

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 80

2013-07-26 08:21:58.698 DynamicsPlayground[17719:a0b] [1, 0, 0, 1, 0,
0], {150, 236}
2013-07-26 08:21:58.715 DynamicsPlayground[17719:a0b] [1, 0, 0, 1, 0,
0], {150, 243}
2013-07-26 08:21:58.732 DynamicsPlayground[17719:a0b] [1, 0, 0, 1, 0,
0], {150, 250}

Here you can see that the dynamics engine is changing the center of the square in
each animation step and that an identity transform is applied.

As soon as the square hits the barrier, it starts to spin, which results in log
messages like the following:

2013-07-26 08:21:59.182 DynamicsPlayground[17719:a0b] [0.10679234,
0.99428135, -0.99428135, 0.10679234, 0, 0], {198, 325}
2013-07-26 08:21:59.198 DynamicsPlayground[17719:a0b] [0.051373702,
0.99867952, -0.99867952, 0.051373702, 0, 0], {199, 331}
2013-07-26 08:21:59.215 DynamicsPlayground[17719:a0b] [-0.0040036771,
0.99999201, -0.99999201, -0.0040036771, 0, 0], {201, 338}

Here you can see that the dynamics engine is using a combination of a transform
and a frame offset to position the view according to the underlying physics model.

While the exact values that dynamics applies to these properties are probably of
little interest, it’s important to know that they are being applied. As a result, if you
programmatically change the frame or transform properties of your object, you can
expect that these values will be overwritten. This means that you can’t use a
transform to scale your object while it is under the control of dynamics.

The method signatures for the dynamic behaviors use the term items rather than
views. The only requirement to apply dynamic behavior to an object is that it
adopts the UIDynamicItem protocol, as so:

@protocol UIDynamicItem <NSObject>

@property (nonatomic, readwrite) CGPoint center;
@property (nonatomic, readonly) CGRect bounds;
@property (nonatomic, readwrite) CGAffineTransform transform;

@end

The UIDynamicItem protocol gives dynamics read and write access to the center and
transform properties, allowing it to move the items based on its internal
computations. It also has read access to bounds, which it uses to determine the size
of the item. This allows it to create collision boundaries around the perimeter of the
item as well as compute the item’s mass when forces are applied.

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 81

This protocol means that dynamics is not tightly coupled to UIView; indeed there is
another UIKit class that adopts this protocol – UICollectionViewLayoutAttributes.
This allows dynamics to animate items within collection views.

Collision notifications
So far you have added a few views and behaviors then let dynamics take over. In
this next step you will look at how to receive notifications when items collide.

Open ViewController.m and adopt the UICollisionBehaviorDelegate protocol:

@interface ViewController () <UICollisionBehaviorDelegate>

@end

Within viewDidLoad, set the view controller as the delegate just after the collision
behavior has been instantiated, as follows:

_collision.collisionDelegate = self;

Next, add an implementation for one of the collision behavior delegate methods:

- (void)collisionBehavior:(UICollisionBehavior *)behavior
 beganContactForItem:(id<UIDynamicItem>)item
 withBoundaryIdentifier:(id<NSCopying>)identifier
 atPoint:(CGPoint)p {
 NSLog(@"Boundary contact occurred - %@", identifier);
}

This delegate method is fired when a collision occurs and prints out a log message
to the console. In order to avoid cluttering up your console log with lots of
messages, feel free to remove the _collision.action logging you added in the
previous section..

Build and run; your objects will interact, and you’ll see the following entries in your
console:

2013-07-26 08:44:37.473 DynamicsPlayground[18104:a0b] Boundary contact
occurred - barrier
2013-07-26 08:44:37.689 DynamicsPlayground[18104:a0b] Boundary contact
occurred - barrier
2013-07-26 08:44:38.256 DynamicsPlayground[18104:a0b] Boundary contact
occurred - (null)
2013-07-26 08:44:38.372 DynamicsPlayground[18104:a0b] Boundary contact
occurred - (null)
2013-07-26 08:44:38.455 DynamicsPlayground[18104:a0b] Boundary contact
occurred - (null)

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 82

2013-07-26 08:44:38.489 DynamicsPlayground[18104:a0b] Boundary contact
occurred - (null)
2013-07-26 08:44:38.540 DynamicsPlayground[18104:a0b] Boundary contact
occurred - (null)

From the log messages you can see that the square collides twice with the
boundary identifier barrier; this is the invisible boundary you added earlier. The
(null) identifier refers to the reference view boundary.

These log messages can be fascinating reading (seriously!), but it would be much
more fun to provide a visual indication when the item bounces.

Below the line that sends message to the log, add the following:

UIView* view = (UIView*)item;
view.backgroundColor = [UIColor yellowColor];
[UIView animateWithDuration:0.3
 animations:^{
 view.backgroundColor = [UIColor grayColor];
}];

The above code changes the background color of the colliding item to yellow, and
then fades it back to gray again.

Build and run to see this effect in action:

The square will flash yellow each time it hits a boundary.

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 83

So far UIKit Dynamics has automatically set the physical properties of your items
(such as mass or elasticity) by calculating them based on your item’s bounds. Next
up you’ll see how you can control these physical properties yourself by using the
UIDynamicItemBehavior class.

Configuring item properties
Within viewDidLoad, add the following to the end of the method:

UIDynamicItemBehavior* itemBehaviour =
 [[UIDynamicItemBehavior alloc] initWithItems:@[square]];
itemBehaviour.elasticity = 0.6;
[_animator addBehavior:itemBehaviour];

The above code creates an item behavior, associates it with the square, and then
adds the behavior object to the animator. The elasticity property controls the
bounciness of the item; a value of 1.0 represents a completely elastic collision; that
is, where no energy or velocity is lost in a collision. You’ve set the elasticity of your
square to 0.6, which means that the square will lose velocity with each bounce.

Build and run your app, and you’ll notice that the square now behaves in a bouncier
manner, as below:

Note: If you are wondering how I produced the above image with trails that
show the previous positions of the square, it was actually very easy! I simply
added a block to the action property of one of the behaviors, and every fifth

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 84

time the block code was executed, added a new square to the view using the
current center and transform from the square.

In the above code you only changed the item’s elasticity; however, the item’s
behavior class has a number of other properties that can be manipulated in code.
They are as follows:

• elasticity – determines how ‘elastic’ collisions will be, i.e. how bouncy or
‘rubbery’ the item behaves in collisions.

• friction – determines the amount of resistance to movement when sliding along
a surface.

• density – when combined with size, this will give the overall mass of an item. The
greater the mass, the harder it is to accelerate or decelerate an object.

• resistance – determines the amount of resistance to any linear movement. This is
in contrast to friction, which only applies to sliding movements.

• angularResistance - determines the amount of resistance to any rotational
movement.

• allowsRotation – this is an interesting one that doesn’t model any real-world
physics property. With this property set to NO the object will not rotate at all,
regardless of any rotational forces that occur.

Adding behaviors dynamically
In its current state, your app sets up all of the behaviors of the system, then lets
dynamics handle the physics of the system until all items come to rest. In this next
step, you’ll see how behaviors can be added and removed dynamically.

Open ViewController.m and add the following instance variable:

BOOL _firstContact;

Add the following code to the end of the collision delegate method
collisionBehavior:beganContactForItem:withBoundaryIdentifier:atPoint:

if (!_firstContact)
{
 _firstContact = YES;

 UIView* square = [[UIView alloc]
 initWithFrame:CGRectMake(30, 0, 100, 100)];
 square.backgroundColor = [UIColor grayColor];
 [self.view addSubview:square];

 [_collision addItem:square];
 [_gravity addItem:square];

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 85

 UIAttachmentBehavior* attach = [[UIAttachmentBehavior alloc]
 initWithItem:view
 attachedToItem:square];
 [_animator addBehavior:attach];
}

The above code detects the initial contact between the barrier and the square,
creates a second square and adds it to the collision and gravity behaviors. In
addition, you set up an attachment behavior to create the effect of attaching a pair
of objects with a virtual spring.

Build and run your app; you should see a new square appear when the original
square hits the barrier, as shown below:

While there appears to be a connection between the two squares, you can’t actually
see the connection as a line or spring since nothing has been drawn on the screen
to represent it.

Dynamics in real world apps
At this point in the chapter you might be under the impression that dynamics are
intended for physics simulations and games. In reality, they’re not.

Apple provides an entire framework designed to make 2D games called Sprite Kit
that includes its own physics engine. In fact, we wrote a whole book about Sprite
Kit called iOS Games By Tutorials – check it out if you’d like to learn more.

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 86

UIKit Dynamics is really designed for non-game applications, such as email, sports
and news apps. The dynamic effects you have created so far are pretty gratuitous
and would look out of place in these types of apps. Dynamics should be reserved
for effects that are altogether more subtle.

The SandwichFlow app
For the rest of this chapter, you’ll be working with a simple sandwich recipe
application (nom!) that uses a standard table view “hub” layout. You can find the
starter project in the resources for the chapter. Open it in Xcode and build and run,
and you’ll see the following:

Your job is to update the app to present users with the recipes stacked at the
bottom of the screen. They can pull up on a recipe to take a peek at it, and when
they release the recipe, it will either drop back into the stack, or dock to the top of
the screen. The end result is an application with a real-world physical feel.

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 87

Open the starter project and take a little time to familiarize yourself with the
existing codebase. The application is quite simple and makes use of Storyboards. A
UITableViewController lists the sandwich recipes as the starting screen for the
application. When a sandwich is tapped, it triggers a segue showing the recipe as a
modal view controller.

Creating a custom dynamic view
The dynamic version of the application won’t use a UITableViewController as the
initial view controller; instead, it will use your custom dynamic view. The easiest
way to make this change is to add a new view controller to the application.

Open Main.storyboard and drop a new view controller onto the storyboard:

Next create a new class named DynamicSandwichViewController and make it a
subclass of UIViewController. Open the newly created
DynamicSandwichViewController.m file and update viewDidLoad as follows:

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 88

- (void)viewDidLoad
{
 [super viewDidLoad];

 // Background image
 UIImageView* backgroundImageView = [[UIImageView alloc]
 initWithImage:
 [UIImage imageNamed:@"Background-LowerLayer.png"]];
 [self.view addSubview:backgroundImageView];

 // Header logo
 UIImageView* header = [[UIImageView alloc]
 initWithImage:[UIImage imageNamed:@"Sarnie.png"]];
 header.center = CGPointMake(220, 190);
 [self.view addSubview:header];
}

The above code adds a background and the sandwich image to the view controller.

The final step is to associate the view controller you added to the storyboard with
this class. Open the storyboard once again and select your new view controller. In
the Identity inspector, set the Custom Class to DynamicSandwichViewController, as
shown below:

With the view controller still selected, open the Attributes inspector and check the
Is Initial View Controller property.

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 89

It’s time to test these changes. Build and run your app, and you should see an all-
new starting screen:

Adding the recipe view controllers
The new interface will display a stack of recipes at the bottom of the screen. In this
next step you will create a view controller instance for each recipe and add it to the
view.

You’ll re-use the current sandwich recipe view controller, but in order to access it
from your code, you need to add an identifier.

Open the storyboard and select the Sandwich View Controller. Switch to the
Identity Inspector, and set the value of the Storyboard ID property to
SandwichVC, as shown below:

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 90

This allows you to use the SandwichVC identifier to access the view controller from
code.

Delete the Close bar button from the navigation bar as well since later on you’ll be
replacing this action with gestures.

Open DynamicSandwichViewController.m and add the following imports to the
top of the file:

#import "SandwichViewController.h"
#import "AppDelegate.h"

Still in the same file, add the following instance variable:

NSMutableArray* _views;

You’ll use this variable to keep track of the added views. This is easier than having
to iterate over all of the subviews in order to find those that you are interested in.

Add the following method to the view controller:

- (NSArray*)sandwiches
{
 AppDelegate* appDelegate = (AppDelegate*)
 [[UIApplication sharedApplication] delegate];
 return appDelegate.sandwiches;
}

This is a simple convenience method for retrieving the sandwiches from the app
delegate.

Next, add the following method:

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 91

- (UIView*)addRecipeAtOffset:(CGFloat)offset
 forSandwich:(NSDictionary*)sandwich {

 CGRect frameForView = CGRectOffset(self.view.bounds, 0.0,
 self.view.bounds.size.height - offset);

 // 1. create the view controller
 UIStoryboard *mystoryboard = [UIStoryboard
 storyboardWithName:@"Main" bundle:nil];
 SandwichViewController* viewController = [mystoryboard
 instantiateViewControllerWithIdentifier:@"SandwichVC"];

 // 2. set the frame and provide some data
 UIView* view = viewController.view;
 view.frame = frameForView;
 viewController.sandwich = sandwich;

 // 3. add as a child
 [self addChildViewController:viewController];
 [self.view addSubview:viewController.view];
 [viewController didMoveToParentViewController:self];

 return view;
}

This method adds a recipe to the screen at the given offset location. Consider each
step of its implementation in turn:

1. Create a SandwichViewController instance. Notice that this uses the SandwichVC
identifier you set earlier.

2. Set the frame of this recipe and the supply the sandwich data.

3. Add the view controller as a child and to the view.

The final step is to iterate over the recipes and use the above method to add each
recipe to the view.

Within the same file, add the following code to the end of viewDidLoad:

_views = [NSMutableArray new];
CGFloat offset = 250.0f;
for (NSDictionary* sandwich in [self sandwiches]) {
 [_views addObject:[self addRecipeAtOffset:offset
 forSandwich:sandwich]];
 offset -= 50.0f;
}

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 92

This iterates over the list of sandwiches and adds a view for each one at the given
offset. The hard-coded offsets aren’t ideal, but a savvy developer like you can
certainly use that as an exercise to find a better alternative! :]

Build and run your app; you should see the list of recipes as below:

Adding some menu dynamics
Now that the re-structuring of your app is complete, you can get on with the
important job of implementing dynamics in your UI.

Open DynamicSandwichViewController.m and add the following instance
variables:

UIGravityBehavior* _gravity;
UIDynamicAnimator* _animator;
CGPoint _previousTouchPoint;
BOOL _draggingView;

There are quite a few of these; some will be familiar, and some won’t. You’ll
discover what each one is used for as you add more code.

Add the following code to viewDidLoad just before the code you added earlier that
adds the recipes:

_animator = [[UIDynamicAnimator alloc]
 initWithReferenceView:self.view];

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 93

_gravity = [[UIGravityBehavior alloc] init];
[_animator addBehavior:_gravity];
_gravity.magnitude = 4.0f;

This adds the dynamic animator and adds a gravity behavior. The magnitude of
gravity is set to 4.0, making items fall more slowly than the default value of 1.0.

Next, add the following code to the end of addRecipeAtOffset:forSandwich:, just
before the return statement:

// 1. add a gesture recognizer
UIPanGestureRecognizer* pan = [[UIPanGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handlePan:)];
[viewController.view addGestureRecognizer:pan];

// 2. create a collision
UICollisionBehavior* collision = [[UICollisionBehavior alloc]
 initWithItems:@[view]];
[_animator addBehavior:collision];

// 3. lower boundary, where the tab rests
CGFloat boundary = view.frame.origin.y +
 view.frame.size.height+1;
CGPoint boundaryStart = CGPointMake(0.0, boundary);
CGPoint boundaryEnd = CGPointMake(self.view.bounds.size.width,
 boundary);
[collision addBoundaryWithIdentifier:@1
 fromPoint:boundaryStart
 toPoint:boundaryEnd];
// 4. apply some gravity
[_gravity addItem:view];

Taking each step in turn, you perform the following actions:

1. Create a pan gesture recognizer associate it with the view. The handlePan:
message is sent when a pan occurs. You’ll add this method shortly.

2. Create a collision behavior for this view so it doesn’t go into immediate free fall.

3. Create a boundary where this specific view controller will come to rest. It is
based on the bottom edge of the current view location.

4. Finally, apply the gravity behavior to the view.

The net result of this code is that if the view associated with this view controller is
moved from its current location, it will fall under the influence of gravity, eventually
coming to rest at its original location.

Now to add the code that makes it move!

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 94

Within DynamicSandwichViewController.m add the following method to handle
the pan gesture:

- (void)handlePan:(UIPanGestureRecognizer*)gesture {
 CGPoint touchPoint = [gesture locationInView:self.view];
 UIView* draggedView = gesture.view;

 if (gesture.state == UIGestureRecognizerStateBegan) {
 // 1. was the pan initiated from the top of the recipe?
 CGPoint dragStartLocation = [gesture
 locationInView:draggedView];
 if (dragStartLocation.y < 200.0f) {
 _draggingView = YES;
 _previousTouchPoint = touchPoint;
 }

 } else if (gesture.state == UIGestureRecognizerStateChanged
 && _draggingView) {
 // 2. handle dragging
 CGFloat yOffset = _previousTouchPoint.y - touchPoint.y;
 gesture.view.center = CGPointMake(draggedView.center.x,
 draggedView.center.y - yOffset);
 _previousTouchPoint = touchPoint;

 } else if (gesture.state == UIGestureRecognizerStateEnded
 && _draggingView) {
 // 3. the gesture has ended
 [_animator updateItemUsingCurrentState:draggedView];
 _draggingView = NO;
 }
}

This method deals with various gesture states — hence the if-else blocks. Look at
each branch in turn:

1. When the gesture begins, check if the pan was initiated near the top of the view.
If so, set a flag so later gestures will know there’s a pan and drag in progress. In
your own apps, you might want to replace this hard-coded value of 200 points
with a value derived from the view’s layout.

2. If a drag is in progress, use the difference in Y locations between the previous
and the current touches to offset the view’s center, making it move.

3. The final case is when the drag finishes. The vital step here is messaging the
animator with updateItemUsingCurrentState. This message informs the dynamics
engine that the item state has changed and that it must update its own
representation. This is similar to sending setNeedsDisplay to a UIView subclass.

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 95

Build and run your app; try to drag a recipe up the screen, and it should follow your
drag action, as shown below:

Let go of the recipe, and it will fall back into place with a cute little bounce at the
end.

The effect you added certainly provides a bit of realism to the application. However,
there’s something missing: if you rapidly swipe a view upwards, it simply falls back
to the bottom of the screen once you release it. If these were real objects you
should be able to ‘throw’ them upwards with a rapid swipe.

Time to make this app a bit more real!

Transferring velocity to dynamics
In order to achieve this effect, you need to transfer the gesture’s velocity into a
velocity within dynamics.

Add the following code to the end of addRecipeAtOffset:forSandwich:, just before
the return statement:

UIDynamicItemBehavior* itemBehavior =
 [[UIDynamicItemBehavior alloc] initWithItems:@[view]];
[_animator addBehavior:itemBehavior];

This adds a dynamic item behavior for each of the recipe views. Recall from the
previous section that UIDynamicItemBehavior allows you to change the physical
properties of a dynamic item.

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 96

You’ll need a way to retrieve the specific item behavior for a view when it is thrown.
Add the following method to the same file:

- (UIDynamicItemBehavior*) itemBehaviourForView:(UIView*)view {
 for (UIDynamicItemBehavior* behaviour in
 _animator.behaviors) {
 if (behaviour.class == [UIDynamicItemBehavior class]
 && [behaviour.items firstObject] == view) {
 return behaviour;
 }
 }
 return nil;
}

This iterates over the behaviors until it finds the one with the correct type
(UIDynamicItemBehavior) associated with the given view.

The item velocity needs to be updated when the gesture ends. Add the following
code to handlePan: just before the updateItemUsingCurrentState: message is sent
to the animator:

[self addVelocityToView:draggedView fromGesture:gesture];

Finally, still in DynamicSandwichViewController.m add the following method
implementation:

- (void)addVelocityToView:(UIView*)view
 fromGesture:(UIPanGestureRecognizer*)gesture {
 CGPoint vel = [gesture velocityInView:self.view];
 vel.x = 0;
 UIDynamicItemBehavior* behaviour =
 [self itemBehaviourForView:view];
 [behaviour addLinearVelocity:vel forItem:view];
}

This takes the gesture velocity, removes the X component (you don’t want those
recipes flying off sideways!), locates the item behavior, and then adds the velocity
to the behavior.

Fortunately, the gesture velocity is expressed in points per second, which is the
same units used by dynamics — no unit conversions make for happy developers!

Build and run your app, and try to throw the recipes up with a fast swiping motion
to see if they “stick”:

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 97

You may have noticed that you can hurl recipes right off the top of the screen.
Don’t worry about that for now – you’ll be fixing that shortly.

Docking views
While it is a lot of fun throwing those recipes around, your users are probably
getting hungry and just want to snap the recipe to the top of the screen and get on
with making their sandwich.

Add the following instance variables to DynamicSandwichViewController.m:

UISnapBehavior* _snap;
BOOL _viewDocked;

UISnapBehavior does what is says on the tin, and performs a “snap to point” similar
to dragging items around Interface Builder. When the user releases a recipe that
has been dragged, you need to determine whether the recipe has been dragged far
enough in order to dock it. That state is stored in the boolean _viewDocked.

Add the following code to handlePan: in the final else if block, just before the call
to addVelocityToView:fromGesture:

[self tryDockView:draggedView];

The above code executes the tryDockView: method each time the user stops
dragging the view.

Next, add the following method:

- (void)tryDockView:(UIView *)view {

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 98

 BOOL viewHasReachedDockLocation =
 view.frame.origin.y < 100.0;
 if (viewHasReachedDockLocation) {
 if (!_viewDocked) {
 _snap = [[UISnapBehavior alloc]
 initWithItem:view
 snapToPoint:self.view.center];
 [_animator addBehavior:_snap];
 [self setAlphaWhenViewDocked:view alpha:0.0];
 _viewDocked = YES;
 }
 } else {
 if (_viewDocked) {
 [_animator removeBehavior:_snap];
 [self setAlphaWhenViewDocked:view alpha:1.0];
 _viewDocked = NO;
 }
 }
}

This method checks whether the view has been dragged close to the top of the
screen. If it has, and the view is not yet docked, it creates a UISnapBehaviour which
snaps the view to the center of the screen.

If the view has been dragged away from the top of the screen and was previously
docked, the code removes the snap behavior.

Add the following method to DynamicSandwichViewController.m:

- (void)setAlphaWhenViewDocked:(UIView*)view
 alpha:(CGFloat)alpha {
 for (UIView* aView in _views) {
 if (aView != view) {
 aView.alpha = alpha;
 }
 }
}

This is used to show and hide the non-docked views so that the docked recipe
occupies the entire screen without being obscured by the recipes below.

Build and run your app; try docking and un-docking the recipes by dragging them
close to the top of the screen and then back down, as below:

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 99

There’s one final tweak required for the dynamics: the code that determines
whether a view should be docked checks the Y location of the view after the gesture
ends. However, if you ‘throw’ a view, the gesture may end before this point, but the
view continues moving and eventually reaches this point by itself.

How are you going to detect whether a view is thrown beyond the dock location?

You could add a code block to the action property of one of the behaviors and
repeatedly test the location at each animation step, but this sounds a bit messy. It
would be much better if you could receive a message when the view passes the
dock location.

Catching thrown views
Fortunately there is an easy way to do this!

In DynamicSandwichViewController.m add the following code to
addRecipeAtOffset:forSandwich:, just after the first boundary has been added to
the collision behavior and before gravity is added:

boundaryStart = CGPointMake(0.0, 0.0);
boundaryEnd = CGPointMake(self.view.bounds.size.width, 0.0);
[collision addBoundaryWithIdentifier:@2
 fromPoint:boundaryStart
 toPoint:boundaryEnd];
collision.collisionDelegate = self;

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 100

The above code creates a boundary at the top of the screen, gives it an identifier of
2 and assigns the collision delegate to the view controller.

At the top of the same file adopt the UICollisionBehaviorDelegate via the view
controller’s class extension:

@interface DynamicSandwichViewController ()
 <UICollisionBehaviorDelegate>

@end

Finally implement the delegate method as follows:

- (void)collisionBehavior:(UICollisionBehavior *)behavior
 beganContactForItem:(id<UIDynamicItem>)item
 withBoundaryIdentifier:(id<NSCopying>)identifier
 atPoint:(CGPoint)p {
 if ([@2 isEqual:identifier]) {
 UIView* view = (UIView*) item;
 [self tryDockView:view];
 }
}

A collision will invoke the delegate method above. This checks whether a boundary
with the identifier “2” is involved in the collision and if so, docks the recipe item.

Build and run your app; throw a view up to the top of the screen but make the
gesture stop short of the top of the screen and let the momentum of the action
carry the view to the top of the screen. Feel the physics power!

Motion effects
The final effect to explore in this chapter is from a completely different set of brand
new UIKit APIs – motion effects.

Motion effects allow you to create user interfaces such as the parallax effect on the
iOS 7 home screen where the background moves as the device is rotated. Typically
motion effects are used in subtle ways in the background.

For your SandwichFlow application, you’ll replace the background image with two
images that slide over each other as the device orientation changes. Grab an iOS
device to test this feature on so you experience the full effect.

Open DynamicSandwichViewController.m and remove the code in viewDidLoad
that adds the background and logo images. Replace it with the following:

// 1. add the lower background layer

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 101

UIImageView* backgroundImageView = [[UIImageView alloc]
 initWithImage:[UIImage
 imageNamed:@"Background-LowerLayer.png"]];
backgroundImageView.frame =
 CGRectInset(self.view.frame, -50.0f, -50.0f);
[self.view addSubview:backgroundImageView];
[self addMotionEffectToView:
 backgroundImageView magnitude:50.0f];

// 2. add the background mid layer
UIImageView* midLayerImageView = [[UIImageView alloc]
 initWithImage:[UIImage imageNamed:@"Background-MidLayer.png"]];
[self.view addSubview:midLayerImageView];

// 3. add the foreground image
UIImageView* header = [[UIImageView alloc]
 initWithImage:[UIImage imageNamed:@"Sarnie.png"]];
header.center = CGPointMake(220, 190);
[self.view addSubview:header];
[self addMotionEffectToView:header magnitude:-20.0f];

The above code adds a number of images in layers. The easiest way to understand
the layering is from the following diagram:

The middle layer (2) doesn’t move, but layers (1) and (3) do move since you call
the addMotionEffectToView:magnitude: on them.

Add the method below to implement addMotionEffectToView:magnitude:

- (void)addMotionEffectToView:(UIView*)view
 magnitude:(CGFloat)magnitude {

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 102

 UIInterpolatingMotionEffect* xMotion =
 [[UIInterpolatingMotionEffect alloc]
 initWithKeyPath:@"center.x"
 type:UIInterpolatingMotionEffectTypeTiltAlongHorizontalAxis];
 xMotion.minimumRelativeValue = @(-magnitude);
 xMotion.maximumRelativeValue = @(magnitude);

 UIInterpolatingMotionEffect* yMotion =
 [[UIInterpolatingMotionEffect alloc]
 initWithKeyPath:@"center.y"
 type:UIInterpolatingMotionEffectTypeTiltAlongVerticalAxis];
 yMotion.minimumRelativeValue = @(-magnitude);
 yMotion.maximumRelativeValue = @(magnitude);

 UIMotionEffectGroup* group = [[UIMotionEffectGroup alloc]
 init];
 group.motionEffects = @[xMotion, yMotion];

 [view addMotionEffect:group];
}

The above code creates a pair of UIInterpolatingMotionEffect instances: one that
tracks horizontal motion, the other that tracks vertical motion.

In order to create an interpolation effect you specify the keypath to the property
that you want to change. You also set the maximum and minimum relative values;
these values are passed in on a per-view basis so the background can move in one
direction while the logo moves in the other direction.

Note: The motion effect interpolation uses the same implementation as Core
Animation, you can interpolate CGRect, CGPoint, doubles, integers, UIColor and
more!

Build and run your application, tilt your device to the left and right and watch the
parallax effect at work:

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 103

Your application is complete — perhaps you can celebrate by making a sandwich.
Hopefully you have had fun playing with dynamics and motion effects and will be
able to find novel uses for these features in your own applications.

Challenges
Now it’s your turn to exercise your dynamics and motion effects skills with a couple
of simple challenges. The solutions for each are provided, although it is worth trying
them on your own first.

Challenge 1: Back to earth with a bump!
In the current application, if you pull up one of the recipes, but don’t drag it close
enough to the top of the screen, the gravity behavior ensures that it falls back to its
original location. Each recipe ‘rests’ on its own collision behavior boundary, and if it
falls far enough will bounce a little before it comes to rest.

Wouldn’t it be cool if, at the point the recipe comes crashing down, it caused the
others to jump just a little. This would give the impression that there is some real
‘weight’ behind these views.

And that is your challenge! When a recipe is dropped and hits the bottom boundary
you need to transfer some of its velocity to the other views.

Here are a few hints to help you get started:

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 104

1. The DynamicSandwichViewController already has a method that is called when a
collision occurs. Currently it is just used to determine when a view hits the top of
the screen. This method will also be called when a view hits the bottom boundary
(this has an identifier of @1).

2. When you have identified that a view has landed back at the bottom of the
screen, you can find its velocity at the point of impact via the
UIDynamicItemBehaviour class. You can than pass on a fraction of that velocity to
the other views in order to make them bounce at the point of impact. Why not
add a little bit of randomization as well, to make it feel more natural?

That was pretty simple wasn’t it? It’s actually a lot of fun throwing a recipe
downwards to see how high you can make the others bounce when it hits the
boundary!

Challenge 2: More motion
Your next challenge involves adding some further motion effects to the application.
Currently when the device is tilted the background and SandwichFlow icons move
creating a subtle parallax effect.

This challenge is to build on this effect, so that the recipes also move with the
device, as illustrated in the image below:

iOS 7 by Tutorials Chapter 2: UIKit Dynamics and Motion Effects

 105

In the above image you can see that as the device is tilted, the top-most recipe
moves further than the one at the bottom. As you move the phone around this
gives a real sense of depth.

You can actually achieve the above effect with around 5 lines of code, so there are
no hints for this challenge, just make use of the addMotionEffectToView:
magnitude: method which you added earlier in the tutorial.

If you tap an item in the Messages or App Store apps in iOS 7, you’ll find that the
detail view controller seems to slide over the list view controller, with subtle
changes in the overlapped view. Also, you can return to the previous view controller
using a swipe gesture, or even pause the navigation halfway, change your mind,
and swipe back again!

The good news for developers is that all of this functionality is available to you via
new APIs in iOS 7 in the form of custom view controller transitions. You have full
control over the animations used in your application as it transitions from one view
controller to the next. You can even create your own gesture-driven transitions,
called interactive transitions.

In this chapter you will get hands-on experience with the new iOS 7 APIs by:

• Creating a custom present transition. You will start by creating a very simple
transition to presenting a modal view controller.

Chapter 3: Custom View
Controller Transitions
By Colin Eberhardt

iOS 7 by Tutorials Chapter 3: Custom View Controller Transitions

 107

• Creating a custom dismiss transition. You will learn how to create a transition
to dismiss the modal view controller as well, learning about of some of the new
UIView animations such as spring and key frame.

• Creating a navigation controller transition. You will learn how to customize
the pushing or popping of a view controller from a navigation controller, using a
flip transition as an example.

• Creating an interactive transition. You will finally learn how to make the
transition fully interactive, allowing the user to control the flip with a simple
gesture.

It’s time to dive straight in with a simple transition ... oh, and I hope you like cats.
:]

Getting started
The best way to get started with creating your own transitions is to dive in head
first. Unpack the starter project for this chapter in the ILoveCatz.zip file and build
and run it in Xcode. You should be greeted with the following app:

It’s an app about — you’ve guessed it — cats!

The application is based on the Xcode master-detail template. It is composed of
three view controllers: the master page containing a list of cat pictures, the detail
page showing the selected cat picture, and an About view presented modally.

The app makes use of storyboards to connect the view controllers. Take a little time
to familiarize yourself with the code and the project layout.

iOS 7 by Tutorials Chapter 3: Custom View Controller Transitions

 108

A custom present transition
When you tap the About button in the app, the About view appears in the standard
modal style of sliding up from the bottom. Your first task is to write a custom
transition for this view.

There are three steps to create a custom transition in iOS:

1. Create the animation controller. The first step is to create a class that
implements the UIViewControllerAnimatedTransitioning protocol. This class
contains the code to perform the actual animation, so this class is referred to as
the animation controller.

2. Before presenting a view controller, set its transitioning delegate. Before
you present a view controller, you should set a class as its transitioning delegate
(usually the presenting view controller). By doing this the delegate will get a
callback asking for the animation controller to use when presenting the view
controller.

3. Return the animation controller in the callback. Finally, implement the
callback method to return an instance of the animation controller you created in
step 1.

Let’s get started with the first and most important step: creating the animation
controller.

Creating the animation controller
Right-click on the ILoveCatz group in the project navigator, select New File…,
and choose iOS\Cocoa Touch\Objective-C class. Name the class
BouncePresentAnimationController, and make it a subclass of NSObject.

Open BouncePresentAnimationController.h and adopt the
UIViewControllerAnimatedTransitioning protocol:

@interface BouncePresentAnimationController :
 NSObject <UIViewControllerAnimatedTransitioning>

@end

This protocol has two required methods that define your custom animation between
view controllers. Later, you’ll attach an instance of this class to the storyboard
segue.

Open BouncePresentAnimationController.m and add the following method to
the implementation:

- (NSTimeInterval)transitionDuration:
 (id <UIViewControllerContextTransitioning>)transitionContext {
 return 2.0;

iOS 7 by Tutorials Chapter 3: Custom View Controller Transitions

 109

}

This method specifies the length of the transition animation. In this case you’ve
gone for a relatively sedate two-second animation just to make it obvious.

The transitionContext parameter gives you access to the to and from view
controllers, the containing UIView, and other bits of context. You could query these
properties to animate your transitions differently depending on the view controllers
involved, but in this case you’re using a two second transition all around.

Next is the animation itself. Add the following method:

- (void)animateTransition:
 (id <UIViewControllerContextTransitioning>)transitionContext {

 // 1. obtain state from the context
 UIViewController *toViewController = [transitionContext
 viewControllerForKey:UITransitionContextToViewControllerKey];
 CGRect finalFrame = [transitionContext
 finalFrameForViewController:toViewController];

 // 2. obtain the container view
 UIView *containerView = [transitionContext containerView];

 // 3. set initial state
 CGRect screenBounds = [[UIScreen mainScreen] bounds];
 toViewController.view.frame =
 CGRectOffset(finalFrame, 0, screenBounds.size.height);

 // 4. add the view
 [containerView addSubview:toViewController.view];

 // 5. animate
 NSTimeInterval duration =
 [self transitionDuration:transitionContext];

 [UIView animateWithDuration:duration
 animations:^{
 toViewController.view.frame = finalFrame;
 } completion:^(BOOL finished) {
 // 6. inform the context of completion
 [transitionContext completeTransition:YES];
 }];
}

There’s quite a lot going on here, so consider each step in turn.

iOS 7 by Tutorials Chapter 3: Custom View Controller Transitions

 110

1. Using the transition context, retrieve the view controller you’re navigating to and
the final frame the transition context should have when the animation is
completed.

2. The views that correspond to the from- and to- view controllers are hosted within
this container view throughout the animation. It’s your responsibility to add the
to- view to the container view.

3. Position the to- view just below the bottom of the screen.

4. Add the to- view to the container view.

5. Animate the to- view, and set its final frame to the location supplied by the
transition context. Note that the animation duration comes from the first protocol
method.

6. Inform the transition context when the animation completes. The framework
then ensures the final state is consistent and removes the from- view from the
container.

There’s your first custom animation controller! It performs a two-second animation
that slides the new view up from the bottom of the screen. Your next step is to link
it to a storyboard segue.

Setting the transitioning delegate
UIViewController has a new property transitionDelegate that supports custom
transitions. When transitioning to a view controller, the framework first checks this
property to see if a custom transition should be used.

Open MasterViewController.m and adopt the
UIViewControllerTransitioningDelegate by adding it to the class extension near the
top of the file:

@interface MasterViewController ()
 <UIViewControllerTransitioningDelegate>

@end

This delegate supplies custom transitions; you’ll implement the method that
performs this task shortly.

Within the same file, add the following to the bottom of prepareForSegue: sender:

if ([segue.identifier isEqualToString:@"ShowAbout"]) {
 UIViewController *toVC = segue.destinationViewController;
 toVC.transitioningDelegate = self;
}

iOS 7 by Tutorials Chapter 3: Custom View Controller Transitions

 111

This detects the segue for the About screen by the segue name ShowAbout defined
in the storyboard and sets the transitionDelegate property of the destination view
controller.

Continuing with the wire-up process, add the following import to the top of the file:

#import "BouncePresentAnimationController.h"

This imports your custom animation controller so it’s available for use.

A little further down add an instance variable that stores the animation controller:

@implementation MasterViewController {
 BouncePresentAnimationController *_bounceAnimationController;
}

And just beneath that, add the following initializer method:

- (id)initWithCoder:(NSCoder *)aDecoder {
 if (self = [super initWithCoder:aDecoder]) {
 _bounceAnimationController =
 [BouncePresentAnimationController new];
 }
 return self;
}

This ensures that the custom animation controller is available when the storyboard
initializes the MasterViewController.

You need to implement the UIViewControllerTransitioningDelegate method that
supplies this animation controller. Add it as shown below:

- (id<UIViewControllerAnimatedTransitioning>)
 animationControllerForPresentedController:
 (UIViewController *)presented
 presentingController:
 (UIViewController *)presenting
 sourceController:
 (UIViewController *)source {
 return _bounceAnimationController;
}

This method simply returns your custom animation controller instance. If you had
multiple view controllers wired up, you could also check the view controller
presented to switch between different custom animations. In this case, the only
view controller wired up with a delegate is the About one. Build and run your app;
tap the About button in the navigation bar and you should see the About view
controller slowly slide up from the bottom of the screen, as so:

iOS 7 by Tutorials Chapter 3: Custom View Controller Transitions

 112

The two-second custom transition isn’t terribly exciting, but hey — it’s all your own
code!

Don’t worry, you’ll add something more exciting shortly that makes use of the new
animation APIs. Before you get there, you’ll need a bit of background first.

The transition APIs
The view controller transitions API is composed of a number of protocols, and just
one concrete class. On first glance, the protocol naming can be a bit confusing! In
this section you’ll learn the responsibilities of each protocol, and walk through the
process of a custom transition.

The diagram below shows the protocols and their relationships to each other:

Let’s consider each protocol in turn:

iOS 7 by Tutorials Chapter 3: Custom View Controller Transitions

 113

• UIViewControllerTransitioningDelegate – The transitioning delegate supplies
animation controllers and interaction controllers; you’ll learn about those a little
later on. View controllers have a transitioningDelegate property, which holds a
reference to an implementation of this delegate. In your ILoveCatz app, the
master view controller adopts this delegate.

• UIViewControllerAnimatedTransitioning – The animation controllers such as your
BouncePresentAnimationController adopt this protocol. The two required methods
indicate the duration of your custom transition and perform the animation itself.

• UIViewControllerContextTransitioning – The context passed into the custom
animation methods adopts this protocol; it supplies the information needed to
perform a transition. This includes information such as the to- and from- view
controllers, the frame that the to- view should have at the end of the transition,
the containing view, and more. The animation controller is also responsible for
informing the transitioning context that the transition has completed.

Note: You do not need to implement a class that adopts the
UIViewControllerContextTransitioning protocol; this is a class that the
framework supplies to your animation controller.

One of the really useful features of the transitioning context is that it supplies the
animation controller with the to- and from- view controllers. This allows you to de-
couple the animation controller from the transitioning delegate.

Why is this a good idea? Take a look at the current implementation of
BouncePresentAnimationController; notice it doesn’t have any idea about master
view controllers or about view controllers. This frees you to write animation
controllers that are re-usable in other projects.

The transition process
Now that you have a better understanding of the classes involved, you can walk
through the transition process in detail:

1. Instantiate a view controller transition as the result of a storyboard segue, or a
programmatic push / pop / modal presentation.

2. The framework asks the to- view controller for its transitioning delegate.

3. If the to- view controller does not have a transitioning delegate, then it uses a
standard built-in transition.

iOS 7 by Tutorials Chapter 3: Custom View Controller Transitions

 114

4. The framework requests an animation controller for this transition by sending the
animationControllerForPresentedController: presentingController:
sourceController: message to the transitioning delegate. If the delegate returns
nil it uses built-in transition instead.

5. If an animation controller is returned, the framework gets ready for the
transition and constructs a transitioning context.

6. The framework asks the animation controller how long it will take to perform its
transition by sending it the transitionDuration: message.

7. Now for the animation! The framework sends the animateTransition: message to
the animation controller telling it to perform its animation using the supplied
transitioning context.

8. When the animation completes, the animation controller sends the
completeTransition: message to the transitioning context.

9. On completion of the transition, the framework takes care of ensuring that the
view controller and view hierarchies are consistent.

The transition process might seem a bit complicated at first; there’s a lot of moving
parts here. If you don’t fully understand the process right now, don’t worry; it will
make more sense as you follow this tutorial further.

Now to spice up that two-second transition animation.

iOS 7 by Tutorials Chapter 3: Custom View Controller Transitions

 115

Spicing up the transition
The About view slides out from the bottom of the screen, giving the impression that
it overlaps and covers the view underneath. You can accentuate this effect by
making the from- view fade out slightly.

Open BouncePresentAnimationController.m and add the following line directly
underneath the line that obtains the to- view controller in animateTransition:

UIViewController *fromViewController = [transitionContext
 viewControllerForKey:UITransitionContextFromViewControllerKey];

This simply grabs a reference to the from- view controller.

Next, update the animation block a little further down the same method, replacing
the current single line with the following two:

fromViewController.view.alpha = 0.5;
toViewController.view.frame = finalFrame;

This animates the from- view controller’s alpha as well as the frame of the to- view
controller.

Build and run your app; tap the About button and watch the from- view controller
subtly fade out as it is covered by the to- view controller:

iOS 7 by Tutorials Chapter 3: Custom View Controller Transitions

 116

That’s a bit more interesting. However, it probably won’t take you long to spot a bit
of an issue. When you dismiss the view by hitting the OK button you will notice that
the list of cats is still faded out:

Whoops. What’s going on here?

When the transition is complete, the from- view controller remains within the view
controller hierarchy; however, its view is removed from the view hierarchy.

When the transition is reversed, the view associated with the previous from- view
controller is restored. The framework has no way of knowing that you changed the
alpha, so it is your responsibility to change it back.

Fortunately this is easily fixed. Add the following line to the animation completion
block, just before the call to completeTransition: on the transitioning context:

fromViewController.view.alpha = 1.0;

Now when you dismiss the About screen, the list of cats will be back to normal.

The transition is looking a little better, but there are a few new UIView animation
methods in iOS 7 that are crying out to be used.

Still within the same method, replace the entire UIView animation call with the
following:

[UIView animateWithDuration:duration
 delay:0.0
 usingSpringWithDamping:0.6

iOS 7 by Tutorials Chapter 3: Custom View Controller Transitions

 117

 initialSpringVelocity:0.0
 options:UIViewAnimationOptionCurveLinear
 animations:^{
 // set the state to animate to
 fromViewController.view.alpha = 0.5;
 toViewController.view.frame = finalFrame;
 } completion:^(BOOL finished) {
 // inform the context of completion
 fromViewController.view.alpha = 1.0;
 [transitionContext completeTransition:YES];
 }];

The exact same properties are being animated, but this time you’re using the new
UIView “using spring” animation. This animation allows you to easily create bouncy
animations that feel natural.

Note: If you like bouncy animations or the words spring and damping make
your eyes light up, check out Chapter 2, “UIKit Dynamics and Motion Effects.”

The damping parameter defines how bouncy the animation will be – basically the
higher the value, the bouncier. A value less than 1.0 causes the view to ‘overshoot’
its final position and oscillate. Setting a value equal or greater than 1.0 causes the
view to smoothly decelerate to its final position without oscillating.

Before running and admiring your handiwork, you should reduce the transition
duration to make it a bit snappier. Still working in the same file, replace
transitionDuration: as follows:

- (NSTimeInterval)transitionDuration:
 (id <UIViewControllerContextTransitioning>)transitionContext {
 return 0.5;
}

This reduces the transition duration to 0.5 seconds.

Build and run your app, bring up the About view, and watch it bounce around:

iOS 7 by Tutorials Chapter 3: Custom View Controller Transitions

 118

Admittedly, static pictures don’t really do justice to transitions — especially bouncy
kitten transitions! :]

A custom dismiss transition
Just like the UIViewControllerTransitioningDelegate allows you to specify an
animation controller when presenting a view controller, it also allows you to specify
an animation controller to use when dismissing a view controller.

In this section, you will customize the transition used when the about view is
dismissed. In the process, you will learn about two new features in iOS 7: key
frame animations, and UIView snapshotting.

The basic process will be quite similar to what you did last time, so let’s start by
creating an animation controller for the dismiss animation.

Creating the animation controller
Right-click on the ILoveCatz group in the project navigator, select New File…,
and choose iOS\Cocoa Touch\Objective-C class. Name the class
ShrinkDismissAnimationController, and make it a subclass of NSObject.

Open ShrinkDismissAnimationController.h and adopt the
UIViewControllerAnimatedTransitioning protocol:

@interface ShrinkDismissAnimationController : NSObject
<UIViewControllerAnimatedTransitioning>

iOS 7 by Tutorials Chapter 3: Custom View Controller Transitions

 119

@end

Open ShrinkDismissAnimationController.m and add the following method that
returns the transition duration:

- (NSTimeInterval)transitionDuration:
 (id <UIViewControllerContextTransitioning>)transitionContext {
 return 0.5;
}

Next, add the following method to animate the transition:

- (void)animateTransition:
 (id <UIViewControllerContextTransitioning>)transitionContext {
 UIViewController *toViewController =
 [transitionContext viewControllerForKey:
 UITransitionContextToViewControllerKey];
 UIViewController *fromViewController =
 [transitionContext viewControllerForKey:
 UITransitionContextFromViewControllerKey];
 CGRect finalFrame = [transitionContext
 finalFrameForViewController:toViewController];

 UIView *containerView = [transitionContext containerView];

 // 1
 toViewController.view.frame = finalFrame;
 toViewController.view.alpha = 0.5;

 // 2
 [containerView addSubview:toViewController.view];
 [containerView sendSubviewToBack:toViewController.view];

 // The actual animation will go here...

}

This is quite similar to the implementation you added for your first animation
controller; however, there are a few differences to highlight:

1. This time the to- view controller (i.e. the master view controller in your case) is
stationary while the from- view controller slides down to reveal it. Hence, the
initial position for the to- view controller is the same as its final position.

2. Again, you are always responsible for adding the to- view to the container view.
You want to slide out the from- view to reveal the underlying view, so the to-
view is sent to the back.

iOS 7 by Tutorials Chapter 3: Custom View Controller Transitions

 120

For the animation itself, you’ll use something a little different from the standard
UIView animation and dig into another new iOS 7 feature: key frame animations.

Animating with Key frames
Key frame UIView animations make it easy to create animations with multiple steps.
Before iOS 7 you had to chain animations together, each animation firing after the
completion of the preceding one (or drop down a lower level into Core Animation).
With key frame animations, you simply define a single animation with multiple
steps.

Add the following code to the end of the animateTransition: implementation you
added in the previous section:

// 1. Determine the intermediate and final frame for the from view
CGRect screenBounds = [[UIScreen mainScreen] bounds];
CGRect shrunkenFrame =
 CGRectInset(fromViewController.view.frame,
 fromViewController.view.frame.size.width/4,
 fromViewController.view.frame.size.height/4);
CGRect fromFinalFrame =
 CGRectOffset(shrunkenFrame, 0, screenBounds.size.height);

NSTimeInterval duration = [self
 transitionDuration:transitionContext];

// 2. animate with keyframes
[UIView animateKeyframesWithDuration:duration
 delay:0.0
 options:UIViewKeyframeAnimationOptionCalculationModeCubic
 animations:^{
 // 3a. keyframe one
 [UIView addKeyframeWithRelativeStartTime:0.0
 relativeDuration:0.5
 animations:^{
 fromViewController.view.frame = shrunkenFrame;
 toViewController.view.alpha = 0.5;
 }];
 // 3b. keyframe two
 [UIView addKeyframeWithRelativeStartTime:0.5
 relativeDuration:0.5
 animations:^{
 fromViewController.view.frame = fromFinalFrame;
 toViewController.view.alpha = 1.0;
 }];
 }

iOS 7 by Tutorials Chapter 3: Custom View Controller Transitions

 121

 completion:^(BOOL finished) {
 // 4. inform the context of completion
 [transitionContext completeTransition:YES];
 }];

The nested blocks make this a little hard to read, however, it’s fairly
straightforward. Taking each step in turn:

1. Calculate the intermediate and final frame for the from- view. The first step is to
shrink it to half its size, and the second step is to move it to the bottom of the
screen.

2. Initialize a key frame animation.

3. (a) Key frame one starts at a relative time of 0.0, with a relative duration of 0.5;
i.e. it starts immediately and lasts for 50% of the total duration of the animation.
This key-frame sets the from- view frame to its intermediate state.

(b) Key-frame two occurs at a relative time of 0.5, with a relative duration of 0.5;
i.e. it starts 50% through the animation and lasts for the remaining 50% of the
total duration of the animation. This key-frame moves the from- view to its final
location.

4. Once again, inform the transition context that the animation is complete.

The overall effect shrinks the view down into the bottom center of the screen with a
3D-like effect that makes it look like the view is moving away from you.

Time to wire up this transition to the animation controller!

Repeating some of the steps you used to add your first animation controller, open
MasterViewController.m and add this import to the top of the file:

#import "ShrinkDismissAnimationController.h"

A little further down the same file add the following instance variable:

ShrinkDismissAnimationController
 *_shrinkDismissAnimationController;

Create an instance of the new animation controller by adding the following code to
initWithCoder: right after the line that constructs your other animation controller:

_shrinkDismissAnimationController =
 [ShrinkDismissAnimationController new];

The UIViewControllerTransitioningDelegate protocol provides
animationControllerForDismissedController: to retrieve the animation controller of
a dismissed view controller.

Add the following code to the bottom of the same file:

iOS 7 by Tutorials Chapter 3: Custom View Controller Transitions

 122

- (id<UIViewControllerAnimatedTransitioning>)
 animationControllerForDismissedController:
 (UIViewController *)dismissed {
 return _shrinkDismissAnimationController;
}

This simply returns your new animation controller.

Build and run your app; you’ll see your new animation as follows:

Oh dear. While you can certainly see the two key-frame steps, the effect isn’t quite
what you had planned!

What’s going on here? In the image above you can see that the white frame for the
view is set correctly, but the scale of its contents hasn’t changed. Ah, that makes
perfect sense: changing the frame for a view doesn’t affect the view’s children.

You could fix this by using a scale transform on the view; however, this gives you
an excuse to try out another new iOS 7 feature: UIView snapshots. Hmm, it’s
almost as if the author planned it this way! :]

UIView snapshotting
UIView snapshotting is a simple yet powerful feature that allows you to snapshot an
existing UIView together with its hierarchy and render it into a new lightweight
UIView. You can even snapshot partial views, allowing you to perform all kinds of
special effects.

Within ShrinkDismissAnimationController.m, add the following code just before
the UIView animation:

iOS 7 by Tutorials Chapter 3: Custom View Controller Transitions

 123

// create a snapshot
UIView *intermediateView = [fromViewController.view
 snapshotViewAfterScreenUpdates:NO];
intermediateView.frame = fromViewController.view.frame;
[containerView addSubview:intermediateView];

// remove the real view
[fromViewController.view removeFromSuperview];

This creates a new snapshot view then adds it the container view. This snapshot is
used as a replacement for the from- view, so the real view must first be removed.

Replace the UIView animation with the following code:

 [UIView animateKeyframesWithDuration:duration
 delay:0.0
 options:UIViewKeyframeAnimationOptionCalculationModeCubic
 animations:^{
 [UIView addKeyframeWithRelativeStartTime:0.0
 relativeDuration:0.5
 animations:^{
 intermediateView.frame = shrunkenFrame;
 toViewController.view.alpha = 0.5;
 }];
 [UIView addKeyframeWithRelativeStartTime:0.5
 relativeDuration:0.5
 animations:^{
 intermediateView.frame = fromFinalFrame;
 toViewController.view.alpha = 1.0;
 }];
 }
 completion:^(BOOL finished) {
 // remove the intermediate view
 [intermediateView removeFromSuperview];
 [transitionContext completeTransition:YES];
 }];

This substitutes the snapshot intermediateView for the real from- view. In the
completion block, you remove the intermediateView when the animation completes
since it won’t be needed any more.

Build and run to see the finished transition:

iOS 7 by Tutorials Chapter 3: Custom View Controller Transitions

 124

Ahh, that’s more like what you had in mind. That completes your custom dismiss
transition.

Navigation controller transitions
So far you’ve worked with modal view controller presentations, where you add a
transitioning delegate to the view controller presented. This approach of setting a
delegate on every single view controller gets quite tiresome when using a
UINavigationController or a UITabBarController.

Fortunately, these controllers provide a simpler approach where the animation
controller for a transition is supplied via the UINavigationControllerDelegate or
UITabBarControllerDelegate.

In this section, you will try this out by adding a custom transition to a navigation
controller. But first things first – you need an animation controller to use! This time,
you will create an animation controller that flips between the two view controllers.

Adding a flip animation controller
You are going to add a new animation controller that flips over the current view
controller to reveal the destination.

Right-click on the ILoveCatz group in the project navigator, select New File…,
and choose iOS\Cocoa Touch\Objective-C class. Name the class
FlipAnimationController, and make it a subclass of NSObject.

Open FlipAnimationController.h, modify it to adopt the
UIViewControllerAnimatedTransitioning protocol and add a simple property, as so:

@interface FlipAnimationController :
 NSObject <UIViewControllerAnimatedTransitioning>

@property (nonatomic, assign) BOOL reverse;

@end

iOS 7 by Tutorials Chapter 3: Custom View Controller Transitions

 125

The reverse property will be used to set the direction of this transition.

Open FlipAnimationController.m and add the following transition duration
method:

- (NSTimeInterval)transitionDuration:
 (id<UIViewControllerContextTransitioning>)transitionContext {
 return 1.0;
}

Also add the following utility method below:

- (CATransform3D) yRotation:(CGFloat) angle {
 return CATransform3DMakeRotation(angle, 0.0, 1.0, 0.0);
}

This creates a 3D transform that rotates around the Y-axis.

Finally, add the following animation implementation:

- (void)animateTransition:
 (id<UIViewControllerContextTransitioning>)transitionContext {

 // 1. the usual stuff ...
 UIView* containerView = [transitionContext containerView];
 UIViewController *fromVC = [transitionContext
 viewControllerForKey:
 UITransitionContextFromViewControllerKey];
 UIViewController *toVC = [transitionContext
 viewControllerForKey:
 UITransitionContextToViewControllerKey];
 UIView *toView = toVC.view;
 UIView *fromView = fromVC.view;
 [containerView addSubview:toVC.view];

 // 2. Add a perspective transform
 CATransform3D transform = CATransform3DIdentity;
 transform.m34 = -0.002;
 [containerView.layer setSublayerTransform:transform];

 // 3. Give both VCs the same start frame
 CGRect initialFrame = [transitionContext
 initialFrameForViewController:fromVC];
 fromView.frame = initialFrame;
 toView.frame = initialFrame;

 // 4. reverse?

iOS 7 by Tutorials Chapter 3: Custom View Controller Transitions

 126

 float factor = self.reverse ? 1.0 : -1.0;

 // 5. flip the to VC halfway round - hiding it
 toView.layer.transform = [self yRotation:factor * -M_PI_2];

 // 6. Animate
 NSTimeInterval duration = [self
 transitionDuration:transitionContext];
 [UIView animateKeyframesWithDuration:duration
 delay:0.0
 options:0
 animations:^{
 [UIView addKeyframeWithRelativeStartTime:0.0
 relativeDuration:0.5
 animations:^{
 // 7. rotate the from view
 fromView.layer.transform =
 [self yRotation:factor * M_PI_2];
 }];
 [UIView addKeyframeWithRelativeStartTime:0.5
 relativeDuration:0.5
 animations:^{
 // 8. rotate the to view
 toView.layer.transform =
 [self yRotation:0.0];
 }];
 } completion:^(BOOL finished) {
 [transitionContext completeTransition:
 ![transitionContext transitionWasCancelled]];
 }];
}

Hey — there’s some familiar looking code in this method. Taking each step in turn:

1. Obtain the usual information from the transition context.

2. Add a perspective transform to the container view – more in this a little later.

3. Give both the from- and to- view the same frame – in this case, a frame that fills
the screen.

4. Using the reverse property, create a factor that negates the rotation angles used
later on in the transition.

5. The to- view should not be visible initially. To achieve this, rotate it 90 degrees
around its y-axis so that its zero-width edge is head-on.

6. Start the animation using a key-frame animation.

iOS 7 by Tutorials Chapter 3: Custom View Controller Transitions

 127

7. The first step of the key-frame animation rotates the from- view by 90 degrees
along its y-axis. Once it has reached this angle, it will be invisible.

8. The second step reveals the to- view by rotating it 90 degrees.

Now back to step (2), this is worth a slightly more detailed explanation. You can
apply a 3D transformation to a layer, and its children via the sublayerTransform
property. The transform itself is a 4 x 4 matrix that allows you to apply any
combination of rotate, skew and scale transforms to the layers.

In the code above the identity matrix is being used as the basis for the transform.
The m34 matrix cell is modified to achieve the required level of perspective. You
can see the effect of applying various values to this cell below:

You can perform all kinds of interesting effects via these transformation matrices; it
is well worth having a play with them!

The final step, as always, is wiring it up.

Open MasterViewController.m and add the following import to the top of the file:

#import "FlipAnimationController.h"

A little further down the same file add the following instance variable:

FlipAnimationController *_flipAnimationController;

Create an instance of this class by adding the following line to initWithCoder:, right
next to where you construct the other animation controllers:

_flipAnimationController = [FlipAnimationController new];

The navigation controller delegate supplies the animation controller. To this end,
update the class extension near the top of the file as so:

@interface MasterViewController ()
 <UIViewControllerTransitioningDelegate,
 UINavigationControllerDelegate>

iOS 7 by Tutorials Chapter 3: Custom View Controller Transitions

 128

Now add the following to the end of the current viewDidLoad method:

self.navigationController.delegate = self;

This sets the host navigation controller’s delegate so you can receive the new
transition delegate methods.

The final step is to add the required delegate method as below:

- (id<UIViewControllerAnimatedTransitioning>)
 navigationController:
 (UINavigationController *)navigationController
 animationControllerForOperation:
 (UINavigationControllerOperation)operation
 fromViewController:(UIViewController *)fromVC
 toViewController:(UIViewController *)toVC {

 _flipAnimationController.reverse =
 operation == UINavigationControllerOperationPop;
 return _flipAnimationController;
}

The above method requests an animation controller to navigate between the from-
and to- view controllers, and receives the flip animation controller in response.
Notice that the flip direction is based on whether this is a push or pop navigation.

Build and run your app; tap on a table view cell to see your new transition in
action:

Did you notice that the navigation bar automatically performs a fade transition in
parallel with your custom animation? iOS 7 is full of neat little effects like this.

Interactive transitions
The final new iOS 7 feature to implement is an interactive transition. These
transitions allow the user to control a view controller transition with gestures.

iOS 7 by Tutorials Chapter 3: Custom View Controller Transitions

 129

To see an interactive transition in action, open up the Settings app on your device.
Drill through the hierarchy of settings and swipe slowly from the left hand side of
the screen. You’ll see that you can initiate a pop transition as an alternative to the
Back button, which is pretty cool.

However, what’s even better is that the view tracks your finger location, allowing
you to peek behind the topmost view, and if you wish, change your mind and swipe
it back again.

The above illustration shows how you can either complete or cancel an interactive
transition by navigating to the to- view controller of return to the from- view
controller respectively.

Sounds complicated? You’ll be amazed to find that interactive transitions are
actually really easy to implement. You are going to change the current flip
transition to be interactive; to do this you won’t have to change a single line of
code within your animation controller — honest.

Adding an interaction controller
Interactive transitions use yet another protocol. This time it’s
UIViewControllerInteractiveTransitioning. The transitioning delegate or
navigation controller delegate requests an optional interaction controller after
requesting an animation controller.

As you can probably guess from its name, an interaction controller controls the
animation: stepping through the animation as a gesture takes place, playing it to
completion when the interaction ends, or playing it in reverse if the navigation is
cancelled.

iOS 7 by Tutorials Chapter 3: Custom View Controller Transitions

 130

First up, you’ll create your interaction controller.

Right-click on the ILoveCatz group in the project navigator, select New File…,
and choose iOS\Cocoa Touch\Objective-C class. Name the class
SwipeInteractionController, and make it a subclass of
UIPercentDrivenInteractiveTransition.

Open SwipeInteractionController.h and replace with the following:

@interface SwipeInteractionController :
 UIPercentDrivenInteractiveTransition

- (void)wireToViewController:(UIViewController*)viewController;

@property (nonatomic, assign) BOOL interactionInProgress;

@end

UIPercentDrivenInteractiveTransition is the only concrete class you have
encountered in the view controller transitions API, and it takes care of
implementing the UIViewControllerInteractiveTransitioning protocol on your
behalf.

In order to use UIPercentDrivenInteractiveTransition you must ensure that your
animation controller uses a single UIView animation. If implemented in this way, the
UIPercentDrivenInteractiveTransition can automatically stop, reverse, play and
control the animations you provide.

Open SwipeInteractionController.m and add the following instance variables:

@implementation SwipeInteractionController {
 BOOL _shouldCompleteTransition;
 UINavigationController *_navigationController;
}

You’ll see what these are used for shortly.

Add the following method just below your instance variables:

- (void)wireToViewController:(UIViewController *)viewController {
 _navigationController = viewController.navigationController;
 [self prepareGestureRecognizerInView:viewController.view];
}

This method allows you to attach the interaction controller to a view controller. It
obtains a reference to the navigation controller, which it uses to initiate a pop
transition when a gesture occurs.

Add the following method just beneath the above method:

iOS 7 by Tutorials Chapter 3: Custom View Controller Transitions

 131

- (void)prepareGestureRecognizerInView:(UIView*)view {
 UIPanGestureRecognizer *gesture =
 [[UIPanGestureRecognizer alloc] initWithTarget:self
 action:@selector(handleGesture:)];
 [view addGestureRecognizer:gesture];
}

This method adds a gesture recognizer to the view controller’s view to detect a pan.

Add the following final method before you deal with the real interaction logic:

- (CGFloat)completionSpeed
{
 return 1 - self.percentComplete;
}

The completion speed is a UIPercentDrivenInteractiveTransition method that
informs the framework how much of the animation remains when a gesture
completes. Here the completion speed is simply the proportion of the remaining
animation, but there is nothing stopping you from making this number bigger or
smaller. For example, you could scale this up to a larger number to make the view
controller snap back very quickly if an interaction is cancelled.

Now onto the real business of handling gestures and triggering an interactive
transition. Add the method below:

- (void)handleGesture:(UIPanGestureRecognizer*)gestureRecognizer {
 CGPoint translation = [gestureRecognizer
 translationInView:gestureRecognizer.view.superview];

 switch (gestureRecognizer.state) {
 case UIGestureRecognizerStateBegan:
 // 1. Start an interactive transition!
 self.interactionInProgress = YES;
 [_navigationController
 popViewControllerAnimated:YES];
 break;
 case UIGestureRecognizerStateChanged: {
 // 2. compute the current position
 CGFloat fraction = - (translation.x / 200.0);
 fraction = fminf(fmaxf(fraction, 0.0), 1.0);

 // 3. should we complete?
 _shouldCompleteTransition = (fraction > 0.5);

 // 4. update the animation

iOS 7 by Tutorials Chapter 3: Custom View Controller Transitions

 132

 [self updateInteractiveTransition:fraction];
 break;
 }
 case UIGestureRecognizerStateEnded:
 case UIGestureRecognizerStateCancelled:
 // 5. finish or cancel
 self.interactionInProgress = NO;
 if (!_shouldCompleteTransition || gestureRecognizer.state ==
UIGestureRecognizerStateCancelled) {
 [self cancelInteractiveTransition];
 }
 else {
 [self finishInteractiveTransition];
 }
 break;
 default:
 break;
 }
}

The gesture recognizer added to the view invokes the above method. Looking at
each step in turn:

1. When the gesture first starts, set the interactionInProgres property to YES and
initiate a pop navigation. You’ll see shortly how the wire-up code uses this
property.

2. While the gesture is in progress, compute a fraction that indicates how complete
the transition is. In this case, a swipe of 200 points will cause the transition to be
100% complete, and should fully navigate to the to- view.

3. Determine whether the transition should complete if the gesture finishes at this
location. In this case, if the users swipes at least halfway before releasing, then
complete the transition.

4. Inform the object of the current position. This is all you need to do to ensure the
animation from your animation controller plays correctly.

5. Finally, invoke the finish or cancel methods of
UIPercentDrivenInteractiveTransition based on the _shouldCompleteTransition
instance variable set in step 3.

As you can see, using UIPercentDrivenInteractiveTransition as the superclass
makes it very easy to create an interaction controller. What’s more, the interaction
controller doesn’t have any reference at all to your animation controller. This allows
you to freely mix and match interaction controllers and animation controllers.

iOS 7 by Tutorials Chapter 3: Custom View Controller Transitions

 133

Wiring it up
There’s only a little bit of code left between you and your epic kitten transition.
Complete the usual wiring-up process as shown below.

Open MasterViewController.m and add the following import to the top of the file:

#import "SwipeInteractionController.h"

A little further down the same file add the following instance variable:

SwipeInteractionController *_swipeInteractionController;

Create an instance of this class by adding the following code to initWithCoder:,
right after where you construct your animation controllers:

_swipeInteractionController = [SwipeInteractionController new];

When a push navigation occurs, this interaction controller needs to add its gesture
recognizer to the pushed view. You’re already detecting push and pop events to set
the direction of the flip animation controller, so add the following code to the start
of navigationController:animationControllerForOperation:
fromViewController:toViewController:

if (operation == UINavigationControllerOperationPush) {
 [_swipeInteractionController wireToViewController:toVC];
}

This is one of the new navigation controller delegate methods that allows you to
supply animation controllers. The above code simply wires up the interaction
controller to any pushed view controller.

Finally, add the following method to provide the interaction controller instance:

- (id <UIViewControllerInteractiveTransitioning>)
 navigationController:
 (UINavigationController *)navigationController
interactionControllerForAnimationController:
(id <UIViewControllerAnimatedTransitioning>)animationController {
 return _swipeInteractionController.interactionInProgress ?
 _swipeInteractionController : nil;
}

The framework first asks for an animation controller; if one is returned, it then asks
for an interaction controller using the above method.

In the above implementation, it checks whether the interaction is in progress (i.e. it
is currently handing gestures), and if so returns it.

iOS 7 by Tutorials Chapter 3: Custom View Controller Transitions

 134

Build and run your app; select a cat from the list, and from the detail view swipe
your finger from right to left. Your view should animate as below:

A smooth swipe from right to left is effectively a pop, as if you tapped the back
button. You can also hold down your finger and in a single touch event, swipe from
the right to left to right to see the interaction at work.

Considering the relatively few steps involved, it’s quite amazing how easy it is to
create smooth, interactive custom transitions in iOS 7.

Challenge
Before moving on to the next chapter, it’s time to put some of your newfound
knowledge to use. The following section provides a challenge for you to try out, and
in this case, it is quite a challenging one! If you do get stuck, the solution is
provided.

Challenge 1: An interactive pinch-dismiss transition
The current application uses an interactive transition for back-navigation. Your
challenge is to add a second interactive transition.

When the about view is dismissed it first shrinks before disappearing off the bottom
of the screen. It would feel quite natural to initiate this transition using a pinch
gesture:

iOS 7 by Tutorials Chapter 3: Custom View Controller Transitions

 135

And that is exactly what your challenge is! Add an interaction controller that allows
the user to dismiss the about view using a pinch gesture.

Here are a few hints:

1. You’ll need to add a new interaction controller to the app, just follow the general
pattern of the existing SwipeInteractionController. However there will be a
couple of small differences:

a. The first is quite obvious; this interaction controller will need to make use of
a pinch gesture recognizer rather than a pan gesture recognizer. You’ll have
to work out how to convert the current pinch state into a percentage in order
to update the transition progress.

b. The second is more subtle; SwipeInteractionController informs the
navigation controller when it should initiate a pop navigation. In this case,
the interaction controller instead needs to send
dismissViewControllerAnimated:completion: to the about view controller.

2. You will need to add the usual wire-up code to master view controller, however,
as this interaction controller is being used for a dismiss transition, you need to
return it via the interactionControllerForDismissal:animator: method which is
defined on the UIViewControllerTransitioningDelegate delegate (Recall that the
view controller that is being navigated to has the delegate which is used to supply
animation and interaction controllers, and in this case, the master view controller
is the to- view controller).

3. Finally, whenever an interaction controller is used, the animation controller
needs to correctly inform the transitioning context whether the transition has
completed or not. Update ShrinkDismissAnimationController so that the
completion block uses the same logic as the FlipAnimationController.

iOS 7 by Tutorials Chapter 3: Custom View Controller Transitions

 136

At this point, it probably feels like your finished doesn’t it? However, if you build
and run you will find that as soon as you pinch the about view, it suddenly
disappears!

There is something wrong here – and it is something quite subtle.

Firstly it is worth trying to narrow down the location of the issue. There are two
broad areas that could be at fault, one is your interaction controller and the other is
the animation controller. The two are independent and ‘pluggable’, so why not try
combining the pinch interaction controller with the flip animation controller that is
used for back-navigation? You should find that this works.

This tells you that there is something wrong with the implementation of your
ShrinkDismissAnimationController. Probably the biggest difference between this,
and the flip animation controller, is the use of UIView snapshotting. This animation
controller removes the from- view replacing it with a snapshot.

Now hang on a minute … the interaction controller has added a pinch gesture
recognizer to the from- view controller’s view, and the animation controller has just
removed that same view from the hierarchy. Funnily enough, gesture recognizers
don’t work when their view has been detached.

EUREKA!

Earlier in this chapter I mentioned that the ‘shrink’ effect could be implemented
using a transform instead of snapshotting. The following will provide exactly the
same effect:

fromViewController.view.transform =
 CGAffineTransformMakeScale(0.5, 0.5);

If you re-implement using transforms, you will find that the animation controller
now works just fine with the newly added pinch interaction controller.

That was quite a challenge wasn’t it!

The way that text is rendered in iOS has changed a lot over the years as more
powerful features and capabilities have been added. This latest iOS release brings
with it some of the most significant text rendering changes yet.

In the old days before iOS 6, web views were usually the easiest way to render text
with mixed styling, such as bold, italics, or even colors.

Last year, iOS 6 added attributed string support to a number of UIKit controls. This
made it much easier to achieve this type of layout without resorting to rendered
HTML — or so it would appear.

In iOS 6, text-based UIKit controls in iOS 6 were based on both WebKit and Core
Graphics’ string drawing functions, as illustrated in the hierarchical diagram below:

Note: Does anything strike you as odd in this diagram? That’s right —
UITextView uses WebKit under the hood. iOS 6 renders attributed strings on a
text views as HTML, a fact that’s not readily apparent to developers who
haven’t dug deep into the framework.

Attributed strings in iOS 6 were indeed helpful for many use cases. However, for
advanced layouts and multi-line rendered text, Core Text remained the only real
option — a relatively low-level and cumbersome framework.

Chapter 4: Beginning Text Kit
By Colin Eberhardt

iOS 7 by Tutorials Chapter 4: Beginning Text Kit

 138

However, this year in iOS 7 there’s an easier way. With the new minimalistic design
focus in iOS 7 that eschews ornamentation and focuses more on typography —
such as the new UIButton that strips away all borders and shadows, leaving only
text — it’s no surprise that there’s a whole new framework for working with text
and text attributes: Text Kit.

The architecture is much tidier in iOS 7; all of the text-based UIKit controls (apart
from UIWebView) now use Text Kit, as shown in the following diagram:

Text Kit is built on top of Core Text, inherits the full power of the Core Text
framework, and to the delight of developers everywhere, wraps it in an improved
object-oriented API. It’s quite a sizeable framework, so this book takes two full
chapters to cover Text Kit’s many features.

The chapter you’re reading now covers the components of Text Kit that you’re likely
to encounter in almost every iOS 7 application, including:

• Dynamic type

• Letterpress effects

• Exclusion paths

• Dynamic text formatting and storage

The second chapter is of great interest to those working with large, complex text
layouts. It delves deeply into the core components of Text Kit, including the layout
manger, text containers and text storage.

In this chapter you’ll explore the various features of Text Kit as you create a simple
yet feature-rich note-taking app for the iPhone that features reflowing text,
dynamic text resizing, and on-the-fly text styling.

Ready to create something of note? :] Then read on to get started with Text Kit!

Getting started
The resources for this chapter includes a starter project with the user interface for
the app pre-created so you can stay focused on Text Kit.

iOS 7 by Tutorials Chapter 4: Beginning Text Kit

 139

Open the starter project in Xcode and build and run the app. The app creates an
initial array of Note instances and renders them in a table view controller.
Storyboards and segues detect cell selection in the table view and handle the
transition to the view controller where users can edit the selected note.

Note: If you are new to Storyboards, check out Chapter 4 in iOS 5 by
Tutorials, “Beginning Storyboards”.

Browse through the source code and play with the app a little to get a feel for how
the app is structured and how it functions. When you’re done with that, move on to
the next section, which discusses the use of dynamic type in your app.

Dynamic type
Dymamic type is one of the most game-changing features of iOS 7; it places the
onus on your app to conform to user-selected font sizes and weights.

Select Settings\General\Accessibility and Settings\General\Text Size to
view the new settings that affect how text is displayed in your app:

iOS 7 offers the ability to enhance the legibility of text by increasing font weight, as
well as an option to set the preferred font size for apps that support dynamic text.
Users will expect apps written for iOS 7 to honor these settings, so ignore them at
your own risk!

In order to make use of dynamic type you need to specify fonts using styles rather
than explicitly stating the font name and size. With iOS 7 a new method has been

iOS 7 by Tutorials Chapter 4: Beginning Text Kit

 140

added to UIFont, preferredFontForTextStyle that creates a font for the given style
using the user’s font preferences.

The diagram below gives an example of each of the six different font styles:

The text on the left is rendered using the smallest user selectable text size, the text
in the center uses the largest, and the text on the right shows the effect of enabling
the accessibility ‘bold text’ feature.

Basic support
Implementing basic support for dynamic text is relatively straightforward. Rather
than using explicit fonts within your application, you instead request a font for a
specific ‘style’. At runtime a suitable font will be selected based on the given style
and the user’s text preferences.

Open NoteEditorViewController.m and add the following to the end of
viewDidLoad:

self.textView.font = [UIFont
 preferredFontForTextStyle:UIFontTextStyleBody];

Then open NotesListViewController.m and add the following to the end of the
tableView: cellForRowAtIndexPath: method, before the return statement:

cell.textLabel.font = [UIFont
 preferredFontForTextStyle:UIFontTextStyleHeadline];

In both cases you are making use of the new iOS font styles.

Note: Using a semantic approach to font names, such as
UIFontTextStyleSubHeadline, helps avoid hard-coded font names and styles
throughout your code — and ensures that your app will respond properly to
user-defined typography settings as expected.

iOS 7 by Tutorials Chapter 4: Beginning Text Kit

 141

Launch TextKitNotepad again, and you’ll notice that the table view and the note
screen now honor the current text size; the difference between the two is shown in
the screenshots below:

That looks pretty good — but sharp readers will note that this is only half the
solution. Head back to Settings\General\Text Size and modify the text size
again. This time, switch back to TextKitNotepad — without re-launching the app
— and you’ll notice that your app didn’t respond to the new text size.

Your users won’t take too kindly to that! Looks like that’s the first thing you need to
correct in this app.

Responding to updates
Open up NoteEditorViewController.m and add the following code to the end of
viewDidLoad:

[[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(preferredContentSizeChanged:)
 name:UIContentSizeCategoryDidChangeNotification
 object:nil];

The above code registers the class to receive notifications when the preferred
content size is changed and passes in the method to be called
(preferredContentSizeChanged:) when this event occurs.

Next, add the following method to NoteEditorViewController.m, immediately
below viewDidLoad:

iOS 7 by Tutorials Chapter 4: Beginning Text Kit

 142

- (void)preferredContentSizeChanged:(NSNotification *)
 notification {
 self.textView.font =
 [UIFont preferredFontForTextStyle:UIFontTextStyleBody];
}

This simply sets the text view font to one based on the new preferred size.

Note: You might be wondering why it seems you’re setting the font to the
same value it had before. When the user changes their preferred font size, you
must request the preferred font again; it won’t be updated automatically. The
font returned via preferredFontForTextStyle: will different when the font
preferences are changed.

Open up NotesListViewController.m and add the following code to the end of the
viewDidLoad method:

[[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(preferredContentSizeChanged:)
 name:UIContentSizeCategoryDidChangeNotification
 object:nil];

Hey, isn’t that the same code you just added to NoteEditorViewController.m?
Yes, it is — but you’ll handle the preferred font change in a slightly
different manner.

Add the following method to NotesListViewController.m, immediately
below viewDidLoad :

- (void)preferredContentSizeChanged:(NSNotification *)
 notification {
 [self.tableView reloadData];
}

The above code simply instructs UITableView to reload its visible cells, which
updates the appearance of each cell.Build and run your app; change the text size
setting and verify that your app responds correctly to the new user preferences.

Changing layout
That part seems to work well, but when you select a really small font size, your
table view ends up looking a little sparse, as shown in the left-hand screenshot
below:

iOS 7 by Tutorials Chapter 4: Beginning Text Kit

 143

This is one of the trickier aspects of dynamic type. To ensure your application looks
good across the range of font sizes, your layout needs to be responsive to the
user’s text settings. Auto Layout solves a lot of problems for you, but this is one
problem you’ll have to solve yourself.

Your table row height needs to change as the font size changes. Implementing the
tableView: heightForRowAtIndexPath: delegate method solves this quite nicely.

Add the following code to NotesListViewController.m, in the table view data
source section:

- (CGFloat)tableView:(UITableView *)tableView
 heightForRowAtIndexPath:(NSIndexPath *)indexPath {

 static UILabel* label;
 if (!label) {
 label = [[UILabel alloc]
 initWithFrame:CGRectMake(0, 0, FLT_MAX, FLT_MAX)];
 label.text = @"test";
 }

 label.font = [UIFont
 preferredFontForTextStyle:UIFontTextStyleHeadline];
 [label sizeToFit];
 return ceilf(label.frame.size.height * 1.7);
}

The above code creates a single shared — or static — instance of UILabel with the
same font used by the table view cell. It then invokes sizeToFit on the label, which

iOS 7 by Tutorials Chapter 4: Beginning Text Kit

 144

forces the label’s frame to fit tightly around the text, and results in a frame height
proportional to the table row height.

Build and run your app; modify the text size setting once more and the table rows
now size dynamically to fit the text size, as shown in the screenshot below:

Letterpress effects
Letterpress effects add subtle shading and highlights to text that give it a sense of
depth — much like the text has been slightly pressed into the screen.

Note: The term “letterpress” is a nod to early printing presses, which inked a
set of letters carved on blocks and pressed them into the page. The letters
often left a small indentation on the page — an unintended but visually
pleasing effect, which is frequently replicated in digital typography today.

Open NotesListViewController.m and replace the contents of tableView:
cellForRowAtIndexPath: with the following code:

static NSString *CellIdentifier = @"Cell";
UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier
 forIndexPath:indexPath];

Note* note = [self notes][indexPath.row];

UIFont* font = [UIFont
 preferredFontForTextStyle:UIFontTextStyleHeadline];

iOS 7 by Tutorials Chapter 4: Beginning Text Kit

 145

UIColor* textColor = [UIColor colorWithRed:0.175f
 green:0.458f blue:0.831f alpha:1.0f];
NSDictionary *attrs =
@{ NSForegroundColorAttributeName : textColor,
 NSFontAttributeName : font,
 NSTextEffectAttributeName : NSTextEffectLetterpressStyle
};

NSAttributedString* attrString = [[NSAttributedString alloc]
 initWithString:note.title
 attributes:attrs];

cell.textLabel.attributedText = attrString;

return cell;

The above code creates an attributed string for the title of a table cell using the
letterpress style.

Build and run your app; your table view will now display the text with a nice
letterpress effect, as shown below:

Letterpress is a subtle effect — but that doesn’t mean you should overuse it! Visual
effects may make your text more interesting, but they don’t necessarily make your
text more legible.

iOS 7 by Tutorials Chapter 4: Beginning Text Kit

 146

Exclusion paths
Flowing text around images or other objects is a standard feature of most word
processors. Text Kit allows you to render text around complex paths and shapes
through exclusion paths.

It would be handy to tell the user when a note was created; you’re going to add a
small curved view to the top right-hand corner of the note that shows this
information.

You’ll start by adding the view itself – then you’ll create an exclusion path to make
the text wrap around it.

Adding the view
Open up NoteEditorViewController.m and add the following line to the list of
imports at the top of the file:

#import "TimeIndicatorView.h"

Next, add the following instance variable to NoteEditorViewController.m:

@implementation NoteEditorViewController
{
 TimeIndicatorView* _timeView;
}

As the name suggests, this houses the time indicator subview.

Add the code following to the very end of viewDidLoad in
NoteEditorViewController.m:

_timeView = [[TimeIndicatorView alloc]
 init:self.note.timestamp];
[self.view addSubview:_timeView];

This simply creates an instance of the new view and adds it as a subview.

TimeIndicatorView calculates its own size, but it won’t do this automatically. You
need a mechanism to call updateSize when the view controller lays out the
subviews.

Add the following code to the bottom of NoteEditorViewController.m:

- (void)viewDidLayoutSubviews {
 [self updateTimeIndicatorFrame];
}

iOS 7 by Tutorials Chapter 4: Beginning Text Kit

 147

- (void)updateTimeIndicatorFrame {
 [_timeView updateSize];
 _timeView.frame = CGRectOffset(_timeView.frame,
 self.view.frame.size.width - _timeView.frame.size.width,
 0.0);
}

viewDidLayoutSubviews calls updateTimeIndicatorFrame, which does two things: it
calls updateSize to set the size of the subview, and positions the subview in the top
right corner of the view.

All that’s left is to call updateTimeIndicatorFrame when your view controller receives
notification that the size of the content has changed. Modify
preferredContentSizeChanged: in NoteEditorViewController.m to the following:

- (void)preferredContentSizeChanged:(NSNotification *)n {
 self.textView.font = [UIFont
 preferredFontForTextStyle:UIFontTextStyleBody];
 [self updateTimeIndicatorFrame];
}

Build and run your project; tap on a list item and the time indicator view will
display in the top right hand corner of the item view, as shown below:

Modify the device Text Size preferences, and the view will automatically adjust to
fit.

However, something doesn’t look quite right. The text of the note renders behind
the time indicator view instead of flowing neatly around it. Fortunately, this is the
exact problem that exclusion paths are designed to solve.

iOS 7 by Tutorials Chapter 4: Beginning Text Kit

 148

Exclusion paths
Open TimeIndicatorView.h and add the following method declaration:

- (UIBezierPath *)curvePathWithOrigin:(CGPoint)origin;

This permits you to access curvePathWithOrigin: from within your view controller
and define the path around which you’ll flow your text. Aha — that’s why the
calculation of the Bezier curve is broken out into its own method!

All that’s left is to define the exclusion path itself. Open up
NoteEditorViewController.m and add the following code block to the very end of
updateTimeIndicatorFrame:

UIBezierPath* exclusionPath = [_timeView
 curvePathWithOrigin:_timeView.center];
_textView.textContainer.exclusionPaths = @[exclusionPath];

The above code creates an exclusion path based on the Bezier path created in your
time indicator view, but with an origin and coordinates that are relative to the text
view.

Build and run your project and select an item from the list; the text now flows
nicely around the time indicator view, as shown in the following screenshot:

This simple example only scratches the surface of the abilities of exclusion paths.
You might have noticed that the exclusionPaths property expects an instance of
NSArray; therefore each container can support more than one exclusion path.

Furthermore, exclusion paths can be as simple or as complicated as you want. Need
to render text in the shape of a star or a butterfly? As long as you can define the
path, exclusionPaths will handle it without problem!

iOS 7 by Tutorials Chapter 4: Beginning Text Kit

 149

As the text container notifies the layout manager when an exclusion path is
changed, dynamic or even animated exclusions paths are possible to implement —
just don’t expect your user to appreciate the text moving around on the screen as
they’re trying to read!

Dynamic text formatting and storage
You’ve seen that Text Kit can dynamically adjust fonts based on the user’s text size
preferences. But wouldn’t it be cool if fonts could update dynamically based on the
actual text itself?

For example, what if you want to make this app automatically:

• Make any text surrounded by the tilde character (~) a fancy font

• Make any text surrounded by the underscore character (_) italic

• Make any text surrounded by the dash character (-) crossed out

• Make any text in all caps colored red

That’s exactly what you’ll do in this section by leveraging the power of the Text Kit
framework!

To do this, you’ll need to understand how the text storage system in Text Kit works.
Here’s a diagram that shows the “Text Kit stack” used to store, render and display
text:

iOS 7 by Tutorials Chapter 4: Beginning Text Kit

 150

Behind the scenes, Apple creates these classes for you automatically when you
create a UITextView, UILabel or UITextField. In your apps, you can either use these
default implementations or customize any part to get your own behavior. Let’s go
over each class:

• NSTextStorage stores the text to be rendered as an attributed string and informs
the layout manager of any changes to the text’s contents. You might want to
subclass NSTextStorage in order to dynamically change the text attributes as the
text is updated (as you will see later in this chapter).

• NSLayoutManager takes the stored text and renders it on the screen; it serves as
the layout ‘engine’ in your app.

• NSTextContainer describes the geometry of an area of the screen where text is
rendered. Each text container is typically associated with a UITextView. You might
want to subclass NSTextContainer to define a complex shape that you would like
to render text within.

To implement the dynamic text formatting feature in this app, you’ll need to
subclass NSTextStorage in order to dynamically add text attributes as the user types
in their text.

Once you’ve created your custom NSTextStorage, you’ll replace UITextView’s default
text storage instance with your own implementation. Let’s give this a shot!

iOS 7 by Tutorials Chapter 4: Beginning Text Kit

 151

Subclassing NSTextStorage
Right-click on the TextKitNotepad group in the project navigator, select New
File…, and choose iOS\Cocoa Touch\Objective-C class. Name the class
SyntaxHighlightTextStorage, and make it a subclass of NSTextStorage.

Open SyntaxHighlightTextStorage.m and add an instance variable and initializer
as follows:

#import "SyntaxHighlightTextStorage.h"

@implementation SyntaxHighlightTextStorage
{
 NSMutableAttributedString *_backingStore;
}

- (id)init
{
 if (self = [super init]) {
 _backingStore = [NSMutableAttributedString new];
 }
 return self;
}
@end

A text storage subclass must provide its own ‘persistence’ hence the use of a
NSMutabeAttributedString ‘backing store’ (more on this later).

Next add the following methods to the same file:

- (NSString *)string
{
 return [_backingStore string];
}

- (NSDictionary *)attributesAtIndex:(NSUInteger)location
 effectiveRange:(NSRangePointer)range
{
 return [_backingStore attributesAtIndex:location
 effectiveRange:range];
}

The above two methods simply delegate directly to the backing store.

Finally add the remaining mandatory overrides to the same file:

iOS 7 by Tutorials Chapter 4: Beginning Text Kit

 152

- (void)replaceCharactersInRange:(NSRange)range
 withString:(NSString *)str
{
 NSLog(@"replaceCharactersInRange:%@ withString:%@",
 NSStringFromRange(range), str);

 [self beginEditing];
 [_backingStore replaceCharactersInRange:range
 withString:str];
 [self edited:NSTextStorageEditedCharacters |
NSTextStorageEditedAttributes
 range:range
 changeInLength:str.length - range.length];
 [self endEditing];
}

- (void)setAttributes:(NSDictionary *)attrs range:(NSRange)range
{
 NSLog(@"setAttributes:%@ range:%@",
 attrs, NSStringFromRange(range));

 [self beginEditing];
 [_backingStore setAttributes:attrs range:range];
 [self edited:NSTextStorageEditedAttributes
 range:range
 changeInLength:0];
 [self endEditing];
}

Again, these methods delegate to the backing store. However, they also surround
the edits with calls to beginEditing / edited / endEditing. This is required in order
that the text storage class notifies its associated layout manager when edits are
made.

You’ve probably noticed that you need to write quite a bit of code in order to
subclass text storage. Since NSTextStorage is a public interface of a class cluster
(see the note below), you can’t just subclass it and override a few methods to
extend its functionality. Instead, there are certain requirements that you must
implement yourself, such as the backing store for the attributed string data.

Note: Class clusters are a commonly used design pattern throughout Apple’s
frameworks.

A class cluster is simply the Objective-C implementation of the Abstract
Factory pattern, which provides a common interface for creating families of

iOS 7 by Tutorials Chapter 4: Beginning Text Kit

 153

related or dependent objects without specifying the concrete classes. Familiar
classes such as NSArray and NSNumber are in fact the public interface to a
cluster of classes.

Apple uses class clusters to encapsulate private concrete subclasses under a
public abstract superclass, and it’s this abstract superclass that declares the
methods a client must use in order to create instances of its private
subclasses. Clients are also completely unaware of which private class is being
dispensed by the factory, since it only ever interacts with the public interface.

Using a class cluster certainly simplifies the interface, making it much easier to
learn and use the class, but it’s important to note there’s been a trade-off
between extensibility and simplicity. It’s often far more difficult to create a
custom subclass of the abstract superclass of a cluster.

Now that you have a custom NSTextStorage, you need to make a UITextView that
uses it.

A UITextView with a custom Text Kit stack
Instantiating UITextView from the storyboard editor automatically creates an
instance of NSTextStorage, NSLayoutManager and NSTextContainer (i.e. the Text Kit
stack) and exposes all three as read-only properties.

There is no way to change these from the storyboard editor, but luckily you can if
you create the UITextView and Text Kit stack programatically.

Let’s give this a shot. Open up Main.storyboard in Interface Builder and locate the
NoteEditorViewController view. Delete the UITextView instance.

Next, open NoteEditorViewController.m and remove the UITextView outlet from
the class extension.

At the top of NoteEditorViewController.m, import the text storage
implementation as follows:

#import "SyntaxHighlightTextStorage.h"

Add the following code immediately after the TimeIndicatorView instance variable in
NoteEditorViewController.m:

SyntaxHighlightTextStorage* _textStorage;
UITextView* _textView;

These are two instance variables for your text storage subclass, and a text view
that you will create programmatically soon.

iOS 7 by Tutorials Chapter 4: Beginning Text Kit

 154

Next remove the following lines from viewDidLoad in
NoteEditorViewController.m:

self.textView.text = self.note.contents;
self.textView.delegate = self;
self.textView.font = [UIFont
 preferredFontForTextStyle:UIFontTextStyleBody];

Since you are no longer using the outlet for the text view and will be creating one
manually instead, you no longer need these lines.

Still working in NoteEditorViewController.m , add the following method:

- (void)createTextView
{
 // 1. Create the text storage that backs the editor
 NSDictionary* attrs = @{NSFontAttributeName:
 [UIFont preferredFontForTextStyle:UIFontTextStyleBody]};
 NSAttributedString* attrString = [[NSAttributedString alloc]
 initWithString:_note.contents
 attributes:attrs];
 _textStorage = [SyntaxHighlightTextStorage new];
 [_textStorage appendAttributedString:attrString];

 CGRect newTextViewRect = self.view.bounds;

 // 2. Create the layout manager
 NSLayoutManager *layoutManager = [[NSLayoutManager alloc]
 init];

 // 3. Create a text container
 CGSize containerSize =
 CGSizeMake(newTextViewRect.size.width, CGFLOAT_MAX);
 NSTextContainer *container = [[NSTextContainer alloc]
 initWithSize:containerSize];
 container.widthTracksTextView = YES;
 [layoutManager addTextContainer:container];
 [_textStorage addLayoutManager:layoutManager];

 // 4. Create a UITextView
 _textView = [[UITextView alloc]
 initWithFrame:newTextViewRect
 textContainer:container];
 _textView.delegate = self;
 [self.view addSubview:_textView];
}

iOS 7 by Tutorials Chapter 4: Beginning Text Kit

 155

This is quite a lot of code. Let’s consider each step in turn:

1. An instance of your custom text storage is instantiated and initialized with an
attributed string holding the content of the note.

2. A layout manager is created.

3. A text container is created and associated with the layout manager. The layout
manager is then associated with the text storage.

4. Finally the actual text view is created with your custom text container, the
delegate set and the text view added as a subview.

At this point the earlier diagram, and the relationship it shows between the four key
classes (storage, layout manager, container and text view) should make more
sense:

Note that the text container has a width matching the view width, but has infinite
height — or as close as CGFLOAT_MAX can come to infinity. In any case, this is more
than enough to allow the UITextView to scroll and accommodate long passages of
text.

Within viewDidLoad add the following line just after the call to viewDidLoad on the
superclass:

[self createTextView];

Next modify the first line of preferredContentSizeChanged to read as follows:

_textView.font = [UIFont

iOS 7 by Tutorials Chapter 4: Beginning Text Kit

 156

 preferredFontForTextStyle:UIFontTextStyleBody];

Here you simply replace the old outlet property with the new instance variable.

One last thing, a custom view created in code doesn’t automatically inherit the
layout constraints set in the storyboard; therefore, the frame of your new view
won’t resize when the device orientation changes. You’ll need to explicitly set the
frame yourself.

To do this, add the following line to the end of viewDidLayoutSubviews:

_textView.frame = self.view.bounds;

Build and run your app; open a note and edit the text while keeping an eye on the
Xcode console. You should see a flurry of log messages created as you type, as
below:

This is simply the logging code from within SyntaxHighlightTextStorage to give you
an indication that your custom text handling code is actually being called.

The basic foundation of your text parser seems fairly solid — now to add the
dynamic formatting.

Dynamic formatting
In this next step you are going to modify your custom text storage to embolden
text *surrounded by asterisks*.

Open SyntaxHighlightTextStorage.m and add the following method:

-(void)processEditing
{
 [self performReplacementsForRange:[self editedRange]];
 [super processEditing];
}

iOS 7 by Tutorials Chapter 4: Beginning Text Kit

 157

processEditing sends notifications for when the text changes to the layout
manager. It also serves as a convenient home for any post-editing logic.

Add the following method right after processEditing:

- (void)performReplacementsForRange:(NSRange)changedRange
{
 NSRange extendedRange = NSUnionRange(changedRange,
 [[_backingStore string]
 lineRangeForRange:NSMakeRange(changedRange.location, 0)]);
 extendedRange = NSUnionRange(extendedRange,
 [[_backingStore string]
 lineRangeForRange:NSMakeRange(NSMaxRange(changedRange), 0)]);

 [self applyStylesToRange:extendedRange];
}

The code above expands the range that will be inspected to match our bold
formatting pattern. This is required because changedRange typically indicates a
single character; lineRangeForRange extends that range to the entire line of text.

Add the following method right after performReplacementsForRange:

- (void)applyStylesToRange:(NSRange)searchRange
{
 // 1. create some fonts
 UIFontDescriptor* fontDescriptor =
 [UIFontDescriptor
preferredFontDescriptorWithTextStyle:UIFontTextStyleBody];
 UIFontDescriptor* boldFontDescriptor = [fontDescriptor
fontDescriptorWithSymbolicTraits:UIFontDescriptorTraitBold];
 UIFont* boldFont = [UIFont
 fontWithDescriptor:boldFontDescriptor size: 0.0];

 UIFont* normalFont = [UIFont
 preferredFontForTextStyle:UIFontTextStyleBody];

 // 2. match items surrounded by asterisks
 NSString* regexStr = @"(*\\w+(\\s\\w+)**)\\s";
 NSRegularExpression* regex = [NSRegularExpression
 regularExpressionWithPattern:regexStr
 options:0
 error:nil];

 NSDictionary* boldAttributes =
 @{ NSFontAttributeName : boldFont };

iOS 7 by Tutorials Chapter 4: Beginning Text Kit

 158

 NSDictionary* normalAttributes =
 @{ NSFontAttributeName : normalFont };

 // 3. iterate over each match, making the text bold
 [regex enumerateMatchesInString:[_backingStore string]
 options:0
 range:searchRange
 usingBlock:^(NSTextCheckingResult *match,
 NSMatchingFlags flags,
 BOOL *stop){

 NSRange matchRange = [match range];
 [self addAttributes:boldAttributes range:matchRange];

 // 4. reset the style to the original
 if (NSMaxRange(matchRange)+1 < self.length) {
 [self addAttributes:normalAttributes
 range:NSMakeRange(NSMaxRange(matchRange)+1, 1)];
 }
 }];

}

The above code performs the following actions:

1. Creates a bold and a normal font for formatting the text using font descriptors.
Font descriptors help you avoid the use of hardcoded font strings to set font types
and styles.

2. Creates a regular expression (or regex) that locates any text surrounded by
asterisks; for example, in the string “iOS 7 is *awesome*”, the regular
expression stored in regExStr above will match and return the text
“*awesome*”. Don’t worry if you’re not totally familiar with regular expressions;
they’re covered in a bit more detail later on in this chapter.

3. Enumerates the matches returned by the regular expression and applies the bold
attribute to each one.

4. Resets the text style of the character that follows the final asterisk in the
matched string to “normal”. This ensures that any text added after the closing
asterisk is not rendered in bold type.

Note: Font descriptors are a type of descriptor language that allows you to
modify fonts by applying specific attributes, or to obtain details of font
metrics, without the need to instantiate an instance of UIFont.

iOS 7 by Tutorials Chapter 4: Beginning Text Kit

 159

Build and run your app; type some text into a note and surround one of the words
with asterisks. The words will be automagically bolded, as shown in the screenshot
below:

That’s pretty handy — you’re likely thinking of all the other styles that could be
added to your text.

You’re in luck: the next section shows you how to do just that!

Adding further styles
The basic principle of applying styles to delimited text is rather straightforward: use
a regex to find and replace the delimited string using applyStylesToRange to set the
desired style of the text.

Add the following instance variable to SyntaxHighlightTextStorage.m:

NSDictionary* _replacements;

Next, add the following method to SyntaxHighlightTextStorage.m:

- (void) createHighlightPatterns {
 UIFontDescriptor *scriptFontDescriptor =
 [UIFontDescriptor fontDescriptorWithFontAttributes:
 @{UIFontDescriptorFamilyAttribute: @"Zapfino"}];

 // 1. base our script font on the preferred body font size
 UIFontDescriptor* bodyFontDescriptor = [UIFontDescriptor
 preferredFontDescriptorWithTextStyle:UIFontTextStyleBody];
 NSNumber* bodyFontSize = bodyFontDescriptor.

iOS 7 by Tutorials Chapter 4: Beginning Text Kit

 160

 fontAttributes[UIFontDescriptorSizeAttribute];
 UIFont* scriptFont = [UIFont
 fontWithDescriptor:scriptFontDescriptor
 size:[bodyFontSize floatValue]];

 // 2. create the attributes
 NSDictionary* boldAttributes = [self
 createAttributesForFontStyle:UIFontTextStyleBody
 withTrait:UIFontDescriptorTraitBold];
 NSDictionary* italicAttributes = [self
 createAttributesForFontStyle:UIFontTextStyleBody
 withTrait:UIFontDescriptorTraitItalic];
 NSDictionary* strikeThroughAttributes =
 @{ NSStrikethroughStyleAttributeName : @1};
 NSDictionary* scriptAttributes =
 @{ NSFontAttributeName : scriptFont};
 NSDictionary* redTextAttributes =
 @{ NSForegroundColorAttributeName : [UIColor redColor]};

 // construct a dictionary of replacements based on regexes
 _replacements = @{
 @"(*\\w+(\\s\\w+)**)\\s" : boldAttributes,
 @"(_\\w+(\\s\\w+)*_)\\s" : italicAttributes,
 @"([0-9]+\\.)\\s" : boldAttributes,
 @"(-\\w+(\\s\\w+)*-)\\s" : strikeThroughAttributes,
 @"(~\\w+(\\s\\w+)*~)\\s" : scriptAttributes,
 @"\\s([A-Z]{2,})\\s" : redTextAttributes};
}

Here’s what’s going on in this method:

1. It first creates a “script” style using Zapfino as the font. Font descriptors help
determine the current preferred body font size, which ensures the script font also
honors the users’ preferred text size setting.

2. Next, it constructs the attributes to apply to each matched style pattern. You’ll
cover createAttributesForFontStyle:withTrait: in a moment; just park it for
now.

3. Finally, it creates a dictionary that maps regular expressions to the attributes
declared above.

If you’re not terribly familiar with regular expressions, the dictionary above might
look a bit strange. But if you deconstruct the regular expressions that it contains,
piece by piece, you can decode them without much effort.

Take the first regular expression you implemented above that matches words
surrounded by asterisks:

iOS 7 by Tutorials Chapter 4: Beginning Text Kit

 161

*\\w+(\\s\\w+)**)\\s

The double slashes are a result of having to escape special characters in regular
expressions in Objective-C with an extra backslash. If you cast out the escaping
backslashes, and consider just the core regular expression, it looks like this:

(*\w+(\s\w+)**)\s

Now, deconstruct the regular expression step by step:

1. (* - match an asterisk

2. \w+ - followed by one or more “word” characters

3. (\s\w+)* - followed by zero or more groups of spaces followed by “word”
characters

4. *) - followed by an asterisk

5. \s - terminated by a space.

Note: If you’d like to learn more about regular expressions above and beyond
this chapter, check out this NSRegularExpression tutorial and cheat sheet:

http://www.raywenderlich.com/30288/nsregularexpression-tutorial-and-
cheat-sheet

As an exercise, decode the other regular expressions yourself, using the
explanation above and the cheat sheet as a guide. How many can you do on your
own?

Now you need to actually call createHighlightPatterns from somewhere.

Update init in SyntaxHighlightTextStorage.m as follows:

- (id)init
{
 if (self = [super init]) {
 _backingStore = [NSMutableAttributedString new];
 [self createHighlightPatterns];
 }
 return self;
}

Add the following method to SyntaxHighlightTextStorage.m:

- (NSDictionary*)createAttributesForFontStyle:(NSString*)style
 withTrait:(uint32_t)trait {
 UIFontDescriptor *fontDescriptor = [UIFontDescriptor

iOS 7 by Tutorials Chapter 4: Beginning Text Kit

 162

 preferredFontDescriptorWithTextStyle:style];
 UIFontDescriptor *descriptorWithTrait = [fontDescriptor
 fontDescriptorWithSymbolicTraits:trait];
 UIFont* font = [UIFont
 fontWithDescriptor:descriptorWithTrait
 size: 0.0];
 return @{ NSFontAttributeName : font };
}

The above method applies the supplied font style to the body font. It provides a
zero size to fontWithDescriptor:size: which forces UIFont to return a size that
matches the user’s current font size preferences.

Next, replace the existing applyStylesToRange method with the one below:

- (void)applyStylesToRange:(NSRange)searchRange
{
 NSDictionary* normalAttrs = @{NSFontAttributeName:
 [UIFont preferredFontForTextStyle:UIFontTextStyleBody]};

 // iterate over each replacement
 for (NSString* key in _replacements) {
 NSRegularExpression *regex = [NSRegularExpression
 regularExpressionWithPattern:key
 options:0
 error:nil];

 NSDictionary* attributes = _replacements[key];

 [regex enumerateMatchesInString:[_backingStore string]
 options:0
 range:searchRange
 usingBlock:^(NSTextCheckingResult *match,
 NSMatchingFlags flags,
 BOOL *stop){
 // apply the style
 NSRange matchRange = [match range];
 [self addAttributes:attributes range:matchRange];

 // reset the style to the original
 if (NSMaxRange(matchRange)+1 < self.length) {
 [self addAttributes:normalAttrs
 range:NSMakeRange(NSMaxRange(matchRange)+1, 1)];
 }
 }];
 }

iOS 7 by Tutorials Chapter 4: Beginning Text Kit

 163

}

This code does pretty much exactly what it did before, but this time it iterates over
the dictionary of regex matches and attributes, and applies the specified style to
the matched patterns.

Build and run your app, and exercise all of the new styles available to you, as
illustrated below:

Your app is nearly complete; there’s just a few loose ends to clean up.

If you’ve changed the orientation of your screen while working on your app, you’ve
already noticed that the app no longer responds to content size changed
notifications since your custom implementation doesn’t yet support this action.

As for the second issue, if you add a lot of text to a note you’ll notice that the
bottom of the text view is partially obscured by the keyboard; it’s a little hard to
type things when you can’t see what you’re typing!

Time to fix up those two issues.

Reviving dynamic type
To correct the issue with dynamic type, your code should update the fonts used by
the attributed string containing the text of the note when the content size change
notification occurs.

Open up SyntaxHighlightTextStorage.h and add the following method
declaration to the interface:

@interface SyntaxHighlightTextStorage : NSTextStorage

iOS 7 by Tutorials Chapter 4: Beginning Text Kit

 164

- (void)update;
@end

Next, add the following implementation to SyntaxHighlightTextStorage.m:

-(void)update {
 // update the highlight patterns
 [self createHighlightPatterns];

 // change the 'global' font
 NSDictionary* bodyFont = @{NSFontAttributeName :
 [UIFont preferredFontForTextStyle:UIFontTextStyleBody]};
 [self addAttributes : bodyFont
 range : NSMakeRange(0, self.length)];

 // re-apply the regex matches
 [self applyStylesToRange:NSMakeRange(0, self.length)];
}

The method above updates all the fonts associated with the various regular
expressions, applies the body text style to the entire string, and then re-applies the
highlighting styles.

Finally, open NoteEditorViewController.m and update
preferredContentSizeChanged: to invoke update:

- (void)preferredContentSizeChanged:(NSNotification *)notification {
 [_textStorage update];
 [self updateTimeIndicatorFrame];
}

Build and run your app and change your text size preferences; the text should
adjust accordingly as in the example below:

iOS 7 by Tutorials Chapter 4: Beginning Text Kit

 165

Resizing text views
All that’s left to do is solve the problem of the keyboard obscuring the bottom half
of the text view when editing long notes. This is one issue that iOS 7 hasn’t solved
for us yet!

To fix this, you’ll reduce the size of the text view frame when the keyboard is
visible.

Add the following instance variable to NoteEditorViewController.m:

 CGRect _textViewFrame;

This will be used to store the current text view frame.

Within the same file update viewDidLayoutSubviews to make use of this newly added
instance variable.

- (void)viewDidLayoutSubviews {
 [self updateTimeIndicatorFrame];
 _textView.frame = _textViewFrame;
}

And add the following to the bottom of viewDidLoad to set the initial frame value:

 _textViewFrame = self.view.bounds;

The next step is to update this variable when the keyboard is shown. The
NoteEditorViewController class already adopts the UITextViewDelegate. Add the
following method to update the frame when editing begins:

- (void)textViewDidBeginEditing:(UITextView *)textView {
 _textViewFrame = self.view.bounds;
 _textViewFrame.size.height -= 216.0f;
 _textView.frame = _textViewFrame;
}

This simply reduces the height of the frame by 216 pixels, the height of the on-
screen keyboard.

NOTE: Yes, this is a magic number! You might want to handle the notification
that occurs when the keyboard is shown. The data passed via this notification
includes the keyboard size.

iOS 7 by Tutorials Chapter 4: Beginning Text Kit

 166

Finally, return the text view frame to its original size when editing finishes by
updating textViewDidEndEditing as follows:

- (void)textViewDidEndEditing:(UITextView *)textView
{
 self.note.contents = textView.text;

 _textViewFrame = self.view.bounds;
 _textView.frame = _textViewFrame;
}

Build and run your app, edit a note and check that displaying the keyboard no
longer obscures the text, as shown below:

Where to go from here?
Text Kit adds many new and interesting features; ones like dynamic type will
impact almost every iOS 7 application that you write. Other features, such as
exclusion paths, offer opportunities for some really creative effects in your apps.

This chapter only scrapes the surface of Text Kit framework; to learn more, read on
to the next chapter where you’ll start to learn more about the role of the layout
manager and the tremendous power it gives you.

iOS 7 by Tutorials Chapter 4: Beginning Text Kit

 167

Challenges
Before moving on to the next chapter, it’s worth putting some of your newfound
knowledge to use. The following section provides a few challenges for you to try
out. Each challenge has a number of hints, but if you do get completely stuck, the
solutions are provided.

Challenge 1: Highlighting URLs
Try extending the base list of regular expressions for dynamic styles to add a few of
your own invention. Adding a regular expression to highlight URL strings, and make
them ‘clickable’ would be a really valuable feature, and an interesting challenge!

Here are a few hints to help you along the way:

1. First you will need to construct a regular expression for locating URLs. This is
quite a challenge in itself! Why not search the web and see if you can find a
suitable one online?

2. The applyStylesToRange: method within SyntaxHighlightTextStorage would be a
suitable place to match this regular expression. However, this time, the attributes
you apply will need to contain the URL using the NSLinkAttributeName attribute.

3. Once you have managed to highlight URLs, you will probably discover that they
are not clickable yet – this is because the UITextView only allows you to interact
with URLs when it is no editable. In order to accommodate this, add a bar button
to the Note Editor view controller which toggles the text view between its editable
and non-editable state.

Challenge 2: Provide an Embedded Browser
With the current implementation, the built-in behavior is used when links are
clicked – Safari is launched, leaving your notes app. It would be much better if you
could keep your users within the app, displaying the web link with a UIWebView
control, and that is the subject of your next challenge!

The UITextViewDelegate has had a new method added to it in iOS 7, textView:
shouldInteractWithURL: inRange:. If you implement this delegate and return NO,
Safari is not launched and you can add your own logic to handle when links are
clicked.

Your next challenge is to use this delegate method to handle links within your app,
by navigating to a view controller that hosts a UIWebView to render the website that
the link navigates to.

Here are a few pointers:

1. You need to add a new view controller to the app, which is navigated to via the
NoteEditorViewController. To do this, add a segue that performs a push
navigation, and give it a name.

iOS 7 by Tutorials Chapter 4: Beginning Text Kit

 168

2. Provide an implementation for the view controller that exposes the URL as a
property.

3. Within NoteEditorViewController implement the textView:
shouldInteractWithURL: inRange: method and navigate to this newly added view
controller. You can initiate this navigation by calling performSegueWithIdentifier:
sender: with the name of the segue you added to the storyboard.

4. Finally, you need to supply the URL to the newly added view controller. You can
do this by adding an implementation of prepareForSegue: sender: within
NoteEditorViewController.

So – how did you do?

In the previous chapter, you learned about the most important functionality of Text
Kit, iOS 7’s powerful new text rendering framework. Specifically, you learned how
to support dynamic type, add letterpress effects, use exclusion paths, and create
your own dynamic text formatting and storage system.

This chapter will be particularly interesting to those who are making apps that
involve large, complex text layouts. You will dive more deeply into the Text Kit
rendering engine itself, and learn how to use it to create your own custom text
layouts.

In the process, you will build a simple iPad book app that includes the use of
multiple text containers, both with and without views. Throughout the process you
will delve more deeply into the way Text Kit achieves text layout. Using this
knowledge you will optimize your application for performance and memory usage.

Getting started
Just like last chapter, I have created a starter project with the user interface for the
app pre-created so you can stay focused on Text Kit.

Open the starter project in Xcode and build and run the app. You’ll be greeted with
the following screen:

Chapter 5: Intermediate Text
Kit
By Colin Eberhardt

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 170

There’s not much there right now, but that’s where you and your Text Kit
knowledge will come in.

The starter project is a simple modification of the Xcode master-detail template
project. The detail view controller has been renamed to BookViewController and the
master has been renamed to ChaptersViewController.

Most of the functionality involving communication between the master and detail
view controllers has also been removed. Finally, the project also has an Assets
group, which contains the text for the book you are going to render along with a
few images.

Note: The text for the book is formatted in a markup language called
Markdown, created by Daring Fireball’s John Gruber. You compose and format
your text using a simple plain text format, which can be converted into many
other markup languages including HTML.

Markdown is designed to be readable in its native format, as the markup
appears natural and doesn’t compromise readability.

You can learn more about Markdown here:

http://daringfireball.net/projects/markdown/syntax

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 171

Before you start coding, it’s important to review what you learned in previous last
chapter about the Text Kit architecture, and then dive a little bit deeper into the
layout system.

Text Kit architecture
To review from previous chapter, the following objects are constructed to support
text rendering when you create a UITextView:

Again, the responsibilities of each of these classes are as follows:

• NSTextStorage serves as the character data repository for the text system. The
format of this data is an attributed string; which is a sequence of characters and
the styling attributes that apply to them. NSTextStorage is actually a subclass of
NSMutableAttributedString.

• NSLayoutManager coordinates the layout and rendering of characters held in an
instance on NSTextStorage. NSLayoutManager is also responsible for mapping
Unicode characters to their corresponding glyphs.

• NSTextContainer defines the region of a view where text is laid out.
NSLayoutManager depends on NSTextContainer to determine where to break lines,
layout portions of text, and so on.

In order to understand the role of each of these classes, it helps to picture them in
the context of the model-view-controller design pattern, demonstrated in the image
below:

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 172

In the text rendering process, NSTextStorage provides the model, holding both the
text itself and the attributes that describe the associated styling. The
NSTextContainer is also considered part of the model layer, in that it describes the
geometric layout of the text on a particular view.

The NSLayoutManager is the controller and directs layout, glyph generation and the
rendering workflow. Finally, the UITextView (or other text-rendering UIKit control
such as UILabel) is the view.

If you look at the API for NSLayoutManager you will see that it is pretty complicated.
This reflects the complexity of text rendering and also the many functions that the
controller performs.

Layout configurations
In the last chapter, you created a UITextView with a custom Text Kit stack, as
illustrated below:

This was in order to replace the framework’s NSTextStorage with your own custom
subclass.

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 173

However, the layout manager can be associating with multiple text containers,
allowing for much more complex configurations. For example, you can use multiple
text containers to render text across multiple columns or pages, as illustrated
below:

The configuration above is actually the one that you will be creating as you
progress through this chapter.

Anyhow, enough of the theory, it’s time to build an application!

Rendering the text
The first step in creating a working book reader is rendering the text on the screen.

AppDelegate will serve as the central point for application data, so open up
AppDelegate.h and add the following property to the interface declaration:

@property (nonatomic, copy) NSAttributedString *bookMarkup;

This property will store the book markup and formatting in an attributed string.

Add the following code to application:didFinishLaunchingWithOptions: in
AppDelegate.m, just before the view controllers are created:

NSString *path = [[NSBundle mainBundle]
 pathForResource:@"alices_adventures"
 ofType:@"md"];
NSString *text = [NSString
 stringWithContentsOfFile:path
 encoding:NSUTF8StringEncoding
 error:NULL];
self.bookMarkup = [[NSAttributedString alloc]
 initWithString:text];

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 174

The above code loads the contents of alices_adventures.md into an instance of
NSString, initializes an instance of NSAttributedString with the contents of this
NSString, and finally sets bookMarkup to the contents of the attributed string.

Create a new class by going to File\New\File…, choosing the iOS\Cocoa
Touch\Objective-C class template, and clicking Next. Name the class BookView,
make it a subclass of UIView and click Next. Check the box to add the new class to
the TextKitMagazine target and finally click Create.

Your new view will be used to render the book text. Open BookView.h and add the
following method and property to the interface declaration:

@interface BookView : UIView

@property (nonatomic, copy) NSAttributedString *bookMarkup;

- (void)buildFrames;

@end

The bookMarkup property stores the text to be rendered, while buildFrames creates
the Text Kit components required for rendering.

Open BookView.m and add a private instance variable:

@implementation BookView
{
 NSLayoutManager *_layoutManager;
}

This will store an instance of the layout manager. Remember, the layout manager is
the class responsible for transforming the characters in your text storage into
rendered characters (i.e. glyphs) on screen.

Still in BookView.m, add the following implementation of buildFrames just above
the @end compiler directive:

- (void)buildFrames
{
 // create the text storage
 NSTextStorage *textStorage = [[NSTextStorage alloc]
 initWithAttributedString:self.bookMarkup];

 // create the layout manager
 _layoutManager = [[NSLayoutManager alloc] init];
 [textStorage addLayoutManager:_layoutManager];

 // create a container

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 175

 NSTextContainer *textContainer = [[NSTextContainer alloc]
 initWithSize:CGSizeMake(self.bounds.size.width, FLT_MAX)];
 [_layoutManager addTextContainer:textContainer];

 // create a view
 UITextView *textView = [[UITextView alloc]
 initWithFrame:self.bounds
 textContainer:textContainer];
 textView.scrollEnabled = YES;
 [self addSubview:textView];
}

If you followed along with the previous chapter, the above code should be quite
familiar. It creates a UITextView with a custom “Text Kit stack” consisting of an
NSTextStorage, NSLayoutManager, and NSTextContainer.

Open BookViewController.m and add the following imports to the top of the file:

#import "BookView.h"
#import "AppDelegate.h"

Next, add a new instance variable:

@implementation BookViewController
{
 BookView *_bookView;
}

This will keep track of an instance of the new BookView class you just created.

Finally, replace viewDidLoad with the following implementation:

- (void)viewDidLoad
{
 [super viewDidLoad];

 self.view.backgroundColor = [UIColor colorWithWhite:0.87f
 alpha:1.0f];

 [self setEdgesForExtendedLayout:UIRectEdgeNone];

 AppDelegate *appDelegate = (AppDelegate *)
 [[UIApplication sharedApplication] delegate];

 _bookView = [[BookView alloc]
 initWithFrame:self.view.bounds];
 _bookView.autoresizingMask = UIViewAutoresizingFlexibleWidth

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 176

 | UIViewAutoresizingFlexibleHeight;
 _bookView.bookMarkup = appDelegate.bookMarkup;

 [self.view addSubview:_bookView];
}

The code above creates an instance of the new BookView class and assigns the
markup loaded by the app delegate to its bookMarkup property. It also sets the
edges for extended layout so that the view doesn’t appear under the navigation
bar.

The size for the book view will be computed when the view controller lays out its
subviews. Conveniently, viewDidLayoutSubviews is the perfect place to instruct the
book view to build itself.

In BookViewController.m, add the following code just below the viewDidLoad
method:

- (void)viewDidLayoutSubviews
{
 [_bookView buildFrames];
}

Build and run your app, and behold as the text of the book renders on-screen:

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 177

Well, the text is rendered on the screen... but there’s still a lot of room to improve
its readability! Good thing Text Kit still has a few tricks up its sleeve.

Adding a multi-column layout
Many websites and apps make the mistake of presenting large passages of text in a
line length that makes reading quite difficult. In your book reader app, there are
probably in excess of 100 characters — sorry, glyphs — in a single unbroken line.

Note: There isn’t a 1:1 relationship between glyphs and characters, as a
rendered glyph might actually represent more than one character in the text
file. This happens, for example, when the layout manager replaces a pair of
characters with a ligature. You’ll discover this later when you need to find
specific locations in the text, and you need to juggle the glyph and character
locations separately!

Readers find long lines of text uncomfortable to read because the eye has difficulty
tracking back from the end of one line to the start of the next — there’s nothing
more frustrating than losing your place while reading!

An optimal line length is generally around fifty to sixty characters per line. Most
blogs render their text within a narrow, fixed-width section of the page, while most
newspapers and magazines will use a multiple column layout to fill the page.

In your app you don’t want to have a large blank margin either side of the text, nor
do you want to use a huge font size, so using a multi column approach makes
sense.

You will create a text view for each column of the book, and lay them out from left
to right. Note you’ll create all the text views at once - even beyond the two that are
visible on the screen. Then you will set the book view up as a horizontal scroll view
so the user can page through the book.

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 178

“Wait a minute”, you might think, “creating all of these views at once sounds like a
big performance problem, especially if the book is super long!” That is true, and we
will discuss this more in a following section. But for now, let’s go with this as it’s the
easiest way to get started.

Let’s try this out. Open BookView.h and change the superclass from UIView to
UIScrollView:

@interface BookView : UIScrollView

Open BookView.m and replace the existing buildFrames implementation with the
following:

- (void)buildFrames {
 // create the text storage
 NSTextStorage *textStorage = [[NSTextStorage alloc]
 initWithAttributedString:self.bookMarkup];

 // create the layout manager
 _layoutManager = [[NSLayoutManager alloc] init];
 [textStorage addLayoutManager:_layoutManager];

 // build the frames
 NSRange range = NSMakeRange(0, 0);
 NSUInteger containerIndex = 0;
 while(NSMaxRange(range) < _layoutManager.numberOfGlyphs) {

 // 1
 CGRect textViewRect = [self
 frameForViewAtIndex:containerIndex];

 // 2

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 179

 CGSize containerSize =
 CGSizeMake(textViewRect.size.width,
 textViewRect.size.height - 16.0f);
 NSTextContainer* textContainer =
 [[NSTextContainer alloc] initWithSize:containerSize];
 [_layoutManager addTextContainer:textContainer];

 // 3
 UITextView *textView = [[UITextView alloc]
 initWithFrame:textViewRect
 textContainer:textContainer];
 [self addSubview:textView];

 containerIndex++;

 // 4
 range = [_layoutManager
 glyphRangeForTextContainer:textContainer];
 }

 // 5
 self.contentSize = CGSizeMake(
 (self.bounds.size.width / 2) * (CGFloat)containerIndex,
 self.bounds.size.height);
 self.pagingEnabled = YES;
}

You still create a single instance of NSTextStorage and NSLayoutManager as before,
but now you also create several instances of NSTextContainer and UITextView based
on the number of glyphs in the layout manager.

The remainder of the methods works as follows:

1. Create a frame for the view at this index; you’ll implement this method shortly.
Remember, you are creating all of the text views necessary to display the entire
book at once, and laying out the text views one at a time from left to right.

2. Create an instance of NSTextContainer with a size based on the frame returned
from frameForViewAtIndex:. Note the 16.0f magic number; you decrease the
height by this amount as UITextView adds an 8.0f margin above and below the
container.

3. Create the UITextView for this container.

4. Determine the glyph range for the new text container. This value is used to
determine whether further text containers are required.

5. Finally update the size of the scroll view based on the number of containers
created.

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 180

Note: Why aren’t you using the NSTextContainer property
heightTracksTextView instead of manually adjusting the height of the text
view? This poses a performance issue as each time a container is added, it will
be re-sized to track its associated view, causing the layout manager to
repeatedly layout the same text.

Now that you have to handle multiple UITextView instances, you’ll need to compute
the frame size for each one.

Add the following method to the bottom of BookView.m:

- (CGRect)frameForViewAtIndex:(NSUInteger)index
{
 CGRect textViewRect = CGRectMake(0, 0,
 self.bounds.size.width / 2, self.bounds.size.height);
 textViewRect = CGRectInset(textViewRect, 10.0, 20.0);
 textViewRect = CGRectOffset(textViewRect,
 (self.bounds.size.width / 2) * (CGFloat)index, 0.0);
 return textViewRect;
}

The above method calculates a frame to be a column of half the width of the
screen, reduces the margins a bit, and then sets the position to be the proper
amount from the left of the view based on which column it is.

Build and run your app; the text is now rendered in two columns as shown below:

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 181

That looks a lot more readable — and it only took a few lines of code since Text Kit
does a lot of the heavy lifting for you.

Adding text styling
Take a quick look at the text displayed in your app; you’ll recognize it as the classic
Alice’s Adventures in Wonderland (available free thanks to the Gutenberg Project -
http://www.gutenberg.org/ebooks/11).

However, check out the hash marks and other unexpected characters in the title
and chapter headers; this is Markdown formatting, which was introduced in the
beginning part of this chapter.

Your next task is to apply some appropriate styling to the Markdown formatting in
the document.

Create a new class by going to File\New\File…, choosing the iOS\Cocoa
Touch\Objective-C class template, and clicking Next. Name the class
MarkdownParser, make it a subclass of NSObject and click Next. Check the box to
add the new class to the TextKitMagazine target and finally click Create.

Open MarkdownParser.h and add the following method to the interface
declaration:

@interface MarkdownParser : NSObject

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 182

- (NSAttributedString *)parseMarkdownFile:(NSString*)path;

@end

Then open MarkdownParser.m and add the following instance variables:

@implementation MarkdownParser
{
 NSDictionary *_bodyTextAttributes;
 NSDictionary *_headingOneAttributes;
 NSDictionary *_headingTwoAttributes;
 NSDictionary *_headingThreeAttributes;
}

These will be used to store the various text attributes that are applied to the text in
order to style it.

Next, within the same file, add the following init method:

- (id) init {
 if (self = [super init]) {
 [self createTextAttributes];
 }
 return self;
}

This calls the createTextAttributes method that you will add next:

- (void)createTextAttributes {
 // 1. Create the font descriptors
 UIFontDescriptor *baskerville = [UIFontDescriptor
 fontDescriptorWithFontAttributes:
 @{UIFontDescriptorFamilyAttribute: @"Baskerville"}];

 UIFontDescriptor *baskervilleBold = [baskerville
 fontDescriptorWithSymbolicTraits:UIFontDescriptorTraitBold];

 // 2. determine the current text size preference
 UIFontDescriptor *bodyFont = [UIFontDescriptor
 preferredFontDescriptorWithTextStyle:UIFontTextStyleBody];
 NSNumber *bodyFontSize =
 bodyFont.fontAttributes[UIFontDescriptorSizeAttribute];
 CGFloat bodyFontSizeValue = [bodyFontSize floatValue];

 // 3. create the attributes for the various styles
 _bodyTextAttributes = [self

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 183

 attributesWithDescriptor:baskerville
 size:bodyFontSizeValue];
 _headingOneAttributes = [self
 attributesWithDescriptor:baskervilleBold
 size:bodyFontSizeValue * 2.0f];
 _headingTwoAttributes = [self
 attributesWithDescriptor:baskervilleBold
 size:bodyFontSizeValue * 1.8f];
 _headingThreeAttributes = [self
 attributesWithDescriptor:baskervilleBold
 size:bodyFontSizeValue * 1.4f];
}

Here’s an explanation of the above code, comment by comment:

1. Create two font descriptors for the Baskerville family: one normal, and one bold.
Remember from the previous chapter that font descriptors are a new way in iOS
7 to specify a font that matches a collection of attributes, rather than hard-
coding a particular font like in previous versions of iOS.

2. Determine the required point size of the body text; this allows you to honor the
user’s text size preferences without using the default font.

3. Create various attributes for the styles to be used in the document such as the
body and headings, using appropriate Baskerville font and various multiplications
of the user’s preferred body text size.

Step (3) makes use of a simple utility method attributesWithDescriptor: size:
that you will add next:

- (NSDictionary *)attributesWithDescriptor:
 (UIFontDescriptor*)descriptor size:(CGFloat)size {
 UIFont *font = [UIFont fontWithDescriptor:descriptor
 size:size];
 return @{NSFontAttributeName: font};
}

This simply creates a dictionary with a single font attribute.

Next up, it’s time to add the parsing logic. Within the same file add the following
method:

- (NSAttributedString *)parseMarkdownFile:(NSString *)path {
 NSMutableAttributedString* parsedOutput =
 [[NSMutableAttributedString alloc] init];

 // 1. break the file into lines and iterate over each line
 NSString *text = [NSString stringWithContentsOfFile:path
 encoding:NSUTF8StringEncoding error:nil];

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 184

 NSArray *lines = [text
 componentsSeparatedByCharactersInSet:[NSCharacterSet
 newlineCharacterSet]];
 for(NSUInteger lineIndex=0; lineIndex<lines.count;
 lineIndex++){
 NSString *line = lines[lineIndex];

 if ([line isEqualToString:@""])
 continue;

 // 2. match the various 'heading' styles
 NSDictionary *textAttributes = _bodyTextAttributes;
 if (line.length > 3){
 if ([[line substringToIndex:3]
 isEqualToString:@"###"]) {
 textAttributes = _headingThreeAttributes;
 line = [line substringFromIndex:3];
 } else if ([[line substringToIndex:2]
 isEqualToString:@"##"]) {
 textAttributes = _headingTwoAttributes;
 line = [line substringFromIndex:2];
 } else if ([[line substringToIndex:1]
 isEqualToString:@"#"]) {
 textAttributes = _headingOneAttributes;
 line = [line substringFromIndex:1];
 }
 }

 // 3. apply the attributes to this line of text
 NSAttributedString *attributedText =
 [[NSAttributedString alloc] initWithString:line
 attributes:textAttributes];

 // 4. append to the output
 [parsedOutput appendAttributedString:attributedText];
 [parsedOutput appendAttributedString:
 [[NSAttributedString alloc] initWithString:@"\n\n"]];
 }

 return parsedOutput;
}

This method performs a relatively simplistic parsing process. Taking each step in
turn:

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 185

1. The componentsSeparatedByCharactersInSet: method is used to split the text into
an array of individual lines.

2. If the line starts with one or more ‘hash’ characters, the required text attributes
for this level of heading are obtained. Note that this rather simplifies the process
of markdown parsing, you might want to implement a more robust method for
your own apps!

3. An attributed text string is constructed, which takes the current line of text and
applies the attributes determined in step (2).

4. Each complete line of text is appended to the output.

Now all that’s left is to make use of your parser. Open AppDelegate.m and add
the following import:

#import "MarkdownParser.h"

Then locate the code that loads the markdown file and replace it with the following:

NSString* path = [[NSBundle mainBundle]
 pathForResource:@"alices_adventures" ofType:@"md"];
MarkdownParser* parser = [[MarkdownParser alloc] init];
self.bookMarkup = [parser parseMarkdownFile:path];

Build and run your app, and check out the snazzy new styling as illustrated below:

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 186

Once again, a little bit of Text Kit code goes a long way to making things much
more readable!

Like most other areas of iOS development, there’s a balance between ease of
implementation and performance when working with visual elements, such as
rendered text. The following section goes into more detail on performance hits, how
to detect them, and how to implement performance improvements in your app.

Performance
Depending on the current font size, the application is currently rendering around
100 individual views. Since these are housed within an instance of UIScrollView, it
means that at any point there are around 98 off-screen views that have been
instantiated and are rendering text.

Not only is this is a significant waste of both CPU and memory, but it also adds to
the launch time of the app as the glyphs for each view are rendered.

You could use Instruments to gather an accurate picture of memory and CPU
usage, but a quick and simple alternative is to simply log messages within
UIViewController’s viewDidLoad and viewDidAppear methods.

Open BookViewController.m and add the following just below the call to [super
viewDidLoad] in viewDidLoad:

NSLog(@"viewDidLoad");

This simply prints the method name, along with the date and time, to the console.
Add the following directly below the viewDidLoad: method:

- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];
 NSLog(@"viewDidAppear");
}

Build and run your app on your device; you’ll notice it takes around 2.2 seconds to
start up the application. Switch to the Debug Navigator pane and you’ll see that
the app is using around 125 MBs of memory. Yikes!

Now comment out the viewDidLayoutSubviews method in BookController.m, and
build and run a second time. This time the launch is almost instantaneous and
memory usage drops right down. This gives an immediate indication of the amount
of memory and CPU time being wasted on those off-screen views.

A much less resource intensive approach would be to render just the visible views,
creating and destroying views as required when the users scrolls. And that’s exactly
what you’re going to do next.

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 187

Open BookView.m and remove the following lines of code from the buildFrames
method.

// 3
UITextView *textView = [[UITextView alloc]
 initWithFrame:textViewRect
 textContainer:textContainer];
[self addSubview:textView];

As a result all the instances of NSTextContainer will be created, but not the
UITextView counterparts. Add the following to the very end of the buildFrames
method:

[self buildViewsForCurrentOffset];

We’ll add this method shortly. First you need to add a few utility methods to the
bottom of BookView.m. Start with this one:

- (NSArray *)textSubViews
{
 NSMutableArray *views = [NSMutableArray new];
 for (UIView *subview in self.subviews) {
 if ([subview class] == [UITextView class]) {
 [views addObject:subview];
 }
 }
 return views;
}

This method simply returns all the instances of UITextView that have been added as
subviews of BookView.

Next add another new helper method:

- (UITextView *)textViewForContainer:
 (NSTextContainer *)textContainer {
 for (UITextView *textView in [self textSubViews]) {
 if (textView.textContainer == textContainer) {
 return textView;
 }
 }
 return nil;
}

This method returns the owning UITextView for the NSTextContainer instance
passed in, if one exists.

Finally, add one last helper method:

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 188

- (BOOL)shouldRenderView:(CGRect)viewFrame
{
 if (viewFrame.origin.x + viewFrame.size.width <
 (self.contentOffset.x - self.bounds.size.width))
 return NO;

 if (viewFrame.origin.x >
 (self.contentOffset.x + self.bounds.size.width * 2.0))
 return NO;

 return YES;
}

This method determines whether or not a view with the given frame should be
rendered, based on the current content offset of the scroll view.

It’s worth noting that shouldRenderView returns YES for any frame that is within the
visible portion of the scroll view, or for one frame-width on either side. This pre-
loads the left and right scroll views before the user actually scrolls the view, so
you’re prepared in either case.

Now that you have these helper methods, you can implement the method you
called earlier to build the appropriate views for the current scroll offset:

- (void)buildViewsForCurrentOffset
{
 // 1
 for(NSUInteger index = 0; index <
 _layoutManager.textContainers.count; index++) {

 // 2
 NSTextContainer *textContainer =
 _layoutManager.textContainers[index];
 UITextView *textView = [self
 textViewForContainer:textContainer];

 // 3
 CGRect textViewRect = [self frameForViewAtIndex:index];

 if ([self shouldRenderView:textViewRect]) {
 // 4
 if (!textView) {
 NSLog(@"Adding view at index %u", index);
 UITextView* textView = [[UITextView alloc]
 initWithFrame:textViewRect
 textContainer:textContainer];

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 189

 [self addSubview:textView];
 }
 } else {
 // 5
 if (textView) {
 NSLog(@"Deleting view at index %u", index);
 [textView removeFromSuperview];
 }
 }
 }
}

The logic here is pretty straightforward:

1. Iterate over all instances of NSTextContainer that have been added to the layout
manager.

2. Obtain the view that renders this container. textViewForContainer: will return
nil if a view is not present.

3. Determine the frame for this view, and whether or not it should be rendered.

4. If it should be rendered, check whether it already exists. If it does, do nothing; if
not, create it.

5. If it shouldn’t be rendered, check if it exists already. If it does, remove it.

Build and run, and you’ll see that so far the code creates the first four text views;
two for the visible page, and two for the page to the right.

The final step is to invoke your buildViewsForCurrentOffset method when the user
scrolls. To do this, open BookView.h and adopt the scroll view protocol by adding
<UIScrollViewDelegate> to the interface declaration:

@interface BookView : UIScrollView <UIScrollViewDelegate>

Within the initWithFrame method, set the delegate property to reference self:

- (id)initWithFrame:(CGRect)frame
{
 self = [super initWithFrame:frame];
 if (self) {
 self.delegate = self;
 }
 return self;
}

Finally, implement the delegate method that’s invoked when scrolling finishes. Add
the following to the bottom of BookView.m:

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 190

- (void)scrollViewDidEndDecelerating:(UIScrollView *)scrollView {
 [self buildViewsForCurrentOffset];
}

Build and run your app; from the end user perspective it looks exactly the same,
but if you look at the Xcode Debug Navigator you’ll see it now uses a fraction of the
memory it did before, and also launches in around half the time.

You can also watch the console to see the messages that are logged when views
are created and destroyed:

This represents a tremendous gain in performance. More importantly, the app is
now much more scalable. You could conceivably render a book with thousands of
pages without running out of memory.

The text layout process might still take a few seconds for larger books, so you
would probably want to show some sort of progress indicator to the user, and load
and parse the markup on a separate thread to avoid blocking.

Adding a table of contents
With the current state of your app, the reader will quickly wear out their finger
swiping madly to get to their desired chapter! Adding a table of contents is a much
better idea to navigate the various chapters in the book.

Add a new class by going to File\New\File…, choosing the iOS\Cocoa
Touch\Objective-C class template, and clicking Next. Name the class Chapter,
make it a subclass of NSObject and click Next. Check the box to add the new class
to the TextKitMagazine target and finally click Create.

Open Chapter.h and add the following properties to the interface declaration:

@interface Chapter : NSObject

@property (nonatomic, copy) NSString *title;
@property (nonatomic, assign) NSUInteger location;

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 191

@end

This will keep track of the title of the chapter, and the location of the chapter as an
offset into the text.

Open AppDelegate.h and add a property to the interface declaration that exposes
an array of chapters:

@property (nonatomic, strong) NSArray *chapters;

Next open AppDelegate.m and import the new Chapter class, just beneath the
existing imports:

#import "Chapter.h"

Then add the following method to the bottom of the implementation, just above the
@end compiler directive:

- (NSMutableArray *)locateChapters:(NSString *)markdown {
 NSMutableArray *chapters = [NSMutableArray new];
 [markdown
 enumerateSubstringsInRange:NSMakeRange(0,
 markdown.length)
 options:NSStringEnumerationByLines
 usingBlock:^(NSString *substring,
 NSRange substringRange,
 NSRange enclosingRange,
 BOOL *stop) {
 if (substring.length > 7 &&
 [[substring substringToIndex:7]
 isEqualToString:@"CHAPTER"]) {
 Chapter *chapter = [Chapter new];
 chapter.title = substring;
 chapter.location = substringRange.location;
 [chapters addObject:chapter];
 }
 }];
 return chapters;
}

This uses NSString’s enumerateSubstringsInRange:options:usingBlock: method,
which invokes a block for each line of the text it finds. For each line, it looks for the
“CHAPTER” keyword and builds up an array of Chapter instances to mark their
respective locations in the book based on the offset in the text.

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 192

Still within AppDelegate.m, add the following line to
application:didFinishLaunchingWithOptions: just below the spot that parses the
markdown file:

self.chapters = [self locateChapters:self.bookMarkup.string];

Now that you have an array of chapters, the next step is to render them as the
table of contents.

Open ChaptersViewController.m and add the following imports to the top of the
file:

#import "AppDelegate.h"
#import "Chapter.h"

Further down the same file, add a convenience method that obtains the chapter
array from the app delegate:

- (NSArray *)chapters
{
 AppDelegate *appDelegate = (AppDelegate *)
 [[UIApplication sharedApplication] delegate];
 return appDelegate.chapters;
}

The next step is to update the tableview data-source methods to display the
chapters.

Still working in ChaptersViewController.m, update the method that informs the
table view of the number of rows to display:

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section
{
 return [self chapters].count;
}

Next, update the method that creates the tableview cells:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:@"Cell"
 forIndexPath:indexPath];
 Chapter *chapter = [self chapters][indexPath.row];
 cell.textLabel.text = chapter.title;

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 193

 return cell;
}

This simply sets the text for each cell to the title of the corresponding chapter.

Build and run your app; tap on the Chapters button to reveal the list of chapters,
as so:

However, poke all you want at the chapter entries in the list; you still won’t go
anywhere. The next section walks you through hooking up the chapter entries to
the correct position in the text!

Adding chapter navigation
Open ChaptersViewController.m and locate the empty
tableView:didSelectRowAtIndexPath: method; replace it with the following:

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
 Chapter *chapter = [self chapters][indexPath.row];
 [self.bookViewController
 navigateToCharacterLocation:chapter.location];
}

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 194

This simply locates the selected Chapter and asks the bookViewController to
navigate to that chapter via navigateToCharacterLocation. Looks like that’s the next
bit of code you need to implement!

Open BookViewController.h and add the following to the interface declaration:

- (void)navigateToCharacterLocation:(NSUInteger)location;

Then open BookViewController.m and add the following implementation to the
bottom of the class, just above the @end compiler directive:

- (void)navigateToCharacterLocation:(NSUInteger)location
{
 [self.masterPopoverController dismissPopoverAnimated:YES];
 [_bookView navigateToCharacterLocation:location];
}

This dismisses the chaptersViewController and relinquishes the responsibility of
navigating to the required location to the BookView instance.

Open BookView.h and add the following method to the interface declaration:

- (void)navigateToCharacterLocation:(NSUInteger)location;

Then open BookView.m to add the following implementation just below
scrollViewDidEndDecelerating:

- (void)navigateToCharacterLocation:(NSUInteger)location
{
 CGFloat offset = 0.0f;
 for (NSTextContainer *container in
 _layoutManager.textContainers) {
 NSRange glyphRange = [_layoutManager
 glyphRangeForTextContainer:container];
 NSRange charRange = [_layoutManager
 characterRangeForGlyphRange:glyphRange
 actualGlyphRange:nil];
 if (location >= charRange.location &&
 location < NSMaxRange(charRange)) {
 self.contentOffset = CGPointMake(offset, 0);
 [self buildViewsForCurrentOffset];
 return;
 }
 offset += self.bounds.size.width / 2.0f;
 }
}

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 195

Although it may not look like it, this method is surprisingly simple. It iterates over
each of the NSTextContainer instances associated with the layout manager and
obtains the instance’s glyph range. The code then performs the critical step of
converting the glyph range into a character range.

For each instance of NSTextContainer, the code checks whether the required
location is within the bounds of its characters range. If so, it applies the scroll view
offset and invokes buildViewForCurrentOffset to build the required views.

Note: Why the conversion from glyphs to characters? NSLayoutManager
primarily deals with glyphs, whereas NSTextStorage, and strings in general,
deal with characters. As noted earlier in this chapter, the mapping is certainly
not always one-to-one, due to things such as different Unicode character sets,
or font-specific features such as ligatures.

Build and run your app, and tap on one of the chapter entries; you can now
successfully jump to a specific chapter in the book.

If you are an eagle-eyed software tester, you might have spotted one minor flaw
with the current user interface – the chapter list retains its previous selection. Why
is this a bad thing?

Put yourself in the position of an end user, they open up the chapter navigation and
tap to jump ahead to Chapter VII, The Mad Hatter’s Tea Party (everyone’s favorite
chapter!). They then read on from there for another couple of chapters. If they then
re-open the chapter navigation, it gives the impression that they are still at chapter
VII.

An inconsistent user interface will confuse and frustrate your users!

Fortunately this issue is very easy to fix, this is a very common use-case for table
view controllers, and it has a built in feature that clears selection automatically for
you. At the top of ChaptersViewController.m locate the line that sets the
clearsSelectionOnViewWillAppear property (this was inserted by the Xcode project
template), and set it to YES:

self.clearsSelectionOnViewWillAppear = YES;

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 196

Build and run your app, it now performs as it should :]

The presentation of the book is certainly looking much better now, but astute
readers will have noticed that there are image placeholders in the book. Time to
add some images to further dress up this book!

Adding images
In Text Kit, images are added to text storage as instances of NSTextAttachment. If
you take a look at the image placeholders in the text, you’ll see that they use the
standard Markdown image format:

![Alt text](/path/to/image.png)

Note: Alt text is a nod to its HTML image tag brethren, and is used as
alternative to the image for accessibility.

The title page of this book contains the image tag below:

![Alice in Wonderland](alice.png)

Your parser needs to match this pattern, replacing each Markdown image tag with
an instance of NSTextAttachment that contains the requisite image.

Open MarkdownParser.m and add the following code to the parseMarkdownFile
method, just above the return parsedOutput statement:

// 1. Locate images
NSRegularExpression *regex = [NSRegularExpression
 regularExpressionWithPattern:@"\\!\\[.*\\]\\((.*)\\)"
 options:0
 error:nil];

NSArray *matches = [regex
 matchesInString:[parsedOutput string]
 options:0
 range:NSMakeRange(0, parsedOutput.length)];

// 2. Iterate over matches in reverse
for (NSTextCheckingResult *result in
 [matches reverseObjectEnumerator]) {
 NSRange matchRange = [result range];
 NSRange captureRange = [result rangeAtIndex:1];

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 197

 // 3. Create an attachment for each image
 NSTextAttachment *textAttachment = [NSTextAttachment new];
 textAttachment.image = [UIImage imageNamed:
 [parsedOutput.string substringWithRange:captureRange]];

 // 4. Replace the image markup with the attachment
 NSAttributedString *replacementString = [NSAttributedString
 attributedStringWithAttachment: textAttachment];
 [parsedOutput replaceCharactersInRange:matchRange
 withAttributedString:replacementString];
}

Let’s look at each step in turn:

1. A regular expression is used to locate all the markdown images in the book text.
You’ll look at this regular expression in detail shortly.

2. A for loop is used to iterate over the matches in reverse. This might seem a bit
odd, but there is a perfectly good reason for this. Since each image tag is
replaced with an attachment, the overall string length will decrease. Enumerating
in reverse avoids having to recalculate the ranges returned by the regular
expression.

3. An NSTextAttachment instance is created for each image.

4. The image markdown is replaced with an attributed string based on this
attachment.

Now, back to that regular expression, if you cast out the escaping backslashes, and
consider just the core regular expression, it looks like this

\!\[.*\]\((.*)\)

Now, deconstruct the regular expression step by step:

1. \! - match an exclamation mark

2. \[.*\] - followed by some characters surrounded by square brackets, i.e. the
alt-text

3. \((.*)\) - followed by some characters surrounded by round brackets, i.e. the
image location. Note that extra brackets around the expression that matches the
characters, (.*), this is a ‘capture’, which allows us to pull out the image location
from the matches expression.

Note: If you’d like to learn more about regular expressions above and beyond
this chapter, check out this NSRegularExpression tutorial and cheat sheet:

http://www.raywenderlich.com/30288/nsregularexpression-tutorial-and-
cheat-sheet

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 198

Build and run your app; you should now see images nestled comfortably in your
book content:

Adding dictionary lookups
Okay, you have text, you have chapters, and now you have images. Your work here
is done, right?

Almost! Like most modern e-readers, you’ll provide a dictionary lookup function
where the user can tap any word in the book and instantly get a definition.

There are two steps to this: finding and highlighting tapped words, and then
displaying the dictionary results.

Finding and highlighting tapped words
Open BookView.m and add the following just below the self.delegate = self;
statement in initWithFrame:

UITapGestureRecognizer *recognizer =
 [[UITapGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handleTap:)];
[self addGestureRecognizer:recognizer];

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 199

This adds an instance of UITapGestureRecognizer that invokes the handleTap
method, which you’ll implement shortly.

Note: UITapGestureRecognizer is a subclass of UIGestureRecognizer that looks
for single or multiple taps. For the gesture to be recognized, the specified
number of fingers must tap the view the specified number of times.

Add the following instance variable to BookView.m, just below the _layoutManager
instance variable:

NSRange _wordCharacterRange;

This stores the character range of the word that was tapped.

Now add the following method directly below navigateToCharacterLocation::

-(void)handleTap:(UITapGestureRecognizer*)tapRecognizer
{
 NSTextStorage *textStorage = _layoutManager.textStorage;

 // 1
 CGPoint tappedLocation = [tapRecognizer
 locationInView:self];
 UITextView *tappedTextView = nil;
 for (UITextView *textView in [self textSubViews]) {
 if (CGRectContainsPoint(textView.frame,
 tappedLocation)) {
 tappedTextView = textView;
 break;
 }
 }

 if (!tappedTextView)
 return;

 // 2
 CGPoint subViewLocation = [tapRecognizer
 locationInView:tappedTextView];
 subViewLocation.y -= 8.0;

 // 3
 NSUInteger glyphIndex = [_layoutManager
 glyphIndexForPoint:subViewLocation
 inTextContainer:tappedTextView.textContainer];
 NSUInteger charIndex = [_layoutManager

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 200

 characterIndexForGlyphAtIndex:glyphIndex];

 // 4
 if (![[NSCharacterSet letterCharacterSet]
 characterIsMember:[textStorage.string
 characterAtIndex:charIndex]])
 return;

 // 5
 _wordCharacterRange = [self
 wordThatContainsCharacter:charIndex
 string:textStorage.string];

 // 6
 [textStorage addAttribute:NSForegroundColorAttributeName
 value:[UIColor redColor]
 range:_wordCharacterRange];
}

Here’s an explanation of the above code, comment by comment:

1. First, locate the tapped instance of UITextView by iterating over all the subviews
belonging to the view and check whether its frame contains the point of the tap.

2. Next, convert the tap point into the coordinate system of the respective view and
subtract the text container’s margin accordingly.

3. Determine the index of the tapped glyph using NSLayoutManager and convert the
glyph index into a character index. This allows you to look up the corresponding
character(s) in the text storage.

4. Determine whether the tapped character is a letter; it’s a bit troublesome to
perform dictionary lookups on spaces, numbers, and attachments!

5. Expand the character index into a word range.

6. Finally, apply a text color attribute to the word range.

The only thing missing is the method that expands a character into a word range.

Add the following just above the @end compiler directive in BookView.m:

- (NSRange)wordThatContainsCharacter:(NSUInteger)charIndex
 string:(NSString *)string
{
 NSUInteger startLocation = charIndex;
 while(startLocation > 0 &&
 [[NSCharacterSet letterCharacterSet] characterIsMember:
 [string characterAtIndex:startLocation-1]]) {
 startLocation--;

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 201

 }
 NSUInteger endLocation = charIndex;
 while(endLocation < string.length &&
 [[NSCharacterSet letterCharacterSet] characterIsMember:
 [string characterAtIndex:endLocation+1]]) {
 endLocation++;
 }
 return NSMakeRange(startLocation,
 endLocation-startLocation+1);
}

The above code calculates the word range by searching backward and forward from
the selected index until it finds the non-letter characters on either side of the word.

Build and run your app and tap various words in the book; they should highlight in
red, as shown below:

Okay; you know that your tap event handling and word range calculations work as
designed. Now you need to look up the word in the dictionary and display the
results.

Displaying dictionary results
Add a new protocol by going to File\New\File…, choosing the iOS\Cocoa
Touch\Objective-C protocol template, and clicking Next. Name the protocol

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 202

BookViewDelegate and click Next. Check the box to add the new protocol to the
TextKitMagazine target and finally click Create.

Open BookViewDelegate.h and replace the contents with the following:

@class BookView;

@protocol BookViewDelegate <NSObject>

- (void)bookView:(BookView *)bookView didHighlightWord:(NSString *)word
inRect:(CGRect)rect;

@end

This informs delegates of BookView that a word has been tapped.

Open BookView.h and import this delegate:

#import "BookViewDelegate.h"

And also add a property to the interface declaration:

@property (nonatomic, weak)
 id<BookViewDelegate> bookViewDelegate;

Now open BookView.m, locate the handleTap: method and add the following to the
bottom of the implementation:

// 1
CGRect rect = [_layoutManager
 lineFragmentRectForGlyphAtIndex:glyphIndex
 effectiveRange:nil];

// 2
NSRange wordGlyphRange = [_layoutManager
 glyphRangeForCharacterRange:_wordCharacterRange
 actualCharacterRange:nil];
CGPoint startLocation = [_layoutManager
 locationForGlyphAtIndex:wordGlyphRange.location];
CGPoint endLocation = [_layoutManager
 locationForGlyphAtIndex:NSMaxRange(wordGlyphRange)];

// 3
CGRect wordRect = CGRectMake(startLocation.x, rect.origin.y,
 endLocation.x - startLocation.x, rect.size.height);

// 4

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 203

wordRect = CGRectOffset(wordRect, tappedTextView.frame.origin.x,
 tappedTextView.frame.origin.y);

// 5
wordRect = CGRectOffset(wordRect, 0.0, 8.0);

NSString* word = [textStorage.string
 substringWithRange:_wordCharacterRange];
[self.bookViewDelegate bookView:self didHighlightWord:word
inRect:wordRect];

Looking at each commented section in turn, you’ll see that the code does the
following:

1. Obtains the relevant line fragment for the tapped glyph.

2. Obtains the location of the first and last glyphs of the tapped word.

3. Calculates the rectangle of the selected word by using the height of the line
fragment and the position of the start and end glyphs in the word.

4. Converts the resulting rectangle into the coordinate system of the BookView
instance.

5. Adjusts the rectangle by the margin offset, and invokes the newly added
delegate method.

Open BookViewController.m and add the following import:

#import "BookViewDelegate.h"

A little further down the file, adopt this delegate, together with the popover
delegate:

Still in BookViewController.m, update the interface declaration to adopt both the
BookViewDelegate and UIPopoverControllerDelegate protocols:

@interface BookViewController ()
 <BookViewDelegate, UIPopoverControllerDelegate>

Further down the same file, add the following line to the bottom of the viewDidLoad
method to set the view controller as the book view’s delegate:

_bookView.bookViewDelegate = self;

Next, add the following instance variable for the popover just below the _bookView
instance variable:

UIPopoverController* _popover;

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 204

The book view delegate declares a single method that is invoked when a word is
tapped.

Add the following code to the bottom of BookViewController.m:

- (void)bookView:(BookView *)bookView
 didHighlightWord:(NSString *)word inRect:(CGRect)rect {

 UIReferenceLibraryViewController *dictionaryVC =
 [[UIReferenceLibraryViewController alloc]
 initWithTerm: word];
 _popover.contentViewController = dictionaryVC;

 _popover = [[UIPopoverController alloc]
 initWithContentViewController:dictionaryVC];
 _popover.delegate = self;

 [_popover presentPopoverFromRect:rect
 inView:_bookView
 permittedArrowDirections:UIPopoverArrowDirectionAny
 animated:YES];

}

The above code creates an instance of a UIReferenceLibraryViewController, which
renders the built-in iOS dictionary. This view controller is then hosted within a
UIPopoverController that is ‘presented’ at the location of the tapped word.

The popover delegate adopted earlier allows you to detect when the popover is
closed. Add the following method to BookViewController.m directly below the
method you added above:

- (void)popoverControllerDidDismissPopover:
 (UIPopoverController *)popoverController
{
 [_bookView removeWordHighlight];
}

This method simply informs the BookView instance that the word highlight should be
removed.

Open BookView.h and add the following method to the interface declaration:

- (void)removeWordHighlight;

And within BookView.m, add the following implementation to the bottom of the
class, just above the @end compiler directive:

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 205

- (void)removeWordHighlight
{
 [_layoutManager.textStorage
 removeAttribute:NSForegroundColorAttributeName
 range:_wordCharacterRange];
}

This simply removes the highlight attribute that was previously applied to the
tapped word.

Build and run your app; tap on any word in the book and you’re presented with a
dictionary lookup, as shown below:

Now you can finally discover what bandersnatches and borogroves are! :]

Note – you may have to download a dictionary to the simulator in order to make
the look-up work. To do this, tap on the ‘manage’ button and select the dictionary
you wish to install:

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 206

With that final feature in place, your Text Kit powered book is complete!

Challenges
You’ve learnt a lot of new things throughout this chapter, and now it’s time to put
some of this newfound knowledge into practice!

The following are a collection of challenges where you will expand on the application
you have been developing, adding new features.

If you get stuck, you will find the solutions in the resources section of this chapter.
But don’t peek until you have at least tried to complete the challenge by yourself ;]

Challenge 1: Dynamic Type
The current book application honors the users text size preferences. However, there
is one small problem – the text size is only determined when the application first
starts up (you can find this code within MarkdownParser). This means that the user
has to re-launch the application if they wish to change the text size. This is a pretty
poor user experience.

Your challenge is to fix this problem, and have the application adjust its text size
when the user switches back to the app after adjusting their text size preference.

Here are a few hints:

1. You need to handle the UIContentSizeCategoryDidChangeNotification
notification. The BookViewController is probably the best for this logic.

2. The fonts used to render the book are created by the MarkdownParser. The
easiest way to update this information is to simply create a new MarkdownParser
instance and parse the markdown once again. To do this, you need to add a
method to the AppDelegate interface, and invoke it from the BookViewController.

3. You need to provide the updated text to the BookView and tell it to re-draw.

4. Finally, as the text size has changed, the users current viewing location will not
be correct. Within BookView you should probably reset the scroll location in the
buildFrames method.

That was pretty simple wasn’t it? However, there’s something not quite right, and
that brings us on to your second challenge (which is a bit harder).

Challenge 2: Maintaining the reader’s location
Your book app now responds to text size changes, without the need to restart the
app, but if you put yourself in the position of the user, something is not quite right.

Let’s say I am just over half way through the book, enjoying the absurdity of a
croquet match played with flamingos for croquet mallets and hedgehogs for balls.

iOS 7 by Tutorials Chapter 5: Intermediate Text Kit

 207

At this point, it is getting a little dark in my house, and my eyes are growing weary,
so I want to increase the text size.

I switch to the settings screen, then switch back, the book responds, increasing its
font size, but moves right back to the start of the book. I then have to try to find
my reading position again. Frustrated and angry I give your app a 1-star rating in
the App Store (user’s can be so irrational!).

It is quite understandable that a user would get frustrated if the app causes them
to lose their position, so this challenge if to fix this problem!

The app already has the logic required to navigate to a specific location, via the
BookView method navigateToCharacterLocation. You are going to have to find a way
to keep track of the current location, then re-apply it after responding to text size
changes.

Here are a few hints:

1. You are going to have to add an instance variable to BookView to keep track of
the current location, i.e. a variable that stores the character index of the first
visible view.

2. You need to find a suitable point within the code to update this variable
(remember the user can navigate by scrolling, or by tapping on a chapter, so this
code must be executed in both cases). I would say buildViewsForCurrentOffset
is a good candidate.

3. Determining the character index of the first visible view is a bit challenging! How
about iterating over all the containers, using the frameForViewAtIndex method to
determine its location, in order to find the text container that will be visible? You
can get the character range for this container using the code you have already
seen within navigateToCharacterLocation:.

4. Finally, you need to navigate to this location when the view is re-built following
text size changes. You already have a method that will perform this,
navigateToCharacterLocation:, it is just a matter of calling it at the right point in
the code. How about near the end of buildFrames?

This was a bit more of a challenge wasn’t it?

If you do get stuck, the solution is included in this chapter’s resources. But do try to
complete this challenge by yourself first!

If you have an app on the App Store that doesn’t yet take full advantage of iOS 7’s
new look and feel, then you may find it quickly disregarded by new and old
customers alike. Texture-rich apps with hyper realistic-looking designs simply do
not fit in well with the new aesthetic. The changes are more than skin deep; there
are also important differences in how users expect apps to work on iOS 7, not just
how they look. If you want your apps to fit in, you need to join the revolution.

In the first chapter of this book, you learned how to make your apps feel look and
feel great in iOS 7 from a design perspective. In this and the following two
chapters, you’ll switch to a technical perspective and take more of a hands-on,
practical approach.

Specifically, you’ll take an app that was written for iOS 6 — filled with lush, richly
detailed textures — and transition it to the new design language of iOS 7. You’ll
deal with the technical aspects involved in moving to the latest version of the SDK,
and you’ll also consider the impact of the various design changes.

Even if you’re making an app completely for scratch for iOS 7, you will find these
chapters useful. They cover many of the most important aspects that have changed
in iOS 7 that all developers should be aware of.

One word of warning: this chapter is long! Although we kept most of the chapters in
this book short to reach our goal of engagement as mentioned in the introduction,
we made an exception for this chapter.

This is because we thought of all the chapters in the book, this was the most
important, and we wanted to take a complex real world example that demonstrates
many of the issues you may come across when working on your own apps. Let’s
take a peek!

Getting started
In this chapter, you will take an app called Treasure Hunt that was designed for
iOS 6, and update it for iOS 7.

Chapter 6: Transitioning to
iOS 7‑Quick Start
By Matthijs Hollemans

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 210

Treasure Hunt is a social app for sharing treasure maps, so that users can engage
in solving riddles and finding hidden treasures together. It’s a bit like geocaching —
a fun outdoor activity in which those taking part use their mobile devices to hide
and find containers, known as geocaches, all over the world — but instead of GPS
coordinates, it uses the age-old tradition of hand-drawn treasure maps.

This is what the app looks like on iOS 6.1:

The app is not just for finding historical treasure, such as the gold that Captain
William Kidd is supposed to have buried in the late 1600’s. People can upload any
kind of treasure map they like; it’s great for birthday parties, Easter egg hunts, or
any other activity where the fun lies in unraveling obscure clues to unearth some
kind of hidden treasure, whether that is mountains of gold or just a bar of candy. If
only they had this app in The Da Vinci Code!

Note: If the above description makes you want to put the app on your phone
and head out to find some gold, then you’re going to be disappointed. It’s only
a sample project and the included treasure maps aren’t real. Sorry, treasure
hunters!

If this were a real app, it would have to connect to a server to download the
shared maps and coordinate the social activities. That’s outside of the scope
for this tutorial, so the app simply fakes the connection to the server.

The important thing, however, is that Treasure Hunt demonstrates a lot of the
issues that you’ll come across transitioning your apps to iOS 7 — and more
importantly the solutions!

The resources for this chapter include a starter project with the source code for the
iOS 6 version of the app. If you want to see how Treasure Hunt worked in iOS 6,

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 211

the best way is to open it in Xcode 4.6 (if you still have it installed). This will build
the app against the iOS 6.1 SDK and run it on the iOS 6 simulator, giving you the
most accurate view of what it looked like running in iOS 6.

If you open the app in Xcode 5, then it will build against the iOS 7 SDK instead and
certain things may not work the way you’d expect — which is exactly the sort of
thing that you’re going to fix in this tutorial.

If you don’t have Xcode 4.6 installed anymore, don’t worry — you don’t need it
except if you’re curious about how the app used to work before iOS 7. You just
might notice some strangeness with the app when you run it in Xcode 5, but you’ll
be fixing that soon! !

When you’re done with this tutorial, Treasure Hunt will look like this:

You will make this transition across the next three chapters:

1. Chapter 6, Transitioning to iOS 7: Quick Start: You are here! In this chapter,
you will cover the most important aspects you need to know to get started
making apps for iOS 7: table view changes, asset catalogs, tint colors, and data
entry.

2. Chapter 7, Transitioning to iOS 7: What’s New with Auto Layout: iOS 7
brings some exciting new improvements to Auto Layout that makes working with
Auto Layout much easier and practical. And with the new dynamic type system
that you learned about in Chapter 4, “Beginning Text Kit”, using Auto Layout is
now almost a necessity!

3. Chapter 8, Transitioning to iOS 7: Advanced Topics: As always we want to
take you beyond just the basics in our books. In this chapter, we’ll show you how
to use blur effects, make swipe menus, and make sure your app still works on
iOS 6.

You don’t necessarily have to go through all three of these chapters – you can pick
and choose which are the most useful to you. We recommend going through this

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 212

chapter to get the basics, and then reading further if you need additional help with
some tricky ports.

Why bother?
If you already have an app on the App Store and it’s doing well, then why should
you bother to update it for iOS 7? Well, that decision depends on a few things. If
your app already has a design not too dissimilar from iOS 7, then there may be no
need to rush. You can simply tweak the UI a little bit in your next update. But if
your app has a skeuomorphic design filled to the brim with heavily detailed,
oversaturated textures, such as Treasure Hunt, then you may want to consider the
following points:

• The new subtle, unassuming and less brash UI of iOS 7 makes many existing apps
look and feel out-of-place. Chances are that your UI needs a complete design
overhaul in order to feel at home on iOS 7. Design is like fashion; if your app
doesn’t follow the latest trends, your users are going to start looking elsewhere
for apps that appear up-to-date.

• Even if you don’t want to update the look of your user interface, certain standard
UIKit elements such as alert views, action sheets, and the on-screen keyboard
now appear in the new style, which might well clash with your existing style.

• Apps compiled against the iOS 6 SDK on Xcode 4.6 run in a special emulation
mode on iOS 7 that tries to preserve the old look. But as soon as you switch to
Xcode 5 and build against the iOS 7 SDK, things will start to go awry in your app.
The new SDK makes many changes to the metrics and visuals of the standard UI
elements. You need to fix these issues anyway, so you may as well think about
switching altogether.

• iOS 7 introduces new accessibility features such as Dynamic Type, which lets the
user determine how big the text on the screen should be. If your app doesn’t
support this, users will start looking for alternatives that do.

• If your app uses custom gestures, they might conflict with the new system-wide
gestures for summoning Control Center or swiping back on navigation controllers.
You may need to tweak your gestures so they can co-exist on iOS 7.

• Apple as a company cares deeply about the future — and iOS 6 clearly represents
the past. If you want to be noticed by Apple, then iOS 7 is where you need to be.
It’s unlikely that the App Store will feature any apps that do not fully embrace iOS
7 and all it has to offer. Moving to iOS 7 will greatly increase your chances of App
Store success.

• The icons are different. You need a new 120×120 pixel icon that has a different
corner radius. So at the very least, make sure to update your icon!

Switching to iOS 7 can be a lot of work, especially if you have a completely custom
UI. Embrace the change; if you don’t, you run the risk of your app becoming
irrelevant — sooner than later. Your apps deserve better than that.

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 213

Back to the drawing board
One of the main themes of iOS 7 is deference; that the interface should get out of
the way of the user. Apple has made it very clear that apps should focus on their
content. For Treasure Hunt, the content is the treasure maps. If you have a photo
manipulation app, the content is the photos. If your app is for note taking, the
content is the notes. Content is king on iOS 7; UI elements should never compete
with the content for the user’s attention.

As you consider the transition of your app to iOS 7, it might be useful to rethink
your app and consider what is really important to your app and what isn’t. Does the
user experience still make sense in an iOS 7 world? Maybe now is a good time to
change the navigational structure of your app, to combine two separate screens
into one, or to use gestures to directly manipulate your content rather than through
buttons and sliders.

Many of the standard apps — Calendar and Photos, for example — now use a
zooming paradigm for navigating through the content. You zoom in from the year
to the month to the week to the day, often literally, using attractive but
contextually relevant animations. When you launch an app, the app icon appears to
zoom into the launch image. Conversely, closing an app invokes a zoom-out
animation. Zooming is a big idea on iOS 7 and if your app can take advantage of it,
you should plan to adopt the new paradigm.

The changes to the Treasure Hunt app of this chapter won’t be that extensive.
There will be many small tweaks in the UI, but the organization of most of the
screens will remain largely the same. As you’re looking to transition your own apps,
you might take this as an opportunity to not just patch up the graphics, but also to
dramatically increase the user experience.

First steps in Xcode 5

Note: Before you open your own projects in Xcode 5, it’s essential to make a
backup copy first. Xcode 5 will make some format changes to your storyboard
files, making it impossible to edit them in the previous version of Xcode,
should you want to go back at some point. Of course, if you’re using version
control, this is less of an issue. Just make sure you commit your latest
changes first.

Open the Treasure Hunt starter project in Xcode 5. If you haven’t used it before,
Xcode 5 looks quite similar to Xcode 4 so you should be able to find your way
around quite quickly, as you’ll note in the image below:

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 214

The sample project should open without any issues. Press ⌘+B to build the app
(that’s the cmd key on your keyboard together with the B key). You should see no
warnings or error messages.

Note: In the Build Settings for this app, the Other Warning Flags are set to
-Wall -Wextra. This setting will catch most common mistakes. In addition, the
Static Analyzer is always enabled. It makes sense to get as much help from
the compiler as possible to catch silly programming errors.

Time to take a look at the app in iOS 7. Run the app using the iPhone Retina (4-
inch) simulator. Choose the simulator using the scheme picker box at the top of
the Xcode window:

If you also have the iOS 6 simulator installed, it looks like this:

The app looks a bit worse for wear now:

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 215

There are some obvious problems here:

• In the main screen of the app, the + bar icon is blue and the Edit label doesn’t fit
the bar button shape. The background of the table view cell with the torn paper is
not transparent but opaque white. The selected tab bar icon is also blue, which
doesn’t sit well with the wooden motif.

• The Edit Map screen has a solid black bar where the status bar used to be, and
the rest of its layout looks untidy.

• The third screen, known as the Map Detail screen, does have a status bar but it
overlaps the actual map image making it hard to see. The toolbar doesn’t look
very good either; its shadow image is now a dark strip on top of the map, and the
colors of the labels render them illegible.

The app has several more screens, and they all suffer from similar problems.
What’s worse, the richly textured design of the app no longer fits in well with the
overall aesthetic of iOS 7. All other iOS 7 apps use a subtle, minimal design. This
clashes with the heavy wood texture used in Treasure Hunt.

The following image of the Clue Sheet popup that lets users add clues and
comments to a treasure map illustrates this mismatch between visual styles:

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 216

The new look of the on-screen keyboard conflicts directly with the tattered paper
texture of the Clue Sheet. This just isn’t very nice to look at.

Going iOS 7 only
To simplify the transition to iOS 7, let’s assume the app is now iOS 7-only. The
look-and-feel of iOS 7 is so different from its predecessors that it will be tricky to
make your apps look good and be backward compatible.

Note: In Chapter 8, “Transitioning to iOS 7: Advanced Topics” you will see
how you can make the app also run on iOS 6.

To force the app to be iOS 7-only, you have to set the iOS Deployment Target to
7.0. You may be familiar with doing this in Xcode 4, but there’s a new way to set
this in Xcode 5 because it combines several settings screens into the one area.

Click the TreasureHunt icon at the top to switch from the Target settings to the
Project settings. A project can contain multiple targets. The settings you change at
the project level filter down to all targets unless you override them on a per-target
basis:

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 217

Change iOS Deployment Target from 6.1 to 7.0. This makes sure the app can
only run on devices that have iOS 7.0 or better.

Note: The Deployment Target version number and the SDK version number
are two different things. The SDK contains all the frameworks necessary to
build your app. You should always use the latest version of the SDK, even if
you’re making apps for older versions of iOS.

The Deployment Target indicates the versions of iOS that your app is
compatible with. So you can build against the 7.0 SDK but have your
Deployment Target set to 6.1 or even 5.0. Of course, when the app runs on
iOS 5 or 6, it cannot use any features that were added in the 7.0 SDK.

Press ⌘+B to build the app again. Xcode will now give several warning messages:

Apparently the app is using an API that’s been deprecated in iOS 7. You’ll take care
of that later on. Other than that, there are no compilation problems, so you’re still
in pretty good shape.

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 218

Not so fast! This doesn’t mean the app update is now ready for submission to the
App Store. There are plenty of small UI problems to fix, as you saw earlier.

You’ll now go through the app and fix these issues one by one. When you do this,
it’s easiest to remove all the custom graphics and strip the app down to its bare
essentials. This allows you to focus on the more important problems first. Once
everything works properly, then you can then add the graphics back in.

For Treasure Hunt, removing the custom graphics is simple. All the appearance
customizations for the iOS 6 version of the app are performed in code and a single
flag enables or disables them.

Open TreasureHunt-Prefix.pch (under Other Sources) and change the following
line:

#define CUSTOM_APPEARANCE 1

to this:

#define CUSTOM_APPEARANCE 0

Build and run your app to see the difference:

This already looks more like an iOS 7 app, but it still has plenty of UI issues. Also,
turning off the custom appearance means the app has lost most of its charm. Those
wooden textures may be considered overkill in this new design style, but they did
give the app tons of personality. This chapter will show you how to retain some of
that charm even in a minimal, texture-barren world.

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 219

Notice that all the compiler warnings have now disappeared — bar one. Most of
them were related to the UIAppearance API. The app no longer uses this API; you
removed that dependency with the #define statement earlier. If you use
UIAppearance in your own apps then be forewarned; many of the things that you
were able to do with it are now deprecated or work slightly differently.

Note: When you switched the Deployment Target to iOS 7, the non-Retina
iPhone simulators were removed from the scheme picker. This means you
cannot test your iOS 7 apps on a non-Retina iPhone simulator. This sounds
draconian, but it makes sense since there aren’t any low-resolution iPhone or
iPod touch models (iPhone 3GS or earlier) that can run iOS 7. All iPhones that
can run iOS 7 have Retina screens.

Does this mean you no longer need to supply non-Retina images for you app?
It depends. If your app is for the iPad (or universal) then you still need to
provide 1x versions of the graphics to support the iPad 2 and iPad mini.

Remember that the iPad can run any non-universal iPhone app in a special
emulation mode. As of iOS 7 this emulation mode always uses the Retina
graphics. So if your app is iPhone-only then yes, you no longer need 1x
graphics. (Designers rejoice!)

If you do decide to leave out the 1x artwork for the iPhone version of your
app, make sure your Retina images still adhere to the Retina @2x.png
naming rules or UIKit won’t apply the proper scaling to them.

Fixing the table views
My Maps is considered the main screen of the app, as it’s the first one the user
comes across; it makes sense to start your iOS 7 rework here. This screen shows
the treasure maps that the local user created and shared with other Treasure
Hunt users.

The My Maps screen — with the lush textures removed — looks like the following:

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 220

It doesn’t look too bad, but there are a few small details that could be improved.
Let’s start with the table view. The text in the table view cells isn’t supposed to be
that bold. One of the most important changes that Apple made in iOS 7 is a change
in the font styling; iOS 7 apps now use much thinner fonts everywhere.

Another more subtle change is the selection style of the table view cells. If you
select a row, the text turns white. That used to be necessary because the default
row selection color was a very saturated blue, but it has since been changed to a
light gray. In Apple’s own table views, the label color no longer changes when a row
gets selected.

You could make these two changes by hand, but there is an easier way.

Open the MainStoryboard.storyboard file, found in the Resources group, and
select the My Maps View Controller. This is a table view controller with a single
prototype cell, shown below:

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 221

This cell adopts the Basic style, but since this app was made for iOS 6 it’s really
the Basic style from iOS 6. To adopt the style from iOS 7, simply change Style to
Custom and then back to Basic again in the Attributes inspector:

Notice that the font is now a lot thinner. It used to be System Bold 20.0, but now
it’s System 18.0. Apple’s put their system fonts on a diet — and shrunk them a bit,
too! The new font is shown below:

Build and run your app, and select a cell in the table. You’ll see that the text label in
a selected row remains black, as so:

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 222

If your own apps use the built-in cell styles on prototype cells, it’s a good idea to
repeat this exercise for all of the cells on all of your table view controllers.

Note: Did you notice that on iOS 7 the separator line between table view cells
doesn’t run across the entire width of the screen? This is automatic behavior
on the built-in cell styles. If your app has custom cells, you can get this same
effect by setting the separatorInset property on the individual cells, or on the
entire table view. When you set the separatorInset on the table view, these
insets are applied to the empty cells as well.

One small thing to tweak here is the height of the cells. On iOS 6 it made sense to
have padding above and below the thumbnail image to accommodate the
background texture, but here the extra spacing is wasted and looks out of place.

Open the storyboard once again, and in the My Maps View Controller select the
table view, making sure to not select a cell instead. Go to the Size inspector (the
ruler icon) and under the Table View Size section, change the Row Height from
80 to 60.

Build and run your app and have a look at the table view; the app looks much tidier
with the smaller row height, as demonstrated in the following image:

Extend edges and content insets
With the increased focus on content in iOS 7, content should preferably make use
of all screen space; even space underneath the navigation bar, tab bar, and

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 223

toolbars. iOS 7 sets the navigation bar and the other bars to translucent so you can
still make out the content of the view controllers under these bars.

This feature is already enabled for you by default. For most apps you should leave
it on, but just in case you want to turn it off, you can find the options in the
Attributes inspector for a view controller, as shown here:

The Extend Edges checkboxes determine whether the content of a view controller
can run beneath the top and bottom bars. Uncheck the Under Top Bars and
Under Bottom Bars options, then build and run your app to see the difference:

In the image on the left, the Extend Edges options are enabled, which is the
default setting. Notice how the bars become darker and much uglier when the
Extend Edges options are disabled, as shown in image on the right.

It’s recommended to keep both Under Top Bars and Under Bottom Bars enabled
so that your app behaves like the rest of iOS 7. It might require a bit of effort on
your part to make your app work properly with this option enabled, because your
view controllers now need to compensate for the fact that they are partially visible
below these bars. Fortunately, table view controllers make this incredibly easy. If
you do decide to disable the Extend Edges options, then be consistent and make
sure to do it everywhere. Your app will seem unnatural if some screens extend
under the bars while others don’t.

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 224

Before moving on, make sure both Under Top Bars and Under Bottom Bars are
enabled on the My Maps View Controller.

When Under Top Bars is enabled, the table view literally sits under the navigation
bar and the status bar. That means the top 64 points of the table view are hidden
from sight. You only see an obscure version of it shining through the navigation
bar. So how come you can still see the first row from the table view when you’re
scrolled all the way to the top? You’d expect that row to sit under the navigation
bar as well.

This is where the Adjust Scroll View Insets setting comes in; this is also an
option in the Attributes inspector for a view controller. The content insets for a
scroll view allow you to define an extra region around the scroll view’s content, like
so:

Since a table view is a descendent of UIScrollView, you can also use this property
to add some extra space around the table view’s cells. When Adjust Scroll View
Insets is enabled and the view controller sits inside a navigation controller or tab
bar controller — and in this app it sits in both — then it automatically adds the
space for these bars to the table view’s contentInset property.

To see what it looks like without insets, deselect Adjust Scroll View Insets, then
build and run your app:

Yeah, that doesn’t look so good. If you look closely at the navigation bar you’ll see
the top-most cell is now underneath the navigation bar. It’s almost impossible to
interact with this cell now. Go back to the Attributes inspector, re-enable Adjust
Scroll View Insets — and let us never speak of this again.

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 225

Edit mode
A common feature of table views that isn’t immediately obvious is swipe-to-delete.
This is how it appears on iOS 6:

On iOS 7 this has changed dramatically. The swipe motion now feels more natural
as it employs the bounce of a scroll view, and rather than placing the Delete
button on top of the cell, it’s revealed sitting underneath:

Tapping Edit in the navigation bar puts you in Edit mode, where things look
different yet again:

There isn’t much you can do here to customize how this looks, so when you tweak
the visuals of your iOS 7 apps, keep in mind that they should compliment the bright
red colors of the swipe-to-delete button and edit mode, not clash with them.

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 226

Asset catalogs
iOS 7 introduces a new feature to help organize your images: asset catalogs. An
asset catalog is a special folder for your images managed by Xcode that makes it
easy to associate multiple versions of an image (i.e. normal version, Retina version,
4-inch iPhone version, iPad version, etc) with a single filename.

From the Xcode menu bar, choose File\New\File… From the sidebar choose
Resource, and then Asset Catalog.

Click Next. Keep the default name, Media.xcassets, and make sure the
TreasureHunt target is checked. Click Create to finish. This adds a new, blue
folder in the project’s file list:

Note: If you have used folder references before in Xcode, which also appear
as blue folders, then you should be aware that an asset catalog works
differently. For folder references, you are responsible for managing their
contents; if you place a new file into this folder via Finder, it automatically
shows up in Xcode.

However, for asset catalogs it’s recommended you make any changes using
Xcode’s interface and to not manipulate the folder structure by hand. An asset
catalog contains more than just image files. For example, it also contains
JSON files that describe the catalog’s file structure.

One of the many changes in the design of iOS 7 is the style of tab bar icons. If you
compare the existing icons on the My Maps screen to similar icons from built-in

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 227

apps such as Phone or Music, these ones seem too wide and heavy. The new bar
icons have a thin stroke — two pixels wide to match the stroke width of the font —
and are very rarely filled in. You will fix this by importing new images for the tab
bar icons into the asset catalog.

Select the new asset catalog, Media.xcassets, in the project navigator. There is a
small + button at the bottom of the asset catalog pane.

Click it and select Import… Navigate to the Resources/New Images folder that
accompanies this chapter, and select all the image files inside that folder:

Click Open to finish the import. The images now show up in the asset catalog,
grouped under a common name:

Note: If your asset catalog contains just a single item, New Images, then
repeat the above procedure but this time select the individual image files from
the folder, not the folder itself.

An asset catalog makes it easier to keep track of your images, while ensuring the
app will load the images as efficiently as possible. You can store any images you

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 228

wish in this catalog, including your app icons and launch images. Loading images
from an asset catalog works no differently than it did in a pre-iOS 7 universe. When
you ask UIImage to load an image file, it now looks inside the asset catalog first.

Run the app and you should see much cleaner tab bar icons:

In the built-in Apple apps, for example Music.app, it is common for the selected tab
icon to be “inverted”, just to make the selection clearer. You already added the
required images for this. In MyMapsViewController.m in the View Controllers
group, add the following line to viewDidLoad:

self.tabBarItem.selectedImage = [UIImage
 imageNamed:@"MyMapsBarIcon-Selected"];

And add the following line to viewDidLoad in SharedMapsViewController.m:

self.tabBarItem.selectedImage = [UIImage
 imageNamed:@"SharedMapsBarIcon-Selected"];

Build and run; now the selected tab has an inverted icon:

To make the app look a bit more interesting you’ll replace the title text Treasure
Hunt with an image. In MyMapsViewController.m, add the following line to
viewDidLoad:

self.navigationItem.titleView = [[UIImageView alloc]
 initWithImage:[UIImage imageNamed:@"Crown"]];

This replaces the text that was in the navigation bar with the new crown image
from the asset catalog. Build and run the app to see your new title bar image:

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 229

This crown shape is an integral part of the new theme for this app. You will see it
appear in several more places.

Many of the images in the project were used to style the iOS 6 version of the app,
but there’s a handful that are also used for the iOS 7 version. So it’s a good idea to
put them into the asset catalog as well. First, you will clean up the project to
remove the images that are no longer needed.

Right-click the Icon group from the project navigator and select Delete, Move to
Trash. Repeat for the Launch Images group. Then expand the Images group and
delete all image files except for the following and their @2x counterparts:

• CloseButton

• ClueButton

• UnknownThumb

Good riddance!

To move these remaining six images to the asset catalog, open Media.xcassets
and press the + button. This time, choose the Import from Project… option. That
opens a dialog listing all the images that are currently in the project, shown here:

You should have all 6 items selected. Press Import to move these images into the
asset catalog. This literally moves the files; they get removed from their original

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 230

location in the file system and placed inside the Xcode-managed Media.xcassets
folder.

The app icon
There are also new rules for the app icon in iOS 7. The height and width of the app
icon have increased slightly to 120×120 pixels on the iPhone or iPod touch, 76
pixels for iPad 2 and iPad mini, and 152 pixels for Retina iPad. Icons also have a
different corner radius that appears to taper off; it is no longer a pure rounded-
rectangle.

Here are the iOS 6 and new iOS 7 icons for Treasure Hunt side-by-side:

The new icon is slightly bigger and obviously a lot flatter and more abstract,
keeping with iOS 7 design principles. On iOS 7, you no longer have to reference
your icons in the Info.plist file. Instead, you put them into the asset catalog along
with all your other images.

You already removed the old icon files when you deleted the Icon group from the
project. Now you will add the new icon images to the asset catalog. First, go to the
Target Settings screen:

In the App Icons section, click the Use Asset Catalog button. This opens a dialog
that lets you pick the destination asset catalog (you can have more than one in
your app). Leave this set to Media and make sure Also migrate launch images is
checked.

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 231

Click Migrate to finish. The asset catalog now has two new items named AppIcon
and LaunchImage. Select the AppIcon group:

In Finder, go to the resources for this chapter and open the New Icon folder. Drag
the image files onto their corresponding slots. Note that the sizes below the slots
are in points, while the names of the image files are in pixels. So the file Icon-
120.png goes into the slot that says 60 pt. If you’ve killed too many brain cells
converting your app to iOS 7 then you may have to whip out a calculator for this
step. :]

Or if you’re feeling lazy, you can just drag all of the files into the AppIcon asset and
let Xcode figure it out for you.

Build and run your app; you should see a new icon on the springboard. If not, you
might need to reset the simulator first. In the following chapter you will also put the
launch images into the asset catalog.

Tint color
 Just for fun, compare the iOS 6 version of Treasure Hunt with the new, cleaned-
up iOS 7 version below:

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 232

The new version certainly fits in better with iOS 7 aesthetic — but it’s looking a bit
bland in comparison with the extravagant textures from iOS 6. Just because iOS 7
has a cleaner, lighter design, doesn’t mean your apps can’t have some personality
of their own. Later on you’ll make some extensive changes to the look of the app,
but right now you’ll begin by tweaking one of the most basic but most obvious
visual aspects of your app: the tint color.

Everything colored blue in the iOS 7 screenshot above is based on the tint color of
the app. On iOS 7, the tint color is used to indicate which items can be tapped; for
example, the + and Edit buttons in the navigation bar and the disclosure buttons of
the table view cells are all selectable. Tinting also highlights active items, such as
the icon on the currently selected tab. The tint color is used throughout an app to
make the distinction between active and non-active elements. Because the UI is
intended to stay out of the user’s way in iOS 7, the use of a single color in your app
has until now never been so important.

The tint color is blue by default, but by changing this color you can immediately
give your app its own unique style with very little effort. Views inherit the tint color
from their parent views, so by setting the tintColor property on the app’s single
UIWindow instance you effectively change the tint color for every view. However, in
an app that uses a storyboard you can also set the tint color from Interface Builder,
which is even easier.

Open MainStoryboard.storyboard and activate the File inspector, which is the
first tab in the inspectors pane. Change the Global Tint setting to a light brown
color — red 140, green 70, blue 35 — that will harken back to the old theme of
wooden treasure chests:

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 233

Build and run the app to see your new tint color in action:

This already looks a little less stock than before. You want to make sure that when
choosing a tint color it’s not too dark, or else it’ll be difficult to tell apart from
inactive UI elements, such as black labels and gray tab bar icons.

Note: Due to a bug in iOS 7, the segmented control on the Map Detail screen
does not get the proper tint color. As a workaround, add the following lines to
viewDidLoad in MapDetailViewController.m:

self.view.tintColor = [UIColor whiteColor];
self.view.tintColor = [UIColor colorWithRed:140/255.0f
 green:70/255.0f blue:35/255.0f alpha:1.0f];

Data entry forms
The + button from the main screen’s navigation bar invokes the New Map screen.
Here the user can create a new treasure map and, in the real-world version of this
app, push it to a server so it could be shared with millions of other treasure
hunters.

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 234

This screen is a typical data entry form implemented using a static table view, the
kind you’ll encounter in many apps. As it stands, it doesn’t look very polished and
it’s certainly not nearly as slick as you’d expect from an iOS 7 app:

This clearly needs some work. The table view has adopted the system-provided
grouped style; on iOS 6 that meant cells had rounded corners, a subtle border, and
some padding around the edges, like so:

The design of the grouped style table has changed significantly in iOS 7. To help
users focus on the content, Apple has decided cells should run edge-to-edge
meaning the padding and the rounded corners are gone. Because of these changes,
the labels and text fields embedded in the cells no longer align on their left-hand
edges, as demonstrated below:

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 235

The default margins for table view cells in iOS 7 are 15 points. Prior to this release
they were 20 points, although the iOS 6 version of Treasure Hunt reduced this to
10 points to provide extra room for the text views.

Open MainStoryboard.storyboard and locate the New Map View Controller. In
the document outline expand the first table view section until you find the text field
and select it. Now drag the resize handles so the text field has an X position of 15
and a width of 305. It should sit flush against the right edge of the cell, as shown
below:

Back in the document outline, expand the second table view section to find the text
view and select it. This time use the Size inspector and change the X position to
15, the Y position to 1, the Width to 305 and finally the Height to 86.

The fonts for both the text field and text view need not change; the current setting
of System 17pt is a good size font to use on such forms.

The table view has another section that contains three rows. It’s a little difficult to
see these in the storyboard as not all the rows fit within the screen. You can scroll
the table view inside the storyboard by selecting the view controller so that a blue
outline appears around the scene, and then making a two-finger vertical swipe
gesture on your mouse or track pad while the mouse pointer is over the table view.

Note: At the time of writing this chapter, there is a bug in Xcode where it
doesn’t show the bottom row of the table view in its entirety. Luckily, this only
happens at design time – the row will show up OK in the app itself.

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 236

The final two rows, titled Date and Award, have a couple of issues. To start with,
the font is too heavy and the highlighted text color is white. However, the main
issue is that the color of the detail label is a dark blue. This clashes with the global
tint color of the app, which you set to brown.

Both problems are easy to fix. As before, you simply need to force Xcode to refresh
the style of the cell. For both cells, go to the Attribute inspector, change the Style
option from Right Detail to Left Detail, and then change it back again to Right
Detail.

Note: It’s important that you don’t choose any other style before reverting
back to Right Detail, as no other styles have the detail label. If you choose a
different style, it will break the connection between the detail labels and the
outlets in the view controller and you’ll have to re-wire them.

Using the Connections inspector, double check that the detail label of the Date
row is still set to the dateLabel outlet, and the detail label of the Award row is still
set to awardTypeLabel. This row should also still have a push segue.

This leaves the Add Photo row. This cell doesn’t use a system provided style; the
Style attribute is set to Custom. You will have to tweak the font and positions
manually.

Note: The Add Photo row is so big because it serves two purposes. When
you’re creating a new treasure map, this row is initially small and simply
labeled Add Photo. Tapping the row invokes the image picker controller that
lets you choose a photo from your photo library.

You’ll notice the row contains both the label and the image view. If no photo is
present, the image view is hidden and the heightForRowAtIndexPath delegate
method returns 44, which is the standard height of table view cells. Once
you’ve picked a photo, the Add Photo label is hidden, the image view
becomes visible, and heightForRowAtIndexPath returns 280, which is enough to
accommodate the thumbnail plus a little padding.

The font for the Add Photo label is currently System Bold 16. Change that to be
System 17, so that it’s a bit larger and no longer bold. With the Add Photo label
still selected, click the Editor\Size to Fit Content menu item to resize the label to
properly house its content. Set the Highlighted color of the label to Default.

Finally, change the X position of the label to 15 so it lines up perfectly with the
other labels, and do the same for the image view.

Now the screen looks much better. Build and run your app to see your changes:

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 237

Tap the Add Photo row to try out the image picker. This should still function, but
the image picker controller now adopts the design of iOS 7.

Note: If you’re running the app on the simulator and don’t have any images in
Photos.app, then locate the treasure map images in the Test Data folder of
the Xcode project and drag each one onto the simulator. This will open the
image in Safari. Then tap and hold the image in Safari and select the Save
Image option from the action sheet. This will save the image into the photo
library on the simulator.

Notice that the Cancel button in the image picker controller is still blue. To give this
the same tint color as the rest of the app, open NewMapViewController.m and
add the following line to chooseFromPhotoLibrary:

imagePicker.view.tintColor = self.view.tintColor;

Once you’ve picked an image, the photo row in the New Map screen should update
and display the photo, as shown below:

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 238

Hiding the keyboard
One problem with data entry forms on mobile devices such as the iPhone is that the
keyboard takes up roughly half of the available space when it’s on-screen. It
becomes even more frustrating when using a text view since the return button
does not dismiss the keyboard and you need to provide another way for the user to
remove the keyboard from the screen.

Treasure Hunt employs a tap gesture recognizer that dismisses the keyboard when
the user taps anywhere in the navigation controller’s view, which was probably the
easiest way to implement the desired functionality on iOS 6.

However, iOS 7 comes with a neat little feature that you can use instead. You can
tell any scroll view — which includes table views — that you want to hide the
keyboard when the user scrolls. This is called the keyboard dismiss mode and it has
three options: don’t dismiss (the default), on drag, and dismiss interactive.

Select the table view belonging to the New Map View Controller in the
storyboard. In the Attributes inspector, find the Scroll View section and change
the Keyboard option to Dismiss on drag.

Build and run your app; bring up the keyboard over the table view and dismiss it by
scrolling the view. Ahh — that’s much better.

Just for kicks, set the Keyboard option to Dismiss interactively mode, and build
and run your app. Now you have to drag the keyboard away with your finger, just
as in Messages.app:

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 239

And that marks the end of this chapter – your app is looking much more iOS 7-like
already! But there are still many issues left to fix, and they are the topic of the next
two chapters.

Challenges
Now that you understand some of the most important aspects of transitioning your
apps to iOS 7, it’s time to practice what you just learned. There are a couple more
screens in the app that need freshening up.

Challenge 1: Fix the second tab
The second tab of the app contains the Shared Maps screen. This is very similar to
My Maps (the first tab) but there are some differences. Both screens are table
views that list treasure maps, but whereas My Maps only displays the maps the
user has created and uploaded, Shared Maps displays the maps that have been
shared by everyone. Right now it looks like this:

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 240

Your challenge is to clean up the table view. Since this screen is so similar to My
Maps it requires most of the same tweaks. As before, the font is simply too wide
and heavy, and the highlighted color for the labels is wrong. The table view cells
are also too tall.

When you are done, the prototype cell should look like this:

Challenge 2: Picking from a list
Tapping the Award row from the New Map screen pushes a new view controller on
the navigation stack that lets you pick from a list of items:

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 241

You’ve probably already figured out what’s wrong with this view: the font is too
heavy. Your first mission is to put the font on a diet but that should be a walk in the
park by now. Open the storyboard, find the Award Type View Controller, and fix
that prototype cell.

The checkmark on the currently selected item comes from the Accessory setting
on the cell. On iOS 7 this automatically uses the tint color, so that’s taken care of
for you.

After your changes this screen should look much better:

Another important principle of the iOS 7 design language is simplification. This
screen is already pretty simple, but there’s more you can do. Apple recommends
that apps refrain from using titles in their navigation bars if the function of the
screen is obvious. It’s pretty obvious what this screen does, given you tapped the
Award row to get here. Your job is to remove the title from the Navigation Item.

Build and run your app; you can immediately see that the navigation bar looks a lot
less busy:

iOS 7 by Tutorials Chapter 6: Transitioning to iOS 7 – Quick Start

 242

This view controller is also used to edit existing treasure maps, not just to add new
ones. When you tap the detail disclosure view on a row in the My Maps screen, it
performs the segue to the NewMapViewController, but the prepareForSegue method
provides an alternate title: Edit Map.

With the goal of simplification in mind, it will be better to change this to just Edit.
Find the line in the code that sets the title and change it. (Hint: it’s in the method
that was just mentioned.) Although shortening screen titles may seem like a small
detail, it’s the details that matter on iOS 7!

The previous chapter gave you a glimpse of what it takes to transition an app to
iOS 7. But there is more to it than fixing your table view cells, setting tint colors,
and using asset catalogs.

You also need to deal with the status bar, which is no longer a separate section of
the screen. And even though the user interface of your app is important, a main
idea in the iOS 7 philosophy is that you focus as much as possible on the user’s
content instead. This chapter gives you some pointers on how to accomplish that.

Giving your apps a flexible layout became a big deal with last year’s introduction of
the iPhone 5 and its larger screen, but it has become even more important with
Dynamic Type, a new feature of iOS 7 that allows users to determine how large
they want the text in their apps to be.

As a developer you need a flexible solution for dealing with these different screen
sizes and text sizes: Auto Layout. This technology has a bit of a bad reputation — it
was very frustrating to use in the previous version of Xcode — but fortunately the
advances in Xcode 5 more than make up for it. This chapter gets you started with
the new and improved Auto Layout.

In this chapter, you continue to convert the Treasure Hunt app step-by-step. If
you did not complete the challenges from last chapter, then pick up the starter
project from this chapter’s resources and follow along.

The status bar and your content
As you’ve seen, the UITableViewController class already takes care of most of the
new iOS 7 features for you, especially when you place it inside a navigation
controller or tab bar controller. The navigation bar, tab bar, and toolbar are all
translucent, and even though the table view sits behind these bars, the content
insets are adjusted to ensure the cells are always visible. If your app uses custom
UIViewControllers, then you’ll have to do some of this work yourself.

Chapter 7: Transitioning to
iOS 7‑What’s New with Auto
Layout
By Matthijs Hollemans

iOS 7 by Tutorials Chapter 7: Transitioning to iOS 7 – What’s New with Auto Layout

 244

When you tap on a row with a treasure map, the Map Details screen appears and
displays the entire treasure map image. If you were looking for treasure, this would
be the most important screen of the app.

The left image shows this screen on iOS 6; the right image, iOS 7.

The most obvious issue is that the map now sits under the status bar; everything
appears to have moved up by 20 points.

This is a very important change in iOS 7: the status bar is no longer a separate bar.
It’s now something that simply gets drawn on top of your view controllers. In
previous versions of iOS, if your app displayed the status bar the height of the view
controller’s view was reduced to compensate — especially if it contained a
navigation bar. In iOS 7, your view controllers are always supposed to fill the entire
screen.

If your app has content near the top of the screen but no navigation bar, then you
have a problem on your hands, as the status bar will draw on top of that content.
That’s exactly what’s happening on the Map Detail screen. There are three possible
ways to handle this:

• Move your content down by 20 points and make room for the status bar. This is
the easiest solution, but it doesn’t work very well if your content is embedded in a
scroll view or relies on a table view.

• Implement the prefersStatusBarHidden method in your UIViewController
subclass, and return YES to hide the status bar. The problem with this approach is
that a user wants to keep the status bar visible in most non-game apps.

iOS 7 by Tutorials Chapter 7: Transitioning to iOS 7 – What’s New with Auto Layout

 245

• Add a navigation bar on top, either by embedding the view controller inside a
navigation controller, or by adding your own instance of UINavigationBar. The
navigation bar will extend under the status bar. Your content will still sit under
these two bars, but the navigation bar will blur it. This is the approach you’ll take
in this tutorial.

The downside of this approach is that the navigation bar takes up valuable screen
space, and iOS 7 is supposed to be about the content, not the UI. You’ll see the
solution to this most puzzling of conundrums later in the chapter.

Open MainStoryboard.storyboard and drag a Navigation Bar from the Object
Library onto the Map Detail View Controller. Make sure you position it 20 points
from the top, otherwise the status bar will draw on top of the navigation bar, and
that’s certainly not what you want. Your view will look like the following:

Note that the navigation bar overlaps the X and ? buttons at the top. That’s fine for
now. You’ll replace these buttons in a moment.

Just putting the navigation bar into the view controller is not enough. To see why,
build and run your app and navigate to the Map screen. There is a clear gap
between the navigation bar and the top edge of the screen, as so:

iOS 7 by Tutorials Chapter 7: Transitioning to iOS 7 – What’s New with Auto Layout

 246

To fix this you need to write some code. First, you must declare the view controller
to conform to the UINavigationBarDelegate protocol. Change the @interface line at
the top of MapDetailViewController.m as follows:

@interface MapDetailViewController () <UINavigationBarDelegate>

Now add the following method:

- (UIBarPosition)positionForBar:(id <UIBarPositioning>)bar
{
 return UIBarPositionTopAttached;
}

Finally, back in MainStoryboard.storyboard, Ctrl-drag from the navigation bar
to the view controller and connect the delegate outlet. Using the positionForBar:
delegate method, UIKit determines where the navigation bar should sit within the
view controller and whether its background needs to extend upward behind the
status bar.

Build and run your app; the navigation bar and status bar should now appear as
one unit, like so:

The navigation bar is translucent; the map shines through the bar, but this feature
is not yet reciprocated by the toolbar at the bottom. That’s because the scroll view
containing the map image stops where the toolbar begins. Open
MainStoryboard.storyboard and select Map Detail View Controller in the
document outline. Expand the view, select the Content View and resize it so it
covers the entire screen.

Build and run your app. You can see that your map now shines through the toolbar:

iOS 7 by Tutorials Chapter 7: Transitioning to iOS 7 – What’s New with Auto Layout

 247

Note: You may be wondering why this didn’t happen automatically. After all,
the Extend Edges options are enabled for this view controller, so it should
have resized its main view to sit under the toolbar — right? That is true, but
for the Map Detail screen, the actual content comes from three different child
view controllers. The views of these child controllers are placed inside a
subview of the Map Detail screen: the Content View. UIKit doesn’t
automatically resize your subviews for you, only the main view!

Text instead of icons
The Map Detail screen has two buttons at the top: an X that closes the screen and
a question mark to add clues to the map. The new navigation bar obscures these
two buttons. Considering that you now have a navigation bar, it makes sense to put
the buttons inside that bar instead.

In the storyboard, delete the X and ? buttons from the Map Detail screen. In their
place, drag two Bar Button Items from the Object Library onto the navigation
bar. Give the one on the left the title of Close, and one on the right the title of Add
Clue:

Ctrl-drag from these buttons to the view controller and connect them to the close:
and addClue: actions respectively.

Note: In the iOS 6 version of the app these buttons displayed icons, but here
you’re using just text. iOS 7 places more emphasis on text for the simple
reason that icons tend to provide little context to the user, unless they’re used
universally for the same action. Some users might think that ? means help
instead of clue, but with the text Add Clue there is no confusion.

The disadvantage of using text instead of icons is that the navigation bar can feel
cluttered. That’s why Apple recommends leaving out the title unless it’s critical in
understanding the purpose of the screen. You could use the name of the treasure
map as the title of this screen, but it’s better to remove the title from the
navigation bar altogether.

Build and run your app and take a look at your new iOS 7-style buttons:

iOS 7 by Tutorials Chapter 7: Transitioning to iOS 7 – What’s New with Auto Layout

 248

Make way for the content
Most of the time when you’re studying the treasure map, you don’t need access to
the buttons in the navigation bar or the items in the toolbar. Whenever possible,
your app should focus on the content — the image of the treasure map — and
move the user interface out of the way.

To embrace the idea of users interacting with their content without distraction,
you’ll add a small feature that hides the bars when the user starts scrolling the
image view. This is similar to what Safari does when you scroll a web page.

Using the Assistant editor, make outlets for the navigation bar and the toolbar in
MapDetailViewController.m. Call them navigationBar and toolbar, respectively.

Also in MapDetailViewController.m update the interface declaration so that it
conforms to the UIScrollViewDelegate protocol, as shown in the highlighted section
below:

@interface MapDetailViewController () <UIScrollViewDelegate,
 UINavigationBarDelegate>

@property (nonatomic, weak) IBOutlet UIView *contentView;
@property (weak, nonatomic) IBOutlet UINavigationBar
 *navigationBar;
@property (weak, nonatomic) IBOutlet UIToolbar *toolbar;

@end

iOS 7 by Tutorials Chapter 7: Transitioning to iOS 7 – What’s New with Auto Layout

 249

One of the child view controllers of this MapDetailViewController is called
PhotoViewController, and it has a scroll view with an image view that displays the
treasure map inside. (The other two child view controllers are CluesViewController
and InstructionsViewController, both of which you’ll see more of in a moment.)

Add the following line to MapDetailViewController.m’s viewDidLoad:

photoViewController.scrollView.delegate = self;

This establishes the Map Detail screen as the delegate for the scroll view that
contains the image of the treasure map.

Now that the delegate connection has been made, you can implement the delegate
method invoked when the user begins scrolling. Add a new instance variable to
MapDetailViewController.m that will be used to keep track of the visibility of the
navigation bar and toolbar:

@implementation MapDetailViewController
{
 . . .
 BOOL _hideStatusBar;
}

Then add the following two methods:

- (void)scrollViewWillBeginDragging:(UIScrollView *)scrollView
{
 if (!_hideStatusBar) {
 [self hideBars];
 }
}

- (void)hideBars
{
 _hideStatusBar = YES;

 [UIView animateWithDuration:0.25 animations:^{
 [self setNeedsStatusBarAppearanceUpdate];
 self.navigationBar.alpha = 0.0f;
 self.toolbar.alpha = 0.0f;
 } completion:^(BOOL finished) {
 self.navigationBar.hidden = YES;
 self.toolbar.hidden = YES;
 }];
}

iOS 7 by Tutorials Chapter 7: Transitioning to iOS 7 – What’s New with Auto Layout

 250

When scrollViewWillBeginDragging: kicks off, it calls hideBars when the status bar
is visible, which in turn sets the _hideStatusBar variable to YES and animates the
alpha value of the navigation bar and toolbar to 0.0f so that they slowly fade out.

The call to setNeedsStatusBarAppearanceUpdate hides the actual status bar. Calling
that method causes the prefersStatusBarHidden method to be re-evaluated. If you
return YES from this method, the status bar disappears.

Add the method to MapDetailViewController.m:

- (BOOL)prefersStatusBarHidden
{
 return _hideStatusBar;
}

If you call setNeedsStatusBarAppearanceUpdate from within an animation block, it
animates the fade over the given duration.

Build and run your app; scroll the map a little and you’ll see all the user interface
elements disappear, as shown below:

Of course, you also need a way to make them reappear, or the user would be
forever stuck here. A common way to bring back the UI is tapping on the scroll
view. Add the following to viewDidLoad in MapDetailViewController.m:

UITapGestureRecognizer *tapGestureRecognizer =
 [[UITapGestureRecognizer alloc] initWithTarget:self
 action:@selector(tapped:)];

iOS 7 by Tutorials Chapter 7: Transitioning to iOS 7 – What’s New with Auto Layout

 251

[photoViewController.scrollView
 addGestureRecognizer:tapGestureRecognizer];

This calls tapped: whenever the user taps on the image. Add the following
methods:

- (void)tapped:(UIGestureRecognizer *)recognizer
{
 if (recognizer.state == UIGestureRecognizerStateEnded &&
 _hideStatusBar) {
 [self showBars];
 }
}

- (void)showBars
{
 _hideStatusBar = NO;

 self.navigationBar.hidden = NO;
 self.toolbar.hidden = NO;

 [UIView animateWithDuration:0.25 animations:^{
 [self setNeedsStatusBarAppearanceUpdate];
 self.navigationBar.alpha = 1.0f;
 self.toolbar.alpha = 1.0f;
 }];
}

The showBars method does the exact opposite of hideBars; it animates the
reappearance of the navigation bar and toolbar. The call to
setNeedsStatusBarAppearanceUpdate causes the status bar to fade back into view
since _hideStatusBar is now set to NO.

Build and run your app; scroll the image to make the bars disappear, and then tap
anywhere to make them reappear. Now you have the best of both worlds: a
navigation bar at the top so that the content no longer clashes with the status bar,
and a feature that hides both bars as soon as you start interacting with the content.

Note: In the code above, you use a UIView animation block to animate the
bars. If the Map Detail screen had been embedded in a
UINavigationController, then you could have called
setNavigationBarHidden:animated: and setToolbarHiddenAnimated: to slide the
bars off the screen. But as that’s not the case here, you have to handle the
animation yourself.

iOS 7 by Tutorials Chapter 7: Transitioning to iOS 7 – What’s New with Auto Layout

 252

Using Auto Layout for easier layout
If your app supports both the iPhone 4” and 3.5” screens or uses Dynamic Type
(more on this in Chapter 4, “Beginning Text Kit”), you’re no longer in control of how
large or small the text will be in your app. This means that if you’re not careful, you
can run into some nasty layout problems.

Your app must always be prepared to deal with different screen sizes and/or scale
its textual content up or down. To pull this off, you could end up writing a lot of
manual layout code. Fortunately, Auto Layout can do most of the heavy lifting for
you.

Auto Layout was introduced with iOS 6 as a modern alternative to manual layout
or using autoresizing masks — or “springs and struts” as they’re more commonly
known. Auto Layout is very flexible and powerful, but it can also take a while to get
used to. In fact, in previous versions of Xcode, Auto Layout was a real pain to use.
In a recent iOS conference, it was even compared to a Psycho Cat!

If you tried to use it before and gave up in frustration, don’t worry — you’re not the
only one! Auto Layout itself is pretty good, but Interface Builder didn’t make it easy
to fall in love with the technology. Fortunately, that’s changed for the better with
Xcode 5.

Auto Layout works with what are known as constraints, which describe the space
and positioning relationships between your views. You create your layouts not by
placing your views at certain positions on your screen, but instead by defining the
constraints between them. Auto Layout evaluates these constraints during runtime

iOS 7 by Tutorials Chapter 7: Transitioning to iOS 7 – What’s New with Auto Layout

 253

and calculates the most efficient layout based on those constraints. However, Auto
Layout can’t do its job if there are too few constraints — or too many.

To prevent this from happening, the Interface Builder of Xcode 4 tried to be helpful
and made sure that there were always enough constraints. Unfortunately, it was
often a little too helpful. You could spend several minutes carefully creating your
constraints and then make the tiniest of changes, for example nudging a view by a
single pixel, at which point Interface Builder would decide all your constraints were
no longer valid. It would throw them all away and replace them with new
constraints of its own that obviously no longer did what you wanted. Extremely
frustrating!

If you’ve used Auto Layout before then this probably sounds familiar. Many
developers completely gave up on Auto Layout after running into these problems,
which is a shame, because Auto Layout can be incredibly useful.

Fortunately, Apple has listened to the moaning and groaning heard the world over
and now, with Xcode 5, Auto Layout is a joy to use. You can turn it on and largely
ignore it. Interface Builder will no longer get in your way. On the contrary, it is
quite helpful with suggestions on how to fix layouts that are invalid or incomplete.

Think constraints, not frames
So how do you use Auto Layout? First you have to change your thinking about how
to layout your views. You no longer position and size your views in an explicit
manner. This means that if Auto Layout is enabled, you must refrain from manually
changing a view’s frame in code. Doing something like this is no longer allowed:

myView.frame = CGRectMake(…);

It’s Auto Layout’s job to set the frame. You only influence Auto Layout’s layout
decisions indirectly in the manner in which you setup your constraints. That’s really
all you do to make your layout: you set constraints on your views.

So what’s a constraint? Think of a constraint as a relationship between two views,
often a view and its superview. But it can also be between two sibling views or even
a view and itself, as weird as that may sound. Interface Builder offers several
different types of constraints:

iOS 7 by Tutorials Chapter 7: Transitioning to iOS 7 – What’s New with Auto Layout

 254

The important thing to remember is that there should always be enough constraints
so the position and size of each view can be calculated. If not, Auto Layout will be
unable to calculate a layout, meaning you’ll get an undesired layout or the app will
crash since Auto Layout can throw an exception.

Since thinking in constraints is more abstract than thinking in positions and
dimensions, it’s quite easy to create incomplete or invalid layouts unintentionally.
In past versions of Xcode Interface Builder tried to prevent this, which made the
problem even worse. With Xcode 5, however, Interface Builder just provides
warnings when your layout is missing something, and provides hints and Fix-Its to
resolve any issues.

OK, that’s enough theory for now. Let’s put Auto Layout into practice and it’ll
become a lot clearer how it actually works.

Enabling Auto Layout
You enable Auto Layout on a per-storyboard or per-nib file basis. Open
MainStoryboard.storyboard and go to the File inspector. Check Use
Autolayout, as shown below:

iOS 7 by Tutorials Chapter 7: Transitioning to iOS 7 – What’s New with Auto Layout

 255

You shouldn’t see much change in your storyboard, except a new menu has
appeared at the bottom of the canvas:

You use these buttons to add the constraints to your views. But before you get to
that, first build and run the app to see if there are any problems.

There are some obvious issues on the Map Detail screen; for example, the image
no longer scrolls, but for the most part the app still behaves as before. You haven’t
added any constraints yet, so how can the app still work? Isn’t it true that Auto
Layout cannot compute the layout if there are not enough constraints?

Here’s the clever part: for any view that has no constraints, Xcode automatically
adds default constraints when it compiles the app. These automatic constraints give
a view a fixed position and size.

That’s the big difference between Auto Layout in Xcode 4 and Xcode 5; whereas
Interface Builder used to force those automatic constraints upon you while you
were still designing your scenes, it now waits until compile-time to fix any missing
constraints. That way, you don’t have to add constraints yourself if you don’t have
a good reason to. You can simply ignore Auto Layout except for the views that need
constraints other than those added automatically.

Scrolling the scrolls
The most obvious problem with the Map Detail screen is that the treasure map
image no longer scrolls. This is due to the following code in
PhotoViewController.m:

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];

 // Set the content size to the scroll view to the dimensions

iOS 7 by Tutorials Chapter 7: Transitioning to iOS 7 – What’s New with Auto Layout

 256

 // of the image.
 self.scrollView.contentSize = self.photo.size;

 // Center the scroll view on the image.
 self.scrollView.contentOffset = CGPointMake(
 (self.photo.size.width - self.view.bounds.size.width)/2.0f,
 (self.photo.size.height –
 self.view.bounds.size.height)/2.0f);

 // The image view is always the same size as the content area
 // of the scroll view.
 self.imageView.frame = (CGRect){ .origin = CGPointZero,
 .size = self.photo.size };
 self.imageView.image = self.photo;
}

Can you spot the statement that’s causing the problem? It’s the one that sets the
image view’s frame:

self.imageView.frame = (CGRect){ .origin = CGPointZero,
 .size = self.photo.size };

Remember that with Auto Layout you may no longer set the frame of a view
directly. This line either has no effect, or it may directly interfere with what Auto
Layout is doing. Delete the offending line.

The other statement you should delete is the one that sets self.scrollView.
contentSize. For a scroll view with Auto Layout, the content size is automatically
derived from the constraints that you set on its child views.

With that handled, it’s time to add some constraints! Open
MainStoryboard.storyboard and expand the Photo View Controller Scene in
the document outline. Select the image view that sits inside the scroll view. Then
click on the Pin button at the bottom of the window:

iOS 7 by Tutorials Chapter 7: Transitioning to iOS 7 – What’s New with Auto Layout

 257

In the Spacing to nearest neighbor section of the popup menu that appears,
click on all four red bars to select them. These red bars represent the horizontal
and vertical space constraints that this image view shares with its nearest neighbor,
which in this case is the image view’s superview: the scroll view. Make sure the
input fields are all 0. Then click the Add 4 Constraints button at the bottom. This
will pin the sides of the image view to the insides of the scroll view.

In practice, this means that the image view fills the entire content size of the scroll
view; the size of that content comes from the dimensions of the image. You no
longer need to set the image view’s frame or the scroll view’s contentSize
properties by hand; Auto Layout will calculate these for you.

However, Xcode now displays some warning messages in the Issue navigator:

Something isn’t quite right here; you can also see there’s an issue when you select
the image view. The orange bars surrounding the selected view represent the four
constraints you’ve just added. However, valid constraints are colored blue. When
they’re orange, that indicates something is amiss in your layout.

In the document outline, a small red arrow is visible next to the Photo View
Controller Scene. Click it to get a more detailed analysis of the Auto Layout
problems, as below:

iOS 7 by Tutorials Chapter 7: Transitioning to iOS 7 – What’s New with Auto Layout

 258

Apparently the scroll view needs some constraints too. Because you used Auto
Layout for something inside the scroll view, you also need to supply your own
constraints for the scroll view itself; Xcode will no longer add automatic constraints
for that scroll view.

Before you add any constraints to the scroll view, however, first select Photo View
Controller and in the Attributes inspector change Status Bar from None to
Inferred, so that you see a little battery icon:

Now select the scroll view in the document outline and open the Pin menu. Click on
the four red bars to select them, making sure they are all 0. Click Add 4
Constraints to finish. You can see the constraints that you just added in the
document outline as below:

The image view has four constraints, and now the scroll view also has four
constraints. Make sure that the Vertical Space constraint says “Scroll View – View”
and not “Scroll View – Top Layout Guide”. The reason you made the simulated
status bar visible was to prevent pinning the scroll view to this Top Layout Guide.

However, this still doesn’t completely fix the layout problems, as shown by the
compiler warnings and the fact that the constraints are still orange. Apparently, the

iOS 7 by Tutorials Chapter 7: Transitioning to iOS 7 – What’s New with Auto Layout

 259

scroll view has Scrollable Content Size Ambiguity. Xcode also complains that
the image view is misplaced. In the storyboard it has a size of 320×568 but the
expected size is 0×0. By expected size, Xcode means the size of the view at
runtime.

This is a very common warning that you can expect to see often. It indicates a
discrepancy between what you told Interface Builder the size of the view would be,
and what Auto Layout thinks it should be according to the constraints. The reason
Auto Layout thinks the image view should have a height and width of 0 points is
because there is no image set on the view, and under Auto Layout the size of an
image view is determined by the size of its image.

To fix this warning, select the image view in the document outline and go to the
Size inspector. Under Intrinsic Size, choose Placeholder, as so:

Now all the Xcode warnings should have disappeared.

Build and run your app, and try to scroll and pan the map; it should work as before.

As you’ve seen, with Auto Layout you need to change your approach to layout
design. Manually setting frames is no longer required, but you do need to create
the necessary constraints for your views. Learning which constraints to use and
when is the trick to getting the most from Auto Layout.

Landscape ahoy!
Some parts of Treasure Hunt, notably the Map Detail screen, work in both
portrait and landscape orientations. Unfortunately, now that you’ve enabled Auto
Layout, the Map Detail screen no longer looks correct in landscape mode:

iOS 7 by Tutorials Chapter 7: Transitioning to iOS 7 – What’s New with Auto Layout

 260

Remember that if you don’t set any constraints on your views, Interface Builder
adds automatic constraints that give the views a fixed position and size. That’s
what happened to the Map Detail screen’s content view. When rotating to
landscape, that view won’t move. If you want your interfaces to be flexible and
adapt to any orientation then you’ll need to setup the constraints yourself.

In MainStoryboard.storyboard, expand the Map Detail View Controller Scene
in the document outline and select the content view. The app will need to resize
the view so it always fills the screen. To enable that, simply pin it to its superview
on all four edges. Open the Pin menu, and select all the bars in the Spacing to
nearest neighbor section. Click Add 4 Constraints to make the magic happen.
It’s a bit hard to see, but when the content view is selected, it now has four blue
bars surrounding it meaning the constraints are valid.

The two other things in this screen to add constraints for are the navigation bar and
the toolbar; they also need their frames adjusted for landscape mode. For the
navigation bar, you want to pin just its top, left and right sides. UIKit already knows
the height of the navigation bar, so these three constraints are enough to
determine its full size and position.

You’ve already seen how to use the Pin popup menu to make constraints, but there
is a second way. Select the Navigation Bar object and Ctrl-drag to the left,
ensuring you have selected the actual navigation bar and not the Navigation Item
inside it, like so:

In the popup that appears, click on Leading Space to Container:

iOS 7 by Tutorials Chapter 7: Transitioning to iOS 7 – What’s New with Auto Layout

 261

The view now gets an orange bar on the left side, which is the constraint you just
added:

Why is this orange? Doesn’t that indicate a problem? It sure does. There is nothing
wrong with the constraint that you just added, but as soon as you add a single
constraint to a view, Interface Builder expects you to add the remaining constraints
as well. It only creates automatic constraints if a view has no constraints. By adding
this one constraint you’ve told Interface Builder that you’re taking responsibility for
the constraints of this view, so you’re going to have to add the missing constraints
by hand.

Note: You can still run the app even with these missing constraints, but it
may not actually do what you want. So it’s always best to fix the orange
constraints immediately and prevent any ambiguity.

Ctrl-drag from the navigation bar again, but this time to the right, and choose
Trailing Space to Container from the popup menu. Notice that this popup menu
now has different options than before. It’s contextually aware, so it will only display
the options that make sense with respect to the direction of the drag action. Here
you dragged to the right, so it doesn’t have the leading space option, which only
applies to the left edge of the view. Instead, you get Trailing Space, which applies
to the right-hand edge.

You now have a new constraint on the right side of the navigation bar. Auto Layout
has enough constraints to determine the X position of the navigation bar, the width,
and the height. The only thing missing is a constraint for the Y position.

You might be thinking you need to add a vertical space constraint between the
navigation bar and the top of the window. That’s one possible approach. So far the
spacing constraints you’ve added were all of size 0, which clamps the two views to
each other. But spacing constraints can also have a size, so here you can put 20
points of space between the top of the window and the navigation bar. Although

iOS 7 by Tutorials Chapter 7: Transitioning to iOS 7 – What’s New with Auto Layout

 262

this approach would work in theory, Auto Layout now has a new feature that might
be better suited to fix this issue: Top and Bottom Layout Guides.

Note: On a regular view controller, such as the Map Details screen, the Top
Layout Guide is positioned 20 points from the top of the window, right below
the status bar area. The Bottom Layout Guide is aligned with the bottom of
the window.

The main benefit of these layout guides comes from using them on a view
controller that sits inside a UINavigationController or UITabBarController.
The Top Layout Guide then sits below the navigation bar and the Bottom
Layout Guide sits just above the tab bar or toolbar. This is very handy as the
heights of these bars may change depending on the orientation of the device.
So by connecting to these layout guides, your views can be positioned relative
to the bars, no matter how tall they are.

In the document outline, Ctrl-drag from the Navigation Bar to the Top Layout
Guide, as shown below:

Choose Vertical Spacing from the popup. The navigation bar now has sufficient
constraints, and its bars all turn blue to reflect this.

You also need to add constraints for the toolbar: repeat this procedure on the
Toolbar to add a Leading Space constraint, a Trailing Space constraint and a
Vertical Spacing constraint pinned to the Bottom Layout Guide. (If Interface
Builder gives you a hard time with this, then Ctrl-drag onto the toolbar itself or use
the Pin menu instead.)

If you ever find yourself wondering which constraints apply to a given view, you can
see the list of constraints in the Size inspector, as shown in the screenshot below:

iOS 7 by Tutorials Chapter 7: Transitioning to iOS 7 – What’s New with Auto Layout

 263

Build and run your app, and rotate your device or press ⌘ + right arrow to rotate
the simulator to landscape mode. Your map view should now look like the following:

Note: Remember, you only need to add constraints for the navigation bar and
toolbar because the Map Detail screen is not embedded in an instance of
UINavigationController. If your view controller sits inside a navigation stack,
then the navigation controller will already take care of the placement and
sizing of the bars.

Table views and Auto Layout
The Map Detail screen is a very simple version of a tab bar controller, except that
it uses a segmented control instead of regular tabs. Each segment is associated
with its own child view controller. You’ve already seen the one that displays the
photo of the treasure map: PhotoViewController. In this section you’ll focus on the
third segment, Clues.

The labels in the table view cells have gotten really messed up since enabling Auto
Layout:

iOS 7 by Tutorials Chapter 7: Transitioning to iOS 7 – What’s New with Auto Layout

 264

Yikes! First, you need to fix the content insets as the first cell has slipped
underneath the navigation bar. You’ve seen this feature before; all view controllers
have the Adjust Scroll View Insets option that makes sure the contents of a
scroll view or table view don’t get hidden by any bars.

However, that option only works for view controllers whose main view is a scroll
view, or a descendent of a scroll view such as a table view. For the Map Detail
screen, the actual content is provided by child view controllers; it doesn’t have a
scroll view of its own. For scrolling views such as this, you have to adjust the
content insets yourself.

Open CluesViewController.m and add the following to viewDidLoad:

self.tableView.contentInset =
 UIEdgeInsetsMake(64.0f, 0.0f, 44.0f, 0.0f);

That is 64 points at the top – 20 for the status bar and 44 for the navigation bar –
and 44 points at the bottom for the toolbar.

The reason the labels in the table view cells have incorrect sizes becomes obvious
once you review the following code in configureCell:forIndexPath:

CGSize size = [self sizeForText:clue.text];
textLabel.frame = CGRectMake(20.0f, 10.0f, size.width,
 size.height);

and:

usernameLabel.frame = CGRectMake(20.0f, 10.0f + size.height +
 10.0f, 280.0f, 18.0f);

Setting the frame property no longer works under Auto Layout, so remove the
above lines from the method. Also remove the sizeForText: method since it’s no

iOS 7 by Tutorials Chapter 7: Transitioning to iOS 7 – What’s New with Auto Layout

 265

longer needed. Finally, remove tableView:heightForRowAtIndexPath:. You’ll replace
it with a much better implementation shortly.

Instead of calculating the sizes of the labels by hand, you will now let Auto Layout
take care of all that for you. Head on over to MainStoryboard.storyboard, find
the Clues View Controller and select the top label in the prototype cell. Use the
Pin menu to add a top constraint of 10, and a left and right constraint of 15, as
below:

The T-bar attached to the top edge is blue, meaning the Y-position of the label is
okay, but there’s still an orange box showing that you need to correct the size of
the label.

The dashed box is the frame Auto Layout is expecting to generate at runtime. This
is what Auto Layout has calculated based on the constraints you’ve set on the label.
The solid orange box is the frame of the label as you’ve designed it in Interface
Builder. In this case, the two don’t match up.

Auto Layout expects the label to be 290 points wide because of the constraints you
set, but the frame in Interface Builder is showing a width much smaller than that.
The orange badge with the number +243 indicates the label should be 243 points
wider, according to Auto Layout’s calculations.

To fix this you could manually drag the label’s handles until it fits the dashed box,
but it’s much easier to use the Resolve Auto Layout Issues menu. Click the
button beside the Pin button — it looks like a TIE fighter to Star Wars geeks. :]

With the label selected, choose Update Frames. This adjusts the label’s frame to
match what is dictated by the constraints. Now all the constraints on the label are
blue, as below:

iOS 7 by Tutorials Chapter 7: Transitioning to iOS 7 – What’s New with Auto Layout

 266

Note that you did not set a constraint for the label’s height. That’s fine in this case
since without that constraint Auto Layout will use the intrinsic height of the label.

Note: Certain types of views, such as labels and buttons, have a size that
depends on their content. If the label has a lot of text, then it needs to be
wider or taller than if it only had a small amount of text. The label knows
exactly how much text it has and what its font size is, so the label can tell
Auto Layout how big it wants to be.

That’s what’s called the intrinsic content size. For such views, Auto Layout can
ask them how large they want to be and then it uses this size in its
calculations. You do not need to give them an explicit size in Interface Builder.
Of course, you can override the intrinsic size of a view by setting a width or a
height constraint.

This particular label needs to be able to grow vertically if there is more than one
line of text. That is why you’re using the intrinsic height instead of a constraint.
Auto Layout won’t use the intrinsic width because the label’s width is determined by
the horizontal spacing constraints on either side.

Ctrl-drag from the top label to the bottom label and choose Vertical Spacing
from the popup menu, like so:

This adds an orange bar between the two labels. The space is a bit bigger than you
really need, so click the bar to select it then go to the Attributes inspector.
Constraints are objects and also have attributes. Change Constant to 10, so that
the labels are 10 points apart, as so:

iOS 7 by Tutorials Chapter 7: Transitioning to iOS 7 – What’s New with Auto Layout

 267

Hold down ⌘ while you click on both labels to select them together. Open the Align
menu (left of the Pin button) and check both Leading Edges and Trailing Edges,
as shown below:

This will align the left and right edges of both the labels. For Update Frames, pick
Items of New Constraints. You don’t get any orange boxes now as Interface
Builder fixes any misplaced frames for you when it adds the new constraints, as
shown below:

Note: You may be wondering why Auto Layout calls things on the left Leading
and things on the right Trailing. It’s because Auto Layout also supports
languages that are not written left-to-right, such as Arabic or Hebrew. For
such languages, the meaning of Leading and Trailing is reversed.

The constraints are all blue, so let’s see how well this works. Build and run your app
to see the effect of all your changes:

iOS 7 by Tutorials Chapter 7: Transitioning to iOS 7 – What’s New with Auto Layout

 268

Hmm — that’s not quite what you were hoping for, but it’s not too far off either.
The labels certainly resize to fit all the text, which is good, but the cells don’t
increase their height accordingly. Setting the height of table view cells is not
automatic in Auto Layout; you still need to implement heightForRowAtIndexPath to
return the actual height for each cell.

Add the new version of this method to CluesViewController.m:

- (CGFloat)tableView:(UITableView *)tableView
 heightForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static UITableViewCell *cell;
 if (cell == nil) {
 cell = [tableView dequeueReusableCellWithIdentifier:
 @"ClueCell"];
 }

 [self configureCell:cell forIndexPath:indexPath];

 return [cell.contentView systemLayoutSizeFittingSize:
 UILayoutFittingCompressedSize].height + 1.0f;
}

Fortunately, there’s no need to do any manual calculations here. Instead, you
dequeue a cell and call configureCell:forIndexPath: to set the font and text on the
labels. (You keep this cell in a static variable so you only have to make it once, the
very first time that heightForRowAtIndexPath is called. It’s a small optimization.)

The workhorse of this method is the call to systemLayoutSizeFittingSize. It causes
Auto Layout to reevaluate all the constraints on that cell. It returns the final size for
the cell, of which you return only the height, plus 1.0f for the height of the
separator line.

Is everything fixed now? Build and run your app to find out:

iOS 7 by Tutorials Chapter 7: Transitioning to iOS 7 – What’s New with Auto Layout

 269

Uh oh — that looks worse, not better. The problem here is that you’re always
returning a height of 1.0f because there are no constraints telling the cell how tall
it is. To fix that, you need to add a constraint between the bottom of the username
label and the bottom of the cell. Only then does Auto Layout know that the height
of the cell is 10 + height of text label + 10 + height of username label + 10.

In MainStoryboard.storyboard, use the Pin menu to add a vertical spacing
constraint of 10 between the second label and the bottom of the cell, as so:

Of course, there are misplaced frames again because there’s more than 10 points
between the bottom edge of the label and the bottom of the cell. Select the cell and
drag the bottom resizing-handle up until the cell’s height is 69.

It appears you’ve corrected all of the Auto Layout issues. Build and run your app to
see how things look:

iOS 7 by Tutorials Chapter 7: Transitioning to iOS 7 – What’s New with Auto Layout

 270

Phew. That’s a lot better, but there’s still something to do here that’s easily
overlooked.

Setting content priorities
Think about this: the height of the prototype cell is 69 points, but at runtime, the
cell height can be much larger depending on the amount of text in the top label.
How does Auto Layout know how to distribute that extra height between the two
labels? Does it give it all to the top label, give it all to the bottom label, do a 50-50
split, or what?

There are a number of ways Auto Layout could solve this layout issue, which
technically makes it an ambiguous layout. Even though the design in Interface
Builder is valid, by changing the height of the cell during runtime, you can still
invalidate the layout. An ambiguous layout is unpredictable; since there are several
possible solutions, Auto Layout will pick one at random and the resulting layout
may not be quite what you expected.

You can actually simulate this in Interface Builder by resizing the table view cell.
Drag its bottom resizing-handle downward and see which of the two labels becomes
larger. Then undo and drag the handle down again. If you repeat this a few times
you’ll see that sometimes the top label becomes larger and sometimes the bottom
label becomes larger. You should also see the following error message:

iOS 7 by Tutorials Chapter 7: Transitioning to iOS 7 – What’s New with Auto Layout

 271

This type of issue is known as a Content Priority Ambiguity. Constraints have
priorities, which are numbered between 1 and 1000. Auto Layout will evaluate the
constraint with the highest priority first. If that constraint is invalid for the current
layout, it will look at constraints with lower priorities. This allows you to make really
complicated layouts. For example, using priorities you can say: “I want these two
views to stay exactly 20 points apart, but if there is no room, align them next to
each other.”

There are two special types of priorities for views with an intrinsic content size: the
content hugging priority and the content compression resistance priority.
The hugging priority determines how much a view should resist expanding, in other
words how much it wants to prevent itself from becoming larger. The compression
resistance priority is the reverse: it tells you how much the view should prevent
itself from becoming smaller.

To solve this layout problem, first make the table view cell 69 points high again so
that all Xcode errors disappear. Then select the bottom label. In the Size inspector,
set the Vertical Content Hugging Priority to 251, like so:

That makes it one higher than the vertical content hugging priority of the top label.
Now when the cell becomes taller, Auto Layout knows that the bottom label does
not want to expand and it will give all the extra space to the top label. Drag the
cell’s bottom resize-handle to resize it again. This time Xcode will give no warnings
and all the bars remain blue. Ambiguity resolved!

Note: The hugging and compression resistance priorities are only important
for views with an intrinsic content size, such as labels, buttons, and image
views. If you have two or more of these views connected to each other, and

iOS 7 by Tutorials Chapter 7: Transitioning to iOS 7 – What’s New with Auto Layout

 272

the width or height of the superview depends on their combined size, then you
will need to play with these priorities to solve any potential layout ambiguities.
Fortunately, Xcode will warn you about this in most cases.

And that wraps up this view controller – everything now resizes dynamically with
Auto Layout! As you can see, Auto Layout is much improved in Xcode 5 and now
you can use it with confidence in your own apps.

Challenges
There is only one challenge in this chapter but it’s a big one. You will need to apply
everything you learned about Auto Layout.

Challenge 1: Fixing the Instructions screen
The Instructions segment currently looks like the following screenshot:

There’s supposed to be a bold title label at the top but it’s hidden beneath the
navigation bar. You cannot fix this with the content insets because the main view of
the InstructionsViewController is not a scroll view.

Another problem is that in landscape mode the label and the text view don’t make
use of the extra horizontal space:

iOS 7 by Tutorials Chapter 7: Transitioning to iOS 7 – What’s New with Auto Layout

 273

This is due to the automatic constraints that Xcode adds when it builds the app; it
gives the label and the text view a fixed position and size, so they won’t resize
when you rotate to landscape.

Your challenge is to fix these issues by adding your own Auto Layout constraints.

• Use the Pin menu to add a space constraint of 80 points above the label.

• Center the label horizontally in the screen. To do this you use the Align menu
(next to the Pin menu) and check the Horizontal Center in Container option.

• If there is still an orange box around the label, fix its frame using the Resolve
Auto Layout Issues menu or Editor\Size to Fit Content.

The constraints on the label should look like this:

• Use the Pin menu to add 10 points of space between the label and the text view.

• Glue the other edges of the text view to its superview so that it will properly
resize in landscape mode (add bottom, left, and right constraints of size 0).

• Remember, if the frame of the text view is mismatched (orange dashes), then use
the Resolve Auto Layout Issues menu to fix it.

When you’re done the instructions screen should look great in landscape mode as
well:

iOS 7 by Tutorials Chapter 7: Transitioning to iOS 7 – What’s New with Auto Layout

 274

One final thing; on a map with a lot of instructions, the text may run beneath the
toolbar. It would be preferable to have the last few lines be fully visible and not
obscured by the toolbar. The solution is to set the content insets of the text view:

self.instructionsTextView.contentInset = UIEdgeInsetsMake(
 0.0f, 0.0f, 44.0f, 0.0f);

This final chapter on transitioning to iOS 7 looks at a variety of situations that you
may encounter when migrating your own apps, such as:

• Adding an inline date picker

• Dimming the tint color

• Adding a search bar to a navigation bar

• Adding blur effects

• Supporting both iOS 6 and iOS 7

This chapter continues where the previous chapter left off. If you did not follow
along, then grab the starter project from this chapter’s resources.

Inline date picker
Tapping the Date row inside the New Map screen brings up the date picker. It
used to look like the image on the left; a popup that appeared from the bottom of
the screen. On iOS 7 however, it doesn’t work at all well. See the image on the
right:

Chapter 8: Transitioning to
iOS 7‑Advanced Topics
By Matthijs Hollemans

iOS 7 by Tutorials Chapter 8: Transitioning to iOS 7 – Advanced Topics

 276

The UIDatePicker component now has a transparent background, meaning you can
see the table view through it. You could change its background color to white of
course, but date pickers are designed to work slightly differently on iOS 7. Apple
now recommends that rather than using modal popups, you display them inline
instead.

In this section you’re going to change the date picker so that it looks like the
following image. The Date row will expand when you tap it to reveal the date
picker, as so:

The date picker is currently implemented using a separate child view controller,
DatePickerViewController. Since this view controller is no longer needed, open the
storyboard and delete the Date Picker View Controller scene. Also delete the
source files DatePickerViewController.h and DatePickerViewController.m.
Now doesn’t that feel good? Throwing away old code always makes me happy.

iOS 7 by Tutorials Chapter 8: Transitioning to iOS 7 – Advanced Topics

 277

However, your pruning effort has left NewMapViewController.m with some
errors. To fix these errors, perform the following actions:

• Delete the #import "DatePickerViewController.h" statement.

• Delete the declaration of the _datePickerViewController instance variable.

• Delete everything inside of the showDatePicker method, but keep the method
itself.

• Delete everything inside of the hideDatePicker method, but keep the method
itself.

Build and run your app; it should compile without any warnings or errors.

To display the date picker inline, you’ll embed an instance of UIDatePicker into a
new cell in the table view, and make that cell appear only when the user taps the
Date row. There are a couple of ways this can be accomplished.

It’s entirely possible to create a new cell containing the UIDatePicker instance at
the point when the user taps the Date row and then insert it into the table view.
After the user has chosen a date, you’d then delete the new date picker row from
the table view. That would certainly work, but it’s not the most elegant solution.
When you insert a new row, all the rows below it receive new index paths, so you
may have to adjust row numbers manually depending on whether the date picker is
visible or not. That’s just asking for bugs. In addition, the New Map screen uses a
static table view meaning you don’t have the usual control over its data source.

Fortunately, there’s an easier solution. Instead of dynamically inserting and deleting
the date picker row, you are going to permanently add this row to the table view
and simply hide it when it is not needed. The easiest way to hide a table view cell is
to set its height to 0 points.

Open MainStoryboard.storyboard and find the New Map View Controller
scene. From the Object Library, drag a new Table View Cell into the scene and
place it directly below the Date row:

iOS 7 by Tutorials Chapter 8: Transitioning to iOS 7 – Advanced Topics

 278

Note: Because there are more rows in the table view than can fit on a single
screen, the Date row is initially not visible. You can scroll through the contents
of the table view by first selecting the view controller and then swiping up on
your Magic Mouse or trackpad. If that doesn’t work for you, expand the Table
View in the document outline pane on the left and drag the new Table View
Cell directly into the outline pane, in between the second and third rows of the
last section.

In the Size inspector for this cell, set the Row Height to 217; that’s 216 points for
the UIDatePicker and 1 point for the separator line. Remember that you can use the
two-finger vertical pan gesture on your mouse or track pad to scroll the table view
inside the storyboard so you can see this new cell in its entirety.

Drag a Date Picker from the Object Library into the new cell. For some reason
the size of the date picker in Interface Builder is smaller than the runtime size, so it
doesn’t fit exactly. Align the date picker with the top of the cell. In the Attributes
inspector, set the picker’s Mode to Date. Now it’ll display just the day, month and
year.

Use the Assistant editor to create a new outlet for the date picker in
NewMapViewController.m. Name it datePicker:

Normally this would be enough to see the date picker cell when running the app,
but NewMapViewController also overrides the tableView:heightForRowAtIndexPath:
delegate method so that it can adjust the size of the Add Photo row when the user
has picked a photo. This method currently overrides the height that you set
manually on the date picker’s parent cell, so you need to add the if statement
highlighted below:

iOS 7 by Tutorials Chapter 8: Transitioning to iOS 7 – Advanced Topics

 279

- (CGFloat)tableView:(UITableView *)theTableView
 heightForRowAtIndexPath:(NSIndexPath *)indexPath
{
 if (indexPath.section == 1) {
 return 88.0f;
 } else if (indexPath.section == 2 && indexPath.row == 0) {
 return self.photoImageView.hidden ? 44.0f : 280.0f;
 } else if (indexPath.section == 2 && indexPath.row == 2) {
 return 217.0f;
 } else {
 return 44.0f;
 }
}

Build and run your app to see your new date picker cell in action:

You will keep track of whether the date picker cell is visible or hidden using a new
instance variable. Add the following code to the top of
NewMapViewController.m:

@implementation NewMapViewController
{
 BOOL _datePickerVisible;
}

Initially you want the date picker to be hidden. Add the following code to
viewDidLoad:

iOS 7 by Tutorials Chapter 8: Transitioning to iOS 7 – Advanced Topics

 280

_datePickerVisible = NO;
self.datePicker.hidden = YES;

This only hides the instance of UIDatePicker, not its parent table view cell. To make
the entire row invisible, you need to modify the highlighted line in
heightForRowAtIndexPath:

- (CGFloat)tableView:(UITableView *)theTableView
 heightForRowAtIndexPath:(NSIndexPath *)indexPath
{
 if (indexPath.section == 1) {
 return 88.0f;
 } else if (indexPath.section == 2 && indexPath.row == 0) {
 return self.photoImageView.hidden ? 44.0f : 280.0f;
 } else if (indexPath.section == 2 && indexPath.row == 2) {
 return _datePickerVisible ? 217.0f : 0.0f;
 } else {
 return 44.0f;
 }
}

Instead of always returning 217.0f for the row that contains the date picker, it now
returns 0.0f when the date picker is hidden from view.

Build and run your app, and verify that the date picker cell is no longer visible.

Now on to the good part: displaying the date picker, with a fancy animation, when
the Date row is tapped. The magic happens in showDatePicker, which is currently
empty. Replace showDatePicker with the following:

- (void)showDatePicker
{
 // 1
 NSIndexPath *dateRowIndexPath = [NSIndexPath
 indexPathForRow:1 inSection:2];
 UITableViewCell *cell = [self.tableView
 cellForRowAtIndexPath:dateRowIndexPath];
 cell.detailTextLabel.textColor =
 cell.detailTextLabel.tintColor;

 // 2
 [self.datePicker setDate:self.date animated:NO];

 // 3
 _datePickerVisible = YES;
 [self.tableView beginUpdates];

iOS 7 by Tutorials Chapter 8: Transitioning to iOS 7 – Advanced Topics

 281

 [self.tableView endUpdates];

 // 4
 self.datePicker.hidden = NO;
 self.datePicker.alpha = 0.0f;
 [UIView animateWithDuration:0.25 animations:^{
 self.datePicker.alpha = 1.0f;
 }];

 // 5
 NSIndexPath *pickerIndexPath = [NSIndexPath
 indexPathForRow:dateRowIndexPath.row + 1
 inSection:dateRowIndexPath.section];

 [self.tableView scrollToRowAtIndexPath:pickerIndexPath
 atScrollPosition:UITableViewScrollPositionTop
 animated:YES];
}

Here’s what the above method does, step by step:

1. The detail label in the Date row already displays the existing date, and its font
color is gray. Change its color to the global tint color to give a visual indication to
the user that they’re now editing this row.

2. Provide the existing date to the UIDatePicker instance.

3. Calling beginUpdates followed immediately by endUpdates causes the table view
to re-layout its cells. As _datePickerVisible is now set to YES and therefore
heightForRowAtIndexPath will return 217.0f instead of 0.0f, the row will slide
open with an animation.

4. Fade in the UIDatePicker instance.

5. If necessary, scroll the table view to guarantee the date picker is fully onscreen.

Build and run your app. Tap the Date row and watch with amazement as the date
picker slides open:

iOS 7 by Tutorials Chapter 8: Transitioning to iOS 7 – Advanced Topics

 282

As the user changes the date using the picker, the detail label in the Date row
needs to update in real time. Add the following method to
NewMapViewController.m:

- (IBAction)dateChanged:(UIDatePicker *)datePicker
{
 self.date = self.datePicker.date;
 self.dateLabel.text = [self formatDate:self.date];
}

This is an IBAction, so you’ll need to hook it up. Save NewMapViewController.m,
open the storyboard, find the New Map View Controller scene, select the
UIDatePicker and then Ctrl-drag to the view controller object and select
dateChanged: from the popup menu. Now whenever the date changes, the detail
label in the Date row updates. Build and run your app to try it out.

You only want the date picker to be visible as long as the user is changing the date;
it shouldn’t remain on screen indefinitely. So there needs to be a way to hide the
date picker row. In NewMapViewController.m replace the empty hideDatePicker
method with this one:

- (void)hideDatePicker
{
 if (_datePickerVisible) {
 // 1
 NSIndexPath *indexPath = [NSIndexPath indexPathForRow:1
 inSection:2];
 UITableViewCell *cell = [self.tableView
 cellForRowAtIndexPath:indexPath];
 cell.detailTextLabel.textColor =
 [UIColor colorWithRed:0 green:0 blue:0 alpha:0.5f];

 // 2
 _datePickerVisible = NO;
 [self.tableView beginUpdates];
 [self.tableView endUpdates];

 // 3
 [UIView animateWithDuration:0.25 animations:^{
 self.datePicker.alpha = 0.0f;
 } completion:^(BOOL finished) {
 self.datePicker.hidden = YES;
 }];
 }
}

The above method is essentially the opposite of showDatePicker:

iOS 7 by Tutorials Chapter 8: Transitioning to iOS 7 – Advanced Topics

 283

1. Restore the original color of the detail label.

2. Animate the row sliding shut.

3. Fade out and hide the date picker view.

It’s safe to assume that whenever the user taps on another row, they no longer
want to use the date picker. This includes the Date row; tapping once on the Date
row opens the date picker, tapping a second time should close it. To implement
this, you need to call hideDatePicker from within
tableView:didSelectRowAtIndexPath:. Modify the highlighted line in
tableView:didSelectRowAtIndexPath: as follows:

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
 if (indexPath.section == 0) {
 [self.nameTextField becomeFirstResponder];
 } else if (indexPath.section == 1) {
 [self.instructionsTextView becomeFirstResponder];
 }

 if (indexPath.section == 2) {
 if (indexPath.row == 0) {
 [self choosePhotoFromLibrary];
 } else if (indexPath.row == 1) {
 [tableView deselectRowAtIndexPath:indexPath animated:YES];

 // Remove this line:
 [self showDatePicker];

 // Add these lines:
 if (!_datePickerVisible) {
 [self showDatePicker];
 } else {
 [self hideDatePicker];
 }
 return;
 }
 }

 // Add these lines:
 // Also hide the date picker when tapped on any other row.
 [self hideDatePicker];
}

It’s also a nice touch to hide the date picker when the user taps inside a text field
to invoke the keyboard. Add the following statement to viewDidLoad:

iOS 7 by Tutorials Chapter 8: Transitioning to iOS 7 – Advanced Topics

 284

[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(hideDatePicker)
 name:UIKeyboardWillShowNotification object:nil];

This informs the notification center that the view controller is listening for the
UIKeyboardWillShowNotification, and calls hideDatePicker when it’s received.

Build and run your app; open the date picker and try tapping on any other cell to
dismiss the date picker.

There’s one more tiny detail to take care of. When the date picker is visible, it is
still possible to tap on the cell, which selects it and highlights it as below:

That’s a little ugly. Tapping in the date picker row also has the side effect of hiding
the date picker, which can be confusing to the user. To fix these two problems,
open MainStoryboard.storyboard, find the New Map View Controller scene in
the document outline, expand the table view and select the cell containing the date
picker. Make sure you select the Table View Cell, not the UIDatePicker inside it. In
the Attributes inspector change Selection to None.

Also add the following method to NewMapViewController.m:

- (NSIndexPath *)tableView:(UITableView *)tableView
 willSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
 if (indexPath.section == 2 && indexPath.row == 2) {
 return nil;
 } else {
 return indexPath;
 }
}

This instructs the table view that the row containing the date picker should not be
selected. Now any extraneous taps inside the date picker row will have no effect.

iOS 7 by Tutorials Chapter 8: Transitioning to iOS 7 – Advanced Topics

 285

It took a bit of work to place the date picker inline in the table view but this is
reusable code that you should be able to drop straight into any other projects that
require it. It also improves the user experience, as you no longer have to present a
modal view to let users choose a date. Of course, you can also apply this technique
for other types of pickers. But be sure to limit the height of the picker; if there are
too many options, then it becomes confusing. As a rule of thumb, anything with a
height smaller than half the screen height is okay.

Dimming the tint color
You’ve seen that each app has one primary color that is used for highlighting active
states (tab bar, segmented control) and interactive elements (buttons). This tint
color is blue by default but for Treasure Hunt you changed it to brown. Sometimes,
however, you want to make it obvious to the user that certain UI elements cannot
be used, for example when you’re presenting a modal view such as the Clue
Sheet. UIKit allows you to “dim” the tint color on those inactive UI elements so
that they appear gray instead of tinted.

First you will patch up the appearance of the Clue Sheet. Open the storyboard and
in the document outline expand the New Clue View Controller Scene. Select the
view called Content View and use the Auto Layout Align menu to give it a
Horizontal Center in Container constraint. Use the Pin menu to give it a top
space of 64 points and a fixed width and height, like so:

iOS 7 by Tutorials Chapter 8: Transitioning to iOS 7 – Advanced Topics

 286

Make sure that Update Frames is set to Items of New Constraints, so that
Interface Builder will automatically resize and reposition the view based on these
constraints, as shown in the layout below:

Change the background color of the Content View to white, but with opacity of
95%. That simulates the translucency effect of the navigation bar.

The buttons in the Clue Sheet are blue, not brown, because they were created in
Xcode 4, which doesn’t know about the new tint color feature. Delete the existing
Cancel and Submit buttons and replace them by dragging new buttons from the
Object Library. Notice they immediately pick up the brown global tint color:

You don’t have to set any constraints on these buttons, but be sure to connect the
new Cancel button to the cancelButton outlet and the new Submit button to the
submitButton outlet, or the Clue Sheet won’t work anymore. Ctrl-drag from the
view controller to the buttons to make these connections.

For some extra polish, let’s give the view rounded corners. Add the following line to
viewDidLoad in NewClueViewController.m:

self.contentView.layer.cornerRadius = 6.0f;

Build and run your app. Press the Add Clue button to bring up the clue sheet. It
looks pretty good now:

iOS 7 by Tutorials Chapter 8: Transitioning to iOS 7 – Advanced Topics

 287

When this modal view is active, the user cannot interact with any other part of the
app. But the Close and Add Clue buttons in the navigation bar are still shown in
the active tint color, which might confuse the user. It’s better to dim these buttons
to remove any doubt that these controls are unavailable.

UIKit has a new property you can leverage, tintAdjustmentMode. This tells the app
whether to use the tint color or a dimmed shade of that color. Modify
viewDidAppear: in NewClueViewController.m to the following:

- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];
 [self.textView becomeFirstResponder];

 self.view.window.tintAdjustmentMode =
 UIViewTintAdjustmentModeDimmed;
 self.view.tintAdjustmentMode = UIViewTintAdjustmentModeNormal;
}

The new lines set the tintAdjustmentMode on the window to
UIViewTintAdjustmentModeDimmed, which means it will turn anything that uses the
tint color to a gray color. Since the Clue Sheet is also part of the window, you
don’t want its buttons to be dimmed, so you set the tint adjustment mode of the
Clue Sheet to UIViewTintAdjustmentModeNormal, overriding the setting inherited
from the window.

You need to set the window’s tint mode back to normal in viewWillDisappear:, so
add that method to the class as well:

- (void)viewWillDisappear:(BOOL)animated
{
 [super viewWillDisappear:animated];

 self.view.window.tintAdjustmentMode =
 UIViewTintAdjustmentModeAutomatic;

iOS 7 by Tutorials Chapter 8: Transitioning to iOS 7 – Advanced Topics

 288

}

Now the buttons in the navigation bar will appear disabled when the Clue Sheet
appears, and return to their usual state when the Clue Sheet dismissed.

Search bar in the navigation bar
The Shared Maps screen (the second tab) has a search bar that is placed in the
table view’s header. In Apple’s own apps, most notably Calendar, the search bar no
longer sits at the top of the table view but is accessible through the navigation bar.
As of iOS 7, you can now place the search bar inside the navigation bar, which
saves space and makes search easily accessible at all times.

Open the storyboard and navigate to the Shared Maps View Controller. Select
the search bar in the document outline and then drag it out from the table view
header and down below the First Responder, like so:

This removes the search bar from the view but the object will remain part of the
view controller. When this view controller is instantiated by UIKit it will still have a
search bar object associated with it. It also has a Search Display Controller that
is connected to the same search bar.

Add the following line to viewDidLoad in SharedMapsViewController.m:

self.searchDisplayController
 .displaysSearchBarInNavigationBar = YES;

This tells the Search Display Controller to position the search bar within the
navigation bar and to hide the Cancel button that would normally appear alongside
the search bar.

Add the following two methods to SharedMapsViewController.m:

- (void)searchDisplayControllerWillBeginSearch:
 (UISearchDisplayController *)controller
{

iOS 7 by Tutorials Chapter 8: Transitioning to iOS 7 – Advanced Topics

 289

 self.searchDisplayController.searchBar
 .showsCancelButton = YES;
}

- (void) searchDisplayControllerDidEndSearch:
 (UISearchDisplayController *)controller
{
 self.searchDisplayController.searchBar.showsCancelButton = NO;
}

These are delegate methods for the Search Display Controller. The Shared
Maps screen had already registered itself as the delegate but didn’t implement
these two methods. These simply make the Cancel button visible when the search
begins, and hide it when the search ends.

Build and run to see the new search bar in action. Here’s the Shared Maps screen:

Tapping inside the search bar changes the visual focus to the search bar, as shown
below:

Blur effects
You have successfully updated the app so that it functions well on iOS 7 and it now
looks like it belongs to the iOS 7 club. However, even though you’ve changed the
tint color and added the crown image in various places, the app still looks very
much like it came from one of the default app templates. Users upgrading from the
iOS 6 version of the app will probably be a bit disappointed by the very neutral look
of the new version.

iOS 7 by Tutorials Chapter 8: Transitioning to iOS 7 – Advanced Topics

 290

In this section, you’ll explore one way to give this app its own distinct personality
on iOS 7. As you read in Chapter 1, “Designing for iOS 7”, since iOS 7 is still so new
and the design language is so different from any other iOS release, what
constitutes “good iOS 7 design” will emerge over time. Presently, there’s no clear
direction on best design practices for this new, flat, textureless world, so some
experimentation with different visual elements will be necessary for iOS 7 pioneers
like you.

The use of the blur effect (i.e. “frosted glass”) is prevalent in iOS 7. For example,
an alert view automatically blurs the content that appears behind it. For Treasure
Hunt, you will place a blurred, de-saturated version of the treasure maps behind
the table view cells:

Blur is a pretty expensive effect to create in real-time, so you won’t actually blur
the entire treasure map photo, only the thumbnail. You don’t need a high fidelity
source image if you’re going to blur it anyway. Often scaling down your image,
blurring the smaller version, and then scaling it up again will look just as good but
is a lot faster.

Unfortunately, iOS 7 does not have an easy built-in API for adding the blur effect. It
would be great if you could just do [view blur]; but such an API does not exist.
Instead, Apple provided sample code that demonstrates how to create blurred
images. You will use that same code in Treasure Hunt.

From the File menu, choose Add Files to “Treasure Hunt”. Navigate to the
Extra Source Code folder from this chapter’s resources and select the two
UIImage+ImageEffects source files to add them to the project. Then go to the
Target Settings screen and under Linked Frameworks and Libraries, add the
Accelerate.framework to the project as well. Build the app to make sure you
don’t have any errors.

You will now make a series of changes to MyMapsViewController.m and also to
SharedMapsViewController.m. Both view controllers use the same
customizations, so make the same changes to both source files.

First, import the new UIImage+ImageEffects category:

iOS 7 by Tutorials Chapter 8: Transitioning to iOS 7 – Advanced Topics

 291

#import "UIImage+ImageEffects.h"

Then make the following changes to viewDidLoad in both source files:

self.tableView.backgroundColor = [UIColor colorWithRed:40/255.0f
 green:20/255.0f blue:10/255.0f alpha:1.0f];

// Remove the separator lines for empty cells
UIView *footerView = [[UIView alloc] initWithFrame:CGRectZero];
self.tableView.tableFooterView = footerView;

self.tableView.separatorColor = [UIColor colorWithWhite:0.0f
 alpha:0.2f];
self.tableView.rowHeight = 80.0f;
self.tableView.separatorInset = UIEdgeInsetsZero;

This gives the table view a dark brown background and tweaks a few other
parameters. Build and run; the app should look like this:

Each table view cell will get its own background image, based on a blurred version
of the thumbnail for that row. Before you add the blur effect, first you will put the
unprocessed thumbnail onto the cell’s background, just to see how that looks. Add
the following lines to cellForRowAtIndexPath, just before the line that returns the
new cell. Remember to do this in MyMaps- as well as in
SharedMapsViewController.m.

UIImage *backgroundImage = map.thumbnail;

UIImageView *imageView = [[UIImageView alloc]
 initWithImage:backgroundImage];
imageView.contentMode = UIViewContentModeScaleAspectFill;
imageView.clipsToBounds = YES;
imageView.alpha = 0.8f;
cell.backgroundView = imageView;

iOS 7 by Tutorials Chapter 8: Transitioning to iOS 7 – Advanced Topics

 292

Build and run; each cell now has a blown-up version of the thumbnail image in the
background:

This isn’t exactly pretty, but you’re only a few steps away from blurry goodness.
Notice that the background image is low quality. You took a 60x60 point thumbnail
image and stretched it out across the width of the table. That’s perfectly fine, as
the user won’t be able to see these imperfections anyway once the image is
blurred.

Add the following method to get rid of the white blocks behind the labels:

- (void)tableView:(UITableView *)tableView
 willDisplayCell:(UITableViewCell *)cell
 forRowAtIndexPath:(NSIndexPath *)indexPath
{
 cell.backgroundColor = [UIColor colorWithWhite:1.0f
 alpha:0.2f];
 cell.contentView.backgroundColor = [UIColor clearColor];
 cell.textLabel.backgroundColor = [UIColor clearColor];
 cell.textLabel.textColor = [UIColor colorWithWhite:0.0f
 alpha:0.8f];
 cell.detailTextLabel.backgroundColor = [UIColor clearColor];
 cell.detailTextLabel.textColor = [UIColor colorWithWhite:0.0f
 alpha:0.5f];
 cell.tintColor = cell.textLabel.textColor;
}

This method is part of the table view delegate protocol. It is called by the table view
just before it will draw the cell on the screen. This is a good spot to customize the
colors and any other properties of a standard table view cell.

Finally, to blur the background image, replace the line that sets backgroundImage in
cellForRowAtIndexPath with these two lines:

iOS 7 by Tutorials Chapter 8: Transitioning to iOS 7 – Advanced Topics

 293

UIColor *tintColor = [UIColor colorWithRed:140/255.0f
 green:70/255.0f blue:35/255.0f alpha:0.2f];

UIImage *backgroundImage = [map.thumbnail applyBlurWithRadius:2
 tintColor:tintColor saturationDeltaFactor:0.8 maskImage:nil];

The applyBlurWithRadius:tintColor:saturationDeltaFactor:maskImage: method —
try saying that ten times in a row — is what performs the magic. (If you want to
know exactly what it does, look inside UIImage+ImageEffects.m.)

Build and run; you should have a nicely blurred background image behind each cell:

Note: Feel free to play with the different parameters. The blur radius
determines how extreme the blur is. The tint color applies an extra layer of
color to the final image. Here you specify the same brown color that the app
uses everywhere else, but only with 20% opacity. The saturation factor
determines how much of the original color should remain in the blurred image.
The closer this gets to 0, the more black & white the final image becomes.

Another common feature of iOS 7 apps is that they display thumbnails in a circular
cutout (for example, headshots in the Contacts app). That effect is very easy to
achieve. Add the following code to cellForRowAtIndexPath:

cell.imageView.layer.cornerRadius = 30.0f;
cell.imageView.layer.borderWidth = 1.0f;
cell.imageView.layer.borderColor = [UIColor whiteColor].CGColor;
cell.imageView.clipsToBounds = YES;

You set the corner radius of the image view’s CALayer to 30 points, which is exactly
half the width of the image, making it a perfect circle. The clipsToBounds property
must be YES for this to work.

Build and run to see the result:

iOS 7 by Tutorials Chapter 8: Transitioning to iOS 7 – Advanced Topics

 294

Blurring the contents of a view
In the previous section you took an existing image and blurred it. You can also take
a snapshot of the contents of a view and apply the blur effect to that, which is
useful for when you want to place something on top of an existing view and blur the
underlying contents. That is what alert views and navigation bars do.

Even though iOS 7 does not have a convenient API for blurring, it does have fast
new methods for making an image snapshot of a view. You will use these methods
to give the Clue Sheet its own frosted glass effect.

Open NewClueViewController.m and import the UIImage helper category:

#import "UIImage+ImageEffects.h"

Add the following method:

- (void)updateImageView
{
 // 1
 UIView *snapshotView = [self.parentViewController.view
 resizableSnapshotViewFromRect:self.contentView.frame
 afterScreenUpdates:YES withCapInsets:UIEdgeInsetsZero];

 // 2
 UIGraphicsBeginImageContextWithOptions(
 self.contentView.bounds.size, YES, 0.0f);
 BOOL result = [snapshotView
 drawViewHierarchyInRect:self.contentView.bounds
 afterScreenUpdates:YES];
 UIImage *snapshotImage =
 UIGraphicsGetImageFromCurrentImageContext();
 UIGraphicsEndImageContext();

 // 3
 if (result) {

iOS 7 by Tutorials Chapter 8: Transitioning to iOS 7 – Advanced Topics

 295

 UIColor *tintColor = [UIColor colorWithWhite:0.97
 alpha:0.82];
 UIImage *blurredImage = [snapshotImage applyBlurWithRadius:4
 tintColor:tintColor saturationDeltaFactor:1.8
 maskImage:nil];
 _imageView.image = blurredImage;
 }
}

Here’s how this works, step-by-step:

1. Create a new UIView by making a snapshot of the parent view controller’s view,
but only the section that is covered by the actual clue sheet (i.e. the
contentView).

2. Draw this snapshot into a new graphics context in order to convert it to a
UIImage.

3. Apply blur to the image using the helper method and place it into an image view.

The _imageView instance variable already exists; it is a leftover from the appearance
customizations of the iOS 6 version of this app. You still need to create it, so add
the following lines to viewDidLoad:

_imageView = [[UIImageView alloc]
 initWithFrame:self.contentView.bounds];
[self.contentView insertSubview:_imageView atIndex:0];
self.contentView.clipsToBounds = YES;

This creates a new UIImageView that is exactly as big as the Clue Sheet’s content
view and places it behind the text view and the buttons. You set clipsToBounds to
YES so that the image view also gets rounded corners.

Now all that’s left is calling the new updateImageView method. Add the following line
to the bottom of viewDidAppear:

[self updateImageView];

Build and run to see the effect:

iOS 7 by Tutorials Chapter 8: Transitioning to iOS 7 – Advanced Topics

 296

Nice! Feel free to play with the parameters to applyBlurWithRadius:tintColor:
saturationDeltaFactor:maskImage: to try out different effects.

Back to iOS 6
At the beginning of this tutorial, you set the Deployment Target of the project to
7.0. Because of this, the app no longer runs on iOS 6.1 or earlier. However, you
can make your app support older iOS versions with a little bit of effort.

For new apps it makes sense to go iOS 7-only, but if you have an existing app on
the App Store then you may not want to abandon iOS 6 just yet. The easiest
solution is to make an iOS 7-only version of your app, with the Deployment
Target set to 7.0, and upload that to the App Store. The App Store will still allow
users with iOS 6 devices to download the previous version — but not the new one.
The downside of this approach is that any new features or bugs fixes won’t be
ported back to your iOS 6 app. If you want to be backward compatible with iOS 6,
then you need to make your app support both versions of the OS.

Go into the Project Settings screen and set the Deployment Target back to 6.1.
Choose the iOS 6.1 simulator from the scheme picker at the top. If you can’t find
the 6.1 simulators, you may need to install them first by going to
Xcode\Preferences\Downloads and selecting iOS 6.1 Simulator.

Build and run your app, and... crash.

Note: At this point you may get an error message, “iOS Simulator failed to
install the application.” If you receive this error, choose the Reset Content
and Settings… option from the simulator menu bar to reset the simulator,
and try again.

iOS 7 by Tutorials Chapter 8: Transitioning to iOS 7 – Advanced Topics

 297

The app crashes immediately on the following line from viewDidLoad in
MyMapsViewController.m:

self.tableView.separatorInset = UIEdgeInsetsZero;

That’s because the separatorInset property doesn’t exist on iOS 6. To fix this issue
you can wrap it in an if-statement:

if ([self.tableView respondsToSelector:
 @selector(separatorInset)]) {
 self.tableView.separatorInset = UIEdgeInsetsZero;
}

You will have to do this for every iOS 7-only API that the app uses.

There is another statement in the tableView:willDisplayCell: method in
MyMapsViewController.m that will cause the app to crash, so wrap that in an if
block as well:

if ([self.tableView respondsToSelector:@selector(tintColor)]) {
 cell.tintColor = cell.textLabel.textColor;
}

Build and run your app; it will look like the following under iOS 6:

You’ll probably agree that the new graphics of the iOS 7 version don’t work quite so
well here. Notice that the navigation bar and tab bar are now brown; on iOS 6, the
tint color changes the entire bar, not just the text on the buttons. But it’s not just
the colors that are different. Many views now have slightly different sizes and
positions.

When making your backward compatible you need to make a decision: will you
make the iOS 6 version look like the iOS 7 version? Or will you retain the original
look?

iOS 7 by Tutorials Chapter 8: Transitioning to iOS 7 – Advanced Topics

 298

Regardless of which option you choose, there are two ways to deal with this
situation:

• Detect at runtime which version of iOS is running and make the necessary
adjustments to your views. Your code will be littered with “if (on iOS 6)”
statements.

• Create two storyboards, one for iOS 6 and one for iOS 7. This is a cleaner
approach, but now you need to keep the two storyboard files in sync. You also
need to remove the storyboard name from the Info.plist file so it’s no longer
loaded automatically and instead load the correct storyboard manually in the
UIApplicationDelegate method application:didFinishLaunchingWithOptions:.

Having two separate storyboards may appear overkill, but recall how many small
tweaks you made to the UI over the course of this chapter. For example, grouped
style tables look quite different on iOS 6, so the cells from the iOS 7 storyboard will
have the wrong metrics for iOS 6. Rather than trying to fix these metrics from code,
it might be less work to have two storyboards.

If you don’t want two use separate storyboards, there are several ways to tackle
the problem of adjusting the positions and sizes of your views:

• If you’re using Auto Layout, you can make outlets for your constraints and change
their constant property depending on the OS version. Alternatively, you can
always create the constraints in code instead of through Interface Builder.

• If your app does not use Auto Layout, then you may be able to use the new Delta
X/Y/Width/Height options in the Size inspector to add/subtract from your
view’s position and size. For example, if you set delta X = 100, then iOS 6 adds
100 points to the X position of that view. This option isn’t available when Auto
Layout is enabled.

The good news is that asset catalogs will also work on iOS 6, so if you want both
versions to share the same images, then it’s safe to put them in an asset catalog.
That goes for the icon and launch images as well. If the iOS 6 version needs to use
different images, then you have to give them names that are different from the iOS
7 version.

As you can see, making your app support iOS 7 as well as earlier versions of the OS
can be quite involved. After you’ve made all your changes, a number of intensive
testing sessions to catch any bugs that may have crept in is not an optional step
before you ship!

Where to go from here?
Phew, that was quite the ride. You’ve seen how to modernize an app so that it looks
and feels good on iOS 7. Many of the changes were quite small, but it still took
some effort to get everything updated.

iOS 7 by Tutorials Chapter 8: Transitioning to iOS 7 – Advanced Topics

 299

The app ended up having a completely different visual style, but it still managed to
retain some of its personality. Maybe your own apps don’t need such an extreme
makeover, but you will need to tweak your icons, fonts and colors. If you have apps
on the App Store that could do with a dust off, then it’s smart not to wait too long.

Switching to Auto Layout is probably the single biggest change that you can make.
Auto Layout takes some getting used to, but it also makes it easier to support new
technologies such as Dynamic Type.

To learn more about transitioning to iOS 7, go to the developer portal and download
the The iOS 7 UI Transition Guide. This goes through all the changes between
the UIKit controls in minute detail. It also has good suggestions for maintaining
compatibility with iOS 6. Curl up by the fire some night and have a read through it;
it will be worth your time.

Note: As you update your apps to iOS 7, a new requirement to keep in mind
is 64-bit compatibility. The new iPhone 5s has a 64-bit processor while older
models only have 32-bit CPUs. For new projects Xcode will automatically build
both 32- and 64-bit executables. However, for existing projects that you’re
importing from Xcode 4, you may need to enable a build option. Go to Project
Settings and under Build Settings, Architectures choose “Standard
Architectures (including 64-bit)”. You can read more about developing for 64-
bit in the 64-Bit Transition Guide for Cocoa Touch, available from the iOS
Dev Center.

Credits: The treasure map images are public domain images taken from Wikipedia.

Challenges
The difference between a good and a great app is all in the details. In this challenge
you will implement a subtle but sweet animation effect.

Challenge 1: Swipe to go back
Navigation controllers in iOS 7 have a cool new feature: in addition to tapping the
back button you can now use a left-to-right pan gesture to go back. This gesture is
interactive and you can move back and forth, as shown below:

iOS 7 by Tutorials Chapter 8: Transitioning to iOS 7 – Advanced Topics

 300

This is the Award Type screen. As you pan back, you’ll see the Award cell from
the New Map screen has remained selected. It stays that way until the screen is
fully visible and then it fades out.

The automatic de-selection of cells is a feature of UITableViewController that you
can enable or disable by setting the clearsSelectionOnViewWillAppear property
accordingly (it’s set to YES by default). This has been around since iOS 3.2, so it’s
hardly new.

However, if you’ve been playing close attention since upgrading to iOS 7 then you
may have noticed that the built-in Settings app does something slightly different.
When you swipe back, it doesn’t wait to perform the fade out, but instead the
amount of fading coincides with how far you’ve panned. It turns out this is a simple
feature to add.

The code that you use to fade out a selected cell is:

[self.tableView deselectRowAtIndexPath:indexPath animated:YES];

When the user pans back to the New Map view controller, its viewWillAppear:
method is called. That’s a good place to perform the fade out of the Award row.

Now when you pan back from the award type picker controller, the Award row
should fade out accordingly. It looks pretty sweet:

iOS 7 by Tutorials Chapter 8: Transitioning to iOS 7 – Advanced Topics

 301

Note: This transition is one of the new interactive transition types in iOS 7,
which means the animation between the two view controllers doesn’t happen
at a set speed — it’s a function of how fast or slow the user pans. Therefore,
the deselect animation varies as the user pans the view controller.

To learn more about interactive transitions in iOS 7, check out Chapter 3,
“Custom View Controller Transitions.”

In this section, you’ll learn about the new features in Xcode 5 that are useful when
making any type of app. In particular, you’ll learn about unit testing, source
control, continuous integration, and more.

Chapter 9: What’s New in Xcode 5

Chapter 10: What’s New in Objective-C and Foundation

Chapter 11: Unit Testing in Xcode 5

Chapter 12: Beginning Source Control in Xcode 5

Chapter 13: Intermediate Source Control in Xcode 5

Chapter 14: Beginning Continuous Integration in Xcode 5

Chapter 15: Intermediate Continuous Integration in Xcode 5

Section II: What’s New in
Xcode 5

Along with introducing iOS 7, Apple introduced a new version of its IDE: Xcode 5.

Before you dive into the rest of the chapters of this book, we wanted to give you a
quick whirlwind tour of what’s new in Xcode. Specifically, you’ll learn about:

• Asset catalogs

• Image slicing

• Auto Layout improvements

• Preview window

• Language improvements

• Documentation improvements

• Debugging improvements

• Source control improvements

• Performance improvements

Note that unlike the rest of the chapters in this book, rather than diving into a deep
tutorial this chapter will be a quick article-style birds-eye overview. This is so that
you have a good context over what’s changed with the IDE as you proceed through
the rest of the chapters.

Asset catalogs
Before Xcode 5, in order to support different devices and resolutions, you had to
have different versions of your artwork with slightly different filenames. For
example, you might have:

• myImage.png [normal resolution version]
• myImage@2x.png [retina resolution version]
• myImage@2x~ipad.png [a retina resolution version specifically for

iPad]

Chapter 9: What’s New in
Xcode 5
By Felipe Laso Marsetti

iOS 7 by Tutorials Chapter 9: What’s New in Xcode 5

 306

Xcode 5 comes with a much more elegant solution to this problem – Asset catalogs.

Asset catalogs are a way for you to tie all of the various versions of an image asset
to a single name in a nice visual interface:

This is the screnshot of an asset catalog that contains four image sets. For each of
these set, you can specify different versions – for example, different versions for
retina and non-retina devices.

Here’s an example of what the AppIcon asset looks like when selected:

This asset has different versions of the images for iPad retina and non-retina,
iPhone (retina-only as of iOS 7), and Settings and Spotlight each with its
corresponding high-resolution version.

To add images to an asset catalog, simply drag the images into your project and
then drag them to the asset catalog folder in the project navigator. Alternatively,
you can click on the + button in the asset catalog viewer.

Notice that you no longer have to worry about putting keywords like @2x, ~iphone,
~ipad or -568h the image filenames. Your files can be named anything you wish -
they can even share the same name inside a catalog!

iOS 7 by Tutorials Chapter 9: What’s New in Xcode 5

 307

To use an image from an asset catalog in code, you use the imageNamed: method
of UIImage with the name of your asset set as shown in the following snippet:

UIImage *myImage = [UIImage imageNamed:@"RainbowTile"];

Asset catalogs are great because images no longer have to comply with a strict
naming standard in order to work on all devices and resolutions. Also, if your
project has iOS 7 as the deployment target, Xcode compiles your asset catalogs
into a runtime binary file that reduces the download time of your app.

Image slicing
Image slicing is a new feature in Xcode 5 that allows you to “slice” your images into
parts to ensure proper scaling of your images at run time. This means that a single
image can be used by multiple views — and at multiple resolutions.

The following screen shot shows image slicing in action:

Here you see a button that is sliced into nine segments. There are three sets of
lines for each direction: two outer slice handles and one inner slice handle. The
outer handles let you adjust the size of the end caps while the inner handle lets you
adjust the size of the center.

The end caps you set in the editor will be left untouched when your image is drawn
while the center can be tiled or stretched. This setting is accessed via the attributes
inspector under the Slicing section (shown in the previous screenshot).

Here’s an image that shows you the difference between a tiled and stretched asset:

iOS 7 by Tutorials Chapter 9: What’s New in Xcode 5

 308

Xcode immediately shows you what your scaled image will look like — and it’s even
smart enough to use the same slicing scheme for both the retina and non-retina
versions of your image.

Image Slicing is great because it allows you to easily use small images that can
stretch to any size while still looking great. Also, you no longer have to take a trial-
and-error approach to creating resizable end caps and sliced images. All you have
to do is drag the slice handles, set the center mode and use the image in your
project.

Auto Layout improvements
Auto Layout was introduced in iOS 6 as Apple’s replacement for the antiquated
“springs and struts” layout technology. While Auto Layout was designed to be
intuitive and allow you to easily develop interface layouts for all screen-sizes,
orientations and languages, it was quite painful to work with inside Interface
Builder itself. As a result, many developers had to resort to workarounds or by
using Auto Layout in code.

Fortunately, Xcode brings some new features to Auto Layout that make working
with Auto Layout in Interface Builder much easier:

• Interface Builder no longer changes your constraints automatically as you move
items

• But you can ask Interface Builder to calculate constraints automatically when you
choose

iOS 7 by Tutorials Chapter 9: What’s New in Xcode 5

 309

• You can now easily set up constraints between two elements by control-dragging
between them

• There are new controls to solve common Auto Layout problems, such as the Pin
and Resolve Auto layout Issues buttons in interface builder, which let you
clear constraints, reset to the suggested constraints in Interface Builder, add
missing constraints, updates constraints, update frames, and more

• The interface to create and set up constraints is now a more visual and intuitive
experience, offering popovers for setting up offsets and spacing between views
and elements

The following screenshot shows some of the new Auto Layout functions available in
Xcode 5:

Notice how there are interfaces for pining and aligning elements, each one letting
you specify several rules and constraints much quicker. Setting up complex views
with multiple constraints used to take a long time and had to be done one click at a
time. Now, you can easily see what you are changing and can do so for multiple
values at once.

With the new Auto Layout features in Xcode 5, using Auto Layout in practice
becomes a lot more feasible and less frustrating – so you no longer have an excuse
to avoid Auto Layout!

Note: For an in-depth look at the new features of Auto Layout in Xcode 5,
check out Chapter 7, “Transitioning to iOS 7 – What’s New with Auto Layout”.
You may also enjoy our “Beginning and Intermediate Auto Layout” chapters in
iOS 6 by Tutorials.

iOS 7 by Tutorials Chapter 9: What’s New in Xcode 5

 310

Preview window
Xcode 5 introduces a new way to preview your view controllers on different OS,
orientation, and screen size combinations right from Interface Builder:

Here’s an example of previewing an app on iOS 6 and iOS 7 devices using the
preview window:

iOS 7 by Tutorials Chapter 9: What’s New in Xcode 5

 311

To view the preview pane, click the Assistant Editor button, highlighted in blue:

Then select Preview from the jump bar, as shown:

You will find the preview window especially helpful if you are developing an app that
supports both iOS 6 and iOS 7 that you want to make sure looks great on both
platforms.

Automatic configuration
If you’ve been developing iOS applications for a while, you’re probably familiar with
the tedious (and often painful) process of setting up certificates, provisioning
profiles and entitlements.

Have you ever thought to yourself, “There should be an easier way to do this?” Well
you’re in luck – with Xcode 5, now there is!

Check out Xcode 5’s new automatic configuration feature, by visiting the new
Accounts tab inside the Xcode preferences window:

iOS 7 by Tutorials Chapter 9: What’s New in Xcode 5

 312

Then sign in with your developer account, and Xcode will set up certificates,
provisioning profiles, and entitlements on your behalf. Additionally, Xcode will be
fully aware of any developer programs you are enrolled in and any teams you
belong to.

You can setup new profiles and certificates while viewing the details of a
developer’s account, as shown:

You can also easily switch between any teams that you are a member of from the
General tab of your target settings, as shown here:

iOS 7 by Tutorials Chapter 9: What’s New in Xcode 5

 313

One of the real gems of automatic configuration is the new Capabilities tab in target
settings. Capabilities allow you to automatically configure and enable services for
your app, such as iCloud, Game Center, in-app purchases, background modes, and
Passbook as easily as flipping a switch:

When you enable a specific feature from within the Capabilities tab, Xcode will
automatically link the necessary frameworks and makes any required changes to
your info.plist file. This is a welcome respite from the manual configuration of the
past.

The new management features of accounts and capabilities, along with automated
provisioning and configuration means that less time is spent configuring your
project, and more time is spent where it counts — making great apps.

iOS 7 by Tutorials Chapter 9: What’s New in Xcode 5

 314

Language improvements
Previous versions of Xcode supported both LLVM and GCC, but Xcode 5 marks the
complete transition to LLVM only. To celebrate this happy occasion, several new
features and enhancements have been introduced, including modules.

Modules
Modules are a new and efficient way to include frameworks in your apps. Rather
than the old days of adding the library and importing the header, you just need to
add one line:

@import CoreData;

Modules also permit you to import specific headers from a framework, as shown:

@import Accelerate.vecLib;

It’s good practice to use modules as much as possible moving forward, as it will
improve compile-time performance, reduce the need to manage precompiled
header files, and provide automatic linking of the imported frameworks.

Other language features
In addition, there are three other language features you should be aware of:

1. LLVM 5’s Auto-Vectorizer makes use of the vector features of the modern ARM
and Intel processors in iOS and OS X hardware.

2. Xcode 5 supports all C++ 11 updates and features, such as:

a. The auto keyword

b. The nullptr keyword

c. Smart Pointers

d. Lambdas

e. Generalized Constant Expressions (constexpr)

f. Strongly-typed enums

g. Type traits and static_assert

h. And more (see the C++11 Wikipedia entry for the full list of features)

3. Xcode 5 now includes the command line tools in the package by default — which
means that when you update Xcode, the command line tools are automatically
updated as well.

iOS 7 by Tutorials Chapter 9: What’s New in Xcode 5

 315

Note: For more detailed information on the new language features, check out
Chapter 10, “What’s New with Objective-C and Foundation”.

Documentation improvements
Xcode 5 brings two big improvements with documentation: a new documentation
window, and doxygen comment parsing.

Documentation window
Documentation is now a first-class citizen in Xcode. Rather than being inside the

Xcode Organizer, documentation now has its own window:

You can access the new documentation window from the Help\Documentation
and API Reference menu (or the Option + Command + ? keyboard shortcut).
You’ll find it’s is a convenient and fast documentation browser, including tabs and
bookmarking functionality.

Doxygen comment parsing
Xcode 5 also contains a new new feature to parse and extract any doxygen-style
comments in your source files. This makes it much easier to generate
documentation for your source code – and the extracted comments are even used
in code completion and quick-help popups!

Here’s an example of a method declaration for setCarouselItems: and the
corresponding comment:

iOS 7 by Tutorials Chapter 9: What’s New in Xcode 5

 316

And here’s the resulting documentation when you option-click on a line that calls
setCarouselItems::

As an Objective-C and iOS developer you’ve never really had a standard, official
way to document your source code like Java or Ruby developers can.

With support for doxygen-style comments available by default in Xcode 5,
Objective-C development can take a big step forward in making projects and
custom code much easier to use and understand.

So be a tidy coder and start developing good habits by commenting your code!

Debugging improvements
Since GCC has been removed from Xcode 5, and by association GDB, LLDB has
taken the reins as the debugger of choice. The debugging features added to Xcode
5 are probably some of the best improvements yet.

Data Tips
First on the list are data tips, which allow you to see the value of your variables as
you step through your code. An example of a data tip is shown in the following
screenshot:

iOS 7 by Tutorials Chapter 9: What’s New in Xcode 5

 317

Quick Look
Quick Look in data tips is a feature clearly inspired by the Finder. Quick Look
displays a graphical representation of variable values, which means you no longer
have to rely on using po from the debug console. It can display images, Bezier
paths, colors and several other preview types all within the editor itself.

Here are some examples of the available data tips in action:

UIBezierPath

UIColor

CGRect

UIImageView

NSString

iOS 7 by Tutorials Chapter 9: What’s New in Xcode 5

 318

Debug Gauges
Debug gauges have been greatly enhanced as part of the improvements to the
debugger interface. Little graphical gauges now appear in the debug navigator of
Xcode and provide live feedback for crucial metrics such as memory and CPU
usage, as illustrated:

You can monitor a wide range of metrics with both familiar and new widgets in
Xcode 5, including OpenGL frame rates, iCloud activity, and energy consumption
among others. Gauges add very little overhead to the system and require as little
as 1% of a device’s resources. This is a great help when you just want some quick
performance statistics and don’t want to go all the way into Instruments.

Clicking on a gauge presents you with a beautiful live report in the editor pane that
shows you extended information about the selected metric. Here is a screenshot of
the CPU Report in Xcode 5:

iOS 7 by Tutorials Chapter 9: What’s New in Xcode 5

 319

The CPU Report shows you the percentage of CPU currently being used by your
process, as well as what’s being used by the rest of the device. It also shows you
the CPU utilization over time, along with the individual CPU utilization of each
thread in your app.

However, debug gauges are still no replacement for Instruments — and that’s why
the debug reports contain a button in the top right corner labeled Profile In
Instruments. This allows you to jump straight into Instruments for the currently
selected metric.

Analyzing a single file
There’s just one more thing to mention about debugging in Xcode 5: you can now
analyze a single file by going to Product > Perform Action > Analyze file name,
where file name is the name of the individual file to analyze. This should prove to
be extremely useful when working with a very large project where compile and
analysis performance tends to be sluggish.

Testing improvements
Testing methodologies and tools are now an integral part of Xcode 5, which now
includes proper support for unit tests, the popular test-driven development
workflow, and continuous integration services.

Unit testing
Xcode 5 includes a new native test framework, XCTest, which replaces OCUnit as
the default test framework in Xcode. XCTest is derived from OCUnit but improved in

iOS 7 by Tutorials Chapter 9: What’s New in Xcode 5

 320

the process, and is exclusive to iOS 7 and OS X Mavericks. Fortunately for you,
OCUnit is still around and both frameworks can co-exist in the same project.

If you want to migrate to XCTest but already have existing tests in OCUnit, don’t
panic! Xcode 5 offers the ability to migrate your existing tests from the OCUnit
framework to the XCTest framework. It’s found under the menu item Edit >
Refactor > Convert to XCTest, as shown:

The following image shows the new test navigator in Xcode 5, located just to the
right of the Warnings and Errors navigator:

This test navigator offers a complete overview of all the tests in the current
workspace. It’s easy to add new test targets and test classes; as well, you can run
individual tests or ad-hoc collections of tests as the need arises. The navigator
displays the outcome of the last test run as well as the latest integration results.

Opening one of the test implementation files in the editor shows you which tests
have been run, the result of the most recent integration, as well as any errors or
warnings for the test. You can see this feature in action in the screenshot:

iOS 7 by Tutorials Chapter 9: What’s New in Xcode 5

 321

For those of you using continuous integration tools such as Jenkins and Hudson,
you’ll be happy to know that those tests can now be run directly from the command
line with the xcodebuild test command. To use it open a Terminal window,
navigate to the folder with the .xcodeproj file and run this command:

xcodebuild test -scheme Xcoder -destination platform='iOS
Simulator',OS=latest,name=iPad

This tells the xcodebuild tool to run your project’s test target (provided you have
one) on the specified scheme and destination; in this case it’s the iPad simulator
running the latest version of iOS. Your results should look similar to the following
screenshot:

For help and information on the xcodebuild command run man xcodebuild in a
Terminal window.

Note: To learn more about Unit Testing in Xcode 5, check out Chapter 11,
“Unit Testing in Xcode 5”.

Continuout Integration and Bots
If you aren’t currently using a continuous integration server because you’re
concerned with potential overhead and maintenance issues, then you might be
interested in the brand new Xcode service in OS X Mavericks Server.

iOS 7 by Tutorials Chapter 9: What’s New in Xcode 5

 322

The new Xcode service includes a feature called Bots, which makes continuous
integration and automated unit testing a breeze. These bots are processes run from
the Xcode service which automate the tasks of building, analyzing, testing and
archiving the current version of a project in a repository.

Bots can be run automatically, in one of two configurations:

• On Commit: On each commit to your repository, the bot will checkout the code,
analyze it, build it and run any tests.

• Periodically: On a defined schedule — hourly, daily or weekly – the bots run a
full integration and are even nice enough to sign and archive the application for
you. This is intended to emulate a production environment as closely as possible.

You also have the option of running a manual integration process any time you
wish. However, automation is where it’s at — once you automate your integration
process you’ll wonder why you’ve been avoiding it all this time.

Bots keep a full history of integration runs; this data is visible in Xcode 5 on the
development workstation, which means you don’t need access to the integration
server to access integration history.

Builds and tests will run just fine on the simulator, but the bots can also run builds
and tests on physical iOS devices that are connected to the server. No more
hunting down test hardware — just leave it plugged in to the server and it will
always be there when it’s time to build. How convenient is that?

Note: To learn more about Integration, check out Chapter 14, “Beginning
Continuous Integration with Xcode 5”.

Source control improvements
Source control is also hugely improved in Xcode 5, and is now a central part of the
development workflow.

Xcode 5 has moved its source control menu from File\Source Control to a top-
level Source Control menu. You’ll also see a few additional options, such as
viewing history and viewing and switching branches:

iOS 7 by Tutorials Chapter 9: What’s New in Xcode 5

 323

Source control functionality is now baked directly into the code editor. You can
right-click on any line of code and select Show Blame for Line to view a popover
detailing the person who committed the offending line of code, along with the
revision’s SHA, date and description as shown:

From inside the popup, you can immediately open the revision in Blame or
Comparison mode in the Version Editor.

Note: For an in-depth look at source control in Xcode 5, check out Chapter 12,
“Beginning Source Control in Xcode 5”.

Performance improvements
Last but not least, one of the nicest changes you’ll notices in Xcode 5 is increased
performance. Search, incremental builds, tab creation and device discovery are all
significantly faster. The following chart shows these performance improvements
visually:

iOS 7 by Tutorials Chapter 9: What’s New in Xcode 5

 324

As stated in WWDC Session 400 – What’s New in Xcode 5, these performance gains
are almost exclusively the result of building Xcode 5 on top of ARC, instead of the
antiquated garbage collection technology of earlier versions of Xcode.

Note: To learn more about ARC, check out Chapter 2 and 3 of iOS 5 by
Tutorials, “Beginner and Intermediate ARC”.

Where to go from here?
The future is here, and its name is Xcode 5. This chapter was designed to bring you
up to speed quickly with the new features of Xcode 5, seeing as you’ll be using it
throughout this book — and ostensibly for all your future iOS and Mac development
projects as well!

There’s a wealth of changes, updates, new features, and enhancements in Xcode 5,
all designed to simplify your life as an Objective-C developer, and to help you write
fast, efficient, high-quality code. Apple’s dedication to helping the iOS and OS X
development community produce the best apps possible is evident in great new
features such as XCTest, bots, source control integration and automatic
configuration.

For a more in-depth look at the topics mentioned in this chapter, please refer to
this book’s table of contents, or Apple’s own Xcode 5 documentation.

Objective-C is the most common language for developing iOS and OS X apps. Sure,
you can use third party frameworks that allow you to develop apps using other
languages such HTML & Javascript or C#, but if you want to write blazingly fast,
super efficient native apps then you need to use Objective-C.

You'd be forgiven for thinking that Objective-C is fairly constant as it’s been around
since the early eighties. However, think back over the last few years, since the
release of the initial iPhone SDK in 2008, and you'll recall many advances in the
language that we all know and have come to love.

One of the biggest changes came about in 2011 when Apple announced Automatic
Reference Counting, or ARC. This delivered a much stricter, but more developer
friendly, memory management model. Naming conventions were formalized into a
set of rules that ARC adheres to. This made developing both iOS and desktop apps
much easier. Suddenly, a great deal of boilerplate code for memory management,
and the headaches that went with it, disappeared in one fell swoop.

Objective-C is constantly evolving, and since Apple drives the majority of its
development, iOS and OS X benefit handsomely. Staying on top of the newest
changes to the language will make you a better developer, as you'll be aware of the
latest tools and improvements, many of which directly affect the performance of
your apps.

So what's new with Objective-C in iOS? Perhaps a better question is what's new in
both iOS 7.0 and Xcode 5. The compiler is part of the Xcode tool-chain, whereas
the runtime and system libraries are part of the OS; both of these have seen many
improvements in the latest release.

On the tool-chain side of things you have the new instancetype return type and
modules with an aim to vastly improve the compile time of your apps. The the
system libraries include a few new classes as well as several improvements to the
Foundation classes.

In this chapter you’ll learn about some of the new shiny bits in both Objective-C
and Foundation and why you should start using them. Note that unlike other

Chapter 10: What’s New in
Objective-C and Foundation
By Matt Galloway

iOS 7 by Tutorials Chapter 10: What’s New in Objective-C and Foundation

 326

chapters in this book, this chapter will be an article rather than a tutorial so you can
get an overview of the new features as quickly as possible. Let's get started!

Note: Did you know that Apple isn’t responsible for the original
implementation of Objective-C? Brad Cox and Tom Love of Stepstone
originally created it in the early 1980s. Their idea was to port various elements
of the Smalltalk language to C.

Objective-C first gained popularity in 1988 when Steve Jobs licensed it
through his company NeXT and then used it to develop the original AppKit and
Foundation frameworks. The rest, as they say, is history.

Modules
Chances are good that you’ve written the #import statement a thousand times or
more:

#import <UIKit/UIKit.h>
#import <MapKit/MapKit.h>
#import <iAd/iAd.h>

This syntax harkens back to the roots of Objective-C: vanilla C. The #import
statement is a pre-processor directive that works in a similar fashion to #include.
The only difference is that #import doesn’t re-import headers that have already
been imported; it’s a one-shot deal.

When the pre-processor meets an #import directive, it literally replaces that single
line with the entire contents of the header file being imported. It does this
recursively, through a potentially large number of header files.

The UIKit umbrella header, UIKit.h, imports all of the other headers included in the
UIKit framework. This means that you don't have to manually import each header
file in the framework, such as UIViewController.h, UIView.h or UIButton.h.

Curious about the size of the UIKit framework? Go through and count all the lines in
the entirety of UIKit's headers, you'll find it amounts to over 11,000 lines of code!

In a standard iOS app, you’ll import UIKit in most of your files, meaning every
single file ends up being 11,000 lines longer. That's less than ideal; more lines of
code means longer compile times.

Original solution: Pre-compiled Headers
Pre-compiled header files, or PCH files, attempt to address this problem by
providing a mechanism for pre-computing and caching much of the work required

iOS 7 by Tutorials Chapter 10: What’s New in Objective-C and Foundation

 327

during the pre-processing phase of compilation. You've probably seen the stock
PCH file that’s generated by the templates bundled with Xcode; it looks like this:

#import <Availability.h>

#ifndef __IPHONE_5_0
#warning "This project uses features only available in iOS SDK 5.0 and
later."
#endif

#ifdef __OBJC__
 #import <UIKit/UIKit.h>
 #import <Foundation/Foundation.h>
#endif

The #warning in there notifies the developer if the app they’re building targets an
SDK prior to iOS 5. The UIKit and Foundation umbrella header files are part of this
stock PCH, since every file in your app will use Foundation and most will use UIKit.
Therefore these are generally good additions to the PCH file so that the pre-
computation and caching will benefit the compilation of every file in your app.

“So what's wrong with that?” you might ask. There’s nothing technically wrong with
the PCH as-is — if it isn’t broke, don’t fix it. However, you may be missing out on a
host of performance benefits that result from a well-maintained, highly tuned PCH
file. For instance, if several areas of your app use the Map Kit framework, you may
see an improvement in compilation time by simply adding either the Map Kit
umbrella header file or the individual header files of the Map Kit classes you use to
the PCH file.

We're all guilty of being lazy developers though, and nobody has time to tune their
PCH file for each project they work on. That's why modules were developed as a
feature of LLVM.

Note: LLVM is a collection of modular and reusable compiler and toolchain
technologies bundled with Xcode. LLVM has several components; the most
important ones for Objective-C developers are Clang, the native C, C++ and
Objective-C compiler; and LLDB, the native debugger — which is the
developer’s best friend.

New solution: Modules
The first public appearance of modules in Objective-C was in a talk given by Apple’s
Doug Gregor at the 2012 LLVM developers' meeting. It’s a fascinating talk, and it’s
highly recommended for anyone interested in the workings of their compilers. You
can find the video of the session online at http://llvm.org/devmtg/2012-11/#talk6.

iOS 7 by Tutorials Chapter 10: What’s New in Objective-C and Foundation

 328

Modules encapsulate frameworks in much cleaner ways than ever before. No longer
does the pre-processor need to replace an #import directive with the entire contents
of the file verbatim. Instead, a module wraps a framework into a self-contained
block, which is pre-compiled in the same manner as a PCH file and delivers the
same improvements in compilation speed. However, you no longer have to state
which frameworks you're using in a PCH file; you get the speed boost simply by
using modules.

But there's more to modules than just that. I'm sure you recall the numerous steps
you go though the first time you use a new framework in an app; it tends to go
something like this:

1. Add #import line to the file using the framework.

2. Write code that uses the framework.

3. Compile.

4. Watch as errors are spat out during linking.

5. Remember that you forgot to link the framework.

6. Add the linking of the framework to the project build phase.

7. Compile again.

It’s incredibly common to forget to link the framework, but modules solve this issue
neatly as well. (Is there anything that modules can’t do?)

A module tells the compiler not only which header files make up the module, but
also what needs to be linked. This saves you from having to manually link the
framework yourself. It's only a small thing, but anything that makes developing
code easier is a good thing!

How to use modules
Modules are extremely easy to use in your projects. For existing projects, the first
thing to do is enable them. You can find this option by searching for modules in the
project’s Build Settings (making sure to select All, not Basic) and then changing
the Enable Modules options to Yes, like so:

All new projects created with Xcode 5 have this enabled by default, but you should
definitely enable it on all your existing projects.

The Link Frameworks Automatically option can be used to enable or disable the
automatic linking of frameworks as described earlier. There's little reason why you'd
want to disable this though.

iOS 7 by Tutorials Chapter 10: What’s New in Objective-C and Foundation

 329

Once modules are turned on, you can start using them in your code. To do that, it’s
simply one small change to the syntax you’re used to. Instead of the usual #import
syntax, you simply use @import:

@import UIKit;
@import MapKit;
@import iAd;

It’s still possible to import the parts of a framework that you need. As an example,
if you wanted to import just UIView, you would write this:

@import UIKit.UIView;

Yup — it really is that simple! Well, sorry, that’s not exactly the truth. It’s even
simpler than that. Technically, you don't need to convert all your #import lines to
@import lines, as the compiler will implicitly convert them for you under the hood.
However, it’s always good practice to start using new syntax as often as you can.

Before you start getting too excited about modules, there is one little caveat,
unfortunately. As of Xcode 5.0, it’s not possible to use modules with your own
frameworks or third-party frameworks. This will probably come in time — but for
now it's an unfortunate downside. Nothing’s perfect – not even Objective-C!

New return type - instancetype
A new type has been added to Objective-C, aptly named instancetype. This can
only be used as a return type from an Objective-C method and is used as a hint to
the compiler that the return type of the method will be an instance of the class to
which the method belongs.

Note: This feature is not strictly new in Xcode 5 and iOS 7, but has been
stealthily dropped into recent Clang builds over time. However, Xcode 5 marks
the first time that Apple has started using it throughout their frameworks. You
can read more about this language feature on the official Clang website:
http://clang.llvm.org/docs/LanguageExtensions.html#objective-c-features.

Why is instancetype useful? Consider the following code:

NSDictionary *d = [NSArray arrayWithObjects:@(1), @(2), nil];
NSLog(@"%i", d.count);

While this is clearly incorrect, the compiler would historically do absolutely nothing
to inform you of the error. Try it for yourself if you still have a copy of Xcode 4.6
lying around on a floppy somewhere. You'll notice that no warning is generated,

iOS 7 by Tutorials Chapter 10: What’s New in Objective-C and Foundation

 330

even though the code is clearly wrong! The code will even run without complaint as
both NSDictionary and NSArray instances respond to count.

The reason this works at runtime is thanks to the powerful, dynamic nature of
Objective-C. The type is purely a guide to the compiler. The count method is looked
up at runtime on whatever class the dictionary variable happens to be. In this
case, the count method exists, so the compiler believes all is well. However, this
may come back to bite you later if you added code that uses another method that
NSArray doesn't have in common with NSDictionary, such as objectAtIndex:. At
first, it wouldn’t be clear exactly where the issue lies.

But why does the compiler not figure out that the instance returned by +[NSArray
arrayWithObjects:] is not an instance of NSDictionary? Well, that’s because its
method signature is as follows:

+ (id)arrayWithObjects:(id)firstObj, ...;

Notice the return type is id. The id type is an umbrella type meaning any
Objective-C class; it doesn't even have to be a subclass of NSObject. It literally has
no type information other than the fact it’s an instance of an Objective-C class. For
this to be useful, the compiler doesn't bother warning you when you implicitly cast
id to a concrete type, such as NSDictionary* in the example above. If it did
generate a warning, the id type would be largely useless.

But why is the return type of that method id in the first place? That’s so you can
successfully subclass the method and still use it without issue. To demonstrate why,
consider the following subclass of NSArray:

@interface MyArray : NSArray
@end

Now consider the use of your new subclass in the code below:

MyArray *array = [MyArray arrayWithObjects:@(1), @(2), nil];

Ah — now you see why the return type of arrayWithObjects: must be id. If it were
NSArray*, then subclasses would require to be cast to the necessary class. This is
where the new instancetype return type comes in.

If you look at the header file for NSArray in the iOS 7.0 SDK, you'll notice the
method signature for this method has changed to the following:

+ (instancetype)arrayWithObjects:(id)firstObj, ...;

The only difference is the return type. This new return type provides a hint to the
compiler that the return value will be an instance of the class the method is called
on. So when arrayWithObjects: is called on NSArray, the return type is inferred to

iOS 7 by Tutorials Chapter 10: What’s New in Objective-C and Foundation

 331

be NSArray*; if called on MyArray, the return type is inferred to be MyArray* and so
on.

This works around around the problem with the umbrella id type, while maintaining
the ability to subclass successfully. If you compile the original code in Xcode 5,
you’ll now see the following warning:

warning: incompatible pointer types initializing 'NSDictionary *' with
an expression of type 'NSArray *' [-Wincompatible-pointer-types]
 NSDictionary *d = [NSArray arrayWithObjects:@(1), @(2), nil];
 ^ ~~~

w00t — now that's helpful! You now have the opportunity to fix the problem before
it turns into a crash later down the line.

Initializers are also candidates for using this new return type. The compiler has
warned you for some time now if you set the return type of an initializer to that of
an incompatible type. But presumably it’s just implicitly converting the id return
type to instancetype under the hood. You should still use instancetype for
initializers though, because it's better to be explicit for habit's sake.

Strive to use instancetype as much as possible going forward; it's become a
standard for Apple — and you never know when it will save you some painful
debugging time later on.

No more explicit bridging — sometimes
Ever since ARC was introduced, you’ve had to use strange looking bridge casts to
cast between pointers to Objective-C class instances and raw pointers. For
example, if you were storing NSString objects in a Core Foundation array, then
you’d use something such as the following to obtain elements of that array:

CFMutableArrayRef cfArray = CFArrayCreateMutable(NULL, 0, NULL);
CFArrayAppendValue(cfArray, @"Foo");
CFArrayAppendValue(cfArray, @"Bar");
CFArrayAppendValue(cfArray, @"Baz");

NSString *obj =
 (__bridge NSString*)CFArrayGetValueAtIndex(cfArray, 1);

But an improvement to the compiler that comes bundled with Xcode 5 means you
no longer need the explicit bridging cast in cases like this. The final line above can
be replaced with the much more succinct, easier to read version below:

NSString *obj = CFArrayGetValueAtIndex(cfArray, 1);

iOS 7 by Tutorials Chapter 10: What’s New in Objective-C and Foundation

 332

This minor tweak means that a lot of extraneous code can now be removed.
Remember, anything that makes your life easier during development is a good
thing!

The bridging cast is no longer required because Core Foundation has been checked
to ensure that all methods follow the strict naming conventions imposed by the
Cocoa frameworks. For example, this means the compiler knows that the
CFArrayGetValueAtIndex function returns an object not owned by the caller.

However, his doesn’t mean all bridging casts are redundant. If the Core Foundation
method returns an object that’s owned by the caller, then you still need to use a
bridging cast to inform the compiler whether or not you want ARC to manage the
returned object. For instance, the compiler has no clue of your true intentions in the
following code:

NSMutableArray *array = CFArrayCreateMutable(NULL, 0, NULL);

Since CFArrayCreateMutable returns an object owned by the caller, there is no way
for the compiler to know whether or not you want that object to be managed by
ARC. You may end up casting back to a CFMutableArrayRef at a later date and then
release it yourself using CFRelease, which would cause the following compile-time
error:

error: implicit conversion of C pointer type 'CFMutableArrayRef' (aka
'struct __CFArray *') to Objective-C pointer type 'NSMutableArray *'
requires a bridged cast

NSMutableArray *array = CFArrayCreateMutable(NULL, 0, NULL);
 ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

You’ll also find other places where bridging casts are still necessary, such as casting
an Objective-C class instance pointer to a void pointer. Hopefully as ARC and the
compiler are refined, some of these cases will be eliminated and explicit bridge
casts will no longer be required.

New Foundations
The remaining part of this chapter is dedicated to various new bits of functionality
in Foundation, the core framework of all Objective-C development. It's hard to
develop Objective-C applications without Foundation, as all iOS apps require its
use. Finding new gems in Foundation is a big part of the fun of getting your hands
on a new release of the iOS SDK!

One of the major improvements in this release of Foundation lies in networking; so
much, in fact, that there's an entire chapter dedicated to it in this book. Read more
about networking-specific changes in Chapter 16, “Networking with NSURLSession”.

iOS 7 by Tutorials Chapter 10: What’s New in Objective-C and Foundation

 333

The rest of this section outlines other interesting additions and changes to
Foundation.

NSArray
Trying to retrieve an object from an instance of NSArray will throw an exception if
the index you supply is beyond the length of the array. You’ll also often find a need
to access the first and last objects of an array, such as when you're using a
mutable array to hold a queue. In a first-in-first-out (FIFO) queue you pop objects
from the front of the array, and in a first-in-last-out (FILO) you pop objects from
the end of the array.

However, when you retrieve the first or last objects from an array, you must always
ensure that you're not going to read past the end of the array, which could easily
occur if the array were empty. This leads to a lot of tedious code to ensure a call to
objectAtIndex: won't throw an exception, like so:

NSMutableArray *queue = [NSMutableArray new];

// ...

if (queue.count > 0) {
 id firstObject = [queue objectAtIndex:0];
 // Use firstObject
}

// ...

if (queue.count > 0) {
 id lastObject = [queue objectAtIndex:(queue.count - 1)];
 // Use lastObject
}

In the case of retrieving the last object, you’ve always had the option of using the
following method of NSArray:

- (id)lastObject;

Objective-C developers are the rejoicing the world over, as for the first time they
have access to an equivalent method to retrieve the first object of the array:

- (id)firstObject;

This single, simple method turns out to be extremely useful. No longer do you have
to account for an array being empty. If you’ve ever felt the sting of a crash because
of an out of bounds exception then you'll definitely see this as a welcome addition.

iOS 7 by Tutorials Chapter 10: What’s New in Objective-C and Foundation

 334

Note: If you look at the header for NSArray carefully, you'll see that
firstObject has actually been around since iOS 4.0 but it wasn't made public
until iOS 7. Therefore you could have accessed the method prior to iOS 7, but
that would have required declaring the firstObject selector in one of your
own header files to inform the compiler that it does in fact exist. That’s
certainly not a recommended approach, so it's good that Apple finally brought
it out of hiding.

The previous code snippet can now be rewritten to use these two utility methods
and forego the length checks, as illustrated below:

NSMutableArray *queue = [NSMutableArray new];
// ...

id firstObject = [queue firstObject];
// Use firstObject

id lastObject = [queue lastObject];
// Use lastObject

NSData
Data is one of those things you deal with a lot when you're programming. NSData is
the Foundation class that encapsulates raw bytes and provides methods for
manipulating those bytes, as well reading and writing data to and from a file. But
one very common task for which there’s been no native implementation is Base64
encoding and decoding. At least that was the case until the release of iOS 7.

Base64 is a group of binary-to-text encoding schemes that represent binary data in
ASCII format. These schemes are commonly used where there’s a need to encode
binary data to be stored on or transferred over media designed to deal solely with
textual data. This ensures the data remains intact without modification during
transport. The most common use of Base64 encoding is handling attachments in
email, as well as encoding small images that form part of a JSON response returned
by a web based API.

Prior to iOS 7.0, Base64 encoding and decoding tasks required you to implement
your own method or include part of a third party framework. In typical Apple
fashion, it's now very easy to use this functionality. There are four core Base64
methods as follows:

- (id)initWithBase64EncodedString:(NSString *)base64String
 options:(NSDataBase64DecodingOptions)options;

- (NSString *)base64EncodedStringWithOptions:

iOS 7 by Tutorials Chapter 10: What’s New in Objective-C and Foundation

 335

 (NSDataBase64EncodingOptions)options;

- (id)initWithBase64EncodedData:(NSData *)base64Data
 options:(NSDataBase64DecodingOptions)options;

- (NSData *)base64EncodedDataWithOptions:
 (NSDataBase64EncodingOptions)options;

The first two methods deal with strings, while the latter two deal with UTF-8
encoded data. Both pairs of methods perform the same action, but sometimes
using one over the other will prove more effective. If you were to Base64 encode a
string and then write it to a file, you may decide to use the pair that handles UTF-8
encoded data. On the other hand, if you were to Base64 encode a string and then
use that in some JSON, you may decide to use the pair that handles strings.

So if you’ve ever included a Base64 method or two in your project, now is the time
to remove that unnecessary code and use Apple’s implementations instead!

NSTimer
Timers often find homes in apps that perform periodic tasks. As useful as they may
be, the problem is that they may fire off constantly when several timers are in use.
This means the CPU is constantly active; it would be much more efficient if the CPU
woke up, performed a batch of tasks and then went back to sleep. To solve this
issue, Apple has added a tolerance property to NSTimer to help accommodate this
behavior.

The tolerance property provides the system with a guide as to how late a timer is
permitted to fire after it’s schedule time. The underlying system will then group
actions accordingly to reduce CPU overhead. The methods for accessing this new
property are as follows:

- (NSTimeInterval)tolerance;
- (void)setTolerance:(NSTimeInterval)tolerance;

You may find you never need to use this property, but if you're firing several timers
in very close succession, you may find it useful to benchmark your app’s CPU usage
using Instruments while tinkering with this setting.

NSProgress
It's not often that entirely new classes get added to Foundation. It's a pretty stable
framework, mainly because new core classes aren’t required too often. However,
iOS 7.0 presents an entirely new class named NSProgress.

In essence, NSProgress aims to deliver progress reporting throughout Objective-C
code, neatly separating the progress of individual components. For example, if you

iOS 7 by Tutorials Chapter 10: What’s New in Objective-C and Foundation

 336

perform a few different tasks on some data, then each task can monitor its own
progress and report back to its parent task.

The structure of NSProgress
The simplest way of using NSProgress is to use it to report progress on a set of
tasks. For example if you have 10 tasks to achieve, then you can report progress as
each task finishes. As each task finishes the progress goes up by 10%. Then, using
Key Value Observing (KVO) on the NSProgress instance, you will be notified about
this increase in progress. The following diagram shows the various method calls to
achieve this.

iOS 7 by Tutorials Chapter 10: What’s New in Objective-C and Foundation

 337

Each time the progress increases, KVO fires a notification back to the main thread.
At this point, you would update your UI to show the progress marching on. For
example you might use it as an opportunity to update a progress bar, or set the
text on a label to give an indication of the progress.

But there is more to NSProgress than just this. Apple have made it incredibly
powerful, mainly through the use of a child-parent relationship structure. The

Main%thread%

Create%

NSProgress% Worker%thread%

Register%KVO%

Start%work%and%%
pass%NSProgress%

Total%=%10%
Complete%=%0%

setTotalUnitCount:%

Total%=%10%
Complete%=%1%

setCompletedUnitCount:%

KVO%

fracEonComplete%=%0.0%

KVO%

fracEonComplete%=%0.1% !
!
!%

Total%=%10%
Complete%=%10%

setCompletedUnitCount:%

KVO%

fracEonComplete%=%1.0%

Unregister%KVO%

X%

X%

iOS 7 by Tutorials Chapter 10: What’s New in Objective-C and Foundation

 338

structure of NSProgress is much like a nested tree: each instance can have one
parent and many children. Each instance has a total number of units of work to be
performed, and as the task progresses the completed number of units is updated to
reflect the current state. In doing so, the parent (if one exists) is notified of the
progress as well.

To reduce the need to pass around NSProgress instances, each thread has its own
NSProgress instance and child instances can be created directly from this instance.
Without this functionality, every task that wanted to report progress in this way
would have to be altered to take an NSProgress parameter.

Reporting progress
Using NSProgress is simple. It all starts with the following method:

+ (NSProgress *)progressWithTotalUnitCount:(int64_t)unitCount;

This creates a new instance of NSProgress as a child of the current instance and
initializes it with the total number of units of work that will be performed overall.
For example, if the task were to loop through an array, then you would probably
initialize the NSProgress instance with the count of the array, like so:

NSArray *array = /* ... */;

NSProgress *progress =
 [NSProgress progressWithTotalUnitCount:array.count];

[array enumerateObjectsUsingBlock:
 ^(id obj, NSUInteger idx, BOOL *stop) {
 // Perform an expensive operation on obj
 progress.completedUnitCount = idx;
 }];

As the iteration progresses, the above code updates the instance of NSProgress to
reflect the current progress.

Receiving progress updates
You can determine the progress of the task at any point through the following
property:

@property (readonly) double fractionCompleted;

This returns a value from 0 to 1, indicating the total progress of the task. When
there are no child instances in play, fractionCompleted is simply the completed unit
count divided by the total unit count.

iOS 7 by Tutorials Chapter 10: What’s New in Objective-C and Foundation

 339

Key Value Observing (KVO) is the best way to be notified when the
fractionCompleted property changes its value. Doing so is simple. All you need to
do is register as an observer of the fractionCompleted property of the relevant
NSProgress object like so:

[_progress addObserver:self
 forKeyPath:@"fractionCompleted"
 options:NSKeyValueObservingOptionNew
 context:NULL];

Then, override the method that KVO uses to notify you of changes, like so:

- (void)observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context
{
 if (object == _progress) {
 // Handle new fractionCompleted value
 return;
 }

 // Always call super, incase it uses KVO also
 [super observeValueForKeyPath:keyPath
 ofObject:object
 change:change
 context:context];
}

In this method you would handle the change in fractionCompleted value. For
example, you might change the value of a progress bar or a label to indicate the
current level of completion.

Of course, it's important to remember to unregister from KVO once you're done,
like so:

[_progress removeObserver:self
 forKeyPath:@"fractionCompleted"
 context:NULL];

You must always unregister and your app will crash if you don't unregister by the
time the registered object (self in this example) is deallocated. So ensure that you
unregister as a last resort in dealloc if necessary.

iOS 7 by Tutorials Chapter 10: What’s New in Objective-C and Foundation

 340

Reporting progress on a set of tasks
The power of NSProgress is quite apparent when child instances come into play and
you need to provide an overall progress for a sequence of tasks. For example,
consider the following set of tasks:

1. Download a large JSON encoded file from the Internet.

2. Parse the JSON into an Objective-C model object.

3. Process the object.

4. Save the object to a local database.

A naïve approach to providing the progress for this set of tasks would consider that
there are 4 total units of work to do, and after each one is done the number of
completed units increases by 1. This would mean that as the set of tasks
progressed, the progress would jump from 0% to 25%, to 50%, to 75%, and finally
to 100%.

But wouldn’t it be better if the progress of each individual task was reported so that
the progress goes smoothly through from 0% to 25% as the file is downloaded,
from 25% to 50% as the JSON is parsed, and so on and so forth. This sort of
behavior is possible with NSProgress without the need for reams of additional code.

Just as long as each task creates its own NSProgress instance using
progressWithTotalUnitCount: and sets the completed unit count accordingly, then
it's relatively straightforward to implement this kind of progress measurement.

All that you’d have to do to implement progress reporting for all four tasks is the
following:

NSProgress *progress =
 [NSProgress progressWithTotalUnitCount:4];

[progress becomeCurrentWithPendingUnitCount:1];
// Download data
[progress resignCurrent];
progress.completedUnitCount = 1;

[progress becomeCurrentWithPendingUnitCount:1];
// Parse JSON to model object
[progress resignCurrent];
progress.completedUnitCount = 2;

[progress becomeCurrentWithPendingUnitCount:1];
// Process object
[progress resignCurrent];
progress.completedUnitCount = 3;

iOS 7 by Tutorials Chapter 10: What’s New in Objective-C and Foundation

 341

[progress becomeCurrentWithPendingUnitCount:1];
// Save object to local database
[progress resignCurrent];
progress.completedUnitCount = 4;

The beauty of this model is that it doesn't actually matter if the sub-tasks report
their own progress through NSProgress. If they don't then this will still work, but the
progress will jump from 0%, to 25%, to 50%, to 75%, to 100%. That's fine. But if
each sub-task does report progress through an NSProgress, just like you're doing,
then the overall progress your main task reports, will go up smoothly. Read on to
find out how that works.

You’ll have noticed a couple of methods not yet mentioned:

- (void)becomeCurrentWithPendingUnitCount:(int64_t)unitCount;
- (void)resignCurrent;

Recall the discussion earlier about each thread having its own NSProgress instance.
Before you execute a task that will report its progress back to the caller, call
becomeCurrentWithPendingUnitCount: and indicate how much of your total work is to
be regarded as completed by this sub-task. So in the example above, each sub-task
is assigned a single unit of the overall four units.

As each sub-task progresses and reports via its own instance of NSProgress, the
parent NSProgress reflects the total progress of the current task. So when the
download is half way through, the overall progress will be 12.5%.

It's worth noting that you don't need to worry whether each sub-task supports
NSProgress. If it does, then progress will be reported to the parent. But if it doesn't,
then the progress simply won't update until that sub-task finishes and sets the
number of completed units on the main task's instance of NSProgress.

Unequal sub-task weights
In the example above, it's unlikely that each sub-task will take exactly the same
amount of time. It's also unlikely that your app knows in advance how long each
task will take — there’s no NSPsychic class just yet. :]

If your sub-tasks are known to take unequal time, then you probably have a rough
idea of the proportion of time each subtask will take. In the example above, the file
download will likely take the most time, then the processing of the data, then the
parsing of the JSON, then finally the save to a local database. The weighting could
be assigned as follows:

1. 9 – Download.

2. 5 – Processing.

3. 2 – Parsing.

4. 1 – Saving.

iOS 7 by Tutorials Chapter 10: What’s New in Objective-C and Foundation

 342

To achieve this weighting with NSProgress, set up the main task's progress with
some large total count and then assign a fraction to each sub-task in unequal
amounts. Taking the weights above and applying them to the example, you would
do the following:

NSProgress *progress =
 [NSProgress progressWithTotalUnitCount:17];

[progress becomeCurrentWithPendingUnitCount:9];
// Download data
[progress resignCurrent];
progress.completedUnitCount = 9;

[progress becomeCurrentWithPendingUnitCount:2];
// Parse JSON to model object
[progress resignCurrent];
progress.completedUnitCount = 11;

[progress becomeCurrentWithPendingUnitCount:5];
// Process object
[progress resignCurrent];
progress.completedUnitCount = 16;

[progress becomeCurrentWithPendingUnitCount:1];
// Save object to local database
[progress resignCurrent];
progress.completedUnitCount = 17;

Notice how you set the pending unit count of each sub-task according to the weight
of each task, and then set the completed unit count after each sub-task
appropriately.

In this example, once the download was half way through, the progress of the main
task would be 6 / 20 = 30%. Similarly, half way through the processing sub-task
the progress would be 16.5 / 20 = 82.5%.

Weighting like this gives you much smoother display in your progress UI elements.
How to weight each sub-task depends entirely on the tasks; there is no right
answer. You will need to experiment with your own tasks to find a combination that
works for your specific situation.

That wraps it up for NSProgress! If you’d like to see this in action, check out the
sample project called Progressive included in the resources for this chapter. Take
a look around the app; it uses Key Value Observing (KVO) on the current
NSProgress instance's fractionCompleted property to update a label indicating the
current progress of an overall task.

iOS 7 by Tutorials Chapter 10: What’s New in Objective-C and Foundation

 343

Challenges
In this chapter you’ve learned about several new features of Objective-C and its
associated frameworks. You should always aim to stay up-to-date with advances in
both the language and core system frameworks such as Foundation. If you do so,
then you’ll be able to make use of the latest and greatest offerings from Apple.

Go forth and make your apps compiler faster using modules. Make them more
resilient to awkward bugs arising from umbrella id return types by using
instancetype instead. And finally, start using all the fun new methods and classes
found in Foundation!

Before you can truly use NSProgress in your own apps, you really need to prove that
you're able to use it. So, I have a couple of challenges for you! In the resources for
this chapter you'll find a starter project called ProgressChallenge.

Open that in Xcode, build and run, then take a look around the app as it stands.
You'll see that it displays a list of tutorials from raywenderlich.com. When you tap
on a row, it downloads the sample project ZIP file and unzips it. Once a download
and unzip has completed, if you tap on a row it'll show you the list of files in the
sample project.

You'll notice on each cell there is a handy progress bar. But it doesn't do anything
yet! The KVO is all wired up (see DownloadCell) but it doesn't do anything yet
because there's no NSProgress wired up.

Take a look in ViewController.m. You'll notice in
tableView:didSelectRowAtIndexPath: that an NSProgress is created. Take time to
familiarize yourself with how it's then subsequently used. It's made the current
progress with a pending unit count of 1 and then after the processor is started, it's
resigned as current. This means that any progress created inside the processor will
use this progress as its parent. Therefore this progress will report the progress of
the processor.

You're now going to add some extra progress logic in over the course of a couple of
challenges.

Challenge 1: Download progress
Take a look at the Downloader class. It has an instance variable for an NSProgress
instance, but it doesn't set one up yet. Your task is to set one up and use it to
report the download progress. I've left a few comments with what you'll need to do:

• Create an NSProgress instance in startWithHandler:. In doing so, make sure its
parent is the current thread's progress, i.e. the return value of +[NSProgress
currentProgress].

iOS 7 by Tutorials Chapter 10: What’s New in Objective-C and Foundation

 344

• In connection:didReceiveResponse: you can find out how many bytes the
download will be by inspecting response.expectedContentLength. Use that to set
the total unit count on the progress.

• As data is downloaded, connection:didReceiveData: is called. Set the completed
unit count in here to the total number of bytes that have been downloaded so far.

• When the download has completed successfully or failed, you need to set the
completed unit count to the total unit count just as a backup to ensure the
progress is now definitely 100%.

Once you have done this, build and run the app. You should see the progress bar
go from 0% to 100% as the download proceeds. But that's just the download
progress. The processor downloads and then unzips the file. You now need to report
the overall progress of these two sub-tasks. The challenge continues…

Challenge 2: Processor progress
Take a look inside the DownloadProcessor class. This performs the download of a
tutorial's starter project and then unzips it. Currently only the download portion of
work reports any progress (challenge 1). Your task here is to add in progress
reporting of the download plus unzip process.

Once again I have left comments explaining what you'll need to do. The process
goes like this:

• Create an NSProgress instance in startWithHandler:. Initialize it with a pending
unit count of something sensible. I chose the download to take 80% of the overall
progress and the unzip to take 20%. To achieve this you would initialize the
progress with a total unit count of 10 and then assign 8 units to the download and
2 to the unzip.

• The download you're saying will take 80% of the overall time, so you need to
make the progress you've just created the current progress, setting the pending
unit count to 8. Then after the call to -[Downloader startWithHandler:], resign as
current.

• Inside the completion block of the downloader, you should set the completed unit
count accordingly (8 in this case).

• Then you need to wrap the unzip operation with another set of becoming /
resigning current progress, this time with a pending unit count of 2.

After you have done this, build and run the app and you will see the progress go
from 0% to 80% as the download progresses. Then from 80% to 100% as the
unzip progresses.

Note: Unfortunately, SSZipArchive does not report progress itself yet, which is
understandable since NSProgress is new to iOS 7.0! This means that the
overall progress jumps from 80% to 100% rather than moving smoothly

iOS 7 by Tutorials Chapter 10: What’s New in Objective-C and Foundation

 345

along. I'm sure that as NSProgress becomes the de-facto way to report
progress, libraries such as this will embrace it.

Congratulations - if you've completed these challenges then you sure do know your
NSProgress!

One of the most important aspects of a solid software development methodology is
unit testing. After all, unit testing can help you find bugs and crashes, and
according to Apple crashes are the number one reason that apps are rejected
during the review process.

Unit tests aren’t a silver bullet, but Apple includes them as part of their
development toolset to help you produce apps that are not only stable, but ones
that provide a consistent and enjoyable user experience. These are the apps that
will send your users rushing back to the App Store to give you that coveted five-
star review!

The iOS 7 SDK includes an upgraded unit testing framework and makes building
and running unit tests from Xcode even easier. By the time you’re done this
chapter, you’ll understand how to add tests to your existing apps — and hopefully
develop a new love of writing tests!

Unit testing fundamentals
In the past, Xcode included an open source unit testing framework called OCUnit.
Now in Xcode 5, Apple has released their own unit testing framework, called
XCTest.

If you’re already familiar with OCUnit, don’t worry. XCTest is built on top of OCUnit
and has a very similar API. Rest assured that rewiring your brain to think in XCTest
terms is as simple as replacing STFail with XCTFail, STAssert with XCTAssert, and
so on. If you’re already familiar with the basics, feel free to skim the next section
and skip ahead to the section titled The starter project.

But if you’re new to unit testing, before you begin it’s important to have a basic
understanding of how unit testing works – things like test suites, test cases, and
assertions. Once you understand these basics, you’ll be ready to try it out for
yourself!

Chapter 11: Unit Testing in
Xcode 5
By Greg Heo

iOS 7 by Tutorials Chapter 10: Unit Testing in Xcode 5

 348

High-level overview
There are four levels in the hierarchy of unit tests:

From top to bottom, they are:

1. Test suite. This is the entire collection of tests for your project. In Xcode, the
test suite is set up as a separate build target.

2. Test case classes. As you might expect in an object-oriented system, tests are
grouped into classes. Each test class usually corresponds to a single class in your
app. For example, the DeveloperTests class could contain tests for the Developer
class.

3. Test case methods. Each test case class contains multiple methods to test
various features of the class. Just as methods and functions should be as short as
possible and do one thing well, each test case should test one specific outcome —
and test it fully.

4. Assertions. Assertions check specific conditions against an expected result. If
the condition does not match the expected result, Xcode throws an error to
indicate an assertion failure. For example, you could assert that your Developer
class responds to the writeKillerApp: message; if it doesn’t, the assertion will fail
and an exception will be thrown.

Theory is all well and good, but sometimes it’s easier to illustrate things with a
short example. Create a new iOS project with the Empty Application template
called EmptyApp.

The Xcode template automatically includes a test target called EmptyAppTests, in
addition to the actual EmptyApp app target, as shown below:

iOS 7 by Tutorials Chapter 10: Unit Testing in Xcode 5

 349

Note that test case classes are contained a single .m file with no associated header
file. Open EmptyAppTests.m and take a look at the source code for the first test
case.

Test case methods must start with the word test so the test runner can find them.
In your example project, the test class contains a single test called testExample.

The setUp and tearDown methods act like bookends around the test cases. By
containing all the object setup routines and repetitive code to setUp, your test case
methods stay dry, clean, and efficient. In a similar manner, cleanup activities such
as closing file handles or cancelling pending network requests should live in the
tearDown method.

The test runner calls the setUp, testExample, and tearDown methods in order. If you
have a second test method testSecondExample declared, the test runner would call
setUp, testSecondExample, and finally tearDown. If you have multiple test methods,
then setUp and tearDown are called multiple times in a single test session — once
per test case method!

The moral of this story is don’t put anything too slow or processor-intensive in your
setUp or tearDown — or you’ll be facing some long waits when you run your test
suite!

Creating your first test
The testExample method has a single call to XCTFail, which as the name suggests,
will always fail. That’s not terribly useful; you can write a better test than that!

Delete the entire testExample method and add the following method:

- (void)test_addition_twoPlusTwo_isFour
{
 XCTAssert(2 + 2 == 4, @"2 + 2 should be 4 but %d was returned
instead", 2+2);
}

A common and useful naming standard for test cases is
unitOfWork_stateUnderTest_expectedBehavior. In this example, the unit of work

iOS 7 by Tutorials Chapter 10: Unit Testing in Xcode 5

 350

being tested is addition, the test state is 2 + 2, and the expected behavior is that
the result is 4.

Note: Check out this blog post by Roy Osherove for more details on naming
standards for unit tests: http://osherove.com/blog/2005/4/3/naming-
standards-for-unit-tests.html

All XCTest assertions begin with the prefix XCT. XCTAssert is the simplest assertion
available for your unit tests; the first parameter is an expression that is expected to
evaluate to true, while the NSLog-style parameters following the expression define
the message displayed if the assertion fails.

Ensure the current target for your project is iPhone Simulator and run the tests
by either navigating to Product > Test in the menu or by hitting Command-U.
The simulator will start and execute your test suite. If you have notifications
enabled, you’ll see a confirmation message.

To confirm the success of your first unit test from within Xcode, switch to the Test
Navigator, indicated by the arrow below:

Huzzah! The verdant checkmark of success is displayed next to your unit test.

You’ll also see diamond-shaped icons in the margins next to the code, as shown
below:

iOS 7 by Tutorials Chapter 10: Unit Testing in Xcode 5

 351

These icons show the test status inline with your test code. The green checkmark
next to the @implementation line means the test class as a whole passed, while the
checkmark next to test_addition_twoPlusTwo_isFour means that this individual test
passed.

As a bonus, these icons are buttons too; clicking the one next to the
@implementation line will run all tests in the class, while the button next to the test
method will run just that single test case. Try this now for yourself.

Now that you’ve seen what tests look like and how to execute them, it’s time to get
started with this chapter’s sample project – which is sadly a bit test-starved at the
moment!

The starter project
The starter project you’ll use for the remainder of this chapter is the classic board
game Reversi. Two players, represented by black and white pieces, take turns
placing their pieces on an 8x8 board. You capture your opponent’s pieces by
surrounding them with pieces of your own color. The winner is the player with the
most pieces at the end of the game.

iOS 7 by Tutorials Chapter 10: Unit Testing in Xcode 5

 352

Note: To see how the game was built, check out our two-part How to Develop
an iPad Board Game App tutorial:
http://www.raywenderlich.com/29228/how-to-develop-an-ipad-board-game-
app-part-12

Find the starter project in the chapter resources, build and run the app, and click
the Vs Computer button at the bottom of the screen. Feel free to play a game or
two against the computer to get a feel for the rules and the game’s UI.

iOS 7 by Tutorials Chapter 10: Unit Testing in Xcode 5

 353

Did you manage to win a game? Or did you get schooled by your AI opponent?
Either way, your job isn’t to play games all day — it’s time to add some useful tests
to the project!

Adding support for tests
The GameBoard class is the first thing that needs some unit tests. Briefly, the
GameBoard class encapsulates the basic logic of the 8x8 playing board. Each of the
64 game squares has a state – empty, black piece, or white piece – and a
GameBoard instance lets you get and set this state for each square.

Open GameBoard.h and have a look at the methods contained within. Before
writing any tests for existing code, it’s a good idea to check out the module’s
header to get a feeling for the interface and functions of the module.

Inside GameBoard.h, you’ll see the following two methods:

// gets the state of the cell at the given location
// raises an NSRangeException if the column or row are out of bounds
- (BoardCellState) cellStateAtColumn:(NSInteger)column
andRow:(NSInteger)row;

// sets the state of the cell at the given location
// raises an NSRangeException if the column or row are out of bounds
- (void) setCellState:(BoardCellState)state forColumn:(NSInteger)column
andRow:(NSInteger)row;

cellStateAtColumn:andRow: and setCellState:forColumn:andRow: form a very
familiar getter/setter pattern. Your first test should perform the following actions:

1. Initialize a GameBoard instance

2. Set the cell state

3. Get the cell state

iOS 7 by Tutorials Chapter 10: Unit Testing in Xcode 5

 354

4. Assert that the cell state you specified in the setter is the same cell state that is
returned from the getter.

The first step is to create a test class for GameBoard. Right-click on the
ReversiGameTests group in the project navigator, select New File…, and select
iOS\Cocoa Touch\Objective-C test case class. Name the class
GameBoardTests, and make it a subclass of XCTestCase.

Ensure that your new test case class is added to the ReversiGameTests target as
shown in the image below:

This is a critical step; your tests will not run unless they are added to the correct
target!

Open GameBoardTests.m and delete testExample; you won’t need it.

Add the following import to the top of GameBoardTests.m:

#import "GameBoard.h"

This simply allows you to access the GameBoard class from within your test class.

You’ll need a GameBoard instance for every test that you write, so it will be a bit
neater to use an instance variable instead of redeclaring it throughout your tests.

Update the @interface line in GameBoardTests.m as follows:

@interface GameBoardTests : XCTestCase {
 GameBoard *_board;
}

Now that you have your _board instance variable, you can start using it in your
tests.

The setUp method is a perfect place to initialize GameBoard as it’s called first in
sequence. Modify the implementation of setUp in GameBoardTests.m to appear as
follows:

- (void)setUp
{
 [super setUp];

iOS 7 by Tutorials Chapter 10: Unit Testing in Xcode 5

 355

 _board = [[GameBoard alloc] init];
}

Now every test case method you write in this class will have access to an initialized
GameBoard in the _board instance variable.

The first test
That’s all the setup you need to write your first test case. Add the following method
to GameBoardTests.m:

- (void)test_setAndGetCellState_setValidCell_cellStateChanged
{
 [_board setCellState:BoardCellStateWhitePiece
 forColumn:4
 andRow:5];

 BoardCellState retrievedState =
 [_board cellStateAtColumn:4 andRow:5];
 XCTAssertEqual(BoardCellStateWhitePiece,
 retrievedState,
 @"The cell should be white!");
}

The code above sets the board cell at (4,5) with a white piece, then immediately
retrieves the state of the same cell. The XCTAssertEqual assertion then checks that
the two are equal; if they aren’t, you’ll see an exception raised — and you’ll know
that you have some investigation to do.

The name of the above test method follows the naming format I suggested earlier.
By just the method name, you can easily read that it tests the setter and getter by
setting a valid cell location, and expects the cell to have changed state.

Now to see if your test works as designed. Make sure either the iPhone or iPad iOS
Simulator is set as the current scheme, and run the test either via the Product >
Test menu item, or by hitting Command-U.

Switch to the Test Navigator and you should see a green checkmark indicating the
test passed, as shown below:

It seems like a simple test, but it provides great value in guarding against
regression errors.

iOS 7 by Tutorials Chapter 10: Unit Testing in Xcode 5

 356

Internally, the GameBoard class uses a simple two-dimensional array to keep track of
the 8x8 grid. But if you ever changed the array to a vector or matrix
representation, this test will serve as a regression test ensuring the fundamentals
of the interface are still working.

As a side benefit, writing tests for existing classes is a great way to understand how
the code works. Analyzing the class’s methods helps you discern their intended
functions and guides you in writing your tests.

Testing for exceptions
Testing that the code is functioning as designed helps ensure correctness. But the
corollary is to ensure that your apps “fail early and fail loudly”— and that
inconsistent game states or invalid conditions are caught and raised as soon as
possible to aid in debugging.

The comments on both cellStateAtColumn:andRow: and
setCellState:forColumn:andRow: in GameBoard.h state they will throw an
exception if the column or row passed in is out of bounds. Looks like you’ve found
two more conditions to test.

Add the following two test methods to GameBoardTests.m:

- (void)test_setCellState_withInvalidCoords_exceptionThrown
{
 XCTAssertThrowsSpecificNamed(
 [_board setCellState:BoardCellStateBlackPiece
 forColumn:10
 andRow:7],
 NSException,
 NSRangeException,
 @"Out-of-bounds board set should raise an exception");
}

- (void)test_getCellState_withInvalidCoords_exceptionThrown
{
 XCTAssertThrowsSpecificNamed(
 [_board cellStateAtColumn:7 andRow:-10],
 NSException,
 NSRangeException,
 @"Out-of-bounds board access should raise an exception");
}

In the code above, test_setCellState_withInvalidCoords_exceptionThrown:
attempts to set the state an out-of range cell (10,7), while
test_setCellState_withInvalidCoords_exceptionThrown: attempts to get the state
of a different out-of-range cell (7,-10). Once again, the method names make it

iOS 7 by Tutorials Chapter 10: Unit Testing in Xcode 5

 357

clear that the tests are for invalid board coordinates, and that a thrown exception is
the expected result.

XCTAssertThrowsSpecificNamed takes the following four items as arguments:

• an expression that should throw an exception

• the expected class of the exception

• the expected name of the exception

• the message to display when the test fails.

Hit Command-U to run the tests; you should see the results shown below:

What’s this? You were expecting the tests to pass with flying colors, but two failures
are noted in the Issue Navigator, one for each test. The test failures are also
reported inline with the test code, as shown below:

The full test failure message is:

[GameBoardTests test_getCellState_withInvalidCoords_exceptionThrown]
failed: (([_board cellStateAtColumn:7 andRow:-10]) throws <NSException,
"NSRangeException">) failed: throwing <NSException,
"NSGenericException", "row or column out of bounds"> - Out-of-bounds
board access should raise an exception

If you break apart the message above, you’ll see that it tells you what the expected
behavior was (throws <NSException, "NSRangeException">) and what actually
happened (throwing <NSException, "NSGenericException">). In this case,
NSRangeException was expected, but you received an NSGenericException instead.

iOS 7 by Tutorials Chapter 10: Unit Testing in Xcode 5

 358

Looks like you have some investigating to do!

Troubleshooting test failures
Time to track down the issue behind your test failures. Open GameBoard.m and
find cellStateAtColumn:andRow: and setCellState:forColumn:andRow:. You’ll notice
they both call a helper method checkBoundsForColumn:andRow: to do the array
bounds checking.

The comments in GameBoard.h state the following:

// raises an NSRangeException if the column or row are out of bounds

However, the implementation of checkBoundsForColumn:andRow: throws an
NSGenericExpression if an out of bounds condition is met. Generally, you treat the
header comments as a public API specification, but in this case the code and the
specifications don’t match. What to do?

One possibility is to update the comment and the associated test to match the
current implementation. In this case though, the specification noted in the
comments makes more sense: a bounds check should follow the lead of NSArray
and raise an NSRangeException.

Update the implementation of checkBoundsForColumn:andRow: in GameBoard.m to
raise an NSRangeExpression instead, as shown below:

- (void)checkBoundsForColumn:(NSInteger)column andRow:(NSInteger)row
{
 if (column < 0 || column > 7 || row < 0 || row > 7)
 [NSException raise:NSRangeException
 format:@"row or column out of bounds"];
}

Re-run the tests using Command + U and the Test Navigator should display all of
your tests with a pass result.

Specifications in comments are always a little dangerous since it’s very easy for
them to fall out of sync with the code. However, your tests can also do double duty

iOS 7 by Tutorials Chapter 10: Unit Testing in Xcode 5

 359

as specifications. Since they’re written in code, there’s less risk of them not
matching the implementation — as long as you run the tests regularly!

In addition, your tests provide a great high-level overview of the code, especially
when they follow the suggested naming format. This comes in really handy when
you’re revisiting code that you haven’t touched in a while — much like in the
scenario in the next section.

Tests as bug insurance
A crash report has just come in for your app: one of your testers reports the app
crashes when she launches the app and taps on the board before starting the game
with either the “2 Player” or the “vs computer” button.

Confirm the bug for yourself: start up the app, and immediately tap on the game
board without touching anything else on the screen. Boom — the app crashes with
the following message displayed in the console output:

ReversiGame[1842:a0b] *** Terminating app due to uncaught exception
'NSRangeException', reason: 'row or column out of bounds'

Well, it seems the crash is reproducible, but what’s throwing an NSRangeException?
The call stack offers up the following information:

2 CoreFoundation +[NSException raise:format:] + 139
3 ReversiGame -[GameBoard checkBoundsForColumn:andRow:] + 142
4 ReversiGame -[GameBoard cellStateAtColumn:andRow:] + 76
5 ReversiGame -[ReversiBoard flipOpponentCountersForColumn:
andRow:withNavigationFunction:toState:] + 281
6 ReversiGame -[ReversiBoard makeMoveToColumn:andRow:] + 245
7 ReversiGame -[BoardSquare cellTapped:] + 192

That looks promising. Reading from the bottom up:

• Lines 7 and 6: the tap triggers the code to process the player’s move.

• Line 5: the game logic checks for any to see if any of the opponent’s pieces are
surrounded and should be flipped.

• Lines 4 and 3: the code then calls cellStateAtColumn:andRow: and
checkBoundsForColumn:andRow:

• Line 2: the underlying framework raises an out of bounds exception.

Note: Need to brush up on debugging app crashes? Check out these tutorials:

My App Crashed, Now What?
http://www.raywenderlich.com/10209/my-app-crashed-now-what-part-1

iOS 7 by Tutorials Chapter 10: Unit Testing in Xcode 5

 360

Demystifying iOS Application Crash Logs
http://www.raywenderlich.com/23704/demystifying-ios-application-crash-logs

This is a perfect opportunity to write a test that will reproduce these crash
conditions.

Not only will your new test validate that you have fixed the issue, but it will serve
as a regression test to ensure that this bug stays fixed. There’s nothing worse than
fixing a bug, only to find months later that adding a feature or refactoring the code
reintroduces the exact same bug.

Determining what to test
You know you need a test — but what should you test? ReversiBoard is the
implementation of the generic GameBoard class, so it makes sense to start your
troubleshooting efforts there.

Create another new class using the iOS\Cocoa Touch\Objective-C test case
class template. Name the class ReversiBoardTests, and make it a subclass of
XCTestCase.

As before, delete the boilerplate testExample method.

Add the following import to ReversiBoardsTests.m so your test class can access
ReversiBoard:

#import "ReversiBoard.h"

Change the @interface line of ReversiBoardTests.m as shown below:

@interface ReversiBoardTests : XCTestCase {
 ReversiBoard *_reversiBoard;
}

Adding _reversiBoard as an instance variable means that you won’t have to
instantiate this variable throughout your test methods.

Now modify the implementation of setUp in ReversiBoardTests.m to initialize
_reversiBoard as shown below:

- (void)setUp
{
 [super setUp];

 _reversiBoard = [[ReversiBoard alloc] init];
}

iOS 7 by Tutorials Chapter 10: Unit Testing in Xcode 5

 361

Testing the negative case
In the previous test you wrote, the presence of an exception was the expected
result. This time, it’s the absence of an exception that forms the basis of your test.

Add the following method to ReversiBoardTests.m:

- (void)test_makeMove_inPreGameState_nothingHappens
{
 [_reversiBoard setToPreGameState];

 XCTAssertNoThrowSpecificNamed(
 [_reversiBoard makeMoveToColumn:3 andRow:3],
 NSException,
 NSRangeException,
 @"Making a move in the pre-game state should do nothing");
}

In the code above, the test sets the game to the pre-game state; that is, the state
before the player makes a choice to play either a two-player game or a game
against the computer opponent. The test then makes a valid move on the game
board to simulate the action of a player tapping the board.

The XCTAssertNoThrowSpecificNamed assertion is the inverse counterpart to
XCTAssertThrowsSpecificNamed. The above test will fail if the specified exception is
raised, and it will pass if the specified exception isn’t raised.

You haven’t yet fixed the bug, so running the test now should fail — but that’s a
good thing. Writing the test before fixing the bug means that you’re validating your
test’s ability to reproduce the bug.

Hit Command+U to run the tests, and you should see a test failure with the
following message:

test failure: -[ReversiBoardTests
test_makeMove_inPreGameState_nothingHappens] failed: (([_reversiBoard
makeMoveToColumn:3 andRow:3]) does not throw <NSException,
"NSRangeException">) failed

The test picked up on the thrown exception and failed as you had hoped. That’s
good news; you know that your test successfully creates the conditions to
reproduce the bug. Once you attempt to fix the bug, this same test will show you if
you’ve successfully squashed the bug — or if you still have some more debugging
to do.

Correcting the code
Open ReversiBoard.m and find the makeMoveToColumn:andRow: method.

iOS 7 by Tutorials Chapter 10: Unit Testing in Xcode 5

 362

Think for a minute about how to correct this particular bug. It makes sense to allow
moves only after the user has selected a game mode. There isn’t much point in
running the gameplay logic in the pre-game and post-game states.

Fortunately, there’s a property that indicates the current state of the game:
gameState.

Add the following lines to the very top of makeMoveToColumn:andRow: in
ReversiBoard.m:

if ([self gameState] != GameStateOn)
 return;

The conditional above checks the current game state. If the state is anything other
than GameStateOn — meaning a game is not in progress — the method terminates
immediately.

Build and run your app, and test your bug fix manually by tapping on the screen
before you select a game mode.

Finally, run the tests using Command+U and your Test Navigator should display
nothing but green checkmarks. Looks like you squashed that bug!

Exploratory-style tests only cover obvious issues in the code, but regression-style
tests written while fixing bugs provide some assurance that once you’ve fixed a
bug, it should stay fixed — and if not, the test will catch it before the code is
shipped!

Not only is your code more robust with each bug fix, but it also has a higher chance
of staying that way thanks to your unit tests.

iOS 7 by Tutorials Chapter 10: Unit Testing in Xcode 5

 363

Where to go from here?
Testing is a huge task in the development life cycle, but this chapter has given you
a good foundation on which to tackle unit test development in your apps. You’ve
covered the following basic — yet critical — concepts in building intelligent unit
tests:

• Which assertions to use, and where to use them

• Adding tests to an existing app

• Using tests as living specifications and living documentation

• Verifying bugs and bug fixes

• Guarding against future regressions

The integration of XCTest within Xcode makes it easier than ever to build and
maintain your app test suite. The complete realm of iOS testing is quite large, and
you would do well to build on your knowledge by reading up on the following iOS
testing concepts:

• Mock objects are simulated objects that are just real enough to run your tests.
Check out OCMock (http://ocmock.org/) for an Objective-C implementation.

• UI testing allows you to simulate user input such as touches and text entry.
Have a look at the Automation task in the Instruments app.

• Continuous integration (CI) systems will run your unit tests automatically. To
learn more about the new CI features in OS X Server, check out Chapter 14 and
15, “Beginning and Intermediate Continuous Integration in Xcode 5”.

But before you get too deep into more advanced testing concepts, the following
challenges are a great way to show yourself that you’ve mastered the concepts in
this chapter.

Note: There’s a quick reference of the XCTest assertions at the end of this
chapter for your testing convenience.

Challenges
The GameBoard class still has methods without any test coverage – your task is to
write more unit tests to provide a complete test suite for your app. Don’t worry if
you get stuck; you can look up a set of sample solutions in the resources for this
chapter.

iOS 7 by Tutorials Chapter 10: Unit Testing in Xcode 5

 364

Challenge 1: Testing clearBoard
clearBoard clears all pieces from the board. Since there’s already a test for the
getter and setter methods, you can assume those methods work and there’s no
need to test setting pieces on the board again.

Your test case method for clearBoard will have the following steps:

1. Set at least one black piece on the board

2. Set at least one white piece on the board

3. Call clearBoard

4. Check that the locations where you placed the black and white pieces are now
empty (i.e. they have the BoardCellStateEmpty state)

Remember to name the test case following the suggested format used above: the
unit of work or method name, what is being tested, and the expected result.

Challenge 2: Testing the scorekeeper
countCellsWithState: counts the number of pieces on the board having a specific
state. This method calculates the final score, so it’s important to make sure it works
correctly!

Your test case for countCellsWithState: will perform the following actions:

1. Set some black and white pieces on the board.

2. Keep track of the number of pieces added.

3. Compare your counts with what is returned from countCellsWithState:.

countCellsWithState: takes a state as a parameter, so the full message will look
like the following:

[_board countCellsWithState:BoardCellStateWhitePiece]

Again, make sure you name your test cases appropriately.

Happy testing!

iOS 7 by Tutorials Chapter 10: Unit Testing in Xcode 5

 365

XCTest Assertions Reference
All assertions below take a variable-length argument (format…) as the last
parameter which contains the NSLog style message to display on test failure.

XCTFail(format…) Unconditional failure. Use to mark
sections of code that shouldn’t be
reached.

XCTAssertNil(exp, format...)

XCTAssertNotNil(exp, format...)

The expression should be nil or not nil.
Use on Objective-C objects.

XCTAssert(exp, format...)

XCTAssertTrue(exp, format...)

XCTAssertFalse(exp, format...)

The expression should be a true-ish
value or not. XCTAssert and
XCTAssertTrue are the same.

XCTAssertEqualObjects(a1, a2,
format...)

Objective-C objects a1 and a2 should be
equal. Uses the isEqual: message under
the hood.

XCTAssertEqual(a1, a2, format...) Parameters a1 and a2 should be equal.
Use to compare C scalars, unions, and
structs such as CGRect or CGPoint
instances. Uses NSValue to do the
comparison under the hood.

XCTAssertEqualWithAccuracy(a1, a2,
delta, format...)

Parameters a1 and a2 are equal to within
the given delta. Use with floats and
doubles where decimal values may not
be exact.

XCTAssertThrows(exp, format...)

XCTAssertThrowsSpecific(exp,
exception, format...)

XCTAssertThrowsSpecificNamed(exp,
exception, exceptionName,
format...)

The expression should cause an
exception to be thrown. The more
detailed versions let you specify the class
and exception name.

XCTAssertNoThrow

XCTAssertNoThrowSpecific

XCTAssertNoThrowSpecificNamed

The “not” versions of the above
assertions that will fail if the exception is
thrown.

Source control is the practice of managing and tracking changes to files. The files
can be anything from a Word document or PDF, to an Objective-C header or
implementation file, but in this chapter we’re mainly going to focus on using source
control to manage your Xcode projects.

Whether you’re an independent developer or part of a larger team, it’s very
important to use source control in your apps.

• If you’re working in a team, it’s almost a necessity to allow multiple people to
work on the same codebase and not step on each other’s toes.

• If you’re working on your own, source control is still extremely useful. It
allows you to revert recent changes to code to get back to a good, known state,
track diferent versions of your apps, and much more.

Think of source control like Time Machine for your programming projects; it gives
you the security to change your code without fear of breaking the main codeline,
and the accountability of a change history so that you can figure out “what, who,
and when” if things do happen to go wrong.

Xcode has source control integration built right in (both in the user interface and
command line), making it easy to use in your projects. The source control system
Xcode uses is called Git, which is a free and open source distributed source control
system that is easy to learn, lightweight and very fast.

This chapter will give you a crash course on the Git source control system and
guide you through the creation of a project that will be stored on GitHub, which is a
repository host as well as a team collaboration tool.

If you’re already familiar with the basics of Git and have created and checked out a
repository before, feel free to jump ahead to the next chapter, which deals with
remote repositories and merging.

Chapter 12: Beginning Source
Control in Xcode 5
By Felipe Laso Marsetti

iOS 7 by Tutorials Chapter 12: Beginning Source Control in Xcode 5

 368

Getting started
The best way to learn about source control is to use it; it’s time for you to get your
feet wet and actually use Xcode with Git.

Open Xcode and create a new iOS Master-Detail Application named
ControllingSource with your own Organization Name and Company Identifier,
targeted for iPhone and that uses Core Data, as below:

Click Next, but before you click anything else be sure to check the option at the
bottom of the window called Create git repository:

Then choose a directory to save your project and click Create. Your project is now
under git source control!

To prove this for yourself, select any file in the project navigator, open the file
inspector and scroll down until you see the Source Control section. There’s quite a
bit of info in here, as shown by the following screenshot:

iOS 7 by Tutorials Chapter 12: Beginning Source Control in Xcode 5

 369

Let’s go over each of the items in this pane:

• Repository: the name of the Git repository, which defaults to the name of the
project.

• Type: the type of the repository, which is Git. At the time of writing this chapter,
Xcode supports both Git and Subversion source control systems, although Git
tends to be more popular in the iOS development community.

• Current branch: The fundamental unit in Git is a commit. A commit consists of
changes to one or more files, and is identified by a unique alphanumeric ID called
a hash or SHA. A commit also records the timestamp and the name of the person
who made the change.

A branch is a pointer to a specific commit that represents a state of the
repository. The default branch in Git when you create a new repository is called
master, which is what you see here. You will learn more about branches in the
next chapter.

• Version: You’re probably used to thinking of versions as sequential numbers, like
version 1.0 of an app or version 10.9 of OS X. As previously mentioned, commits
in Git are identified by a commit ID, a unique 40-character SHA1 hash that points
to the exact state of your working directory when a commit is made. Here Xcode
shows the first twelve characters of the commit’s hash, which are generally
enough characters to be unique.

• Location: The location of the file on your drive.

Git settings
Before you continue working with git, you should configure git with your name and
email address so that your changes are tracked properly. To do this, open a
Terminal window and enter the following commands:

git config --global user.name "YOUR NAME HERE"
git config --global user.email "EMAIL"

These commands will save your name and email to your local ~/.gitconfig file;
these settings only apply to you, not any other accounts accounts on your
computer.

To verify your changes, type in the following command in Terminal:

git config –l

This will list all of the Git configuration options that are currently set. As you can
see, there are many more settings you can configure and customize from Terminal;
to learn more about them you can type the following command in Terminal:

git config –help

iOS 7 by Tutorials Chapter 12: Beginning Source Control in Xcode 5

 370

Adding Git to an existing project
If you have an existing project that you’d like to place under source control there is
no way to do so within Xcode. However, it’s easy to set things up manually. To see
how this is done, follow the steps below to create a sample project without Git, and
then add it after the fact.

Create a new Xcode project called ExistingProject with the same settings as the
ControllingSource project, but this time don’t click the check box for creating a Git
repository. Select a file and verify it is not under source control in the File
Inspector:

Now open the Terminal application, type cd with a space afterwards, then drag the
project folder to the terminal window. You should see something similar to what’s
shown in the screenshot below:

Hit Return on your keyboard, then type ls -la followed by another Return. This
lists the items in the ExistingProject directory as illustrated below:

If the project were under git source control you’d see a hidden directory named
.git. Since there isn’t one, initialize a Git repository for this project by typing git
init and hitting Return; Git will respond with the following:

If you see Initialized empty Git repository like you see here, that means the
command was successful.

Type git status to see should get the current status of your working directory.

iOS 7 by Tutorials Chapter 12: Beginning Source Control in Xcode 5

 371

The output above shows that none of the files or folders in your project directory
are being tracked by Git. There’s also a helpful message noting that you can use
git add to specify what files and directories to include in the next commit.

However, note that the output shows a file called .DS_Store, which is a special
hidden file created by OS X that contains attributes about a folder such as positions
of icons within the folder. This is typically something you don’t want to track in
source control, because it is specific to your particular machine and has nothing to
do with the project itself.

So before adding files for tracking and making your first commit, it would be wise to
learn how to exclude certain files from your repository automatically. You can do
this with a special file called .gitignore.

The .gitignore file
The .gitignore file contains rules that indicate which files not to track or show in
the staging area. Git will check each filename against the list of rules in .gitignore,
and ignore the file if there is a match.

Open any text editor and add the followings lines to a new file:

Xcode
.DS_Store
/build/
*.pbxuser
!default.pbxuser
*.mode1v3
!default.mode1v3
*.mode2v3
!default.mode2v3
*.perspectivev3
!default.perspectivev3
xcuserdata
profile
*.moved-aside
DerivedData

iOS 7 by Tutorials Chapter 12: Beginning Source Control in Xcode 5

 372

.idea/
*.hmap

This ignores many of the common types of files that you don’t typically want in your
git repositories. This is a good starter default .gitignore; you may want to keep a
local copy to reuse in future projects.

Note: The fine folks at GitHub maintain an extensive collection of gitignore
files for many tools and languages that might come in handy. You can find
them here:

https://github.com/github/gitignore

Save the file in your ExistingProject project directory and name it .gitignore.

Go back to the terminal window and type git status once again:

This time, there is no .DS_Store file as you specified it as one of the files to be
ignored in .gitignore. It’s usually a good idea to track and commit .gitignore so
other users of the repository can use the same settings and prevent them from
committing unwanted files as well.

Note: This is a good starter default .gitignore; you may want to keep a local
copy to reuse in future projects. The fine folks at GitHub maintain an extensive
collection of gitignore files for many tools and languages.

A command line commit
With your .gitignore ready, it’s time to stage your files and make your first commit.
Enter this command in the terminal to add all the untracked files to the staging
area:

git add .

iOS 7 by Tutorials Chapter 12: Beginning Source Control in Xcode 5

 373

Now enter git status one more time and notice how everything in your project is
in the staging area but not yet committed.

To commit your files, enter the following command:

git commit -m "Initial commit."

This tells Git to commit everything in the staging area (which, at the moment is
everything in your project) along with the quoted message specified with the –m
flag.

Now enter git status to view the state of your repository. It should show that your
repository HEAD is pointing to the default master branch, there’s nothing to
commit, and that your working directory is clean, as below:

Quit Xcode 5 and re-open ExistingProject. Select any item in the project and open
the File Inspector; you should see details similar to the following:

Just as with your ControllingSource project, you now have an Xcode project with a
Git repository initialized, a .gitignore file and the first commit.

iOS 7 by Tutorials Chapter 12: Beginning Source Control in Xcode 5

 374

Committing changes in Xcode 5
Now that you’ve learned how to put an existing project under source control and
how to change your Git settings, it’s time to make some code changes in Xcode and
learn how to commit them.

Open the ControllingSource project and have a look at the project navigator. The
files could stand to be organized a little better than they are currently. To start,
group the view controllers together to make them easier to manage.

Select the four view controller files in the project navigator and right-click to open
the context menu. Select New Group From Selection to group the files together
and name the group View Controllers.

While you’re at it, group the layout resources into a group and name it Resources,
as so:

iOS 7 by Tutorials Chapter 12: Beginning Source Control in Xcode 5

 375

Note that the project file has an M next to it. This indicates that the project file, or
something within the project, has been modified.

To commit the changes, right-click on the project file and select Source Control
Commit, as shown below:

A drop-down window will appear with the list of files that have changed, the option
to select what files to commit and a field for a commit message. Add a comment

iOS 7 by Tutorials Chapter 12: Beginning Source Control in Xcode 5

 376

describing the reason for the commit, such as “Organize project navigator”, and
click Commit.

Now that you’ve committed some changes, how can you view what was changed?
One way to view your commit logs is with the version editor. Click and hold on the
version editor button and select Log, as shown below:

In the version editor you can see the abbreviated commit hash, the name of the
person who made the commit, the date, and the files modified in the commit, as
so:

The commit list on the right hand side shows a high-level view of the history of the
file, and you can click on the “Show 1 modified file” text to see what was changed
in each commit.

iOS 7 by Tutorials Chapter 12: Beginning Source Control in Xcode 5

 377

Let’s try out the other two verion editor options. Click and hold the version editor
button again, but this time select Comparison. You should see the following:

The Comparison view shows the current state of the file side-by-side with the last
committed state; this can be useful to review your latest changes with the previous
revision.

You can try the last version editor option if you’d like (Blame), but the blame view
is unavailable for project files so it won’t show anything interesting. For other types
of files, you will find it useful because it annotates lines and blocks of code with the
relevant commit information, such as name, date, and message. This view is very
helpful to see when certain portions of the code were changed, and more
importantly, who to blame (or congratulate!) for those changes.

Viewing your project history
You’ve already seen how to review your commit logs with the version editor, which
shows details on a file-by-file basis. You can also see the history of the project as a
whole from the top-level repository view.

From the main menu, select Source Control\History, as shown below:

iOS 7 by Tutorials Chapter 12: Beginning Source Control in Xcode 5

 378

You’ll see a screen with all the commits made to your project, and similar to the
version editor’s log view, the commit’s hash, contact information, date and changed
files, as shown below:

This view is particularly helpful if you want to get an overview of the changes to the
project as a whole rather than on an per-file basis.

Adding the project to GitHub
Recall that Git is a distributed and decentralized system. That means all your
commits are being made locally; if you delete the top-level project directory, the
Git repository would disappear too. Your entire project is only an errant right-click
away from impending doom! What to do?

Having a server component means you can easily share your code and collaborate
with others. You can host a repository on your own server, or use a hosted service
like GitHub. If you don’t have a GitHub account, head to github.com to get one.

iOS 7 by Tutorials Chapter 12: Beginning Source Control in Xcode 5

 379

After signing up, you’ll need to configure a set of keys to be able to communicate
with the repository via SSH.

SSH setup
GitHub uses a pair of keys — one public and one private — in order to communicate
securely with your computer. First, find out if you already have an SSH keypair by
typing the following commands in a Terminal window:

cd ~/.ssh
ls

If you see a file named id_rsa.pub or id_dsa.pub then you’ve already generated
your SSH keys. In that case skip straight to the section titled Adding your SSH
key to GitHub.

If you don’t see either of those files, or you get a “No such file or directory” error,
then type the following command in Terminal to generate a pair of SSH keys:

ssh-keygen -t rsa -C "YOUR EMAIL"

You’ll then be prompted to enter a passphrase; this is optional but highly
recommended to secure your keys. Once that’s done, your SSH keys are ready to
be added to GitHub.

Adding your SSH key to GitHub
If not already there, navigate to the .ssh directory in your home folder and open
the id_rsa.pub file (or id_dsa.pub file if you have that one) in a text editor. Copy
the contents of the file and go to your account settings on github.com.

Select the SSH Keys option then click the Add SSH key button, as below:

iOS 7 by Tutorials Chapter 12: Beginning Source Control in Xcode 5

 380

Paste the contents you copied from the .pub file into the Key section and give it a
title, as shown below:

As far as a name goes, you can just use the name of the computer this key
corresponds to — although note that you can reuse the same key on multiple
computers.

iOS 7 by Tutorials Chapter 12: Beginning Source Control in Xcode 5

 381

Creating a new repository on GitHub
With your keys set up you can now create a new repository and push your project
to GitHub.

On the GitHub home page, click on the New Repository button to create a new
repository, as shown below:

You’ll be taken to a page where you can input some info for your repository.

The owner should default to your account; note that you can belong to more than
one GitHub team. For the repository name type ControllingSource, give it a
description, and make it a public repository; private repositories require a paid
GitHub account. Ensure the options to initialize the repository with a readme,
gitignore or license file remain unselected as shown below:

Finally, click the Create repository button; you’ll see a screen with some
instructions on how to create a new repository or take an existing repository and
push it to GitHub.

Rather than spend more time on the command line, you’ll be using Xcode 5 to add
the GitHub repository as a remote and push to it.

The only thing you need to do is to copy the SSH address from GitHub for use in a
moment:

iOS 7 by Tutorials Chapter 12: Beginning Source Control in Xcode 5

 382

Pushing the changes to GitHub
Go back to Xcode and click the Source Control menu item. Select the master
branch and choose the Configure ControllingSource option, as below:

Click the “Remotes” tab and then the “+” button, as so:

Type ControllingSource for the remote repository name, paste the SSH address
you copied from your GitHub repository, and click Add Remote, as shown below:

iOS 7 by Tutorials Chapter 12: Beginning Source Control in Xcode 5

 383

Back in the configuration window, click Done and select the Source Control menu
item again; this time select the Push option:

In the popup, you should see a dropdown titled “Push local changes:” along with a
selection of branches to push to GitHub. Select the only branch available — master
— and click Push, as below:

Go to your repository on github.com and refresh the page to see the results. The
resulting table shows the branch you committed to, the number of commits, all of
the files in the project as well as all of the contributors to the project:

iOS 7 by Tutorials Chapter 12: Beginning Source Control in Xcode 5

 384

That’s the end of the line — you’ve pushed your repository to GitHub and it’s now
stored safely on the server.

From here on out, if you want to make changes you can follow these same two
steps:

1. Go to Source Control\Commit to commit your changes locally.

2. Go to Source Control\Push to push your changes to Github.

Challenges
Source control is a practice that every developer should follow. Regardless of how
many people are involved or what type of projects you work on, source control is a
huge time-saver — and even sometimes a lifesaver!

Apple is making a strong push in Xcode 5 to encourage the use of source control,
just as they are with unit testing and continuous integration. There are a lot of
enhancements and new features with source control in Xcode 5, many of which you
have seen in this chapter.

So far, you’ve only learned the basics of working with source control. In the next
chapter, you’ll work with an app on a remote repository and learn about working
with multiple branches, merging and more.

But first, it’s time for you to try a quick challenge to make sure you understand
what you’ve learned so far.

Challenge 1: Your own commit
This is a quick and simple challenge that mimics what you’ll do most frequently
while developing. You’ll make a change, commit and push the, and verify the
change is visible on GitHub.

1. Open Main.storyboard and modify the color of the prototype cell’s label and
background in addition to the label and background color of the detail view
controller.

2. Commit your changes from within Xcode and give the commit and appropriate
message.

3. Push your changes to Github and verify that your commit is visible from your
repository’s website.

If you get stuck please refer to previous sections of the chapter where you are
shown how to commit and push changes in your repository. Feel free to use the
sample project as a starting point for the challenge.

In the previous chapter, you learned about the benefits of source control the basics
of Git and GitHub, and how to use some of the source control features in Xcode 5.

In this chapter you will delve deeper into the world of Git and source control and
learn more about remote repositories, how to work with branches, pulling, merging,
and more.

Working with remote repositories
Before you get in to branching and merging, it’s important to have a firm
understanding of how to work with remote repositories. This section will show you
three things:

1. Local->Remote. How to move a project that has a variety of local branches to a
remote repository.

2. Remote->Local. How to check out a local copy of a project from a remote
repository.

3. Viewing repositories. How to view and track the repositories that you are
working with in Xcode.

Let’s start with the first: moving a project with many local branches to a remote
repository.

From local to remote
Included in the book’s source code for this chapter you will find a starter project
called ControllingSource Starter. Open it up in Xcode and take a look at the
branches that already exist. These branches represent the following imaginary
situation:

• I have worked on a branch called FileOrganization. This organizes everything in
the project navigator, cleans up unnecessary code from source files, and
organizes properties and method declarations alphabetically.

Chapter 13: Intermediate
Source Control in Xcode 5
By Felipe Laso Marsetti

iOS 7 by Tutorials Chapter 13: Intermediate Source Control in Xcode 5

 386

• Marin has worked on ModelUpdates in order to make the necessary changes to
the Core Data model that will be used in the application.

• Ray made a branch called RefactorClassNames that renames
MasterViewController and DetailViewController into class names that actually
make sense and better describe what each controller does.

• Charlie and Ray have been working on the master branch. Charlie first added a
README file to the project and Ray added a property list containing famous
quotes to be used in the application.

This should give you a better idea of how the starter project is setup and what each
branch contains.

If you worked through the previous chapter you already have a GitHub account
along with SSH keys on your computer, but if not, refer to that chapter to create
your GitHub account and SSH keys.

Go to the GitHub web site and add a new repository to your account. Name it
Intermediate_ControllingSource, give it a description, and make sure you don’t
initialize it with a README, gitignore, or license file. Your screen should look like the
one below:

When your repository is ready, copy the SSH URL given to you by GitHub and open
the starter project in Xcode 5.

Go to the Source Control menu, select the current working copy’s branch and click
Configure ControllingSource…, as below:

iOS 7 by Tutorials Chapter 13: Intermediate Source Control in Xcode 5

 387

In the dropdown window select the Remotes tab and click the + icon to add a new
remote repository to your local project, as so:

Name the remote repository Intermediate_ControllingSource and paste in the
SSH URL you acquired from GitHub. Then click the Add Remote button, shown
below, and then click the Done button from the previous dropdown window:

Now that your local repository is linked to your new GitHub repository, go to the
Source Control menu item and click Push….

You should already be in the master branch so leave the dropdown as is and click
Push, as shown below:

iOS 7 by Tutorials Chapter 13: Intermediate Source Control in Xcode 5

 388

Notice how the branch’s name has the word Create in parenthesis. This indicates
that the master branch doesn’t exist in the remote repository; your push operation
will create a new branch.

Now go to the Source Control menu item and select the Switch to Branch…
option, as so:

The dialog below will show your local branches, and after a brief pause, your
remote branches as well. Your master branch should show up in the list, as in the
screenshot below:

These are three branches that I set up for you in the starter project. Note that
you’ve successfully published the master branch to your remote repository — but
your other branches are still local-only.

Switch to each one of the local branches in turn and push them to GitHub just as
you did with the master branch. When you’re done, your screen should look like the
one below:

iOS 7 by Tutorials Chapter 13: Intermediate Source Control in Xcode 5

 389

Just to verify that everything is correctly pushed to GitHub, open your repository
page on the web. The info bar should list 4 branches, as shown below:

Click on the text, and you’ll see all four branches listed:

From remote to local
Many times when you join a project, your company or team will already have a
repository hosted on a server. In this scenario you’ll set yourself up with read/write
access to the repository you’ll be working on and make a local clone of the
repository on your computer. Yes, you already have a local copy of the repository,
but here you’re simulating starting from scratch.

Close Xcode and delete the project folder; at this point, your project is gone. Copy
your repository’s SSH URL from GitHub and re-open Xcode 5.

Go to Source Control and select Check Out….:

iOS 7 by Tutorials Chapter 13: Intermediate Source Control in Xcode 5

 390

From there go to the Repositories tab and enter the repository’s URL that you
copied from GitHub, as shown below:

Click Next and you’ll be prompted to select the branch you wish to check out.
Select the master branch, as so:

iOS 7 by Tutorials Chapter 13: Intermediate Source Control in Xcode 5

 391

Select the directory where you’d like to check out the local copy of the repository
and Xcode 5 will open your project from the local copy of the master branch that
you checked out. Pretty painless!

Viewing repositories
To view your repositories in Xcode, open Xcode Preferences and select the
Accounts tab.

From here you can turn the repository on or off, change the description, or even
change the credentials you use for authentication. Your project is set up for SSH
keys, so you’re not using credentials at present.

You can also view your repositories by selecting Source Control\Check Out. This
shows you all of your repositories as well as recent repositories and favorite
repositories. You can favorite a repository by clicking the star to the left of the
repository.

iOS 7 by Tutorials Chapter 13: Intermediate Source Control in Xcode 5

 392

Now that you have a fresh clone of the repository, it’s time to start looking at the
workflow of commits, branches, and merges.

A branch-based workflow
Why use branches?
Branches are part of the core Git workflow and an essential tool in your
development cycle. They give you the security to keep work compartmentalized: a
stable branch to build from and merge to (usually master), and the ability to
separate chunks of work, new features, and bug fixes from the rest of the code.

What if you want to add a great new feature to your app, or fix a bug reported by
one of your users? You certainly don’t want to be committing those changes to your
master branch in case something breaks.

With a branch-based workflow you can create a branch for each bug fix, new
feature, or component you work on, and merge or rebase when it’s ready and
tested.

Creating a new branch
To try this out, you’re going to create a new branch based on an existing one. A
new branch starts from the current commit of the current branch. Right now, that’s
at the most recent or HEAD of the master branch.

Go to the Source Control menu item, hover over your master branch and select
New Branch…, as below:

Name the branch MyBranch and click Create.

Now you have a brand-new working branch named MyBranch and Xcode has
automatically checked it out for you and has switched you to this branch.

iOS 7 by Tutorials Chapter 13: Intermediate Source Control in Xcode 5

 393

Discarding changes in your working directory
Sometimes you’ll make a set of changes to a particular file, or set of files, that you
want to revert wholesale. Instead of having to manually delete these changes or
undo your way back to the file’s original state, you can discard your changes with
Git and revert a file to the last committed version.

Open AppDelegate.h and delete the UIKit import line:

#import <UIKit/UIKit.h>

The project navigator should reflect this change by showing you an M next to the
file, as shown below:

Now open AppDelegate.m and delete the unused UIApplicationDelegate methods:

- (void)applicationWillResignActive:(UIApplication *)application
- (void)applicationDidEnterBackground:(UIApplication *)application
- (void)applicationWillEnterForeground:(UIApplication *)application
- (void)applicationDidBecomeActive:(UIApplication *)application

Now there should be an M in the project navigator next to both files.

Right-click AppDelegate.h and select Source Control\Discard changes… as
shown below:

iOS 7 by Tutorials Chapter 13: Intermediate Source Control in Xcode 5

 394

When prompted, click Discard Changes. Notice the M that was next to
AppDelegate.h disappears, and your UIKit file is restored to its former glory. You
can also command-select multiple files and right-click to discard the changes in the
selected files.

However, to revert all of the changes you made, select Source Control\Discard
All Changes….

Then select Discard All Changes again from the prompt. Check out
AppDelegate.m; the lines you deleted have now been restored, and your project
navigator should no longer have an M anywhere.

iOS 7 by Tutorials Chapter 13: Intermediate Source Control in Xcode 5

 395

Deleting a branch
When deleting a branch there are a two things to remember. One, you can’t delete
the branch you’re currently working on. Two, it’s quite possible to have a local and
a remote version of the same branch, so deleting the branch locally will not delete
it remotely. The reverse case is true as well; deleting a branch remotely won’t
delete your local branch.

Switch back to the master branch and go to Source Control > Configure…. In
the Branches tab, select the MyBranch local branch and click the ‘-‘ icon on the
bottom left portion of the dropdown, as shown below:

Finally, click Delete Branch. MyBranch no longer exists on your local machine.

At the moment, Xcode doesn’t support deleting remote branches; you can use a
separate Git client (see the end of this chapter for recommendations) or the
command line to do this instead.

Pulling remote changes
So far, you’ve learned how to push changes you have made to a remote repository.
But what if you want to pull changes that your team members have committed to
the remote repository to your local copy?

This is done with a concept in Git called pulling, as you might expect. Let’s take a
look at how it works.

iOS 7 by Tutorials Chapter 13: Intermediate Source Control in Xcode 5

 396

Making a change via GitHub
Since you are working alone in this project you are going to use the GitHub web
site to edit a file and make a commit to simulate a remote change from a team
member. Yup, you can do that with GitHub. It’s pretty versatile!

Go to GitHub and open your repository’s page. From there go to the
ControllingSource folder and select AppDelegate.m. Click the Edit button and
remove the following unused methods from the UIApplicationDelegate protocol:

- (void)applicationWillResignActive:(UIApplication *)application
- (void)applicationDidEnterBackground:(UIApplication *)application
- (void)applicationWillEnterForeground:(UIApplication *)application
- (void)applicationDidBecomeActive:(UIApplication *)application

Scroll to the bottom of the edit page, enter a commit message, and click Commit
Changes.

Pulling changes in Xcode 5
With this new commit in place you now have something to merge into your local
repository. Remember that when pulling, you automatically merge the HEAD branch
with your local copy. Should there be any conflicts between your copy and the
remote copy, you’ll be prompted to resolve them yourself; otherwise, any updates
from the remote repository will be merged into your local branch.

Back in Xcode make sure you’re on the master branch and open up
AppDelegate.m. The file should still have the methods you just removed via
GitHub since you haven’t yet merged the remote changes into your local copy.

To pull the changes down, go to Source Control\Pull….

iOS 7 by Tutorials Chapter 13: Intermediate Source Control in Xcode 5

 397

From the dropdown select the origin/master branch and click Pull:

Now look at AppDelegate.m; the changes you made remotely have been merged
with your local file. Take a look at the logs in the version editor as well; you’ll see
the commit action and accompanying message for the changes made via GitHub, as
below:

Merging vs. Rebasing
Merging and rebasing are two key elements of source control in Git. Unfortunately,
Xcode 5 only supports merging — not rebasing. However, it’s good to know what
their differences are and when you would use one over the other.

Should you merge or rebase?
In short, it depends.

iOS 7 by Tutorials Chapter 13: Intermediate Source Control in Xcode 5

 398

Merging takes all of the changes that you have committed in a branch and merges
those changes into another branch. For example, say you make commits A and B in
your branch and your colleague makes commits Q and R in her branch. Your team
lead merges both branches into master, and the resulting history ties together
master, your branch, and you colleague’s branch.

On the other hand, a rebase is usually used to bring your working branch back up
to date. Let’s say commit C is the latest one in master and you create a new
branch. You add commits Q, R, and S to your branch. In the meantime, your
colleague adds an emergency hotfix to master in commit D.

You want to incorporate the hotfix into your branch, but you don’t want to merge
your code into master yet. Instead, you can rebase your branch on the current
master so it’s as if you started your working branch off commit D rather than C.

iOS 7 by Tutorials Chapter 13: Intermediate Source Control in Xcode 5

 399

Choose to merge when you have a feature on a separate branch and want to bring
that code into master or another branch. Choose to rebase when you want to stay
in sync with the main branch when you’re working on a long-lived side branch.

Merging into master
Now that you have a bit more knowledge about merging and rebasing, it’s time to
merge some of the branches in your repository.

In this Xcode project, I have set up a branch called FileOrganization that organizes
the file and folder structure in your project navigator in addition to cleaning up your
source files alphabetically and removing unused code.

In Xcode, go to the Source Control item and switch to the FileOrganization
branch, as shown below:

iOS 7 by Tutorials Chapter 13: Intermediate Source Control in Xcode 5

 400

Now go back to the Source Control menu, select the branch, and select Merge
into Branch…. From the available options, select the master branch and click
Merge.

A new dropdown pane will appear with the destination file from the master branch
on the left hand side, and the source file from the FileOrganization branch on the
right.

Note the arrow in the image above; the switches between the two files allow you to
accept or reject individual changes from the source file to the destination file. By
default, Xcode assumes you want to merge all changes, so you’ll notice the
switches are all to the right.

The circled number with arrows on each side lets you step through each detected
change and conflict one at a time.

Finally, the buttons at the bottom let you (from left to right):

1. Resolve the selected conflict using the changes from the file on the left and then
those from the file on the right.

iOS 7 by Tutorials Chapter 13: Intermediate Source Control in Xcode 5

 401

2. Resolve the selected conflict using only the changes from the file on the left.

3. Resolve the selected conflict using only the changes from the file on the right.

4. Resolve the selected conflict using the changes from the file on the right and
then the changes from the file on the left.

There are no conflicts or anything else in your way, so simply click Merge.

Go to Configuration\Source Control menu item and delete the
FileOrganization branch from your local repository. If you want, you can also
delete the branch from the remote repository via GitHub.

Since the branch containing your changes has been merged into the master branch,
you no longer need to keep a copy of it remotely. If you are working on a team
project it may cause confusion and increase the clutter when viewing all the
branches available in the origin (in this case, Github).

Merging into another branch
Next you will merge the ModelUpdates branch not into master, but into the
RefactorClassNames branch. The reason why you merge it into
RefactorClassNames first and not directly into master is because ModelUpdates is a
branch created from RefactorClassNames.

This will put the code back into its original branch before you merge things into
master.

Note: There is no rule that says you must merge everything into master; you
can branch off something other than master and merge your work into any
branch. Master is usually kept with stable, tested code and is treated as
production-ready.

First, switch to the ModelUpdates branch to retrieve a local copy.

Note that in the previous example, you merged into a branch. For this next merge
you’ll try it the other way and merge from a branch.

Switch to the RefactorClassNames branch and select Source Control\Merge
from Branch…. From the dropdown, select the ModelUpdates branch and click
Merge.

iOS 7 by Tutorials Chapter 13: Intermediate Source Control in Xcode 5

 402

You should get a couple of merge changes. Once again resolve them with all the
switches set to the branch, meaning you are selecting to keep the changes from the
ModelUpdates branch, and click Merge.

Delete the ModelUpdates branch locally and, if you want, remotely. ModelUpdates
has been merged into the RefactorClassNames branch so by deleting ModelUpdates
locally and from the origin, you will prevent confusion and keep your repository
clean.

Merge conflicts and resolution
Currently the merges of your master and RefactorClassNames are stored in your
local repository; you haven’t yet updated them on the server. Push your newly
merged RefactorClassNames branch to GitHub.

After that’s done switch to the master branch and push that up to GitHub as well.

Now you’re ready for the final merge! In the Source Control menu, select Merge
from branch and then RefactorClassNames to merge. Aha — there’s a conflict
that needs to be resolved.

There are two question mark symbols and nine switches for the changes made in
the project file. Leave the switches as they are and focus on each of the question
marks, starting with the first one.

Merge conflicts in the project file can be especially tricky to deal with. In this case,
the master branch includes the reorganized file groupings. Click the button on the

iOS 7 by Tutorials Chapter 13: Intermediate Source Control in Xcode 5

 403

far left as indicated below:

This resolves the conflict by accepting the change on the left before the change on
the right. Repeat the process for the second question mark. Once that’s done, click
the Merge button to finish the process, as below:

You’ve finished merging all of the branches that contained different portions of
work. You now have an organized set of files and project navigator, a core data
model with corresponding class files, an updated storyboard and the README and
property list file to make your app work.

Push the master branch to GitHub and delete the RefactorClassNames branch
locally and remotely. As with the previous merges, you delete the branch to keep
the repository clean and avoid keeping unnecessary code around. Should you ever
need to revert back to the branch’s state before the merge, you can do so by
checking out the commit prior to the merge.

Finishing the app
With your project merged and up to date, it’s time to wrap up the code itself. This
app lets users add random quotes from a plist file into a standard table view.

Open Quote.m and add the following code inside the implementation:

iOS 7 by Tutorials Chapter 13: Intermediate Source Control in Xcode 5

 404

- (void)awakeFromInsert
{
 [super awakeFromInsert];

 NSString *quotesFilePath = [[NSBundle mainBundle]

 pathForResource:@"QuotesList"
 ofType:@"plist"];

 NSArray *quotesArray =
 [NSArray arrayWithContentsOfFile:quotesFilePath];
 NSUInteger quoteIndex = arc4random() % [quotesArray count];
 NSDictionary *quoteDictionary = quotesArray[quoteIndex];

 [self setPrimitiveValue:quoteDictionary[@"personName"]
 forKey:@"personName"];
 [self setPrimitiveValue:quoteDictionary[@"famousQuote"]
 forKey:@"famousQuote"];
}

This method is called when you insert a new quote object into Core Data; it
retrieves the property list file with the famous quotes, fetches a random quote and
stores it in the newly inserted Quote object.

Switch to QuoteListViewController.m and update insertNewObject: as follows:

- (void)insertNewObject:(id)sender
{
 NSManagedObjectContext *context = [self.fetchedResultsController
managedObjectContext];
 NSEntityDescription *entity = [[self.fetchedResultsController
fetchRequest] entity];
 [NSEntityDescription insertNewObjectForEntityForName:[entity name]
inManagedObjectContext:context];

 NSError *error = nil;

 if (![context save:&error])
 {
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 abort();
 }
}

Finally, update configureCell:atIndexPath: as shown:

iOS 7 by Tutorials Chapter 13: Intermediate Source Control in Xcode 5

 405

- (void)configureCell:(UITableViewCell *)cell atIndexPath:(NSIndexPath
*)indexPath
{
 Quote *quote = [self.fetchedResultsController
objectAtIndexPath:indexPath];
 cell.textLabel.text = quote.personName;
}

These two methods handle the insertion and display of the quotes.

Commit these changes and push them to GitHub. Now run your app and click the
plus button; a list of famous people will appear. Select the name of a famous
person from the list and you’ll see a random quote from that person.

Congratulations! You’ve merged together a simple app, learned about Git source
control with Xcode 5, and also learned a bit about GitHub too.

Where to go from here?
Despite many of the enhancements made to Source Control in Xcode 5, there are
still a lot of missing features and shortcomings that prevent Xcode from being the
go-to source control tool. Xcode is fine for basic tasks like checking out a
repository, making a new branch, viewing history and logs, switching branches and
pushing or committing changes, but it can’t yet do everything that Git offers.

iOS 7 by Tutorials Chapter 13: Intermediate Source Control in Xcode 5

 406

If you don’t want to learn how to use Git from the command line and prefer GUI
clients then check out the following clients:

• Tower Git

• Source Tree

• Gitbox

From here on out the sky is the limit when it comes to Git. There is always
something new to learn and master. Check out the Git website and read through
Pro Git; you won’t be disappointed.

Challenge
Finally, here’s a challenge for you to test and practice your git skills:

1. Create a branch called Enhancements and add 5 new quotes of your preference
to the property list.

2. Commit the updated property list file and give the commit a descriptive
message.

3. Add a .gitignore file to the project and commit that change, still in the
Enhancements branch.

4. Push the Enhancements branch to Github and verify that it is visible remotely in
your repository page.

5. Merge the Enhancements branch into master and push these changes to
Github.

6. Delete the enhancements branch locally and from the remote repository (it’s
redundant and you no longer need to keep it around. This makes for a cleaner
project repository).

7. Switch to the master branch and update the README file to give a better
description of your project. Commit the changes once you are done.

8. Push the updated master branch to Github, and go to your repository’s main
page and make sure the new description is visible.

All development shops struggle with the day-to-day management of builds and
releases. Whether it’s a one-person development shop, or a global distributed
team, it’s always challenging to keep the builds clean and an even bigger challenge
to keep release day from disintegrating into mild chaos.

Xcode 5 and OS X Server for Mavericks combine to create a simple yet powerful
build environment that leverages a new Xcode service and automations known as
bots. Many iOS and Mac developers are familiar with open-source continuous
integration servers such as Jenkins or Hudson; while these servers are powerful
and worthy options, they often lack the ease-of-use and polish of a well-designed
commercial product. Setting up one of these servers could take from several hours,
to days, to even weeks in some cases.

Apple’s offering, on the other hand, has greatly reduced the time required to
construct a full integration environment; one that you will build yourself in this very
chapter! In this chapter you’ll learn how to set up OS X Server, install the Xcode
Service, create a bot to run a build task, and integrate the bot with your Git
repositories. By the end, you’ll have a continuous integration server that will be of
immediate benefit to you and your development team.

What is continuous integration?
The idea of continuous integration first became popular as a tenant of the extreme
programming movement (see note below). The idea behind continuous integration
is that when developers integrate their collective changes to the codebase early and
often, they are less likely to enter that dreaded state of merge hell, where every
new code addition results in a slew of conflicts, and every bug fix seems to break
something else. The more frequently you can verify that the project still builds and
functions correctly, the better your development team can work as a whole.

Chapter 14: Beginning
Continous Integration in Xcode 5
By Chris Wagner

iOS 7 by Tutorials Chapter 14: Beginning Continuous Integration in Xcode 5

 408

Note: So what’s this extreme programming stuff? Essentially, it’s a software
methodology spun off as a branch of agile programming. It’s designed to
improve software quality and the responsiveness to changing customer
requirements by creating more frequent releases with shorter development
cycles.

The path to creating frequent releases is made possible through automation of
build and validation processes, so that any changes that affect the project in a
detrimental manner are detected early — and fixed long before they affect
anyone else.

To learn more about Extreme Programming, check out this page:

 http://en.wikipedia.org/wiki/Extreme_programming

Continuous integration can be defined in many ways, but it generally boils down to
the following practices:

1. Source Control: Have somewhere to store your projects’ code base that is
accessible by all team members. Popular examples of source control systems
include Git, Subversion, and Mercurial. To learn more about using source control
in your projects, check out Chapter 12 and 13, “Beginning and Intermediate
Source Control in Xcode 5.”

2. Automated Builds: The process of building your project should be automated,
stipulating that human intervention is not required to generate the product.

3. Automated Tests: When a build completes, all of your projects’ unit and
integration tests should be run. If any of the tests fail then the build is
considered a failure. To learn more about adding unit tests to your projects,
check out Chapter 11, “Unit Testing in Xcode 5.”

4. Build Every Commit: Every commit should be considered guilty until proven
innocent. A developer should be careful to make sure their commit works before
submitting to the baseline project; if the commit breaks the build, then all
subsequent commits cease until the build is fixed. This process ensures
regressions are caught soon and are fixed quickly.

5. Access to Builds: The final product of the build, which in the case of iOS
development is the .ipa archive, should be easily accessible to all team
members. This allows quality assurance teams and/or key stakeholders to have
immediate access to builds without the development team as a proxy.

6. Publishing Build Status: Everyone on the team should be aware of the build’s
status. A large display in a development area can be used to keep everyone
aware of what’s going on, or notifications can be sent to the team when a build
fails. Whatever the medium, this information should always be readily available
to the team.

iOS 7 by Tutorials Chapter 14: Beginning Continuous Integration in Xcode 5

 409

7. Automated Deployment: In a world run by App Stores, this generally pertains
to internal or quality assurance builds. The App Store submission process may be
a candidate for automation, but it’s likely that you’ll manually choose an .ipa
archive from those produced by your build system to submit to the App Store.

The benefits of continuous integration to development teams are substantial: a
simplified development workflow, a replicated target environment, centralized
builds providing code metrics such as test status and code coverage, easy product
deployment, and above all, more time to write beautiful code and add features to
delight your customers. What more could you ask for?

OS X Server
To set up continuous integration for your Xcode projects, you need a machine
running OS X Server.

Unlike what you might expect, OS X Server is not a separate version of OS X, or a
specific type of Mac hardware. Instead, it’s just an app you can download from the
Mac App Store and run on any modern Mac to make it a server. If you have a spare
Mac Mini lying around, this makes for a particularly good candidate.

And the best part – if you’re a member of the iOS developer program, OS X Server
is free! You can get a redemption code on the iOS Dev Center.

The OS X Server app for Mavericks provides far more than just continuous
integration support. It includes many server components useful for Macs running on
your network, such as:

• Caching: Automatically cache downloaded and updated software on the server,
with the goal of offering faster downloads to all other Macs on the network.

• Calendar: Share calendars, schedule meetings, book conference rooms and
coordinate events.

• Contacts: Share contacts and keep them in sync across all Mac’s on your
network.

• File Sharing: Share files on Mac, iOS, and Windows with full permissions and
access control managements. You can also monitor access and make use of
Spotlight integration so that users can quickly find content on the network.

• Mail: An E-Mail server compatible with many of the popular email clients on Mac,
iOS, and Windows. Includes support for push notifications, virus detection and
junk mail filtering.

• Messages: Private instant messaging, hosted within the confines of your own
network.

• Profile Manager: Create profiles to aid setting up and configuring user devices.
Profiles can be sent out over-the-air via Push Notifications, and users can also

iOS 7 by Tutorials Chapter 14: Beginning Continuous Integration in Xcode 5

 410

install profiles via a self-service web portal. Users can reset their passcodes and
remotely lock or wipe their Mac and iOS devices.

• Time Machine: Your server can act as the designated Time Machine backup
location for every Mac on your network. This centralizes backups and eliminates
the need for a separate backup drive for each Mac.

• VPN: Enable offsite users secure access to your local network. One specific use
case for VPN pertaining to this chapter is access to the continuous integration
system by offsite or remote team members. Depending on your network
configuration you may need to take extra steps in exposing your OS X Server to
the public Internet before the configured VPN service can be accessed. Detailed
information on configuring the VPN service can be found by clicking the “Learn
about” arrow in the VPN section of Server.

• Websites: Host website content with built-in support for PHP and Python web

applications.

• Wiki: Host wiki powered websites where users can collaborate on the content.

• Xcode Service: Provide developer related services including bots and
source control. The Xcode service is the focus of this chapter but it is also
worth nothing that you can configure it to host Git repositories without
the need to use bots.

You can think of running OS X Server as running your own mini iCloud, just for your
network. And in true Apple fashion, many of these services are incredibly simple to
enable, configure and begin using immediately.

Installing OS X Server
To install OS X Server, download the app from the Mac App Store. Once the
installation process is complete, open Server.app from either your Applications
folder or via Launchpad. You’ll be presented with the following Server set up
screen:

iOS 7 by Tutorials Chapter 14: Beginning Continuous Integration in Xcode 5

 411

Click Continue to setup OS X Server locally; you’ll be asked to accept the license
agreement and then you’ll be prompted to enter your system’s administrative
password. After that, you can sit in awe and watch the progress bar as Server is
installed, or you can take a few minutes and do something fun.

As soon as setup completes, the app launches and presents the Server Tutorials
window to you as seen below.

You may notice that there is an “Automate Xcode builds” section - you may want to
glance through that tutorial if you are looking for a very brief introduction. Once
you are done peeking at the Apple provided tutorials, close the window and you will
land on the Server Overview shown below.

iOS 7 by Tutorials Chapter 14: Beginning Continuous Integration in Xcode 5

 412

At this point you’re ready to setup the Xcode service.

The Xcode Service
The Xcode service of OS X Server enables you to configure your server to perform
development-related tasks. The service is only available in OS X Server for
Mavericks, and requires that you have Xcode 5 installed. If you don’t already have
Xcode 5 installed on your OS X Server machine, it’s as easy as searching for it on
the Mac App Store and clicking Install.

The first step to enable the Xcode service is to select your Xcode installation. Locate
the Xcode service in the Services group of the sidebar and click it, as so:

Click the button labeled Choose Xcode… and navigate to your Xcode installation,
which is usually found in the Applications folder, as it is below:

iOS 7 by Tutorials Chapter 14: Beginning Continuous Integration in Xcode 5

 413

If you haven’t previously launched Xcode on this machine, you may need to agree
to a second license agreement and wait a short while for Xcode to finish its own
setup process. Once that’s done, the Xcode service settings are unveiled, as shown
in the screenshot below:

On this screen you will find a switch at the top right to turn the service on and two
tabs: Settings and Repositories. The Settings tab provides options to edit user
level permissions of the bots that the service maintains, set which install of Xcode
to use (same process as above), and add or remove Apple Developer teams. The
last section is the device section where you can add devices to be used by bots
when performing integrations. The Repositories tab is pictured below:

iOS 7 by Tutorials Chapter 14: Beginning Continuous Integration in Xcode 5

 414

On this tab you are provided the options to add new repositories that the Xcode
service is either hosting or is simply aware of.

Adding developer teams
Next you’ll need to add a registered development team so that Server can add itself
to your developer account and obtain its own a certificate signing request and
necessary provisioning profiles. This is necessary being that bots will deploy apps to
connected devices when running unit tests during integrations. In the Builds
section on the right-hand pane click the Add… button and sign in with your
developer account when prompted. If you belong to many teams, select the
appropriate one to add; otherwise, a team will automatically be selected for you
and you’ll subsequently be asked if you want to add the server to your team, as
shown in the screenshot below:

Choose Add to continue on.

OS X Server obtains new signing certificates for all App IDs belonging to the chosen
teams. The server also adds itself as a team member on the developer portal; you
can view added servers via a new Server tab in Member Center as shown below:

iOS 7 by Tutorials Chapter 14: Beginning Continuous Integration in Xcode 5

 415

Adding devices
In order to be confident that your app works as designed, it’s a good idea to run
your test suite on physical devices rather than just on the simulator. Well, there’s
good news with that - continuous integration with OS X server has full support to
run your test suite on physically connected devices automatically with each
integration.

To add a device to the Xcode service you must first connect it to your Mac and
choose “Trust” when prompted on your device. As soon as the system recognizes
the device you should see it appear under the Devices section.

Once the device appears, click the corresponding Add to Team button and click the
Add button to confirm you want to add the device to your team, a shown below:

iOS 7 by Tutorials Chapter 14: Beginning Continuous Integration in Xcode 5

 416

Note: If you’ve already added this device to your team in the iOS Provisioning
Portal or in Xcode, you still need to complete this step.

If the device has been previously added to your team this step will simply
register the device with the Xcode service. Otherwise, it will register the
device on the developer portal and consume one slot out of your one hundred
available device slots.

The added device now appears in the Devices section of your Xcode server’s
settings screen along with the relevant team name. Every device that your Xcode
server is aware of shows up here, regardless of which team it belongs to. That way,
you can add several teams to the Xcode service and manage all devices and teams
from this single settings pane.

Tip: If you’re curious about which provisioning profiles have been downloaded
take a look in the following folder:
/Library/Server/Xcode/Data/ProvisioningProfiles. Knowing they’re
stored in this location can also be helpful when trouble-shooting any issues,
because provisioning and code signing always works flawlessly, right...right?

Starting the Xcode Service
The final step to enable your Xcode service is to start it. Simply toggle the large
OFF/ON switch at the top right corner of the window. When the service has started
(which may take about a minute) the status indicator changes from Offline to
Available on your local network at… and the indicator turns green, as shown
below:

iOS 7 by Tutorials Chapter 14: Beginning Continuous Integration in Xcode 5

 417

This section also gives you information about where the service is available and the
name it’s broadcasting on the network.

Xcode
Now that you have OS X Server and the Xcode service up and running, you need to
tell Xcode about the service. Usually, you’ll need to do this on the machines used
by you and your team members. Best practices state that your continuous
integration server should be a dedicated environment in order to provide a
consistent, known, and reproducible environment where the software stack is built
from the ground-up to avoid dependencies on local development machines.

However, it’s entirely possible to setup a complete development environment on a
single machine that runs the server app, but you do so at the risk of leaning too
heavily on one single environment for your integration activities.

Adding OS X Server to accounts in Xcode
To add an OS X Server as an account in Xcode, launch Xcode and open the
preferences window via the Xcode/Preferences menu item or via the CMD+,
(command and comma) keyboard shortcut. Navigate to the Accounts pane, which is
shown below:

iOS 7 by Tutorials Chapter 14: Beginning Continuous Integration in Xcode 5

 418

Click the + symbol in the bottom left corner of the window and choose Add
Server… from the popup menu.

If your Xcode service is running and available on your local network, you should see
it appear in the list as below:

Select your server and choose Next; then enter the credentials for the server. Once
you complete the authentication step, the server appears as an account entry, as
shown below:

Alright, you’ve successfully connected to your OS X Server! Now you just need to
set it up to do something interesting.

iOS 7 by Tutorials Chapter 14: Beginning Continuous Integration in Xcode 5

 419

Bots
In order to instruct your OS X server to perform a specific task for a specific Xcode
project scheme (like building a project or running unit tests), you create something
called a bot. You can think of a bot as a little robotic servant who’s happily
performing tasks on your behalf in the background. Mwuahaha - feel the power!

Before you can create a bot, there are a few prerequisites you have to take care of.
Here’s what a bot requires:

1. OS X Server running on a local or remote machine.

2. A fully configured Xcode service.

3. The server added as an account in Xcode on your machine.

4. An Xcode project hosted in a repository the server has access to.

5. A shared Xcode scheme.

The good new is so far you’ve taken care of everything except setting up an Xcode
project repository (step 4) and creating a shared Xcode scheme (step 5). Let’s take
care of that next.

Getting started
In this chapter, you will set up continuous integration for Reversi project you used
in Chapter 11, “Unit Testing in Xcode 5.” This project is an ideal candidate for
continuous integration because it has unit tests ready to go.

In order to use the project, you need to host it in a repository. The easiest
approach is to use Git with OS X Server since the necessary tools are already at
your disposal.

The following steps will show you how to host the Reversi project on a git
repository. However, to keep the focus on continuous integration this chapter will
only provide a brief overview and assumes you have the Git command line tools
installed and basic knowledge of Git. To learn more about Git and source control,
check out Chapters 12-13, “Beginning and Intermediate Source Control in Xcode 5.”

iOS 7 by Tutorials Chapter 14: Beginning Continuous Integration in Xcode 5

 420

Initializing the Git Repository
The Reversi project can be found in the resources for this chapter. Open up
Terminal.app and change to the project directory:

$ cd ~/Desktop/[REPLACE_WITH_PROJECT_NAME]/

Still in Terminal.app, enter the following command to initialize the Git repository:

$ git init

Commit the project files to the repository by typing the following commands:

$ git add .
$ git commit -m "Initial commit"

At this point you have a local repository created. Now you’ll create a central
repository for the code on your OS X server and push it there.

Adding a remote for the Git Repository
Exit Terminal.app and head back to Xcode to complete the remainder of the setup.

Open the project in Xcode; from the Source Control menu highlight the
ReversiGame working copy and from the submenu select Configure
ReversiGame. Select the Remotes tab from the configuration pane displayed,
then press the + button. Choose Create New Remote… as shown below:

From the list, select the instance of OS X Server that you configured earlier. Set
Remote name to origin and click Create, as below:

iOS 7 by Tutorials Chapter 14: Beginning Continuous Integration in Xcode 5

 421

If you’re presented with a confirmation alert, press Confirm to proceed with the
setup, as so:

The remote now appears in the list of remotes in Xcode; you can now push your
local repository to the remote to make it available to your bot. Click Done to close
the configuration pane, then choose the Source Control/Push… menu item. You’ll
see the remote listed with the master branch as origin in the drop down, as shown
below:

Click Push to push your local changes to the remote; the pane will disappear once
the process has completed.

A copy of your source code is now available both as a local working copy and as a
remote copy on the server. Now your bot will have access to all of the files it needs
to perform your build.

Creating the bot
Now comes the process of finally creating the bot itself. In Xcode, choose
Product/Create Bot…; the Create a new bot dialog will be displayed like so:

iOS 7 by Tutorials Chapter 14: Beginning Continuous Integration in Xcode 5

 422

Ensure that the ReversiGame scheme is selected; Xcode will generate a name for
your bot as the name of the scheme suffixed with Bot. You can change this if you
like, but it’s fine as-is. It is also required that the scheme be shared, a scheme
contains important information about how to build the project and is needed by the
bot, you will not be able to continue without sharing the selected scheme. Next,
select your Xcode Server from the dropdown, and ensure that Integrate
immediately is checked. When you’ve completed these changes, click Next. You’ll
be presented with the Schedule bot integrations screen, as shown below:

Note: You may be prompted to authenticate in order to give access to your
repository before seeing the following screen.

iOS 7 by Tutorials Chapter 14: Beginning Continuous Integration in Xcode 5

 423

Here you can choose how often you want your bot to run, the actions it performs,
and whether or not to perform a clean with each integration.

Schedule has three options: On Commit, Periodically, and Manual. On Commit
tells your bot to run each time you push code changes to the remote server.
Periodically is useful for regular processes, such as a nightly build, while Manual is
ideal for bots that you want to run on demand, such as a release build.

Set the Schedule of your bot to On Commit.

You can also choose which actions to perform during each bot run:

• Perform analyze action: This tells the bot to run the static analyzer when it
builds your project. You should run this with each integration task to catch
memory leaks or other potential issues that aren’t caught during the normal build
process. You’re likely familiar with the Analyze feature in Xcode; this just
automates the task for you.

• Perform test action: This tells the bot to run your tests as part of your
integration task; your bot can run these tests just as you run them manually in
Xcode. It’s critical to run these with each integration task to ensure regressions
have not introduced.

• Perform archive action: This tells the bot to archive the build for later
installation, distribution, or release. This option is best used with periodic or a
manual bots since you don’t want to generate an archive for each commit.

Since this bot will be performing a full integration build, check all three options.

The last option on the page is Cleaning. This simply instructs the bot to always
clean its working directory before running the integration. Usually On Commit bots

iOS 7 by Tutorials Chapter 14: Beginning Continuous Integration in Xcode 5

 424

don’t bother with performing a clean operation prior to a build since cleaning can be
an expensive operation, and for each commit you’re only really interested in
whether the build succeeds and all tests pass. For any periodic and manual builds
it’s best to turn Cleaning on to ensure your builds are consistently created in a
clean environment, instead of on top of whatever state the environment was from
the last build.

However, check Cleaned for your bot so that you can see this option in action.
Click Next, and you’ll be taken to the Choose a device... screen, as below:

Here you can specify which devices to run your tests on. All iOS Devices informs
the bot to perform the tests on all physically connected devices of which the Xcode
Service is aware. You can also choose All iOS Simulators to instruct the bot to run
on all available simulators. Otherwise you can choose Specific Devices and
manually select the devices and/or simulators on which you’d like the bot to run
tests.

Note: The integration will fail if a device was selected but not connected when
the integration is run.

For this tutorial, choose All iOS Devices and click Next. You’ll be taken to the very
last setup screen for your bot: Configure bot email notifications, as shown
below:

iOS 7 by Tutorials Chapter 14: Beginning Continuous Integration in Xcode 5

 425

The options are pretty straightforward. The On Success option tells the bot to
email the specified recipients when a build succeeds; the On Failure option
instructs the bot to email people when the build fails. You can choose to send
emails to only the Committers; that is, the authors of the commits made for this
integration. The committer email addresses are obtained from the commit
information if it is available. If you need to notify other people, you can specify a
list of comma separated emails.

Generally, for a bot that runs On Commit, you want to send failure notifications to
only the Committers; otherwise the inboxes of everyone on the project will fill up
pretty quickly! Check On Success and On Failure and add your personal email
address to the list. By default emails will be sent using the postfix server that is
built in to OS X on your mac running OS X Server. If any custom settings are
required you will need to enable the Mail service in OS X Server and configure it
appropriately. For most users the default option is sufficient.

Be sure your test devices are connected to your remote server and click Create
Bot. If your scheme was not already shared you will immediately be presented with
a commit sheet to commit the Scheme to your repository, you must commit in
order for the bot to be successfully created. Once the bot is created you’ll be taken
to the Summary view for your bot and your integration will commence. While the
integration is running you will see an activity indicator along with the message
“Integrating” in the Log Navigator of Xcode as shown below:

Once the integration is complete, you’ll see the results shown as below:

iOS 7 by Tutorials Chapter 14: Beginning Continuous Integration in Xcode 5

 426

You’ve successfully created your first bot to perform one of the pillars of
Continuous Integration: integration builds on commit. This way, you’ll know
immediately if the code you’ve added causes any problems. However, just because
your code compiles doesn’t mean that it didn’t break anything; well written unit
tests will show you if you’ve caused any untoward issues in the project.

To that end, you’ll write a small unit test that fails, so that you can see how Xcode
Server responds when things don’t go precisely as planned.

Triggering an integration
Open ReversiBoardTests.m and add the following test method that is guaranteed
to fail:

- (void)test_iLikeBreakingBuildsAndICannotLie
{
 XCTAssertTrue(false, @"The integration will fail");
}

Select Source Control\Commit… to commit your changes to the repository.
Xcode will present you with the following commit dialog:

iOS 7 by Tutorials Chapter 14: Beginning Continuous Integration in Xcode 5

 427

Uncheck all files except ReversiBoardTests.m, check the Push to remote: option
in the bottom left corner of the window and ensure origin/master is selected in
the dropdown. Enter a commit message, and click Commit 1 File and Push.

Note: If you had other file changes you may wish to commit those, but for the
purpose of this tutorial you only need to commit ReversiBoardTests.m

Switch to the Log Navigator by either typing Cmd+8 or by clicking on the last
icon in the navigator window. Keep an eye on your bot; after a few minutes you’ll
see it begin the integration. This is a good time to put your feet up and enjoy a
frosty beverage while you wait. Once the integration is finished, you’ll notice the
red symbol indicating the build is broken.

Every good developer knows that keeping the build server happy is paramount. Put
down that frosty beverage and remove the failing test. Commit your changes, push
them to the server, and you’ll see another integration launch off. Once this
integration finishes, you’ll see the Summary view reports that the build passed,
albeit with some warnings.

iOS 7 by Tutorials Chapter 14: Beginning Continuous Integration in Xcode 5

 428

Where to go from here?
You’ve made it through the process of setting up OS X Server with the Xcode
service, and you’ve successfully created a bot using Xcode. If you’ve never setup a
continuous integration system then you may be thinking, “That wasn’t such a big
deal, why is everyone freaking out about this?”

Before continuous integration support with OS X server, it usually took several days
to several weeks to get a continuous integration system up and running properly to
fit the particular project and to work with all teams involved. If you’ve ever worked
on building a continuous integration server in this manner, you’ll understand
immediately how Xcode Server and bots can make your life much, much easier. As
well, the UI is much cleaner and streamlined compared to existing continuous
integration software.

Now that you have the basics down, it’s time to get serious and work with bots in
detail. The next chapter deals with the following real-world integration concepts:

• The hardware you’ll need to run a real continuous integration system

• The Log Navigator and bot information view in Xcode and web interface

• Displaying build status on a monitor for all to see

• Providing access to the latest builds of your app for QA and other internal teams

• Bot best practices from Apple

• Best practices from other continuous integration systems

iOS 7 by Tutorials Chapter 14: Beginning Continuous Integration in Xcode 5

 429

• Making Xcode Schemes work for you

• Uploading builds automatically to TestFlight

• Uploading DSYM files automatically to Crashlytics

• Creating bots that build different branches of your project

It will be an action packed chapter — you should expect to learn a lot!

Challenges
There’s just one challenge in this chapter – but it’s a practical one if you’re a GitHub
fan!

Challenge 1: Integrating GitHub
1. You have learned how to create a bot with a repository hosted on your OS X

Server. Now see if you can create a bot with a repository hosted on GitHub
(http://github.com/).

a. Hint 1: You need to create a GitHub account if you don’t have one —they’re
free.

b. Hint 2: You need to either create a repository or fork an existing repository.

c. Hint 3: When you create a new Xcode project, use the option to create a
local Git repository.

d. Hint 4: The Source Control menu in Xcode lets you add remotes to your local
Git repository.

Good luck!

In the previous chapter you made a ton of progress – you’ve set up a system that
ran the Xcode service on OS X Server, and created your first bot using Xcode to
perform an automated build on every commit.

In this chapter, you’ll take things even further and learn how to set up a real-world
testing environment, set up a web-based scoreboard, automatically upload builds to
TestFlight, and much more. Taking the time to set up a build environment like
detailed in this chapter will pay huge dividends for you and your team in the long
run!

In order to follow along with the tutorial in this chapter, you will have to have
performed all of the steps in the previous chapter and have your project in the
state where we left things off. However, if you’re only interested in the theory and
how-to then feel free to stick around. You’ll be able to apply the topics covered to
your existing projects as well. The requirement is that you have already setup OS X
Server with the Xcode service, and know the basics of creating bots.

Hardware
If you followed through the setup of Xcode Server in the last chapter, you may
have noticed that there wasn’t any discussion of hardware requirements. This was
intentional so that you could focus on the task at hand and not be distracted by
what the ideal hardware setup looks like. However, to create a responsive and
robust integration environment, you need to make sure it meets a few minimum
specs.

The Mac
In order to run OS X Server your Mac must be capable of running OS X Mavericks;
therefore it needs to fall into one of the following hardware classes:

• iMac (Mid-2007 or later)

Chapter 15: Intermediate
Continuous Integration in
Xcode 5
Chris Wagner

iOS 7 by Tutorials Chapter 15: Intermediate Continuous Integration in Xcode 5

 432

• MacBook (Late 2008 Aluminum, or Early 2009 or newer)

• MacBook Pro (Mid/Late 2007 or newer)

• MacBook Air (Late 2008 or newer)

• Mac Mini (Early 2009 or newer)

• Mac Pro (Early 2008 or newer)

• Xserve (Early 2009)

• Have at least 2GB of RAM

• Have at least 10 GB of available disk space

An ideal setup for a server is usually a system that can be tucked away and left
alone. Unfortunately, when Apple stopped making the Xserve hardware they left
the market of rack-mounted servers altogether. The Mac mini is a great alternative
for a server; there’s even a version of the mini called Mac mini with OS X Server
that’s advertised as a server and comes with OS X Server pre-installed. At the time
of writing, the server version of the Mac mini started at $999 and with additional
configurations priced up to $1,999, as shown in the table below:

$999 Mac mini with Server $1,999 Mac mini with Server

2.3Ghz Quad-Core Intel i7 2.6Ghz Quad-Core Intel i7

4GB 1600Mhz DDR3 SDRAM 16GB 1600Mhz DDR3
SDRAM

2x1TB Serial ATA Drive @
5400RPM 2x256GB Solid State Drive

There’s a happy medium in the non-server edition of the Mac mini; you get a
memory boost over the introductory version of the Mac mini, but you’ll take a hit on
the drive hardware compared to the top-tier Mac mini, as illustrated below:

$1,149 Mac mini with Server

2.3Ghz Quad-Core Intel i7

8GB 1600Mhz DDR3 SDRAM

1TB Fusion Drive

This setup provides you with the best of both worlds: good performance at a
reasonable price. The Fusion Drive automatically and dynamically moves frequently
used files to Flash storage for quicker access, while infrequently used items move

iOS 7 by Tutorials Chapter 15: Intermediate Continuous Integration in Xcode 5

 433

to the hard disk. As a result, you'll enjoy shorter startup times, and as the system
learns how you work you'll see faster application launches and faster file access.

The best part? Fusion Drive manages all this automatically in the background,
without any tweaking required on your part.

Your Mac hardware and configuration is ultimately dependent on your team’s
requirements, your budget, and the scale of projects that you work on. If you are a
development shop writing many small projects that build quickly without a
powerhouse system, you can likely get away with lower-end hardware. However, if
your team works on large enterprise apps or games, you may benefit greatly from
higher-end systems that can drastically reduce the time of your integration cycles.

The USB Hub
Connecting your test devices to your server seems simple enough; just get a USB
hub with enough ports to cover the number of devices you intend to connect to it
and you’re done...right?

This setup is fine with iPhone and iPod Touch devices. However, the higher power
requirements of the iPad will cause issues in a bare-bones configuration like this.
iPads require greater amperage than is provided by most USB hubs; insufficient
amperage means that your iPad may not charge while it’s in use and plugged in.

A current generation Mac mini has 4 USB ports, which provides enough power to
support four iPads; however, this leaves no USB ports for anything else. This might
be sufficient for small development shops, but larger shops may want to test with
multiple iPad hardware platforms running various versions of iOS. What to do?

If you’re in this boat, then you’ll need to check out the various USB hubs produced
by a small number of vendors that meet these increased power requirements, such
as Cambrionix - http://www.cambrionix.com. Always verify that the hub you’re
considering supports both charging and syncing, so that your bots can deploy apps
while providing sufficient power to your plugged in devices. These types of USB hub
aren’t cheap, but it’s a justifiable expense for any team that requires such a
configuration.

The Display
Generally servers run as headless systems, meaning they run along happily without
a connected monitor. For these types of server configurations, OS X Server
provides remote access to permit remote management from other Macs. Setting up
remote management is as easy as opening the Sharing options under System
Preferences and turning Remote Management on. Once Remote Management is
enabled you can use Remote Desktop (https://www.apple.com/remotedesktop/) to
connect to your server. Depending on your network configuration you may need to
take extra steps to ensure the route from your system to the server is unimpeded.

iOS 7 by Tutorials Chapter 15: Intermediate Continuous Integration in Xcode 5

 434

Headless systems work great for continuous integration servers as well, since the
Xcode service provides a web interface for you to manage the Xcode installation on
your server and monitor your bots.

You can view this web interface from any of the machines on your network, or you
can set up an Apple TV and an oversized monitor can display this scoreboard to the
entire development group using AirPlay. This keeps everyone informed of the
current status of the integration build environment – and is a cool morale booster!

Reviewing and Managing Bots
Once you have a bot set up and running, you’ll interact with it either in Xcode or
through your web browser. Both are functionally equivalent; everything you can do
in one interface, you can do in the other. Developers will likely spend most of their
time interacting with bots using Xcode, whereas other members of the team such
as QA or management are more likely to utilize the web interface to monitor build
status.

Note: The screenshots in the next section exist as examples only; your results
will differ based on your own projects and how much you’ve been using bots
to this point.

iOS 7 by Tutorials Chapter 15: Intermediate Continuous Integration in Xcode 5

 435

Xcode

Xcode’s Log Navigator is the place to view information about your bots. It’s
found in the Navigators pane on the left side of the main Xcode window; you
can hide or show or hide this pane using the cmd+0 keyboard shortcut, or
through the View/Navigations/Show|Hide Navigator menu item. Bot
Summary View
Select a bot in the Log Navigator and you’ll see the Summary page and its various
sections, as shown below:

The title section displays the bot’s name, and contains three buttons:

• Integrate Now — Manually kicks off this bot’s integration task.

• Download — Downloads the Xcode archive file and .ipa of the most recent
integration; this is only enabled when the last integration and archive task ran
successfully.

• Settings — Displays a popup with three items: Edit Bot, where you can modify
the bot’s settings; Delete Bot, which deletes the bot from the OS X Server
instance and from the Log Navigator in Xcode; and View Bot in Browser, which
opens the bot’s web interface.

Further down the page, the Integration Results section displays a brief summary
of the most recent integration, as in the example below:

Here you can see the latest integration results and metrics. The summary section in
this example indicates the integration task completed with warnings, shows the

iOS 7 by Tutorials Chapter 15: Intermediate Continuous Integration in Xcode 5

 436

time, date, and duration of the integration task, and notes there were no commits
as part of this task. The four key build indicators are displayed clearly on the right;
in this example, the integration task completed with zero errors, four warnings,
zero analysis issues and five tests passed.

The color of the indicator has meaning; it changes depending on the results of the
latest integration, as shown in the image below:

These integration results show that one test failed during the run; as well, there
was one commit performed as part of this integration.

The Build History section shows the running history of your project’s integration
runs. The colors and sizes of the stacked bars indicate the number of errors,
warnings, and analysis issues encountered; however, if there were no integration
issues then you’ll see a simple green checkmark, as shown below:

Note: Build History only tracks errors, warnings and analysis issues, not tests.
If a test fails during an integration run then the Build History will still show a
green checkmark!

So don’t rely on the Build History alone to gauge the health of your build.
Instead, you should look at the Test History section as well, as discussed
below.

To see the exact number of errors, warnings, and analysis issues of an integration
run, click on the relevant bar and you’ll be shown a popup with the totals displayed.

iOS 7 by Tutorials Chapter 15: Intermediate Continuous Integration in Xcode 5

 437

Click Integration Summary to jump straight to the integration’s summary page
for more detailed information on the build.

The Test History section shows a history of the relative number of test passes and
test failures for your integrations, as demonstrated below:

Just as in the Build History section, click on a specific bar to see more details
about the test results, and click Integration Test Results to see a more detailed
view of which tests passed and which failed, like so:

The Test History chart provides a good indicator of the health of your test suite. It
also provides a measurement of the relative size of your test suite; generally the
number of tests run should grow as the project goes on.

The Integration Details section provides detailed information on the issues
encountered in your most recent integration, as in the example below:

This section will only be populated if you have errors, warnings, analysis issues, or
test failures from your last integration run. Often, you can double-click on the detail
line to jump right to the offending line of code. How handy is that? Some issues
listed here may not be code related however and therefore double-clicking on them
has no action.

iOS 7 by Tutorials Chapter 15: Intermediate Continuous Integration in Xcode 5

 438

Bot Tests View
Click the Tests tab at the top of the screen. The first section displays the Test
History chart that you’re familiar with from the Summary pane, as below:

The highlighted grey area above is the Integration Range that is displayed below
in more detail. Click and drag over the chart to set the integration range; the
details of each integration run are displayed as such:

The Tests line shows whether all tests passed — indicated by a green checkmark —
or whether some failed — indicated by a pie chart showing the proportion of tests
that failed. The next two lines show you the number of failing tests and the total
number of tests run respectively.

A tabular view below the Integration Range summary displays your integration runs
in columns and your individual tests in rows, as shown below:

iOS 7 by Tutorials Chapter 15: Intermediate Continuous Integration in Xcode 5

 439

Red X’s indicate failing tests, while green checkmarks indicate passing tests. A
missing symbol indicates that the test didn’t exist for that integration.

Filter the view by changing the scope selector at the top left from All to Failed;
only tests that have failed in an integration run will be shown in the view, as below:

When you have a lot of tests, this removes a significant amount of visual noise from
the screen and lets you focus on the tests that have failed. You can also filter your
test results by entering filter criteria in the search box on the top right. This filters
your view to test names that match the search criteria as provided, like so:

To view a specific test, double-click on the test’s row and Xcode will open the
implementation of that test.

Double-clicking a column header lets you drill down into the test results related to
that integration. This view shows you information about how the tests performed on
each specific device in the integration run, as shown below:

iOS 7 by Tutorials Chapter 15: Intermediate Continuous Integration in Xcode 5

 440

In this example, you can see that all tests passed on the iPhone but one failed on
the iPad.

In addition to Tests, there are three other tabs across the top of the screen:

Summary — similar to the bot summary view, except that it only shows
information for the selected integration, minus the charts.

Commits — contains information about each commit included in this integration.

Logs — displays the same logs that you’ve seen in Xcode when you build your
project. If you’re getting obscure build failures and warnings, you’ll want to check
out the logs under this view.

Web Interface
As mentioned earlier, the web interface and Xcode interface for working with bots is
nearly identical. In fact, the web interface boasts two excellent features that are
absent in Xcode: the Scoreboard, and the ability to view all bots on your server
besides those related to the open project.

Apple has provided not one, not two, but three different ways to access the web
interface (which must be due to the fact it’s so awesome that Apple wants to make
it easy for you to get there):

1. Point your browser to http://{server-url}/xcode. (“server-url” may also be an IP
address if you do not have a hostname or DNS configured for your network.)

2. Open Xcode, select a bot from the Log Navigator, then press the gear button and
choose View Bot in Browser. You can also right-click on a bot in the Log
Navigator and choose View Bot in Browser.

iOS 7 by Tutorials Chapter 15: Intermediate Continuous Integration in Xcode 5

 441

3. Open the OS X Server app, select the Xcode service on the Settings pane and
click View Bots in the bottom left corner of the screen.

The landing page of the web interface displays a summary of the most recent
integration, which integrations are queued, the latest downloads, and a list of all
the bots on the server, as shown in the screenshot below:

The left hand side of the navigation bar at the top of the screen contains the Menu
button along with a breadcrumb navigation trail. The right hand side of the
navigation bar contains the Scoreboard, Create Bot, Settings, and Logout
buttons.

Clicking on the name of a bot on the landing page takes you to the familiar
summary view, as shown below:

The web version of the Summary page has almost all of the same information
available in the Xcode interface. The main difference in the web version is that it
lacks the handy Xcode-specific functions that let you jump straight to your code
from the integration test results.

iOS 7 by Tutorials Chapter 15: Intermediate Continuous Integration in Xcode 5

 442

The scoreboard
Click the Scoreboard icon on the navigation bar (the first one on the right hand
side) to see the Scoreboard in action, as below:

You’ll notice the scoreboard is a high contrast screen with only the most important
information displayed. This is ideal for display in the development area of your
shop, so that at a glance everyone can tell what’s going on with the build. Access to
Builds

Gone are the days where distributing interim builds for testing meant shipping them
around manually or moving the distro to a secure shared location where other team
members could retrieve it. The web interface displays the full list of integration
products under the Archives tab, as shown below:

Now a team member only has to download the .ipa file in order to get their hands
on the latest distribution. If they need the complete .xarchive, such as when
submitting a release to the App Store, it’s available as a compressed file.

iOS 7 by Tutorials Chapter 15: Intermediate Continuous Integration in Xcode 5

 443

Automating distribution of interim or final releases means one more task taken off
the plate of your development group!

Best practices for bots
Apple has given us a few best practices for building and working with bots in WWDC
session 412 “Continuous Integration with Xcode 5”. I’d put a fair bit of stock in
what they have to say since they designed the technology!

Structure your code in workspaces
The first recommendation is to properly structure your code in Xcode workspaces.
Why? Many apps have complicated source code structures where they pull in source
code or frameworks from multiple sources and build any dependencies before
building the app itself.

If you maintain a workspace that handles all of this for you, the Xcode service will
have a much better chance of building your project successfully on the server
without any intervention on your part.

To learn more about workspaces check out Apple’s guide on the topic at
https://developer.apple.com/library/ios/featuredarticles/XcodeConcepts/Concept-
Workspace.html

Use role accounts for repositories
This one is more of a security best practice. Using role accounts for your remote
repositories means you don’t have to enter your personal repository credentials for
OS X Server when checking out source code. You should create a specific role
account for the server to provide access to your repositories. The process of
creating specific accounts will vary based on what you use to host your repositories.
If you are using OS X Server’s repository feature you will need to manage User
accounts on the server for anyone that needs access. If you use a provider such as
GitHub you will need to create a new GitHub account for your server and be sure
that account has access to your repositories.

In addition, favor SSH connections with private/public key pairs to HTTPS with
username and password credentials. The pros of using SSH are the ease of set up
whilst maintaining strong encryption and authentication. By default OS X supports
the SSH protocol and enabling it is as simple as turning it on under the Settings tab
for the server in question in Server.app or from the Sharing pane in System
Preferences by checking “Remote Login” and choosing the allowed users. SSH is
also efficient in that all data will be made as compact as possible before
transferring.

iOS 7 by Tutorials Chapter 15: Intermediate Continuous Integration in Xcode 5

 444

Add must-have bots to every project
Apple recommends including a few specific bots to every one of your projects to
facilitate your development workflow, and to disseminate information about your
build results in a timely fashion.

• Always have an On Commit bot to build, test, and run the static analyzer on
every commit. This provides the team with nearly real-time feedback about the
project’s health.

• Create a Nightly Build bot to build and archive your project every 24 hours.
Testers can install this build each morning to keep in sync with development.

• Finally create an On Commit bot for every branch in your repository if you or
your team use a branching workflow. This way you are assured that your branch
work is solid before you merge it back with the main development line.

Best practices for release management
The following best practices are ones that have been established by different teams
and online communities based on their experience.

Version Numbers
While there aren’t any hard and fast rules about versioning your app throughout its
lifecycle, Semantic Versioning (http://semver.org) is a good system that’s
understood by both developers and customers alike. The idea behind Semantic
Versioning is that the version number is broken down into three parts, Major,
Minor, and Patch and is presented as MAJOR.MINOR.PATCH.

• The Major version number should be incremented when the API of a framework
changes or perhaps when a marketing team decides the product has seen enough
enhancements to constitute a new Major version number.

• The Minor version number should be incremented when you add functionality
that is backwards compatible or again, when a marketing team deems so.

• The Patch version number should be incremented when you make backwards-
compatible bug fixes; the patch number is generally in full control of the
development team.

The key thing is to choose a versioning system and be consistent in its application.

As well, all stakeholders should be in agreement as to changes in at least the major
and minor release indicators. While Development might feel that a complete
overhaul of the back-end of the app, moving to JSON from XML, and fixing that big
list of bugs left over from iOS 5 constitutes a jump in the numbering from 1.7.1 to
2.0.0, Marketing may well see that nothing’s changed in the GUI — which deserves
no more than a jump to 1.8.0!

iOS 7 by Tutorials Chapter 15: Intermediate Continuous Integration in Xcode 5

 445

Your app versioning will likely be a manual process as designating a release as
major, minor, or patch is a mostly subjective process. Just be sure that someone is
responsible to maintain it — and to get agreement among stakeholders before
bumping it.

Note: When your app passes the approval process of the App Store’s review
team, the version number is set in stone and cannot be re-used. However, you
can opt to not release a specific version.

Build Numbers
Take a look at Xcode’s build number by selecting Xcode\About Xcode; you’ll see
the following dialog:

The build number for the version shown in the screenshot is 5A11344j. You may
be asking yourself “Why the heck would I ever want to know that?” As a user of the
product, you won’t really need to know this — until the day you need support.

The version shown is a preview version of Xcode 5.0, but Apple releases several
updates to Xcode before they’re ready to release it to the general public. If Apple
didn’t maintain or advertise this build number, how in the world would a developer
know the exact version they were using? Build numbers provide Apple with the
exact revision of source code this release was built from, which allows them to
track down and attempt to reproduce your reported issue with the specific release
you’re using.

Note: In order to pinpoint the exact revision that a specific build was cut from
you must note the build number or revision somewhere. In the case of using
SVN you could very easily use the revision number of the repository as your
build number. In the case of Git you might find the hash tags to be a little long
to use as a build number. In this case you may choose to have an

iOS 7 by Tutorials Chapter 15: Intermediate Continuous Integration in Xcode 5

 446

incrementing build number in the project and commit those changes with the
build number as the commit message. You may also recall that your bots keep
track of what commits were included in each integration, this is yet another
way to track down the specific code that was used to cut a build.

The main difference between version numbers and build numbers is that the format
of build numbers doesn’t really matter. Yes, put your eyes back in their sockets. I’ll
say it again: it doesn’t really matter. What does matter is that they are unique;
they don’t need to be sequential or carry any other significance. Theoretically you
could even use words as build numbers, but the ideal case is to create a string
composed of alphanumeric characters.

Since build numbers need to be unique and carry no specific meaning, it makes
sense to let an unattended, automated process create them for you. Hm —
automated, unattended processes sound a lot like using bots! :]

Maintaining build numbers with bots
Ideally the bots that perform your archive task should maintain your build numbers,
since it’s not important to increment the build number when you don’t actually
generate an archive or IPA as you will not be releasing anything to QA or a
customer that needs to be referenced. To do this, you need to modify your build
settings and add a new build phase that runs a script to create your build number.

Select your project in the Project Navigator. Make sure you’re in the target
settings, not the project settings, and select the Build Settings tab. Change the
scope to All and search for version, as shown in the screenshot below.

You should see a section called Versioning. Set the Current Project Version to 1
and change the Versioning System to Apple Generic.

Next, switch to the Build Phases tab as shown below:

iOS 7 by Tutorials Chapter 15: Intermediate Continuous Integration in Xcode 5

 447

Select the Editor/Add Build Phase/Add Run Script Build Phase menu item, as
so:

This adds a new Run Script section to the Build Phases pane, shown below:

Your new script is there, but it’s a little out of order. You want your build number
generation task to occur before the copying of bundle resources, since your script
will modify Info.plist. Click the Run Script phase and drag it above the Copy
Bundle Resources phase; your build phase sequence should like the screenshot
below:

iOS 7 by Tutorials Chapter 15: Intermediate Continuous Integration in Xcode 5

 448

Double-click the Run Script phase and rename it Bump Build Number, like so:

Expand the Bump Build Number phase to reveal the script editor, shown below:

Replace the text Type a script or drag a script file from your workspace with
the following script:

if [["$CONFIGURATION" == "Release"]] &&
 [["$USER" == "_teamsserver"]]

iOS 7 by Tutorials Chapter 15: Intermediate Continuous Integration in Xcode 5

 449

then
 echo "Bumping build number"
 agvtool bump -increment-minor-version
 NEW_BUILD_NUMBER=$(agvtool what-version -terse)
 /usr/libexec/Plistbuddy -c "Set CFBundleVersion ${NEW_BUILD_NUMBER}"
${PROJECT_DIR}/${INFOPLIST_FILE}
 git commit -a -m "Bump to build $NEW_BUILD_NUMBER"
 git config push.default simple
 git push
else
 echo "Setting build number to DEV"
 /usr/libexec/Plistbuddy -c "Set CFBundleVersion DEV"
${PROJECT_DIR}/${INFOPLIST_FILE}
fi

The script first checks to see if the Xcode configuration is set to Release; this is
typical for Profile and Archive builds. It also checks that the user executing the
script is _teamsserver. This is the account the Xcode service uses to perform its
tasks. If both checks pass, it increments the build number using the agvtool
command line tool, passing the parameters bump and –increment-minor-version.

Note: agvtool (AppleGenericVersioningTool) is a command line tool that
comes standard with the Apple Developer tools. It provides an interface to
common operations for Xcode projects that use the Apple Generic Versioning
system. You can find the manpage at
https://developer.apple.com/library/mac/documentation/Darwin/Reference/Ma
nPages/man1/agvtool.1.html

The script then asks agvtool for the new build number and uses the Plistbuddy
command line tool to modify the Info.plist file for the project, which sets the
CFBundleVersion key to the new build number. Finally, it calls git to commit these
modifications to the repository.

Note: Plistbuddy is yet another command line tool that comes with the
standard Apple developer toolset. This tool provides a command line interface
for reading and writing plist files. It’s manpage can be found at
https://developer.apple.com/library/mac/documentation/Darwin/Reference/Ma
nPages/man8/PlistBuddy.8.html

If the build isn’t using the Release configuration or is not being run by a bot, the
script simply sets the build number to DEV.

iOS 7 by Tutorials Chapter 15: Intermediate Continuous Integration in Xcode 5

 450

You might be wondering why you set the build number to DEV for non-Release
configurations. During app development, you’re bound to experience crashes when
running integrations. Setting the build number to DEV makes it easy filter out these
crashes as a natural result of development. This also makes it obvious if a
developer creates an archive manually, since there won’t be a build number
assigned.

Note: The script provided in this example is a very basic way to manage your
build numbers. You may want to develop a more sophisticated, custom script
that meets your requirements. This script is by no means the definitive way to
manage your build numbers, but it should give you a solid foundation to build
on.

As well, this script shouldn’t be used with any On Commit bots; this will
result in an infinite loop of integrations, since this script itself performs a
commit to the repository, which will trigger the On Commit bot — when this
happens, it’s turtles all the way down. You can regulate the script’s execution
by using configurations not named “Release” for On Commit bots so that the
pre-conditions fail and set the build number to DEV. You could also change the
pre-conditions to match a different configuration name.

Be stingy with distribution certificates and profiles
Once your bots are regularly creating archives and .ipa files, there’s really no
reason for any developer to manually create local builds for distribution. When at all
possible, limit access to distribution certificates and distribution provisioning
profiles. Restricting access to the distribution certificates and profiles will reduce
any urge for developers to create adhoc builds that circumvent the defined build
process. Even if you’re the sole developer, you should opt to keep the distribution
credentials on the bot server instead of your local development system.

There are always exceptions to any rule; for example, if you’re debugging an issue
with your builds or bot setup, you may find it’s easier to do it locally as compared
to on the server. Just be sure to remove the resources and retain the Xcode Archive
in a secure place once you’ve solved the issues.

Only distribute bot-created builds
Disseminating manually-created builds really renders your whole continuous
integration environment moot. When you distribute builds created from your local
development machine, you’re wasting the efforts you put into creating the bots in
the first place. The more you rely on the bots, the easier your life will be and you’ll
find yourself with fewer tedious tasks on your plate. At first it may feel like the bots
just add overhead but you’ll soon find they become indispensible. The bots will

iOS 7 by Tutorials Chapter 15: Intermediate Continuous Integration in Xcode 5

 451

guarantee a consistent and predictable output whereas each individual developer
system may vary and produce a faulty build.

Automatically Upload to TestFlight
Although the Xcode service provides an excellent web interface to distribute your
builds, it may still be desirable to use a beta distribution service such as TestFlight
- http://www.testflightapp.com. Your bots can upload builds to TestFlight using
Xcode Schemes and the TestFlight Upload API - https://testflightapp.com/api/doc.

In order to proceed with this section, you must already have a TestFlight account,
and at least one registered device registered to verify things are working properly.

Note: The steps involved in creating a TestFlight account and registering a
device are beyond the scope of this chapter. However, they are both relatively
straightforward operations; if you do run into problems TestFlight has a great
support portal at http://help.testflightapp.com.

Setting Up TestFlight
Sign in to TestFlight; from the drop-down menu on the right-hand side of the
screen select + Add Team. You’ll be presented with the following dialog:

Enter a team name and click Save.

Scroll to the very bottom of the next screen; Click API from the Developer section
of the menu. Read through the information presented on this page, then click the
Get your API token link as shown in the screenshot below:

iOS 7 by Tutorials Chapter 15: Intermediate Continuous Integration in Xcode 5

 452

You’ll see your token displayed as in the screenshot below; copy and store your API
token so that you’ll have it available for later.

Then go back to the Team Info page and click Get your team token, as below:

Copy and safely store your Team token somewhere. Now that you have your
tokens, you’ll need to create a distribution list so that your bot can grant
permissions to the builds it uploads.

iOS 7 by Tutorials Chapter 15: Intermediate Continuous Integration in Xcode 5

 453

Select the People tab and press the Add Distribution List button, as shown
below:

Enter Everyone as the List Name, select all the users you wish to include in this
list and press Save, as so:

That’s it for TestFlight. Now you just need to configure your Xcode Scheme to
upload the .ipa file directly to TestFlight upon Archive.

Setup Xcode Scheme
Open your Xcode project and edit the scheme your bot uses to create the builds
you want uploaded to TestFlight, as shown below:

Expand the Archive task on the left, select Post-actions, and press the + button
at the bottom of the pane. Choose New Run Script Action from the popup menu
as shown below; this instructs Xcode to run a script on completion of the Archive
task.

iOS 7 by Tutorials Chapter 15: Intermediate Continuous Integration in Xcode 5

 454

Use the Provide build settings from droplist to select your target, then paste the
script below into the script editor:

API_TOKEN="YOUR_API_TOKEN"
TEAM_TOKEN="YOUR_TEAM_TOKEN"

xcrun -sdk iphoneos PackageApplication
"$ARCHIVE_PRODUCTS_PATH/$INSTALL_PATH/$WRAPPER_NAME" -o
"/tmp/${PRODUCT_NAME}.ipa"

echo "Uploading to TestFlight"

/usr/bin/curl "http://testflightapp.com/api/builds.json" \
-F file=@"/tmp/${PRODUCT_NAME}.ipa" \
-F api_token="${API_TOKEN}" \
-F team_token="${TEAM_TOKEN}" \
-F distribution_lists="Everyone" \
-F notes="Build uploaded automatically from Xcode."

echo "Uploaded to TestFlight"

#clean up ipa in tmp folder
/bin/rm -f "/tmp/${PRODUCT_NAME}.ipa"

iOS 7 by Tutorials Chapter 15: Intermediate Continuous Integration in Xcode 5

 455

Replace YOUR_API_TOKEN and YOUR_TEAM_TOKEN with their real-world counterparts that
you safely stowed away earlier in this section. (You did save them somewhere you
can find them...right?)

The script above performs the following actions:

1. Use the xcrun command line tool to generate an .ipa file from the Xcode Archive
and place the .ipa file in the /tmp directory.

2. Use the curl command line tool to upload the .ipa file to TestFlight.

3. Delete the .ipa file from the /tmp directory.

Note that this script is executed every time the Archive task completes for this
scheme. The Archive task should rarely, if ever, be run from a development
system; your bots should be taking care of this task in a properly designed
continuous integration environment. It’s a good idea to have a separate scheme for
tasks like this that is reserved exclusively for use by your bots.

To test the script, select the Product\Archive menu item in Xcode. Once the build
finishes go back to TestFlight in your browser and view the Apps tab, where you’ll
see that your archive was uploaded, as so:

If you used the build numbering script from earlier you’ll notice the build is labeled
as 1.0 (DEV). This is a great indicator that a developer uploaded the build from
their system directly.

Now, commit your changes to the repository and kick off an integration for the bot
that uses the scheme you just configured. When the integration finishes, go back to
TestFlight and you’ll see the .ipa uploaded by your bot, in the screenshot below you
will see that version 1.0 build 27 was uploaded.

iOS 7 by Tutorials Chapter 15: Intermediate Continuous Integration in Xcode 5

 456

Automatically Upload dSYM to Crashlytics
dSYM files are used to store the debug symbols for your app, and can be used to
symbolicate your crash reports using services such as Crashlytics -
http://crashlytics.com. When Crashlytics receives a crash report from a device, it
automatically uses the uploaded dSYM files to symbolicate the report which lets you
view the full stack trace for each thread running at the time of the crash and
determine exactly which line, in which method, in which class, caused the crash.

Note: Setting up Crashlytics is beyond the scope of this chapter but thankfully
the kind folks at Crashlytics have made it dead simple to integrate in your
project. Check out http://try.crashlytics.com if you don’t already have a
Crashlytics account.

Open a project that’s integrated the Crashlytics framework. Navigate to the Build
Settings of your target and open the Run Script phase you added as part of the
Crashlytics setup process; you’ll see the following dialog:

Modify the script above so that the dSYM upload is only performed when a bot runs
the build and when the configuration is set to Release, as shown below:

if [["$CONFIGURATION" == "Release"]] &&
 [["$USER" == "_teamsserver"]]
then
 echo "Uploading dSYM to Crashlytics"
 ./Crashlytics.framework/run YOUR_UNIQUE_API_KEY
fi

Note: You must install the Xcode Crashlytics plugin on the server so that the
dSYM upload can take place when your bot executes the run script in the
Crashlytics framework.

To verify that the dSYM for your build was actually uploaded you can reference the
Crashlytics website by navigating to your App, choose Settings and then App, a

iOS 7 by Tutorials Chapter 15: Intermediate Continuous Integration in Xcode 5

 457

new window will appear where you will find a Versions tab, you can then expand
the app version to reveal what builds Crashylytics has dSYM files for as shown
below.

Some Things to Consider
While the new bots offering from Apple is fantastic, it is new technology and most
importantly is limited to iOS and OS X development. If your development shop
develops for other platforms like Android or Windows Phone it may not make sense
to run an OS X Server with bots. You may prefer to have a single continuous
integration system like Jenkins or Bamboo to orchestrate the builds for all of your
platforms. And while Apple is known for releasing solid version 1.0 products, there
is something to be said about mature systems when it comes to features, flexibility
and community support. Always use the right tool for the right job.

Where to go from here?
Now that you’ve successfully completed this chapter you should have an excellent
understanding of continuous integration systems and Xcode bots.

Continuous integration is a practice, not a set of rules; you’ll find that each team
and project you work with will have varying requirements. Some of the real-world
scenarios you’ll run into may include the following:

iOS 7 by Tutorials Chapter 15: Intermediate Continuous Integration in Xcode 5

 458

• How would you configure the OS X Server to support people in different parts of
the world?

• How would you configure your Xcode workspace to properly load dependencies
with CocoaPods?

• How do you ensure your bots clone all of the required sub-modules when using
Git?

These are all very likely scenarios that have several different, yet equally valid
solutions. As the development community starts to embrace bots and the Xcode
service, some very elegant and powerful workflows are likely to emerge. Keep your
ear to the ground as you develop, maintain and scale your own continuous
integration environments!

Challenge
Your challenge for this chapter is to configure two bots that build two different
branches of the same project hosted in a Git repository.

For example, take the example of a “master” branch that contains the most stable
set of code, and a “development” branch that contains the latest, greatest, most
bleeding-edge code from your developers that will later be validated and merged
into the “master” branch. You’ll need two bots, one to build against the “master”
branch, and another to build against the “development” branch.

Hints:

1. You will need a Git repository that has two branches.

2. You will need one bot for each branch.

3. Creating a bot takes the current working branch as the one to be used by the
bot.

In this section, you’ll learn about the biggest and most important new features and
frameworks in iOS 7 not already covered in this book. For example, you’ll learn
about a new way to write networking code, a new way to keep your app’s data up
to date, and much more.

Chapter 16: Networking with NSURLSession

Chapter 17: Beginning Multitasking

Chapter 18: Intermediate Multitasking

Chapter 19: JavaScript Core Framework

Chapter 20: AirDrop

Chapter 21: Peer-to-Peer Connectivity

Section III: Major New Features

Each new iOS release contains some terrific new networking APIs, and iOS 7 is no
exception. In iOS 7, Apple has introduced NSURLSession, which is a suite of classes
that replaces NSURLConnection as the preferred method of networking.

Why should you use NSURLSession? Well, it brings you a number of new advantages
and benefits:

• Background uploads and downloads: With just a configuration option when
the NSURLSession is created, you get all the benefits of background networking.
This helps with battery life, supports UIKit multitasking and uses the same
delegate model as in-process transfers. In the next chapter you will be creating
an awesome application using this feature.

• Ability to pause and resume networking operations: As you will see later,
with the NSURLSession API any networking task can be paused, stopped, and
restarted. No NSOperation sub-classing necessary.

• Configurable container: Each NSURLSession is the configurable container for
putting requests into. For example, if you need to set an HTTP header option you
will only need to do this once and each request in the session will have the same
configuration.

• Subclassable and private storage: NSURLSession is subclassable and you can
configure a session to use private storage on a per session basis. This allows you
to have private storage objects outside of the global state.

• Improved authentication handling: Authentication is done on a specific
connection basis. When using NSURLConnection if an authentication challenge was
issued, the challenge would come back for an arbitrary request, you wouldn’t
know exactly what request was getting the challenge. With NSURLSession, the
delegate handles authentication.

• Rich delegate model: NSURLConnection has some asynchronous block based
methods, however a delegate cannot be used with them. When the request is
made it either works or fails, even if authentication was needed. With
NSURLSession you can have a hybrid approach, use the asynchronous block based
methods and also setup a delegate to handle authentication.

Chapter 16: Networking with
NSURLSession
By Charlie Fulton

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 462

• Uploads and downloads through the file system: This encourages the
separation of the data (file contents) from the metadata (the URL and settings).

NSURLSession vs NSURLConnection
“Wow, NSURLSession sounds complicated!”, you might think.

Don’t worry – using NSURLSession is just as easy as using its predecessor
NSURLConnection for simple tasks. For an example, let’s take a look at making a
simple network call to get JSON for the latest weather in London.

Assume you have this NSString for constructing the NSURL:

NSString *londonWeatherUrl =
 @"http://api.openweathermap.org/data/2.5/weather?q=London,uk";

First here is how you make this call when using NSURLConnection:

NSURLRequest *request = [NSURLRequest requestWithURL:
[NSURL URLWithString:londonWeatherUrl]];

[NSURLConnection sendAsynchronousRequest:request
 queue:[NSOperationQueue mainQueue]
 completionHandler:^(NSURLResponse *response,
 NSData *data,
 NSError *connectionError) {
 // handle response
}];

Now let’s use NSURLSession. Note that this is the simplest way to make a quick call
using NSURLSession. Later in the chapter you will see how to configure the session
and setup other features like delegation.

NSURLSession *session = [NSURLSession sharedSession];
[[session dataTaskWithURL:[NSURL URLWithString:londonWeatherUrl]
 completionHandler:^(NSData *data,
 NSURLResponse *response,
 NSError *error) {
 // handle response

 }] resume];

Notice that you do not need to specify what queue you are running on. Unless you
specify otherwise, the calls will be made on a background thread. It might be hard
to notice a difference between these two, which is by design. Apple mentions that

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 463

the dataTaskWithURL is intended to replace sendAsynchronousRequest in
NSURLConnection.

So basically – NSURLSession is just as easy to use as NSURLConnection for simple
tasks, and has a rich extra set of functionality when you need it.

NSURLConnection vs AFNetworking
No talk of networking code is complete without mentioning the AFNetworking
framework. This is one of the most popular frameworks available for iOS / OS X,
created by the brilliant Mattt Thompson.

Note: To learn more about AFNetworking, checkout the github page found at:
https://github.com/AFNetworking/AFNetworking. Also we have a tutorial for
that:

http://www.raywenderlich.com/30445/afnetworking-crash-course

Here is what the code for the same data task would look like using AFNetworking
1.x:

NSURLRequest *request = [NSURLRequest requestWithURL:
 [NSURL URLWithString:londonWeatherUrl]];

AFJSONRequestOperation *operation =
[AFJSONRequestOperation JSONRequestOperationWithRequest:request
 success:^(NSURLRequest *request,
 NSHTTPURLResponse *response,
 id JSON) {
 // handle response
} failure:nil];
[operation start];

One of the benefits of using AFNetworking is the data type classes for handling
response data. Using AFJSONRequestOperation (or the similar classes for XML and
plist) the success block has already parsed the response and returns the data for
you. With NSURLSession you receive NSData back in the completion handler, so you
would need to convert the NSData into JSON or other formats.

Note: You can easily convert NSData into JSON using the NSJSONSerialization
class introduced in iOS 5. To learn more, check out Chapter 23 of iOS 5 by
Tutorials, “Working with JSON”.

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 464

So you might be wondering if you should use AFNetworking or just stick with
NSURLSession.

I think that for simple needs it’s best to stick with NSURLSession – this avoids
introducing an unnecessary third party dependency into your project. Also, with the
new delegates, configuration, and task based API a lot of the “missing features”
that AFNetworking added are now included.

However, if you would like to use some of the new 2.0 features found in
AFNetworking like serialization and further UIKit integration (in addition to the
UIImageView category) then it would be hard to argue against using it!

Note: In the 2.0 branch of AFNetworking, they have converted over to using
NSURLSession. See this post for more information:

https://github.com/AFNetworking/AFNetworking/wiki/AFNetworking-2.0-
Migration-Guide

Introducing Byte Club
In this chapter you’ll explore this new API by building a notes and picture-sharing
app on top of the Dropbox Core API for a top secret organization named Byte Club.

So consider this chapter your official invitation to Byte Club! What’s the first rule of
Byte Club you might ask? No one talks about Byte Club — except for those cool
enough to have purchased this book. And definitely not those Android users;
they’re banned for life. :]

Head on in to the next section to get started building the app that will serve as your
initiation into Byte Club.

Note that this chapter assumes you have some basic familiarity with networking in
previous versions if iOS. It’s helpful if you’ve used APIs like NSURLConnection or
NSURLSession in the past. If you’re completely new to networking in iOS, you should
check out our iOS Apprentice series for beginner developers before continuing with
this chapter.

Getting started
Byte Club is an exclusive group of iOS developers that joins together to perform
coding challenges. Since each member works remotely on these challenges from
across the world, members also find it fun to share panoramic photos of their
“battle stations”.

Here’s a panoramic photo of Ray’s office setup, for example:

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 465

Note: You might want to create your own panoramic photo of your office – it’s
fun, and it will come in handy later in this chapter.

In iOS 7, you can take a panoramic photo by opening Photos and selecting
the tab named Pano.

If you like the results, you can set it as the wallpaper for your lock screen by
opening Settings and selecting Brightness & Wallpaper \ Choose
Wallpaper \ My Panoramas.

And of course – Byte Club has its own app to make this all happen. You can use the
app to create coding challenges or share panoramic photos with other members.
Behind the scenes, this is implemented with networking – specifically, by sharing
files with the Dropbox API.

Starter project overview
The resources for this chapter include a starter project named Byte Club which
includes the UI pre-made for you, so you can focus on the networking part of the
app in this chapter. The starter project also includes some code to handle Dropbox
authentication, which you’ll learn more about later on.

Open up the project in Xcode and run it up on your device or simulator. You should
see a screen like this:

However, you won’t be able to log in yet – you have to configure the app first,
which you’ll do in a bit.

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 466

Next open Main.storyboard and take a look at the overall design of the app:

This is a basic TabBarController app with two tabs: one for code challenges, and
one for panoramic photos. There’s also a step beforehand that logs the user in to
the app. You’ll set up the login after you create your Dropbox Platform App below.

Feel free to look through the rest of the app and get familiar with what’s there so
far. You’ll notice that other than the authorization component, there’s no
networking code to retrieve code challenges or panoramic photos – that’s your job!

Creating a new Dropbox Platform app
To get started with your Dropbox App, open the Dropbox App Console located at
https://www.dropbox.com/developers/apps

Sign in if you have a Dropbox account, but if not, no sweat: just create a free
Dropbox account. If this is your first time using the Dropbox API, you’ll need to
agree to the Dropbox terms and conditions.

After the legal stuff is out of the way, choose the Create App option. You’ll be
presented with a series of questions – provide the following responses.

• What type of app do you want to create?

o Choose: Dropbox API app

• What type of data does your app need to store on Dropbox?

o Choose: Files and Datastore

• Can your app be limited to its own, private folder?

o Choose: No – My App needs access to files already on Dropbox

• What type of files does your app need access to?

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 467

o Choose: All File Types

Finally, provide a name for your app, it doesn’t matter what you choose as long as
it’s unique. Dropbox will let you know if you’ve chosen a name that’s already in use.
Your screen should look similar to the following:

Click Create App and you’re on your way!

The next screen you’ll see displays the screen containing the App key and App
secret:

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 468

Don’t close this screen yet; you’ll need the App Key and App Secret for the next
step.

Open Dropbox.m and find the following lines:

#warning INSERT YOUR OWN API KEY and SECRET HERE
static NSString *apiKey = @"YOUR_KEY";
static NSString *appSecret = @"YOUR_SECRET";

Fill in your app key and secret, and delete the #warning line. You can close the
Dropbox Web App page at this point.

Next, create a folder in the root directory of your main Dropbox folder and name it
whatever you wish. If you share this folder with other Dropbox users and send
them a build of the Byte Club app, they will be able to create notes and upload
photos for all to see.

Find the following lines in Dropbox.m:

#warning THIS FOLDER MUST BE CREATED AT THE TOP LEVEL OF YOUR DROPBOX
FOLDER, you can then share this folder with others
NSString * const appFolder = @"byteclub";

Change the string value to the name of the Dropbox folder you created and delete
the #warning pragma.

To distribute this app to other users and give them access tokens, you will need to
turn on the “Enable additional users” setting for your Dropbox Platform App.

Go to the Dropbox app console at https://www.dropbox.com/developers/apps. Click
on your app name, and then click the Enable Additional Users button. A dialog
will appear stating that you have increased your user limit. Click Okay on the
dialog to clear it. Your app page will now look like the following:

Note: You may notice that while you’re developing your app, you can give
access to up to 100 users. When you’re ready to release your app for real, you
have to apply for production status, which you can do by clicking the Apply
for production button and sending Dropbox some additional information.

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 469

Dropbox will then review your app to make sure it complies with their
guidelines, and if all goes well they will then open your app’s API access to
unlimited users.

Dropbox authentication: an overview
Before your app can use the Dropbox API, you need to authenticate the user. In
Dropbox, this is done by OAuth – a popular open source protocol that allows secure
authorization.

The focus of this chapter is on networking, not OAuth, so I have already created a
small API in Dropbox.m that handles most of this for you.

If you’ve ever used a third party twitter client app, like TweetBot, then you’ll be
familiar with the OAuth setup process from a user’s perspective. The OAuth process
is pretty much the same for your app.

Build and run your app, and follow the steps to log in. You will see a blank screen
with two tabs, one for Notes and one for PanoPhotos, as shown below:

OAuth authentication happens in three high level steps:

1. Obtain an OAuth request token to be used for the rest of the authentication
process. This is the request token.

2. A web page is presented to the user through their web browser. Without the
user's authorization in this step, it isn't possible for your application to obtain an
access token from step 3.

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 470

3. After step 2 is complete, the application calls a web service to exchange the
temporary request token (from step1) for a permanent access token, which is
stored in the app.

If you’re curious how this authentication step works, feel free to continue reading,
where you’ll learn more details about how this works. But if you want to dive right
into NSURLSession, skip to the next section.

Dropbox authentication: the details
The starter project has also been set up to handle the OAuth authentication flow
using PLAINTEXT OAuth authorization over https.

Here’s a quick overview of how this works. In the App Delegate’s
application:didFinishLaunchingWithOptions:, the app checks to see if
NSUserDefaults has a valid access token for the user (received from a previous
successful login). If there is no token, then the app takes the following steps:

1. Displays the OAuthLoginViewController to ask the user to start logging in to
DropBox.

2. Once the user taps the Lets Go button, getOAuthRequestToken in
OAuthLoginViewController.m is called. This opens Safari with a special URL
that starts the OAuth authentication process.

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 471

3. Once the user logs in, tap Allow to login to Dropbox and authorize Byte Club to
access your account — don’t worry, there’s nothing malicious in the Byte Club
app!

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 472

4. Upon authorization, the Dropbox server calls the URL provided by the client. In
OAuthLoginViewController.m the starter app sends in the URL to call with the
oauth_callback query parameter.

NSString *authorizationURLWithParams =
[NSString stringWithFormat:
@"https://www.dropbox.com/1/oauth/authorize?oauth_token=%@&oauth_callbac
k=byteclub://userauthorization",
 oauthDict[oauthTokenKey]];

5. The starter project is already set to handle this URL scheme:

6. Because of this, the app is launched and performs the final call to exchange the
request token for a real user access token and secret. You can find this code in
AppDelegate.m’s exchangeRequestTokenForAccessToken method.

After the initial login, the access token and secret are stored in NSUserDefaults. In a
real app you would probably want to store this in the keychain.

The access token is the permanent token used to authorize all calls to the Dropbox
API.

Note: If you’re even more curious, feel free to take a peek at the Dropbox
class in the starter project; it uses NSURLSession and has no external
dependencies.

More details about OAuth 1 and 2 authentication to the Dropbox Core API can
be found here: https://www.dropbox.com/developers/core/docs#request-
token.

Additionally, the following article was extremely helpful in getting PLAINTEXT
over HTTPS OAuth working and is worth a read:
https://www.dropbox.com/developers/blog/20/using-oauth-in-plaintext-mode

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 473

The NSURLSession suite of classes
Apple has described NSURLSession as both a new class and a suite of classes.
There’s new tools to upload, download, handle authorization, and handle just about
anything in the HTTP protocol.

Before you start coding, it’s important to have a good understanding of the major
classes in the NSURLSession suite and how they work together.

An NSURLSession is made using an NSURLSessionConfiguration with an optional
delegate. After you create the session you then satisfy your networking needs by
creating NSURLSessionTask’s.

NSURLSessionConfiguration
There are three ways to create an NSURLSessionConfiguration:

• defaultSessionConfiguration – creates a configuration object that uses the global
cache, cookie and credential storage objects. This is a configuration that causes
your session to be the most like NSURLConnection.

• ephemeralSessionConfiguration – this configuration is for “private” sessions and
has no persistent storage for cache, cookie, or credential storage objects.

• backgroundSessionConfiguration – this is the configuration to use when you want
to make networking calls from remote push notifications or while the app is
suspended. Refer to Chaper 15 for more details.

Once you create a NSURLSessionConfiguration, you can set various properties on it
like this:

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 474

NSURLSessionConfiguration *sessionConfig =
[NSURLSessionConfiguration defaultSessionConfiguration];

// 1
sessionConfig.allowsCellularAccess = NO;

// 2
[sessionConfig setHTTPAdditionalHeaders:
 @{@"Accept": @"application/json"}];

// 3
sessionConfig.timeoutIntervalForRequest = 30.0;
sessionConfig.timeoutIntervalForResource = 60.0;
sessionConfig.HTTPMaximumConnectionsPerHost = 1;

1. Here you restrict network operations to wifi only.

2. This will set all requests to only accept JSON responses.

3. These properties will configure timeouts for resources or requests. Also you can
restrict your app to only have one network connection to a host.

These are only a few of the things you can configure, be sure to check out the
documentation for a full list.

NSURLSession
NSURLSession is designed as a replacement API for NSURLConnection. Sessions do all
of their work via their minions, also known as NSURLSessionTask objects. With
NSURLSession you can create the tasks using the block based convenience methods,
setup a delegate, or both. For example, if you want to download an image
(*challenge hint*), you will need to create an NSURLSessionDownloadTask.

First you need to create the session. Here’s an example:

// 1
NSString *imageUrl =
@"http://cdn2.raywenderlich.com/wp-
content/themes/raywenderlich/images/store/ios-apprentice/ios-apprentice-
bundle-v2_0b@2x.png";

// 2
NSURLSessionConfiguration *sessionConfig =
 [NSURLSessionConfiguration defaultSessionConfiguration];

// 3
NSURLSession *session =
 [NSURLSession sessionWithConfiguration:sessionConfig

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 475

 delegate:self
 delegateQueue:nil];

Ok this is just a little different from what you have seen so far. Let’s go over it step
by step.

1. For this snippet we are downloading the same in two tasks.

2. You always start by creating an NSURLConfiguration.

3. This creates a session using the current class as a delegate.

After you create the session, you can then download the image by creating a task
with a completion handler, like this:

// 1
NSURLSessionDownloadTask *getImageTask =
[session downloadTaskWithURL:[NSURL URLWithString:imageUrl]

 completionHandler:^(NSURL *location,
 NSURLResponse *response,
 NSError *error) {
 // 2
 UIImage *downloadedImage =
 [UIImage imageWithData:
 [NSData dataWithContentsOfURL:location]];
 //3
 dispatch_async(dispatch_get_main_queue(), ^{
 // do stuff with image
 _imageWithBlock.image = downloadedImage;
 });
}];

// 4
[getImageTask resume];

Ah ha! Now this looks like some networking code!

1. Tasks are always created by sessions. This one is created with the block-based
method. Remember you could still use the NSURLSessionDownloadDelegate to track
download progress. So you get the best of both worlds! (*hint for challenge*)

-URLSession:downloadTask
:didWriteData:totalBytesWritten
:totalBytesExpectedToWrite:

2. Here you use the location variable provided in the completion handler to get a
pointer to the image.

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 476

3. Finally you could, for example, update UIImageView’s image to show the new file.
(hint hint !)

4. You always have to start up the task!

5. Remember I said earlier that a session could also create tasks that will send
messages to delegate methods to notify you of completion, etc.

Here is how that would look, using the same session from above:

// 1
NSURLSessionDownloadTask *getImageTask =
 [session downloadTaskWithURL:[NSURL URLWithString:imageUrl]];

[getImageTask resume];

1. Well this is certainly less code ! However, if you only do this you’re never going
to see anything.

You need to have your delegate implement some methods from the
NSURLSessionDownloadDelegate protocol.

First we need to get notified when the download is complete:

-(void)URLSession:(NSURLSession *)session
 downloadTask:(NSURLSessionDownloadTask *)downloadTask
didFinishDownloadingToURL:(NSURL *)location
{
 // use code above from completion handler
}

Again you are provided with the location the file is downloaded to, and you can use
this to work with the image.

Finally, if you needed to track the download progress, for either task creation
method, you would need to use the following:

-(void)URLSession:(NSURLSession *)session
 downloadTask:(NSURLSessionDownloadTask *)downloadTask
 didWriteData:(int64_t)bytesWritten
totalBytesWritten:(int64_t)totalBytesWritten
totalBytesExpectedToWrite:(int64_t)totalBytesExpectedToWrite
{
 NSLog(@"%f / %f", (double)totalBytesWritten,
 (double)totalBytesExpectedToWrite);
}

As you can see, NSURLSessionTask is the real workhorse for “getting stuff done” over
the network.

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 477

NSURLSessionTask
So far you have seen NSURLSessionDataTask and NSURLSessionDownloadTask in use.
Both of these tasks are derived from NSURLSessionTask the base class for both of
these, are you can see here:

NSURLSessionTask is the base class for tasks in your session; they can only be
created from a session and are one of the following subclasses.

NSURLSessionDataTask
This task issues HTTP GET requests to pull down data from servers. The data is
returned in form of NSData. You would then convert this data to the correct type
XML, JSON, UIImage, plist etc.

NSURLSessionDataTask *jsonData = [session dataTaskWithURL:yourNSURL
 completionHandler:^(NSData *data,
 NSURLResponse *response,
 NSError *error) {
 // handle NSData
}];

NSURLSessionUploadTask
Use this class when you need to upload something to a web service using HTTP POST
or PUT commands. The delegate for tasks also allows you to watch the network
traffic while it’s being transmitted.

Upload an image:

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 478

NSData *imageData = UIImageJPEGRepresentation(image, 0.6);

NSURLSessionUploadTask *uploadTask =
 [upLoadSession uploadTaskWithRequest:request
 fromData:imageData];

Here the task is created from a session and the image is uploaded as NSData. There
are also methods to upload using a file or a stream.

NSURLSessionDownloadTask
NSURLSessionDownloadTask makes it super-easy to download files from remote
service and pause and resume the download at will. This subclass is a little different
than the other two.

• This type of task writes directly to a temporary file.

• During the download the session will call
URLSession:downloadTask:didWriteData:totalBytesWritten:totalBytesExpectedTo
Write: to update status information

• When the task is finished, URLSession:downloadTask:didFinishDownloadingToURL:
is called. This is when you can save the file from the temp location to a
permanent one.

• When the download fails or is cancelled you can get the data to resume the
download.

This feature will be terribly useful when downloading a Byte Club location
panoramic photo to your device’s camera roll. You saw an example download task
in the above snippet for downloading an image.

All of the above
All of the above tasks are created in a suspended state; after creating one you need
to call its resume method as demonstrated below:

[uploadTask resume];

The taskIdentifier property allows you to uniquely identify a task within a session
when you’re managing more than one task at a time.

That’s it! Now that you know the major classes in the NSURLSession suite, let’s try
them out.

Sharing notes with NSURLSession
OK, this isn’t the Dead Poets Society, this is Byte Club! It’s time to start seeing
some of this network code in action.

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 479

You need a way to send messages to other members of Byte Club. Since you’ve
already set up an access token, the next step is to instantiate NSURLSesssion and
make your first call to the Dropbox API.

Creating an NSURLSession
Add the following property to NotesViewController.m just after the NSArray
*notes line:

@property (nonatomic, strong) NSURLSession *session;

You will create all of your minions from the session above.

Add the following method to NotesViewController.m just above initWithStyle:

- (id)initWithCoder:(NSCoder *)aDecoder
{
 self = [super initWithCoder:aDecoder];
 if (self) {
 // 1
 NSURLSessionConfiguration *config = [NSURLSessionConfiguration
ephemeralSessionConfiguration];

 // 2
 [config setHTTPAdditionalHeaders:@{@"Authorization": [Dropbox
apiAuthorizationHeader]}];

 // 3
 _session = [NSURLSession sessionWithConfiguration:config];
 }
 return self;
}

Here’s a comment-by-comment explanation of the code above:

1. Your app calls initWithCoder when instantiating a view controller from a
Storyboard; therefore this is the perfect spot to initialize and create the
NSURLSession. You don’t want aggressive caching or persistence here, so you use
the ephemeralSessionConfiguration convenience method, which returns a session
with no persistent storage for caches, cookies, or credentials. This is a “private
browsing” configuration.

2. Next, you add the Authorization HTTP header to the configuration object. The
apiAuthorizationHeader is a helper method that returns a string in the OAuth
specification format. This string contains the access token, token secret and your
Dropbox App API key. Remember, this is necessary because every call to the
Dropbox API needs to be authenticated.

3. Finally, you create the NSURLSession using the above configuration.

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 480

This session is now ready to create any of the networking tasks that you need in
your app.

GET Notes through the Dropbox API
To simulate a note being added by another user, add any text file of your choosing
to the folder you set up in the root Dropbox folder. The example below shows the
file test.txt sitting in the byteclub Dropbox folder:

Wait until Dropbox confirms it has synced your file, then move on to the code
below.

Add the code below to the empty notesOnDropBox method in
NotesViewController.m:

[UIApplication sharedApplication].networkActivityIndicatorVisible = YES;
// 1
NSURL *url = [Dropbox appRootURL];

// 2
NSURLSessionDataTask *dataTask =
[self.session dataTaskWithURL:url
 completionHandler:^(NSData *data,
 NSURLResponse *response,
 NSError *error) {
 if (!error) {
 // TODO 1: More coming here!
 }
}];

// 3
[dataTask resume];

The goal of this method is to retrieve a list of the files inside the app’s Dropbox
folder. Let’s go over how this works section by section.

1. In Dropbox, you can see the contents of a folder by making an authenticated
GET request to a particular URL – like
https://api.dropbox.com/1/metadata/dropbox/byteclub. I’ve created a
convenience method in the Dropbox class to generate this URL for you.

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 481

2. NSURLSession has convenience methods to easily create various types of tasks.
Here you are creating a data task in order to perform a GET request to that URL.
When the request completes, your completionHandler block is called. You’ll add
some code here in a moment.

Remember a task defaults to a suspended state, so you need to call the resume
method to start the task.

That’s all you need to do to start a GET request – now let’s add the code to parse
the results. Add the following lines right after the “TODO 1” comment:

// 1
NSHTTPURLResponse *httpResp = (NSHTTPURLResponse*) response;
if (httpResp.statusCode == 200) {

 NSError *jsonError;

 // 2
 NSDictionary *notesJSON =
 [NSJSONSerialization JSONObjectWithData:data
 options:NSJSONReadingAllowFragments
 error:&jsonError];

 NSMutableArray *notesFound = [[NSMutableArray alloc] init];

 if (!jsonError) {
 // TODO 2: More coming here!
 }
}

There are two main sections here:

1. You know you made a HTTP request, so the response will be a HTTP response.
So here you cast the NSURLResponse to an NSHTTPURLRequest response so you can
access the statusCode property. If you receive an HTTP status code of 200 then
all is well.

Example HTTP error codes:

400 - Bad input parameter. Error message should indicate which one and
why.

401 - Bad or expired token. This can happen if the user or Dropbox revoked
or expired an access token. To fix, you should re-authenticate the user.

403 - Bad OAuth request (wrong consumer key, bad nonce, expired
timestamp...). Unfortunately, re-authenticating the user won't help here.

404 - File or folder not found at the specified path.

405 - Request method not expected (generally should be GET or POST).

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 482

429 - Your app is making too many requests and is being rate limited. 429s
can trigger on a per-app or per-user basis.

503 - If the response includes the Retry-After header, this means your OAuth
1.0 app is being rate limited. Otherwise, this indicates a transient server
error, and your app should retry its request.

507 - User is over Dropbox storage quota.

5xx - Server error.

2. The Dropbox API returns its data as JSON. So if you received a 200 response,
then convert the data into JSON using iOS’s built in JSON deserialization. To learn
more about JSON and NSJSONSerialization, check out Chapter 23 in iOS 5 by
Tutorials, “Working with JSON.”

The JSON data returned from Dropbox will look something like this:

{
 "hash": "6a29b68d106bda4473ffdaf2e94c4b61",
 "revision": 73052,
 "rev": "11d5c00e1cf6c",
 "thumb_exists": false,
 "bytes": 0,
 "modified": "Sat, 10 Aug 2013 21:56:50 +0000",
 "path": "/byteclub",
 "is_dir": true,
 "icon": "folder",
 "root": "dropbox",
 "contents": [{
 "revision": 73054,
 "rev": "11d5e00e1cf6c",
 "thumb_exists": false,
 "bytes": 16,
 "modified": "Sat, 10 Aug 2013 23:21:03 +0000",
 "client_mtime": "Sat, 10 Aug 2013 23:21:02 +0000",
 "path": "/byteclub/test.txt",
 "is_dir": false,
 "icon": "page_white_text",
 "root": "dropbox",
 "mime_type": "text/plain",
 "size": "16 bytes"
 }],
 "size": "0 bytes"
}

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 483

So the last bit of code to add is the code that pulls out the parts you’re interested in
from the JSON. In particular, you want to loop through the “contents” array for
anything where “is_dir” is set to false.

To do this, add the following lines right after the “TODO 2” comment:

// 1
NSArray *contentsOfRootDirectory = notesJSON[@"contents"];

for (NSDictionary *data in contentsOfRootDirectory) {
 if (![data[@"is_dir"] boolValue]) {
 DBFile *note = [[DBFile alloc] initWithJSONData:data];
 [notesFound addObject:note];
 }
}

[notesFound sortUsingComparator:
 ^NSComparisonResult(id obj1, id obj2) {
 return [obj1 compare:obj2];
}];

self.notes = notesFound;

// 6
dispatch_async(dispatch_get_main_queue(), ^{
 [UIApplication sharedApplication].networkActivityIndicatorVisible =
NO;
 [self.tableView reloadData];
});

There are two sections here:

1. You pull out the array of objects from the “contents” key and then iterate
through the array. Each array entry is a file, so you create a corresponding DBFile
model object for each file.

2. DBFile pulls out the information for a file from the JSON dictionary – take a quick
peek so you can see how it works.

When you’re done, you add all the notes into the self.notes property. The table
view is set up to display any entries in this array.

Now that you have the table view’s datasource updated, you need to reload the
table data. Whenever you’re dealing with asynchronous network calls, you have to
make sure to update UIKit on the main thread.Astute readers will notice there’s no
error handling in the code above; if you’re feeling like a keener (and most members
of Byte Club are!) add some code here (and in subsequent code blocks you’ll add)
that will retry in the case of an error and alert the user.

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 484

Build and run your app; you should see the file you added to your Dropbox folder
show up in the list, as shown in the example below:

It’s a small thing, but it’s living proof that you’re calling the Dropbox API correctly.

The next step is to post notes and issue challenges to other club members, once
again using the Dropbox API as your delivery mechanism.

POST Notes through the Dropbox API
Tap the plus sign in the upper right corner and you’ll see the Note add/edit screen
appear, as illustrated below:

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 485

The starter app is already set up to pass the DBFile model object to the
NoteDetailsViewController in prepareForSegue:sender:.

If you take a peek at this method, you’ll see that NoteViewController is set as the
NoteDetailsViewController’s delegate. This way, the NoteDetailsViewController
can notify NoteViewController when the user finishes editing a note, or cancels
editing a note.

Open NotesViewController.m and add the following line to prepareForSegue:sender:,
just after the line showNote.delegate = self;

showNote.session = _session;

NoteDetailsViewController already has an NSURLSession property named session,
so you can set that in prepareForSegue:sender: before it loads.

Now the detail view controller will share the same NSURLSession, so the detail view
controller can use it to make API calls to DropBox.

The Cancel and Done buttons are already present in the app; you just need to add
some logic behind them to save or cancel the note that’s in progress.

In NoteDetailsViewController.m, find the following line in

(IBAction)done:(id)sender:

 // - UPLOAD FILE TO DROPBOX - //

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 486

 [self.delegate noteDetailsViewControllerDoneWithDetails:self];

… and replace it with the following:

// 1
NSURL *url = [Dropbox uploadURLForPath:_note.path];

// 2
NSMutableURLRequest *request =
 [[NSMutableURLRequest alloc] initWithURL:url];
[request setHTTPMethod:@"PUT"];

// 3
NSData *noteContents = [_note.contents
dataUsingEncoding:NSUTF8StringEncoding];

// 4
NSURLSessionUploadTask *uploadTask = [_session
 uploadTaskWithRequest:request
 fromData:noteContents
 completionHandler:^(NSData *data,
 NSURLResponse *response,
 NSError *error)
{
 NSHTTPURLResponse *httpResp = (NSHTTPURLResponse*) response;

 if (!error && httpResp.statusCode == 200) {

 [self.delegate noteDetailsViewControllerDoneWithDetails:self];
 } else {
 // alert for error saving / updating note
 }
}];

// 5
[uploadTask resume];

This implements everything you need to save and share your notes. If you take a
close look at each commented section, you’ll see that the code does the following:

1. To upload a file to Dropbox, again you need to use a certain API URL. Just like
before when you needed a URL to list the files in a directory, I have created a
helper method to generate the URL for you. You call this here.

2. Next up is your old friend NSMutableURLRequest. The new APIs can use both plain
URLs and NSURLRequest objects, but you need the mutable form here to comply
with the Dropbox API wanting this request to be a PUT request. Setting the HTTP
method as PUT signals Dropbox that you want to create a new file.

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 487

3. Next you encode the text from your UITextView into an NSData Object.

4. Now that you’re created the request and NSData object, you next create an
NSURLSessionUploadTask and set up the completion handler block. Upon success,
you call the delegate method noteDetailsViewControllerDoneWithDetails: to
close the modal content. In a production-level application you could pass a new
DBFile back to the delegate and sync up your persistent data. For the purposes of
this application, you simply refresh the NotesViewController with a new network
call.

5. Again, all tasks are created as suspended so you must call resume on them to
start them up. Lazy minions!

Build and run your app and tap on the plus sign of the Notes tab. Enter your name
in the challenge name field, and enter some text in the note field that offers up a
challenge to Ray, similar to the example below:

When you tap Done, the NoteViewController will return and list your new note as
shown below:

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 488

You’ve officially thrown down the gauntlet and issued a challenge to Ray; however,
he has friends in very high places so you’d better bring your best game!

But there’s one important feature missing. Can you tell what it is?

Tap on the note containing the challenge; the NoteDetailsViewController presents
itself, but the text of the note is blank.

Ray won’t find your challenge very threatening if he can’t read it!

Right now, the app is only calling the Dropbox metadata API to retrieve lists of files.
You’ll need to add some code to fetch the contents of the note.

Open NoteDetailsViewController.m and replace the blank retreiveNoteText
implementation with the following:

-(void)retreiveNoteText
{
 // 1
 NSString *fileApi =
 @"https://api-content.dropbox.com/1/files/dropbox";
 NSString *escapedPath = [_note.path
 stringByAddingPercentEscapesUsingEncoding:
 NSUTF8StringEncoding];

 NSString *urlStr = [NSString stringWithFormat: @"%@/%@",

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 489

 fileApi,escapedPath];

 NSURL *url = [NSURL URLWithString: urlStr];

 [UIApplication sharedApplication].networkActivityIndicatorVisible =
YES;

 // 2
 [[_session dataTaskWithURL:url completionHandler:^(NSData *data,
NSURLResponse *response, NSError *error) {

 if (!error) {
 NSHTTPURLResponse *httpResp = (NSHTTPURLResponse*) response;
 if (httpResp.statusCode == 200) {
 // 3
 NSString *text =
 [[NSString alloc]initWithData:data
 encoding:NSUTF8StringEncoding];
 dispatch_async(dispatch_get_main_queue(), ^{
 [UIApplication
sharedApplication].networkActivityIndicatorVisible = NO;
 self.textView.text = text;
 });

 } else {
 // HANDLE BAD RESPONSE //
 }
 } else {
 // ALWAYS HANDLE ERRORS :-] //
 }
 // 4
 }] resume];
}

The code above (sans error checking) is explained in the notes below:

1. Set the request path and the URL of the file you wish to retrieve; the /files
endpoint in the Dropbox API will return the contents of a specific file.

2. Create the data task with a URL that points to the file of interest. This call should
be starting to look quite familiar as you go through this app.

3. If your response code indicates that all is good, set up the textView on the main
thread with the file contents you retrieved in the previous step. Remember, UI
updates must be dispatched to the main thread.

4. As soon as the task is initialized, call resume. This is a little different approach
than before, as resume is called directly on the task without assigning anything.

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 490

Build and run your app, tap on your challenge in the list and the contents now
display correctly in the view, as shown below:

You can play the part of Ray and respond to the challenge by entering text to the
note; the files will be updated as soon as you tap Done.

Share the app and the Dropbox folder with some of your coding friends and have
them test out your app by adding and editing notes between each other. After all,
Byte Club is much more fun with more than one person in it!

Posting photos with NSURLSessionTask
delegates
You’ve seen how to use NSURLSesssion asynchronous convenience methods. But
what if you want to keep an eye on a file transfer, such as uploading a large file and
showing a progress bar?

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 491

For this type of asynchronous, time-consuming task you’ll need to implement
protocol methods from NSURLSessionTaskDelegate. By implementing this method,
you can receive callbacks when a task receives data and finishes receiving data.

You might have noticed that the PanoPhotos tab is empty when you launch the
app. However, the founding members of Byte Club have generously provided some
panoramic photos of their own to fill your app with.

The photos folder in the chapter’s resources contains some sample panoramic
photos. Copy the photos directory of this chapter’s resource package to your app
folder on Dropbox. Your folder contents should look similar to the following:

The Dropbox Core API can provide thumbnails for photos; this sounds like the
perfect thing to use for a UITableView cell.

Open PhotosViewController.m and add the following code to
tableView:cellForRowAtIndexPath: just after the comment stating “GO GET
THUMBNAILS”:

[UIApplication sharedApplication].networkActivityIndicatorVisible = YES;
NSURLSessionDataTask *dataTask = [_session dataTaskWithURL:url
 completionHandler:^(NSData *data, NSURLResponse *response,
 NSError *error) {
 if (!error) {
 UIImage *image = [[UIImage alloc] initWithData:data];
 photo.thumbNail = image;
 dispatch_async(dispatch_get_main_queue(), ^{
 [UIApplication
sharedApplication].networkActivityIndicatorVisible = NO;
 cell.thumbnailImage.image = photo.thumbNail;
 });
 } else {
 // HANDLE ERROR //
 }
}];
[dataTask resume];

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 492

The above code displays the photo’s thumbnail image in the table view cell…or at
least it would, if the _photoThumbnails array wasn’t currently empty.

Find refreshPhotos and replace its implementation with the following:

- (void)refreshPhotos
{
 [[UIApplication sharedApplication]
setNetworkActivityIndicatorVisible:YES];
 NSString *photoDir = [NSString
stringWithFormat:@"https://api.dropbox.com/1/search/dropbox/%@/photos?qu
ery=.jpg",appFolder];
 NSURL *url = [NSURL URLWithString:photoDir];

 [[_session dataTaskWithURL:url completionHandler:^(NSData
 *data, NSURLResponse *response, NSError *error) {
 if (!error) {
 NSHTTPURLResponse *httpResp =
 (NSHTTPURLResponse*) response;
 if (httpResp.statusCode == 200) {

 NSError *jsonError;
 NSArray *filesJSON = [NSJSONSerialization
 JSONObjectWithData:data
 options:NSJSONReadingAllowFragments
 error:&jsonError];
 NSMutableArray *dbFiles =
 [[NSMutableArray alloc] init];

 if (!jsonError) {
 for (NSDictionary *fileMetadata in
 filesJSON) {
 DBFile *file = [[DBFile alloc]
 initWithJSONData:fileMetadata];
 [dbFiles addObject:file];
 }

 [dbFiles sortUsingComparator:^NSComparisonResult(id
obj1, id obj2) {
 return [obj1 compare:obj2];
 }];

 _photoThumbnails = dbFiles;

 dispatch_async(dispatch_get_main_queue(), ^{

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 493

 [[UIApplication sharedApplication]
setNetworkActivityIndicatorVisible:NO];
 [self.tableView reloadData];
 });
 }
 } else {
 // HANDLE BAD RESPONSE //
 }
 } else {
 // ALWAYS HANDLE ERRORS :-] //
 }
 }] resume];
}

This is very similar to the code you wrote earlier that loads the challenge notes.
This time, the API call looks in the photos directory and only requests files with the
.jpg extension.

Now that the _photoThumbnails array is populated, the thumbnail images will
appear in the table view and update asynchronously.

Build and run your app and switch to the PanoPhotos tab; the thumbnails will load
and appear as follows:

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 494

The photos look great — just beware of Matthijs’s code-shredding cat!

Upload a PanoPhoto
Your app can download photos, but it would be great if it could also upload images
and show the progress of the upload.

To track the progress of an upload, the PhotosViewController must be a delegate
for both the NSURLSessionDelegate and NSURLSessionTaskDelegate protocols so you
can receive progress callbacks.

Modify the PhotosViewController interface declaration in PhotosViewController.m
by adding NSURLSessionTaskDelegate, as below:

@interface PhotosViewController ()<UITableViewDelegate,
UITableViewDataSource, UIImagePickerControllerDelegate,
UINavigationControllerDelegate, NSURLSessionTaskDelegate>

Next, add the following private property:

@property (nonatomic, strong)
 NSURLSessionUploadTask *uploadTask;

The above pointer references the task object; that way, you can access the object’s
members to track the progress of the upload task.

When the user chooses a photo to upload, didFinishPickingMediaWithInfo calls
uploadImage: to perform the file upload. Right now, that method’s empty – it’s your
job to flesh it out.

Replace uploadImage: with the following code:

- (void)uploadImage:(UIImage*)image
{
 NSData *imageData = UIImageJPEGRepresentation(image, 0.6);

 // 1
 NSURLSessionConfiguration *config = [NSURLSessionConfiguration
defaultSessionConfiguration];
 config.HTTPMaximumConnectionsPerHost = 1;
 [config setHTTPAdditionalHeaders:@{@"Authorization": [Dropbox
apiAuthorizationHeader]}];

 // 2
 NSURLSession *upLoadSession = [NSURLSession
sessionWithConfiguration:config delegate:self delegateQueue:nil];

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 495

 // for now just create a random file name, dropbox will handle it if
we overwrite a file and create a new name..
 NSURL *url = [Dropbox createPhotoUploadURL];

 NSMutableURLRequest *request = [[NSMutableURLRequest alloc]
initWithURL:url];
 [request setHTTPMethod:@"PUT"];

 // 3
 self.uploadTask = [upLoadSession uploadTaskWithRequest:request
fromData:imageData];

 // 4
 self.uploadView.hidden = NO;
 [[UIApplication sharedApplication]
setNetworkActivityIndicatorVisible:YES];

 // 5
 [_uploadTask resume];
}

Here’s what’s going on in the code above:

1. Previously, you used the session set up in initWithCoder and the associated
convenience methods to create asynchronous tasks. This time, you’re using an
NSURLSessionConfiguration that only permits one connection to the remote host,
since your upload process handles just one file at a time.

2. The upload and download tasks report information back to their delegates; you’ll
implement these shortly.

3. Here you set the uploadTask property using the JPEG image obtained from the
UIImagePicker.

4. Next, you display the UIProgressView hidden inside of PhotosViewController.

5. Start the task — er, sorry, resume the task.

Now that the delegate has been set, you can implement the
NSURLSessionTaskDelegate methods to update the progress view.

Add the following code to the end of PhotosViewController.m:

#pragma mark - NSURLSessionTaskDelegate methods

- (void)URLSession:(NSURLSession *)session
 task:(NSURLSessionTask *)task
 didSendBodyData:(int64_t)bytesSent
 totalBytesSent:(int64_t)totalBytesSent
 totalBytesExpectedToSend:(int64_t)totalBytesExpectedToSend

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 496

{
 dispatch_async(dispatch_get_main_queue(), ^{
 [_progress setProgress:
 (double)totalBytesSent /
 (double)totalBytesExpectedToSend animated:YES];
 });
}

The above delegate method periodically reports information about the upload task
back to the caller. It also updates UIProgressView (_progress) to show
totalBytesSent / totalBytesExpectedToSend which is more informative (and much
geekier) than showing percent complete.

The only thing left is to indicate when the upload task is complete. Add the
following method to the end of PhotosViewController.m:

- (void)URLSession:(NSURLSession *)session task:(NSURLSessionTask *)task
didCompleteWithError:(NSError *)error
{
 // 1
 dispatch_async(dispatch_get_main_queue(), ^{
 [[UIApplication sharedApplication]
setNetworkActivityIndicatorVisible:NO];
 _uploadView.hidden = YES;
 [_progress setProgress:0.5];
 });

 if (!error) {
 // 2
 dispatch_async(dispatch_get_main_queue(), ^{
 [self refreshPhotos];
 });
 } else {
 // Alert for error
 }
}

There’s not a lot of code here, but it performs two important tasks:

1. Turns off the network activity indicator and then hides the _uploadView as a bit of
cleanup once the upload is done.

2. Refresh PhotosViewController to include the image you just uploaded since your
demo app is not storing anything locally. In a real world app, you should probably
be storing or caching the images locally.

Build and run your app, navigate to the PanoPhotos tab and tap the camera icon to
select an image.

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 497

Note: If you’re using the simulator to test the app, you obviously can’t take a
photo with your Mac, so just copy a panoramic photo to the simulator and
upload that instead. To do this, ensure no other Xcode project is currently
connected to the simulator and in Xcode select Xcode \ Open Developer
Tool \ iOS Simulator.

Drag one of the included panoramic photos from Finder to the simulator where
the image will open in Safari. Then long press on the image and save the
image to the photo library.

After selecting the image to upload, the uploadView displays in the middle of the
screen along with the UIProgressView as shown below:

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 498

You might have noticed that an image upload can take some time due to the
“better quality” scaling factor set on the upload task. Believe it or not, some users
get a little impatient on their mobile devices! ! For those A-type personalities, you
should provide a cancel function if the upload is taking too long.

The Cancel button on the uploadView has already been wired up from the
storyboard, so you’ll just need to implement the logic to cleanly kill the download.

Replace the cancelUpload: method in PhotosViewController.m with the code below:

- (IBAction)cancelUpload:(id)sender {
 if (_uploadTask.state == NSURLSessionTaskStateRunning) {
 [_uploadTask cancel];
 }
}

To cancel a task it’s as easy as calling the cancel method, which you can see here.

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 499

Now build and run your app, select a photo to upload and tap Cancel. The image
upload will halt and the uploadView will be hidden.

Challenges
Congratulations – you now have hands-on experience with they key networking
classes in iOS 7. In particular, you have:

• Used NSURLSession to execute various NSURLSessionTasks

• Used both data tasks, and upload tasks

• Learned how to configure NSURLSession with NSURLSessionConfiguration

• Worked with a popular third party API and OAuth

Now it’s time for some challenges so you can practice using NSURLSession on your
own. As always, if you get stuck you can find the solutions in the resources for this
chapter – but give it your best shot first!

Challenge #1: Save an image to camera roll
Think back to the beginning of this chapter where you learned that all worthy Byte
Club members have a panoramic photo on their lock screen.

Your first challenge is to download one of the full resolution panoramic photos from
the Byte Club app into your camera roll. If you complete this challenge, you will be
ready to issue code challenges to anyone!

Hints:

1. Using the StoryBoard, create a new UIViewController that is loaded when a user
taps on a thumbnail photo.

2. Create a new class for this UIViewController named DownloadViewController.

a. Create public NSString property named to save the path

3. Set the class for the UIViewController on the storyboard to
DownloadViewController.

4. Add UIProgressView, UIImageView, and UILabel and create outlets for them.

5. In PhotosViewController.m, import DownloadViewController, add a
prepareForSegue method and set the path for the Destination ViewController
(DownloadViewController) hint use the path property from the selected DBFile
object.

 int row = [self.tableView indexPathForSelectedRow].row;
 DBFile *selectedThumbnail = _photoThumbnails[row];

6. Use NSURLSessionDownloadTask to use the Dropbox /files (GET) service. This takes
a URL in format: https://api-content.dropbox.com/1/files/<root>/<path>

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 500

a. Use the property created in step 2 to build the full URL.

7. An NSURLSessionDownloadTask will directly write the response data to a temporary
file. When completed the delegate is sent
URLSession:downloadTask:didFinishDownloadingToURL: this is where you can save
the file permanently, use the location variable like we saw earlier to create the
UIImage and then use UIImageWriteToSavedPhotosAlbum to save the image to the
camera roll.

8. Update the UIImageView to show the full file.

Here is what my finished challenge looks like; man that cat still scares me!

Challenge #2: Pause and resume photo downloads
For this challenge, you’ll add a mechanism to pause and/or cancel an in-progress
download. You’ll find the following method from NSURLSessionDownloadTask to be of
use:

- (void)cancelByProducingResumeData:(void (^)(NSData
*resumeData))completionHandler;

Other hints for this challenge:

iOS 7 by Tutorials Chapter 16: Networking with NSURLSession

 501

1. On the download screen, add a button to pause/cancel the download.

2. In the action for the above button, call cancelByProducingResumeData to save the
NSData. Here’s the Apple docs on this method:

“Cancel the download (and calls the superclass -cancel). If conditions
will allow for resuming the download in the future, the callback will be
called with an opaque data blob, which may be used with -
downloadTaskWithResumeData: to attempt to resume the download. If resume
data cannot be created, the completion handler will be called with nil
resumeData.”

3. Add another button to resume the download by loading the data from the file or
memory.

4. Use the following NSURLSession method to resume the download:

/* Creates a download task with the resume data. If the download cannot
be successfully resumed, URLSession:task:didCompleteWithError: will be
called. */
- (NSURLSessionDownloadTask *)downloadTaskWithResumeData:(NSData
*)resumeData;

If you have completed these challenges, congratulations and enjoy your lifetime
membership in Byte Club! Just don’t go telling any Android guys about it! :]

In the early days of iOS, only one app could run at a time. Tapping the Home
button would terminate whichever app was currently running and take you back to
Springboard. This one-at-a-time approach made sense for the first generation of
mobile devices because they were still very limited in terms of memory and
processing power.

However, iOS users wanted more out of their devices. They wanted to do multiple
things at once such as listening to music while browsing the web, or playing a game
while answering a phone call. Sounds reasonable, right?

Apple’s philosophy on multitasking has been the same from the beginning: general
concurrency is not the solution for mobile devices. According to Apple, users —
whether they know it or not — care first and foremost about battery life, so letting
apps run wild in the background is the last thing you want to do.

Balancing user demands against technical limitations, Apple proceeded to make
multitasking available to third party developers on a service-by-service basis.

• Starting with iOS 4, apps could register for services such as background audio,
voice over IP and GPS navigation.

• Starting with iOS 5, tapping the Home button would merely suspend an app
rather than terminate it. The next time a suspended app was opened, it would
continue right where it left off. This mechanism is the basis for fast app
switching, a feature that lies at the core of the iOS experience to this day.

• Starting with iOS 6, Apple introduced the concept of State Preservation and
Restoration. This feature made it easy for you to save the state of your app,
allowing you to restore its state in the event your app was terminated since the
last launch. This made apps appear to be continuously running even when they
were not.

• Now in iOS 7, Apple has introduced many new and exciting multitasking APIs,
intended to make it easy for you to download data or files from a remote web
service periodically in order to keep your app’s data up to date.

Chapter 17: Beginning
Multitasking
By Pietro Rea

iOS 7 by Tutorials Chapter 17: Beginning Multitasking

 504

In this chapter, you will learn about all the new multitasking APIs in iOS 7. You will
get hands-on experience by developing an app called NASA TV, that allows you to
see the latest NASA news and download high quality videos:

You will develop this app across two chapters:

1. Chapter 17, Beginning Multitasking: You are here! Learn how to keep your
app’s data up to date in the background with background fetching.

2. Chapter 18, Intermediate Multitasking: Learn how to download large files in
the background and get notified of updates with silent push notifications.

Go grab your favorite caffeinated beverage and sip as you read – it’s time for some
multitasking!

Multitasking in iOS 7: an overview
The new multitasking APIs that come in iOS 7 are probably the most liberal
multitasking APIs iOS developers have ever seen.

Although devices are more powerful and batteries longer-lasting these days, iOS 7
still exudes Apple’s underlying philosophy of shunning concurrency in favor of task
switching. You can definitely do more in the background in iOS 7, but you still need
to be a good citizen and limit your background tasks to allow the device to go back
to sleep.

Here are the new ways to do multitasking introduced in iOS 7:

iOS 7 by Tutorials Chapter 17: Beginning Multitasking

 505

Background fetch
Before iOS 7, if you opened a news app, a social networking app, or an online
game, the first thing you would see was the old content. You would have to wait
around impatiently as the app fetched new content and refreshed its UI after every
launch.

Background fetch in iOS 7 removes this awkward wait and refresh period and allows
apps to download their data in the background so they have the latest data ready
as soon as you open the app. Using a set of prediction algorithms, iOS wakes up
frequently-used apps and gives them some background processing time to update
their content.

Background transfer
In iOS 6 and earlier, quitting an app in the middle of performing a lengthy
download would stop the operation in its tracks. At best, the download would pause
and resume when you re-opened the application. At worst, the download would be
killed and you’d be forced to start all over.

The new NSURLSession class in iOS 7 supports background transfers, where lengthy
uploads and downloads continue unhindered while the app is in the background.
When complete, the download task calls back to your app delegate so you can
update your UI if necessary and perform other post-transfer tasks.

Silent push notifications
In contrast to regular push notifications that lead to an app launch, silent push
notifications trigger a background app refresh. They are event-driven and controlled
externally from a web server whereas the new background fetch capabilities are
scheduled by iOS.

For example, if you have an application that delivers sporadic or episodic content,
such as a podcast, then you can keep the content up to date by sending out a silent
push notification whenever new content is available. Similarly, if you have a file
syncing application like Dropbox you can keep folders up to date across multiple
devices with silent push notifications.

The new app switcher
To fully understand how the new multitasking features work, you need to
understand the changes to the app switcher in iOS 7.

From iOS 4 to iOS 6, the app switcher – accessible from any screen by double-
tapping the Home button – looked like this:

iOS 7 by Tutorials Chapter 17: Beginning Multitasking

 506

The old app switcher consisted of a row of icons showing the most recently used
apps. From here you could remove an app from the list, which would also terminate
the app process if it were still running.

The new app switcher in iOS 7 looks like this:

The new app switcher is still accessible by double-tapping the Home button and it
still contains the row of icons at the bottom.

However, iOS 7 adds a screenshot of the app along with its icon. In the new app
switcher world, it’s your responsibility to keep your app’s screenshot up to date —
even if the user hasn’t opened your app in a while. How do you accomplish this?

Essentially you need to instruct iOS to snapshot the UI of your app after you
perform a refresh. Each time your app wakes up to perform a background execution
task, the system provides you with a completion handler that you must call as soon
as you finish execution of your background task.

Not only does calling this completion handler allow the device to sleep, it also takes
a snapshot of your updated UI to display in the app switcher.

The app switcher also acts as the control center for multitasking. All background
modes respect the app switcher; if the user kills your app from the app switcher,

iOS 7 by Tutorials Chapter 17: Beginning Multitasking

 507

your app won’t be able to perform background fetches, play music, or perform any
other background tasks.

Note: Even if your app is present in the app switcher, the user can opt-out of
background transfers in Settings under General/Background App Refresh.

Getting started
In this chapter you will work on an app called NASA TV. Since this sample project
includes a number of large video files, we have included the resources for this
project as a separate download rather than included by default with the book. You
can download the resources for this chapter here:

http://cdn1.raywenderlich.com/downloads/NASATV.zip

After you have downloaded the resources, you will find the starter project for the
chapter inside. Build and run the app, and you will see the following:

Nothing shows up yet – this is because you haven’t set up your web server yet.
You’ll do that soon.

NASA TV is a simple application with two tabs: the first tab will display the latest
news stories from NASA, while the second tab will display the latest videos
produced by NASA. The news stories will be published much more frequently than
videos.

All the multitasking APIs introduced in iOS 7 require a web server. However, this
chapter doesn’t focus on backend services, so you will simulate a working backend
server for your background fetch transfer activities. In the next chapter, you will
use the backend service Parse to create silent push notifications.

You’ll use a MAMP stack in this chapter to simulate your backend service. MAMP
stands for Mac, Apache, MySQL and PHP, which are four technologies that are

iOS 7 by Tutorials Chapter 17: Beginning Multitasking

 508

frequently used together to create web services. You’ll create a web service directly
on your computer to simulate your web components of NASA TV.

Note: MAMP is a spinoff of the common LAMP stack where the L stands for
Linux. If you want to learn more about building a proper web service for your
iOS apps you can read the following tutorials on this topic:

http://www.raywenderlich.com/2941/how-to-write-a-simple-phpmysql-web-
service-for-an-ios-app

http://www.raywenderlich.com/19341/how-to-easily-create-a-web-backend-
for-your-apps-with-parse

http://www.raywenderlich.com/44640/integrating-facebook-and-parse-
tutorial-part-1

Setting up MAMP
To get some data into the blank NASA TV tabs, you’ll need to get your MAMP stack
up and running.

Head over to http://www.mamp.info and download the free version of MAMP. A
paid version of MAMP is also available but the free one will work just fine for this
chapter.

Once the download is complete, run the installer and the MAMP application will
appear in the Applications folder. Start up MAMP and you’ll see the following dialog:

You’ll see there are two items in the Status box, which are turned off by default:

• Apache server: A web server that waits and listens for requests and serves up
resources as needed.

• MySQL server: A database server works in a similar manner, but instead of
serving resources over the network it serves up data from a database.

iOS 7 by Tutorials Chapter 17: Beginning Multitasking

 509

Before you can turn these servers on, you need to configure Apache to serve the
NASA TV resources.

Launch your text editor of choice and open up the configuration file located at
/Applications/MAMP/conf/apache/httpd.conf. Add the following configuration
info to the bottom of the file:

Listen 44447

<VirtualHost *:44447>
 DocumentRoot "/Users/my_user_name/Desktop/NASA TV/MAMP"
 ServerName localhost:44447
 SetEnv APPLICATION_ENV development
 php_flag magic_quotes_gpc off

 <Directory "/Users/my_user_name/Desktop/NASA TV/MAMP">
 Options Indexes MultiViews FollowSymLinks
 AllowOverride All
 Order allow,deny
 Allow from all
 </Directory>
</VirtualHost>

In the configuration options above, ensure you change BOTH entries for the path
/Users/my_user_name/Desktop/NASA TV/MAMP to the directory where you
downloaded the sample project for this chapter.

This sets up a new rule in Apache to listen to requests on port 44447 and map
those requests to documents in /Users/my_user_name/Desktop/NASA
TV/MAMP. This directory contains all the assets that the sample app will need,
such as JSON files and NASA video clips.

Now go back to the MAMP app and click on the Start Servers button, which will
turn the “Apache Server” status indicator to green. You won’t use MySQL in this
project, so don’t worry if the “MySQL” indicator stays red.

If everything worked correctly, your default browser will open up and display a
MAMP welcome screen. To verify that everything is hooked up correctly for your
NASA TV app, go to http://localhost:44447 in a web browser, where you will see
the following text displayed:

“Houston, Tranquility Base here. The Eagle has landed.”
– Neil Armstrong

This is the content of the index.html file found in the NASA TV MAMP directory. If
you see that the eagle has landed, congratulations — your MAMP stack is serving
up content as designed.

iOS 7 by Tutorials Chapter 17: Beginning Multitasking

 510

To make sure that you can resolve your own IP instead of using localhost all the
time, find the IP of your computer in the Network pane in the System Preferences
app, as so:

As a final test, open up the same test URL in your browser, substituting your
machine’s IP for localhost. If successful, you should see the same Neil Armstrong
quote again.

A brief tour of the app
Now that your MAMP stack is up and running, you can modify your app to receive
the content for NASA TV.

Open AppDelegate.m and modify the following line to reflect your computer’s IP
address:

NSUserDefaults* ud = [NSUserDefaults standardUserDefaults];
[ud setObject:@"http://10.66.80.14:44447"
 forKey:@"baseURLString"];

Build and run your project; check out the News and Video tabs and you’ll see
they’re populated with relevant content. If you are testing the app on a physical
device, make sure that the device is on the same Wi-Fi network as your Mac;
otherwise, NASA TV won’t be able to talk to your MAMP stack.

If at any point you are assigned a new IP address due to, for example, going to a
new location, replace your new IP address in AppDelegate.m before continuing.

iOS 7 by Tutorials Chapter 17: Beginning Multitasking

 511

Before you go wild adding the multitasking features, take the following quick tour of
the app to get acquainted with the architecture of NASA TV; that way you can see
exactly how multitasking fits into the app as a whole.

Open up Main.storyboard and have a quick look at the scenes described below:

iOS 7 by Tutorials Chapter 17: Beginning Multitasking

 512

• UITabBarController: On the left is the root tab bar controller. The Video and
News tabs each point to a UINavigationController instead of directly to the view
controllers, which makes it easy to implement push/pop transitions.

• NewsViewController: This displays NASA news items in table form. A
UIRefreshControl is attached to the table so the user can pull to refresh to check
the latest and greatest updates from your favorite space agency.

• NewsDetailViewController: This view controller provides a simple way to
display the press release information in each individual news item.

• VideoViewController: All available NASA videos are displayed here in a
UICollectionView. If you want to know if there’s a new video available, the
attached UIRefreshControl provides pull to refresh functionality here as well.

• VideoDetailViewController: This view controller contains a
MPMoviePlayerController that streams NASA video clips from the web server. All
videos displayed here are provided with the sample project files in the directory
NASA TV MAMP/videos.

• PhotoViewController: This view controller is floating in space (no pun intended)
under the main UITabBarController and displays NASA's Astronomy Picture of the
Day. This feature isn’t yet implemented — but it gives you a hint as to what you’ll
be doing with silent push notifications in the next chapter.

iOS 7 by Tutorials Chapter 17: Beginning Multitasking

 513

As the final stop on this tour, open NewsViewController.m and take a look at
populateData. viewWillAppear: and refreshTableView: both call this method which
is attached to the table view’s UIRefreshControl. That means that either switching
to this tab or invoking pull to refresh will call populateData and refresh the data in
the table.

Adding background fetching
It's time to add your first multitasking feature. Your first task is to integrate
background fetch into NewsViewController.

The goal here is to keep the News feed up to date in the background so that there
won’t be an awkward pause when the user opens the app and retrieves the data
from the server. This also keeps the app switcher snapshot up to date, making it
more likely for your users to open NASA TV.

In Xcode, click on the project file and navigate to the new Capabilities tab. Set
Background Modes on and then ensure Background Fetch is checked. This is
equivalent to manually adding the fetch key to the UIBackgroundModes array in
Info.plist.

Next, open AppDelegate.m and add the following implementation for
application:performFetchWithCompletionHandler: at the bottom of the file:

- (void)application:(UIApplication *)application
 performFetchWithCompletionHandler:
 (void (^)(UIBackgroundFetchResult result))
 completionHandler {

UIViewController *rootVC = self.window.rootViewController;
UITabBarController *tbc = (UITabBarController *)rootVC;

id selectedVC = tbc.selectedViewController;

if ([selectedVC
 isMemberOfClass:UINavigationController.class]) {

 id topVC =
 [(UINavigationController *)selectedVC topViewController];

 if ([topVC isMemberOfClass:[NewsViewController class]]) {
 [(NewsViewController*)topVC
 populateDataWithCompletionHandler:completionHandler];
 }
 }
}

iOS 7 by Tutorials Chapter 17: Beginning Multitasking

 514

Xcode will warn you that populateDataWithCompletionHandler: is not defined. You'll
take care of this shortly.

The system calls application:performFetchWithCompletionHandler: when it wakes
up your application to perform a background fetch. The implementation shown
above will only update the UI if NewsViewController is the currently selected tab.
There’s no need to waste resources updating the UI if NewsViewController is not
currently visible

Note that this delegate method accepts a completion handler of type
(void(^)(UIBackgroundFetchResult result). Once the app has finished fetching
data and refreshing the UI, you need to call this completion handler and report the
correct UIBackgroundFetchResult to iOS using one of the following values:

• UIBackgroundFetchResultNewData: The background fetch succeeded and new data
was retrieved. The new data will be available immediately after the next app
launch and will also be shown in the app switcher snapshot. Hooray!

• UIBackgroundFetchResultNoData: The background fetch completed successfully but
no new data was available. The next time the user launches the app there will be
no visible change whatsoever. The user won’t get to appreciate all the heavy
lifting you did on their behalf. Bummer.

• UIBackgroundFetchResultFailed: Something went wrong and the background fetch
failed. Maybe the web service that the background fetch was polling is unavailable
or perhaps the request timed out. Mega bummer.

Note: It’s not difficult to guess why Apple asks for the background fetch
result. Since battery life is limited, iOS is only going to wake a subset of all the
apps that registered for background fetch. Background fetch result is probably
one of the many factors that go into that decision — but only Apple knows for
sure.

Next, open NewsViewController.h and add populateDataWithCompletionHandler:
to the public interface as so:

#import <UIKit/UIKit.h>

@interface NewsViewController : UIViewController

- (void)populateDataWithCompletionHandler:
 (void (^)(UIBackgroundFetchResult))completionHandler;

@end

AppDelegate.m calls this method when there’s a background fetch to perform.

iOS 7 by Tutorials Chapter 17: Beginning Multitasking

 515

Now open NewsViewController.m and rename populateData to
populateDataWithCompletionHandler: so it matches the above method signature:

- (void)populateDataWithCompletionHandler:
 (void (^)(UIBackgroundFetchResult))completionHandler {

This is the same method that you inspected earlier, except now it accepts a
parameter of an optional completion handler when it’s executed from a background
fetch.

Now add the add the following lines of code to populateDataWithCompletionHandler:
at the bottom of GetNewsWebOperation’s success block within the dispatch_async()
block:

//1
if (completionHandler) {
 //2
 if (hasNewEntries) {
 completionHandler(UIBackgroundFetchResultNewData);
 //3
 [UIApplication
 sharedApplication].applicationIconBadgeNumber++;
 }
 else {
 completionHandler(UIBackgroundFetchResultNoData);
 }
}

You perform the following steps in the above code:

1. Check if a completion handler was passed in. If there’s no completion handler
available it means that populateDataWithCompletionHandler: was called from
within NewsViewController and you don’t have to do anything with regards to
background fetching.

2. hasNewEntries is the second parameter passed in from GetNewsWebOperation’s
successBlock. If you inspect GetNewsWebOperation.m, you’ll see that
parseNewsData: checks the incoming news items against the ones already stored
in Core Data to set this flag.

If there’s nothing new coming back from the server, hasNewEntries is passed into
the success block as NO. Otherwise, hasNewEntries is passed back as YES.

This bit of information is necessary to differentiate between
UIBackgroundFetchResultNewData and UIBackgroundFetchResultNoData.

3. Increment the application’s icon badge number to give the user a visual cue that
new data is available. In AppDelegate.m, applicationWillEnterForeground: sets
this badge number back to zero so you don’t have to do it yourself.

iOS 7 by Tutorials Chapter 17: Beginning Multitasking

 516

Note: Notice that the completion handler executes after [weakSelf.tableView
reloadData]. If you call the completion handler before the UI has had a chance
to refresh, the app switcher snapshot will not reflect any changes. If your app
switcher snapshot is still out of date even after you implement background
fetching, this is probably why.

There's one more fetch status to report, UIBackgroundFetchResultFailed. Still in
populateDataWithCompletionHandler: change GetNewsWebOperation’s failure block to
the following:

[self.getNewsWebOperation setFailureBlock:^{
 [weakSelf.refreshControl endRefreshing];
 if (completionHandler) {
 completionHandler(UIBackgroundFetchResultFailed);
 }
}];

This simply executes the completion block (if one was passed in) with
UIBackgroundFetchResultFailed. It’s important that you don’t forget this step
because this is how you notify iOS that you are done fetching data and can go back
to sleep.

You can’t yet build and run your app as some methods in NewsViewController are
still referencing populateData instead of populateDataWithCompletionHandler:

To fix this, update viewWillAppear: as shown below:

- (void)viewWillAppear:(BOOL)animated {
 [super viewWillAppear:animated];
 [self populateDataWithCompletionHandler:nil];
}

Also update refreshTableView: with the following method declaration:

- (void)refreshTableView:(id)sender {
 [self populateDataWithCompletionHandler:nil];
}

Build and run your app; you should have no errors or warnings at this point. The UI
in the News tab won’t have changed at all – all the code is there to handle
background fetching, but there isn’t yet anything to fetch!

The next step is to test that background fetching works properly. Background fetch
can happen when your app is in one of two possible states:

1. App suspended in background: If NASA TV is suspended but still running in
the background, iOS will simply wake it up to perform the background fetch.

iOS 7 by Tutorials Chapter 17: Beginning Multitasking

 517

2. App not running at all: The app is suspended in the background but for one
reason or another was terminated by the system. The app still appears in the app
switcher because the user hasn’t officially closed it. NASA TV will have to launch
again before doing the background fetch.

Xcode 5 makes it easy to test both scenarios. Before going any further, make a
mental note of the top news item in NASA TV’s news tab; it should read NASA
Commercial Crew Partner SpaceX Completes Two Human-Critical Reviews.

Testing background fetch on app resume
If you have the app running, hit the Home button, or ⌘ + Shift + H if you’re
running in the simulator. If the app is not running, build and run and then hit the
Home button. Xcode should still say “Running NASA TV on …”. If it doesn’t, try
again.

Switch over to Finder and navigate to the NASA TV MAMP directory. Open
news.json and news-addendum.txt in your favorite text editor. news.json
contains an array of the 7 news items that populate NASA TV’s “News” tab, ranging
from id 1000 through 1006. news-addendum.txt has an additional three news
items with ids 1007 through 1009.

Copy and paste the three news items from news-addendum.txt to the top of the
root array in news.json. The end result should look like this:

[
 {
 "id" : 1009,
 "date" : "07.03.13",
 "title" : "Long-Running NASA/CNES Ocean Satellite Takes Final Bow",
 "subtitle" : "The curtain has come down on a superstar of the satellite
oceanography world that played the 'Great Blue Way' of the world's ocean
for 11 1/2 years."
 },

 {
 "id" : 1008,
 "date" : "07.03.13",
 "title" : "NASA Selects Electrical Systems Engineering Services
Contract",
 "subtitle" : "07.03.13 - NASA has awarded a contract to ASRC Federal
Space & Defense (AS&D) of Greenbelt, Md., for the Electrical Systems
Engineering Services II (ESES II) for ..."
 },

 {
 "id" : 1007,

iOS 7 by Tutorials Chapter 17: Beginning Multitasking

 518

 "date" : "07.02.13",
 "title" : "NASA Makes the Grade on the SBA Procurement Scorecard",
 "subtitle" : "07.02.13 - NASA has achieved an 'A' on the fiscal year
2012 (FY12) Small Business Administration (SBA) Procurement Scorecard."
 },
 {
 "id" : 1006,
 "date" : "07.02.13",
 "title" : "NASA Commercial Crew Partner SpaceX Completes Two Human-
Critical Reviews",
 "subtitle" : "07.02.13 - Space Exploration Technologies Corp. (SpaceX)
of Hawthorne, Calif., recently completed two milestones for NASA's
Commercial Crew Integrated Capability ..."
 },
…

Save news.json. Although copy-and-pasting is pretty low tech, what you just did
effectively simulates three new news stories becoming available on your backend
service.

Note: If the resulting JSON structure is not absolutely perfect, the background
fetch won’t work. You can use a JSON validator like JSONLint if you’re not sure
you pasted the 3 new items in the right location.

Now open AppDelegate.m and add a breakpoint on the first line of
application:performFetchWithCompletionHandler:. This step is optional, but it will
help convince yourself that your code is truly being executed despite the fact NASA
TV is not running in the foreground.

Open Xcode's Debug menu and select Simulate Background Fetch. If you can’t
find it, you’re probably looking at the Simulator’s Debug menu instead of Xcode’s
Debug menu.

At this point the debugger should stop at the breakpoint you set. Feel free to step
through to trace the code, or select Debug\Continue to continue execution.

Once the code completes, the badge icon for NASA TV should bubble up to 1, as
shown below:

iOS 7 by Tutorials Chapter 17: Beginning Multitasking

 519

Now bring NASA TV back into the foreground and verify that three new items you
added to news.json are instantly available without refreshing:

Great success!

Testing background fetch on app launch
In the last section you tested background fetch while the app was suspended in the
background. Now you’re ready to test background fetch when the app is launched
instead of resumed from the background.

iOS 7 by Tutorials Chapter 17: Beginning Multitasking

 520

If you are running in the simulator, stop the app and click on iOS
Simulator\Reset Content and Settings… from the main menu. If you are
running NASA TV on an actual device, long-press on NASA TV’s icon until it shakes
then delete it. This erases the app and its data store.

Now go to news.json and delete the 3 items from the top that you added in the
previous section (ids 1009, 1008 and 1007). Build and run the app, which should
reinstall NASA TV on your simulator or device. At this point you’ve reverted all the
changes you made in your previous test.

Hit the Stop icon in Xcode, then double tap the Home button and remove NASA TV
from the app switcher by flicking its snapshot upwards.

Now repeat the steps from the previous section to add the news items from news-
addendum.txt back into news.json. Remember that this simulates three new
stories coming into the back end service connected to NewsViewController. The only
difference is that this time the new stories came in while NASA TV was not running
at all — not even in the background.

Xcode 5 has a great way to simulate launching in the background due to a
background fetch. First, click on the “NASA TV” scheme in the top left corner of
Xcode and select “Edit Scheme”, as shown below:

In the Scheme editor, select the “Run” configuration if it’s not already selected and
switch to the Options tab. Click on the checkbox next to “Launch due to a
background fetch event”, as so:

iOS 7 by Tutorials Chapter 17: Beginning Multitasking

 521

Build and run your app; NASA TV will launch in the background and perform a
background fetch. You should not see any visible activity in your simulator or
device. If you placed a breakpoint in
application:performFetchWithCompletionHandler: then the debugger will pause at
this point.

Resume the app if necessary and watch with bated breath as the NASA TV
application badge icon bubbles up to one. Tap on NASA TV's icon to bring it to the
foreground and verify that the new stories in the News tab are available
immediately. Success yet again!

iOS 7 by Tutorials Chapter 17: Beginning Multitasking

 522

Once you’re done, remember to edit your scheme and uncheck the background
fetch checkbox from your Run configuration; otherwise NASA TV will keep launching
in the background.

Note: Another alternative is to create a separate scheme to test a background
fetch from a background launch.

Simply select “Duplicate Scheme” from the Scheme editor to create your new
scheme and select the checkbox next to “Launch due to a background fetch
event” in this duplicated Run configuration.

This way, all you need to do is change schemes instead of modifying the
normal Run configuration that you use all the time.

Challenges
You’ve successfully implemented background fetching on NASA TV. In doing so,
you’ve also learned how to set up your own personal web server using MAMP.
However, there is still a lot of ground to cover. Background fetching is only one of
the three new multitasking APIs introduced in iOS 7. Completing this chapter's
challenge is not required to continue to the next chapter but definitely work through
it if you're looking for more practice implementing background fetching.

As always, you can find the complete solution in the resources folder you
downloaded for this chapter. Remember not to rush to the solution if you get stuck!
Work through the challenge as much as you can; that's where the real learning
happens.

Challenge 1: Fetching videos in the background
The challenge for this chapter is to implement background fetch for the Videos tab.
The solution will mostly follow what you already did for the News tab, except now
we are only giving you hints rather than step-by-step instructions.

Here are a few hints:

• Modify GetVideosWebOperation so that the success block returns a BOOL property
indicating if there were any new videos that weren't already in Core Data.

• Replace VideoViewController's populateData with a public method that can accept
the background fetch completion handler.

• Make sure you account for all three values of UIBackgroundFetchResult
accurately.

• Modify the background fetching delegate method in AppDelegate.m so that the
Videos tab takes care of the background fetch only if it is currently visible.

iOS 7 by Tutorials Chapter 17: Beginning Multitasking

 523

• Simulate new videos by copying JSON from videos-addendum.txt into
videos.json.

• Test background fetching on app resume. Background fetching on app launch
won't work the way you've set it up because by default the News tab is always
visible on app launch.

If you got this working, congrats – you have a pretty good grasp of background
fetching!

In the next chapter, you’ll learn how to implement background transfers and silent
push notifications, which will allow NASA TV to download videos for offline viewing
and download NASA’s Astronomy Picture of the Day as soon as it is available.

In the previous chapter, you learned how to implement background fetching, which
allows you to keep your app content up to date so the user always sees fresh
content when they launch your app.

In this chapter, you’ll learn about the other two multitasking APIs Apple introduced
in iOS 7: background transfers and silent push notifications.

You’ll continue to make modifications to the NASA TV application that you
downloaded with this book’s files. The changes in this chapter are not dependent on
last chapter’s changes, so if you didn’t implement all of the functionality in the last
chapter, don’t worry – you can just begin with the starter project as-is.

Background transfers
In previous versions of iOS, quitting an app in the middle of an upload or download
meant that your transfer would be paused — or killed altogether. In this chapter,
you are going to focus on NSURLSession, which makes background transfers
possible.

Note: If you want to learn more about NSURLSession, make sure to read
Chapter 16, “Networking with NSURLSession.” It deals in depth with the new
set of APIs in iOS 7 to perform common networking tasks.

Your first task in this chapter is to add the ability to download videos for offline
viewing in NASA TV. An active download should continue even if the app isn’t
running in the foreground.

To start out, you’re going to add a “Download” button and a progress bar to
VideoDetailViewController. Open Main.storyboard and select the
VideoDetailViewController scene on the far right.

Chapter 18: Intermediate
Multitasking
By Pietro Rea

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 526

Drag a UIBarButtonItem to the right side of VideoDetailViewController’s navigation
bar. In the Attributes inspector, change the UIBarButtonItem’s Title property to
Download as shown below:

Similarly, drag a UIProgressView and place it to the left of the Download
UIBarButtonItem you just dragged into the navigation bar. Change its default tint
color under "View" to white.

Next, connect the UIBarButton and UIProgressView to IBOutlets in code. Select the
yellow View Controller icon on VideoDetailViewController’s dock in the storyboard.

After that, select the Assistant Editor icon on the top right in Xcode; it looks like a
butler wearing a bow tie. This will open VideoDetailViewController.m next to the
storyboard.

Control-drag the Download button to the @interface section of
VideoDetailViewController.m and name it downloadButton. Do the same with
your UIProgressView (make sure you select the progress view inside the bar button
item, not the bar button item itself) and name it progressView.

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 527

At this point, Xcode should have created two new properties for you:

@property (weak, nonatomic) IBOutlet
 UIBarButtonItem *downloadButton;

@property (weak, nonatomic) IBOutlet
 UIProgressView *progressView;

The download button is now connected to an IBOutlet in code, but it won’t trigger
anything when tapped. To fix this, control-drag from the button to the
@implementation section in VideoDetailViewController.m.

This connection is going to be an action instead of an outlet. Name the IBAction
method downloadButtonTapped; its code representation will look like the
following:

- (IBAction)downloadButtonTapped:(id)sender {
}

Build and run your project; tap on the Videos tab to display the list of videos and
then tap any video in the collection view. The VideoDetailViewController that is
pushed into view should look similar to the one below:

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 528

Houston, we have liftoff! Well, not quite. The download button and the progress
view look great but they don’t do anything at the moment. You need to revisit
VideoDetailViewController.m and add some code to perform those tasks.

Downloading videos
To add the code to download the video files, start by adding the following protocols
to the @interface declaration in VideoDetailViewController.m:

@interface VideoDetailViewController() <NSURLSessionDelegate,
NSURLSessionTaskDelegate, NSURLSessionDownloadDelegate>

Those three protocols are necessary for monitoring the status of the download.
Among other things, they allow you to update the UIProgressView that you just
added to the user interface.

Next, add the following three properties to the @interface section:

@property (strong, nonatomic) NSURLSession* urlSession;
@property (strong, nonatomic)
NSURLSessionDownloadTask* downloadTask;
@property (strong, nonatomic) NSString* videosDirectoryPath;

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 529

The NSURLSession and NSURLSessionDownloadTask objects perform the heavy lifting in
the download operation, while videosDirectoryPath points to the directory in the
file system where the videos are going to be stored.

The methods that download and save the video are fairly large in size, so you’re
going to tackle it in small chunks. For now, just focus on making the progress view
work properly when you tap on the download button.

Go to viewWillAppear: and add the following two lines to the top of the method:

- (void)viewWillAppear:(BOOL)animated {
 [super viewWillAppear:animated];

 self.progressView.progress = 0.0f;
 self.progressView.hidden = YES;

Those two lines ensure that the progress view is hidden and reset when the view
controller first gets pushed into view.

Next, flesh out the implementation of downloadButtonTapped: as shown below:

- (IBAction)downloadButtonTapped:(id)sender {

 //1
 if ([self.video.availableOffline boolValue]) return;

 //2
 self.downloadButton.enabled = NO;
 self.progressView.hidden = NO;

 //3
 if (!self.urlSession) {

 NSURLSessionConfiguration* config =
 [NSURLSessionConfiguration defaultSessionConfiguration];

 self.urlSession =
 [NSURLSession
 sessionWithConfiguration:config
 delegate:self
 delegateQueue:[NSOperationQueue mainQueue]];
 }

 NSURLRequest *request = [NSURLRequest
 requestWithURL:self.videoURL];

 self.downloadTask = [self.urlSession

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 530

 downloadTaskWithRequest:request];

 //4
 [self.downloadTask resume];
}

The method is short but it has important pieces that will come into play later. In the
code above, you take the following actions:

1. Check if the current video's availableOffline property is set to @(YES) and if so,
exit; this property indicates that a video has already been downloaded and
prevents you from downloading it twice.

2. Disable the download button while the download operation is in progress to
prevent launching a duplicate NSURLSessionDownloadTask; additionally, reveal the
progress bar to show the download progress to the user.

3. Lazy instantiation of NSURLSession. The default configuration is fine for a simple
download task but you’ll have to change it to something else to enable
background transfers. You’ll deal with this a bit later.

4. Finally, start the download task.

Below downloadButtonTapped: add the following method implementation:

#pragma mark - NSURLSessionDownloadTask methods

- (void)URLSession:(NSURLSession *)session
 downloadTask:(NSURLSessionDownloadTask *)downloadTask
 didWriteData:(int64_t)bytesWritten
 totalBytesWritten:(int64_t)totalBytesWritten
totalBytesExpectedToWrite:(int64_t)totalBytesExpectedToWrite {

 dispatch_async(dispatch_get_main_queue(), ^{
 self.progressView.progress =
 (double)totalBytesWritten /
 (double)totalBytesExpectedToWrite;
 });
}

This method dispatches to the main thread to update the UIProgressView in
VideoDetailViewController’s navigation bar so the user can see how the download
is progressing.

Build and run your app; navigate to any video and tap Download; you should see
the progress bar moving along from left to right. The download clearly finishes…but
where’s the video file?

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 531

NSURLSessionDownloadTask downloads the video into a temporary file — but if you
don’t immediately copy it to a permanent location, the file will simply vanish. Looks
like you need to persist it somewhere.

Still in VideoDetailViewController.m, override the getter for the
videosDirectoryPath property as shown below:

- (NSString*)videosDirectoryPath {

 if (!_videosDirectoryPath) {

 NSArray* paths =
 NSSearchPathForDirectoriesInDomains(NSCachesDirectory,
 NSUserDomainMask,
 YES);
 _videosDirectoryPath = [paths[0]
 stringByAppendingPathComponent:
 @"com.razeware.videos"];

 NSError* error;
 if (![[NSFileManager defaultManager]
 createDirectoryAtPath:_videosDirectoryPath
 withIntermediateDirectories:NO
 attributes:nil
 error:&error]) {

 /* Could not create directory */
 /* Handle NSFileManager error */
 }
 }
 return _videosDirectoryPath;
}

The code above creates a folder (if necessary) in your Caches directory and returns
the directory reference to the caller. Caches is the recommended location to store
files that may be regenerated or re-downloaded in the future.

Next, add the following method below the first NSURLSessionDownloadTask delegate
method you implemented earlier:

- (void)URLSession:(NSURLSession *)session
 downloadTask:(NSURLSessionDownloadTask *)downloadTask
didFinishDownloadingToURL:(NSURL *)downloadURL {

 //1
 NSString* lastPathComponent =

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 532

 [downloadTask.originalRequest.URL lastPathComponent];

 //2
 NSString* destinationPath =
 [self.videosDirectoryPath
 stringByAppendingPathComponent:lastPathComponent];

 NSURL* destinationURL =
 [NSURL fileURLWithPath:destinationPath];

 //3
 NSError* error;

 BOOL copySuccessful =
 [[NSFileManager defaultManager]
 copyItemAtURL:downloadURL
 toURL:destinationURL
 error:&error];

 if (!copySuccessful) {
 /* Could not copy file to destinationURL */
 /* Handle NSFileManager error */
 }

 //4
 dispatch_async(dispatch_get_main_queue(), ^{
 self.video.availableOffline = @(YES);
 NSManagedObjectContext* moc =
 self.video.managedObjectContext;

 NSError* error;
 [moc save:&error];

 if (error) NSLog(@"Core Data error");

 //5
 self.progressView.hidden = YES;
 self.downloadButton.title = @"Downloaded";
 });
}

That’s a fair chunk of code, but it’s explained comment by comment in the points
below:

1. The video URLs are in the format http://192.168.1.111:44447/videos/video-name.mp4,
where the path’s lastComponent serves as the name of the file. The goal here is to

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 533

extract the file name to build a reasonable file URL to which you can save the
video permanently.

2. destinationPath represents the full file URL where the video is to be saved; it’s
the result of concatenating videosDirectoryPath to the video’s file name. For
example, discovery.mp4 would be saved as
…/Caches/com.razeware.videos/discovery.mp4.

3. This is where the magic happens. The first parameter is the URL for the
downloaded video in its temporary location, and the second parameter gives the
permanent location to save the video to before the file vanishes in a puff of digital
smoke.

4. Update the videoAvailableOffline attribute of video to indicate that this video
has been successfully downloaded, which downloadButtonTapped: uses to avoid re-
downloading a video. This action must be dispatched to the main thread since the
video that self.video points to was fetched on the main thread.

Note: The Core Data details are not important for this chapter, but if you want
to read more about using Core Data from multiple threads make sure to read
Apple’s Core Data Programming Guide.

5. Finally, hide the progress bar and change the text in the navigation bar from
“Download” to “Downloaded”. These small visual cues may seem unimportant
now, but they will be helpful later when you’re implementing background
transfers.

Still in VideoDetailViewController.m, add the following empty method:

- (void)URLSession:(NSURLSession *)session
 downloadTask:(NSURLSessionDownloadTask *)downloadTask
 didResumeAtOffset:(int64_t)fileOffset
expectedTotalBytes:(int64_t)expectedTotalBytes {

}

This is a required NSURLSessionDownloadTask delegate method; you’re not going to
use it but it’s included here to silence an Xcode warning.

You haven’t yet taken care of the error handling. Although nothing ever goes wrong
when downloading files over mobile networks, it’s good practice to have it there
just in case something glitches. !

If you encounter an error with the download, delete the temporary file from disk as
the file will likely be of no use. Add the method implementation as shown below:

#pragma mark - NSURLSessionTaskDelegate methods

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 534

- (void)URLSession:(NSURLSession *)session
 task:(NSURLSessionTask *)task
didCompleteWithError:(NSError *)error {

 if (error) {
 NSString* lastPathComponent =
 [task.originalRequest.URL lastPathComponent];

 NSString* filePath =
 [self.videosDirectoryPath
 stringByAppendingPathComponent:lastPathComponent];

 [[NSFileManager defaultManager]
 removeItemAtPath:filePath error:nil];
 }
}

If an error occurs, the above code generates the file URL from the video URL as you
did before and deletes the temporary file.

Build and run your app. Try the following experiment: choose a video, download it,
then (with the app still open) switch to Settings and go into Airplane mode or turn
off Wi-Fi to simulate being offline. Switch back to your app and attempt to play
your downloaded video — nothing happens! Why?

Enabling offline viewing
The video is present in the file system, but the movie player doesn’t know how to
find it. Solve this problem by modifying the code in viewWillAppear: as follows:

- (void)viewWillAppear:(BOOL)animated {
 [super viewWillAppear:animated];

 self.progressView.progress = 0.0f;
 self.progressView.hidden = YES;

 //1
 BOOL videoAvailableOffline =
 [self.video.availableOffline boolValue];

 NSURL* playbackVideoURL;

 //2
 if (videoAvailableOffline) {
 self.downloadButton.enabled = NO;

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 535

 self.downloadButton.title = @"Downloaded";

 /* Play local content if available */
 NSString* lastPathComponent =
 [self.videoURL lastPathComponent];

 NSString* videoPath =
 [self.videosDirectoryPath
 stringByAppendingPathComponent:lastPathComponent];

 playbackVideoURL = [NSURL fileURLWithPath:videoPath];
 }

 else {
 self.downloadButton.enabled = YES;
 playbackVideoURL = self.videoURL;
 }

 //3
 self.moviePlayerViewController =
 [[MPMoviePlayerController alloc]
 initWithContentURL:playbackVideoURL];

 [self.moviePlayerViewController prepareToPlay];

 [self.moviePlayerViewController
 setControlStyle:MPMovieControlStyleDefault];

 [self.moviePlayerViewController.view
 setFrame:self.view.bounds];

 [self.view addSubview:self.moviePlayerViewController.view];

 [self.moviePlayerViewController play];
}

Take a moment and go over the bits that you just added:

1. Recall that you had to update the availableOffline property when the download
finished successfully. You have to unbox this BOOL because Core Data saves it as
an NSNumber.

2. If the video is available locally, generate the file URL like you’ve been doing all
along; otherwise, use the streaming URL in self.video. You can also use
availableOffline to enable or disable the download button as needed, as there’s
no need to keep the download button active if you already have the video saved
locally.

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 536

3. Here you’re feeding MPMoviePlayerController a temporary variable named
playbackVideoURL instead of self.videoURL. playbackVideoURL should have the
correct URL based on whether or not the video is available locally.

Build and run NASA TV, navigate to any video and tap Download. After the
download is complete, with the app still open switch to Settings and disable Wi-Fi,
unplug the Ethernet cable, or do whatever you need to do to disconnect from the
Internet. Switch back to your app, navigate to the same video and voila — your
video now plays.

If you have a physical device, build and run your app on that as well; downloads
are noticeably slower on physical devices, which will come in handy for your next
task.

Re-enable your Internet connection, navigate to any video, and once again tap
Download. However, this time quickly press the Home button before the
download completes. Make a mental note of how far along the progress bar was
when you quit NASA TV.

Wait about ten seconds, then restore your NASA TV app; the download should
resume from exactly the same point at which you left it. That’s not terribly pleasing
to the user — but that’s exactly what you’re going to fix with background transfers.

Performing background transfers
Unlike other background modes, using background transfers does not require you
to register for a special background mode in your application’s Info.plist.

Add the following method to AppDelegate.m:

#pragma mark - Background Transfer

- (void)application:(UIApplication *)application
handleEventsForBackgroundURLSession:(NSString *)identifier
 completionHandler:(void (^)())completionHandler {

 NSDictionary* userInfo =
 @{@"completionHandler" : completionHandler,
 @"sessionIdentifier" : identifier};

 [[NSNotificationCenter defaultCenter]
 postNotificationName:@"BackgroundTransferNotification"
 object:nil
 userInfo:userInfo];
}

When a background transfer completes, the system calls
application:handleEventsForBackgroundURLSession:completionHandler: which
hands you a completion handler, just as was demonstrated in the previous chapter
with background fetch.

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 537

In this case, the work to handle the background download work is done elsewhere.
The delegate method delivers the completion handler by including it in the
notification’s userInfo dictionary.

An app can have several transfers queued up, so the NSURLSession identifier is
posted as well so the receiver can identify which transfer completed.

Open VideoDetailViewController.m and add the following snippet of code to the
bottom of viewWillAppear:

[[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(handleBackgroundTransfer:)
 name:@"BackgroundTransferNotification"
 object:nil];

This simply adds an observer to the background transfer notification posted in
AppDelegate.m.

Now scroll to the bottom of VideoDetailViewController.m and add the following:

#pragma mark - Background Transfers

- (void)handleBackgroundTransfer:(NSNotification*)notification {

 // 1
 NSString* sessionIdentifier =
 notification.userInfo[@"sessionIdentifier"];

 NSArray* components =
 [sessionIdentifier componentsSeparatedByString:@"."];

 NSString* videoID = [components lastObject];

 // 2
 if ([self.video.videoID integerValue] ==
 [videoID integerValue]) {

 // 3
 dispatch_async(dispatch_get_main_queue(), ^{
 self.downloadButton.title = @"Downloaded";
 self.progressView.hidden = YES;

 void(^completionHandler)(void) =
 notification.userInfo[@"completionHandler"];

 if (completionHandler) {

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 538

 completionHandler();
 }
 });
 }
}

handleBackgroundTransfer: executes when a download complete notification
arrives. There’s a few new concepts introduced in this method:

1. Unpack the NSURLSession identifier from the notification’s userInfo dictionary.
The identifier is formatted similar to reverse DNS notation so the last component
contains the video’s ID.

2. If there are multiple downloads in progress, each one will have a
VideoDetailViewController instance. Since it’s possible that the video on the
screen is not the same one identified in the notification, check that they match
before continuing.

3. Perform the UI updates on the main thread: change “Download” to
“Downloaded” and hide the progress bar. After that’s done, execute the
completion handler stored in the userInfo dictionary.

You’ve registered for the notification in viewWillAppear: so be sure to modify
viewWillDisappear: to unregister for the notification as well:

- (void)viewWillDisappear:(BOOL)animated {
 [super viewWillDisappear:animated];
 [self.moviePlayerViewController stop];

 [[NSNotificationCenter defaultCenter]
 removeObserver:self];
}

The notifications and handlers now facilitate file transfers that will run to completion
in the background. All that’s left to do is configure NSURLSession to continue
downloading the video in the background.

Go to downloadButtonTapped: and find the place where you lazy-load NSURLSession.
Change that block of code as shown below:

 //3
 if (!self.urlSession) {

 NSString* sessionID =
 [@"com.razeware.backgroundsession."
 stringByAppendingFormat:@"%d",
 [self.video.videoID integerValue]];

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 539

 NSURLSessionConfiguration* config =
 [NSURLSessionConfiguration
 backgroundSessionConfiguration:sessionID];

 self.urlSession =
 [NSURLSession
 sessionWithConfiguration:config
 delegate:self
 delegateQueue:
 [NSOperationQueue mainQueue]];
 }

Creating a background NSURLSessionConfiguration requires a session ID; this is the
same ID that comes back in the delegate call
application:handleEventsForBackgroundURLSession:completionHandler:.

In this case, you are using a reverse DNS notation and appending the video ID to
the end. Make sure to create unique session IDs— these IDs will also show up in
the debugger and help you track down the pertinent video if something goes
wrong.

You’re almost ready to test. But first add a breakpoint to AppDelegate.m inside
application:handleEventsForBackgroundURLSession:completionHandler: and
another one to VideoViewController.m inside handleBackgroundTransfer: right
after the completion handler gets executed.

Build and run on your physical device; the slower download speed on the device
gives you a little more time to quit the app mid-download to test your work.

Now navigate to any video, tap Download and press the Home button once the
progress bar is halfway done.

Step away from your computer for a bit; maybe grab a sandwich or a coffee, or
solve a Millennium Prize Problem, whatever you choose. When you come back,
Xcode’s debugger will be paused at the breakpoint you inserted in
AppDelegate.m, as shown below:

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 540

Click on Continue to move to the next breakpoint, which pauses the debugger
immediately after executing the completion handler in
VideoDetailViewController.m. Click on Continue once again to resume normal
execution.

So that proves the completion handler was executed as expected — but was the
app switcher screenshot updated? To find out, double-tap the Home button on your
device to enter the app switcher and find the NASA TV screenshot, as shown below:

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 541

Notice that the button in the top right reads “Downloaded”, which means that the
video has been copied permanently into the file system. At no point did you re-
launch NASA TV to check on the download’s progress, yet the app switcher
snapshot tells you that the download completed successfully! This is your proof that
the completion handler was called at the right moment.

Discretionary transfers
In the previous section you queued up a background transfer while the app was
running in the foreground. However, it is also possible to start and finish a transfer
entirely from the background, such as when the app wakes up for a background
fetch operation or responds to a silent push notification.

Background transfers started from the background are discretionary transfers,
which means they are power-managed and will only work over Wi-Fi.

You can optionally set foreground transfers to be discretionary by setting a BOOL
property in NSURLSessionConfiguration named discretionary.

Keep discretionary transfers in the back of your mind as you implement background
transfers. Users can easily see if your app is being a data hog by checking the
Settings app, so it’s up to you to determine whether the transfer is important
enough.

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 542

Silent push notifications
The goal for traditional push notifications is to alert the user of something
interesting going on — even if they’re not using your app at the moment. This could
be something like breaking news, a friend responding to a Facebook status or the
latest issue of your favorite magazine becoming available.

Push notifications essentially simulate multitasking, making it seem like your app is
constantly polling new information in the background and alerting you anytime
something interesting happens. iOS 7 extends this concept by introducing silent
push notifications, which allow third-party developers to trigger background
refreshes without bothering the user.

When a device receives a silent push notification there is no visual indication that
anything happened. But make no mistake: your app has been launched in the
background and it is now fetching new content.

Unfortunately, push notifications won’t work with the simulator, so you’ll have to
run NASA TV on a physical device in order to complete this section of the chapter.

Note: If you want to learn more about traditional push notifications, you
should read the following two-part tutorial that covers them in depth:

Part 1: http://www.raywenderlich.com/32960/apple-push-notification-
services-in-ios-6-tutorial-part-1
Part 2: http://www.raywenderlich.com/32963/apple-push-notification-
services-in-ios-6-tutorial-part-2

Certificates and provisioning
To send push notifications, you’ll need to set up two things in the developer portal:
a key and certificate to communicate with Apple’s push notification servers, and a
provisioning profile specific to your app.

If you’re an old hand at this, you can set this up yourself and jump ahead to the
next section. Otherwise, read on — creating the certificate and profile involves a
fair number of steps but the whole process shouldn’t take more than a few minutes.

The first thing you must do is to generate a certificate signing request file, also
known as a CSR. You do this using the Keychain Access application on your Mac.
This application ships with every Mac – it’s in the Utilities folder inside Applications.

With Keychain Access open, select Certificate Assistant \ Request a Certificate
From a Certificate Authority… from the Keychain Access menu.

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 543

Type in your e-mail address and enter NASA TV as the common name. Select the
“Saved to disk” radio button and leave the field “CA Email Address” blank as shown
below:

Click Continue when you’re done entering your information, enter a filename of
your choice and click Save. This will save a file with the extension
.certSigningRequest to your desktop.

Now you need to create a unique App ID for NASA TV in Apple’s developer portal.
Log into Apple’s iOS Developer Member Center and select Certificates, Identifiers
& Profiles.

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 544

Select Identifiers under the iOS Apps heading, and then App IDs. This will show
you a complete list of all your current App IDs. Click on the plus button in the top
right corner to create a new App ID.

Enter NASA TV as the name of your new App ID, leave the App ID Prefix as the
default value (Team ID), and under App ID Suffix select the radio box Explicit App
ID. For Bundle ID, type in com.razeware.NASA-TV (but replace razeware with
your own name or company name). This is the bundle ID that identifies NASA TV in
Info.plist.

Finally, select the checkbox next to Push Notifications under the section called
App Services.

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 545

Double check all the information you just entered; if everything checks out, select
Continue and then Submit to register your new App ID for NASA TV.

Back in the list of App IDs, select the ID you just created for NASA TV; it should say
that Game Center and In-App Purchase are Enabled but that Push Notifications are
Configurable.

Click Edit and scroll down to the Push Notification section. You should see two
different “Create Certificate…” buttons: one for the Development SSL certificate and
another one for the Production SSL certificate. In the Development SSL
Certificate section, select Create Certificate…

Note: The development certificate is used for testing push notifications with
debug builds of the app. The production SSL certificate would be used with the
release build submitted to the App Store.

To create the SSL certificate, you’ll have to upload the .certSigningRequest file
you created using Keychain Access. Select Continue and then Choose File… and
navigate to the CSR on your Desktop. Then click Generate.

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 546

When the upload is complete, you can download the SSL certificate from the App ID
settings screen as shown here:

Double click on the downloaded SSL certificate to install it to your keychain. Open
Keychain Access and find the certificate you just added under My Certificates; it’s
called Apple Development iOS Push Services: com.razeware.NASA-TV, as shown in
the screenshot below:

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 547

Right-click on the certificate and select “Export Apple Development IOS Push
Services…” and you’ll be presented with the following dialog:

Select Personal Information Exchange (.p12) as the file format and click Save.
At this point you will be given the option of entering a password to protect the .p12
file.

Don’t enter any password; just select OK. You may be asked to enter your OS X
password so that Keychain Access can export your certificate.

If everything went smoothly, you should have a .p12 saved and ready to be used to
send push notifications.

The next step is to create a provisioning profile so that your device can register for
and receive push notifications.

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 548

Note: A provisioning profile ties together a developer, an App ID and a set of
devices that the application is allowed to run on. You could normally use your
wildcard provisioning profile, which is not specific to any one App ID, to get
any app to run on one of your development devices.

You can’t do this here because a push notifications won’t work if you sign your
app with your wildcard provisioning profile. You have to create a provisioning
profile using the push-enabled App ID you created a minute ago.

Once again, log into Apple’s developer portal and select Certificates, Identifiers
& Profiles.

In the iOS section, select Provisioning Profiles and click the plus button to create
a new provisioning profile.

Select iOS App Development as the provisioning profile type and click Continue.

Note: You won’t need to create an App Store provisioning profile for the
purposes of this chapter, but you’d need to create one if you were submitting
NASA TV to the App Store.

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 549

Select the App ID that you created for NASA TV and click Continue:

Next, select your iOS Development certificate(s) you wish to be able to sign this
app and click Continue. As mentioned before, this certificate identifies you as a
developer:

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 550

The next step asks you to choose the devices that will be tied to the new
provisioning portal. Choose the device(s) that you will use to test silent push
notifications and select Continue:

Note: Your device will only appear on the list above if it’s already been added
to your developer portal. If it hasn’t, you can do this in Xcode’s Organizer
window.

Finally, choose a descriptive name for your provisioning profile such as NASA TV
Push-Enabled Development Profile and click Generate:

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 551

Download your push-enabled provisioning profile from the next screen and install it
in Xcode by double-clicking the downloaded file.

If all went well, you should see it your new provisioning profile in the Xcode account
details. Open the Preferences window in Xcode and switch to the Accounts tab.
Select your developer account and click the View Details… button, and you’ll see
your new provisioning profile, as shown below:

The final step is to match up the NASA TV project with the new provisioning profile.

Select the project file in the left-hand menu. Select the Build Settings tab and in
the top right corner select All instead of Basic and Levels instead of Combined.
This set of options should show you what the settings are at the project level as
well as the individual target level.

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 552

Look for Code Signing Identity as well as Provisioning Profile.

Make sure the correct signing identity is selected for Debug at the target level. This
should be the same development certificate that you used to create the push-
enabled provisioning profile.

Also make sure that Provisioning Profile points to the push-enabled provisioning
profile at the Target level.

Change these settings at the project level (second column) as well as the target
level (third column). You’ll know the settings are set correctly when the leftmost
column Resolved has the correct values for Code Signing Identity and
Provisioning Profile assigned.

Using Parse for push notifications
Push notifications, silent or otherwise, require a web server to talk to the Apple
Push Notification Service (APNS). Instead of building a custom web service from
scratch, you’re going to take a shortcut and use Parse.

The first step in integrating Parse into NASA TV is to create a Parse account. Go to
Parse’s homepage and click Sign Up in the upper right hand corner.

Create an account with a username and password and click Sign Up again, shown
in the screenshot below:

Next, type NASA TV where it asks you to write your app’s name and sign up as an
Individual Developer. Next, click on Start using Parse, as shown below:

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 553

Ordinarily, you’d download and install Parse’s SDK at this point. However, the
starter project for NASA TV already contains the latest version of the SDK and
required frameworks as of this writing.

Remember the .p12 certificate file that is sitting on your Desktop collecting dust?
It’s time to upload it to Parse.

Go to Parse, navigate to NASA TV’s dashboard by selecting NASA TV in the top left
drop down menu and click on the Settings tab in the top right corner.

Once in Settings, click on Push notifications on the left hand menu. You should
see a screen similar to the one shown below:

Turn the Client push enabled switch to ON and upload your .p12 file in the
section named Apple Push Certificate. Verify that the certificate bundle identifier is
com.razeware.NASA-TV. Also verify that the certificate type is Development.

Now that the setup is complete, you can now integrate the Parse SDK into NASA
TV. Open AppDelegate.m and insert the following import statement at the top of
the file:

#import <Parse/Parse.h>

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 554

After that, scroll down to application:didFinishLaunchingWithOptions: and add the
following lines before the return statement:

[Parse setApplicationId:@"YOUR-APP-ID"
 clientKey:@"YOUR-CLIENT-KEY"];

You can find your application ID as well as your client key by navigating to NASA
TV’s Settings dashboard in Parse and selecting Application keys from the left
hand menu, as shown below:

Before returning from application:didFinishLaunchingWithOptions: add the following
line of code:

// Register for push notifications
[application registerForRemoteNotificationTypes:
 (UIRemoteNotificationTypeBadge |
 UIRemoteNotificationTypeAlert |
 UIRemoteNotificationTypeSound)];

registerForRemoteNotificationTypes: prompts iOS to ask the user if they would
like to receive push notifications from NASA TV.

Next, scroll to the end of AppDelegate.m and add following two methods, which
come straight from the Parse Push setup documentation:

#pragma mark - Push notification

- (void)application:(UIApplication *)application
didRegisterForRemoteNotificationsWithDeviceToken:
(NSData *)newDeviceToken {

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 555

 PFInstallation *currentInstallation =
 [PFInstallation currentInstallation];
 [currentInstallation setDeviceTokenFromData:newDeviceToken];
 [currentInstallation saveInBackground];
}

- (void)application:(UIApplication *)application
didReceiveRemoteNotification:(NSDictionary *)userInfo {
 [PFPush handlePush:userInfo];
}

 The first delegate method shown above is required to implement silent push
notifications. If the user elects to receive push notifications from NASA TV, their iOS
device is assigned a device identifier token. This token comes back in the form of
an opaque NSData called newDeviceToken.

You have to give this token to Parse using the PFInstallation object so that your
device can start receiving push notifications from APNS.

The second delegate method handles regular push notifications and will help you
verify that everything was set up properly with Parse.

Build and run your project on a physical device; you should see an alert view asking
you if NASA TV can send you push notifications. Tap OK to accept.

Note: You’ll only see this push notification alert view once. If you select “Don’t
Allow” by accident, you’ll have to go to the Notification Center section of the
Settings app to change the setting.

Now go back to Parse and select the Push Notifications tab of the NASA TV app.

Click on the Send a Push button in the top-right. If you see “1 recipient” on the
right side of the screen, as shown below, this means your device successfully
uploaded its device token to Parse:

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 556

To send a push notification, type a short message under “Compose message” and
click Send Notification at the bottom of the screen.

Your iOS device should immediately receive the push notification and present the
message you just typed into Parse front and center, like so:

Implementing silent push notifications
Okay, so regular push notifications seem to be working correctly. Now it’s time to
implement silent push notifications.

When there’s a new NASA photo of the day, you want the NASA TV app to stay up
to date by downloading the photo in the background. You’ll use a silent push
notification to let the app know the photo is available.

Like background fetching, the first thing you have to do is register for remote
notifications in Xcode. In Xcode, click on the project file and navigate to the new
Capabilities tab, like so so:

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 557

The switch next to Background Modes should already be set to ON from the last
chapter. If, not, turn it on now.

Then select the checkbox next to Remote notifications. This is the same as
adding the remote-notification key to the UIBackgroundModes array in Info.plist
manually.

Next, open AppDelegate.h and add the following block property to the public
interface:

@property (copy, nonatomic)
void(^silentRemoteNotificationCompletionHandler)
(UIBackgroundFetchResult);

Just like the other new background modes, you’ll receive a completion handler to
call when you’ve finished responding to the silent push notification. This property
stores that completion handler for later use.

Now switch to AppDelegate.m and implement the method
application:didReceiveRemoteNotification:fetchCompletionHandler: at the bottom
of the file:

- (void)application:(UIApplication *)application
didReceiveRemoteNotification:(NSDictionary *)userInfo
fetchCompletionHandler:
(void (^)(UIBackgroundFetchResult))completionHandler {

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 558

 //1
 self.silentRemoteNotificationCompletionHandler =
 completionHandler;

 //2
 UIStoryboard* sb =
 [UIStoryboard storyboardWithName:@"Main" bundle:nil];

 PhotoViewController* photoViewController =
 [sb instantiateViewControllerWithIdentifier:
 @"PhotoViewController"];

 UINavigationController *navController =
 [[UINavigationController alloc]
 initWithRootViewController:photoViewController];

 UITabBarController* rootViewController =
 (UITabBarController *)self.window.rootViewController;

 //3
 [rootViewController
 presentViewController:navController
 animated:YES
 completion:nil];
}

This new delegate method runs when your application receives a silent push
notification. Just like the background fetching delegate method from the previous
chapter, this method receives a completion handler of type
(void(^)(UIBackgroundFetchResult result).

To see how the silent push notifications are handled, lets walk through the code
step-by-step:

1. Save the completion handler in the public block property
silentRemoteNotificationCompletionHandler. Instead of handing the completion
handler to PhotoViewController, PhotoViewController will look for it here when
it’s done downloading NASA’s photo of the day.

2. Instantiate an instance of PhotoViewController from the main storyboard. If you
inspect Main.storyboard, you’ll see that the PhotoViewController scene has no
incoming or outgoing segues, so this is one of the few ways of getting a hold of
one.

3. Finally, present the PhotoViewController from the root UITabBarController. The
PhotoViewController is responsible for downloading NASA’s daily photo and
calling the completion handler.

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 559

Now switch to PhotoViewController.m and add the following import statement at
the top of the file:

#import "AppDelegate.h"

Next, add the following properties and protocols to the top of the file, beneath the
imports:

@interface PhotoViewController () <NSURLSessionDelegate,
NSURLSessionTaskDelegate, NSURLSessionDownloadDelegate>

@property (strong, nonatomic) NSURLSession* urlSession;
@property (strong, nonatomic)
 NSURLSessionDownloadTask* downloadTask;

@property (strong, nonatomic) NSString* photosDirectoryPath;

@end

The NSURLSession and download task will download the photo. photosDirectoryPath,
on the other hand, will point to the directory that stores all of your daily photos.

Next, implement viewWillAppear: as follows:

- (void)viewWillAppear:(BOOL)animated {
 [super viewWillAppear:(BOOL)animated];

 //1
 NSString* baseURLString =
 [[NSUserDefaults standardUserDefaults]
 objectForKey:@"baseURLString"];

 NSString* urlString =
 [NSString stringWithFormat:@"%@%@",
 baseURLString, @"/photos/dailyphoto.jpg"];

 NSURL *photoURL = [NSURL URLWithString:urlString];

 NSURLRequest *request =
 [NSURLRequest requestWithURL:photoURL];

 //2
 NSString* sessionIdentifier =
 @"com.razeware.backgroundsession.dailyphoto";

 NSURLSessionConfiguration *configuration =

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 560

 [NSURLSessionConfiguration
 backgroundSessionConfiguration:sessionIdentifier];

 self.urlSession =
 [NSURLSession
 sessionWithConfiguration:configuration
 delegate:self
 delegateQueue:nil];

 //3
 self.downloadTask = [self.urlSession
 downloadTaskWithRequest:request];

 [self.downloadTask resume];
}

This should look almost identical to what you did for background transfers. In brief,
each commented section does the following:

1. In reality, you’d be downloading the image straight from NASA’s website.
However, for the purposes of this tutorial you’ll download an image from your
local MAMP server.

2. Create a background NSURLSession with identifier
com.razeware.backgroundsession.dailyphoto. It’s important that the
identifier is unique to avoid collisions with other background transfers elsewhere
in the app.

3. Finally, recall that all NSURLSessionTask objects, including all of its subclasses,
start in a suspended state. The instance method resume starts the operation.

Scroll to the bottom of the file and override the photosDirectoryPath getter as
follows:

- (NSString*)photosDirectoryPath {

 if (!_photosDirectoryPath) {

 NSArray* paths =
 NSSearchPathForDirectoriesInDomains(NSCachesDirectory,
 NSUserDomainMask,
 YES);
 _photosDirectoryPath =
 [paths[0] stringByAppendingPathComponent:
 @"com.razeware.photos"];

 NSError* error;
 if (![[NSFileManager defaultManager]

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 561

 createDirectoryAtPath:_photosDirectoryPath
 withIntermediateDirectories:NO
 attributes:nil
 error:&error]) {
 /* Could not create directory */
 /* Handle NSFileManager error */
 }

 }
 return _photosDirectoryPath;
}

The first time self.photosDirectoryPath is accessed, this getter method creates a
directory called com.razeware.photos in …/Library/Caches/, just as you did
for videos earlier in this chapter.

Now implement URLSession:downloadTask:didFinishDownloadingToURL: as shown
below:

#pragma mark - NSURLSessionDownloadTaskDelegate methods

- (void)URLSession:(NSURLSession *)session
 downloadTask:(NSURLSessionDownloadTask *)downloadTask
didFinishDownloadingToURL:(NSURL *)downloadURL {

 NSString* lastPathComponent =
 [downloadTask.originalRequest.URL lastPathComponent];

 NSString* destinationPath =
 [self.photosDirectoryPath
 stringByAppendingPathComponent:lastPathComponent];

 NSURL* destinationURL =
 [NSURL fileURLWithPath:destinationPath];

 NSError* error;
 [[NSFileManager defaultManager]
 removeItemAtPath:destinationPath error:&error];

 BOOL copySuccessful =
 [[NSFileManager defaultManager]
 copyItemAtURL:downloadURL
 toURL:destinationURL
 error:&error];

 if (copySuccessful) {

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 562

 dispatch_async(dispatch_get_main_queue(), ^{
 UIImage *image = [UIImage imageWithContentsOfFile:
 [destinationURL path]];
 self.imageView.image = image;
 });
 }
 else {
 NSLog(@"Error: %@", error.localizedDescription);
 }
}

The above delegate method runs when the download task completes. Inside the
method you copy your newly downloaded photo from the temporary location in
downloadURL to the permanent location in self.photosDirectoryPath.

Your downloaded photo is now safely ensconced in the file system and all is happy
in the world. Not so fast, though — wasn’t this part of a silent push notification?
That’s right – you still need to call the completion handler.

To tie this all together, implement URLSession:task:didCompleteWithError: as
shown below:

#pragma mark - NSURLSessionTaskDelegate methods

- (void)URLSession:(NSURLSession *)session
 task:(NSURLSessionTask *)task
didCompleteWithError:(NSError *)error {

 //1
 AppDelegate* appDelegate =
 (AppDelegate*)[[UIApplication sharedApplication] delegate];

 void(^completionHandler)(UIBackgroundFetchResult) =
 appDelegate.silentRemoteNotificationCompletionHandler;

 //2
 if (error) {
 if (completionHandler) {
 completionHandler(UIBackgroundFetchResultFailed);
 }
 NSLog(@"Error : %@", error.localizedDescription);
 }
 else if (completionHandler) {
 [self postLocalNotification];
 completionHandler(UIBackgroundFetchResultNewData);
 }

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 563

 //3
 appDelegate.silentRemoteNotificationCompletionHandler = nil;
}

Despite this method’s pessimistic name, it’s called both on success and failure of
the delegate. Here’s how it works:

1. As promised, PhotoViewController retrieves the completion handler stored in
AppDelegate once the download is complete.

2. Just as in background fetch, execute the completion handler passing in one of
three possible UIBackgroundFetchResult values: new data, no data, or failure. If
there is no error, call the completion handler with
UIBackgroundFetchResultNewData and post a local notification to alert the user that
their photo is ready. Otherwise, call the completion handler with
UIBackgroundFetchResultNoData.

3. For safety, set the completion handler in AppDelegate to nil. You don’t want to
be calling a stale completion handler, do you?

Note: The assumption here is that this particular silent push notification will
only be sent out when a new photo is available; therefore in this case there’s
no need to implement UIBackgroundFetchResultNoData. However, this may not
be true for all applications of silent push notifications.

Finally, implement postLocalNotification as shown below.

- (void)postLocalNotification {

 UILocalNotification* localNotification =
 [[UILocalNotification alloc] init];

 localNotification.fireDate = [NSDate date];
 localNotification.alertBody =
 @"Astronomy Picture of the Day Available";
 localNotification.applicationIconBadgeNumber++;

 [[UIApplication sharedApplication]
 presentLocalNotificationNow:localNotification];
}

To the user, this looks like a traditional remote push notification. In reality, it’s the
end of a journey that took you from silent push notification to background transfer
to local notification. This pattern allows you to be 100% sure that the asset you
downloaded is ready for viewing by the time the user sees the local notification.

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 564

Before you test out the code, add the following two download task delegate
methods:

- (void)URLSession:(NSURLSession *)session
 downloadTask:(NSURLSessionDownloadTask *)downloadTask
 didWriteData:(int64_t)bytesWritten
 totalBytesWritten:(int64_t)totalBytesWritten
totalBytesExpectedToWrite:(int64_t)totalBytesExpectedToWrite {

}

- (void)URLSession:(NSURLSession *)session
 downloadTask:(NSURLSessionDownloadTask *)downloadTask
 didResumeAtOffset:(int64_t)fileOffset
expectedTotalBytes:(int64_t)expectedTotalBytes {

}

You’re just adding them to satisfy the compiler, or else it will throw warnings. You
can just leave them blank as you’re not using them in this app.

Testing silent push notifications
Everything is in place to send your first silent push notification! Build and run your
project on a physical device, and ensure your device is connected to Wi-Fi. Why?
Since the photo download will be queued in the background, the download will work
in discretionary mode and only work over Wi-Fi.

With NASA TV running in the foreground, press the Home button to go back to
Springboard. Make sure Xcode still says “Running NASA TV on…”

Go back to Parse and navigate to NASA TV’s push notification dashboard. Click
Send a Push. This is where you sent the first push notification earlier in the
chapter. Under Compose message flip the switch from Message to JSON, like so:

Every push notification has a JSON payload. The Message setting you used the
first time around simply wrapped your message in a JSON dictionary.

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 565

The earlier message of “Houston, we have a problem.” was actually sent in this
format:

{
 "aps": {
 "alert": "Houston, we have a problem.",
 "sound": "default"
 }
}

The push notification information is contained inside a JSON dictionary called aps.

To send a silent push notification, the only thing you have to include in the aps
dictionary is the content-available flag, shown below:

{
 "aps": {
 "content-available": 1
 }
}

Paste the silent push notification payload above into the Compose message field
in Parse, then click Send notification at the bottom of the screen.

You should see the local notification pop up on your device's screen. In addition,
NASA TV's app icon should have a badge of one.

Note: Be patient if you don't immediately see the local notification after you
send the silent push notification from Parse. The daily photo download is
discretionary so it may be slow to complete.

Tapping on either the notification banner or the app icon reveals the photograph of
the day ready to be viewed:

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 566

Great job! Silent push notifications don't have to be coupled with local notifications
but in this case they worked well together to download the daily photograph and
notify the user on completion.

Where To Go From Here?
Congratulations! You've successfully implemented background transfers and silent
push notifications, which are two of the three new multitasking APIs in iOS 7. The
previous chapter showed you how to implement the third — background fetching.

The new iOS 7 multitasking APIs enable you to do things that were never before
possible in iOS. From auto-refreshing news feeds to downloads that continue even if
your app crashes, the sky is the limit. !

However, as you well know — with great power comes great responsibility.
Although not covered in the book, you should be aware that the new multitasking
APIs can complicate issues of data protection and user privacy.

You should aim to keep your app snapshot up to date in the new app switcher, but
take extra precautions if your snapshot could contain login credentials or other
sensitive information such as data you'd normally have to log in to access.

Warnings aside, you now have the knowledge to leave your users feeling like your
app "just works". So go out into the world and use the new multitasking APIs to
anticipate your user's needs. They'll be glad you did.

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 567

Challenges
Completing this chapter's challenge will give you more practice with silent push
notifications (and push notifications in general). As always, the complete solution is
included in the resources folder you downloaded for this chapter.

Don't rush to the solution if you feel like you're getting stuck. Work through the
challenge as much as possible before seeking help; that's where the real learning
happens!

Challenge 1: "Unsilent" push notifications
If you've followed along with this chapter, you should have an app that's fully
provisioned to receive push notifications from Parse. For this challenge, instead of
downloading NASA's Astronomy Picture of the Day from a silent push notification,
kick off the operation via a regular push notification.

Here are some hints:

• Identify the UIApplicationDelegate method that handles regular push
notifications. It is one of the two methods that contains boilerplate code from the
Parse SDK in AppDelegate.m.

• Copy the code that presents PhotoViewController into the app delegate method
that handles regular push notifications. Remember that PhotoViewController has
to be embedded in a UINavigationController.

• Go to Parse and send out a test push notification. There's no need to send raw
JSON. The NASA TV app should show an alert view and a PhotoViewController
should be presented behind it.

Challenge 2: Silent push notifications with metadata
Just because silent push notifications don't alert the recipient doesn't mean you
can't send arbitrary information to your application embedded in the payload. You
can think of this as another way to communicate between your application and your
backend server — one that the user never gets to see! The only limitation is that
the notification payload must not exceed 256 bytes.

In this challenge, add a custom field to the silent push notification — the name of
the photo —and display it on PhotoViewController's navigation bar.

This is the JSON payload you are going to send from Parse:

{
 "aps": {
 "content-available": 1
 },

iOS 7 by Tutorials Chapter 18: Intermediate Multitasking

 568

 "photoTitle": "Nebula"
}

Your task is to display "Nebula" in PhotoViewController's navigation bar when the
app receives the silent push notification.

Here are some hints:

• The payload dictionary is passed to the app delegate method that handles silent
push notifications. Extract photoTitle from this dictionary and store it in an
NSString.

• Change PhotoViewController's title property to photoTitle after presenting
PhotoViewController from AppDelegate.m.

• Go to Parse and send the notification shown above while the app is in the
foreground. Don't forget to send raw JSON instead of using Parse's message
interface.

Since the beginning of time (okay, okay, since the beginning of the mobile platform
wars), mobile technology has been witness to an epic battle between native apps
and web apps. In one corner, you have Objective-C powering native applications on
iOS. In the opposite corner, you have the heavyweights HTML, CSS and JavaScript.

Before iOS 7, native and web apps hardly ever talked to each other; if they did, it
was a pretty awkward conversation. If you wanted to render HTML or run
JavaScript in iOS, you had to use a mostly self-contained UIWebView. All of that
changes with the introduction of the JavaScriptCore framework in iOS 7.

In this chapter you’ll explore the JavaScriptCore framework while you build a simple
text adventure game that integrates Objective-C code with JavaScript elements. As
well, you’ll discover the potential memory management grues that lurk deep in the
heart of this new framework.

Chapter 19: JavaScript Core
By Pietro Rea

iOS 7 by Tutorials Chapter 19: JavaScript Core

 570

Note: Don't worry if you haven't worked much with JavaScript in the past.
The syntax is simple and you'll be able to follow along with the chapter,
learning along the way.

Introducing JavaScriptCore
JavaScriptCore is an Objective-C API that bridges JavaScript and Objective-C. With
only a few lines of code, you can run JavaScript from Objective-C — and Objective-
C from JavaScript.

This may sound like old news to you if you've already integrated native apps with
web apps. Couldn't you do all of that before using a UIWebView?

You're absolutely right; in previous versions of iOS, you could pass a JavaScript
string to your web view with the stringByEvaluatingJavaScriptFromString:
message.

And if you wanted to run Objective-C from JavaScript, you could open a URL with a
custom scheme (e.g. foo://) and handle it in the web view's delegate method
webView:shouldStartLoadWithRequest:navigtionType.

However, as you continue reading this chapter you'll realize that JavaScriptCore is a
superior way of interacting with JavaScript. Some of its benefits are:

• You can now use JavaScript outside of a UIWebView; there's no need to create a
web view anymore if all you need to do is run a simple script.

• You can use modern Objective-C features such as blocks and collection
subscripting. This is much better than the web view hacks you’ve undoubtedly
used in the past.

• You can seamlessly pass values and objects between Objective-C and JavaScript,
which wasn’t possible in previous versions of iOS.

• You can create hybrid objects: native objects can have JavaScript values
(including JavaScript functions) as properties. Imagine creating a native button
that calls a JavaScript function instead of Objective-C code when it’s tapped. Oh
yes, my friends — the future is now.

Integrating JavaScript with Objective-C can be useful in a lot of apps. Here are
some cases where this might be useful:

• Rapid development and prototyping. If you have an area in your app that
changes frequently (such as gameplay logic or some types of user interfaces) you
may find you can develop and prototype these areas much faster with a higher
level language like JavaScript rather than Objective-C. For games this is
especially useful, as the easier you make it to iterate on gameplay, the better
your game will be.

• Team compartmentalization. Since JavaScript is much easier to learn and use
than Objective-C (especially if you develop a nice JavaScript sandbox), it can be

iOS 7 by Tutorials Chapter 19: JavaScript Core

 571

handy to have one team of developers responsible for the Objective-C
“engine/framework”, and another team of developers write the JavaScript that
uses the “engine/framework”. Even non-developers can write JavaScript, so it’s
great if you want to get designers or other folks on the team involved in certain
areas of the app.

• JavaScript is interpreted. Because JavaScript is interpreted at runtime, if you
structure your use of it correctly you could set up your app so that you can tweak
the JavaScript in real-time and see the results of your changes immediately in
your app. This can be extremely handy in certain situations.

Note there are two things you cannot use JavaScript for: downloading and
executing JavaScript code from a remote server (even if it is your own server that
is returning JavaScript code as part of an in-app purchase), or allowing the end
user to write their own JavaScript that your app executes.

Unfortunately at the time of writing this chapter, that is against the iOS Developer
Program agreement section 3.3.2. That said – some apps seem to be doing this
anyway – but consider it up to Apple’s discretion and a matter of some risk.

JavaScriptCore overview
Before going further, you need to get you acquainted with the major classes and
protocols of JavaScriptCore you'll cover in this chapter:

1. JSValue: An Objective-C object that represents a JavaScript entity. Keeping
JavaScript’s loose typing in mind, a JSValue can represent many primitive
JavaScript values such as booleans, integers and doubles — even objects and
functions.

2. JSManagedValue: Essentially a JSValue that’s used to get around some tricky
memory management situations. JSManagedValue helps Cocoa’s reference counting
and JavaScript’s garbage collection play nicely with each other.

3. JSContext: Represents JavaScript's execution environment. You need a
JSContext to evaluate and execute JavaScript. All instances of JSValue are tied to a
JSContext. When you are getting or setting a JavaScript value or function through
Objective-C, you'll need to go through the JSContext that initially loaded the script.

4. JSExport: This is a protocol rather than an object. As the name implies, you can
use this protocol to export your native objects to JavaScript; native properties and
methods become JavaScript properties and methods, just like magic.

5. JSVirtualMachine: Represents the object space, with its own heap and garbage
collector. Most of the time you don't interact with the virtual machine unless you
want to do something fancy with multithreading or memory management.

iOS 7 by Tutorials Chapter 19: JavaScript Core

 572

Getting started
In this chapter you will create a text-based adventure game named Xork using both
JavaScript and Objective-C. Before getting started, locate the files that come with
this chapter and open the starter project in Xcode.

The starter project is quite small; Xork includes one storyboard file, which itself
contains one scene for XorkViewController, shown below:

XorkViewController contains two elements. The first is a UITextView subclass
named ConsoleTextView. ConsoleTextView is the black Terminal-like console where
the game text appears. Unlike a real terminal, you will not be typing any text into
ConsoleTextView; it is simply for printing text returned by the game.

Sitting below the ConsoleTextView is a plain UITextField. This is where you will be
issuing commands into the game such as "go north" and "take key".

Setting up the console
To get you acquainted with the game's user interface, start with a simple task:
connect the input text field with ConsoleTextView.

The goal for now is to echo everything you type into the text field and print it on
the console. The one special command you’ll handle is clear which erases the
console's contents.

In XorkViewController.m, replace the implementation of textFieldShouldReturn:
with the code below:

iOS 7 by Tutorials Chapter 19: JavaScript Core

 573

- (BOOL)textFieldShouldReturn:(UITextField *)textField {

 //1
 NSString* inputString = textField.text;
 [inputString lowercaseString];

 //2
 if ([inputString isEqualToString:@"clear"]) {
 [self.outputTextView clear];
 }

 //3
 else {
 [self.outputTextView setText:inputString
 concatenate:YES];
 }

 [self.inputTextField setText:@""];

 return YES;
}

textFieldShouldReturn: forwards commands typed into the text field to Xork. The
JavaScript isn’t in place yet, but you’ll add it using the same pattern as above.
Looking at each commented step in turn:

1. Get the input string from the text view and convert it to a lower case string. This
means that the commands "go north", "Go North" and "gO NoRtH" are all
interpreted as the same command.

2. If the command is clear, erase the contents of the console. This is useful when
the game's text has filled the screen and becomes uncomfortable to read.

3. For all other inputs, simply print the string to ConsoleTextView. Notice that you're
using setText:concatenate: instead of setting the UITextView's text property
directly. By default, the text view overwrites everything when you set its text
property. Passing YES into setText:concatenate: preserves the text that was
showing before.

Build and run your project; type anything you like into the UITextField to verify that
it prints to the console correctly, like so:

iOS 7 by Tutorials Chapter 19: JavaScript Core

 574

After you’ve added some text, type clear into the text field and hit Return to see
the screen clearing at work; this functions a little like Terminal.

Printing to the console from JavaScript
You've connected the text field to the ConsoleTextView, which is great, but you’ve
only used Objective-C so far. Your second task is to get JavaScript to print "Hello
World" to the console.

Before the introduction of Objective-C modules, you would have had to link the
JavascriptCore framework in your project's Build Phases. The good news is that
Xcode 5 uses modules by default so you can skip this step.

Create a new JavaScript file in Xcode by navigating to File\New\File.... and select
the iOS\Other\Empty template, like so:

Name the file hello.js and select "Create".

Note: You don't need to add hello.js to the Xork target because the
JavaScript file is not going to be compiled with the rest of your Objective-C
source code.

Next, you have to instruct Xcode to copy hello.js to the project bundle at runtime.
If you omit this step, you won't be able to get a file path to hello.js and
consequently you won't be able to execute the JavaScript that it contains. This copy
operation happens automatically for assets like images and storyboard files, but as
of this writing, Xcode won’t do this automatically for JSON or JavaScript files.

iOS 7 by Tutorials Chapter 19: JavaScript Core

 575

Select your project file in the File Navigator and select the Build Phases tab. Click
on the expandable arrow next to the menu Copy Bundle Resources, as shown
below:

Select the plus icon to add a file, navigate to hello.js and select it to include it in
the list.

Time to write your first JavaScript function! Open hello.js and add the following
function:

function startGame() {
 print("Hello World");
}

The code above defines the function startGame() which in turn calls the function
print(). However, notice that print() itself is not defined anywhere in hello.js. So
what is print("Hello World") going to do, if anything?

Here’s where the magic happens: that JavaScript print() function will be defined
with Objective-C code!

Open XorkViewController.m and add the following import:

@import JavaScriptCore;

In the same file, add the following property to the @interface section:

@property (strong, nonatomic) JSContext *context;

Recall that you need a JSContext object as an execution environment to run your
own JavaScript. Scroll to the end of viewDidLoad: and add the following code:

//1
NSString *scriptPath = [[NSBundle mainBundle]
 pathForResource:@"hello"
 ofType:@"js"];

iOS 7 by Tutorials Chapter 19: JavaScript Core

 576

NSString *scriptString =
[NSString stringWithContentsOfFile:scriptPath
 encoding:NSUTF8StringEncoding
 error:nil];

//2
self.context = [[JSContext alloc] init];
[self.context evaluateScript:scriptString];

//3
__weak XorkViewController *weakSelf = self;

self.context[@"print"] = ^(NSString* text) {
 text = [NSString stringWithFormat:@"%@\n", text];
 [weakSelf.outputTextView setText:text concatenate:YES];
};

//4
JSValue *function = self.context[@"startGame"];
[function callWithArguments:@[]];

This part is important, so take a moment to review the above code step by step:

1. Grab the contents of hello.js and store it as a string.

2. Initialize a JSContext instance to evaluate and run the string containing the
script. Note that your startGame method isn’t called yet – hello.js just defines the
method so you can call it later.

3. This is the secret sauce. Here you define the JavaScript function print() inside
the JSContext — using Objective-C code. Block syntax means you have to use a
weak reference to self to avoid a retain cycle.

The print method takes an NSString as a parameter, and concatenates it to the
text view.

4. Get a reference to the startGame function defined in hello.js, and then call it with
an empty argument array since it doesn’t take any arguments. This will run the
startGame method in hello.js, which will then in-turn call the print method you
defined in an Objective-C block earlier. Note that JavaScriptCore automatically
handles the type conversion and seamlessly converts the “Hello World” into an
NSString to pass to the block.

Note: You can use modern Objective-C subscript notation with JSContext.
That's because it implements objectForKeyedSubscript: and
setObject:forKeyedSubscript. You can use subscripting with JSContext to set
and get values and functions.

iOS 7 by Tutorials Chapter 19: JavaScript Core

 577

To learn more about Modern Objective-C, check out Chapter 2 in iOS 6 by
Tutorials, “Programming in Modern Objective-C.”

Build and run your project; you should see Hello World printed to the console, as
below:

It doesn’t seem like a big deal, but just think about what you’ve done. If you
travelled back in time and told pre-iOS 7 developers of the JavaScript magic and
type bridging your app just performed, they’d think you had gone crazy!

Building Xork
Now that you can call a JavaScript function from Objective-C and define a new
JavaScript function from Objective-C, you can continue building Xork.

The game data for Xork is encoded in JSON and contains no executable code. The
sample project files already have a file named data.json for this purpose. The
game engine, on the other hand, contains the executable JavaScript that reads and
interprets game data; this logic is contained in xork.js.

Note: The separation of game data and game engine makes it very easy to
write another text-based game of the same structure by merely swapping out

iOS 7 by Tutorials Chapter 19: JavaScript Core

 578

data.json and keeping the game engine in xork.js intact. It also makes the
game a lot easier to code.

Open data.json and take a quick look at its contents. The top-level object is a
JSON array that contains several hashes (or “dictionaries” in Cocoa parlance). Each
dictionary object looks similar to this:

{
 "trigger" : {
 "command" : {
 "action" : "go",
 "object" : "north"
 },
 "condition" : {
 "inventoryContains" : "key"
 },
 "print" : "You don't have the key to open the door"
 },
 "items" : [
 {
 "name" : "key",
 "description" : "This is a rusty key"
 }
],
 "name" : "Entrace",
 "description" : "There's a closed door to the north. The doors are
plated with gold and silver. There is a key on the ground.",
 "adjacentRooms" : {
 "north" : "Throne Room"
 }
 }

Each object represents a room in the game and contains the room's name,
description, adjacent rooms, list of items and a trigger.

A trigger is the core logic unit in Xork. Before the game processes a command, it
checks that the command you typed matches the trigger, if a trigger exists. If the
command matches and the trigger's condition is true, Xork executes the command.
If the trigger condition is false, the game prints the trigger's print property to the
console and your command is not executed.

In the above example, the trigger command is go north. However, you can only go
north if the inventoryContains condition matches key — meaning that you have the
key in your inventory.

iOS 7 by Tutorials Chapter 19: JavaScript Core

 579

Note: At the moment there is only one type of trigger condition,
inventoryContains. As you can guess, this type of condition checks if you are
currently carrying a particular object in your inventory.

The game engine can be made more complex by adding different types of
trigger conditions, but you’ll keep it simple for now and leave it as-is.

The app currently loads JavaScript from hello.js. For the game to work properly,
you need load the JavaScript from xork.js and the game data from data.json.

Back in XorkViewController.m, find the code you added to viewDidLoad: and
replace it with the following:

//1
NSString *scriptPath = [[NSBundle mainBundle]
 pathForResource:@"xork"
 ofType:@"js"];

NSString *scriptString = [NSString
 stringWithContentsOfFile:scriptPath
 encoding:NSUTF8StringEncoding
 error:nil];

//2
NSString *dataPath = [[NSBundle mainBundle]
 pathForResource:@"data"
 ofType:@"json"];

NSString *dataString = [NSString
 stringWithContentsOfFile:dataPath
 encoding:NSUTF8StringEncoding
 error:nil];

NSData *jsonData = [dataString
 dataUsingEncoding:NSUTF8StringEncoding];

NSError *error;
NSArray *jsonArray = [NSJSONSerialization
 JSONObjectWithData:jsonData
 options:0
 error:&error];

if (error) {
 NSLog(@"%@", @"NSJSONSerialization error");

iOS 7 by Tutorials Chapter 19: JavaScript Core

 580

 return;
}

self.context = [[JSContext alloc] init];
[self.context evaluateScript:scriptString];

__weak XorkViewController *weakSelf = self;

self.context[@"print"] = ^(NSString* text) {
 text = [NSString stringWithFormat:@"%@\n", text];
 [weakSelf.outputTextView setText:text concatenate:YES];
};

//3
JSValue *function = self.context[@"startGame"];
JSValue *dataValue = [JSValue valueWithObject:jsonArray
 inContext:self.context];

[function callWithArguments:@[dataValue]];

That’s a fair bit of code, but most of it is similar to what you did to print out Hello
World. Taking each commented section in turn:

1. Specify xork.js instead of hello.js as the file to load. The starter project already
had xork.js set to be copied to the project bundle at runtime. That's an
important step to remember in your own projects; otherwise the path will come
back as nil.

2. Get the path for data.json and load it into an NSString. Convert it into an NSData
instance so you can use it with NSJSONSerialization, which hands you an NSArray
representation of the game data.

3. xork.js also has a function called startGame(). Unlike the hello.js version, this
function takes an array of rooms. Convert the NSArray representation to a
JavaScript object using valueWithObject:inContext:. Finally, call startGame() with
callWithArguments: to start the game.

Earlier, you connected the app's text field to ConsoleTextView so that it would echo
anything that was typed in.

Now that the game is ready to run and process user input, you need to redirect
user input to the input processor. Find the else statement inside
textFieldShouldReturn: shown below:

else {
 [self.outputTextView setText:inputString
 concatenate:YES];
}

iOS 7 by Tutorials Chapter 19: JavaScript Core

 581

...and replace it with the following:

else {
 [self processUserInput:inputString];
}

Add the following method just below textFieldShouldReturn:

- (void)processUserInput:(NSString *)input {
 JSValue *function = self.context[@"processUserInput"];
 JSValue *value = [JSValue valueWithObject:input
 inContext:self.context];

 [function callWithArguments:@[value]];
}

Instead of mindlessly echoing everything you type, the app forwards the input to
the JavaScript function processUserInput().

Note: processUserInput() has already been implemented for you in the
starter project. You’ll cover it later in the chapter, but if you’re curious you can
open xork.js and take a look at that function to see how it works.

Build and run your project; you’ll be greeted by the description of the first room of
the game. However, you'll quickly realize that you can't do much:

It’s clear the game and the native UI are communicating, but if you open xork.js
and poke around processUserInput(), you'll see the only action implemented is go.
Unfortunately, you can't go anywhere without the key. Your next task is to
implement some more actions, namely take so that you can get the darned key.

iOS 7 by Tutorials Chapter 19: JavaScript Core

 582

Extending the game logic
Open xork.js and find the function processCommand(action, object). Add the
following else-if statement immediately before the closing else statement:

else if (action == "take") {
 take(object);
}

Next, find the function go() and implement take() below it:

function take(itemName) {
 //1
 var room = getCurrentRoom();

 //2
 if (room.hasItem(itemName)) {
 item = room.itemForName(itemName);
 inventory.addItem(item);
 room.removeItem(itemName);
 print("You picked it up. Woot!");
 }
 //3
 else {
 print("You can't pick that up.");
 }
}

A lot of this deals with the internals of the game, which you haven't encountered
yet. This is what take() does, step-by-step:

1. A global array map contains all the rooms passed into startGame(). A global index
currentRoom tracks your position in the map array as you navigate the game. The
function getCurrentRoom() simply returns the Room object you’re in according to
the currentRoom index.

2. The Room object contains a hasItem() function that indicates whether or not a
particular item is in the room. If it is, add the Item object to the global inventory
array and remove it from the Room.

3. Alert the user if the item they want to take isn't in the room or doesn't exist.

Build and run your project; this time, you should be able to take the key and
continue north:

iOS 7 by Tutorials Chapter 19: JavaScript Core

 583

Enter the commands as shown above, and you’ll find yourself in the Dining Room.
However, the pantry door is locked and there is no key in sight.

Open and inspect data.json. Dining Room has a trigger for going north, which
requires you to have an item called pantry key in your inventory.

However, none of the rooms have an item called pantry key. What are you going to
do now?

Using JSExport
You're faced with a no-win situation — your very own Kobayashi Maru. You need to
get into the pantry but can't find a pantry key to save your life.

To solve this conundrum, you're going to create a native Item object that mimics
JavaScript's Item object using JSExport. Then you're going to insert the item into
your game's inventory during runtime.

Add a new Objective-C class called Item that derives from NSObject. Open the
newly created Item.h and replace its contents with the following:

#import <Foundation/Foundation.h>
@import JavaScriptCore;

//1
@protocol ItemExport <JSExport>

iOS 7 by Tutorials Chapter 19: JavaScript Core

 584

@property (strong, nonatomic) NSString* name;
@property (strong, nonatomic) NSString* description;

@end

//2
@interface Item : NSObject <ItemExport>

@property (strong, nonatomic) NSString* name;
@property (strong, nonatomic) NSString* description;

@end

Here you use JavaScriptCore's JSExport protocol to make your new class compatible
with JavaScript. Looking at each step in turn:

1. The important bit here is that your class doesn't implement the JSExport
protocol. Instead, the Item class specifies its own protocol that inherits from
JSExport. In this case, this new protocol is called ItemExport. To make a native
property or a method available to JavaScript, all you have to do is declare it
inside in your ItemExport protocol.

2. Unfortunately, Xcode doesn't automatically synthesize inherited properties from
a protocol so you have to repeat them in the @interface section or use
@synthesize in the implementation file.

Add the following import to the top of XorkViewController.m:

#import "Item.h"

In the same file, add the following property to the @interface section:

@property (strong, nonatomic) JSManagedValue *inventory;

Now scroll to viewDidLoad: and add the following lines of code, just after the place
where you populate the JSContext in the line [self.context
evaluateScript:scriptString]:

//1
JSValue *value = self.context[@"inventory"];

//2
self.inventory = [JSManagedValue managedValueWithValue:value];
[self.context.virtualMachine addManagedReference:self.inventory
 withOwner:self];

Let’s go over each step here:

iOS 7 by Tutorials Chapter 19: JavaScript Core

 585

1. Use subscript notation to get a JSValue reference to the inventory array used by
the script. This is where you'll insert the pantry key.

2. For reasons discussed in the next section, the property that keeps track of the
inventory array has to be a JSManagedValue instead of a JSValue. Use
managedValuewithValue: to convert the inventory JSValue into a JSManagedValue.
Finally, add a managed reference between the view controller and the managed
value.

Next, scroll down to textFieldShouldReturn: and add the following else-if statement
before the final else block:

else if ([inputString isEqualToString:@"cheat"]) {
 [self addPantryKeyToInventory];
}

The command cheat will not be forwarded to JavaScript. Instead, it will be handled
by the native method addPantryKeyToInventory. Scroll to the bottom of the file and
implement it as below:

- (void)addPantryKeyToInventory {
 //1
 Item* pantryKey = [[Item alloc] init];
 pantryKey.name = @"pantry key";
 pantryKey.description = @"Looks like a normal key. Hehe.";

 //2
 JSValue *inventory = [self.inventory value];
 JSValue *function = inventory[@"addItem"];
 [function callWithArguments:@[pantryKey]];
}

In the code above, you do the following:

1. Create an Item object for the pantry key and set its name and description.

2. Get a reference to the inventory JSValue by calling value on its JSManagedValue.
xork.js has the convenience method addItem(), which takes a JavaScript Item
object as its argument. Finally, execute addItem() with callWithArguments: and
pass in the native pantry key Item object you just created.

Build and run your project and enter the commands as shown below:

iOS 7 by Tutorials Chapter 19: JavaScript Core

 586

At startup, type inventory to print your inventory; you should have nothing at this
point. Now type in cheat, which should not print anything to the console. Check
your inventory again — you should now have a pantry key that materialized out of
thin air.

Use this key to get into the Pantry once you've reached the Dining Room.
Congratulations, you've beaten Xork!

Memory management gotchas
You've probably noticed that the integration between Objective-C and JavaScript is
quite seamless. The truth is that these two languages are vastly different,
especially in the way they handle memory management. As mentioned before,
Objective-C uses reference counting whereas JavaScript uses garbage collection.

Although JavaScriptCore makes memory management a no-brainer for the most
part, there are a few tricky situations to be aware of.

Capturing JSContext within a block
The first thing to be careful with is capturing certain JavaScriptCore objects inside
an Objective-C block.

As you saw earlier in the chapter, you can define a JavaScript function using an
Objective-C block. However, since this new function/block is not going to be used
until a later point in time, it has to be kept around by copying it from the stack to
the heap. In doing so, the block creates a strong reference to all the objects it
captures.

JSContext keeps a strong pointer to all of the JSValues it manages. In addition,
JSValue keeps a strong pointer to both its value and its context. This isn’t usually a
problem because the garbage collector breaks retain cycles. However, you don't

iOS 7 by Tutorials Chapter 19: JavaScript Core

 587

want to make the problem worse by adding your own references to the block
copying process.

To illustrate this problem and its solution, you're going to implement the version
command in Xork, which will print the version of the app to the console.

Add the following code to viewDidLoad in XorkViewController.m after the
definition of the print() function:

self.context[@"getVersion"] = ^{
 NSString* versionString = [[NSBundle mainBundle]
 objectForInfoDictionaryKey:@"CFBundleShortVersionString"];

 versionString = [@"Xork version "
 stringByAppendingString:versionString];

 JSContext *context = [JSContext currentContext];
 JSValue *version = [JSValue valueWithObject:versionString
 inContext:context];
 return version;
};

This block retrieves the app's NSBundle and wraps it in a JSValue. Notice that
you're using [JSContext currentContext] instead of self.context to create the
JSValue. Using currentContext removes the extraneous strong reference to
JSContext when the block is copied to the heap.

Find processAction() in xork.js and add the following else-if statement
immediately before the closing else statement:

else if (action == "version") {
 print(getVersion());
}

This else-if statement handles the command version. This simply retrieves the
version string from getVersion() defined above and prints it to ConsoleTextView.

Build and run your project again; after the game starts, enter the command
version. Your screen should look like the screenshot below:

iOS 7 by Tutorials Chapter 19: JavaScript Core

 588

To reiterate, use [JSContext currentContext] inside a block. If you don't, you won't
just be leaking a few JSValues; you'll be leaking your entire JSContext and
everything it contains.

Something else you want to avoid is to avoid capturing JSValues within blocks.
Since JSValue has a strong reference to JSContext, it's as good as capturing
JSContext itself.

Coming from a pure Objective-C world, you may want to do something like the
following:

JSValue *name = [JSValue valueWithObject:@"bar"
 inContext:self.context];

__weak JSValue *weakName = name;
__weak ViewController *weakSelf = self;

self.context[@"foo"] = ^{
 [weakSelf doSomething:weakName];
};

However, using weak is generally not the way to fix retain cycles with JSValue. You
are essentially mixing weak/strong references with garbage-collected references,
which is incorrect and doesn't solve your problem.

Apple’s recommended way of capturing JSValue inside a block? Don’t. You never
want to capture a JSValue inside a block. What you should do instead is pass the
JSValue into the block as an argument, like so:

__weak ViewController *weakSelf = self;

self.context[@"foo"] = ^(NSString *bar){
 [weakSelf doSomething:bar];
};

For this to make sense, the JSValue has to be available for use in JavaScript first. If
this isn't the case, then create it and insert it from Objective-C using JSContext.

JSManagedValue and memory pitfalls
JavaScriptCore's Objective-C API gives you a great opportunity to experiment with
hybrid objects. You need to be extra careful with memory management when you
store JavaScript values in native instance variables.

JSValue inherits from NSObject, so it looks like a perfectly normal native object.
When you create a custom object, you can reference other objects with instance
variables and properties.

Therefore, you may be tempted to do this:

iOS 7 by Tutorials Chapter 19: JavaScript Core

 589

@interface XorkViewController () {
 JSValue *value;
}

Or this:

@property (strong, nonatomic) JSValue *value;

However, storing a JSValue in an instance variable makes it very easy to create
retain cycles.

Not only is it dangerous from a memory management perspective, it’s also
incorrect. It just doesn't make sense to mix the strong/weak object lifecycle in
Objective-C with garbage collected JSValues. JavaScriptCore provides you with
another object for the purpose of creating hybrid Objective-C/JavaScript objects:
JSManagedObject.

Before diving into the memory management implications of JSManagedObject, start
with the following example in Xork.

The goal for this exercise is to create a native alert view that can be summoned
from JavaScript. The alert view should have confirm and cancel buttons that trigger
success and failure handlers in JavaScript. Sounds like a perfect job for a hybrid
object!

Add a new Objective-C class called XorkAlertView that subclasses UIAlertView.
Open XorkAlertView.h and change its contents as follows:

#import <UIKit/UIKit.h>
@import JavaScriptCore;

@interface XorkAlertView : UIAlertView

- (instancetype)initWithTitle:(NSString *)title
 message:(NSString *)message
 success:(JSValue *)successHandler
 failure:(JSValue *)failureHandler
 context:(JSContext *)context;

@end

The initializer takes a title, message, success and failure handlers as well as the
JSContext in which to execute the JavaScript handlers.

Now switch to XorkAlertview.m and add the following code:

#import "XorkAlertView.h"

iOS 7 by Tutorials Chapter 19: JavaScript Core

 590

@interface XorkAlertView() <UIAlertViewDelegate>

// 1
@property (strong, nonatomic) JSContext *ctxt;
@property (strong, nonatomic) JSManagedValue *successHandler;
@property (strong, nonatomic) JSManagedValue *failureHandler;

@end

@implementation XorkAlertView

- (instancetype)initWithTitle:(NSString *)title
 message:(NSString *)message
 success:(JSValue *)successHandler
 failure:(JSValue *)failureHandler
 context:(JSContext *)context {

 // 2
 self = [super initWithTitle:title
 message:message
 delegate:self
 cancelButtonTitle:@"No"
 otherButtonTitles:@"Yes", nil];

 // 3
 if (self) {
 // Initialization code
 _ctxt = context;

 _successHandler = [JSManagedValue
 managedValueWithValue:successHandler];
 [context.virtualMachine
 addManagedReference:_successHandler withOwner:self];

 _failureHandler = [JSManagedValue
 managedValueWithValue:failureHandler];
 [context.virtualMachine
 addManagedReference:_failureHandler withOwner:self];
 }
 return self;
}
@end

Taking the code step by step:

iOS 7 by Tutorials Chapter 19: JavaScript Core

 591

1. XorkAlertView's public initializer takes JSValue objects for the success and
failure handlers. Internally these are stored in JSManagedValue instance variables.

2. The public initializer simply calls the usual UIAlertView initializer. Notice that
XorkAlertView will be its own UIAlertViewDelegate. This is necessary so you know
when to execute the success and failure handlers.

3. Convert the success and failure handlers into JSManagedValues and stored in
_successHandler and _failureHandler.

A JSManagedValue by itself is a weak reference. You convert it into a conditionally
retained reference, by inserting it to the JSVirtualMachine using
addManagedReference:withOwner:.

A conditionally retained reference is retained as long as one of two conditions is
true:

1. The JSManagedValue's JavaScript value is reachable from JavaScript.

2. The owner of the managed reference is reachable in Objective-C. Manually
adding or removing the managed reference in the JSVirtualMachine determines
reachability.

Add the following method below the custom initializer:

- (void)alertView:(UIAlertView *)alertView
clickedButtonAtIndex:(NSInteger)buttonIndex {

 if (buttonIndex == self.cancelButtonIndex) {
 JSValue *function = [self.failureHandler value];
 [function callWithArguments:@[]];
 }
 else {
 JSValue *function = [self.successHandler value];
 [function callWithArguments:@[]];
 }

 [self.ctxt.virtualMachine
 removeManagedReference:_failureHandler
 withOwner:self];

 [self.ctxt.virtualMachine
 removeManagedReference:_successHandler
 withOwner:self];
}

When the player taps on an alert view button, alertView:clickedButtonAtIndex:
lets you know what the user chose. Depending on this selection, you execute either
the success handler or failure handler without any arguments.

iOS 7 by Tutorials Chapter 19: JavaScript Core

 592

After the user makes their selection and the correct handler executes, the
XorkAlertView instance will be deallocated. You need to remove the managed
references to the JSManagedValue instance variables at the end of the method.

Your hybrid alert view is ready for prime time. Head over to
XorkViewController.m and add the following import to the top of the file:

#import "XorkAlertView.h"

Scroll down to viewDidLoad: and add the following code just after the point where
you set up your JSContext:

self.context[@"presentNativeAlert"] = ^(NSString *title,
 NSString *message,
 JSValue *success,
 JSValue *failure) {

 JSContext *context = [JSContext currentContext];
 XorkAlertView* alertView = [[XorkAlertView alloc]
 initWithTitle:title
 message:message
 success:success
 failure:failure
 context:context];
 [alertView show];
};

This code defines a new JavaScript function presentNativeAlertView(), which
creates a XorkAlertView and presents it to the user. The JavaScript caller needs to
pass in the success and failure handlers, the title, and the message.

To test XorkAlertView, you’ll mock up some save-game functionality. Saving usually
prompts the user with some sort of alert asking “Are you sure?” This is where you’ll
present your XorkAlertView.

Scroll down to textFieldShouldReturn: and add the following else-if statement
before the closing else statement:

else if ([inputString isEqualToString:@"save"]) {
 JSValue* function = self.context[@"saveGame"];
 [function callWithArguments:@[]];
}

This simply calls the function saveGame() from JavaScript without any arguments.

Now switch over to xork.js and implement saveGame() as well as the success and
failure handlers for XorkAlertView at the bottom of the file:

iOS 7 by Tutorials Chapter 19: JavaScript Core

 593

function saveGame() {
 presentNativeAlert("Hello",
 "Do you want to save the game?",
 saveGameConfirm,
 saveGameCancel);
}

function saveGameConfirm() {
 print('Yes');
}

function saveGameCancel() {
 print('No');
}

Executing saveGame() calls presentNativeAlertView(), which you just defined in
Objective-C. The two handlers simply print out a message to the game console.

Build and run your project; type save and hit Return. A native alert view should
come up asking for confirmation, as shown below:

iOS 7 by Tutorials Chapter 19: JavaScript Core

 594

Select Yes on the alert view. As expected, the JavaScript handler runs and prints
Yes to the console.

And with that, your adventure is complete!

Challenges
In this chapter you've learned the ins and outs of JavaScriptCore. You've learned
different ways to call JavaScript from Objective-C as well different ways to expose
Objective-C to JavaScript. You've even navigated the murky waters of hybrid
objects when you created XorkAlertView.

JavaScriptCore truly opens a whole new world of possibilities. There are scores of
games and applications originally written for the web just waiting to be ported to
iOS. There are also many opportunities to add lightweight JavaScript to your apps
and reduce the amount of verbose Objective-C code.

iOS 7 by Tutorials Chapter 19: JavaScript Core

 595

If you already work on several platforms, you may find that JavaScriptCore reduces
a lot of the redundancy in your different code bases. Even if you don't have a
grandiose multi-platform app in your future, I leave you with the same challenge
that an Apple engineer left us with at the end of his WWDC talk on JavaScriptCore:
add some JavaScript to whatever app you're working on, even if it’s just for a bit of
configuration. You may be surprised how useful it can be.

But before you go, we have a challenge for you!

Challenge 1: Mmm, burritos!
Currently when you win the game, there’s a burrito on the floor, but it’s just sitting
there tempting you. Let’s make the endgame even tastier by letting the player eat
that burrito!

Your challenge is to add a new command to the game called eat that takes an item
name as a parameter. If the item name is in the room or inventory, and if the item
name equals burrito, then the game should display me-gusta.jpg (in the
resources for this chapter) onto the screen. Here are a few tips for how to
accomplish this:

• Add a new full-screen image view to your storyboard, and connect it to an outlet.
In viewWillAppear:, set it to hidden.

• Add a new Objective-C method to the JavaScript context called showImage that
takes a single NSString as a parameter for the image name to display. This
method should make the image view not hidden and display the image. For bonus
points, make it fade out after some time.

• Update xork.js to add a new eat command that checks to see if the room or
inventory contains the item, and if it’s equal to burrito then call showImage with
me-gusta.jpg.

Enjoy your tasty treat!

iOS 7 introduces a new easy to use way to share your data with nearby devices
called AirDrop.

AirDrop only works on newer devices like iPhone 5 or iPad 4th Gen – see the note at
the end of this section for more details. Assuming you have two or more AirDrop-
compatible devices, you can see AirDrop in action by opening up Photos, selecting a
photo, and tapping the Share button.

If any AirDrop-compatible devices are in range, you will see them in the list as
shown. You can then select the device and transfer your photos with a single tap!

Chapter 20: Airdrop
By Soheil Moayedi Azarpour

iOS 7 by Tutorials Chapter 20: Airdrop

 598

On the other device, you will see an alert view that pops up with a thumbnail of the
image you are willing to share. You can accept or decline to receive the image. If
you tap on accept button, the image file will be downloaded into your Camera Roll
and Photos app will launch and display the image.

Depending on which option you choose, accept or decline, on the sending device
you will see either a Sent or Declined confirmation text.

iOS 7 by Tutorials Chapter 20: Airdrop

 599

AirDrop works in two modes on the sending and receiving device: Contacts Only
and Everyone. This preference is set in the Control Center, as shown below:

In Contacts Only mode, you must be logged into your iCloud account to receive
AirDrop requests only from other users whose Apple IDs are in your list of contacts.

In Everyone mode, the sender’s name shows up only if you have the other person's
name in your contacts; otherwise, you simply see the sending device’s name in
your AirDrop activity view, as shown below:

iOS 7 by Tutorials Chapter 20: Airdrop

 600

Due to security considerations, user confirmation is required to accept a file
transfer. When a transfer is initiated, a dialog box is presented to the recipient and
Accept must be tapped to receive the transfer. If the recipient doesn’t want the
file, or doesn’t trust the sender, they can hit Decline to refuse the transfer.

AirDrop is not available when a device’s screen is turned off. The receiving device
must at least turn on its screen to appear as a peer on the sending device.
Unlocking is not required. And both devices must have selected an appropriate
mode (Contacts Only or Everyone). When the sending device taps on its peer, on
the receiving device’s lock screen you will see a notification similar to SMS or email
notifications. You can swipe the notification to start the transfer. If the device has a
passcode, you may be prompted to enter it first.

iOS 7 by Tutorials Chapter 20: Airdrop

 601

This is a very cool feature, and you may want support sharing data through AirDrop
in your apps too.

Well, you’re in luck – that’s nice and easy to do in iOS 7!

This chapter will introduce you implement AirDrop in your apps in order to share
various types of data, such as photos or URLs. You’ll also learn how to register for
particular file types so your app will get a chance to handle incoming files — a
feature that you can use in other apps, even if they don’t implement AirDrop.

Note: AirDrop is supported on only newer devices; you’ll need at least two
iPhone or iPod Touch 5th generation, or iPad 4th generation devices to work
with this tutorial. AirDrop requires you to enable both WiFi and Bluetooth. It
appears Apple uses Bluetooth technology for discovery, that is when the action
sheet appears, and then WiFi for actual data transmission. There’s no
simulator support for AirDrop, so you’ll always need to test your app on your
AirDrop-enabled device.

AirDrop Quick Start
Good news – adding AirDrop support is pretty easy, since it’s already built into the
existing UIActivityViewController class!

UIActivityViewController is a handy built-in view controller you can use to allow
users to easily share photos, documents, URLs, and other kinds of data from your
app. The user can select the method they want to share the data, from options like
Twitter, Mail, or now AirDrop.

iOS 7 by Tutorials Chapter 20: Airdrop

 602

You can use UIActivityViewController to share NSString, NSAttributedString,
UIImage, AVAsset, and NSURL data types. You may also share NSDictionary or
NSArray objects that contain these data types.

So assuming you have an array of one of these data types, all you need to do is the
following lines of code:

UIActivityViewController *controller =
 [[UIActivityViewController alloc]
 initWithActivityItems:objects applicationActivities:nil];
[self presentViewController:controller
 animated:YES
 completion:nil];

If the user chooses to send the data via AirDrop, once the other user receives the
data, it will be opened in an app based on the type of data:

• NSString and NSAttributedString appear as new notes in Notes.app.

• UIImage and AVAsset are presented in Photos.app.

• NSURL is presented in Safari.app, unless it is a file URL, which will make the iOS
to look for registered document types (UTI) and open the appropriate app.

It’s as simple as that when it comes to sending data. When it comes to receiving
data, it works the same way as it has in iOS in the past:

1. Register document types. You register your app to receive certain document
types of data.

2. User chooses app. When the user receives a document (whether via email, a
web link, AirDrop, etc.), the OS looks to see which app handles that type of
document and asks the user what app he/she wants to use to open the file.

3. Receive and process document. If the user chooses to open the document in
your app, you receive a URL to the data in an App Delegate callback.

The rest of this chapter walks you through how both send and receive data via
AirDrop in a practical example project, but if this is enough to get you started, feel
free to stop reading at this point and give it a shot in your app.

Getting started
The starter application for this chapter is a tab-based application called DropMe.

Unzip the starter package to a convenient location, open the project file in Xcode,
and build and run the app. You’ll be presented with the following screens:

iOS 7 by Tutorials Chapter 20: Airdrop

 603

Each tab represents a type of data that you can share with AirDrop:

1. The String tab implements StringViewController and contains a UITextView
where you can compose notes in plain text.

2. The Attributed tab also contains a UITextView — but this one has some magic in
it. It leverages NSAttributedString to highlight the names of colors in the text.

3. The Link tab contains a UIWebView and a UITextField where users can enter a
URL and view the web site.

4. The Image tab lets users take a picture or record a video, or alternatively they
can choose a photo or video from the photo library.

5. The Documents tab allows users to view DropMe files in the app's User
Documents directory. DropMe files are specific to this app. They are plain text

iOS 7 by Tutorials Chapter 20: Airdrop

 604

files that have dm file name extension, e.g. Water.dm. You will learn how to
register for specific file types later on in this chapter, so that whenever your users
receives a .dm file, your app gets a chance to respond.

Right now the tabs don’t support any AirDrop functionality — that’s your job!

Each tab sends different types of data via AirDrop – but all of them will use the
same basic code to share an array of objects using an UIActivityViewController
like you saw in the AirDrop Quick Start section.

To keep things clean, let’s put all of the code inside the BaseViewController class,
which the view controllers for each tab derive from.

Add a new subclass of UIViewController to the project and name it
BaseViewController. To do this in Xcode select File > New > File … or use
Command+Shift+N to add a new file.

From the dialogue window select Objective-C Class template and click Next.

Enter BaseViewController in Class field and select UIViewController from the
dropbox. Leave checkboxes unchecked and click Next.

iOS 7 by Tutorials Chapter 20: Airdrop

 605

You will be prompted where to save it. Select DropMe folder and then click Create.

iOS 7 by Tutorials Chapter 20: Airdrop

 606

Your project navigator should look like this:

If Xcode didn’t add the new files inside DropMe group automatically, you may drag
them into that group. Open BaseViewController.h and add the following
property:

/**
 * @property objectsToShare
 * @brief An array of objects that will be shared via AirDrop when the
activity view controller is presented.
 */

@property (nonatomic, strong) NSArray *objectsToShare;

objectsToShare holds a list of things to share via AirDrop. Each subclass will fill this
with the appropriate set of objects.

Next, open BaseViewController.m and add the following two helper methods:

iOS 7 by Tutorials Chapter 20: Airdrop

 607

// Create a UIBarButton item with UIBarButtonSystemItemAction and
display it in the navigation bar.
- (void)displayActionButton
{
 UIBarButtonItem *actionButton = [[UIBarButtonItem alloc]
initWithBarButtonSystemItem:UIBarButtonSystemItemAction target:self
action:@selector(actionButtonTapped:)];
 [self.navigationItem setLeftBarButtonItem:actionButton
animated:YES];
}

// Remove the action bar button item.
- (void)hideActionButton
{
 [self.navigationItem setLeftBarButtonItem:nil animated:YES];
}

displayActionButton and hideActionButton will be called when the list of shareable
objects changes. This pair of methods will initialize and display the action button, or
remove it from the navigation bar.

Next, add the following custom setter method:

- (void)setObjectsToShare:(NSArray *)objectsToShare
{
 _objectsToShare = [objectsToShare copy];

 // If there is an object in the array to share, display the
 // action button; otherwise, hide the action button.
 if ([objectsToShare count])
 [self displayActionButton];
 else
 [self hideActionButton];
}

In order to have more control over what is being shared, you’re providing a custom
setter method for objectsToShare. The method will check the count of objects and
hide or display the action button depending on whether there are any entries in the
array.

Next up is the workhorse method to invoke the share sheet dialog.

Still working in BaseViewController.m, add the following method:

// Configure and present an instance of UIActivityViewController for
AirDrop only.
- (void)presentActivityViewControllerWithObjects:(NSArray *)objects

iOS 7 by Tutorials Chapter 20: Airdrop

 608

{
 // 1 - Create an instance of UIActivityViewController with the
object.
 UIActivityViewController *controller = [[UIActivityViewController
alloc] initWithActivityItems:objects applicationActivities:nil];

 // 2 - Exclude all activities except AirDrop.
 NSArray *excludedActivities = @[UIActivityTypePostToTwitter,
UIActivityTypePostToFacebook, UIActivityTypePostToWeibo,
UIActivityTypeMessage, UIActivityTypeMail, UIActivityTypePrint,
UIActivityTypeCopyToPasteboard, UIActivityTypeAssignToContact,
UIActivityTypeSaveToCameraRoll, UIActivityTypeAddToReadingList,
UIActivityTypePostToFlickr, UIActivityTypePostToVimeo,
UIActivityTypePostToTencentWeibo];
 controller.excludedActivityTypes = excludedActivities;

 // 3 - Present it.
 [self presentViewController:controller
 animated:YES
 completion:nil];
}

Here’s what the above code does, comment by comment:

1. Creates an instance of UIActivityViewController, passing in the array of
objects.

2. Excludes all other possible options that UIActivityViewController can present —
such as sharing via Twitter —since you want to limit the user to just AirDrop.

3. Displays UIActivityViewController as modal.

iOS 7 by Tutorials Chapter 20: Airdrop

 609

Finally, link the above method with the action button in the navigation bar by
adding this method:

- (IBAction)actionButtonTapped:(id)sender
{
 [self presentActivityViewControllerWithObjects:self.objectsToShare];
}

When the action button is tapped, this method ties things together by calling
presentActivityViewControllerWithObjects: with the current list of objects to
share.

Believe it or not, this was the most important part of the app: presenting the
UIActivityViewController with the list of objects. Now let’s use this base
functionality in each of the tabs, starting with plain text.

Sharing plain text
Open StringViewController.m and modify it as shown below. Each line noted
below should be added to the top of the appropriate method:

- (void)viewDidLoad
{
 // Update object to be shared.
 self.objectsToShare = @[self.textView.text];
 ... the rest of the code ...
}
- (void)textViewDidBeginEditing:(UITextView *)textView
{
 self.objectsToShare = @[textView.text];
 ... the rest of the code ...
}

- (BOOL)textView:(UITextView *)textView
shouldChangeTextInRange:(NSRange)range replacementText:(NSString *)text
{
 self.objectsToShare = @[textView.text];
 ... the rest of the code ...
}

- (void)textViewDidEndEditing:(UITextView *)textView
{
 self.objectsToShare = @[textView.text];
 ... the rest of the code ...

iOS 7 by Tutorials Chapter 20: Airdrop

 610

}

All you are doing here is setting and updating objectsToShare on the superclass in
critical places. The object you’ll share is simply the NSString text content of the text
view.

Build and run your app; enter some text in the String tab and try to send it via
AirDrop to another device. When the transfer completes, the receiving device will
open the Notes.app, and save the transferred text as a new note, as shown below:

I told you this was easy!

Let’s keep going with the rest – some are just as easy, and some are a tad more
complex.

iOS 7 by Tutorials Chapter 20: Airdrop

 611

Sharing attributed string data
That does it for regular text. Now it’s time to see how AirDrop handles transmission
of attributed strings.

Open AttributedStringController.m and modify the following methods as
indicated below:

- (void)viewDidLoad
{
 ... add this before [super viewDidLoad] ...
 self.objectsToShare = @[self.textView.attributedText];

 [super viewDidLoad];
}

- (void)textViewDidBeginEditing:(UITextView *)textView
{
 ... the rest of the code ...
 self.objectsToShare = @[textView.attributedText];
}

- (BOOL)textView:(UITextView *)textView
shouldChangeTextInRange:(NSRange)range replacementText:(NSString *)text
{
 ... before return YES ...
 self.objectsToShare = @[attrStr];
 return YES;
}

- (void)textViewDidEndEditing:(UITextView *)textView
{
 self.objectsToShare = @[textView.attributedText];
 ... the rest of the code ...
}

The changes here are similar to the code for plain text, except you’re using the
attributedText property as the object to send via AirDrop.

Build and run your app again; type some text into the Attributed tab and be sure to
include the name of a color or two to exercise the text highlighting. The app
recognizes red, blue, green, purple, brown and yellow in its current state. Feel
free to explore the code and add support for more colors.

iOS 7 by Tutorials Chapter 20: Airdrop

 612

Note: As of writing this chapter, AirDrop does not fully support
NSAttributedString. That means on the receiving device you will get a plain
text, which by default opens in Notes.app. If you need to transfer
attributions, you need to wrap your NSAttributedString in a custom object,
save it with a custom file type, and pass the file URL to AirDrop. On the
receiving device, you need to register for your custom file type and take it
from there.

Next, attempt to send it to another device via AirDrop. Success!

iOS 7 by Tutorials Chapter 20: Airdrop

 613

Sharing URLs
The third tab in your DropMe app contains a field to enter a URL and a UIWebView
that displays the corresponding web page. When you send a URL via AirDrop, the
receiving device will try to open the URL; for web links, Safari will be used as the
launching app. If you try to send a file URL, the operating system detects that and
launches the default associated app for the file type. This is covered in more detail
in Sharing Documents section of this chapter.

Open URLViewController.m and modify the implementation as shown below:

- (void)loadURL:(NSURL *)URL
{
 self.objectsToShare = @[URL];
 ... the rest of the code ...
}

- (BOOL)webView:(UIWebView *)webView
shouldStartLoadWithRequest:(NSURLRequest *)request
navigationType:(UIWebViewNavigationType)navigationType
{
 if (navigationType == UIWebViewNavigationTypeLinkClicked)
 {
 self.textField.text = request.URL.absoluteString;
 self.objectsToShare = @[request.URL];
 }

 return YES;
}

The above code is similar to the previous implementation, but this time you’re using
an NSURL in objectsToShare; in this case since you are passing a web URL, AirDrop
will launch Safari on the receiving device.

Build and run your app, enter a web URL with the http:// prefix and load up a web
page. You should now be able to share a link with your friends over the air, as
shown below:

iOS 7 by Tutorials Chapter 20: Airdrop

 614

Sharing media and documents
Sharing photos and videos from the library is only a little more involved than
sharing a string or a URL: you just need to share a UIImage directly, or an NSURL
pointing to the media asset.

Open ImageViewController.m and replace the implementation of
imagePickerController:didFinishPickingMediaWithInfo: with the following:

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 // What did user pick? Is it a movie or is it an image?
 NSString *mediaType = info[UIImagePickerControllerMediaType];

 // If it is an image...
 if ([mediaType isEqualToString:(NSString *)kUTTypeImage])
 {
 // Update UI and the object to share.
 self.imageView.image =
info[UIImagePickerControllerOriginalImage];
 self.objectsToShare =
@[info[UIImagePickerControllerOriginalImage]];
 }
 // else, if it is a movie...
 else if ([mediaType isEqualToString:(NSString *)kUTTypeMovie])
 {
 // Get the URL to the movie for sharing

iOS 7 by Tutorials Chapter 20: Airdrop

 615

 NSURL *assetURL = info[UIImagePickerControllerMediaURL];
 self.objectsToShare = @[assetURL];

 // Update UI by taking a snapshot of the movie.
 self.imageView.image = [self snapshotFromMovieAtURL:assetURL];
 }

 // Dismiss the picker.
 [picker dismissViewControllerAnimated:YES completion:nil];
}

When the standard image picker returns — either from the camera or the photo
library — the code then calls
imagePickerController:didFinishPickingMediaWithInfo: with the media asset
information.

For an image, the UIImagePickerControllerOriginalImage key leads to a UIImage
object. An image preview is displayed on screen, and the image itself is added to
objectsToShare.

For a movie, the picker provides a URL pointing to the movie file directly. However,
AirDrop recognizes this and sends the movie file rather than the URL.

Build and run your app, select an image or movie, and tap on the action button to
AirDrop it to another device. The receiving device will display the thumbnail and a
request to open the movie file, as shown in the following screenshot:

iOS 7 by Tutorials Chapter 20: Airdrop

 616

Sharing documents
The final use case in DropMe is sharing documents. I have set up this sample
project to include two custom files in its bundle, Rain.dm and Water.dm. They are
sample text files that I created with TextEdit. If the app is running for the first time
ever, these sample files will be copied into the app’s Documents directory so that
user has something to start with. If you switch to Documents tab in the app, you
will see these files listed.

Open DocumentsViewController.m and make the following changes to the
implementation:

iOS 7 by Tutorials Chapter 20: Airdrop

 617

- (void)updateDocumentsToShareWithDocument:(NSURL *)document
{
 ... insert at the end of the method implementation ...

 // Update object to share.
 self.objectsToShare = [self.toShare copy];
}

- (void)updateViewWithNotification:(NSNotification *)notification
{
 self.objectsToShare = nil;
 ... the rest of the code ...
}

The Documents tab displays the list of files in app’s Documents directory that end
with .dm. User can select one or more files to send via AirDrop.

As the user selects files in the list they’re added to the toShare mutable array. That
means setting up the objectsToShare is as easy as making a copy of the toShare
array.

Build and run your app, select a few files from the list, and share them with another
device as demonstrated below:

Registering UTIs
The interesting part of AirDrop is file sharing. You can share any data type — as
long as you turn it into a file first. For example, you can turn your custom objects

iOS 7 by Tutorials Chapter 20: Airdrop

 618

into NSData, save them locally in a temporary folder with a custom Uniform Type
Identifier (UTI), and then pass the file URL to AirDrop.

Note: A Uniform Type Identifier (UTI) is a unique ID for a type of data. Some
of these are defined by Apple, and you can also make up your own and
register it with iOS.

For example, public.text represents text data, com.apple.keynote.key
represents a Keynote presentation, and com.razeware.battlemap.map
represents a custom UTI for Razeware’s Battle Map 2 app.

For more information and a list of registered UTIs, check out this guide:

http://developer.apple.com/library/ios/ -
documentation/Miscellaneous/Reference/UTIRef/Articles/System-
DeclaredUniformTypeIdentifiers.html

The receiving device automatically launches the appropriate app for the type of
data being shared so the user can view data. For example, when sending images,
Photos.app launches and displays the shared image data.

However, if you AirDrop a file with an unknown UTI – as you just did with .dm files,
or a data type that isn’t native to iOS, your recipient will be prompted to download
an app that is capable of handling the specified file.

This is actually a cool feature from an app developer’s point of view – anything that
encourages users to install your app is a good thing!

You can make your app handle known or custom UTIs. This functionality isn’t tightly
coupled with AirDrop – it’s actually useful any time you want to share your app’s
data, whether via email or web links or AirDrop itself.

There are a few things that are important to understand about URL and UTI
handling in regards to AirDrop:

• If your app is registered to handle a UTI, when you receive a file the app delegate
will call application:openURL:sourceApplication:annotation:.

• When multiple files are transferred via AirDrop, the method above is invoked
multiple times in quick succession, once for each file.

• The file URL of the object passed to AirDrop points to the Inbox folder, which is a
folder in your app's sandbox under the User Documents directory. If that folder
doesn’t exist, iOS will create the directory for you.

• You should check the content of the Inbox folder on every launch or activation
from background state to cover edge cases. For instance, when a large file is
being transferred but the device’s battery dies before the transfer is complete,
your app will never be notified that the file is present on the receiving device.

iOS 7 by Tutorials Chapter 20: Airdrop

 619

So far your app is pretty good at sending content, but the final part of this tutorial
will walk you through modifications that enable you to receive incoming file URLs
from other devices that have the DropMe app installed.

URL Handling
When you use AirDrop to receive files, iOS treats those files as it would for
attachments received in an email. For example, from the receiver’s perspective, an
NSString is just a text file with a .txt extension.

To invoke your app when someone transfers a specific data type via AirDrop, your
app needs to register a UTI corresponding to that data type. You will add this
functionality to your app to register as a handler for dm files so that when iOS
attempts to open a dm file, your app will either launch automatically or show in the
Open in... menu.

Xcode 5 has made registering UTIs much simpler than it used to be. Select the
project from the Navigation Pane, and in the Editor area switch to the Info tab.
Expand Document Types and then click on the + button to add a new document
type.

Since you’re registering a new UTI that is not known by iOS, you have to provide
some basic information. If you are adding a custom UTI that isn’t already
recognized by iOS, it’s highly recommended that you add an icon for it so that the
file type is distinguishable from others. The table below tells you the sizes you need
for file icons. Icons for this project are included in the bundle.

Device Size (pixels)

iPhone – non-retina 64x64

iOS 7 by Tutorials Chapter 20: Airdrop

 620

iPhone – retina 128x128

iPad – non-retina

iPad – retina

320x320

640x640

In the Name field enter “DropMe File Type” and in the Types field enter
“com.razeware.com.dropme.dm”. Drag and drop fileIcon.png file from the
project navigator into the image placeholder. So far, it should look like the
following:

Next, expand the Additional document type properties section and click on the
Key column. Enter “CFBundleTypeRole” in the Key column, leave Type as
“String”, and set the Value column to “Editor”.

Repeat this by clicking the + button to add another key. This time, enter
“LSHandlerRank” as the Key, leave Type as “String”, and enter “Owner” in the
Value column.

At this point, your two Additional document type properties should look like the
following:

This registers your app as a viewer for .dm files. You’re registering the app as the
owner, which means it can create and edit .dm files.

Since you are introducing a new file type, you need to give iOS some more
information about the file type.

iOS 7 by Tutorials Chapter 20: Airdrop

 621

Expand Exported UTIs right below Document Type and click on the + button to
add a new item.

In the Description field enter “DropMe File Type” and in the Identifier field
enter “com.razeware.com.dropme.dm”. In Conforms To field enter
“public.text” and for Small Icon select fileIcon.png from the drop down menu.
It should look like the following:

Next, expand Additional exported UTI properties section and click on the Key
column. Enter “UTTypeTagSpecification” in the Key column and set Type as
“Dictionary”. Expand the dictionary by clicking on the disclosure triangle and click
on the + button in front of it. Enter “public.mime-type” in the Key column and
set the Value column to “application/dropme”.

Repeat this by clicking the + button to add another key. This time, enter
“public.filename-extension” as the Key, set Type as “Array”, and click the +
button in front of it. Leave Key column as “Item 0” and Type as “String”. Enter
“dm” in the Value column. Your Additional exported UTI properties should look like
the following:

iOS 7 by Tutorials Chapter 20: Airdrop

 622

The Exported UTIs entry gives some information about com.razeware.dropme.dm
to iOS. You tell the system that any file ending in .dm or with application/dropme
mime type conforms to plain text and can be opened with DropMe app.

Now switch to AppDelegate.m and add the following methods:

// 1 called when app is opened via a URL
- (BOOL)application:(UIApplication *)application openURL:(NSURL *)url
sourceApplication:(NSString *)sourceApplication
annotation:(id)annotation
{
 // 2: Append the current date-time to the beginning of the file to
avoid conflicts.
 NSString *fileName = [NSString stringWithFormat:@"%@-%@", [NSDate
date], url.lastPathComponent];
 NSURL *destinationURL = [UserDocumentsDirectory()
URLByAppendingPathComponent:fileName];
 NSError *error = nil;
 BOOL success = [[NSFileManager defaultManager] moveItemAtURL:url
toURL:destinationURL error:&error];
 // 3
 if (!success)
 {
 NSLog(@"%@", error.localizedDescription);
 }
 else
 {
 // If successful, land user in Documents view controller.
 UITabBarController *controller = (UITabBarController
*)self.window.rootViewController;
 [controller setSelectedIndex:4];

 // Send a notification so that interested classes can update.
 [[NSNotificationCenter defaultCenter]
postNotificationName:DocumentsDirectoryContentDidChangeNotification
object:self];
 }
 // 4

iOS 7 by Tutorials Chapter 20: Airdrop

 623

 return YES;
}

Looking at the code above comment by comment, you’ll see that it does the
following:

1. Implements the UIApplication delegate method
application:openURL:sourceApplication:annotation:. It then asks if your app can
open a resource file identified by the given URL. Since you have registered your
app as the owner for .dm files, your app will be notified with a URL that points to
a .dm file.

2. Extracts the file name from the URL and appends the current date to the end of
the file name. This results in a unique filename to prevent possible conflicts with
files that are transferred multiple times to your app.

3. If moving the file from Inbox to User Documents is successful, makes the
Documents tab active and sends out a notification so that the UI has a chance to
update itself.

4. Finally, return YES, signaling that your app can handle the URL.

Build and run your app, and install it on to two separate devices. Choose one of the
sample files to share between the devices and send it. Behold! The receiving device
should launch your app and land you in the Documents tab:

Congratulations – you now have made an app that can both send and receive data
via AirDrop!

iOS 7 by Tutorials Chapter 20: Airdrop

 624

Where to go from here?
AirDrop offers a new way to share data between apps running on different devices.
It abstracts out lots of low level and daunting networking jobs for you to find peers
or transfer data.

Refer to UIActivityViewController class for more information and other cool things
you can do with it, besides AirDrop.

You may have noticed that when you used AirDrop to share an image, user was
presented with a thumbnail of the image. If you are sharing your own custom data
type, you can also provide such nice features. To do so you need to either subclass
UIActivityItemProvider objects, or have your custom object adopt
UIActivityItemSource protocol. Refer to documentation for more information.

Challenges
You can do a lot more with AirDrop. Before you move on to the next chapter, it is
worth putting some of your newfound knowledge to use.

Challenge 1: Add completion handler
The UIActivityViewController class provides a completion handler. The handler is
called when user finishes interaction with the activity controller. The
UIActivityViewControllerCompletionHandler is a typedef and defined as:

typedef void (^UIActivityViewControllerCompletionHandler)(NSString
*activityType, BOOL completed);

When it gets called, it tells you what type of service the user picked. Because you
excluded all other activities in your project, activityType will always return
UIActivityTypeAirDrop if user completes AirDrop or nil if user cancels AirDrop. It
will still return UIActivityTypeAirDrop, even if receiver denies AirDrop.

The completed flag is set to YES if service was performed; otherwise it is NO. It is
also NO if user dismisses activity view controller regardless. Because of how AirDrop
works, user always has to dismiss the activity view controller. That means in case
of AirDrop you will always get NO for completed.

Now it’s time for your first challenge – add a completion handler to the
BaseViewController class and vibrate the phone if user used AirDrop. Here are a
few hints:

• You’ll need to add this before presenting the activity view controller.

• The format of the block is ^(NSString activityType, BOOL completed) { /* your
code */ };.

iOS 7 by Tutorials Chapter 20: Airdrop

 625

• To vibrate the phone, you need to import AudioToolbox framework.

• Vibration is a pre-defined system sound and this is how you call it:

AudioServicesPlaySystemSound(kSystemSoundID_Vibrate);

Challenge 2: Add iTunes file sharing
It is great that your app can now share documents via AirDrop, but there is still
something missing: a very important and basic feature. You can’t add or remove
documents to your app via iTunes or from your computer.

Your challenge is to add iTunes file sharing support, so that users can add or
remove files to the app’s Documents directory via iTunes.

It is very easy. All you have to do is to set a flag in the app’s Info.plist. The key is
UIFileSharingEnabled.

Challenge 3: Add support for a public UTI
Now that your app supports iTunes file sharing, users may add any type of files to
the app’s Documents directory. But the app doesn’t display them. It only displays
dm files.

Wouldn’t that be nice if your app could also display some other file types? Your last
challenge is to add support for a public file type – PDF files. The goal is to enable
the app to list PDF files in the app’s Documents directory, and when a new PDF file
is shared via AirDrop, your app is shown in Open in menu. Here are a few hints:

• You’ll need to select the project from the Navigation Pane, and in the Editor area
switch to the Info tab. Expand Document Types and add another Document
Type by clicking on the + button.

• Fill in the blanks in the same way you did for DropMe File Type. For Name field,
enter “PDF File Type”, and for Types field enter “com.adobe.pdf”. Since it is
a public file type, you can leave the icon blank.

iOS 7 by Tutorials Chapter 20: Airdrop

 626

• You’ll need to add Additional document type properties too. Do it in the same
way you did for DropMe file type. For CFBundleTypeRole enter “Editor”, and
for LSHandlerRank enter “Alternate”, which hints the OS that your app is an
alternative choice to view PDF files.

• You don’t need to add Exported UTIs because PDF is a public file type.

• To display PDF files in the Documents view controller, you need to modify
DocumentsViewController.m:

a. The array of acceptableFileTypes should include kUTTypePDF – hint: cast to
(NSString *).

b. The array of acceptableFileExtensions should include @”pdf”.

Have you ever been at a conference and needed to exchange some data with a
fellow attendee, but ran into troubles due to a poor Internet connection?

Well, iOS 7 has introduced a new feature to help with that, through its new
Multipeer Connectivity framework (also known as peer-to-peer connectivity).
This gives you a way to share data with local users quickly and reliably – even
without an Internet connection.

Behind the scenes, the framework handles finding the most efficient way to share
data based on what’s available, whether it be a local Wi-Fi network, peer-to-peer
Wi-Fi, or a Bluetooth personal network.

With the Multipeer framework, you can allow users to share data in your app with
nearby users. For example, in this chapter you will develop an app called CardShare
that allows users to share business cards with nearby users at conferences:

Chapter 21: Peer-to-Peer
Connectivity
By Christine Abernathy

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 628

Here are a few reasons you might want to use the Multipeer Connectivity
framework:

• If you have an app where users need to reliably share data in areas without an
Internet connection

• If you want for users to be able to easily share data with other users based on
physical location

• If you want for users to be able to share data with nearby users without having to
set up a web backend

If any of this sound like something you might want to do in your app, keep reading
for a hands-on guide for how to use it!

Peer-to-peer: an overview
Before you start coding, it’s important to have a basic understanding of how
multipeer connectivity works in iOS.

Consider two different users – Alice (the “advertiser”), and Bob (the “browser”),
who are nearby each other. Let’s consider how these users would initiate a peer-to-
peer session:

1. Alice: Advertise service. Alice takes the role of an advertiser, and broadcasts
the service that her app provides to the world.

2. Bob: Search for service. Bob takes the role of a browser, and searches for a
nearby service to connect to.

3. Bob: Send connection request. Once the Bob finds Alice’s service, he sends
her a connection request.

4. Alice: Accept or reject request. Alice receives the request and can choose to
either accept or reject the invitation. If Alice accepts the request, a peer-to-peer
session is created between Alice and Bob and they can begin to exchange data,
even without an Internet connection.

•  1:!Look!
what!I!can!
do!!

Advertiser!

•  2:!Help!!
Anyone?!
Bueller?!

Browser!
•  3@4:!Let's!
do!this!!

Browser!+!
Advertiser!

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 629

The Multipeer Connectivity framework comes with an easy to use API to make this
all happen. It also includes some handy pre-built view controllers that can be used
for advertising and browsing nearby devices. Of course, if you choose you can use
lower-level interfaces in lieu of the built-in view controllers to create your own user
experience.

The main classes in the Multipeer Connectivity framework are:

• MCBrowserViewController: Presents nearby devices to the user and enables that
user to invite nearby devices to a session.

• MCAdvertiserAssistant: Handles advertising, presents incoming invitations to the
user, and handles the users’ responses.

• MCNearbyServiceBrowser: Searches for services offered by nearby devices and
provides the ability to easily invite those devices to an MCSession (see below).

• MCNearbyServiceAdvertiser: Publishes an advertisement for a service specific to
your app, and notifies its delegate about invitations from nearby peers.

• MCPeerID: Represents a peer in a Multipeer Connectivity session.

• MCSession: Facilitates the communication among all peers in a Multipeer
Connectivity session.

Next, let’s take a deeper look at the sample app you will be adding peer-to-peer
connectivity to and dive into more detail about how it will work.

Getting started
The starter project for this chapter provides a shell app for CardShare that has the
user interface pre-created, but no multipeer connectivity code.

Open up the project in Xcode, then build and run. The app should appear as below:

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 630

The My Card tab displays your contact card information. You can tap Edit to
modify this information. Take a moment and enter your contact info; you’ll need it
later when sharing your contact details with other devices.

The Cards tab displays the list of cards that have been shared with you and saved
to your device; it’s empty at the moment since no cards have been shared, as
shown below:

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 631

The Share tab displays cards that have been shared with you, and also allows you
to initiate the card exchange, as shown in the screenshot below:

Tapping Exchange at this point doesn’t do anything; you’ll be adding code to
implement the sharing functionality behind this action later.

Here’s a sneak peek of multipeer discovery flow, using the same Alice and Bob
example from earlier, which you will be implementing soon:

The first screenshot shows Bob searching for nearby devices. The second
screenshot shows Alice accepting the invitation request. The third screenshot shows
Bob seeing that the two devices are connected.

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 632

Once any available peers are connected, the corresponding flow of receiving a
business card will look like this:

The first screenshot shows what Alice sees after Bob taps Done on his end. The
second screenshot shows the incoming business card from Bob. The third
screenshot shows Alice tapping Bob’s business card and seeing the option to save it
to her Cards list.

Overview of the starter code
Now that you have a sense of the inner workings of the UI, it’s time for a high level
tour of the starter code.

Open Main.storyboard file in Xcode to get your bearings. The layout is illustrated
in the image below:

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 633

There’s a single tab bar controller with three navigation controllers, one for each
tab. The main classes in this app are as follows:

• SingleCardViewController: This is the root view controller of the navigation
controller that belongs to the My Card tab; it displays your business card.

• CardEntryViewController: This serves as the view controller where you enter your
contact details; it’s accessible from SingleCardViewController.

• CardsViewController: This is the root view controller of the navigation controller
that belongs to the Cards tab. It displays a list of your saved business cards;
selecting an entry in the list navigates to SingleCardViewController.

• ShareViewController: This is the root view controller of the navigation controller
that belongs to the Share tab. It contains two things: a button that initiates a
peer browser when clicked, and a list of business cards that have been shared
with you. Selecting a shared business card navigates to
SingleCardViewController.

• MyBrowserViewController: This is the view controller for the customized peer
browser.

• Card: This is the model for a business card. It implements the required protocols
for serializing and de-serializing the card in order to persist it to disk.

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 634

• AppDelegate: This class contains logic to save and restore instances of the Card
class from NSUserDefaults.

What you’ll be adding
Your task is to implement the sharing features of this app, as described below:

1. Advertise your service when the app is launched.

2. Start browsing for peers when the share button is tapped.

3. Handle incoming invitations from a peer.

4. Share the business card once peer browsing is complete and connections to
other peers have been established.

5. List incoming business cards, which can then be saved.

6. Create a customized browser for nearby devices.

Okay — you’re now armed with enough information to get started with the coding.
The next section details how to implement connections between devices using
Multipeer Connectivity.

Peer-to-peer: the easy way
Like so many other things in iOS programming, there’s more than one way to
initiate connections between devices. The easiest method uses view controllers
provided by the framework that implement a generic UI. The more involved method
uses lower-level APIs that are more powerful and flexible — at the expense of
requiring more coding on your part.

You’ll first build the app using the easy method, as this is the fastest way to get you
comfortable working with the Multipeer Connectivity framework.

The easy way uses MCBrowserViewController to display the peer browser and
MCAdvertiserAssistant to handle incoming invitations.

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 635

In this approach, Alice’s device starts an instance of MCAdvertiserAssistant to serve
as the advertiser at app launch. The advertiser is then left idle to wait for incoming
browser invites.

Next, Bob’s device initializes an instance of MCBrowserViewController to browse for
nearby devices advertising the desired service. As nearby devices are discovered,
they’re displayed by the MCBrowserViewController instance. When a device is
selected from the list, MCBrowserViewController sends an invitation to that device.
This is how Bob sees Alice and sends her an invitation.

MCAdvertiserAssitant!
(Alice!starts!advertising)!

MCBrowserViewController!!
(Bob!starts!browsing!and!

sees!Alice)!

MCBrowserViewController!!
(Bobs!selects!Alice!and!an!

invite!is!sent!out)!

MCAdvertiserAssitant!
(Alice!sees!Bob's!invitation!
and!makes!a!decision)!

MCBrowserViewController!
(Bob!is!shown!Alice's!

decision)!
Connected!/!Not!Connected!

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 636

MCAdvertiserAssistant displays the invitation as an alert on Alice’s device giving
her a chance to accept or decline. Alice’s decision is passed back to Bob’s device
where MCBrowserViewController displays the decision.

If Alice accepts the invitation, the devices are connected via an instance of
MCSession. Otherwise, the peers are not connected. If MCBrowserViewController
detects that a connection has been created with at least one peer, it enables the
Done button on the view. Note that you can add code to handle both the Cancel
and Done buttons of MCBrowserViewController.

Advertising a service
It’s finally time to code! This app acts as both an advertiser and a browser – you
will start by implementing the code to advertise a service.

Note that this app will set up the session management and communication logic in
the App Delegate. In this manner, an event can be triggered from one view
controller and terminate in the background while another view controller is
onscreen.

You’ll use NSNotificationCenter to post notifications about events of interest to
your app, such as receiving a new business card. Observers, such as the list of
cards received, can register for these notifications in order to update their
respective views.

Okay – now you can start adding code.

Add the following to the top of AppDelegate.h:

#import <MultipeerConnectivity/MultipeerConnectivity.h>

Next, add the following line just below the import statements:

extern NSString *const kServiceType;

This simply declares a constant for the service type that’s being advertised and
searched for. Now you just need to assign a value to that constant.

Open AppDelegate.m and add the following line directly following the import
statements:

NSString *const kServiceType = @"rw-cardshare";

Here “rw” acts as the service type identifier prefix and “cardshare” identifies the
function of the service.

Note: A service type should be a short text string in the same format as a
Bonjour service type that describes the app’s networking protocol. It can be

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 637

up to fourteen characters in length, and must contain only lowercase ASCII
letters, numbers and hyphens.

The chosen string should also be easily distinguished from other unrelated
services; a common practice is to prefix the string with your company’s
initials.

Open AppDelegate.h and add the following session and peer properties:

@property (strong, nonatomic) MCSession *session;
@property (strong, nonatomic) MCPeerID *peerId;

Now switch to AppDelegate.m and add the following to the class extension to
specify the advertiser property:

@property (strong, nonatomic)
 MCAdvertiserAssistant *advertiserAssistant;

Now that all of the required properties are set up, you need some code to initialize
and start the advertiser.

Add the following code just above the return YES; statement in
application:didFinishLaunchingWithOptions:

// 1
NSString *peerName =
self.myCard.firstName ? self.myCard.firstName :
 [[UIDevice currentDevice] name];
self.peerId = [[MCPeerID alloc] initWithDisplayName:peerName];
// 2
self.session =
 [[MCSession alloc] initWithPeer:self.peerId
 securityIdentity:nil
 encryptionPreference:MCEncryptionNone];
self.session.delegate = nil;
// 3
self.advertiserAssistant =
[[MCAdvertiserAssistant alloc] initWithServiceType:kServiceType
 discoveryInfo:nil
 session:self.session];
// 4
[self.advertiserAssistant start];

There’s a whole host of initializations happening here; first the peer, then the
session, then the advertiser. The points below describe what’s going on in the code,
comment by comment:

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 638

1. First, initialize an MCPeerID object with a peer display name, which is either the
first name on the user’s business card if available, or alternatively the device
name itself. It’s best to keep the display name as short as possible.

2. Once the peer is set up, initialize an instance of MCSession and set the security
and encryption-related parameters to nil; you’ll learn more about those features
later on in the chapter. The session’s delegate is also set to nil; you’ll implement
the session’s delegate methods later on, but for now this just keeps things
simple.

3. Initialize an MCAdvertiserAssistant object with the service type identifier and
MCSession instance you created in the previous step. discoveryInfo is a dictionary
of string key/value pairs advertised to peer browsers. This allows you to give
context to the data, such as the event where the card sharing is taking place,
such as @{@”event”: @”wwdc”}. For now, set discoveryInfo to nil.

4. Finally, call start on the MCAdvertiserAssistant instance to begin advertising the
service.

Note: discoveryInfo is advertised using a Bonjour TXT record, meaning each
key and value must be an instance of NSString less than 255 bytes and
encoded in UTF-8 format. The total size of the TXT record is limited to 65,535
bytes, but Apple recommends limiting your TXT records to around 1300 bytes
to fit inside a single Ethernet packet and improve network performance.

Browsing for a service
Setting up the advertiser didn’t take much code; it’s just as easy to set up the
browser.

Open up ShareViewController.m; this is where a user initiates the sharing of
cards.

The existing code in this file shows and hides a table view containing business cards
that have been shared. Tapping an entry in the list transitions to
ShareViewController and displays the selected card’s details.

When no cards are present in the list, a button is displayed with its action
parameter set to addCardPressed:. Your next step is to add some logic to this
method to instantiate and display the browser view controller.

First, add an import declaration for the Multipeer Connectivity framework:

#import <MultipeerConnectivity/MultipeerConnectivity.h>

Next, add MCBrowserViewControllerDelegate to the list of protocols this class
conforms to:

@interface ShareViewController ()

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 639

<UITableViewDataSource,
UITableViewDelegate,
MCBrowserViewControllerDelegate>

You need this protocol to handle dismissing the browser when the user taps Cancel
or Done in the browser view controller.

Next, replace the existing addCardPressed: implementation with the following code:

- (IBAction)addCardPressed:(id)sender {
 AppDelegate *delegate = (AppDelegate *) [[UIApplication
sharedApplication] delegate];
 if (nil == delegate.myCard) {
 [[[UIAlertView alloc]
 initWithTitle:@""
 message:@"Please set up your business card first"
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil] show];
 } else {
 MCBrowserViewController *browserViewController =
 [[MCBrowserViewController alloc]
 initWithServiceType:kServiceType
 session:delegate.session];
 browserViewController.view.tintColor =
 [UIColor whiteColor];
 browserViewController.delegate = self;
 [self presentViewController:browserViewController
 animated:YES
 completion:nil];
 }
}

The original implementation of this method simply alerted the user if the contact
details weren’t filled in on their business card. The new code detects when the card
information exists then creates an instance of MCBrowserViewController. It then
uses a helper method to adjust the browser bar’s tint information, sets its delegate
and presents it to the user. This is a built-in view controller that will let the user
select nearby devices.

Still working in the same file, add the following methods:

- (void)browserViewControllerDidFinish:
 (MCBrowserViewController *)browserViewController
{
 [browserViewController

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 640

 dismissViewControllerAnimated:YES completion:nil];
}

- (void)browserViewControllerWasCancelled:
 (MCBrowserViewController *)browserViewController
{
 [browserViewController
 dismissViewControllerAnimated:YES completion:nil];
}

Both of the above methods belong to the MCBrowserViewControllerDelegate
protocol. Tapping the Done button calls browserViewControllerDidFinish:, while
tapping Cancel calls browserViewControllerWasCancelled:.

Both method implementations simply dismiss the view controller at this point; later
in this chapter you’ll replace the current implementation of
browserViewControllerDidFinish: with one that sends data to any connected peers.

Testing your app across devices
It’s almost time to build and run to see your work in action, but there’s a bit of
setup to complete first.

To test this app, you’ll need at least two devices: one acting as the browser and
one playing the role of advertiser. The simulator can serve as one of the devices,
but you’ll need a physical device as a complement to the simulator. Make sure all
your test devices are sitting on the same Wi-Fi network for now to keep things
simple. If you prefer, you can also connect physical devices via Bluetooth.

Build and run your app on two devices, either simulated or physical. For the
purposes of this test, call one of these devices Alice and the other Bob.

Since the apps advertise their services at startup, Alice is already advertising her
service without having to do anything.

On Bob’s device go to the Share tab, tap the Exchange button to initiate a
browsing session and tap on Alice’s name once it appears in the list of nearby
devices.

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 641

On Alice’s device you should see an invitation pop up from Bob. Alice is a polite
user, so Accept the invitation from Bob.

Back on Bob’s device, the browser view controller shows Alice as connected and
enables the Done button. Tap Done to dismiss the view controller.

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 642

Play around with a few different discovery scenarios until you’re comfortable with
the concepts of the browser and the advertiser. If you run into any issues such as
the advertiser not showing up then quit the apps on the test devices, and restart
them.

Now that your devices can connect to each other, you can move on to the more
interesting work of sharing data between them!

Sending Data
Currently, an instance of MCSession initializes both the advertiser and the browser
alike. Implementing the relevant methods of the MCSessionDelegate protocol will
notify you of events such as a peer connecting or data arriving; you can act on
these events to share data between devices.

Let’s try this out. Open AppDelegate.h and declare a string constant to identify
your app’s notifications:

extern NSString *const DataReceivedNotification;

Next, open AppDelegate.m and add the following code to set the value of this
identity string:

NSString *const DataReceivedNotification =
 @"com.razeware.apps.CardShare:DataReceivedNotification";

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 643

Add the line below to include MCSessionDelegate in the list of protocols your app
delegate conforms to:

@interface AppDelegate () <MCSessionDelegate>

Find the statement in application:didFinishLaunchingWithOptions: where the
delegate of the MCSession property is set to nil and replace it with the following:

self.session.delegate = self;

Now add the required delegate methods as shown below:

- (void)session:(MCSession *)session
 didReceiveData:(NSData *)data fromPeer:(MCPeerID *)peerID
{
 Card *card = (Card *)[NSKeyedUnarchiver
 unarchiveObjectWithData:data];

 [self.cards addObject:card];

 [[NSNotificationCenter defaultCenter]
 postNotificationName:DataReceivedNotification object:nil];
}

- (void)session:(MCSession *)session
 didReceiveStream:(NSInputStream *)stream
 withName:(NSString *)streamName fromPeer:(MCPeerID *)peerID
{
}

- (void)session:(MCSession *)session
 didFinishReceivingResourceWithName:(NSString *)resourceName
 fromPeer:(MCPeerID *)peerID atURL:(NSURL *)localURL
 withError:(NSError *)error
{
}

- (void)session:(MCSession *)session
 didStartReceivingResourceWithName:(NSString *)resourceName
 fromPeer:(MCPeerID *)peerID
 withProgress:(NSProgress *)progress
{
}
- (void)session:(MCSession *)session peer:(MCPeerID *)peerID
 didChangeState:(MCSessionState)state
{

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 644

}

The Card class implements NSCoding, so you can un-archive a Card from an NSData
using NSKeyedUnarchiver – that’s exactly what session:didReceiveData:fromPeer:
does. It then adds the new Card instance to the array containing all shared business
cards. Finally, the default notification center posts an NSNotification using the
identity string defined earlier so anyone who is interested in this event can know
about it.

The remainder of the method implementations is left empty at this point to keep
the complier happy.

Sending card data to the peer
The delegate methods are in place — now you need to implement the logic that
actually sends the data to the peer.

Add the following method to AppDelegate.m:

-(void)sendCardToPeer
{
 NSData *data = [NSKeyedArchiver
 archivedDataWithRootObject:self.myCard];
 NSError *error;
 [self.session sendData:data
 toPeers:[self.session connectedPeers]
 withMode:MCSessionSendDataReliable
 error:&error];
}

The above method archives the Card instance stored in myCard using
NSKeyedArchiver and then calls sendData:toPeers:withMode:error: on the MCSession
instance stored in session property. The array provided to the toPeers parameter
contains all the peers connected to the session.

The withMode parameter controls the transmission mode, and can be one of two
options: MCSessionSendDataUnreliable for when speed trumps reliability, and
MCSessionSendDataReliable for when reliability matters most.

Next, you need to make this method public since it will be invoked from outside the
app delegate.

Add the following method declaration to AppDelegate.h:

- (void)sendCardToPeer;

Now you’ll enhance the app to handle sending the user’s business card and respond
to incoming business cards from nearby devices.

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 645

Open ShareViewController.m and add the following method:

- (void) sendCard {
 AppDelegate *delegate =
 (AppDelegate *) [[UIApplication sharedApplication]
 delegate];
 [delegate sendCardToPeer];
 [self showMessage:@"Card sent to nearby device"];
}

This method simply instructs the app delegate to distribute the user’s business card
to any connected peers. It then displays an alert to the user to inform them that
their card has been sent.

Still in ShareViewController.m, replace the existing implementation of
browserViewControllerDidFinish: with the following:

- (void)browserViewControllerDidFinish:
(MCBrowserViewController *)browserViewController
{
 [browserViewController
 dismissViewControllerAnimated:YES
 completion:^{
 [self sendCard];
 }];
}

This calls sendCard when the instance of MCBrowserViewController is dismissed
using the Done button.

You can also make the app a little smarter: if the user taps the Exchange button
when already connected to a nearby device, the card can be sent immediately
instead of displaying the browser.

Replace the implementation of addCardPressed: with the following:

- (IBAction)addCardPressed:(id)sender {
 AppDelegate *delegate =
 (AppDelegate *) [[UIApplication sharedApplication]
 delegate];
 if (nil == delegate.myCard) {
 [[[UIAlertView alloc]
 initWithTitle:@""
 message:@"Please set up your business card first"
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil] show];

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 646

 } else {
 if ([[delegate.session connectedPeers]
 count] == 0) {
 MCBrowserViewController *browserViewController =
 [[MCBrowserViewController alloc]
 initWithServiceType:kServiceType
 session:delegate.session];
 browserViewController.view.tintColor =
 [UIColor whiteColor];
 browserViewController.delegate = self;
 [self presentViewController:browserViewController
 animated:YES
 completion:nil];
 } else {
 [self sendCard];
 }
 }
}

In the code above, you’ve added a secondary if block to determine if the session
already has any connected peers. If so, immediately call sendCard.

Receiving card data from the peer
All that’s left to do at this point is display the incoming business cards.

Still in ShareViewController.m, add the following to the bottom of viewDidLoad:

[[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(dataReceived:)
 name:DataReceivedNotification
 object:nil];

The above code simply observes the data arrival notification.

To unregister from observing the notification, override dealloc and add the
following line:

[[NSNotificationCenter defaultCenter] removeObserver:self];

Now add the dataReceived: method, which is called when the notification is
received:

- (void)dataReceived:(NSNotification *)notification
{
 [self showHideNoDataView];

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 647

 [self.tableView reloadData];
}

The above code hides the Exchange button and shows the table view with reloaded
data in preparation for displaying the incoming card data.

Next, modify viewWillAppear: to call dataReceived: as shown below:

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];
 [self dataReceived:nil];
}

The above code reloads the view whenever the view is displayed so the cards are
displayed.

Build and run your app, launch the peer browser and instantiate a connection
between two devices.

Tap Done and your business card data should now appear on the receiving device’s
Share tab. Tap on any incoming card to display its details and tap Add To Cards
to save the card data. Now move to the Cards tab to see the newly saved card, as
shown in the screenshot below:

That’s the easy way to send data via a peer-to-peer connection; the controllers and
views are all set up for you, and you just need to call the key methods to
instantiate sessions and send data between peers. But this method is a bit limiting;

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 648

the real power can be found underneath by managing your peer connections
programmatically.

Sending other types of data
You’re not limited to sharing only NSData objects; you can also send the following
data to any connected peer:

• URL content: sendResourceAtURL:toPeer:withTimeout:completionHandler: sends
the content pointed to by an instance of NSURL over the current session. On the
receiving end, implement session:didReceiveResourceAtURL:fromPeer: delegate
method to process the incoming data.

• Streaming content: Stream content between peers by calling
startStreamWithName:toPeer:error: on an active session; this creates an instance
of NSOutputStream that lets you communicate with the connected peer. On the
receiver, implement session:didReceiveStream:withName:fromPeer: to process
the incoming stream.

You’ve now covered how to set up discovery of nearby devices as well as sending
and receiving data once the connection has been established.

Peer-to-peer: the programmatic way
That’s it for the easy way to implement peer-to-peer connectivity in your apps. If
that’s all you need, feel free to stop reading here and move on to the next chapter!

But if you’re looking for more power and customization, keep reading. The
Multipeer Connectivity framework provides additional APIs that support
programmatic discovery and customize the experience beyond what’s provided by
MCBrowserViewController and MCAdvertiserAssitant. As an example, you could
customize the way the nearby devices are presented to the user. You could even
customize the browser behavior when a nearby device has been found, such as
immediately sending out an invite without waiting for user interaction.

MCNearbyServiceBrowser and MCNearbyServiceAdvertiser provide methods to handle
programmatic discovery for the browser and advertiser respectively. The
MCNearbyServiceBrowserDelegate protocol supports your custom browser by
enabling you to respond to finding nearby devices, while
MCNearbyServiceAdvertiserDelegate helps you handle browser invitations
programmatically.

You’ll have to do the heavy lifting in your code to construct your browser’s UI,
present nearby devices and initiate invitations to peers. On the advertiser end, the
UI work involves presenting the invitation to the user, getting the user’s response,
and calling a handler to pass the user response to the browser.

However, once the peers are connected, sending data works exactly the same as
before.

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 649

Your code changes will involve swapping out the current browser and advertiser set
up code and replacing it with the programmatic version. You’ll also implement the
required delegate methods to manage the discovery flow.

For kicks, you’ll use a flag to switch between the non-programmatic and the
programmatic peer discovery. This allows you to switch between the two and
compare the functionality against each other.

Open AppDelegate.h and add the following global constant below the existing
constant declarations:

extern BOOL const kProgrammaticDiscovery;

Next, switch to AppDelegate.m and set the value of the flag by adding the
following line just above the class extension:

BOOL const kProgrammaticDiscovery = YES;

Note that you are going to implement your custom user interface to look quite
similar to the built-in interface. However, for your own apps you can obviously style
this however you like – that is the entire benefit of this approach.

Setting up your advertiser
You’ll approach things a little differently this time around by working on the
advertiser-related code first.

Still in AppDelegate.m, add the following block definition for the advertiser’s
invitation handler:

typedef void(^InvitationHandler)(BOOL accept, MCSession *session);

When a browser sends an invitation it passes an invitation handler block to the
relevant advertiser delegate method. You’ll need to save and call this handler block
to inform the browser of the users’ response, which you’ll implement a little later.

Modify the app delegate’s class extension as shown below:

@interface AppDelegate ()
<MCSessionDelegate,
MCNearbyServiceAdvertiserDelegate,
UIAlertViewDelegate>

@property (strong, nonatomic) MCAdvertiserAssistant
*advertiserAssistant;
@property (strong, nonatomic) MCNearbyServiceAdvertiser *advertiser;
@property (copy, nonatomic) InvitationHandler handler;

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 650

@end

The code above adds the necessary protocols and properties to help manage the
discovery flow from the advertiser’s end. The MCNearbyServiceAdvertiserDelegate
protocol methods respond to peer invites and you’ll react to this by presenting a
UIAlertView with accept and reject buttons.

You’ll implement a single UIAlertViewDelegate protocol method to determine which
button was tapped and call the invitation handler with the necessary response.

Next, locate the following section of code in
application:didFinishLaunchingWithOptions:

self.advertiserAssistant =
[[MCAdvertiserAssistant alloc] initWithServiceType:kServiceType
 discoveryInfo:nil
session:self.session];
[self.advertiserAssistant start];

...and replace it with the following code:

if (kProgrammaticDiscovery) {
 // 1
 self.advertiser =
 [[MCNearbyServiceAdvertiser alloc]
 initWithPeer:self.peerId
 discoveryInfo:nil
 serviceType:kServiceType];
 // 2
 self.advertiser.delegate = self;
 // 3
 [self.advertiser startAdvertisingPeer];
} else {
 self.advertiserAssistant =
 [[MCAdvertiserAssistant alloc]
 initWithServiceType:kServiceType
 discoveryInfo:nil
 session:self.session];
 [self.advertiserAssistant start];
}

If kProgrammaticDiscovery is set, then the following actions are taken:

1. initWithPeer:discoveryInfo:serviceType: initializes the advertiser with a peer, a
nil for the discoveryInfo parameter and the serviceType identifier for the service
being provided. Remember, only browsers searching for a service with the same
identifier will see this advertiser.

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 651

2. Sets the advertiser’s delegate to the app delegate.

3. Calls startAdvertisingPeer to commence the process of advertising this service.

Next, add the following code to AppDelegate.m:

- (void)advertiser:(MCNearbyServiceAdvertiser *)advertiser
didReceiveInvitationFromPeer:(MCPeerID *)peerID withContext:(NSData
*)context invitationHandler:(void (^)(BOOL, MCSession
*))invitationHandler
{
 self.handler = invitationHandler;

 [[[UIAlertView alloc]
 initWithTitle:@"Invitation"
 message:[NSString
 stringWithFormat:@"%@ wants to connect",
 peerID.displayName]
 delegate:self
 cancelButtonTitle:@"Nope"
 otherButtonTitles:@"Sure", nil] show];
}

The above code is your advertiser delegate method that’s called when an invitation
is received from a peer. The handler property stores the invitation handler block
passed to this method so that it can be used later to inform the browser of the
user’s decision.

The code then displays an instance of UIAlertView asking whether or not to accept
the decision, and finally sets the delegate of the alert view to the app delegate.

All that’s left on the advertiser’s end is to determine what the user’s response was.

Add the code below to AppDelegate.m:

- (void)alertView:(UIAlertView *)alertView
clickedButtonAtIndex:(NSInteger)buttonIndex
{
 BOOL accept = (buttonIndex == alertView.cancelButtonIndex) ? NO :
YES;

 self.handler(accept, self.session);
}

The above code implements the alertView:clickedButtonAtIndex: delegate
method, determines which button the user tapped and calls handler with the result.

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 652

Build and run your app and walk through the discovery process again. You’ll see the
same browser interface you know and love. However, you'll notice the following
subtle change in the invitation alert display:

The alert title and button text is different from that shown by
MCAdvertiserAssistant.

Setting up your custom browser
That takes care of the advertiser; it’s time to turn your attention to the browser. In
your current implementation, ShareViewController sets up an instance of
MCBrowserViewController and displays it to the user to initiate the browsing
process.

You’ll switch this around a bit to use your own custom browser. The starter project
contains a view controller you’ve not seen yet, MyBrowserViewController; you’ll use
this to implement a custom browser.

The storyboard links ShareViewController to MyBrowserViewController via a push
segue; however, there’s currently no code to trigger that segue — you’ll be adding
this yourself.

The very first thing to take care of is establishing your custom browser using the
relevant Multipeer Connectivity framework APIs. The process, outlined below,
closely mimics the implementation of the stock view controllers provided by Apple:

1. MyBrowserViewController displays a UITableView that lists nearby peers.

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 653

2. When a nearby peer is found, the app automatically sends an invitation to that
peer. This differs from the stock view controller that waits for the user to select a
peer.

3. The remote peer device presents the invitation to the user who chooses whether
or not to accept the invitation.

4. The browser then executes session:didReceiveData:fromPeer:, a method of the
MCSessionDelegate protocol to detect changes to the session; a connected session
means the invite was accepted, while a disconnected session means the invite
was rejected.

5. The session:didReceiveData:fromPeer: method implementation then posts a
notification to inform any observers of the session change.

6. The MyBrowserViewController instance registers for that notification; once the
notification is received it updates the browser table view with the peer’s decision.

7. If a minimum number of peers have joined the session, the controller displays a
Done button to the user.

8. If a maximum number of peers have joined a session, the controller
automatically triggers the Done button.

9. Tapping Done or Cancel in the custom browser stops the browser from looking
for nearby devices.

10. A new adopted protocol, MyBrowserViewControllerDelegate, responds to the
manner in which custom browser is dismissed. The methods that do this are
based on those found in the MCBrowserViewControllerDelegate protocol.

11. Finally, the implementation modifies ShareViewController to conform to the
MyBrowserViewControllerDelegate protocol and to implement the requisite
methods. If the user dismisses the view controller with the Done button, the
user’s business card is then distributed to connected peers.

The completed custom browsing experience looks like this:

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 654

Now that you have a good sense of the flow, you can get started on the coding.

Connecting to the custom browser
Open MyBrowserViewController.h and import the header file for Multipeer
Connectivity as shown below:

#import <MultipeerConnectivity/MultipeerConnectivity.h>

Switch to MyBroserViewController.m and add the following properties to the
class extension:

@property (strong, nonatomic) MCNearbyServiceBrowser *browser;
@property (strong, nonatomic) NSString *serviceType;
@property (strong, nonatomic) MCPeerID *peerId;
@property (strong, nonatomic) MCSession *session;

Next, add the following method:

- (void)setupWithServiceType:(NSString *)serviceType session:(MCSession
*)session peer:(MCPeerID *)peerId
{
 self.serviceType = serviceType;
 self.session = session;
 self.peerId = peerId;
}

This is used to set up the browser-related properties when the view controller is
presented via the appropriate segue:

Switch to MyBrowserViewController.h and add the following public declaration:

- (void)setupWithServiceType:(NSString *)serviceType
 session:(MCSession *)session peer:(MCPeerID *)peerId;

Switch to ShareViewController.m and import the custom browser header:

#import "MyBrowserViewController.h"

Next, modify the following code to include your custom browser’s protocol along
with the other protocols:

@interface ShareViewController ()
<MCBrowserViewControllerDelegate,
MyBrowserViewControllerDelegate,
UITableViewDataSource, UITableViewDelegate>

Now add the implementation of the protocol method below:

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 655

- (void)myBrowserViewControllerDidFinish:
(MyBrowserViewController *)browserViewController
{
 [browserViewController
 dismissViewControllerAnimated:YES
 completion:^{
 [self sendCard];
 }];
}

- (void)myBrowserViewControllerWasCancelled:
(MyBrowserViewController *)browserViewController
{
 [browserViewController
 dismissViewControllerAnimated:YES completion:nil];
}

Just as before, tapping Done dismisses the custom browser and distributes the
business card to any connected peers, while tapping Cancel simply dismisses the
custom browser.

Next, replace the existing addCardPressed: method with the following code:

- (IBAction)addCardPressed:(id)sender {
 AppDelegate *delegate =
 (AppDelegate *) [[UIApplication sharedApplication] delegate];
 if (nil == delegate.myCard) {
 [[[UIAlertView alloc]
 initWithTitle:@""
 message:@"Please set up your business card first"
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil] show];
 } else {
 if ([[delegate.session connectedPeers]
 count] == 0) {
 if (kProgrammaticDiscovery) {
 [self
 performSegueWithIdentifier:@"SegueToMyBrowser"
 sender:self];
 } else {
 MCBrowserViewController *browserViewController =
 [[MCBrowserViewController alloc]
 initWithServiceType:kServiceType
 session:delegate.session];
 browserViewController.view.tintColor =

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 656

 [UIColor whiteColor];
 browserViewController.delegate = self;
 [self
 presentViewController:browserViewController
 animated:YES
 completion:nil];
 }
 } else {
 [self sendCard];
 }
 }
}

The implementation above is similar to the previous one; if the
kProgrammaticDiscovery flag is set, then segue to the custom browser. Otherwise,
just use the Apple-provided view controller that you used in the first half of this
tutorial.

Then, replace the existing prepareForSegue: implementation with the following:

- (void)prepareForSegue:(UIStoryboardSegue *)segue
 sender:(id)sender
{
 if ([segue.identifier
 isEqualToString:@"SegueToMyBrowser"]) {
 AppDelegate *delegate =
 (AppDelegate *) [[UIApplication sharedApplication] delegate];
 MyBrowserViewController *browserViewController =
 (MyBrowserViewController *)
 segue.destinationViewController;
 [browserViewController
 setupWithServiceType:kServiceType
 session:delegate.session
 peer:delegate.peerId];
 browserViewController.delegate = self;
 } else if ([segue.identifier
 isEqualToString:@"SegueToCardDetail"]) {
 SingleCardViewController *singleCardViewController =
 (SingleCardViewController *)
 segue.destinationViewController;
 singleCardViewController.card = self.selectedCard;
 singleCardViewController.enableAddToCards = YES;
 }
}

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 657

The above implementation determines which segue is being run. If it represents the
custom browser’s segue, setupWithServiceType:session:peer: is called on the
custom browser to setup its properties with the relevant values.

Build and run your app then tap Exchange from the Share tab. You’ll see your
brand spanking new browser interface.

At this point it’s not too interesting as you haven’t added any logic to search for and
show nearby devices. You’ll tackle that next.

Searching for nearby devices
Switch back to MyBrowserViewController.m. Modify the following in the class
extension to adopt the MCNearbyServiceBrowserDelegate protocol:

@interface MyBrowserViewController ()
<UIToolbarDelegate,
MCNearbyServiceBrowserDelegate>

Now add the following code to the very end of viewDidLoad in
MyBrowserViewController.m:

self.browser = [[MCNearbyServiceBrowser alloc] initWithPeer:self.peerId
serviceType:self.serviceType];

self.browser.delegate = self;

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 658

[self.browser startBrowsingForPeers];

The above code creates an instance of MCNearbyServiceBrowser, using the peerId
property as the peer and the serviceType property as the service type. The current
class is set as the MCNearbyServiceBrowserDelegate delegate. Finally it calls
startBrowsingForPeers to begin searching for nearby devices.

Next up is to implement the methods of the MCNearbyServiceBrowserDelegate
protocol. Add the following method to MyBrowserViewController.m:

- (void)browser:(MCNearbyServiceBrowser *)browser
didNotStartBrowsingForPeers:(NSError *)error
{
 NSLog(@"Error browsing: %@", error.localizedDescription);
}

This is an extremely basic implementation that simply logs the error description to
Xcode’s console.

Before diving into the other protocol method implementations, note that there are
three lists of data you’ll track in order to display peer devices to your user:

• Nearby devices that the browser has detected.

• Nearby devices that have declined an invitation to connect.

• Nearby devices that have accepted an invitation to connect.

You’ll manipulate these lists from the browser delegate methods and from methods
notified about an advertiser’s invitation decision.

Add the delegate method that gets called when a peer is found:

- (void)browser:(MCNearbyServiceBrowser *)browser
 foundPeer:(MCPeerID *)peerID
withDiscoveryInfo:(NSDictionary *)info
{
 [self.nearbyPeers addObject:peerID];
 [self.tableView reloadData];
}

This method adds the discovered peer to the array of nearby peers and reloads the
table view to display the device.

Now add the delegate method that gets called when a peer disconnects:

- (void)browser:(MCNearbyServiceBrowser *)browser
 lostPeer:(MCPeerID *)peerID

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 659

{
 [self.nearbyPeers removeObject:peerID];
 [self.acceptedPeers removeObject:peerID];
 [self.declinedPeers removeObject:peerID];

 if ([self.acceptedPeers count] <
 (self.minimumNumberOfPeers - 1)) {
 [self showDoneButton:NO];
 }

 [self.tableView reloadData];
}

This method removes the peer that is no longer connected from each of the peer
arrays. If the number of connected peers is below the desired threshold, it hides
the Done button and reloads the table view.

Add the following statement to the top of both the cancelButtonPressed and
doneButtonPressed methods:

[self.browser stopBrowsingForPeers];
self.browser.delegate = nil;

The code instructs the browser to stop browsing for peers when the Done and
Cancel buttons are tapped then sets the browser delegate to nil.

Now replace the table view data source method that creates the cells with this one:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"NearbyDevicesCell";
 MyBrowserTableViewCell *cell = (MyBrowserTableViewCell*)
 [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[MyBrowserTableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier];
 cell.selectionStyle = UITableViewCellSelectionStyleNone;
 cell.accessoryType = UITableViewCellAccessoryNone;
 cell.accessoryView = nil;
 }
 // 1
 MCPeerID *cellPeerId = (MCPeerID *)
 self.nearbyPeers[indexPath.row];

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 660

 // 2
 if ([self.acceptedPeers containsObject:cellPeerId]) {
 if ([cell.accessoryView isKindOfClass:
 [UIActivityIndicatorView class]]) {
 UIActivityIndicatorView *activityIndicatorView =
 (UIActivityIndicatorView *)cell.accessoryView;
 [activityIndicatorView stopAnimating];
 }
 UILabel *checkmarkLabel =
 [[UILabel alloc]
 initWithFrame:CGRectMake(0, 0, 20, 20)];
 checkmarkLabel.text = @" √ ";
 cell.accessoryView = checkmarkLabel;
 }
 // 3
 else if ([self.declinedPeers containsObject:cellPeerId]) {
 if ([cell.accessoryView isKindOfClass:
 [UIActivityIndicatorView class]]) {
 UIActivityIndicatorView *activityIndicatorView =
 (UIActivityIndicatorView *)cell.accessoryView;
 [activityIndicatorView stopAnimating];
 }
 UILabel *unCheckmarkLabel =
 [[UILabel alloc]
 initWithFrame:CGRectMake(0, 0, 20, 20)];
 unCheckmarkLabel.text = @" X ";
 cell.accessoryView = unCheckmarkLabel;
 }
 // 4
 else {
 // 5
 UIActivityIndicatorView *activityIndicatorView =
 [[UIActivityIndicatorView alloc]

initWithActivityIndicatorStyle:UIActivityIndicatorViewStyleGray];
 activityIndicatorView.hidesWhenStopped = YES;
 [activityIndicatorView setColor:
 [(AppDelegate *)[[UIApplication sharedApplication]
 delegate] mainColor]];
 [activityIndicatorView startAnimating];
 cell.accessoryView = activityIndicatorView;
 // 6
 [self.browser
 invitePeer:cellPeerId
 toSession:self.session

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 661

 withContext:[@"Making contact"
dataUsingEncoding:NSUTF8StringEncoding]
 timeout:10];

 }
 // 7
 cell.textLabel.text = cellPeerId.displayName;

 return cell;
}

Each cell in the table view displays the peer’s name, an indicator of an active
connection, and the status of the invitation: accepted or declined. The points below
explain the code in detail, comment by comment:

1. Retrieve the relevant peer from the nearbyPeers array based on the current cell’s
index path.

2. Check if the peer has accepted an invitation to join a session using the
acceptedPeers array. If so, display a checkmark as a label in the cell’s
accessoryView, and stop any animated activity indicators.

3. If a peer has declined an invitation, display an X as a label in the cell’s
accessoryView. As before, stop any animated activity indicators, just in case
you’ve interrupted an in-progress connection.

4. If the connection is neither accepted nor declined, then invite the peer to join a
session in follow-on code.

5. Create an instance of UIActivityIndicatorView and assign it to the cell’s
accessoryView.

6. Send an invitation to the peer by calling
invitePeer:toSession:withContext:timeout: on the instance of
MCNearbyServiceBrowser. The withContext parameter can be any arbitrary piece of
data to pass to the peer, such as the nature of the connection request.

7. Set the cell’s display label to the peer’s display name.

Once you’ve sent the invitation to the remote peer, you need to notify the browser
of any response received so the browser can update the interface accordingly.

Open AppDelegate.h and declare the following constant string:

extern NSString *const PeerConnectionAcceptedNotification;

Next, switch to AppDelegate.m and provide a value for the identity string:

NSString *const PeerConnectionAcceptedNotification =
@"com.razeware.apps.CardShare:PeerConnectionAcceptedNotification";

Modify session:peer:didChangeState: as shown below to trigger the notifications:

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 662

- (void)session:(MCSession *)session peer:(MCPeerID *)peerID
 didChangeState:(MCSessionState)state
{
 if (state == MCSessionStateConnected
 && self.session) {
 [[NSNotificationCenter defaultCenter]
 postNotificationName:PeerConnectionAcceptedNotification
 object:nil
 userInfo:@{
 @"peer": peerID,
 @"accept" : @YES
 }];
 } else if (state == MCSessionStateNotConnected
 && self.session) {
 if (![self.session.connectedPeers
 containsObject:peerID]) {
 [[NSNotificationCenter defaultCenter]
 postNotificationName:PeerConnectionAcceptedNotification
 object:nil
 userInfo:@{
 @"peer": peerID,
 @"accept" : @NO
 }];
 }
 }
}

The method above responds to changes in the state of the session. When the
browser sends out an invite to a peer, the remote peer’s session state changes
from MCSessionStateNotConnected to MCSessionStateConnecting. When the invitation
is accepted, the remote peer’s session state changes to MCSessionStateConnected.

When the invitation is rejected, the state of the remote peer session changes back
to MCSessionStateNotConnected. The userInfo key of the posted notification is used
to send an instance of NSDictionary containing a pointer to the remote peer and
invitation decision. Observers can then extract the dictionary’s values and process
the invitation accordingly.

Switch back to MyBrowserViewController.m and add the following just below the
call to super in viewDidLoad:

[[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(peerConnected:)
 name:PeerConnectionAcceptedNotification
 object:nil];

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 663

This registers to receive the notification.

To unregister from observing the notification, override dealloc and add the
following line:

[[NSNotificationCenter defaultCenter] removeObserver:self];

Next, add the following method:

- (void) peerConnected:(NSNotification *)notification
{
 MCPeerID *peer =
 (MCPeerID *)[notification userInfo][@"peer"];

 BOOL nearbyDeviceDecision =
 [[notification userInfo][@"accept"] boolValue];
 if (nearbyDeviceDecision) {
 [self.acceptedPeers addObject:peer];
 } else {
 [self.declinedPeers addObject:peer];
 }

 if ([self.acceptedPeers count] >=
 (self.maximumNumberOfPeers - 1)) {
 [self doneButtonPressed:nil];
 } else {
 if ([self.acceptedPeers count] <
 (self.minimumNumberOfPeers - 1)) {
 [self showDoneButton:NO];
 } else {
 [self showDoneButton:YES];
 }
 [self.tableView reloadData];
 }
}

The above method receives the notification that contains the peer and the invite
decision. If the user accepted the invitation, it adds the peer to the acceptedPeers
array, but if the user declined the invite, it adds the peer to declinedPeers.

It then checks if the number of connected peers is above a maximum threshold to
trigger the Done button action.

Otherwise if checks if it needs to show or hide the Done button based on the peers
that are currently connected. Then it reloads the table view to show either a
checkmark of cross as the visual indicator of the invite response.

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 664

Build and run your app and walk through the discovery process and try accepting or
rejecting the automatically sent invites.

Securing your session
At this point just about any Tom, Dick and Harry can show up on your browser’s
doorstep and send you unwanted data if you’re thumb-happy and accept their
invitation.

Fear not, several tools are available at your disposal to keep your data secure.
When you initialize an MCSession object, you can choose the mechanisms by which
you secure both your identity and your data.

Authentication
You can authenticate a session by passing an instance of NSArray containing a
SecIdentityRef, and optionally a list of certificates, as the securityIdentity
parameter in the initWithPeer:securityIdentity:encryptionPreference: method of
MCSession.

A SecIdentityRef is a Core Foundation type that represents an identity. To find
out more, it’s highly recommended that you check out the Certificate, Key, and
Trust Services Reference1 on Apple’s Developer Center:

http://developer.apple.com/library/ios/#documentation/Security/Reference/certifke
ytrustservices/Reference/reference.html#//apple_ref/doc/uid/TP30000157

Encryption
You can also control the manner in which the session is encrypted by using
MCEncryptionOptional, MCEncryptionRequired or MCEncryptionNone as the arguments
to the encryptionPreference parameter of
initWithPeer:securityIdentity:encryptionPreference:.

If one peer wishes to communicate with MCEncryptionRequired, then any potential
peer needs to implement either that encryption level or the MCEncryptionOptional
level.

Test out these combinations by modifying the session initialization logic.

Open AppDelegate.m and modify the session initialization code from:

self.session =
 [[MCSession alloc] initWithPeer:self.peerId
 securityIdentity:nil
 encryptionPreference:MCEncryptionNone];

… to this:

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 665

self.session =
 [[MCSession alloc] initWithPeer:self.peerId
 securityIdentity:nil
 encryptionPreference:MCEncryptionRequired];

Build and run your changes on only one device to create an encryption level
mismatch. Try connecting to your nearby test device. The connection should be
rejected. Now build the updated code on your other test device. Retry the
connection. You should now be able to connect the devices.

Next, modify the initialization logic to the following:

self.session =
 [[MCSession alloc] initWithPeer:self.peerId
 securityIdentity:nil
 encryptionPreference:MCEncryptionOptional];

Build and run your changes on only one device to create a level mismatch. In this
scenario you should be able to connect the two test devices since one requires
encryption and the other prefers encryption but can accept unencrypted
connections.

Reset your encryption preference back to MCEncryptionNone.

Challenges
At this point, you have hands-on experience connecting to and communicating with
nearby devices using the Multipeer Connectivity framework.

There’s quite a bit more to explore with this new framework; to that end, here are
three challenges for you to exercise what you’ve learned and delve into few more
details of the API.

The three challenges range from easy to hard, but they all offer valuable insight
into the framework. Don’t worry if you try one and get stuck: you can always take a
peek at the solutions that can be found in the resources for the chapter.

Challenge 1: Filtering advertisers
By default, browsers won’t see advertisers with a service identifier that doesn’t
match theirs. However, there could be scenarios where the identifiers match but
you want to allow users another layer to filter out advertisers. One scenario could
be at a conference where a presenter only wants to see and send out business
cards to attendees who know a “secret” code that they’ll give out. These could be
the attendees who actually attended their session.

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 666

Your first challenge is to add a way to filter out advertisers who don’t have a given
code. Here are a few hints:

• You can initialize the advertiser to send out the code in the discoveryInfo
parameter. For MCAdvertiserAssistant modify the
initWithServiceType:discoveryInfo:session: method and for
MCNearbyServiceAdvertiser modify initWithPeer:discoveryInfo:serviceType:.

• Controlling advertisers presented to a browser can be implemented through the
browserViewController:shouldPresentNearbyPeer:withDiscoveryInfo: delegate
method in MCBrowserViewControllerDelegate for the built-in browser controller.
Or it can be implemented through the browser:foundPeer:withDiscoveryInfo:
delegate method in MCNearbyServiceBrowserDelegate for programmatic browser
discovery.

Challenge 2: Session cleanup
The sample project opens the session but you may have noticed that it could use
some cleanup. Your second challenge is to disconnect the session when
appropriate. Modify the sample project so that a peer disconnects its session after
receiving business cards from all connected peers.

Here are a few hints to help you out:

• Keep track of whether the user has sent out their business card. Set this flag in
sendCardToPeer.

• Keep track of the list of peers that the user has received business cards from.

• Whenever a new business card is received, update your list of peers business
cards have been received from and check if it’s time to disconnect. Add this logic
to session:didReceiveData:fromPeer:.

• Whenever a nearby device disconnects their session, check if it’s time to
disconnect. Add this logic to session:peer:didChangeState:.

• Your disconnect check should be based on whether the user has sent out a
business card and received business cards from all currently connected peers.

• To disconnect perform a complete teardown of the session, peer, advertiser as
well as associated delegates. After disconnecting, create new peer, session and
advertiser instances to get ready for any follow up discovery flows.

Challenge 3: Stream the data
The sample project sends the business card data at all once using an instance of
NSData. Your challenge is to use a stream of bytes to transfer the data instead.
Hint: NSInputStream and NSOutputStream are your best friends for this task.

Here are some additional hints:

• Modify sendCardToPeer to replace the sendData:toPeers:withMode:error: call with
logic to set up an output byte stream.

iOS 7 by Tutorials Chapter 21: Peer-to-Peer Connectivity

 667

• An input stream of the business card data is the source for your sender’s output
stream. Create the business card data stream using inputStreamWithData: on
NSInputStream.

• Create the output stream by calling startStreamWithName:toPeer:error:. Then set
up the output stream delegate and schedule the stream to run in the main run
loop. Finally, open the stream.

• Implement the stream:handleEvent: method of the NSStreamDelegate protocol to
fill up your output stream with business card data when there’s space available.

• On the business card receiving end, implement the
session:didReceiveStream:withName:fromPeer: delegate method.

• In the implementation, configure your input stream as well as its delegate and
schedule it to run in the main run loop.

• Modify stream:handleEvent: to read incoming data bytes as they become
available.

• Once all the data bytes are in, call your existing
session:didReceiveData:fromPeer: implementation that already has all the
required logic to process the business card data.

• When initializing your browser, set the maximumNumberOfPeers property to 2 to
ensure data is streamed between only two devices.

In this section, you’ll learn about some minor improvements to existing APIs you
know and love, such as AVFoundation, MapKit, and Core Location.

Chapter 22: What’s New in AVFoundation

Chapter 23: What’s New in MapKit

Chapter 24: What’s New in Core Location

Section IV: Minor New Features

Adding audio and video support can result in a much richer user experience in your
apps, but working with digital media is often a complicated endeavor. Fortunately,
Apple offers tools that ease this burden for developers, such as the AV Foundation
framework.

iOS 4 introduced AV Foundation as a way to manage camera and microphone
input, process digital media, and send output to the disk or the screen — a process
collectively known as media graph processing. iOS 6 introduced even more
advanced features in AV Foundation such as the ability to natively perform face
detection in live video without the need to leverage Core Image.

iOS 7 brings even more improvements to AV Foundation, such as:

• Barcode reading support

• Speech synthesis

• Improved zoom functionality

You’ll be introduced to these features as you work through this chapter’s sample
project: a QR code reader.

But it’s not just a normal QR code reader – there’s a twist! After you scan a QR
code, the app will speak the code to you using AVFoundation speech synthesis. In
addition, you’ll make use of the improved zoom functionality to get a better shot.

Read on; you’ll be pleasantly surprised how easy it is to implement these features.

Note: To follow along with this project, you need to own, beg, borrow, or steal
an iOS device that has a camera installed. The simulator just won’t cut it for
this project – sorry!

Chapter 22: What’s New in AV
Foundation
By Matt Galloway

iOS 7 by Tutorials Chapter 22: What’s New in AVFoundation

 670

Getting started
Open Xcode and create a new project by navigating to File\New\Project... Select
the iOS\Application\Single View Application template and click Next. Name
the project ColloQR, choose iPhone for Devices, and click Next. Finally, choose a
convenient location to save the project.

Note: Wondering why the app is named “ColloQR”? Well, it’s an
unapologetically cheesy portmanteau of “Colloquy” and “QR” — namely, a QR
code reader that has a conversation with you!

You now have a project with a single storyboard and a single view controller. It's
pretty bare at the moment. To start, you’ll put the view controller into a navigation
controller so that it can at least have a title.

Open Main.storyboard, select the view controller in the scene, and select
Editor\Embed In\Navigation Controller. Finally, select the navigation bar that
appears and set its title to ColloQR.

The base project is all set up —it's time to get cracking on the camera work!

Working with the camera
First you need to import the AV Foundation framework in order to work with its
juicy new features. Open ViewController.m and add the following import to the
top of the file:

@import AVFoundation;

Next, add the following instance variables to the implementation declaration:

@implementation ViewController {
 AVCaptureSession *_captureSession;
 AVCaptureDevice *_videoDevice;
 AVCaptureDeviceInput *_videoInput;
 AVCaptureVideoPreviewLayer *_previewLayer;
 BOOL _running;
}

Here’s a quick rundown of these instance variables:

1. _captureSession – AVCaptureSession is the core media handling class in AV
Foundation. It talks to the hardware to retrieve, process, and output video. A
capture session wires together inputs and outputs, and controls the format and
resolution of the output frames.

iOS 7 by Tutorials Chapter 22: What’s New in AVFoundation

 671

2. _videoDevice – AVCaptureDevice encapsulates the physical camera on a device.
Modern iPhones have both front and rear cameras, while other devices may only
have a single camera.

3. _videoInput – To add an AVCaptureDevice to a session, wrap it in an
AVCaptureDeviceInput. A capture session can have multiple inputs and multiple
outputs.

4. _previewLayer – AVCaptureVideoPreviewLayer provides a mechanism for
displaying the current frames flowing through a capture session; it allows you to
display the camera output in your UI.

5. _running – This holds the state of the session; either the session is running or it’s
not.

Your instance variables are declared; now your need to initialize them. Add the
following method to ViewController.m:

- (void)setupCaptureSession {
 // 1
 if (_captureSession) return;

 // 2
 _videoDevice = [AVCaptureDevice
 defaultDeviceWithMediaType:AVMediaTypeVideo];
 if (!_videoDevice) {
 NSLog(@"No video camera on this device!");
 return;
 }

 // 3
 _captureSession = [[AVCaptureSession alloc] init];

 // 4
 _videoInput = [[AVCaptureDeviceInput alloc]
 initWithDevice:_videoDevice error:nil];

 // 5
 if ([_captureSession canAddInput:_videoInput]) {
 [_captureSession addInput:_videoInput];
 }

 // 6
 _previewLayer = [[AVCaptureVideoPreviewLayer alloc]
 initWithSession:_captureSession];
 _previewLayer.videoGravity =
 AVLayerVideoGravityResizeAspectFill;
}

iOS 7 by Tutorials Chapter 22: What’s New in AVFoundation

 672

The above method sets up the capture session. The following points explain the
code comment by comment:

1. If the session has already been created, then exit early as there’s no need to set
things up again.

2. Initialize the video device by obtaining the type of the default video media
device. This returns the most relevant device available. In practice, this generally
references the device’s rear camera. If there’s no camera available, this method
will return nil and exit.

3. Initialize the capture session so you’re prepared to receive input.

4. Create the capture input from the device obtained in comment 2.

5. Query the session with canAddInput: to determine if it will accept an input. If so,
call addInput: to add the input to the session.

6. Finally, create and initialize a preview layer and indicate which capture session to
preview. Set the gravity to "resize aspect fill" so that frames will scale to fit the
layer, clipping them if required to maintain the aspect ratio.

Note: Video gravity modes are similar to UIView's content modes, only with
fewer options as not all of UIView's content modes make sense for video.

Your preview layer is ready to roll, but you need somewhere for it to live.

Creating the preview view
Open Main.storyboard, drag a UIView onto the view controller, and make it fill the
entire view. Next, add an outlet for the new view, name it previewView and wire it
up. This serves a container for the preview layer.

Back in ViewController.m, modify viewDidLoad as shown below:

- (void)viewDidLoad {
 [super viewDidLoad];

 [self setupCaptureSession];

 _previewLayer.frame = _previewView.bounds;
 [_previewView.layer addSublayer:_previewLayer];
}

The code above creates the capture session, sets up the preview layer to fill the
container view and adds it as a sublayer.

Next, add the following two methods to ViewController.m:

- (void)startRunning {

iOS 7 by Tutorials Chapter 22: What’s New in AVFoundation

 673

 if (_running) return;
 [_captureSession startRunning];
 _running = YES;
}

- (void)stopRunning {
 if (!_running) return;
 [_captureSession stopRunning];
 _running = NO;
}

These methods start and stop the session if required. The _running instance
variable prevents unnecessary actions, like starting running sessions, or stopping
terminated sessions.

The app should be a good citizen and start and stop the session as necessary. In
your app, sessions run only when the view controller is on screen.

Add the following two methods to ViewController.m:

- (void)viewDidAppear:(BOOL)animated {
 [super viewDidAppear:animated];
 [self startRunning];
}

- (void)viewWillDisappear:(BOOL)animated {
 [super viewWillDisappear:animated];
 [self stopRunning];
}

The above methods hook into the standard UIViewController methods to ensure
the session only runs when the view controller is visible. However, that’s only half
of the solution; you also need to stop the session when the app is put into the
background and restart it when the app comes back to the foreground.

Add the following notification registrations to viewDidLoad: in ViewController.m:

[[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(applicationWillEnterForeground:)
 name:UIApplicationWillEnterForegroundNotification
 object:nil];

[[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(applicationDidEnterBackground:)
 name:UIApplicationDidEnterBackgroundNotification

iOS 7 by Tutorials Chapter 22: What’s New in AVFoundation

 674

 object:nil];

The code above takes care of starting and stopping the session depending on
whether the app is in the foreground or background.

Next, add the following implementation of the registered selectors to
ViewController.m:

- (void)applicationWillEnterForeground:(NSNotification*)note {
 [self startRunning];
}

- (void)applicationDidEnterBackground:(NSNotification*)note {
 [self stopRunning];
}

Now the session will start and stop as required.

Build and run your project; as noted at the beginning of this chapter, you will need
to run your app on a physical device that has at least one camera. The simulator is
a pretty useful tool, but it can’t simulate video capture devices.

Once your app is running, you’ll see the camera’s images displayed on-screen,
similar to the image below:

iOS 7 by Tutorials Chapter 22: What’s New in AVFoundation

 675

If you see the exact same image as above, then you have your camera pointed at
the author’s laptop — and that’s just plain creepy!

The video capture is working well; it’s time to do something with that video input.

Detecting machine readable codes
In addition to processing and displaying video, AV Foundation detects and decodes
a comprehensive list of 1-D and 2-D barcodes:

1. QR code

2. Aztec

3. EAN13

4. EAN8

5. UPC-E

6. PDF417

7. Code 93

8. Code 39

9. Code 39 mod 43

You have probably seen some of these codes in action, even though you may not
have known their names. EAN13 is a common standard in Europe for marking
items, whereas UPC-E is favored in the United States. PDF417 is used by some mail
services and is also the standard for airline boarding passes.

However, the QR code is probably pretty familiar to mobile users; that’s the type of
code you’ll read in your app.

Open ViewController.m and add the following instance variable to the
implementation block:

AVCaptureMetadataOutput *_metadataOutput;

AVCaptureMetadataOutput provides a callback to the application when metadata is
detected in a video frame. AV Foundation supports two types of metadata: machine
readable codes and face detection.

You need a way to capture and process that metadata. Add the following code to
the end of setupCaptureSession in ViewController.m:

_metadataOutput = [[AVCaptureMetadataOutput alloc] init];

dispatch_queue_t metadataQueue =
 dispatch_queue_create("com.razeware.ColloQR.metadata", 0);

iOS 7 by Tutorials Chapter 22: What’s New in AVFoundation

 676

[_metadataOutput setMetadataObjectsDelegate:self
 queue:metadataQueue];

if ([_captureSession canAddOutput:_metadataOutput]) {
 [_captureSession addOutput:_metadataOutput];
}

Here you initialize the output with a delegate and then add it to the session. Just as
you did with the inputs, you need to query canAddOutput: first to see if it’s okay to
add an output to your session.

AV Foundation is designed for high throughput and low latency; therefore any
processing and analysis tasks should be moved off of the main thread if at all
possible.

Similar to the delegate object, AVCaptureMetadataOutput requires that you provide a
dispatch queue to make delegate callbacks. This frees the media subsystem to
continue processing frames from the camera. If callbacks were executed in a
synchronous manner, a long-running delegate callback would block frame
processing until it was complete.

This might not be an issue in a simple one-input one-output system. However,
asynchronous processing of callbacks is key in a multi-output system so that long-
running callbacks on one output don’t cause frame drops in other outputs.

In ViewController.m, modify the class continuation category declaration as shown
below:

@interface ViewController ()
 <AVCaptureMetadataOutputObjectsDelegate>

Next, add the following method to ViewController.m to implement the delegate
declared:

- (void)captureOutput:(AVCaptureOutput *)captureOutput
 didOutputMetadataObjects:(NSArray *)metadataObjects
 fromConnection:(AVCaptureConnection *)connection
{
 [metadataObjects
 enumerateObjectsUsingBlock:^(AVMetadataObject *obj,
 NSUInteger idx,
 BOOL *stop)
 {
 NSLog(@"Metadata: %@", obj);
 }];
}

iOS 7 by Tutorials Chapter 22: What’s New in AVFoundation

 677

The metadata output calls the above method every time it detects new metadata.
At this point, the code simply logs each piece of metadata as it’s detected. This is
sufficient for testing purposes; you’ll flesh out the rest of this implementation later.

There’s one last tweak before you can build and run. Add the following line to
startRunning in ViewController.m, immediately underneath the line
[_captureSession startRunning];:

_metadataOutput.metadataObjectTypes =
 _metadataOutput.availableMetadataObjectTypes;

This sets the types of metadata in which your app is interested; in this case you’ll
detect all available types of metadata.

Build and run your app; pass your camera over the following QR code while keeping
an eye on the Xcode console:

Once your device processes the QR code above, you should see the following output
displayed:

2013-07-03 21:57:03.758 ColloQR[1262:1303] Metadata:
<AVMetadataMachineReadableCodeObject: 0x15e515d0> type "org.iso.QRCode",
bounds { 0.2,0.1 0.5x0.8 }, corners { 0.2,0.9 0.2,0.1 0.7,0.1 0.7,0.9 }, time
31399588077583, stringValue "W00t! A QR code!"

There you are — your first scanned QR code. Feel free to try this out on any other
QR codes nearby, or perform a quick Internet search.

Look closely at the output above and you’ll see the metadata includes more
information than just the contents of the code in stringValue, including the bounds
and corners of the QR image.

iOS 7 by Tutorials Chapter 22: What’s New in AVFoundation

 678

You’re not done yet! Many code readers provide visual feedback to the user to
indicate if the code is properly positioned and capable of being read; next you’ll use
the bounds and corner metadata to draw an overlay on the camera view to achieve
this.

Drawing overlays
The bounds metadata defines a rectangle that exactly contains the image, while the
corner metadata defines the coordinates of the image’s corners. The diagram below
displays the difference between the two:

When the camera and the image are aligned perfectly, the bounds and corners
depict the same region. However, holding the camera perfectly parallel to the
image is nearly impossible, so it’s useful to read and display both pieces of
metadata.

Open ViewController.m and add the following instance variable to the
implementation block:

NSMutableDictionary *_barcodes;

This provides dictionary storage for all detected barcodes, keyed by the barcodes’
contents.

Add the following line to viewDidLoad in ViewController.m:

_barcodes = [NSMutableDictionary new];

_barcodes provides you with a dictionary to index the detected barcodes, but you
also need to store the metadata associated with each barcode. It sounds like a class
would be perfect for this job.

iOS 7 by Tutorials Chapter 22: What’s New in AVFoundation

 679

Add the following class definition to the top of ViewController.m, directly under
the imports:

@interface Barcode : NSObject
@property (nonatomic, strong)
 AVMetadataMachineReadableCodeObject *metadataObject;
@property (nonatomic, strong) UIBezierPath *cornersPath;
@property (nonatomic, strong) UIBezierPath *boundingBoxPath;
@end

@implementation Barcode
@end

Note: Technically you could put this class in its own file, but to keep this
tutorial simple just store it in ViewController.m.

Add the following method to ViewController.m:

- (Barcode*)processMetadataObject:
 (AVMetadataMachineReadableCodeObject*)code
{
 // 1
 Barcode *barcode = _barcodes[code.stringValue];

 // 2
 if (!barcode) {
 barcode = [Barcode new];
 _barcodes[code.stringValue] = barcode;
 }

 // 3
 barcode.metadataObject = code;

 // Create the path joining code's corners

 // 4
 CGMutablePathRef cornersPath = CGPathCreateMutable();

 // 5
 CGPoint point;
 CGPointMakeWithDictionaryRepresentation(
 (CFDictionaryRef)code.corners[0], &point);

 // 6

iOS 7 by Tutorials Chapter 22: What’s New in AVFoundation

 680

 CGPathMoveToPoint(cornersPath, nil, point.x, point.y);

 // 7
 for (int i = 1; i < code.corners.count; i++) {
 CGPointMakeWithDictionaryRepresentation(
 (CFDictionaryRef)code.corners[i], &point);
 CGPathAddLineToPoint(cornersPath, nil,
 point.x, point.y);
 }

 // 8
 CGPathCloseSubpath(cornersPath);

 // 9
 barcode.cornersPath =
 [UIBezierPath bezierPathWithCGPath:cornersPath];
 CGPathRelease(cornersPath);

 // Create the path for the code's bounding box

 // 10
 barcode.boundingBoxPath =
 [UIBezierPath bezierPathWithRect:code.bounds];

 // 11
 return barcode;
}

The above method retrieves existing Barcode objects from the dictionary — or
creates new Barcode dictionary entries as required — and creates paths to
represent the bounds and corners of the stored Barcode objects.

The points below explain the method in further detail, comment by comment:

1. Query the dictionary of Barcode objects to see if a Barcode with the same
contents is already cached.

2. If not, create a new Barcode object and add it to the dictionary.

3. Store the barcode’s metadata in the cached Barcode object for later.

4. Instantiate cornersPath to store the path joining the four corners of the code.

5. Convert the first corner coordinate to CGPoint instances using some CoreGraphics
calls.

6. Begin the path at the corner defined in Step 5.

7. Loop through the other three corners, creating the path as you go.

8. Close the path by joining the fourth point to the first point.

iOS 7 by Tutorials Chapter 22: What’s New in AVFoundation

 681

9. Create a UIBezierPath object from cornersPath and store it in the Barcode object.

10. Create the bounding box path using bezierPathWithRect:.

11. Finally, return the Barcode object.

That takes care of calculating the image’s corner and bounds paths. Now you just
need some code that will iterate through the cached Barcode objects and draw
these paths on-screen.

Still working in ViewController.m, replace the contents of
captureOutput:didOutputMetadataObjects:fromConnection: with the following:

// 1
NSMutableSet *foundBarcodes = [NSMutableSet new];

[metadataObjects enumerateObjectsUsingBlock:
^(AVMetadataObject *obj, NSUInteger idx, BOOL *stop) {
 NSLog(@"Metadata: %@", obj);
 // 2
 if ([obj isKindOfClass:
 [AVMetadataMachineReadableCodeObject class]])
 {
 // 3
 AVMetadataMachineReadableCodeObject *code =
 (AVMetadataMachineReadableCodeObject*)
 [_previewLayer transformedMetadataObjectForMetadataObject:obj];
 // 4
 Barcode *barcode = [self processMetadataObject:code];
 [foundBarcodes addObject:barcode];
 }
}];

dispatch_sync(dispatch_get_main_queue(), ^{
 // Remove all old layers
 // 5
 NSArray *allSublayers = [_previewView.layer.sublayers copy];
 [allSublayers enumerateObjectsUsingBlock:
 ^(CALayer *layer, NSUInteger idx, BOOL *stop) {
 if (layer != _previewLayer) {
 [layer removeFromSuperlayer];
 }
 }];

 // Add new layers
 // 6
 [foundBarcodes enumerateObjectsUsingBlock:
 ^(Barcode *barcode, BOOL *stop) {

iOS 7 by Tutorials Chapter 22: What’s New in AVFoundation

 682

 CAShapeLayer *boundingBoxLayer = [CAShapeLayer new];
 boundingBoxLayer.path = barcode.boundingBoxPath.CGPath;
 boundingBoxLayer.lineWidth = 2.0f;
 boundingBoxLayer.strokeColor =
 [UIColor greenColor].CGColor;
 boundingBoxLayer.fillColor =
 [UIColor colorWithRed:0.0f
 green:1.0f
 blue:0.0f
 alpha:0.5f].CGColor;
 [_previewView.layer addSublayer:boundingBoxLayer];

 CAShapeLayer *cornersPathLayer = [CAShapeLayer new];
 cornersPathLayer.path = barcode.cornersPath.CGPath;
 cornersPathLayer.lineWidth = 2.0f;
 cornersPathLayer.strokeColor =
 [UIColor blueColor].CGColor;
 cornersPathLayer.fillColor =
 [UIColor colorWithRed:0.0f
 green:0.0f
 blue:1.0f
 alpha:0.5f].CGColor;
 [_previewView.layer addSublayer:cornersPathLayer];
 }];
});

Here’s a description of what’s happening in the above code, comment by comment:

1. Create an NSMutableSet so you can easily enumerate the detected barcodes.

2. Process only the objects of type AVMetadataMachineReadableCodeObject. Recall
that you configured the metadata output in startRunning to accept all metadata
types; you need to filter out anything that’s not a machine readable code.

3. Transform the image’s bounds and corner coordinates — that are represented in
relative coordinates — into the coordinate space of your containing view. In the
relative coordinate system, an x value of 1.0 is the right hand side of the frame,
while an x coordinate of 0.5 is in the middle of the frame. The preview layer has
the very handy transformedMetadataObjectForMetadataObject: to do this task for
you, which saves you from handling a ton of coordinate math.

4. Call the method you just wrote to process the barcode data, and add it to the
set.

5. Remove all sublayers from the preview view by shipping a dispatch back to the
main queue where the UI work is performed.

6. Finally, enumerate all the detected barcodes and add a CAShapeLayer for the
bounding box path and corner path of each one. The shape layers have different

iOS 7 by Tutorials Chapter 22: What’s New in AVFoundation

 683

colors to be visually distinct and have an alpha value of 0.5 so that the original
code image can be seen through the drawn shapes.

You’ve done well to get through the overlay code — you deserve to see the fruits of
your labors!

Build and run your app, hover the camera over a QR code of your choice, and you
should see something similar to the image below:

Move the camera around to view the QR code from different angles and see for
yourself how the bounding box and corners relate to one another.

Displaying the codes on-screen is pretty cool, but this is the 21st century, after all
— what if your app could speak the contents of the code to you?

Adding Speech Synthesis
iOS 7 brings speech synthesis to AV Foundation; modifying your app to speak the
contents of barcodes is the last step in creating your fully pimped-out code reader.

Open ViewController.m and add the following instance variable to the
implementation block:

AVSpeechSynthesizer *_speechSynthesizer;

iOS 7 by Tutorials Chapter 22: What’s New in AVFoundation

 684

Now add the following line of code to viewDidLoad in ViewController.m:

_speechSynthesizer = [[AVSpeechSynthesizer alloc] init];

This one line of code is all that you need to initialize the speech synthesizer.
Seriously — it’s that simple to implement speech synthesis in your app.

The speech synthesizer controls playback and queuing of individual speech items,
or “utterances”. The metadata output triggers the callback every time the video
frame updates – but you don't want your synthesizer to speak every time there’s a
frame update. Otherwise, your app will sound like that guy in the office down the
hall that never…stops….talking.

Tracking barcode changes
Add the following line to the very top of
captureOutput:didOutputMetadataObjects:fromConnection: in ViewController.m:

NSSet *originalBarcodes =
 [NSSet setWithArray:_barcodes.allValues];

The above set stores all detected barcodes before processing the new frame.
Comparing the cached set of barcodes against the newly detected barcodes allows
you to cast out the ones that haven’t changed.

Add the following code immediately after the enumerateObjectsUsingBlock:
enumerator section in fromConnection:, just after the closing “ }]; ”

NSMutableSet *newBarcodes = [foundBarcodes mutableCopy];
[newBarcodes minusSet:originalBarcodes];

Think about this in terms of a Venn diagram; if you take the set of current
barcodes, subtract the set of original barcodes, then all you’re left with is the set of
new barcodes.

Add the following code immediately below the lines you just added:

NSMutableSet *goneBarcodes = [originalBarcodes mutableCopy];
[goneBarcodes minusSet:foundBarcodes];

[goneBarcodes enumerateObjectsUsingBlock:
^(Barcode *barcode, BOOL *stop) {
 [_barcodes
 removeObjectForKey:barcode.metadataObject.stringValue];
}];

The code above puts a bit of set theory into action: take the set of original
barcodes, subtract the set of current barcodes, and you’re left with the set of old

iOS 7 by Tutorials Chapter 22: What’s New in AVFoundation

 685

barcodes that are no longer onscreen. Then you simply enumerate through the set
of old barcodes and remove them from the dictionary cache.

Creating utterances
Finally, add the following code to the end of the dispatch_sync block:

[newBarcodes enumerateObjectsUsingBlock:
^(Barcode *barcode, BOOL *stop) {
 AVSpeechUtterance *utterance =
 [[AVSpeechUtterance alloc]
 initWithString:barcode.metadataObject.stringValue];
 utterance.rate =
 AVSpeechUtteranceMinimumSpeechRate +
 ((AVSpeechUtteranceMaximumSpeechRate -
 AVSpeechUtteranceMinimumSpeechRate) * 0.5f);
 utterance.volume = 1.0f;
 utterance.pitchMultiplier = 1.2f;

 [_speechSynthesizer speakUtterance:utterance];
}];

The code above enumerates through the remaining set of barcodes, sets the rate,
volume and pitch of the speech, and then finally calls speakUtterance: to speak the
barcode data to you!

Note: Consult the AV Foundation framework documentation for more
information on the parameters for AVSpeechUtterance and their respective
ranges of acceptable values.

All that’s left to do is indicate you need to use the audio hardware to play your
utterances. Add the following code to the end of startRunning in
ViewController.m:

[[AVAudioSession sharedInstance]
 setCategory:AVAudioSessionCategoryPlayback
 withOptions:0
 error:nil];
[[AVAudioSession sharedInstance] setActive:YES error:nil];

AVAudioSession provides all of the necessary routines to enable the audio hardware
interfaces for your app. The code above indicates that the audio session should be
active when the camera is active.

Finally, add the following code to the end of stopRunning in ViewController.m:

iOS 7 by Tutorials Chapter 22: What’s New in AVFoundation

 686

[[AVAudioSession sharedInstance] setActive:NO error:nil];

Similarly, when your session is not active, the audio session is inactivated.

Build and run your app; it won't look any different, but hover the camera over a
barcode and your device will speak the barcode contents to you. Admittedly, the
speech synthesis is no Siri, but it’s cool nonetheless!

You can display barcodes on the screen, add overlays of bounds and corner paths
and use speech synthesis to speak the contents of the barcodes spoke to you — all
that’s left to do is add zoom capability to your app.

Zooming images
iOS 7 now contains the ability to instruct the session to grab frames directly from
the camera at a specific zoom factor.

Applying a transform to the preview layer was the only way to accomplish this in
earlier versions of iOS. However, this wasn’t ideal because the image would pixelate
as you zoomed. However, the frames of video that come from the sensor are
usually much larger than the screen size, so this pixelation isn’t necessary. The new
zoom APIs in iOS 7 keep your images crisp while zooming by chopping out the
required middle portion of the video frame to perform the zoom.

This keeps them crisp because no transform is being applied, rather just the desired
pixels are chopped from the middle of the frame. Obviously once you hit the limit
where the number of pixels cropped is smaller than the screen size, a transform will
have to be applied to zoom further.

Implementing pinch-to-zoom in your app is a good way to showcase this new
feature. Open ViewController.m and add the following instance variable to the
implementation block:

CGFloat _initialPinchZoom;

This holds the initial zoom factor during a pinch gesture.

Next, add the following code to the end of viewDidLoad:

[_previewView addGestureRecognizer:
 [[UIPinchGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(pinchDetected:)]];

Recall that previewView is a UIView that displays the camera preview layer. You add
the gesture recognizer here so that the pinch gesture will work anywhere on the
video display.

iOS 7 by Tutorials Chapter 22: What’s New in AVFoundation

 687

Add the following method to ViewController:

- (void)pinchDetected:(UIPinchGestureRecognizer*)recogniser {
 // 1
 if (!_videoDevice) return;

 // 2
 if (recogniser.state == UIGestureRecognizerStateBegan) {
 _initialPinchZoom = _videoDevice.videoZoomFactor;
 }

 // 3
 NSError *error = nil;
 [_videoDevice lockForConfiguration:&error];

 if (!error) {
 CGFloat zoomFactor;
 CGFloat scale = recogniser.scale;
 if (scale < 1.0f) {
 // 4
 zoomFactor = _initialPinchZoom -
 pow(_videoDevice.activeFormat.videoMaxZoomFactor,
 1.0f - recogniser.scale);
 } else {
 // 5
 zoomFactor = _initialPinchZoom +
 pow(_videoDevice.activeFormat.videoMaxZoomFactor,
 (recogniser.scale - 1.0f) / 2.0f);
 }

 // 6
 zoomFactor = MIN(10.0f, zoomFactor);
 zoomFactor = MAX(1.0f, zoomFactor);

 // 7
 _videoDevice.videoZoomFactor = zoomFactor;

 // 8
 [_videoDevice unlockForConfiguration];
 }
}

Here’s a description of the above code block, comment by comment:

1. Check if there’s a valid video device. If not, then bail. This is merely a safeguard
in the event that the capture session wasn't successfully created or you start
pinching before the camera preview is ready.

iOS 7 by Tutorials Chapter 22: What’s New in AVFoundation

 688

2. Capture the initial zoom factor at the start of the gesture recognition.
videoZoomFactor is your first taste of the new zoom API; it defines the zoom
factor to apply to the video frames.

3. Lock the video device for configuration. You must always obtain a lock before
editing the state of a device.

4. If the lock was created without error, then calculate the direction of zoom. A
scale value less than 1.0 indicates an inward pinch, so the camera should zoom
out.

5. A scale value scale greater than 1.0 indicates an outward pinch, and the camera
should zoom in accordingly. The math used in Steps 4 and 5 simply make the
zoom animation feel natural.

6. Limit the zoom factors to sensible minimum and maximum values.

7. Set the zoom factor on the video device.

8. Finally, unlock the video device as you’re done with configuration. Always make
sure that your lock and unlock actions are balanced; or the device might end up
locked indefinitely!

Once again, AV Foundation wraps some very complex actions in a very
straightforward API.

Build and run your app one final time; watch how the image scales in a natural
fashion and maintains image quality as you zoom in and out.

Note: rampToVideoZoomFactor:withRate: provides another mechanism to
gradually change the zoom factor via the rate parameter instead of setting it
immediately. This is especially helpful when zooming automatically to a
detected feature.

Challenges
AV Foundation does a lot of heavy lifting for you, but you still need to know how to
use it! To that end, there are a few challenges below to test your knowledge on the
workings of AV Foundation. Completing these challenges will show that you’re well
on your way to understanding the use of AV Foundation.

Challenge 1: Zoom Slider
Not everyone likes pinch gestures to zoom as they don’t give a great deal of
precision. Your challenge is to add a slider to the UI that changes the zoom factor.

As a hint, you’ll find the following function useful:

CGFloat ZoomFactorCalc(CGFloat maxZoomFactor,

iOS 7 by Tutorials Chapter 22: What’s New in AVFoundation

 689

 CGFloat sliderValue)
{
 CGFloat factor = pow(maxZoomFactor, sliderValue);
 return MIN(10.0f, factor);
}

To use this function, provide the maximum zoom factor supported by the device
you’re using, along with a sliderValue from 0.0 to 1.0. It will return the required
scaling value for the camera zoom using similar math to what you’ve already seen
in the tutorial.

Once you've finished this challenge, you should end up with a UI similar to this:

The slider at the bottom of the screen controls the zoom; sliding it all the way to
the left zooms all the way out, and sliding it all the way to the right zooms all the
way in.

Hint: Make sure you add the slider as a child of the root view in the view
controller – not the view used to display the preview layer!

Challenge 2: Alter the utterance settings
The speech synthesis in your app accepts parameters to control the speed, volume
and pitch of the spoken words. It would be a great idea to include the ability to
control these settings so the user could have some control over the speech engine.

iOS 7 by Tutorials Chapter 22: What’s New in AVFoundation

 690

Your task in this challenge is to add a speech settings menu that allows the user to
change the speed, volume and pitch of the utterances.

Your hint for this task is to use NSUserDefaults to save the settings and read them
back in when building an utterance.

The below image gives an example of how your settings screen might look — but
see how creative you can be in your implementation!

For bonus points, read up on how to change the base voice used for speech
synthesis. Check out the header file of AVSpeechSynthesisVoice for details on how to
go about this.

Challenge 3: Area of interest
You don’t always want to pick up barcodes in the entire visible range of your
camera; in fact, it’s more efficient to only use a small section of the view to scan
barcodes since AV Foundation won’t need to scan the whole frame each time it’s
refreshed.

For example, you could restrict the scan to the half-height, half-width center
portion of the frame. In this case, AV Foundation would only need to scan a quarter
of the pixels in the frame.

Still need a few hints? Okay, here they are:

• Add a plain UIView in your storyboard indicating the area that you want the user
to be able to scan a QR code in, color it black with 25% transparency, and
connect it to an outlet.

iOS 7 by Tutorials Chapter 22: What’s New in AVFoundation

 691

• You want to set the rectOfInterest method of AVCaptureMetadataOutput to restrict
the scan area. However, you can’t just pass the frame of the view directly – you’ll
need to use the metadataOutputRectOfInterestForRect: method of
AVCaptureVideoPreviewLayer to convert the coordinates first.

The screenshots below suggest a possible UI for this challenge:

The gray overlay box in the center of the view shows the active scan area for the
barcodes. The screenshot on the left shows a QR being detected inside the box,
while the right screenshot shows the same QR code outside the detection area.

Map Kit is one of the most commonly used frameworks in iOS, as many mobile apps
use maps extensively. From navigation, to finding a good restaurant or pub, mobile
apps often need to display data on a map.

The core functionality of Map Kit has not changed much since its introduction in iOS
3. However, over the years Apple has been quietly adding feature after feature. In
iOS 6 we started to see the first really interesting additions, such as the
introduction of a search API to look up points of interest, as well as the ability for
apps to register themselves as route providers.

The biggest changes over the years were vector map tiles and Flyover; a mode
where you can view select major cities in 3D. Flyover allows you to change the
viewing angle and behave as though you're a bird in the sky above the city skyline!
This was cool eye candy, but it was never available to third party apps — until iOS
7 came along.

On top of this, iOS 7 brings about a change in the way overlays on map views are
handled. You no longer provide a view for each overlay, but instead you create a
renderer that efficiently draws the overlay section by section.

 iOS 7 also delivers a handful of new APIs:

• Directions: to obtain directions between two locations

• Snapshots: to asynchronously render a section of a map as an image

• Cameras: to set and manipulate the viewing angle of a map

In this chapter you're going to create an app that searches for a location, and then
generates a route to get you there. The route will be based on the airport nearest
to your current location, and the one nearest your destination. You'll learn all about
the new APIs and see how the overlay handling has changed.

Fasten your seatbelts, ladies and gentlemen, and observe the no-smoking signs;
you’re now en-route to great destinations with Map Kit and iOS 7!

Chapter 23: What’s New in MapKit

By Matt Galloway

iOS 7 by Tutorials Chapter 23: What’s New in MapKit

 693

Getting started
The resources for this chapter include a starter project called FlyMeThere that has
the user interface pre-made so you can keep focused on MapKit. Open up the
project in Xcode and have a look around to get acquainted with the app.

Open ViewController.m and you'll see that loadAirportData loads data from a file
called airports.csv. This file contains the latitude, longitude, name and city of all
major airports in the world. Each airport’s data is loaded into an instance of the
model class Airport and stored in an array within the view controller.

Note: The airport data is kindly supplied by OurAirports
(http://www.ourairports.com/data/). I've supplied the latest file with the
project but feel free to grab an updated version if there is one. Please be
aware that if the file format has changed then the parsing code will no longer
work.

As it stands now, you can search for points of interest, and you can even choose
from a list of the discovered points. But once you select a point of interest, the app
doesn't do anything. That's expected. You're going to add a whole load of
functionality now that will make use of the basis in this starter project.

Searching for points of interest
Performing point of interest searches is technically not a new addition to iOS — it
was added in iOS 6.1 as the only real feature of interest in that rather minor
update. Consider yourself forgiven if you overlooked it.

The code for performing these searches is already present in the starter project. To
see how it works, open ViewController.m and look at startSearchForText:. This
method executes the search operation and then hands the results to a
UIActionSheet to display and handle selection of the desired result.

The classes used to search are MKLocalSearchRequest and MKLocalSearch. First, you
create an instance of MKLocalSearchRequest to encapsulate what you wish to search
for. In the case of this app, you set naturalLanguageQuery to the searchText string
passed to startSearchForText:.

The MKLocalSearch class executes the actual search; you create an instance of it
using the local search request as described above. The search operation actually
happens asynchronously, so it starts and executes the passed-in completion block
once the search completes.

Build and run your app and perform a search. You'll see something like image
below:

iOS 7 by Tutorials Chapter 23: What’s New in MapKit

 694

As it sits right now, the app isn’t terribly exciting. Time to get cracking on adding
some new features!

Enabling 3D mode
At the moment, you’ll notice that you can't change the viewing angle of the map,
also known as the pitch. By default, rotation of map views is enabled, but changing
the pitch is not.

Fortunately it's very easy to enable pitching. Add the following line of code to the
end of viewDidLoad in ViewController.m:

_mapView.pitchEnabled = YES;

Build and run your app again and zoom in to your location. Then use a two-finger
pan, up or down, to change the viewing angle. The map’s pitch will change, as
shown below:

iOS 7 by Tutorials Chapter 23: What’s New in MapKit

 695

Note: The two-finger pan gesture is much easier to do on an actual device, so
I recommend you try this on an actual device instead of the simulator.

However, if you don’t have a device to test with, here’s how you can perform
the two finger up-or-down pan gesture in the simulator. Hold down the option
(⌥) key and move the mouse so that the two touches are almost touching
each other and in a horizontal line. Then hold down the shift key and drag the
mouse up or down.

Try zooming right in on a location you know and changing the pitch. Then move
around the map, zoom a bit and rotate the map. Pretty neat eh? That's the first
new bit of Map Kit — and you only had to add a single line of code to get there.

Aside: Location simulation
During the course of this chapter, you may find that you want to run the app as if
your device were located in a different city, in order to test out some of the
different Map Kit features. Fortunately, Xcode has a rather handy feature to do just
that.

To change your virtual location while an app is running, click on the Location icon
situated on the toolbar of the Debug area, right next to the debugger controls. A
menu will pop up with a list of pre-filled locations; simply select the one you want
from the list and then the app will think you’re in that location, as shown below:

iOS 7 by Tutorials Chapter 23: What’s New in MapKit

 696

Calculating the route
The next feature you’ll add is the route calculation feature. When the user selects a
location, the app will determine which airport is closest to the device and which
airport is closest to the destination. This will form the flying leg of the journey. For
example, to calculate a route London to New York, the app will route you from
London’s Heathrow airport to New York’s LaGuardia airport.

Later on in the chapter, you’ll use the new directions API to provide directions from
the user's current location to the departing airport, and from the destination airport
to the actual destination. That means you need to calculate three legs of the
journey separately:

1. Current location to departing airport via the directions API

2. Departing airport to destination airport via airplane

3. Destination airport to actual destination via directions API

The airport-to-airport calculation is the easiest, so you’ll tackle this first.

Note: The app will not take into account actual airline routes. It simply
chooses the nearest airport to both the source and destination, even if no
airline actually flies between those cities! There is data out there that
describes every airline route, but using it is beyond the scope of this chapter.

The sample project contains a model to hold the route. Open Route.h; you'll see it
has properties representing the start and destination points, the departing and
destination airports, as well as the three sections of the route. You’ll populate the
two MKRoute properties later using the new directions API; the flyPartPolyline is
the bit you'll implement now.

iOS 7 by Tutorials Chapter 23: What’s New in MapKit

 697

Aside: Geodesic polylines
Now is a good time now to introduce one of the new features of Map Kit in iOS 7.0.
The flyPartPolyline property in your app is an instance of MKGeodesicPolyline.
Polylines have been part of Map Kit since iOS 4.0, but until now it was only possible
to draw straight lines between two points on a map. The geodesic polyline
describes a line between two points that follows the curvature of the earth.

Confused? Consider the following screenshot:

The blue line is the original MKPolyline class that has been around since iOS 4.0.
However, in real life you can’t follow a perfectly straight line between two points, as
you’re forced to follow the curvature of the earth as you travel. Flat Earth
proponents, stay out of this! !

The red line — which is the geodesic polyline — is the shortest distance you can
travel when you take the curvature of the earth into consideration. Airplanes don’t
travel on the ground, but this path is still a pretty close approximation of the route
an airplane would take between these two locations.

Finding the source and destination airports
Now that you have a model to hold the full route, it's time to start calculating it.
Open ViewController.m and add the following method:

- (void)setupWithNewRoute:(Route*)route {
 // 1
 if (_route) {
 [_mapView removeAnnotations:@[_route.source,
 _route.destination,
 _route.sourceAirport,

iOS 7 by Tutorials Chapter 23: What’s New in MapKit

 698

 _route.destinationAirport]];
 [_mapView removeOverlays:
 @[_route.flyPartPolyline]];
 _route = nil;
 }

 // 2
 _route = route;

 // 3
 [_mapView addAnnotations:@[route.source,
 route.destination,
 route.sourceAirport,
 route.destinationAirport]];

 // 4
 [_mapView addOverlay:route.flyPartPolyline
 level:MKOverlayLevelAboveRoads];

 // 5
 MKMapPoint points[4];
 points[0] =
 MKMapPointForCoordinate(route.source.coordinate);
 points[1] =
 MKMapPointForCoordinate(route.destination.coordinate);
 points[2] =
 MKMapPointForCoordinate(route.sourceAirport.coordinate);
 points[3] =
 MKMapPointForCoordinate(route.destinationAirport.coordinate);

 MKCoordinateRegion boundingRegion =
 CoordinateRegionBoundingMapPoints(points, 4);
 boundingRegion.span.latitudeDelta *= 1.1f;
 boundingRegion.span.longitudeDelta *= 1.1f;
 [_mapView setRegion:boundingRegion animated:YES];
}

Here's what the above method does:

1. Checks if there's an existing route displayed, and if so, removes it from the map.
The reason for doing this will become apparent in just a moment.

2. Sets the new route to the instance variable.

3. Adds the annotations to the map. This bit of code ensures that pins are displayed
for the source, destination and their respective airports.

4. Adds the geodesic polyline as an overlay.

iOS 7 by Tutorials Chapter 23: What’s New in MapKit

 699

5. Calculates the bounding box of all the points to be displayed and sets the map
view's region based on the bounding box to show the entire route.

Note: Bounding box is a term used in geometry; it refers to the smallest
measure (area or volume) within which a given set of points lie.

Now it's time to find those airports and call the method you just created. Add the
following method to ViewController.m:

- (void)calculateRouteToMapItem:(MKMapItem*)item {
 // 1
 [self performAfterFindingLocation:
 ^(CLLocationCoordinate2D userLocation) {
 // 2
 MKPointAnnotation *sourceAnnotation =
 [MKPointAnnotation new];
 sourceAnnotation.coordinate = userLocation;
 sourceAnnotation.title = @"Start";

 MKPointAnnotation *destinationAnnotation =
 [MKPointAnnotation new];
 destinationAnnotation.coordinate =
 item.placemark.coordinate;
 destinationAnnotation.title = @"End";

 // 3
 Airport *sourceAirport =
 [self nearestAirportToCoordinate:userLocation];
 Airport *destinationAirport =
 [self nearestAirportToCoordinate:item.placemark.coordinate];

 // 4
 Route *route = [Route new];
 route.source = sourceAnnotation;
 route.destination = destinationAnnotation;
 route.sourceAirport = sourceAirport;
 route.destinationAirport = destinationAirport;

 // 5
 CLLocationCoordinate2D coords[2] =
 {sourceAirport.coordinate,
 destinationAirport.coordinate};
 route.flyPartPolyline =
 [MKGeodesicPolyline polylineWithCoordinates:coords

iOS 7 by Tutorials Chapter 23: What’s New in MapKit

 700

 count:2];

 // 6
 [self setupWithNewRoute:route];

 // 7
 _searchBar.userInteractionEnabled = YES;
 }];
}

So what does this do?

1. First, you invoke performAfterFindingLocation: with a block containing the
remainder of the implementation, since you need to determine the user's location
before you can do anything else in this method.

2. Create annotations for the source and destination points.

3. Calculate the coordinates of the nearest airports by using the
nearestAirportToCoordinate: method that I added to the starter project for you.

4. Create and set up an instance of Route using the various bits of data you've just
sourced.

5. Create a geodesic polyline to join the two airports and add it to the route.

6. Invoke setupWithNewRoute: with the Route instance you created that contains the
new route.

7. Finally, re-enable user interaction on the search bar so that a new search can be
performed.

You're almost done, but there's just one final piece of the jigsaw. Still working in
ViewController.m, add the following method:

- (MKOverlayRenderer*)mapView:(MKMapView *)mapView
 rendererForOverlay:(id<MKOverlay>)overlay
{
 if ([overlay isKindOfClass:[MKPolyline class]]) {
 MKPolylineRenderer *renderer =
 [[MKPolylineRenderer alloc]
 initWithPolyline:(MKPolyline*)overlay];

 if (overlay == _route.flyPartPolyline) {
 renderer.strokeColor = [UIColor redColor];
 } else {
 renderer.strokeColor = [UIColor blueColor];
 }

 return renderer;

iOS 7 by Tutorials Chapter 23: What’s New in MapKit

 701

 }
 return nil;
}

This is one of the new MKMapViewDelegate methods added in iOS 7; if you have
previous experience with Map Kit then it’ll look awfully familiar — it's a replacement
for the method mapView:viewForOverlay:. In iOS 7 Apple parted ways with single-
view overlays and switched to use a renderer instead. The renderer's job is simple:
to draw sections of the overlay as and when they’re required.

This is far more efficient than the single-view approach, as it would be incredibly
expensive to draw an entire single view, especially if it covered the entire world.
The rendering approach draws only the required section, and only when it’s
required.

Finally, find actionSheet:clickedButtonAtIndex: in ViewController.m and find the
following two lines:

// TODO: Calculate route
_searchBar.userInteractionEnabled = YES;

Replace both of these lines with the following:

[self calculateRouteToMapItem:item];

This initiates the route calculation when the user selects a point of interest from the
search results.

Build and run your app; search for a destination location and select a result from
the list. Your map will look similar to the one below:

iOS 7 by Tutorials Chapter 23: What’s New in MapKit

 702

That's the geodesic polyline being drawn. Play around with different locations to see
what the geodesic polyline looks like for various points on the globe.

Note: If you search for somewhere a long distance away, especially changing
hemisphere, you may find that the map will not show the entire route. This is
because a map view will not zoom out further than when either dimension hits
its limit. In the case of this app, that is when the vertical dimension fits in the
north pole to the south pole. Zooming out further used to be possible pre-iOS
6, but it appears that since Apple introduced their own maps in iOS 6, it's no
longer possible. There's not much you can do about this unfortunately. In your
own apps you may want to consider detecting if this limit is hit (use the aspect
ratio of the map view to determine) and act accordingly.

Using renderers over single views
Earlier, you were introduced to the fact that single-view overlays have been
replaced with overlay renderers. If you're only using system-supplied overlays, then
you don’t need to do much to take advantage of renderers, as the MKOverlayView
subclasses of system-supplied overlays such as MKPolyline, MKCircle and
MKPolygon have been replaced with renderers. For example, MKPolyline had a
corresponding view of MKPolylineView, which has been replaced with
MKPolylineRenderer.

But what does using renderers mean for your app? You probably have some
existing code in other projects that looks a lot like the following:

iOS 7 by Tutorials Chapter 23: What’s New in MapKit

 703

MKPolyline *polyline = [MKPolyline polylineWithPoints:points
 count:count];
[self.mapView addOverlay:polyline];

...

- (MKOverlayView*)mapView:(MKMapView *)mapView
 viewForOverlay:(id<MKOverlay>)overlay
{
 MKPolylineView *view =
 [[MKPolylineView alloc] initWithOverlay:overlay];
 view.strokeColor = [UIColor redColor];
 view.lineWidth = 5.0f;
 return view;
}

It's incredibly easy to convert this to using renderers; you would simply replace
mapView:viewForOverlay: with the new delegate method, as follows:

- (MKOverlayRenderer*)mapView:(MKMapView *)mapView
 rendererForOverlay:(id<MKOverlay>)overlay
{
 MKPolylineRenderer *renderer =
 [[MKPolylineRenderer alloc] initWithOverlay:overlay];
 renderer.strokeColor = [UIColor redColor];
 renderer.lineWidth = 5.0f;
 return renderer;
}

The concept behind renderers is that users don’t often view the entire region for
which an overlay is valid. In FlyMeThere, you see the entire geodesic polyline, but if
you zoom in on a portion of the map, then only a portion of the polyline is visible.
Single-view overlays render the entire view, even if there isn’t any data to display
in the visible portion of the map.

Overlay renderers offer vast improvements over single view overlays. They draw
the visible portion into a graphics context, as well as sections to either side of the
visible portion to avoid rendering things on the fly while scrolling. As well, overlay
renderers permit multiple sections of the map to be rendered at the same time; this
means that the OS could use several background threads while rendering to make
full use of the available system resources.

You’re not just limited to system-supplied renderers either, you can create your
own just as you could create your own single-view overlays. Simply subclass
MKOverlayRenderer and implement a single method:

- (void)drawMapRect:(MKMapRect)mapRect

iOS 7 by Tutorials Chapter 23: What’s New in MapKit

 704

 zoomScale:(MKZoomScale)zoomScale
 inContext:(CGContextRef)context

Map Kit calls the above method to requests a section to be rendered. Map Kit
informs you of the rectangle of the map that needs to be drawn, at what scale and
into which graphics context. Then all you do is draw the overlay as indicated by the
parameters.

It's not often that you have to make your own custom overlay; only Map Kit
aficionados would really ever come close to needing custom overlays. However, if
you ever do need use them, renderers will undoubtedly make your life a lot easier
— and your app much more efficient!

Enough about renderers — time to get back to the FlyMeThere app!

Using the directions API
You now have the air leg of the journey; your next task is to generate the two
routes from the source and destination to their respective airports using the
destination API.

Open ViewController.m and add the following method:

- (void)obtainDirectionsFrom:(MKMapItem*)from
 to:(MKMapItem*)to
 completion:(void(^)(MKRoute*, NSError*))completion
{
 // 1
 MKDirectionsRequest *request =
 [[MKDirectionsRequest alloc] init];

 // 2
 request.source = from;
 request.destination = to;

 // 3
 request.transportType = MKDirectionsTransportTypeAutomobile;

 // 4
 MKDirections *directions =
 [[MKDirections alloc] initWithRequest:request];
 [directions calculateDirectionsWithCompletionHandler:
 ^(MKDirectionsResponse *response, NSError *error) {
 MKRoute *route = nil;

iOS 7 by Tutorials Chapter 23: What’s New in MapKit

 705

 // 5
 if (response.routes.count > 0) {
 route = response.routes[0];
 } else if (!error) {
 error =
 [NSError errorWithDomain:@"com.razeware.FlyMeThere"
 code:404
 userInfo:@{NSLocalizedDescriptionKey:
 @"No routes found!"}];
 }

 // 6
 if (completion) {
 completion(route, error);
 }
 }];
}

This method queries the directions API then calls a completion handler when it’s
finished. Either a route will be found or an error will be returned.

Here is what you do in this method:

1. Create an instance of MKDirectionsRequest to describe the request.

2. Set the source and destination properties.

3. The transport type is optional; here it’s set to automobile, but you may want to
allow your user to change this. The available options are
MKDirectionsTransportTypeAutomobile, MKDirectionsTransportTypeWalking or
MKDirectionsTransportTypeAny. Choosing MKDirectionsTransportTypeAny means
both automobile and walking routes will be considered.

4. Queries of the directions API are performed asynchronously. You create an
instance of MKDirections using an instance of MKDirectionsRequest and then start
the query by passing it a block to call upon completion.

5. Even if the query was successful, it’s still possible that there’s no valid route
between the starting point and the airport(I’ve been there; you can’t get there
from here.) If there is at least one route, use the first route returned; if there
were no results, then generate an error.

6. Finally, call the method's completion handler.

Now find calculateRouteToMapItem: in ViewController.m and replace steps four
through seven with the following:

// 1
MKMapItem *sourceMapItem =
 [self mapItemForCoordinate:userLocation];

iOS 7 by Tutorials Chapter 23: What’s New in MapKit

 706

MKMapItem *destinationMapItem = item;

// 2
MKMapItem *sourceAirportMapItem =
 [self mapItemForCoordinate:sourceAirport.coordinate];
sourceAirportMapItem.name = sourceAirport.title;

MKMapItem *destinationAirportMapItem =
 [self mapItemForCoordinate:destinationAirport.coordinate];
destinationAirportMapItem.name = destinationAirport.title;

__block MKRoute *toSourceAirportDirectionsRoute = nil;
__block MKRoute *fromDestinationAirportDirectionsRoute = nil;

// 3
dispatch_group_t group = dispatch_group_create();

// 4
// Find route to source airport
dispatch_group_enter(group);
[self obtainDirectionsFrom:sourceMapItem
 to:sourceAirportMapItem
 completion:^(MKRoute *route, NSError *error) {
 toSourceAirportDirectionsRoute = route;
 dispatch_group_leave(group);
 }];

// 5
// Find route from destination airport
dispatch_group_enter(group);
[self obtainDirectionsFrom:destinationAirportMapItem
 to:destinationMapItem
 completion:^(MKRoute *route, NSError *error) {
 fromDestinationAirportDirectionsRoute = route;
 dispatch_group_leave(group);
 }];

// 6
// When both are found, setup new route
dispatch_group_notify(group, dispatch_get_main_queue(),
^{
 if (toSourceAirportDirectionsRoute &&
 fromDestinationAirportDirectionsRoute)
 {
 Route *route = [Route new];

iOS 7 by Tutorials Chapter 23: What’s New in MapKit

 707

 route.source = sourceAnnotation;
 route.destination = destinationAnnotation;
 route.sourceAirport = sourceAirport;
 route.destinationAirport = destinationAirport;
 route.toSourceAirportRoute =
 toSourceAirportDirectionsRoute;
 route.fromDestinationAirportRoute =
 fromDestinationAirportDirectionsRoute;

 CLLocationCoordinate2D coords[2] =
 {sourceAirport.coordinate,
 destinationAirport.coordinate};
 route.flyPartPolyline =
 [MKGeodesicPolyline polylineWithCoordinates:coords
 count:2];

 [self setupWithNewRoute:route];
 } else {
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@"Oops!"
 message:@"Failed to find directions! Please try again."
 delegate:nil
 cancelButtonTitle:nil
 otherButtonTitles:@"OK", nil];
 [alert show];
 }

 _searchBar.userInteractionEnabled = YES;
});

Here’s what your modified code does:

1. Creates instances of MKMapItem to represent the source and destination.

2. Creates instances of MKMapItem to represent the airports. Why MKMapItem? Simply
because the directions API accepts these objects as arguments.

3. Creates a dispatch group to connect two critical sections of code that need to
complete before you proceed. There’s more about dispatch groups in the note box
below.

4. Requests the directions from the starting point to the departure airport. Retrieve
the route in the completion block and signal the dispatch group that this task is
done.

5. In a similar manner, it requests the directions from the destination airport to the
final destination.

6. Finally, register a block with the dispatch group to be executed once the two
directions API requests have completed. You instruct the group to execute this

iOS 7 by Tutorials Chapter 23: What’s New in MapKit

 708

block on the main queue as it handles updates to the UI. The block creates an
instance of Route; if no routes were found, then a UIAlertView is displayed.

Note: The dispatch group is an often-overlooked yet powerful feature of
Grand Central Dispatch (GCD), which allows you to group semi-related
actions. In the code above, you need to perform two directions API requests,
but can only continue processing once both have completed.

Rather than blocking the UI, which would be highly inappropriate and provide
a poor user experience, you simply use a dispatch group to keep track of the
blocks that have entered and exited the group. When the number of blocks
that have entered balances with the number of blocks that have exited, the
group can notify you to proceed with code execution.

It’s a little like a semaphore and a critical section had a bit too much to drink
one night, and this was the end result. In any case, try to find ways to use this
pattern in your own apps to reduce your code and make it more readable.

You're almost there; there's just one more thing to do. Find setupWithNewRoute: in
ViewController.m and replace it with the following code:

- (void)setupWithNewRoute:(Route*)route {
 if (_route) {
 [_mapView removeAnnotations:
 @[_route.source, _route.destination,
 _route.sourceAirport, _route.destinationAirport]];

 // 1
 [_mapView removeOverlays:
 @[_route.toSourceAirportRoute.polyline,
 _route.flyPartPolyline,
 _route.fromDestinationAirportRoute.polyline]];
 _route = nil;
 }

 _route = route;

 [_mapView addAnnotations:
 @[route.source, route.destination,
 route.sourceAirport, route.destinationAirport]];

 // 2
 [_mapView addOverlay:route.toSourceAirportRoute.polyline
 level:MKOverlayLevelAboveRoads];
 [_mapView

iOS 7 by Tutorials Chapter 23: What’s New in MapKit

 709

 addOverlay:route.fromDestinationAirportRoute.polyline
 level:MKOverlayLevelAboveRoads];

 [_mapView addOverlay:route.flyPartPolyline
 level:MKOverlayLevelAboveRoads];

 MKMapPoint points[4];
 points[0] =
 MKMapPointForCoordinate(route.source.coordinate);
 points[1] =
 MKMapPointForCoordinate(route.destination.coordinate);
 points[2] =
 MKMapPointForCoordinate(route.sourceAirport.coordinate);
 points[3] =
 MKMapPointForCoordinate(route.destinationAirport.coordinate);

 MKCoordinateRegion boundingRegion =
 CoordinateRegionBoundingMapPoints(points, 4);
 boundingRegion.span.latitudeDelta *= 1.1f;
 boundingRegion.span.longitudeDelta *= 1.1f;
 [_mapView setRegion:boundingRegion animated:YES];
}

Step 1 takes care of removing any existing path overlays from the map, while step
2 adds two more overlays to the map when a new route is set. These overlays
represent your journeys from your starting point to the departure airport, and from
the destination airport to your final destination.

The new overlays come directly from the instances of MKRoute found using the
directions API; the MKRoute objects come with a handy polyline property that you
can use to create a polyline that joins up all the points in the route.

Build and run your app; search for a destination and select it. Your map now boasts
blue lines showing the route to and from the relevant airports. Depending on how
close you are to your nearest airport, you may need to zoom in to the see the new
routes and annotations, as below:

iOS 7 by Tutorials Chapter 23: What’s New in MapKit

 710

Map cameras
Before iOS 7.0, you could only look down on a map from one point at one certain
zoom scale. You could manipulate the region displayed by setting the visible region,
or by setting the center coordinate and the zoom scale, but that was all. Since iOS
7.0 delivers the ability to rotate the map and project it in 3D, it also needs a more
complex method of managing the visible region — cameras.

A camera precisely describes the region of the map that is displayed, taking into
account any rotation and whether or not it’s 3D. This is all encapsulated in the new
MKMapCamera class.

Think of a camera as describing a position somewhere above the ground. If the
camera is pointing straight down, with the viewfinder showing north as up, west as
left etc., then that camera is emulating the viewpoint of maps prior to iOS 7. The
altitude of the camera gives rise to the zoom scale, while the position above the
ground where the camera is placed forms the center coordinate of the visible
region.

But cameras can do more than that. Consider the following diagram:

iOS 7 by Tutorials Chapter 23: What’s New in MapKit

 711

The above image demonstrates how a camera sees the world. A camera is
positioned somewhere in space based on its x, y and z coordinates. If the map is
rotated so that north is no longer north, that represents a rotation around the z-
axis. Entering 3D mode represents a rotation around the y-axis.

Fortunately, you don't really need to worry about the camera’s coordinates in space
too much; Apple has made this process painless. You simply need to consider a
heading, which describes the orientation of the map; and a pitch, which describes
the viewing angle. If both of these are 0, then the camera is looking down from
above, with north at the top of the map. In x-y-z coordinate space, heading
represents the rotation about the z-axis and pitch represents the rotation about the
y-axis.

Apple has provided a helper method for creating cameras, which makes things
tremendously easy for you, the developer. It's much simpler to think of a camera’s
position being described by its position, altitude and focal point. This is illustrated in
the following diagram:

z"

x"

y"

Eye$
Coordinate$

Looking0at$
Coordinate$

Eye$
Al3tude$

iOS 7 by Tutorials Chapter 23: What’s New in MapKit

 712

If the eye coordinate is equal to the looking-at coordinate, then the view will not be
in 3D mode. However, if the looking-at coordinate changes, then you’re working in
3D mode. In FlyMeThere, you're going to use cameras to let the user zoom in on
the four points of interest in their route.

Adding cameras to your map view
Open ViewController.m and add the following method:

- (void)moveCameraToCoordinate:
 (CLLocationCoordinate2D)coordinate
{
 // 1
 MKMapCamera *camera =
 [MKMapCamera cameraLookingAtCenterCoordinate:coordinate
 fromEyeCoordinate:coordinate
 eyeAltitude:1000.0];

 // 2
 camera.pitch = 55.0f;

 // 3
 [UIView animateWithDuration:1.0
 animations:^{
 // 4
 _mapView.camera = camera;
 }];
}

This method points the camera at a given coordinate, as follows:

1. Create an instance of MKMapCamera using the factory method mentioned earlier.
The camera will be pointing straight down from an altitude of 1000 meters at the
desired coordinate.

2. Set the pitch directly on the camera; this angles the view slightly and puts the
map in 3D mode.

3. Animate the camera changes by wrapping the assignment of your new camera in
a generic UIView animation block.

4. Finally, set your camera on the map view.

It really is as simple as that to create and setup a camera; all you need to do now
is wire your method up to something in the app so that it can be used.

Open Main.storyboard and add four bar button items to the toolbar at the bottom
of the FlyMeThere scene and set their titles, left to right, as follows:

• Start

iOS 7 by Tutorials Chapter 23: What’s New in MapKit

 713

• Airport A

• Airport B

• End

Add a flexible space bar button item to the left and right sides of the buttons to
make things look pretty and to center the buttons. Your button bar should look like
this:

Next, add the following four methods to ViewController.m:

- (IBAction)startTapped:(id)sender {
 [self moveCameraToCoordinate:_route.source.coordinate];
}

- (IBAction)airportATapped:(id)sender {
 [self
 moveCameraToCoordinate:_route.sourceAirport.coordinate];
}

- (IBAction)airportBTapped:(id)sender {
 [self
 moveCameraToCoordinate:_route.destinationAirport.coordinate];
}

- (IBAction)endTapped:(id)sender {
 [self moveCameraToCoordinate:_route.destination.coordinate];
}

Wire up the buttons you just added to these methods, matching the title of the
button to the corresponding method name.

Finally, add the following line to the end of setupWithNewRoute:

self.navigationController.toolbarHidden = NO;

This ensures that the toolbar will only be visible when a route is being displayed.

Build and run your app; search for a point of interest and selct it. You should see
your toolbar appear; tap on each of the four buttons in turn and watch the map fly
to the relevant point on the route, as shown below:

iOS 7 by Tutorials Chapter 23: What’s New in MapKit

 714

Map snapshots
The final new API you're going to use in FlyMeThere is the map snapshots API.
This is a handy API that lets you obtain a rendered image of a map. Previously, you
had to use UIView's renderInContext: to get a rendered view of a map. But this was
a bit of a hack and prone to fail, as it was never really meant for rendering maps.
You’ll be using the map snapshots on the directions list screen.

Uh, wait, what directions list screen? Yeah, we haven’t run across that screen yet.
Eagle-eyed readers will have noticed the List button in the navigation bar; when
tapped, it shows a list of the steps in your route. This data comes from the separate
instances of MKRoute obtained using the directions API.

DirectionsListViewController.m is responsible for displaying the list of
directions; open it up, take some time to look around it and understand how it
works. In particular, note that the steps properties of the MKRoute instances are
responsible for providing the lists of directions.

A picture is worth a thousand words, so you’ll add a thumbnail to each of the table
view cells showing a map relevant to that step of the route.

Open DirectionsListViewController.m and add the following instance variable to
the implementation block:

@implementation DirectionsListViewController {
 NSMutableDictionary *_snapshots;

iOS 7 by Tutorials Chapter 23: What’s New in MapKit

 715

}

This acts as a cache and stores snapshots that have already been generated,
preventing you from unnecessarily regenerating snapshots each time a cell is drawn
on the screen.

Now find viewDidLoad and add the following line to the end:

_snapshots = [NSMutableDictionary new];

This simply initializes the instance variable.

Next, add the following method:

- (void)loadSnapshotForCellAtIndexPath:(NSIndexPath*)indexPath {
 // 1
 MKRouteStep *step = nil;
 switch (indexPath.section) {
 case 0: {
 step =
 _route.toSourceAirportRoute.steps[indexPath.row];
 }
 break;
 case 2: {
 step =
 _route.fromDestinationAirportRoute.steps[indexPath.row];
 }
 break;
 }

 // 2
 if (step) {
 // 3
 MKMapSnapshotOptions *options =
 [[MKMapSnapshotOptions alloc] init];
 options.scale = [[UIScreen mainScreen] scale];
 options.region = CoordinateRegionBoundingMapPoints(
 step.polyline.points,
 step.polyline.pointCount);
 options.size = CGSizeMake(44.0f, 44.0f);

 // 4
 MKMapSnapshotter *snapshotter =
 [[MKMapSnapshotter alloc] initWithOptions:options];
 [snapshotter startWithCompletionHandler:
 ^(MKMapSnapshot *snapshot, NSError *error) {

iOS 7 by Tutorials Chapter 23: What’s New in MapKit

 716

 if (!error) {
 // 5
 dispatch_async(dispatch_get_main_queue(), ^{
 // 6
 UITableViewCell *cell =
 [self.tableView
 cellForRowAtIndexPath:indexPath];

 // 7
 if (cell) {
 cell.imageView.image = snapshot.image;
 [cell setNeedsLayout];
 }

 // 8
 _snapshots[indexPath] = snapshot.image;
 });
 }
 }];
 }
}

This method creates a snapshot for the cell at the corresponding index path. Here's
how it works:

1. You first retrieve the instance of MKRouteStep that corresponds to the given index
path.

2. Then check the retrieved instance to ensure that a route step was actually found
and it’s not nil.

3. Create an instance of MKMapSnapshotOptions; this describes which region of the
earth will be rendered as well as the size of image to create. You can either use a
camera or set the map region manually to set the region to be rendered. The
options also have a scale property that should be set to the result of [[UIScreen
mainScreen] scale]. This ensures that the image will be nice and crisp on Retina
screens.

4. Create the map snapshot asynchronously through the use of MKMapSnapshotter;
you simply pass it the instance of MKMapSnapshotOptions created in the previous
step, start it, and then pass it a completion block.

5. If the snapshot was created successfully, jump to the main queue and update
the UI; the snapshots were generated asynchronously on a background queue so
as not to block thread execution.

6. Ask the table view for the cell corresponding to the index path.

7. Since there’s no guarantee a cell will still be on screen when this method is called
due to scrolling or other UI factors, make sure you actually received a cell from
the table view. If so, then set the thumbnail as the snapshot.

iOS 7 by Tutorials Chapter 23: What’s New in MapKit

 717

8. Finally, save the snapshot image to the cache.

Find tableView:cellForRowAtIndexPath: in DirectionsListViewController.m and
replace the comment with the following:

UIImage *cachedSnapshot = _snapshots[indexPath];
if (cachedSnapshot) {
 cell.imageView.image = cachedSnapshot;
} else {
 [self loadSnapshotForCellAtIndexPath:indexPath];
}

This simply checks the cache to see if a snapshot already exists for the
corresponding index path. If it does, then the thumbnail is set using the snapshot
from the cache. Otherwise, it renders a snapshot.

Build and run your app; generate a route and then tap the List button. You’ll see
little thumbnail maps created for each route step, just as in the screenshot below:

Printing maps is another common use case for map snapshots; simply render a
map into an image, and add that image to a page to be printed. That's pretty slick,
especially since this was only possible in previous versions of iOS by using ugly
hacks.

iOS 7 by Tutorials Chapter 23: What’s New in MapKit

 718

Challenges
In this chapter you’ve seen how to use the new directions, camera and snapshot
APIs of iOS 7, as well as the point-of-interest search feature that Apple introduced
in iOS 6.1. You’ve seen how overlays have changed from simple single-view
overlays to more complex — yet highly efficient — overlay renderers. Go forth and
make cool map based apps!

What’s that? You want more? Well, there are a few challenges for you...

Challenge 1: Rendering feedback
There were two interesting methods added to MKMapViewDelegate in iOS 7:

- (void)mapViewWillStartRenderingMap:(MKMapView*)mapView;
- (void)mapViewDidFinishRenderingMap:(MKMapView*)mapView
 fullyRendered:(BOOL)fullyRendered;

These tell you when the map has started rendering and when it has finished. These
are useful additions as they provide visual feedback to a user when the map is
rendering.

Your challenge is to use these new delegate methods in FlyMeThere to display a
spinner in the navigation bar while the map is rendering. After you have finished
the app should look like this:

iOS 7 by Tutorials Chapter 23: What’s New in MapKit

 719

The screenshot on the left shows the map after a zoom in action where the map
has not finished rendering to the new zoom scale. The screenshot on the right
shows the fully rendered map.

Challenge 2: Smooth camera transitions
As the app currently stands, when you tap on one of the buttons to move the
camera to one of the points of interest, the motion can end up being very confusing
and can leave you feeling a little nauseous. The map flies away beneath you and
you have absolutely no context about where you're moving to. But you can change
that!

First off, add the following instance variable to ViewController:

NSMutableArray *_pendingMapCameras

Then add the following method:

- (void)goToNextMapCamera {
 if (_pendingMapCameras.count > 0) {
 MKMapCamera *nextCamera =
 [_pendingMapCameras lastObject];
 [_pendingMapCameras removeLastObject];

 [UIView animateWithDuration:1.0
 animations:^{
 _mapView.camera = nextCamera;
 }];
 }
}

This method lets you move the map to the next camera in the _pendingMapCameras
array. So this array can be used like a queue of cameras, animating from one to the
next. You can use this to transition smoothly from one point to the next by creating
several intermediate cameras and breaking the animation up in to smaller chunks.

You’ll need to change moveCameraToCoordinate: to create cameras in between the
current map location and the target in order to make the transition smoother.

Hint 1: Don't forget to initialize _pendingMapCameras! I suggest doing this in
viewDidLoad.

Hint 2: You can find out when a camera animation has finished by implementing
MKMapView's mapView:regionDidChangeAnimated: delegate method. When this gets
called, animate to the next pending camera.

Try playing around with different pending cameras; you can make some really
interesting animations this way! For bonus points, make the animation depend
upon the distance between the current map location and the target. Different

iOS 7 by Tutorials Chapter 23: What’s New in MapKit

 720

animations work best for different distances. If it's a very long distance then it
looks nice to zoom right out, fly across the world, then zoom back in again. Doing
the same for a very short distance would look silly.

Many of us come to think of our iPhones as more than a piece of hardware; it
becomes our virtual companion or assistant, performing tasks in the background to
make our life easier. Our phones can remind us to of something we need to do
when we arrive at a specific point, suggest we try a nearby cafe, or let us know a
friend is nearby and available to meet up for a drink.

These features wouldn’t be possible without Core Location and the hardware that
supports the framework. When Apple introduced iOS 5 they also unveiled the
Reminders app. At the time, it didn’t seem overly impressive until Apple
demonstrated how the reminders could be made location-aware and trigger when
you arrive at or depart from a specific location. Now that’s useful!

iOS 7 makes it possible for developers to do even more things with Core Location,
so you can delight your users in new and exciting ways.

In this chapter you’ll learn about a brand new feature in Core Location called
iBeacon. This allows you to create an app that broadcasts its presence to iPhones.

Why is this cool? Well, imagine having an iBeacon at each piece of art in an art
gallery, and having an app that displays information about individual art pieces as
you draw near. Or having an iBeacon at each car in a car dealership, and an app
that tells you more information about the car you’re next to.

In this chapter, you’ll try out iBeacon for yourself by developing an app that
broadcasts a restaurant’s location. You’ll also develop a companion app that detects
the nearby restaurants, provides the location details to the user, and allows the
user to reserve a table.

Sound good? Then come on inside — your table awaits!

Overview
Rather than being an introduction to Core Location, this chapter assumes you are
familiar with the basics and focuses on the new features of Core Location in iOS 7.

Chapter 24: What’s New in
CoreLocation
By Chris Wagner

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 722

If you’re completely new to Core Location, you might want to check out the
Location Awareness Programming Guide1 and the 2012 WWDC session
Staying on Track with Location Services. iOS 5 by Tutorials also covers the new
location APIs that were introduced in that release.

That being said, many of the existing features of Core Location will be covered in
detail in this chapter, so you can choose to skip the background and just follow
along with this chapter and learn along the way if you’d like.
1http://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/
LocationAwarenessPG/Introduction/Introduction.html

Region Monitoring
Since iOS 4, Core Location has provided the ability to monitor the entry and
departure of regions via the CLRegion and CLLocationManager classes. What’s a
region, you ask? Well, a region is a defined area with a center based on a latitude
and longitude coordinate pair and a radius measured in meters.

A big limitation of region monitoring is that each iOS app is restricted to monitoring
a maximum of twenty regions at a time. Consider the Apple Store app; if you
wanted to use Core Location’s region notifications to greet customers as they
approached a particular store, you would quickly realize that there are many more
Apple stores than there are regions you can monitor.

Thankfully, iOS 7 provides you with a solution to overcome this type of situation:
it’s called iBeacon.

What’s an iBeacon?
First, I hate to disappoint you, but it’s iBeacon, not iBacon.

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 723

An iBeacon is really just a marketing name for the Bluetooth Low Energy (LE)
advertising specification. iBeacons can run on various types of hardware, ranging
from iOS devices to third-party Bluetooth LE emitters. When a Bluetooth LE device
is emitting the appropriate information, an iOS device can listen for the emitter and
developers can act upon this information.

Specifically, when an emitter is detected, your app is notified that the device has
entered the iBeacon’s region; conversely, you are also notified when the device has
left the region. Additionally, the device can get an idea of how far it is from the
emitter by measuring the Received Signal Strength Indication, or RSSI for
short. The RSSI can be used to determine the closest iBeacon in the event that
there are multiple iBeacons in the area, as well as giving your app a rough idea as
to how close the device is to that emitter.

At this point you might be thinking of dozens of ways you can take advantage of
this new feature. However, you might also be thinking, “I can do this without
iBeacons by using the geo-fencing features of iOS 5.0!” And you would be correct —
to a point.

Geo-fencing is a powerful feature, but it relies on GPS or GPS-like technologies that
work using satellite or cellular tower signals. Both of these signals can attenuate
significantly, or be completely unavailable when inside a building or riding the tube.
Generally speaking, you can think of geo-fencing as a macro-level location
monitoring technology, and iBeacons as a micro-level location monitoring
technology.

Bluetooth LE is rated to work at a range of 50 meters, or 160 feet, though results
may vary based on the environment. Bluetooth LE transmits data via radio waves,
which are also subject to attenuation but do not require a clear line of sight like
GPS. This means that you can confidently rely on signals from an iBeacon within a
building, which is where micro-level location monitoring comes into its own.

Apple has made this technology extremely easy to work with, and if you’re already
familiar with Core Location it’ll be even easier. As iBeacons rely on Bluetooth, you’ll
also need to learn about Core Bluetooth if you intend to use an iOS device as an
iBeacon. Also, in addition to utilizing iBeacons within your own app, if you’re a
Passbook developer you can even make your pass listen for and respond to
iBeacons. You can learn more about how to do this in Chapter 28, “What’s New in
PassKit, Part 2”.

Apple has added just two classes to the Core Location framework to support
iBeacons: CLBeacon and CLBeaconRegion. Let’s go over these one by one.

CLBeacon
CLBeacon inherits from NSObject and represents the beacons encountered during
region monitoring. The location manager provides instances of the CLBeacon class to
its delegate as iBeacons are encountered. These instances contain information your
app can use to determine which beacon was encountered.

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 724

The CLBeacon class provides the following properties:

• proximityUUID: A globally unique ID that is generally used to represent your
company. To generate a unique id string use the uuidgen command-line tool via
the Terminal app.

• major and minor: These properties can be used to identify individual beacon
emitters. You might use the major value to represent a specific store, and the
minor value to represent a specific department within the store.

• proximity: The relative distance to the beacon, you can use the value to
determine which beacon is nearest if there are multiple beacons in the vicinity.

• accuracy: The accuracy in meters, you can use this value to differentiate between
beacons with the same proximity value. You should however not use it as a
precise location for the beacon.

• rssi: The average received signal strength of the beacon, measured in decibels
since the range of the beacon was last reported.

Now let’s move on to the second class related to iBeacons: CLBeaconRegion.

CLBeaconRegion
CLBeaconRegion inherits from CLRegion and defines a region based on a device’s
proximity to an iBeacon. When the system detects an iBeacon whose identifying
information matches that of the defined CLBeaconRegion, it delivers a notification to
your application. CLBeaconRegion is used both to determine what regions you’re
interested in monitoring, as well as to configure an iOS device to act as an iBeacon.

The CLBeaconRegion class has three initializers:

• initWithProximityUUID:identifier:

• initWithProximityUUID:major:identifier:

• initWithProximityUUID:major:minor:identifier:

Each initializer adds further identifying information to the region. The property
names will look familiar, as they are the same on CLBeacon. It is important to use
the appropriate initializer for your requirements, as the associated properties are
read-only.

In order to configure an iOS device to act as an iBeacon there is one other method,
peripheralDataWithMeasuredPower: that returns an NSMutableDictionary. This
dictionary is used by a CBPeripheralManager to advertise the current device as a
beacon.

Finally there is one other property that is mutable, notifyEntryStateOnDisplay, a
BOOL that indicates whether beacon notifications are sent when they device’s display
is on.

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 725

How iBeacon works: a quick start
Want a quick overview of how things work before getting into the tutorial? This
section is for you!

To configure an iOS device to act as an iBeacon, you follow these steps:

1. Create a CLBeaconRegion. Your CLBeaconRegion must be initialized with the
identifiers you want to advertise, proximityUUID, major, and/or minor. The
identifier string is used to differentiate between beacon instances within your
application, it is not advertised and must not be nil.

NSUUID *uuid = [[NSUUID alloc] initWithUUIDString:@"41EAF359-C87F-4AAF-
92DC-9E4A17519AE1"];

NSString *identifier = @"com.razeware.beacon";

CLBeaconRegion *region = [[CLBeaconRegion alloc]
initWithProximityUUID:uuid major:2 minor:10 identifier:identifier];

2. Obtain the peripheral data from CLBeaconRegion. You request the data
dictionary required for your peripheral manager directly from the region you
initialize.

NSDictionary *peripheralData = [region
peripheralDataWithMeasuredPower:nil];

3. Create a CBPeripheralManager. To advertise you must leverage Bluetooth,
initialize a CBPeripheralManager instance.

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 726

dispatch_queue_t queue =
dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_BACKGROUND, 0);

CBPeripheralManager *peripheralManager = [[CBPeripheralManager alloc]
initWithDelegate:self queue:queue];

4. Start advertising with CBPeripheralManager. Pass the peripheral data
dictionary to the startAdvertising: method.

[peripheralManager startAdvertising:peripheralData];

To start monitoring for nearby iBeacons, you follow these steps:

5. Create a CLBeaconRegion. An instance of CLBeaconRegion must be initialized with
the proximityUUID, major, and minor values that you want to listen for. Also
specify when and how you want to be notified when the region is entered or
exited.

NSUUID *uuid = [[NSUUID alloc] initWithUUIDString:@"4B3E0C2E-CE28-4E88-
8D4E-89EB3E1F5B17"];
NSString *identifier = @"com.razeware.beacon";

CLBeaconRegion *region = [[CLBeaconRegion alloc]
initWithProximityUUID:uuid major:1 minor:2 identifier:identifier];
region.notifyOnEntry = entry;
region.notifyOnExit = exit;
region.notifyEntryStateOnDisplay = YES;

6. Create a CLLocationManager. To begin monitoring you must have an instance of
CLLocationManager to register the CLBeaconRegion with it.

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 727

CLLocationManager *locationManager = [[CLLocationManager alloc] init];

7. Start monitoring. To start monitoring for entry/exit of that region, use the
startMonitoringForRegion: method of your location manager instance. Regions
that you register with a location monitor persist between launches of your
application.

[locationManager startMonitoringForRegion:region];

8. Upon callback, respond accordingly. Once an iBeacon is detected, your
application will be launched and your CLLocationManager instance will receive a
callback. At this point you can create notifications, change your UI, or use
startRangingBeaconsInRegion: to receive updates when the relative distance of
the iBeacon changes.

To receive the callbacks you must retain an instance variable or property in your
AppDelegate

@interface AppDelegate () <CLLocationManagerDelegate>

@property CLLocationManager *_locationManager;

@end

And initialize the variable in application:didFinishLaunchingWithOptions:

_locationManager = [[CLLocationManager alloc] init];
_locationManager.delegate = self;

 Your locationManager:didEnterRegion: delegate implementation may look like…

if ([region isKindOfClass:[CLBeaconRegion class]]) {
 CLBeaconRegion *beaconRegion = (CLBeaconRegion *)region;

 if ([beaconRegion.proximityUUID isEqual:_raysUUID]) {

 UILocalNotification *notification =
 [[UILocalNotification alloc] init];

 notification.alertBody = @"Welcome to Ray's!";

 [[UIApplication sharedApplication]
 presentLocalNotificationNow:notification];
 }
}

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 728

The rest of this chapter will walk you through a practical step-by-step example of
adding iBeacon into an app. But before you begin, you need to make sure you have
some test devices.

Devices supporting iBeacon
Only the most recent iOS devices contain Bluetooth LE hardware; therefore only
devices with this hardware — and ones running iOS 7 — can support iBeacons. The
following table indicates the first generation of each device that added support for
Bluetooth LE. Given Apple’s investment in this technology, it’s safe to assume any
future devices will also support Bluetooth LE.

Device First to Support
Bluetooth LE

iPad 3rd generation

iPad Mini 1st generation

iPhone 4S

iPod Touch 5th generation

To follow along with the rest of this chapter, you will need at least two devices from
the above list, one of which needs to be an iPad (because the sample project was
designed for an iPad). Unfortunately, the iOS Simulator cannot act as an iBeacon or
monitor for iBeacons so beg, borrow, or steal some physical devices to use with this
chapter’s project.

Getting started
In this chapter you’ll work with two apps:

1. Wait List (the “restaurant’s app”): This is an iPad app that acts a digital
waiting list for restaurants to keep track of guests waiting to be seated.

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 729

2. Aroma (the “customer’s app”): This is an iPhone app that customers will use
to find information on restaurants and to reserve a table. This is implemented
using the new Multipeer Connectivity framework, which you can learn about in
Chapter 19, “Peer-to-Peer Connectivity”.

The resources for this chapter include starter projects for these two apps with most
of the UI pre-made, but no iBeacon code added yet. That’s your job!

Specifically, you will be making three improvements to these apps:

1. Make Wait List act as an iBeacon. You’ll add support to Wait List so it
broadcasts its location as an iBeacon while it is running so nearby customers can
find the restaurant.

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 730

2. Make Aroma search for nearby iBeacons. Next, you’ll modify Aroma to listen
for nearby restaurants, alert customers when they’re close to the restaurant and
invite them in to enjoy a meal.

3. Allow table reservations when within range. You’ll also improve Aroma so
that it only allows the customer to reserve a table when they’re within the
restaurant’s iBeacon region, which means they are also in range for Multipeer
Connectivity.

4. Bid farewell on region exit. Finally, you’ll modify Aroma to bid the customer
farewell on behalf of the restaurant as the guest exits the restaurant’s iBeacon
region.

Introducing Wait List
You’ll find the starter project Wait List in the resources for this chapter. Open it in
Xcode, and build and run it on your compatible iPad device.

When you first start the app you’ll be presented with an empty list. Add a few
guests to the list by tapping the + button in the top right corner. You’ll be
presented with the guest registration screen as shown below:

The Name and Party Size fields are required; Arrival Time and Quoted Time are
both set to defaults (the current time, and 5 minutes respectively).

Mood also defaults to the Happy state; hopefully most of your guests will be
arriving in a happy mood! The Notes field is optional and is empty by default.

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 731

Once added, the guest shows up on the list and the Time Til Quote is calculated.
All of the Time Til Quote labels are updated at an interval of 5 seconds with a
tolerance of 5 seconds for power efficiency. Check out Chapter 8, “What's New In
Objective-C and Foundation in Xcode 5”, for more information on NSTimer’s new
tolerance property.

Once a guest is on the list, they need to be removed when they’re seated, or when
they give up in frustration and leave to find another restaurant. You may also need
to edit their information if their party size or mood changes.

Tap a guest’s row to bring up a menu of available actions, as shown below:

The Seat option removes the guest from the list. Edit opens the same view as
when adding a guest, but pre-populated with the information of the selected guest.
Remove deletes the selected guest from the list.

In this implementation, Seat and Remove are effectively the same operation, but it
may be desirable to track metrics on seating and people leaving separately, so they
are defined as two separate actions. Wait List is fairly simple, yet entirely workable
for a restaurant in lieu of paper-based lists.

What you haven’t seen yet is that Wait List is advertising itself as a Multipeer
Connectivity peer, which allows guests to add themselves to the seating list right
from within Aroma!

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 732

Introducing Aroma
Now find the Aroma starter project in the resources for this chapter and build and
run it on your compatible iPhone or iPod Touch device.

This starter project comes pre-loaded with information about three restaurants.
Ideally, these details would come from a web service, but that’s beyond the scope
of this tutorial. You can swipe left and right to scroll between the restaurants:

If you have Wait List running on your iPad, you can tap the Reserve a Table
button to connect to Wait List and add yourself to the list. Select Host Stand as
the peer, accept the connection in the Wait List app, then tap Done in Aroma to
begin entering your information.

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 733

Aroma and Wait List use the default interfaces provided by the Multipeer
Connectivity framework; they aren’t pretty but they get the job done. However, you
can customize or completely replace these views if you desire. To learn more, check
out Chapter 19, “Peer-to-Peer Connectivity.”

Feel free to look through the code of these two projects to get familiar with how
things work. When you’re ready, read on and get ready for your first taste of
iBacon! Whoops, iBeacon!

Advertising as an iBeacon
In order to do anything with iBeacons, you’ll need some kind of hardware emitting
a beacon signal. You’ll modify Wait List to act as an iBeacon that Aroma listens for.

The first step is to set up the project infrastructure – later you’ll add the iBeacon
code itself.

Selecting an option at this point does nothing — but fixing that is your next task.

First open BeaconAdvertisingService.h and take a look over the interface.

@interface BeaconAdvertisingService : NSObject

@property (nonatomic, readonly, getter = isAdvertising) BOOL
advertising;

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 734

+ (BeaconAdvertisingService *)sharedInstance;

- (void)startAdvertisingUUID:(NSUUID *)uuid
major:(CLBeaconMajorValue)major minor:(CLBeaconMinorValue)minor;
- (void)stopAdvertising;

@end

This class follows the Singleton design pattern that guarantees only one instance
will be created while the application is running, given that you always use the
sharedInstance method to access the singleton instance. The two other methods
allow you to start and stop advertising of beacons; those are the interesting ones
and what you will use next.

In order to do anything when an option is selected from the Start Beacon popover
you need a delegate method to handle the selection of an item from the action
sheet. Add the following to WaitListTableViewController.m

- (void)actionSheet:(UIActionSheet *)actionSheet
clickedButtonAtIndex:(NSInteger)buttonIndex
{
 switch (buttonIndex) {
 case 0: {
 NSUUID *cupcakesUUID = [[NSUUID alloc]
initWithUUIDString:@"EC6F3659-A8B9-4434-904C-A76F788DAC43"];
 [[BeaconAdvertisingService sharedInstance]
startAdvertisingUUID:cupcakesUUID major:0 minor:0];
 self.navigationItem.title = @"Core Cupcakes";
 break;

 } case 1: {
 NSUUID *saladsUUID = [[NSUUID alloc]
initWithUUIDString:@"7B377E4A-1641-4765-95E9-174CD05B6C79"];
 [[BeaconAdvertisingService sharedInstance]
startAdvertisingUUID:saladsUUID major:0 minor:0];
 self.navigationItem.title = @"@synthesize salads";
 break;

 } case 2: {
 NSUUID *wrapsUUID = [[NSUUID alloc] initWithUUIDString:@"2B144D35-
5BA6-4010-B276-FC4D4845B292"];
 [[BeaconAdvertisingService sharedInstance]
startAdvertisingUUID:wrapsUUID major:0 minor:0];
 self.navigationItem.title = @"Weak Wraps";
 break;

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 735

 }
 default:
 break;
 }
}

Each case statement in the switch block creates an NSUUID instance based on a pre-
generated UUID string. It then passes the NSUUID instance to the advertising service
to start advertising that UUID along with major and minor values of 0. Finally, it sets
the title of the view to the selected restaurant.

Build and run your app; you’ll see the view title change as you select different
restaurants. You may also notice that Start Beacon never changes to Stop
Beacon. To fix this you’ll have to flesh out the BeaconAdvertisingService class. It’s
finally time for some iBeacon code!

Advertising as an iBeacon
Open BeaconAdvertisingService.m and take a quick look at it. The implemented
methods are unrelated to the iBeacon feature itself, but they help support the
application. The sharedInstance method follows the standard GCD approach for
creating a singleton, there is an empty init and then three unimplemented
methods that do relate specifically to iBeacon, you get to implement these soon!
The last is a big one, but it’s relatively simple bluetoothStateValid: returns a BOOL
designating if the device’s Bluetooth radio is available and in a state which it can be
utilized. If the state is invalid it will write to the error pointer provided and return
NO.

On to the implementation! Start by adding the following line to the init method
before the return.

_peripheralManager = [[CBPeripheralManager alloc] initWithDelegate:self
queue:dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0)];

This allocates and initializes a CBPeripheralManager instance by setting its delegate
to self using a default priority dispatch queue, and then assigns it to the
_peripheralManager instance variable. A CBPeripheralManager manages published
services for the devices Generic Attribute Profile (GATT) database and to advertise
them to other devices. This class is not only used for iBeacon but also for other
Bluetooth LE accessories. In order to use any of the methods on the class the
hardware must be turned on and in the CBPeripheralManagerStatePoweredOn state.

Now implement the peripheralManagerDidUpdateState: delegate method with the
following:

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 736

- (void)peripheralManagerDidUpdateState:(CBPeripheralManager
*)peripheral
{
 NSError *bluetoothStateError = nil;
 if (![self bluetoothStateValid:&bluetoothStateError]) {
 dispatch_async(dispatch_get_main_queue(), ^{
 NSString *title = @"Bluetooth Issue";
 NSString *message =
 bluetoothStateError.userInfo[@"message"];

 UIAlertView *bluetoothIssueAlert = [[UIAlertView alloc]
 initWithTitle:title
 message:message
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];

 [bluetoothIssueAlert show];
 });
 }
}

This delegate method is called by the CBPeripheralManager when it’s state changes,
it is important to let the user know if the Bluetooth peripheral is not in a valid state
and why. The bluetoothStateValid: method is used; if the state is not valid then
display an error message using the message from the NSError instance.

One more particularly interesting delegate method for this application is
peripheralManagerDidStartAdvertising:error:. This method is called when you call
the startAdvertising: method to begin advertising the local device’s peripheral
data. If advertising is successful the error parameter will be nil.

For this app, if advertising has started you need to update the advertising
property, and if it fails to start you should alert the user.

Add the peripheralManagerDidStartAdvertising:error: method to
BeaconAdvertisingService.m:

-(void)peripheralManagerDidStartAdvertising:(CBPeripheralManager
*)peripheral error:(NSError *)error
{
 dispatch_async(dispatch_get_main_queue(), ^{
 if (error) {
 NSString *title = @"Cannot Advertise Beacon";
 NSString *message = @"There was an issue starting the
advertisement of your beacon.";

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 737

 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:title
 message:message
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 NSLog(@"Start Advertising Error: %@", error);

 } else {
 NSLog(@"Advertising!");
 self.advertising = YES;
 }
 });
}

Things are really starting to take shape, but you still haven’t really done anything
particularly interesting with iBeacons themselves. At this point everything is in
place to implement your startAdvertisingUUID:major:minor: method, which is a
convenience method to check the state of CBPeripheralManager create a
CLBeaconRegion instance and instruct CBPeripheralManager to begin advertising the
beacon’s peripheral data.

As this is completely new, I’ll walk you through the different sections of the
implementation first, and then you’ll add it. Replace the stub implementation with
the following:

- (void)startAdvertisingUUID:(NSUUID *)uuid
 major:(CLBeaconMajorValue)major
 minor:(CLBeaconMinorValue)minor
{
 NSError *bluetoothStateError = nil;

 if (![self bluetoothStateValid:&bluetoothStateError])
 {
 NSString *title = @"Bluetooth Issue";
 NSString *message =
 bluetoothStateError.userInfo[@"message"];

 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:title
 message:message
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:nil];

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 738

 [alert show];
 return;
 }
}

This verifies that the Bluetooth state is valid. If it isn’t then there’s no reason to
continue so you return.

Next add this to the bottom of the method:

CLBeaconRegion *region;
if (uuid && major && minor) {
 region = [[CLBeaconRegion alloc]
 initWithProximityUUID:uuid
 major:major
 minor:minor
 identifier:kBeaconIdentifier];
} else if (uuid && major) {
 region = [[CLBeaconRegion alloc]
 initWithProximityUUID:uuid
 major:major
 identifier:kBeaconIdentifier];
} else if (uuid) {
 region = [[CLBeaconRegion alloc]
 initWithProximityUUID:uuid
 identifier:kBeaconIdentifier];
} else {
 [NSException raise:@"You must at least provide a UUID to start
advertising"
 format:nil];
}

Now depending on what was passed in, you are going to create an instance of
CLBeaconRegion. If all three values are passed in you use them, other wise you
continue to degrade as makes sense. If no values are passed in then an exception
is raised.

Continue by adding this to the end of the method:

NSDictionary *peripheralData =
 [region peripheralDataWithMeasuredPower:nil];

[_peripheralManager startAdvertising:peripheralData];

Now that you’ve a valid instance of CLBeaconRegion, you can request the peripheral
data from it using peripheralDataWithMeasuredPower:. This method returns an

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 739

instance of NSDictionary, which is to be passed to your CBPeripheralManager and
informs it exactly what needs to be broadcast over the Bluetooth radio.

This method also has an optional parameter of measured power and by passing nil
you’re telling the peripheral manager that you want it to use the default power
level. In the case of Wait List and Aroma, this should be fine as it’s not imperative
that the iBeacon only be heard at certain distances.

Note: This value becomes more important when you’re working with ranges
and you want to measure the distance between the device and an iBeacon.
Depending on the environment that the iBeacon is in, it may be necessary to
lower or raise this value; the value passed should represent the expected RSSI
at a distance of 1 meter.

So, if you calibrated your environment and found that when a receiving device
is 1 meter away from the beacon it reads an average RSSI value of -35, you
would set this value to -35.

That’s it for this method. The last piece of the puzzle is to implement
stopAdvertising, and it’s an easy one. Replace the empty method stub with the
following:

- (void)stopAdvertising {
 [_peripheralManager stopAdvertising];
 self.advertising = NO;
}

Here you inform the peripheral manager to stop advertising, and then update the
advertising property accordingly so that observers are made aware.

Build and run your app; tap the Start Beacon button and select a restaurant. You’ll
notice the button text changes to Stop Beacon, as shown below:

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 740

Your iPad is now acting as an iBeacon. In the next section you’ll modify Aroma so
that it detects your iPad’s advertisement. For convenience, you can find the
completed version of Aroma in the resources for this chapter.

Limitations on iBeacon and device state
One unfortunate limitation with advertising an iBeacon from an iOS device is that
Apple requires the app to be running in the foreground; if your device goes to sleep
or is interrupted by another foreground process such as a phone call, then
advertising will halt. With Wait List this is a pretty big deal; it’s very likely the iPad
will go to sleep on it’s own unless the user enables the relevant setting to prevent
it. Another option would be to disable the idle timer in your code so the app won’t
permit the device to sleep.

However, neither of these solutions can guard against the scenario of a bored
employee who closes the app to play Angry Birds. Because of these situations, it’s
recommended that you use Guided Access when appropriate to prevent the device
from sleeping or being turned off, as well as preventing the app from being closed.

Hopefully cost-effective third party beacons will soon be available, which will
resolve the issue entirely for applications like Wait List. There are certainly cases
where you still want an iOS device to act as a beacon, but for many applications it
may make more sense to use a standalone beacon device. There are a few players
entering the market in this space notably KST
(http://www.kstechnologies.com/products/ibeacon-alpha-program-participants-
only) and Estimote (http://estimote.com/). More manufacturers are expected to
reveal themselves and enter the market soon.

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 741

Listening for iBeacons
Open the Aroma Xcode project. Right-click on the iBeacon group in the Project
Navigator and choose New File… from the popup menu. Create a new
Objective-C class named BeaconMonitoringService and make it a subclass of
NSObject. Once the files have been created, open BeaconMonitoringService.h
and replace the contents with the following:

#import <Foundation/Foundation.h>

@import CoreLocation;

@interface BeaconMonitoringService : NSObject

+ (BeaconMonitoringService *)sharedInstance;
- (void)startMonitoringBeaconWithUUID:(NSUUID *)uuid
 major:(CLBeaconMajorValue)major
 minor:(CLBeaconMinorValue)minor
 identifier:(NSString *)identifier
 onEntry:(BOOL)entry
 onExit:(BOOL)exit;

- (void)stopMonitoringAllRegions;

@end

Here you import the Core Location framework and declare the class method
sharedInstance which returns the singleton instance of the
BeaconMonitoringService. The other two methods start and stop region monitoring.

This time you’re going to jump straight into the implementation of this service
class. Open BeaconMonitoringService.m and replace its contents with the
following:

#import "BeaconMonitoringService.h"

@implementation BeaconMonitoringService {
 CLLocationManager *_locationManager;
}

@end

Next add the implementation of sharedInstance and override init:

+ (BeaconMonitoringService *)sharedInstance {
 static dispatch_once_t onceToken;

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 742

 static BeaconMonitoringService *_sharedInstance;
 dispatch_once(&onceToken, ^{
 _sharedInstance = [[self alloc] init];
 });

 return _sharedInstance;
}

- (instancetype)init {
 self = [super init];
 if (!self) {
 return nil;
 }

 _locationManager = [[CLLocationManager alloc] init];

 return self;
}

Here you use the standard GCD approach for creating a singleton, override the init
method to create an instance of CLLocationManager and assign it to the
_locationManager instance variable. The CLLocationManager is responsible for
handling the delivery of location events to your application. It will also be used to
manage the registration and un-registration of regions that your app is to monitor.

Now it’s time to implement
startMonitoringBeaconWithUUID:major:minor:identifier:onEntry:onExit: . Add the
following method to BeaconMonitoringService.m:

- (void)startMonitoringBeaconWithUUID:(NSUUID *)uuid
 major:(CLBeaconMajorValue)major
 minor:(CLBeaconMinorValue)minor
 identifier:(NSString *)identifier
 onEntry:(BOOL)entry
 onExit:(BOOL)exit
{
 CLBeaconRegion *region = [[CLBeaconRegion alloc]
 initWithProximityUUID:uuid
 major:major
 minor:minor
 identifier:identifier];
 region.notifyOnEntry = entry;
 region.notifyOnExit = exit;
 region.notifyEntryStateOnDisplay = YES;
 [_locationManager startMonitoringForRegion:region];

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 743

}

This is really just a convenience method that creates an instance of CLBeaconRegion,
sets the notification properties as necessary and informs the _locationManager to
start monitoring for the region. That’s really all it takes to get a location manager
listening for an iBeacon.

There is, of course, more work to be done in order to react when an iBeacon is
discovered, and you’ll implement that soon. But first you need to finish the service
implementation.

Add the stopMonitoringAllRegions method as below:

- (void)stopMonitoringAllRegions {
 for (CLRegion *region in _locationManager.monitoredRegions)
 {
 [_locationManager stopMonitoringForRegion:region];
 }
}

Again, super simple stuff. The location manager keeps track of the regions it’s
monitoring, so you simply iterate through the regions and inform the location
manager to stop monitoring each instance as it’s presented. If you were dealing
with other types of regions like CLCircularRegion you may want to verify the region
is actually of the CLBeaconRegion type before stopping the monitoring. But Aroma
only monitors for iBeacons, not geo-fencing, and therefore you can safely remove
them all.

That’s it for the BeaconMonitoringService class. Your task now is to use it to
monitor for beacons.

Open AppDelegate.m and import the class header:

#import "BeaconMonitoringService.h"

Replace the contents of didFinishLaunchingWithOptions: with the following:

[[BeaconMonitoringService sharedInstance]
 stopMonitoringAllRegions];
NSArray *restaurants =
 [[RestaurantDetailService sharedService] restaurants];

for (Restaurant *restaurant in restaurants)
{
 [[BeaconMonitoringService sharedInstance]
 startMonitoringBeaconWithUUID:restaurant.uuid
 major:0
 minor:0

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 744

 identifier:restaurant.name
 onEntry:YES
 onExit:YES];
}

return YES;

When the app launches you ask the monitoring service to stop monitoring all
regions. This is mostly a sanity check and balancing call to ensure that you’re only
ever monitoring the regions you’re interested in. If the RestaurantDetailService
class started returning a different set of restaurants, you’d want to ensure that you
had stopped monitoring any existing restaurants.

Next you ask the RestaurantDetailService’s singleton object for an array of all the
restaurants that it knows about; the starter project includes the same UUIDs that
the Wait List app advertises. Then you iterate over those restaurants and begin
monitoring for their iBeacons.

Now that each restaurants’ iBeacon is being monitored by Aroma, you’ll need to
respond to the delegate methods that get called when certain events occur. First,
though, you’ll need an instance of CLLocationManager to inform you of these events.

Open AppDelegate.h and replace it’s contents with the following:

#import <UIKit/UIKit.h>

@import CoreLocation;

@interface AppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@property (strong, nonatomic, readonly) CLLocationManager
*locationManager;

@end

Return to AppDelegate.m and add the following two lines to the top of
didFinishLaunchingWithOptions:

_locationManager = [[CLLocationManager alloc] init];
_locationManager.delegate = self;

Here you create an instance of CLLocationManager, assign it to the _locationManager
instance variable maintained by the property you just declared and set the
manager’s delegate.

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 745

The compiler should be warning you that self does not conform to the
CLLocationManagerDelegate protocol. To address this, add the following class
extension above @implementation AppDelegate in AppDelegate.m to declare the
class conforms to the protocol:

@interface AppDelegate () <CLLocationManagerDelegate>
@end

There are three specific delegate methods you’re interested in.

• locationManager:didDetermineState:forRegion:

• locationManager:didEnterRegion:

• locationManager:didEnterRegion:

While the method names seem pretty descriptive, you’re probably asking yourself
“Who calls these, and how does my app respond to them? They aren’t part of the
UIApplicationDelegate protocol.”

A valid question, to be sure. Normally when your app is in the background or has
been closed entirely, it’s informed of an event via the UIApplicationDelegate
protocol. Once you being monitoring a region, iOS launches your application in the
background once the region is detected, which subsequently calls
application:didFinishLaunchingWithOptions:. Recall that you initialized an instance
of CLLocationManager in that method and assigned its delegate to self. So therefore
it’s the CLLocationManager instance that’s calling the delegate methods.

Add the first of the three delegate methods to AppDelegate.m:

- (void)locationManager:(CLLocationManager *)manager
 didDetermineState:(CLRegionState)state
 forRegion:(CLRegion *)region {
 if ([region isKindOfClass:[CLBeaconRegion class]]) {
 CLBeaconRegion *beaconRegion = (CLBeaconRegion *)region;
 Restaurant *restaurant =
 [[RestaurantDetailService sharedService]
 restaurantWithUUID:beaconRegion.proximityUUID];
 if (restaurant) {
 NSDictionary *userInfo =
 @{@"restaurant": restaurant,
 @"state": @(state)};
 [[NSNotificationCenter defaultCenter]
 postNotificationName:@"DidDetermineRegionState"
 object:self
 userInfo:userInfo];
 }

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 746

 }
}

This method begins by verifying the region is an instance of CLBeaconRegion. It then
asks the RestaurantDetailService for the Restaurant instance that matches the
regions UUID. If a restaurant is returned, it then posts a notification containing the
Restaurant instance and state in the userInfo dictionary. Later on you’ll be
listening for this notification and making use of the userInfo object’s contents.

Next, add the second delegate method:

- (void)locationManager:(CLLocationManager *)manager
 didEnterRegion:(CLRegion *)region {
 if ([region isKindOfClass:[CLBeaconRegion class]]) {
 CLBeaconRegion *beaconRegion = (CLBeaconRegion *)region;
 Restaurant *restaurant =
 [[RestaurantDetailService sharedService]
 restaurantWithUUID:beaconRegion.proximityUUID];
 if (restaurant) {
 UILocalNotification *notification =
 [[UILocalNotification alloc] init];
 notification.userInfo =
 @{@"uuid": restaurant.uuid.UUIDString};
 notification.alertBody =
 [NSString stringWithFormat:@"Smell that? Looks like you're
near %@!",
 restaurant.name];
 notification.soundName = @"Default";
 [[UIApplication sharedApplication]
 presentLocalNotificationNow:notification];

 [[NSNotificationCenter defaultCenter]
 postNotificationName:@"DidEnterRegion"
 object:self
 userInfo:@{@"restaurant": restaurant}];
 }
 }
}

This method starts in the same manner as the previous one: obtain the
corresponding Restaurant instance for the given region. Then it posts a local
notification with the UUID string in the userInfo dictionary, a message indicating
the restaurant’s name, and the default alert sound to play. Next it posts a
notification with the userInfo dictionary containing the Restaurant instance; again,
you’ll be listening for this notification later.

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 747

The userInfo dictionary of the local notification contains the restaurant’s details to
display if the user responds to the notification. This bit was implemented for you in
the starter project; you’ll find the relevant code at the foot of AppDelegate.m in
application:didReceiveLocalNotification:.

Now add the third and final delegate method:

- (void)locationManager:(CLLocationManager *)manager
 didExitRegion:(CLRegion *)region {
 if ([region isKindOfClass:[CLBeaconRegion class]]) {
 CLBeaconRegion *beaconRegion = (CLBeaconRegion *)region;
 Restaurant *restaurant =
 [[RestaurantDetailService sharedService]
 restaurantWithUUID:beaconRegion.proximityUUID];
 if (restaurant) {
 UILocalNotification *notification =
 [[UILocalNotification alloc] init];
 notification.alertBody = [NSString stringWithFormat:
 @"We hope you enjoyed the smells and
more of %@. See you next time!",
 restaurant.name];
 [[UIApplication sharedApplication]
 presentLocalNotificationNow:notification];
 [[NSNotificationCenter defaultCenter]
 postNotificationName:@"DidExitRegion"
 object:self
 userInfo:@{@"restaurant": restaurant}];
 }
 }
}

The few differences between this implementation and the previous one are that a
different message is presented, there’s no userInfo dictionary created for the
notification and a sound isn’t used as it isn’t critical that the user responds to this
notification.

At this point Aroma is monitoring for all the iBeacons Wait List advertises, so you’re
all set to give it a try.

Build and run your app, and make sure Bluetooth is enabled on both devices. Once
both apps have launched, you can either close Aroma or put the device to sleep. On
Wait List, tap Start Beacon and choose @synthesize salads. You should see the
following notification displayed on your device running Aroma:

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 748

Just like that, the device running Aroma alerts you to let you know you’re near the
restaurant; sliding the notification takes you straight to the restaurant’s detail
page. Feel free to try turning on the iBeacons for the other restaurants to see their
notifications in action too.

Note: Be sure that your device is not in Do Not Disturb mode otherwise you
may not see the notifications.

Now stop the running iBeacon or move the device running Aroma away from the
iPad running Wait List; eventually you’ll receive the exit notification below:

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 749

You’ve probably noticed it takes a minute or so to receive the exit region
notification when you stop an iBeacon. There’s nothing in the Apple documentation
to state why this would occur, but it’s assumed that exit notifications are not
immediate in the event that you’re loitering on the edge of a region, as this would
result in persistent enter/exit notifications. Also be aware that restarting the beacon
before the exit notification is received will not trigger another enter region
notification.

Updating app state based on location
You’ve learned a lot of what iBeacons has to offer; they’re relatively simple yet
incredibly powerful and lend themselves to tons of neat real-world applications. But
remember that you were trying to design an app to make your user’s life easier,
not just tell them when they’re in range of one of their favorite restaurant.

Currently the Reserve a Table button is permanently visible on the detail page of
each restaurant whether or not you’re within range for Multipeer Connectivity. That
doesn’t make sense, and could be misleading to the user. The Reserve a Table
button should only appear when the user is within the region of the respective
restaurant.

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 750

The app delegate will post notifications when particular location updates take place.
You’ll listen for these notifications and invoke some handler methods when these
notifications come through.

Add the following handler method to RestaurantDetailViewController.m:

-(void)handleDidDetermineRegionStateNotification:(NSNotification *)note
{
 Restaurant *r = note.userInfo[@"restaurant"];
 if (r == _restaurant) {
 CLRegionState state =
 [note.userInfo[@"state"] integerValue];
 switch (state) {
 case CLRegionStateInside:
 _reserveATableButton.hidden = NO;
 break;
 case CLRegionStateOutside:
 _reserveATableButton.hidden = YES;
 break;
 case CLRegionStateUnknown:
 _reserveATableButton.hidden = YES;
 break;
 }
 }
}

This method handles the notification posted when the state of a region has been
determined. Based on the state of the region, either show or hide the Reserve a
Table button depending on which restaurant’s region you’ve detected.

Still working in the same file, add the following method:

- (void)handleDidEnterRegionNotification:(NSNotification *)note {
 Restaurant *r = note.userInfo[@"restaurant"];
 if (r == _restaurant) {
 _reserveATableButton.hidden = NO;
 }
}

This method simply displays the button when your device enters a region.

Now add the final method of this trio, as below:

- (void)handleDidExitRegionNotification:(NSNotification *)note {
 Restaurant *r = note.userInfo[@"restaurant"];
 if (r == _restaurant) {
 _reserveATableButton.hidden = YES;

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 751

 }
}

This method hides the button when your device exits a region.

Now you need to register for the actual notifications. Add the following to
viewDidLoad:

[[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(handleDidEnterRegionNotification:)
name:@"DidEnterRegion" object:nil];

[[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(handleDidExitRegionNotification:)
name:@"DidExitRegion" object:nil];

[[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(handleDidDetermineRegionStateNotification:)
name:@"DidDetermineRegionState" object:nil];

Don’t forget that you have to balance this out by implementing dealloc to
unregister for the notifications. Add the following method:

- (void)dealloc {
 [[NSNotificationCenter defaultCenter] removeObserver:self
name:@"DidEnterRegion" object:nil];

 [[NSNotificationCenter defaultCenter] removeObserver:self
name:@"DidExitRegion" object:nil];

 [[NSNotificationCenter defaultCenter] removeObserver:self
name:@"DidDetermineRegionState" object:nil];
}

One caveat to this approach is that you’re not guaranteed to receive the notification
when the view is loaded; therefore you don’t know whether to show or hide the
buttons when the view appears. To alleviate this, use the CLLocationManager
property of the application delegate to request the state of the region for the
restaurant being viewed.

Add the following instance variable to the implementation block of
RestaurantDetailViewController:

CLLocationManager *_locationManager;

Next, add the following code to viewDidLoad:

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 752

_locationManager = [(AppDelegate *)
 [UIApplication sharedApplication].delegate locationManager];
CLBeaconRegion *region = [[CLBeaconRegion alloc]
 initWithProximityUUID:_restaurant.uuid major:0 minor:0
 identifier:_restaurant.name];
[_locationManager requestStateForRegion:region];

Here you assign the app delegate’s locationManager property to the local
_locationManager instance variable, then create a region that represents the
current restaurant and ask the location manager for its state. This method is
asynchronous; therefore once the delegate method is called, you’ll receive the
relevant notification and your handleDidDetermineRegionStateNotification: method
updates the Reserve a Table button accordingly.

Build and run your app; you’ll notice that the Reserve a Table buttons are hidden
when Aroma is not within the restaurant’s region. Open Wait List and start an
iBeacon while Aroma is still open; you’ll see the Reserve a Table button appear. As
an added bonus, the app scrolls to the detail page of the restaurant whose region
you just entered. This feature was already present in the sample project; if you
want to take a look and see how this was done, check out the application delegates’
aapplication:didReceiveLocalNotification: method.

Note: Due to the way exit notifications work, the Reserve Table button may
take some time to disappear once you have left the region or the beacon has
stopped advertising.

You’re now armed with the knowledge required to enhance your existing apps to
take full advantage of iBeacons; if you’re like me, your head is probably already full
of ideas!

You can find the final version of Aroma in the resources for this chapter.

Scaling considerations
The tutorial in this chapter used UUIDs to represent each individual restaurant.
Recall that an app can only monitor twenty regions at a time; this is also true for
UUIDs. Once your app becomes a hit (we can all dream, can’t we?) and more than
twenty restaurants want to use your system you have a big scaling problem.

To alleviate this, it would be wise to consider using a single UUID and then taking
advantage of the major and minor values. The major value could represent a
restaurant id, and the minor could be reserved for later uses, such as different
locations of a restaurant in the same city. The underlying storage for both the major
and minor fields is uint16_t — a 16bit unsigned integer — which means you have

iOS Games by Tutorials Chapter 24: What’s New in CoreLocation

 753

the range from 0 to 216, or 0 to 65,536 values to choose from. If you went this
route you’d be able to support just over 65,000 restaurants before running into any
issues.

If you consider that you also get twenty separate UUIDs to monitor, that takes you
up to a gargantuan 1,310,720 restaurants. Furthermore, say you decided to use
the major value to represent the chain and the minor value the specific location;
you’re now looking at 2^32 combinations which is over 4.2 billion. Then multiply
that by 20 again and you’re now at over 85 billion combinations.

That sure is a heck of a lot more than twenty geo-fences!

Where to go from here?
The tutorial covered most of what you need to know to get up and running with
iBeacons. However there is one topic that’s hasn’t been covered: ranging.

CLLocationManager has another suite of methods specific to iBeacons. Just as you
can monitor iBeacons, you can range them as well using
startRangingBeaconsInRegion:. This begins reporting iBeacons as they’re discovered
to its delegate via locationManager:didRangeBeacons:inRegion:. You can then view
the iBeacons passed to this method and compare their RSSI values and accuracies
to calculate which iBeacon is the closest. Remember though that that radio signals
can and do attenuate, and you shouldn’t rely on the provided values to determine
precise locations of iBeacons.

However, it’s generally safe to use the information to get a good idea of which
iBeacon is nearest, which can be important in an environment where multiple
beacons are advertised, such as museums with multiple exhibits using iBeacons as
virtual tour guides to display information about the exhibits to the visitor. Be sure
to check out the above APIs if your application needs to distinguish between
multiple iBeacons in the same vicinity.

Challenge
Your challenge for this chapter is to introduce a new restaurant with its own UUID
that Wait List advertises and Aroma listens for. The restaurant will be called
“Bitmask Bites”; its image is already included in the project and is named “Bites”.

Hints:

1. Update RestaurantDetailService to include the new restaurant information in
Aroma.

2. Generate a new UUID string using the uuidgen command-line tool.

3. Use the same UUID in Wait List to create the iBeacon.

Good news – we have some bonus chapters for you! In these chapters you’ll learn
about the new inter-app audio feature in iOS 7, learn about some neat updates to
PassKit, and finally, learn how to add iAds into your apps.

Chapter 25: Beginning Inter-App Audio

Chapter 26: Intermediate Inter-App Audio

Chapter 27: What’s New in PassKit, Part 1

Chapter 28: What’s New in Passkit, Part 2

Chapter 29: Introduction to iAd

Section V: Bonus Chapters

Core Audio has been part of iOS since the very first public SDK; it underpins the
entire audio system on iOS. It's quite a complex creature that, fortunately, most
developers don't need to touch. The API is built in C, rather than Objective-C, and
many developers find it quite tricky to come to grips with.

In iOS 7, Apple added inter-app communication to Core Audio, allowing you to send
audio between apps. Now you can write an instrument app that sends audio to a
recording app, such as GarageBand. Or you could write an app that takes audio
from other apps, processes it and then returns it. The possibilities are endless with
this technology.

The astute reader may realize that this technology sounds familiar. If so, it’s
because it’s already been implemented in an app called "Audiobus" -
http://audiob.us. This is a third party app that makes it possible to record audio in
one app, and modify or mix it in another. Core Audio's inter-app audio is very
similar in function, but it offers greater performance since it’s deeply integrated into
the operating system.

In this chapter, you’ll work on two projects. The first is a guitar synthesizer and the
second is an effects box. You'll take these starter projects and add inter-app audio
capability to connect the two apps so that your synthesized guitar playing will be
routed through the effects app.

This chapter doesn't cover the finer details of Core Audio; however, the next
chapter explains how the Core Audio parts of the two apps work together. You may
wish to read the next chapter immediately after finishing this chapter, or simply dip
into it as you're reading this one.

Getting started
To get you up and running quickly with this tutorial you’ll find two starter projects
in the resources for this chapter: iGuitar and iEffects. Open both of the starter
projects in Xcode and have a quick look.

Chapter 25: Beginning
Inter-App Audio
By Matt Galloway

iOS 7 by Tutorials Chapter 25: Beginning Inter-App Audio

 757

iGuitar is a simple instrument app. Run it and play around with the guitar
simulator. If you're a guitar player then you probably already know how play a
chord, otherwise, select a chord from the bottom of the screen and then strum the
strings by dragging your finger over them.

iEffects is an effects box app. It’s set up to provide reverb, echoing the input
sound as it might be heard in a large reflective room. Running this app will echo the
sound picked up by the microphone through the speakers after passing it through
the reverb effect. For more information about the reverb effect, check out the
Wikipedia article http://en.wikipedia.org/wiki/Reverberation.

Note: The effects app loops back audio from the microphone when not used in
inter-app audio mode. Therefore to avoid a feedback loop (where the sound
builds into a deafening blur!) you should plug in some headphones.

Once you've had a look around the starter projects, you’re ready to move on to the
next part of the tutorial.

First up are some background details on inter-app audio that you’ll need before
moving onto integrating this feature into the sample apps.

Basics of Inter-App Audio
The audio subsystem of iOS controls the inter-app audio and handles all of the
hardware interfaces, ensuring that apps get access to the hardware as they need it.
It also interrupts the audio stream of an app when required, such as when taking a
phone call.

In order to participate in inter-app audio, your app must register with the audio
subsystem. You can do this through the Info.plist file, similar to how you would
set the background mode or other app characteristics.

Once this is done, registered apps can talk to each other by requesting a connection
to one another. Within this connection, one app always acts as the host app and
one as the node app. A host can talk to multiple nodes, but a node can have only
one host. Once connected, audio can flow between the apps.

iOS provides a discovery method that returns all available nodes so a host knows
which nodes it can communicate with. The discovery, connection and audio flow is
demonstrated in the image below:

iOS 7 by Tutorials Chapter 25: Beginning Inter-App Audio

 758

In fact, host apps and node apps can communicate more data than just audio data.
They can communicate MIDI (Musical Instrument Digital Interface) events to
provide a playback interface. For example, an app could show a keyboard interface
and pass the notes played to an app that makes cat meows at different pitches.

Apps can also perform remote control actions. For example, nodes can tell their
host to start and stop both recording and playback of audio. Similarly, hosts can
communicate their recording and playback state to their node or nodes.

Once an app has registered with inter-app audio, it publishes what are known as
audio units; it is through these that audio flows between apps. There are four
types of audio units, each with varying inputs and outputs:

Category Inputs Outputs

Generator None Audio

Instrument MIDI Audio

Effect Audio Audio

Music Effect Audio & MIDI Audio

Note that an app doesn’t necessarily have to publish a node to participate in inter-
app audio. In fact, the host app often doesn’t publish a node because its job is
simply to coordinate audio. An example of this would be an app whose job it is to
mix and record audio. It doesn't actually create any audio or add effects, but simply
mediates audio created or processed by other apps.

The simplest combination of inter-app audio apps is one app that creates audio and
passes the audio data to another app that adds an effect to that audio — which is
exactly what the sample apps do in this chapter.

Host App Node App

iOS

Audio

Discover
Nodes

Register
Node

Connect

iOS 7 by Tutorials Chapter 25: Beginning Inter-App Audio

 759

The guitar app can be thought of as either a generator or an instrument. It could
either accept MIDI input to control the note playback, or alternatively allow the user
to strum the guitar in the app to produce audio. On the other hand, the effects box
app is purely an effect audio unit.

The diagram below shows how both apps would talk directly to the hardware in the
absence of inter-app audio:

Notice that the effects app takes input and sends output to the hardware, whereas
the guitar app only sends output. Once inter-app audio is introduced to the apps,
however, the flow of audio data changes slightly.

Once the effect app publishes itself as having an effect node, the guitar app can
request access to that node. Then, instead of playing the guitar audio directly to the
hardware, the guitar app routes the audio through the effect node, which then
processes the audio and sends it back to the guitar app. The guitar app then
outputs the processed audio to the hardware. The diagram below illustrates the
change in this flow:

Instrument /
Generator Effect

Hardware Hardware

iOS 7 by Tutorials Chapter 25: Beginning Inter-App Audio

 760

The interesting thing about inter-app audio is that the effect app has no knowledge
that anything has changed in the new scenario. Thanks to the API layer, it actually
still thinks it is talking to the hardware directly. But the audio subsystem of iOS
changes the routing for the effect app so that the input from hardware is now the
output of the guitar app, and the output to hardware is now the input to the guitar
app.

Now that you've got some background on inter-app audio, it’s time to start
connecting the two projects.

Publishing an audio unit
The first thing you're going to do is to make the effects app publish an audio unit
with inter-app audio. There are a few steps you need to do for this to work. They
are as follows:

1. Enable inter-app audio by adding an app entitlement.

2. Add inter-app audio to your provisioning profile.

3. Turn on the audio background mode, since inter-app audio apps need to be able
to use audio when they are not the foreground application.

4. Add a key to the Info.plist file to tell iOS what type of audio unit the app has to
share.

5. Write code to publish the actual audio unit when the app starts.

Fortunately, Apple has made the first three steps extremely easy to do in Xcode 5
thanks to the new Capabilities tab.

Open iEffects and select the project at the top of the project navigator. Then select
the Capabilities tab. Scroll down and select the Inter-app Audio option; it
describes what it will do once you turn it on. In a nutshell, Xcode will go off to the

Instrument /
Generator

Effect

Hardware

Node

iOS 7 by Tutorials Chapter 25: Beginning Inter-App Audio

 761

provisioning portal, do what it needs to with profiles, and then magically do
everything for you.

Turn on Inter-app Audio and sit back and watch Xcode do everything for you. If
you're part of more than one iOS developer program, it will ask you which program
you want to use. Select the one that makes sense for your current context and click
Choose.

Next, turn on Background Modes and tick the Audio and AirPlay box. Your
screen should now look like the following:

You’ll notice that a new file named iEffects.entitlements has appeared in the
project navigator. This file adds a key to the app so that iOS knows this app uses
inter-app audio when code-signing the application.

That takes care of the first three steps in publishing an audio unit. Next up is
adding a key to Info.plist to indicate what type of audio unit this app publishes.
iOS needs to know what audio units will be published before the app is run; having
that key in the plist means iOS can look up that information right away.

You can edit the Info.plist file directly in the project editor, but adding values to
the file gets a bit fiddly sometimes. For the sake of this tutorial, you’ll edit it
directly.

Open up the Supporting Files folder in the project navigator, right-click on
iEffects-Info.plist and select Open As\Source Code. The file will open in the
main tab as the raw property list source.

Scroll to the bottom of the file and add the following before the </dict> line:

iOS 7 by Tutorials Chapter 25: Beginning Inter-App Audio

 762

<key>AudioComponents</key>
<array>
 <dict>
 <key>manufacturer</key>
 <string>i7bt</string>
 <key>name</key>
 <string>iEffects</string>
 <key>type</key>
 <string>aurx</string>
 <key>subtype</key>
 <string>iasp</string>
 <key>version</key>
 <integer>1</integer>
 </dict>
</array>

This defines the audio units available in this app; it's stored as an array because an
app could publish more than one unit. For example, your app could be both an
effect and an instrument. The table below shows the possible keys in each
dictionary that could describe a unit:

Key Type Description

Manufacturer String

A four-character code representing the
manufacturer of this audio unit. For
this tutorial you've used 'i7bt'. Apple
uses 'aapl'. This is used internally
within Core Audio as a way to
distinguish between different audio
unit manufacturers. You should choose
something that makes sense to your
app. It is not detrimental to clash with
another manufacturer, but you should
strive to choose a unique code.

Name String

The name of the unit. 'iEffects' makes
sense in this case. You should choose
a name that makes sense for your
app. Other apps may use this to
display to the user which units are
available.

Type String
A four-character code to define the
type of audio unit. This is a remote
effect so 'aurx' is used. See below for

iOS 7 by Tutorials Chapter 25: Beginning Inter-App Audio

 763

details about other values.

Subtype String
A four-character code to define the
subtype. This must be 'iasp' because
that indicates an inter-app audio unit.

version Integer

The version. You'll generally use '1' for
this. For inter-app audio, the version
doesn’t really matter. This is present
for other custom audio units (only
available on Mac OS X anyway) where
versioning matters because each may
have a different API.

The values to change in your own app are the manufacturer, name and type.
The type can be one of four values, representing each of the four kinds of inter-app
audio units:

Audio unit type Type four character code

Generator aurg

Instrument auri

Effect aurx

Music Effect aurm

Okay, you’re almost there; you now need to publish the audio unit when the app
starts.

Open ViewController.m and add the following method:

- (void)publishAsNode {
 AudioComponentDescription desc = {
 kAudioUnitType_RemoteEffect,
 'iasp',
 'i7bt',
 0,
 1
 };
 AudioOutputUnitPublish(&desc, CFSTR("iEffects"), 0, _ioUnit);
}

iOS 7 by Tutorials Chapter 25: Beginning Inter-App Audio

 764

The values here may look familiar; that's because you just added them to
Info.plist. The values of the published node must match those defined in the
property list. The code above registers with iOS that the app's _ioUnit audio unit
should be published as a potential inter-app audio unit; once this is done, other
apps may request access to that audio unit.

Note: If you aren’t familiar with Core Audio's audio units, you may want to
read the “Remote IO Audio Unit”section in the following chapter.

The iEffects app's _ioUnit is a remote IO unit, meaning it accesses the hardware.
Recall that when inter-app audio is connected, the audio subsystem reroutes audio
such that the effect still talks to its hardware unit, but the “hardware” is now the
host app.

Finally, add the following line to viewDidLoad, immediately after the call to
createAUGraph:

[self publishAsNode];

This ensures that the audio unit is published once the audio graph has been
created.

Build and run your app; nothing visible has changed at this point. (Sorry!)
However, this ensures that your app still compiles and runs. The next section shows
how to modify your iEffects app to ensure it responds when an app is connected.

Detecting a connected host app
Currently the audio graph is only started when the app is in the foreground, but you
also need it to start when another app is connected. Without that, audio won’t be
processed by the app and inter-app audio won’t work; the host app would think it
was passing audio, but it would only get silence in return.

To detect the connection of the host app, you need to listen for state changes on
the audio unit. This is similar to listening for notifications with
NSNotificationCenter, where you register an observer for a particular notification.

Open ViewController.m and find the class continuation category at the top. Add
the following method prototype:

- (void)audioUnitPropertyChanged:(void *)object
 unit:(AudioUnit)unit
 propID:(AudioUnitPropertyID)propID
 scope:(AudioUnitScope)scope
 element:(AudioUnitElement)element;

iOS 7 by Tutorials Chapter 25: Beginning Inter-App Audio

 765

This is the method that's called back on the view controller, but since audio units
are a C API, they require a C function as the callback.

Add the following function after the class continuation category but before the
implementation block:

void AudioUnitPropertyChanged(void *inRefCon,
 AudioUnit inUnit,
 AudioUnitPropertyID inID,
 AudioUnitScope inScope,
 AudioUnitElement inElement)
{
 ViewController *SELF = (__bridge ViewController *)inRefCon;
 [SELF audioUnitPropertyChanged:inRefCon
 unit:inUnit
 propID:inID
 scope:inScope
 element:inElement];
}

This C function takes an opaque pointer: inRefCon. When you register the callback,
you pass the view controller self pointer as the opaque pointer. In the above
function you can cast the pointer to a ViewController pointer and then call the
Objective-C method. It feels a bit roundabout, but this kind of C to Objective-C
dance is common when dealing with C APIs.

Now, add the following method to the ViewController class:

- (void)audioUnitPropertyChanged:(void *)object
 unit:(AudioUnit)unit
 propID:(AudioUnitPropertyID)propID
 scope:(AudioUnitScope)scope
 element:(AudioUnitElement)element
{
 if (propID == kAudioUnitProperty_IsInterAppConnected) {
 UInt32 connected;
 UInt32 dataSize = sizeof(UInt32);
 AudioUnitGetProperty(_ioUnit,
 kAudioUnitProperty_IsInterAppConnected,
 kAudioUnitScope_Global,
 0,
 &connected,
 &dataSize);

 _connected = (BOOL)connected;

 [self startStopGraphAsRequired];

iOS 7 by Tutorials Chapter 25: Beginning Inter-App Audio

 766

 }
}

This method looks at the inter-app audio connection state of the remote IO audio
unit; remember, that's the audio unit that was published as inter-app audio
enabled. It then sets an instance variable and calls the method to start or stop the
graph as required. The graph is only started if the app is in the foreground or if
inter-app audio is connected.

Finally, to make all this work, you need to register the callback you just wrote. Find
createAUGraph and replace the following comment:

/* TODO: REGISTER PROPERTY LISTENER */

...with the code below:

AudioUnitAddPropertyListener(_ioUnit,
 kAudioUnitProperty_IsInterAppConnected,
 AudioUnitPropertyChanged,
 (__bridge void*)self);

This adds a listener for the "is inter-app connected" property of the audio unit.
Recall that the opaque pointer expected by the callback is the view controller.
That's why self is passed to this method.

The app will now start its audio graph as required when inter-app audio is
connected.

Adding UI to show connection state
It's all well and good that the app starts its audio graph as required, but it would be
nice to give some visual feedback as to the state of the connection. You're now
going to add an image view and a label to show this state.

Inter-app audio is quite clever and can even provide you with the icon of the
connected app. The image view can then display the app icon and a label to
indicate the state: connected or not connected.

Open Main.storyboard and find the view controller's view. Add a 44x44 image
view to the bottom left hand corner of the screen. Then add a label next to it with
the default text of “Not connected”. Your scene should now look like this:

iOS 7 by Tutorials Chapter 25: Beginning Inter-App Audio

 767

Now connect these up to outlets in the view controller class called connectedAppIcon
for the image view and connectionStateLabel for the label.

Next, add the following method to ViewController.m:

- (void)updateConnectedAppViews {
 if (_connected) {
 _connectionStateLabel.text = @"Connected";
 _connectedAppIcon.image =
 AudioOutputUnitGetHostIcon(_ioUnit, 44.0f);
 } else {
 _connectionStateLabel.text = @"Not connected";
 _connectedAppIcon.image = nil;
 }
}

This sets up the label and image as required. Notice the interesting bit that calls
AudioOutputUnitGetHostIcon. This is the part of the new API for inter-app audio that
allows you to obtain the app icon for the host app as previously discussed.

Finally, find audioUnitPropertyChanged:unit:propID:scope:element: and add the
following line after the call to startStopGraphAsRequired:

[self updateConnectedAppViews];

Now, when the connection state changes, the views will update as required.

Build and run the app to ensure everything still works. The connection label at
present, sadly, will display "Not connected" as there is nothing yet to connect to!

iOS 7 by Tutorials Chapter 25: Beginning Inter-App Audio

 768

Opening the host app
To make the effects app even better, you can add a feature that will open the host
app when its icon is tapped. As part of inter-app audio, Apple has made it possible
to obtain a one-shot URL to open the connected app. This is very neat because iOS
provides no direct mechanism for opening another app, other than knowing its URL
scheme — that is, if it even has a URL scheme.

To add the capability of opening the host app, you're going to use a tap gesture
recognizer on the image view you just added. Open ViewController.m and add
the following method:

- (IBAction)openHostApp:(id)sender {
 if (_connected) {
 CFURLRef url;
 UInt32 size = sizeof(url);
 OSStatus result =
 AudioUnitGetProperty(_ioUnit,
 kAudioUnitProperty_PeerURL,
 kAudioUnitScope_Global,
 0, &url, &size);
 if (result == noErr) {
 [[UIApplication sharedApplication]
 openURL:(__bridge NSURL*)url];
 }
 }
}

If the app is connected to a host, then this method grabs the one-shot URL by
requesting a special property of the audio unit. This uses the CoreFoundation
CFURLRef type, which is handily toll-free bridged to NSURL such that it can be passed
to the openURL: method of UIApplication.

Next, open Main.storyboard and select the host app icon image view. Turn on
"User Interaction Enabled" under the attributes inspector. Next, drag a tap
gesture recognizer onto the app icon. Then find the gesture recognizer in the list of
objects on the left and wire it up to the openHostApp: method on the view controller.

Congratulations — the work on iEffects is done! Build and run the app to ensure
everything still works. Next you're going to add the inter-app communication so
that the guitar app can talk to the effects app. This is where the fun really begins!

Plugging in the guitar
The effects app is now ready for the guitar app to be (virtually) plugged in. In this
part of the tutorial you're going to add the ability to route the audio from the guitar

iOS 7 by Tutorials Chapter 25: Beginning Inter-App Audio

 769

through the effects app — or any other inter-app audio you happen to have for
that matter!

Open the iGuitar app and go to the project capabilities tab in the project settings.
Once again, turn on Inter-App Audio and Background Modes, selecting Audio
& AirPlay.

The next thing to do is provide a mechanism for picking which effect to connect.
The best way to do this is through a table view controller that provides a list of the
published audio units.

Remember how iEffects registered as an inter-app audio node in the plist and in
publishAsNode? Now you can get a list of all published audio units from Core Audio.
The first thing you'll need is a model class to store this data.

Add a class called Effect to the project, making it a subclass of NSObject. Then
open Effect.h and change its contents to the following:

#import <Foundation/Foundation.h>

@import AudioUnit.AudioComponent;

@interface Effect : NSObject

@property (nonatomic, strong) NSString *name;
@property (nonatomic, assign)
 AudioComponentDescription componentDescription;
@property (nonatomic, strong) UIImage *icon;

@end

Thanks to the magic of auto-synthesis, there's nothing else you need to do with
that class. It holds all the various pieces of information about the published audio
units, and an AudioComponentDescription describes the audio unit. Recall from a few
pages ago that you created one of these data structures when publishing the effects
app's audio unit.

Now add another class to the project called SelectEffectViewController as a
subclass of UITableViewController. Open SelectEffectViewController.h and
modify it as shown below:

#import <UIKit/UIKit.h>

@class SelectEffectViewController;
@class Effect;

@protocol SelectEffectViewControllerDelegate <NSObject>
- (void)selectEffectViewController:

iOS 7 by Tutorials Chapter 25: Beginning Inter-App Audio

 770

 (SelectEffectViewController*)viewController
 didSelectEffect:(Effect*)effect;
- (void)selectEffectViewControllerWantsToClose:
 (SelectEffectViewController*)viewController;
@end

@interface SelectEffectViewController : UITableViewController

@property (nonatomic, weak)
 id <SelectEffectViewControllerDelegate> delegate;

@end

The above code sets up a standard UITableViewController with a delegate that is
told when it should close and when an effect has been selected.

Open SelectEffectViewController.m and add an instance variable to the
implementation block like so:

@implementation SelectEffectViewController {
 NSArray *_effects;
}

This will hold all the effects that have been found on the system; the method you’re
about to add will discover these effects for you.

Next, add the following imports to the top of the file:

#import "Effect.h"

@import AudioUnit;
@import AudioToolbox;

Now add the following method:

- (void)refreshList {
 // 1
 NSMutableArray *effects = [NSMutableArray new];

 // 2
 AudioComponentDescription searchDesc =
 { kAudioUnitType_RemoteEffect, 0, 0, 0, 0 };

 // 3
 AudioComponent component = NULL;
 while ((component =

iOS 7 by Tutorials Chapter 25: Beginning Inter-App Audio

 771

 AudioComponentFindNext(component, &searchDesc)))
 {
 // 4
 AudioComponentDescription description;
 OSStatus err = AudioComponentGetDescription(component,
 &description);
 if (err) continue;

 // 5
 Effect *effect = [[Effect alloc] init];
 effect.componentDescription = description;
 effect.icon = AudioComponentGetIcon(component, 44.0f);

 CFStringRef name;
 AudioComponentCopyName(component, &name);
 effect.name = (__bridge NSString *)name;

 [effects addObject:effect];
 }

 // 6
 _effects = effects;
 [self.tableView reloadData];
}

This method generates the list of all the effects audio units that are available on the
system. Here's what you do in each step:

1. Initialize a new array to hold the effects.

2. The AudioComponentFindNext (see next step) allows you to search through all
available audio units. Here it takes a search description data structure set up with
zero for all fields except for the component type — the first parameter. You only
want to find the effects, so you pass kAudioUnitType_RemoteEffect as the first
argument so that only those type of audio units will be returned.

3. Loop through all the available audio units using the search descriptor that you
created in the previous step. The component variable is populated with the next
component each time through the loop.

4. The description needs to be passed back through the Effect object; therefore
make an attempt to get it, but if you encounter an error then scrap this audio unit
continue with the loop.

5. Create the effect model object and set it up with relevant information.

6. Once all the audio units have been processed, update the instance variable with
the new array and reload the table view.

Next, find viewDidLoad and add the following two lines to the end:

iOS 7 by Tutorials Chapter 25: Beginning Inter-App Audio

 772

[self.tableView registerClass:[UITableViewCell class]
 forCellReuseIdentifier:@"Cell"];
[self refreshList];

Here you register a cell class and then call refreshList to ready the list of effects
for display.

Finally, delete the starter method implementations for
numberOfSectionsInTableView:, tableView:cellForRowAtIndexPath:, and
tableView:numberOfRowsInSection:. In their stead, add all of the following methods:

- (IBAction)closeTapped:(id)sender {
 [_delegate selectEffectViewControllerWantsToClose:self];
}

- (NSInteger)numberOfSectionsInTableView:
 (UITableView *)tableView
{
 return 1;
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section
{
 return _effects.count;
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:@"Cell"
 forIndexPath:indexPath];

 Effect *effect = _effects[indexPath.row];
 cell.imageView.image = effect.icon;
 cell.textLabel.text = effect.name;

 return cell;
}

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
 Effect *effect = _effects[indexPath.row];

iOS 7 by Tutorials Chapter 25: Beginning Inter-App Audio

 773

 [_delegate selectEffectViewController:self
 didSelectEffect:effect];
}

The first method above allows the view controller to be dismissed without selecting
any effect in case the user wants to cancel the action. The other methods are all
standard table view delegate and data source method implementations.

Now to make use of that table view controller. Open Main.storyboard and place a
button in the top center of onto the lone view controller's view and title it “Select
Effect”. Next add a 44x44 image view to the left of the button, and then add an
outlet named effectIconImageView to the view controller for the image view and
wire it up.

Your scene should now look like this:

Next, drag a Table View Controller onto your scene. Make sure the table view
controller is selected — not the table view — and change its orientation to
Landscape in the Attributes Inspector. Next, change the class to
SelectEffectViewController in the Identity Inspector.

Now select the new view controller you just added, click Editor\Embed
In\Navigation Controller and change the navigation controller's orientation to
landscape. Change the title of the select effect view controller to "Select Effect"
and add a bar button item to the left position on the navigation bar. Change the
button's title to Close and wire it up to the closeTapped: method on the view
controller.

Finally, wire up the Select Effect button on the main view controller to perform a
modal segue to the navigation controller. Give the segue the identifier
EffectSegue.

iOS 7 by Tutorials Chapter 25: Beginning Inter-App Audio

 774

That finishes off the modifications to the storyboard. Your scene should now look
like this:

Now open ViewController.m and add the following imports:

#import "SelectEffectViewController.h"
#import "Effect.h"

Then make ViewController conform to the SelectEffectViewControllerDelegate
protocol by modifying it as below:

@interface ViewController ()
 <GuitarNeckDelegate, SelectEffectViewControllerDelegate>

Then add the following method:

- (void)prepareForSegue:(UIStoryboardSegue *)segue
 sender:(id)sender
{
 if ([segue.identifier isEqualToString:@"EffectSegue"]) {
 UINavigationController *navigationController =
 ((UINavigationController *)segue.destinationViewController);

 SelectEffectViewController *selectEffectViewController =
 (SelectEffectViewController*)
 navigationController.topViewController;

iOS 7 by Tutorials Chapter 25: Beginning Inter-App Audio

 775

 selectEffectViewController.delegate = self;
 }
}

This method sets up the modal segue you added in the storyboard and sets the
delegate of SelectEffectViewController so that it can inform [who?]when an effect
is chosen.

Next, add the following two methods:

- (void)selectEffectViewControllerWantsToClose:
 (SelectEffectViewController*)viewController
{
 [self dismissViewControllerAnimated:YES completion:nil];
}

- (void)selectEffectViewController:
 (SelectEffectViewController*)viewController
 didSelectEffect:(Effect*)effect
{
 [self dismissViewControllerAnimated:YES completion:nil];
}

This implements the two required delegate methods of the effect picker. Right now,
they don’t do anything except dismiss the picker.

Build and run your app; if everything has gone according to plan then you should
see iEffects in the list of available effects:

Wiring up the guitar effect
Now that users have a way to select the effect they want to use, the last thing to
do is wire up the effect in the audio graph. In the following chapter you will learn

iOS 7 by Tutorials Chapter 25: Beginning Inter-App Audio

 776

about audio graphs; but for now all you need to know is that audio flows through
an audio graph.

Each node in the graph can accept input, process the input, produce output, or
even perform a combination of all three. As an example, an audio source such as a
microphone will only produce output, while an audio sink, such as a speaker, will
only accept input.

The image below represents the audio graph of the guitar app without any effects
applied:

The synthesizer node (the element that creates the guitar sounds) has only one
output, which connects to the hardware node's input, i.e., the speaker. When the
effect is added to the graph, it will end up looking something like the diagram
below:

The following steps are required to insert the effect into the audio processing chain:

1. Stop the graph from processing audio. This needs to be done whenever the
graph is altered.

2. Disconnect the synthesizer from the hardware.

3. Connect the effect node's output to the hardware node's input.

4. Connect the synthesizer node's output to the effect node's input.

5. Start the graph.

Note: It's customary — but not required — to wire up a graph in reverse, or
right to left from the perspective of the diagram above. When dealing with
complicated graphs that include mixers (multiple inputs, single output) the
code is often cleaner and easier to read if you wire in reverse.

Open ViewController.m and add the following instance variables to the
implementation block:

AudioUnit _effectUnit;

Synthesizer Out In Hardware

InSynthesizer Out Effect In HardwareOut

iOS 7 by Tutorials Chapter 25: Beginning Inter-App Audio

 777

AUNode _effectNode;

These hold the references to the effect audio unit and associated node within the
audio graph when an effect is connected. Next, add the following method:

- (void)connectEffect:(Effect*)effect {
 // 1
 [self stopAUGraph];

 // 2
 AUNode newEffectNode;
 AudioComponentDescription desc =
 effect.componentDescription;
 AUGraphAddNode(_audioGraph, &desc, &newEffectNode);

 if (newEffectNode) {
 // 3
 if (_effectNode) {
 AUGraphDisconnectNodeInput(_audioGraph,
 _effectNode,
 0);
 AUGraphRemoveNode(_audioGraph, _effectNode);
 _effectIconImageView.image = nil;
 _effectUnit = NULL;
 }

 _effectNode = newEffectNode;

 // 4
 AUGraphNodeInfo(_audioGraph,
 _effectNode,
 0,
 &_effectUnit);

 // 5
 AudioUnitAddPropertyListener(_effectUnit,
 kAudioUnitProperty_IsInterAppConnected,
 AudioUnitPropertyChanged,
 (__bridge void*)self);

 // 6
 AUGraphDisconnectNodeInput(_audioGraph, _ioNode, 0);

 // 7
 AUGraphConnectNodeInput(_audioGraph,

iOS 7 by Tutorials Chapter 25: Beginning Inter-App Audio

 778

 _effectNode,
 0,
 _ioNode,
 0);

 // 8
 AUGraphConnectNodeInput(_audioGraph,
 _synthNode,
 0,
 _effectNode,
 0);

 // 9
 _connected = YES;
 _effectIconImageView.image = effect.icon;
 } else {
 NSLog(@"Failed to obtain effect audio unit.");
 }

 // 10
 [self startAUGraph];
 CAShow(_audioGraph);
}

This method wires in the chosen effect. Here's what it does step by step:

1. Stops the graph before performing any manipulation on it.

2. Gets the AudioComponentDescription from the effect, and turns it into a node in
the graph using AUGraphAddNode.

3. Removes the old effect (if it exists) from the graph before _effectNode is
switched to the new node.

4. Gets the AudioUnit from the AUNode. This is necessary for the next step.

5. Just as in the effects app, the property listener listens for changes to the inter-
app audio state.

6. Disconnects the hardware node.

7. Connects the effect node's output to the hardware node's input.

8. Connects the synthesizer node's output to the effect node's input.

9. Updates the connection state and the icon image view.

10. Finally, restarts the graph. CAShow dumps the current state of the graph to the
console to aid debugging.

Step 5 adds the property listener for state changes to inter-app audio. This is
required such that if the connected effects app disconnects, the graph can be

iOS 7 by Tutorials Chapter 25: Beginning Inter-App Audio

 779

rewired back to its original state. The effects app might disconnect if it crashes or if
the system kills it to free up some memory.

To implement the audio listener, find the class continuation category for
ViewController and add the following method prototype:

- (void)audioUnitPropertyChanged:(void *)object
 unit:(AudioUnit)unit
 propID:(AudioUnitPropertyID)propID
 scope:(AudioUnitScope)scope
 element:(AudioUnitElement)element;

Now add the following function after the class continuation category, but before the
implementation block:

void AudioUnitPropertyChanged(void *inRefCon,
 AudioUnit inUnit,
 AudioUnitPropertyID inID,
 AudioUnitScope inScope,
 AudioUnitElement inElement)
{
 ViewController *SELF = (__bridge ViewController *)inRefCon;
 [SELF audioUnitPropertyChanged:inRefCon
 unit:inUnit
 propID:inID
 scope:inScope
 element:inElement];
}

Just like in the effects app, the above C callback uses the opaque pointer inRefCon
to perform the C to Objective-C dance.

Now, add the following method to the ViewController class:

- (void)audioUnitPropertyChanged:(void *)object
 unit:(AudioUnit)unit
 propID:(AudioUnitPropertyID)propID
 scope:(AudioUnitScope)scope
 element:(AudioUnitElement)element
{
 if (propID == kAudioUnitProperty_IsInterAppConnected) {
 UInt32 connected;
 UInt32 dataSize = sizeof(UInt32);
 AudioUnitGetProperty(_effectUnit,
 kAudioUnitProperty_IsInterAppConnected,
 kAudioUnitScope_Global,
 0,

iOS 7 by Tutorials Chapter 25: Beginning Inter-App Audio

 780

 &connected,
 &dataSize);

 _connected = (BOOL)connected;

 if (!_connected && _effectNode) {
 [self stopAUGraph];

 AUGraphDisconnectNodeInput(_audioGraph,
 _effectNode,
 0);
 AUGraphRemoveNode(_audioGraph, _effectNode);
 _effectIconImageView.image = nil;
 _effectNode = 0;
 _effectUnit = NULL;

 _effectIconImageView.image = nil;

 AUGraphConnectNodeInput(_audioGraph,
 _synthNode,
 0,
 _ioNode,
 0);
 }

 [self startStopGraphAsRequired];
 }
}

This code checks the connection state of the effects audio unit. If the effects unit
isn’t connected, it removes the effects node from the graph and rewires the
synthesizer node straight to the hardware node.

You’re almost there – there’s just a couple of things left. First, add the following line
to the end of selectEffectViewController:didSelectEffect:

[self connectEffect:effect];

This will ensure that the selected effect app is wired in.

Finally, add the following method:

- (IBAction)openEffectApp:(id)sender {
 if (_effectUnit) {
 CFURLRef url;
 UInt32 size = sizeof(url);

iOS 7 by Tutorials Chapter 25: Beginning Inter-App Audio

 781

 OSStatus result =
 AudioUnitGetProperty(_effectUnit,
 kAudioUnitProperty_PeerURL,
 kAudioUnitScope_Global,
 0,
 &url,
 &size);
 if (result == noErr) {
 [[UIApplication sharedApplication]
 openURL:(__bridge NSURL*)url];
 }
 }
}

Just as in iEffects, you can open up the linked audio app directly; the method above
will get the effect app’s URL if it’s connected.

Follow the same steps as before on the storyboard: set the image view’s user
interaction to Enabled and add a tap gesture recognizer. The gesture recognizer’s
action should then be wired up to this method.

That’s it — build and run your app and try out your fully functional suite of inter-
audio apps! Strum the guitar, then connect the iEffects app; you should hear the
reverb effect added to the guitar sound as it’s processed through the iEffects app.

Note: You may find that the app crashes if you connect the effect while the
audio is still playing. If you encounter this, just ensure you wait until the audio
has finished before connecting the effects app. This seems to happen due to a
bug in the synthesizer node.

The next chapter goes into more depth about Core Audio, audio graphs and
interfacing with the hardware. So if you're looking to learn more details about Core
Audio then carry on reading!

Challenges
Try out this challenge to get some practice with the techniques you’ve just learned.

Challenge 1: Change the effect
The iEffects app only has a single reverb effect, but there are many more effects
available. In this challenge, edit the iEffects app to make use of a different effect.
Here is a list of some of the others that are available:

• Low-pass filter

iOS 7 by Tutorials Chapter 25: Beginning Inter-App Audio

 782

• High-pass filter

• Band-pass filter

• Delay

• Distortion

Tip: The various effects units are defined in AUComponent.h.

In the previous chapter you learned how to add inter-app audio to an existing app.
However, you may have been a bit confused by some of the code in the starter
project if you weren’t already familiar with Core Audio.

In this chapter you will learn more about Core Audio, including what audio graphs
are and how to wire one up to process audio. You’ll also learn how Core Audio
interfaces with the microphone and the speaker on iOS.

By the end of this chapter you’ll have written a Core Audio app from scratch that
uses inter-app audio as well. It will act as a host in the inter-app audio sense, by
connecting an instrument to an effect.

Ready to dive in head first to Core Audio? Read on!

What is Core Audio?
Core Audio is a low-level C API for interfacing with audio hardware and processing
audio in iOS. It is written in C, rather than Objective-C, as it needs to be an
extremely low latency process. In fact, just the simple overhead of the Objective-C
runtime could significantly impact the performance. It really is that low-level!

Not every developer needs to drop down to Core Audio. Apple has kindly wrapped
up most of the common tasks into the AV Foundation framework. For example,
AVPlayer provides a way to play a sound file. Doing the same thing directly in Core
Audio would require a significant amount of code.

So when is direct Core Audio access a good idea? Well, if you want to create an
instrument app, an app that processes audio, or an app that requires real-time
audio such as VoIP, then you will likely need to drop down to Core Audio. For
example, an app that takes input and mixes it with a sound file might use Core
Audio since the two audio streams need to be in-sync, as even the tools in AV
Foundation are often not good enough for this.

Chapter 26: Intermediate
Inter-App Audio
By Matt Galloway

iOS 7 by Tutorials Chapter 26: Intermediate Inter-App Audio

 784

Audio units
One of the core concepts of Core Audio is the audio unit. These are objects that
represent a single I/O or processing block. For example, to interface with the
hardware you use what is known as the "remote IO audio unit" – more on that
later. Another example is a mixer audio unit that can take multiple inputs, mix the
audio and spit out a single output stream.

Apple provides several pre-defined audio units in the SDK, such as a voice
processor that performs noise cancellation, but you can also create your own
custom units. The SDK includes base classes for effect, instrument, and format
conversion.

Audio units have one or more busses, which separate out logical streams within the
audio unit. Most audio units will only have one bus as they accept one input and
produce one output. However the hardware I/O unit (discussed later) has two
busses – one for the microphone and one for the speaker.

Audio graphs
An audio graph is made up of many audio units. An audio unit is known as a node
when it is part of an audio graph. You can think of audio flowing through an audio
graph like water flowing through a pipe network.

The audio unit that generates audio in a graph is referred to as the source. In the
water analogy, this would be the tap producing the raw water. Audio units that
process audio can be compared to things that change the state of the water by
heating it up, changing its color, or mixing it with water from other sources. The
final audio unit in a graph is referred to as the sink. What this represents in the
water analogy is self-explanatory!

An example audio graph is shown in the image below:

In this graph, there are five nodes. There are two source nodes, two processing
nodes and one sink node. In the above audio graph, audio is taken from the
microphone, reverb added, mixed with audio from a file and finally played out to
the speaker.

InOut Reverb

In Speaker

Out

Out
Out

In

In
Mixer

Mic

File

AUGraph

AUNode

AudioUnit

iOS 7 by Tutorials Chapter 26: Intermediate Inter-App Audio

 785

In Core Audio terms, there are three objects that you need to be aware of when
creating audio graphs:

• AUGraph – This is the object that contains the overall graph structure. You add
nodes to it, wire the nodes up and then start audio processing. Changes can be
made to the graph, but audio processing must be stopped before doing so, and
then restarted once the changes have been made.

• AUNode – This is the node object you add to a graph and wire together with other
nodes. A node is a wrapper for an audio unit and exposes inputs and outputs that
are wired to form the graph.

• AudioUnit – This is the object where the actual audio processing happens. As
explained earlier, audio units are either system-supplied or custom made.

Audio formats
When dealing with a graph, you might need to consider audio formats. Audio stored
in one format may be completely incompatible with audio stored in another format.
So if one audio unit expects its input to be a certain format, then upstream units
must supply that same format. Therefore, unless you have a unit that changes the
audio format, all audio within a graph must be the same format.

Sometimes there are limitations on the audio format that your source can produce.
For example, a microphone might only be able to provide a certain binary format at
specific discrete sample frequencies. If there are discrepancies between two audio
formats, then you can use a special conversion audio unit to convert one format to
another. You might use this strategy when processing multiple audio streams, since
you would require all audio streams to be of the same format.

Remote I/O
In iOS, you interface with the hardware (microphone and speaker) through the
special remote I/O audio unit. This is different from other units, as the input and
output are not connected like other audio units. Instead, the input is connected to
the speaker and the microphone is connected to the output.

Yeah, that sounds a little odd, but the following diagram showing the internal
workings of the remote I/O unit probably explains it a little better:

iOS 7 by Tutorials Chapter 26: Intermediate Inter-App Audio

 786

Sometimes it can get a bit confusing when using the remote I/O unit, because
audio processing can both begin and end with the remote I/O unit. Therefore your
graph looks like one big loop, even though it’s a proper directed graph.

The magic behind the curtain is that the audio unit has two busses: one bus for the
microphone (bus 1) and one for the speaker (bus 0). A good way to remember
which bus is which is the following:

• The microphone is the Input, and I looks like a one

• The speaker is the Output, and O looks like a zero

Creating a hub app
In this part of the tutorial you'll create an app similar to the one in the last chapter
— but this time completely from scratch. It's a host app — or hub — that connects
two other inter-app audio apps. This might seem a little redundant; why wouldn’t
you just connect the two apps directly?

Connecting the two apps directly is fine for a simple application, but using a host
app makes complicated unit wiring scenarios possible in apps that mix lots of
different audio sources, such as GarageBand.

Note: From this point onwards, the tutorial assumes you have read the
previous chapter. If you have not yet read that then it’s highly recommended
that you go back and read it first.

The graph for the app will have three states. The first state is when neither an
instrument nor effect is connected. In this state there will be just one node — the
hardware node. It won't be connected to anything and the graph won’t be running.
The graph will therefore look like this:

Speaker

Mic

In Out

iOS 7 by Tutorials Chapter 26: Intermediate Inter-App Audio

 787

The second state is when there’s only an instrument is connected, but no effect. In
this state the graph would look like this:

The third state is when an instrument and an effect are both connected to the hub
app. In this final state the graph will look like the following:

The instrument node will run inside the instrument app; likewise, the effect node
will run inside the effect app. The only node running inside the hub app itself is the
hardware node required to play audio out through the speaker.

Note: You’ll need the iGuitar and iEffects apps installed on your device so that
this app can connect to them. If you didn’t create those apps in the previous
chapter, you’ll find those two projects in the resources folder for this project.

Getting started
Open Xcode and create a new project called AudioHost from the Single View
Controller template. Make it iPhone-only and save it wherever you wish.

Before doing anything else, you’ll need to set up inter-app audio. Open the project's
Capabilities tab on the project info screen. Turn on Inter-App Audio and
Background Modes, then tick Audio & AirPlay. Once again, hooray for Apple's
new Capabilities tab! :]

Hub App

In Hardware

Hub App

Instrument App

Instrument
Node Out In Hardware

Hub App

Effect App

Instrument App

InInstrument
Node Out Effect

Node In HardwareOut

iOS 7 by Tutorials Chapter 26: Intermediate Inter-App Audio

 788

Next, navigate to the General tab of the project settings and un-tick Portrait in
the Device Orientation block. Just like iGuitar and iEffects, this app will only
support landscape mode.

You'll find an icon in the resources for this chapter, called AudioHost-
Icon@2x.png that you can use for the icon if you wish. Add it in the usual way as
part of the assets catalog for the app.

Open Main.storyboard and add two labels and two image views to the view
controller. Set the background color of the view to RGB (25, 25, 25) and set the
labels’ colors to RGB (224, 224, 224). Turn on User Interaction Enabled for both
image views and set the views’ background colors to RGB (224, 224, 224).

Modify the layout of your labels and image views to resemble the screenshot below:

Don't worry too much about using auto-layout to keep the views looking perfect
when the main view resizes; just lay them out as you wish. This isn't a tutorial on
auto-layout, after all!

Finally, wire up the two image views to outlets in ViewController called
instrumentIconImageView and effectIconImageView.

That does it for setting up the UI; on to the audio graph implementation!

Creating the graph
Now for the fun Core Audio stuff! Open ViewController.m and add the following
imports to the top of the file:

@import AudioToolbox;

iOS 7 by Tutorials Chapter 26: Intermediate Inter-App Audio

 789

@import AudioUnit;
@import AVFoundation;

Next, add the following instance variables to the implementation block:

@implementation ViewController {
 AUGraph _audioGraph;
 AudioUnit _ioUnit;
 AudioUnit _instrumentUnit;
 AudioUnit _effectUnit;
 AUNode _ioNode;
 AUNode _instrumentNode;
 AUNode _effectNode;
 BOOL _graphStarted;
 BOOL _connectedInstrument;
 BOOL _connectedEffect;
}

These hold the relevant audio graph, audio units and audio nodes for your app. As
well, there are a few flags to determine whether the graph is started and whether
instrument and effect nodes are connected.

Time to create the audio graph! Add the following method:

- (void)createAUGraph {
 // 1
 NewAUGraph(&_audioGraph);

 // 2
 AudioComponentDescription iOUnitDescription;
 iOUnitDescription.componentType =
 kAudioUnitType_Output;
 iOUnitDescription.componentSubType =
 kAudioUnitSubType_RemoteIO;
 iOUnitDescription.componentManufacturer =
 kAudioUnitManufacturer_Apple;
 iOUnitDescription.componentFlags = 0;
 iOUnitDescription.componentFlagsMask = 0;
 AUGraphAddNode(_audioGraph, &iOUnitDescription, &_ioNode);

 // 3
 AUGraphOpen(_audioGraph);

 // 4
 AUGraphNodeInfo(_audioGraph, _ioNode, NULL, &_ioUnit);

iOS 7 by Tutorials Chapter 26: Intermediate Inter-App Audio

 790

 // 5
 AudioStreamBasicDescription format;
 format.mChannelsPerFrame = 2;
 format.mSampleRate =
 [[AVAudioSession sharedInstance] sampleRate];
 format.mFormatID = kAudioFormatLinearPCM;
 format.mFormatFlags =
 kAudioFormatFlagsNativeFloatPacked |
 kAudioFormatFlagIsNonInterleaved;
 format.mBytesPerFrame = sizeof(Float32);
 format.mBytesPerPacket = sizeof(Float32);
 format.mBitsPerChannel = 32;
 format.mFramesPerPacket = 1;

 AudioUnitSetProperty(_ioUnit,
 kAudioUnitProperty_StreamFormat,
 kAudioUnitScope_Output,
 1,
 &format,
 sizeof(format));

 AudioUnitSetProperty(_ioUnit,
 kAudioUnitProperty_StreamFormat,
 kAudioUnitScope_Input,
 0,
 &format,
 sizeof(format));

 CAShow(_audioGraph);
}

Here’s what you do in the code above, comment by comment:

1. Initialize the graph object. Almost all Core Audio APIs return a status code to
indicate success or failure, so passing a variable by reference that gets filled in
(an "out parameter") is used instead.

2. AudioComponentDescription structures describe audio units. Here you ask a graph
to add a node with one of these structures. The only node in the graph at this
point is the remote IO node. The instrument and effect nodes will be added when
the user selects them.

3. Now that all the nodes have been added, the graph can be opened with
AUGraphOpen. At this point, the nodes and their associated audio units will be
ready and waiting to be set up as required.

4. Get the remote IO audio unit from the node so that you can apply formats to it in
the next step. Once again the out parameters provide the required units to you.

iOS 7 by Tutorials Chapter 26: Intermediate Inter-App Audio

 791

5. Set both the input and output formats. You don't have to set the output format
because you're not using the node's output in this app, but sometimes audio will
stop working if both formats aren’t configured. To be safe, set both formats and
the app will be fine even if you never use the output.

Next, change viewDidLoad as follows:

- (void)viewDidLoad {
 [super viewDidLoad];
 [self createAUGraph];
}

This ensures that the graph is created when the view is loaded.

Build and run your app, and your UI will appear. It doesn’t do a whole lot right now,
but this is a good checkpoint to ensure your code compiles and runs correctly.

Take a look at the console, and you’ll see the following output:

AudioUnitGraph 0x2C3000:
 Member Nodes:
 node 1: 'auou' 'rioc' 'appl', instance 0xa144140 O
 CurrentState:
 mLastUpdateError=0, eventsToProcess=F, isRunning=F

This tells you that there is only one node (node 1) and the graph is not yet running
(isRunning is false). Everything checks out so far.

When you dynamically rewire audio graphs, you need to start and stop the graph
accordingly; the next section shows you how to do this.

Starting and stopping the graph
Open ViewController.m and add the following methods:

- (void)startAudioSession {
 AVAudioSession *session = [AVAudioSession sharedInstance];
 [session setPreferredSampleRate:
 [session sampleRate] error:nil];
 [session setCategory:AVAudioSessionCategoryPlayback
 withOptions:AVAudioSessionCategoryOptionMixWithOthers
 error:nil];
 [session setActive:YES error:nil];
}

- (void)startStopGraphAsRequired {
 if (_connectedInstrument) {
 [self startAUGraph];

iOS 7 by Tutorials Chapter 26: Intermediate Inter-App Audio

 792

 } else {
 [self stopAUGraph];
 }
}

- (void)startAUGraph {
 if (!_graphStarted && _audioGraph) {
 [self startAudioSession];

 Boolean outIsInitialized;
 AUGraphIsInitialized(_audioGraph, &outIsInitialized);
 if (!outIsInitialized) {
 AUGraphInitialize(_audioGraph);
 }

 AUGraphStart(_audioGraph);

 _graphStarted = YES;
 }
}

- (void)stopAUGraph {
 if (_graphStarted && _audioGraph) {
 AUGraphStop(_audioGraph);

 Boolean outIsInitialized;
 AUGraphIsInitialized(_audioGraph, &outIsInitialized);
 if (outIsInitialized) {
 AUGraphUninitialize(_audioGraph);
 }

 _graphStarted = NO;
 }
}

If you followed along in the previous chapter, these methods should look familiar.
They are very similar to the equivalent methods in iGuitar and iEffects that handle
starting and stopping the graph as required, as well as starting an audio session
with iOS.

Selecting the instrument and effect
Next you need a way to select the instrument and effect. iEffects uses a modal view
controller to search and list all available effects and prompt the user to select the
desired effect. You can easily extend that functionality to allow selection of both
instruments and effects.

iOS 7 by Tutorials Chapter 26: Intermediate Inter-App Audio

 793

Add a class to the project called InterAppAudioUnit, making it a subclass of
NSObject. Then open InterAppAudioUnit.h and modify it so it looks like the code
below:

#import <Foundation/Foundation.h>

@import AudioUnit.AudioComponent;

@interface InterAppAudioUnit : NSObject

@property (nonatomic, strong) NSString *name;
@property (nonatomic, assign)
 AudioComponentDescription componentDescription;
@property (nonatomic, strong) UIImage *icon;

@end

These properties will contain the details about the selected inter-app audio unit. If
you completed the previous chapter, you’ll notice that this is just the Effect class
from iGuitar. Plus, thanks to auto-synthesis, nothing more needs to be done to the
implementation of InterAppAudioUnit.

Next up is the UI for selecting an instrument or effect. Add a new class called
SelectIAAUViewController to the project, making it a subclass of
UITableViewController. Then open SelectIAAUViewController.h and modify it to
look like this:

#import <UIKit/UIKit.h>

@import AudioUnit.AudioComponent;

@class SelectIAAUViewController;
@class InterAppAudioUnit;

@protocol SelectIAAUViewControllerDelegate <NSObject>
- (void)selectIAAUViewController:
 (SelectIAAUViewController*)viewController
 didSelectUnit:(InterAppAudioUnit*)unit;
- (void)selectIAAUViewControllerWantsToClose:
 (SelectIAAUViewController*)viewController;
@end

@interface SelectIAAUViewController : UITableViewController

- (instancetype)initWithSearchDescription:
 (AudioComponentDescription)description;

iOS 7 by Tutorials Chapter 26: Intermediate Inter-App Audio

 794

@property (nonatomic, weak)
 id <SelectIAAUViewControllerDelegate> delegate;

@end

This is very similar to the SelectEffectViewController class of iGuitar. The only
difference is that this contains an initializer method to pass in a search description.
This allows the user to select either an instrument or effect from the view
controller. The search description defines the type of audio units that are listed in
the table.

Time to implement the rest of this class. Open SelectIAAUViewController.m and
add the following imports to the top of the file:

#import "InterAppAudioUnit.h"

@import AudioUnit;
@import AudioToolbox;

Now add the following instance variables to the implementation block:

@implementation SelectIAAUViewController {
 AudioComponentDescription _searchDesc;
 NSArray *_units;
}

_searchDesc is populated during initialization (recall the initializer defined in the
header) and _units holds the list of audio units from which the user can choose.

Next, add the following method:

- (void)refreshList {
 NSMutableArray *units = [NSMutableArray new];

 // 1
 AudioComponentDescription searchDesc = _searchDesc;
 AudioComponent component = NULL;
 while ((component =
 AudioComponentFindNext(component, &searchDesc)))
 {
 // 2
 AudioComponentDescription description;
 OSStatus err = AudioComponentGetDescription(component,
 &description);
 if (err) continue;

iOS 7 by Tutorials Chapter 26: Intermediate Inter-App Audio

 795

 // 3
 InterAppAudioUnit *unit =
 [[InterAppAudioUnit alloc] init];
 unit.componentDescription = description;
 unit.icon = AudioComponentGetIcon(component, 44.0f);

 CFStringRef name;
 AudioComponentCopyName(component, &name);
 unit.name = (__bridge NSString *)name;

 [units addObject:unit];
 }

 // 4
 _units = units;
 [self.tableView reloadData];
}

This method searches for all available audio units and displays them to the user.
It's very similar to the equivalent method in iGuitar’s SelectEffectViewController,
except here the user of the class sets the search description. Comment by
comment, here’s a rundown of the method’s actions:

1. Make a copy of the search description since some of the private flags will be
changed in the loop. Call AudioComponentFindNext to iterate through the
discovered audio units matching the search description.

2. Get the description of the audio unit, and in the rare case that this call fails,
continue the loop without further processing of that audio unit. It's always worth
handling the error case.

3. Initialize a new InterAppAudioUnit object for each discovered audio unit with its
description, icon and name. Add the audio unit to the units array.

4. Finally, once all audio units have been collected, set the instance variable and
reload the table view.

Now, find viewDidLoad and modify it as follows:

- (void)viewDidLoad {
 [super viewDidLoad];
 self.navigationItem.leftBarButtonItem =
 [[UIBarButtonItem alloc] initWithTitle:@"Cancel"
 style:UIBarButtonItemStyleBordered
 target:self
 action:@selector(closeTapped:)];
 [self.tableView registerClass:[UITableViewCell class]
 forCellReuseIdentifier:@"Cell"];
 [self refreshList];

iOS 7 by Tutorials Chapter 26: Intermediate Inter-App Audio

 796

}

This adds a button to the navigation bar to give the user an option to cancel the
selection process. It also registers a standard cell for the table view and kicks off a
refresh of the list of audio units.

Next, add the following method:

- (void)closeTapped:(id)sender {
 [_delegate selectIAAUViewControllerWantsToClose:self];
}

Tapping the cancel button calls the above method, which simply calls the delegate
method that informs the delegate that the view controller will close without
selecting an audio unit.

You now need to implement the custom initializer you declared earlier in the
header. Add the following method:

- (instancetype)initWithSearchDescription:
 (AudioComponentDescription)description
{
 if ((self = [super initWithStyle:UITableViewStylePlain])) {
 _searchDesc = description;
 }
 return self;
}

This calls through to the superclass's (UITableViewController) designated initializer
initWithStyle:. It also sets the instance variable that holds the search description
used by refreshList.

When you create your own designated initializer as you did above, you need to
ensure that you override the super-class's designated initializer. This ensures that
when someone uses the super-class's designated initializer, your class is still
initialized correctly.

Open SelectIAAUViewController.m and modify initWithStyle: as follows:

- (instancetype)initWithStyle:(UITableViewStyle)style {
 return [self initWithSearchDescription:
 (AudioComponentDescription){0}];
}

In this case, the view controller just needs to pass an empty search description
through to the custom designated initializer. Sure, the style parameter will be
ignored, but that's fine because you always want the style to be plain.

iOS 7 by Tutorials Chapter 26: Intermediate Inter-App Audio

 797

Finally, replace all of the table view delegate and data source methods at the
bottom of the file with the following:

- (NSInteger)numberOfSectionsInTableView:
 (UITableView *)tableView
{
 return 1;
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section
{
 return _units.count;
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:@"Cell"
 forIndexPath:indexPath];

 InterAppAudioUnit *unit = _units[indexPath.row];
 cell.imageView.image = unit.icon;
 cell.textLabel.text = unit.name;

 return cell;
}

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
 InterAppAudioUnit *unit = _units[indexPath.row];
 [_delegate selectIAAUViewController:self
 didSelectUnit:unit];
}

These methods set up the table view to display the discovered audio units. When a
row is selected, they call the delegate and inform it which row has been selected.

Now that you have the view controller for selecting both the instrument and the
effect, it's time to wire these into the main view controller. Open
ViewController.m and add the following two imports to the top of the file:

#import "SelectIAAUViewController.h"
#import "InterAppAudioUnit.h"

iOS 7 by Tutorials Chapter 26: Intermediate Inter-App Audio

 798

Then declare that ViewController implements the
SelectIAAUViewControllerDelegate by editing the class-continuation category as
follows:

@interface ViewController () <SelectIAAUViewControllerDelegate>

Next, add two instance variables to the implementation block as follows:

SelectIAAUViewController *_instrumentSelectViewController;
SelectIAAUViewController *_effectSelectViewController;

These variables hold the two view controllers for selecting the instrument and
effect. Storing the view controller references in variables helps you determine which
view controller is calling back when the delegate methods are called.

Next, add the following two methods, which make up the
SelectIAAUViewControllerDelegate protocol you added earlier:

- (void)selectIAAUViewControllerWantsToClose:
 (SelectIAAUViewController *)viewController
{
 [self dismissViewControllerAnimated:YES completion:nil];
}

- (void)selectIAAUViewController:
 (SelectIAAUViewController *)viewController
 didSelectUnit:(InterAppAudioUnit *)unit
{
 [self dismissViewControllerAnimated:YES completion:nil];
}

For now, this doesn’t actually perform any rewiring of the graph. You'll get on to
that in a moment.

Finally, you need a couple of methods to allow selection of an instrument and
effect. Add the following two methods:

- (IBAction)selectInstrument:(id)sender {
 AudioComponentDescription description =
 { kAudioUnitType_RemoteInstrument, 0, 0, 0, 0 };
 _instrumentSelectViewController =
 [[SelectIAAUViewController alloc]
 initWithSearchDescription:description];
 _instrumentSelectViewController.delegate = self;

 UINavigationController *navController =
 [[UINavigationController alloc]

iOS 7 by Tutorials Chapter 26: Intermediate Inter-App Audio

 799

 initWithRootViewController:_instrumentSelectViewController];
 [self presentViewController:navController
 animated:YES
 completion:nil];
}

- (IBAction)selectEffect:(id)sender {
 AudioComponentDescription description =
 { kAudioUnitType_RemoteEffect, 0, 0, 0, 0 };
 _effectSelectViewController =
 [[SelectIAAUViewController alloc]
 initWithSearchDescription:description];
 _effectSelectViewController.delegate = self;

 UINavigationController *navController =
 [[UINavigationController alloc]
 initWithRootViewController:_effectSelectViewController];
 [self presentViewController:navController
 animated:YES
 completion:nil];
}

These methods create the selection view controllers and present them modally in a
navigation controller. Notice how AudioComponentDescription only sets the audio
unit type in each case. For the instrument selection you want just remote
instruments; for the effect you want just remote effects.

Switch over to the storyboard and add tap gesture recognizers to each of the image
views. Wire up the instrument icon’s gesture recognizer to call selectInstrument:
and the effect icon’s gesture recognizer to call selectEffect:.

Build and run your app; tap on either of the two image views to select either an
instrument or an effect. The instrument list will be empty, but iEffects should show
up in the list of effects.

Of course, nothing will happen when you select it just yet! You need to dynamically
rewire the graph before anything will happen.

Re-wiring the graph
Add the following method (still in ViewController.m):

- (void)connectInstrument:(InterAppAudioUnit*)unit {
 // 1
 [self stopAUGraph];

 // 2

iOS 7 by Tutorials Chapter 26: Intermediate Inter-App Audio

 800

 AUNode newInstrumentNode;
 AudioComponentDescription desc = unit.componentDescription;
 AUGraphAddNode(_audioGraph, &desc, &newInstrumentNode);

 // 3
 if (newInstrumentNode) {
 // 4
 if (_instrumentNode) {
 AUGraphDisconnectNodeInput(_audioGraph,
 _instrumentNode,
 0);
 AUGraphRemoveNode(_audioGraph, _instrumentNode);
 _instrumentIconImageView.image = nil;
 _instrumentUnit = NULL;
 }

 // 5
 _instrumentNode = newInstrumentNode;

 // 6
 AUGraphNodeInfo(_audioGraph,
 _instrumentNode,
 0,
 &_instrumentUnit);

 // 7
 if (_effectNode) {
 AUGraphConnectNodeInput(_audioGraph,
 _instrumentNode,
 0,
 _effectNode,
 0);
 } else {
 AUGraphConnectNodeInput(_audioGraph,
 _instrumentNode,
 0,
 _ioNode,
 0);
 }

 // 8
 _connectedInstrument = YES;
 _instrumentIconImageView.image = unit.icon;
 } else {
 NSLog(@"Failed to obtain instrument audio unit.");

iOS 7 by Tutorials Chapter 26: Intermediate Inter-App Audio

 801

 }

 // 9
 [self startStopGraphAsRequired];
 CAShow(_audioGraph);
}

This method connects an instrument to the audio graph. If there is no effect
connected, the instrument will connect directly to the hardware node. If there is an
effect connected, the instrument is connected to the effect, which is in turn
connected to the hardware node.

Here's a step-by-step of how the connection method works:

1. Stop the graph before rewiring it.

2. Create a node for the new instrument and add it to the audio graph.

3. If the node was created successfully, then the connection can continue.
Otherwise it's a failure.

4. If there's already an instrument connected, remove the node and clean up.

5. Update the instance variable to hold the new instrument node.

6. AUGraphNodeInfo obtains the audio unit for the newly added node, just as you’ve
seen previously.

7. If there's an effect node, then the instrument node needs to be wired to that;
otherwise the instrument node is wired to the hardware node.

8. Update the instance variables to reflect the new state.

9. Finally, start the graph and log the graph state to the console.

That's the instrument connection — now to add an effect! Add the following
method:

- (void)connectEffect:(InterAppAudioUnit*)unit {
 if (!_connectedInstrument) {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Error!"
 message:@"You need to select an instrument first!"
 delegate:nil
 cancelButtonTitle:nil
 otherButtonTitles:@"OK", nil];
 [alert show];
 }

 [self stopAUGraph];

 AUNode newEffectNode;

iOS 7 by Tutorials Chapter 26: Intermediate Inter-App Audio

 802

 AudioComponentDescription desc = unit.componentDescription;
 AUGraphAddNode(_audioGraph, &desc, &newEffectNode);

 if (newEffectNode) {
 if (_effectNode) {
 AUGraphDisconnectNodeInput(_audioGraph,
 _effectNode,
 0);
 AUGraphRemoveNode(_audioGraph, _effectNode);
 _effectIconImageView.image = nil;
 _effectUnit = NULL;
 }

 _effectNode = newEffectNode;

 AUGraphNodeInfo(_audioGraph,
 _effectNode,
 0,
 &_effectUnit);

 AUGraphDisconnectNodeInput(_audioGraph, _ioNode, 0);

 AUGraphConnectNodeInput(_audioGraph,
 _effectNode,
 0,
 _ioNode,
 0);

 AUGraphConnectNodeInput(_audioGraph,
 _instrumentNode,
 0,
 _effectNode,
 0);

 _connectedEffect = YES;
 _effectIconImageView.image = unit.icon;
 } else {
 NSLog(@"Failed to obtain effect audio unit.");
 }

 [self startStopGraphAsRequired];
 CAShow(_audioGraph);
}

This method is very similar to the instrument connection method. The difference is
in the wiring that needs to be done. As an exercise, read through the code and try

iOS 7 by Tutorials Chapter 26: Intermediate Inter-App Audio

 803

to explain it yourself using the instrument connection method as a guide.
Remember that the effect node sits between the instrument node and the hardware
node.

In the words of Steve Jobs: "one more thing”. Add the following code to the top of
selectIAAUViewController:didSelectUnit:

if (viewController == _instrumentSelectViewController) {
 [self connectInstrument:unit];
} else if (viewController == _effectSelectViewController) {
 [self connectEffect:unit];
}

This detects which view controller is indicating that an audio unit has been selected
and calls the relevant connection method.

Build and run on your device, select iEffect as your effect, and then select an
instrument...uh oh. When you try to select an instrument you won’t see iGuitar in
the list!

The issue is that iGuitar hasn't been declared as providing an instrument audio unit.

In the previous chapter iEffects was written to publish its audio unit, but iGuitar
didn’t need to, as iGuitar served as the host app and didn't need to publish any
audio units. But now it's acting as a node app and therefore it does need to publish
an audio unit if it wants to show up in the list.

Publishing iGuitar's audio unit
You now need to alter iGuitar slightly so that it can act as an instrument for inter-
app audio purposes. Start off by opening the iGuitar project; either use your final
project from the previous chapter, or use the one provided in the resources for this
chapter.

If you’ve read the previous chapter you’ll know where to start with this. That's
right: add a key to the Info.plist file and then publish the node when the app
launches.

Find the iGuitar-Info.plist file in the project navigator under Supporting Files.
Right click on it and select Open As\Source Code. Then add the following at the
bottom of the file, just before the </dict>:

<key>AudioComponents</key>
<array>
 <dict>
 <key>manufacturer</key>
 <string>i7bt</string>
 <key>name</key>
 <string>iGuitar</string>

iOS 7 by Tutorials Chapter 26: Intermediate Inter-App Audio

 804

 <key>type</key>
 <string>auri</string>
 <key>subtype</key>
 <string>iasp</string>
 <key>version</key>
 <integer>1</integer>
 </dict>
</array>

This is similar to what you added to Info.plist for iEffects; the only difference is
the name and type values. The name is, of course, iGuitar, while the type is auri,
which signifies an instrument.

Next, open ViewController.m and add the following method:

- (void)publishAsNode {
 AudioComponentDescription desc = {
 kAudioUnitType_RemoteInstrument,
 'iasp',
 'i7bt',
 0,
 0
 };
 AudioOutputUnitPublish(&desc, CFSTR("iGuitar"), 1, _ioUnit);
}

This publishes the app's remote IO audio unit to take part in inter-app audio. Note
that the description and name are the same as were defined in the Info.plist file.
This is required so that iOS knows that you're publishing the same node that was
declared.

Finally, find viewDidLoad and add the following line directly after the call to
createAUGraph:

[self publishAsNode];

That's it — build and run iGuitar, then switch to your AudioHost app and select an
instrument. You should now see iGuitar in the list. Moreover, you should be able to
select iGuitar along with an effect, then switch to iGuitar and start strumming.

iOS 7 by Tutorials Chapter 26: Intermediate Inter-App Audio

 805

The audio processing follows the sequence below:

1. Created in iGuitar from the synthesizer.

2. Passed out from iGuitar to AudioHost.

3. Passed out from AudioHost to iEffects.

4. Processed by the effects unit in iEffects.

5. Passed out from iEffects to AudioHost.

6. Sent to the speaker hardware.

Complicated, but it works!

Note: You may want to switch to iEffects and change a few sliders to modify
the effect; this should help convince you that audio is flowing correctly
through the three apps.

Sending MIDI events
The previous chapter noted that you could send more than just audio data; in
particular you can send MIDI data, but note that only hosts can send MIDI events.
Adding MIDI to your flow diagram results in the following:

iOS 7 by Tutorials Chapter 26: Intermediate Inter-App Audio

 806

Only instrument inter-app audio nodes can receive MIDI events from their host app.
You're now going to add the ability for AudioHost to send MIDI events to iGuitar to
make it play on its own as an example of how this callback mechanism works.

Setting up iGuitar to receive MIDI events
First you need to modify iGuitar to be able to receive MIDI events. Just as you set
up property listeners to listen for changes to the inter-app audio connection state,
you’ll handle MIDI events in a similar manner. In the node app, you simply register
a C function as a callback that's called every time a MIDI event is received.

Open the iGuitar project and open ViewController.m. Add the following code to
createAUGraph just above the final CAShow call:

AudioUnitAddPropertyListener(_ioUnit,
 kAudioUnitProperty_IsInterAppConnected,
 AudioUnitPropertyChanged,
 (__bridge void*)self);

AudioOutputUnitMIDICallbacks callbacks;
callbacks.userData = (__bridge void*)self;
callbacks.MIDIEventProc = AudioUnitMIDIEvent;
callbacks.MIDISysExProc = NULL;
AudioUnitSetProperty(_ioUnit,
 kAudioOutputUnitProperty_MIDICallbacks,
 kAudioUnitScope_Global,
 0,
 &callbacks,

Host App Node App

iOS

Audio

Discover
Nodes

Register
Node

Connect

MIDI

iOS 7 by Tutorials Chapter 26: Intermediate Inter-App Audio

 807

 sizeof(callbacks));

The AudioUnitAddPropertyListener call adds a property listener to the remote IO
unit for changes to the inter-app connection state. This app's audio graph is
currently only running when the app is in the foreground or an effect is connected
to it. Now that it can be controlled from the AudioHost app, you need the graph to
run in this new state.

The AudioUnitSetProperty call adds the MIDI event listener. It does this through
the same Core Audio function that you saw earlier for setting audio formats. It
declares that the function AudioUnitMIDIEvent will be called every time a MIDI
event is received.

The event listener is registered on the global scope of the remote IO unit. Global
scope is used when the property being set relates to neither input nor output. This
is the case with MIDI events as they don't directly relate to either the microphone
or the speaker — they’re control messages.

Note that you’re re-using an existing method for the property listener on the
remote IO unit’s inter-app connection state changes (AudioUnitPropertyChanged). If
you need to remind yourself of how that works, check back over
AudioUnitPropertyChanged and
audioUnitPropertyChanged:unit:propID:scope:element:.

To handle the remote IO property listener, find
audioUnitPropertyChanged:unit:propID:scope:element: and add another if
statement around the existing if statement as shown below:

if (propID == kAudioUnitProperty_IsInterAppConnected) {
 /* Existing code used to be here… */
 if (unit == _effectUnit) {
 /* …but was moved here */
 }
}

Now, add an else-if block to that new if-statement as follows:

if (unit == _effectUnit) {
 /* Existing code */
} else if (unit == _ioUnit) {
 UInt32 connected;
 UInt32 dataSize = sizeof(UInt32);
 AudioUnitGetProperty(_ioUnit,
 kAudioUnitProperty_IsInterAppConnected,
 kAudioUnitScope_Global,
 0,
 &connected,

iOS 7 by Tutorials Chapter 26: Intermediate Inter-App Audio

 808

 &dataSize);

 _connected = (BOOL)connected;

 [self startStopGraphAsRequired];
}

This handles the property listener requirements of the remote IO unit. Here, you’re
getting the current connection state and then calling startStopGraphAsRequired to
ensure that the graph is started when an inter-app audio host app is connected.

Now it's time to add the MIDI event callback. Add the following method prototype
to the class-continuation category:

- (void)audioUnitMIDIEvent:(void *)object
 status:(UInt32)status
 data1:(UInt32)data1
 data2:(UInt32)data2
 offsetSampleFrame:(UInt32)offsetSampleFrame;

Next, add the following C function after the class-continuation category, before the
implementation block (it should sit just below the AudioUnitPropertyChanged
function):

void AudioUnitMIDIEvent(void *userData,
 UInt32 inStatus,
 UInt32 inData1,
 UInt32 inData2,
 UInt32 inOffsetSampleFrame)
{
 ViewController *SELF = (__bridge ViewController *)userData;
 [SELF audioUnitMIDIEvent:userData
 status:inStatus
 data1:inData1
 data2:inData2
 offsetSampleFrame:inOffsetSampleFrame];
}

Just like the inter-app audio property listener, this uses the opaque pointer that can
be set in the callback to pass the ViewController instance. This casts the opaque
pointer to a ViewController instance and calls the Objective-C method on it. This is
yet another example of the C to Objective-C dance that often happens with these
kinds of callbacks.

Finally, add the following method:

- (void)audioUnitMIDIEvent:(void *)object

iOS 7 by Tutorials Chapter 26: Intermediate Inter-App Audio

 809

 status:(UInt32)status
 data1:(UInt32)data1
 data2:(UInt32)data2
 offsetSampleFrame:(UInt32)offsetSampleFrame
{
 MusicDeviceMIDIEvent(_synthUnit,
 status,
 data1,
 data2,
 offsetSampleFrame);
}

It’s deceivingly simple; all the code above does is pass the MIDI event straight
through to the synthesizer unit.

Setting up AudioHost to send MIDI events
Now that iGuitar can receive MIDI events, you need to modify AudioHost to send
some. You could add a full guitar neck interface to the AudioHost app, but that's a
bit of overkill for this tutorial. So you're just going to add a button that plays a
single note.

Open the AudioHost project and open ViewController.m. Then add the following
method:

- (IBAction)playNote:(id)sender {
 if (_instrumentUnit) {
 UInt32 noteOnCommand = (0x9 << 4) | 0;
 MusicDeviceMIDIEvent(_instrumentUnit,
 noteOnCommand,
 60,
 100,
 0);

 double delayInSeconds = 2.0;
 dispatch_time_t popTime =
 dispatch_time(DISPATCH_TIME_NOW,
 (int64_t)(delayInSeconds * NSEC_PER_SEC));

 dispatch_after(popTime,
 dispatch_get_main_queue(),
 ^(void){
 if (_instrumentUnit) {
 UInt32 noteOffCommand = (0x8 << 4) | 0;
 MusicDeviceMIDIEvent(_instrumentUnit,
 noteOffCommand,

iOS 7 by Tutorials Chapter 26: Intermediate Inter-App Audio

 810

 60,
 100,
 0);
 }
 });
 }
}

This is the method that sends the MIDI events. The note commands are just
constants standing for “note on” and “note off”. You simply send MIDI events to the
instrument audio unit, just as you would send MIDI events to a synthesizer audio
unit.

The dispatch_after is used in the above code to send a MIDI event to stop playing
the note after 2 seconds. This needs to be done to ensure that the note doesn't
continue playing forever.

Now you need a way to trigger that method. Open Main.storyboard and add a
button in the middle of the view controller, toward the bottom. Give the button the
title "Play Note" and change the color of the text to RGB (224, 224, 224). Then
wire it up to the IBAction playNote: that you added above.

Build and run both the iGuitar app and the AudioHost app. In AudioHost, connect
iGuitar and then tap on the Play Note button. Like a ghostly Stevie Ray Vaughan,
iGuitar plays a solid middle C.

Here's the flow of the events in your apps:

1. AudioHost generates a MIDI event and sends it to iGuitar.

2. iGuitar receives the MIDI event and passes it to its synthesizer audio unit.

3. The synthesizer audio unit generates the audio.

4. The audio flows from iGuitar to AudioHost.

5. If an effect is connected in AudioHost, then audio flows through the effect and
back in.

6. AudioHost plays the audio out through the speaker.

You now have three apps that can talk to each other through inter-app audio: the
host, an instrument, and an effect.

Challenges
Want to test out your new knowledge of Core Audio? Here’s a challenge for you!

iOS 7 by Tutorials Chapter 26: Intermediate Inter-App Audio

 811

Challenge 1: Selectable effects
Now that you know all about audio graphs and how to swap nodes in and out, you
can put that knowledge to good work. iEffects is a bit boring at present as it only
has a single effect. Your challenge is to add the ability to select different effects.

To do this, you're going to need a UI to select between different effects. Once
you've made that and decided on which effects units you're going to support, write
the code to switch between each effects unit.

Tip: You're going to need to write code to unwire and rewire the audio graph as
necessary.

The Passbook ecosystem is Apple’s technology for distributing tickets, coupons,
cards and just about any piece of digital information from your server direct to your
customers’ iOS devices. Passbook and the PassKit framework were first introduced
in iOS 6 and a growing number of companies are adopting Passbook to manage
their digital redeemables. With the release of iOS 7, Apple has added a number of
features to Passbook such as a new UI, automatic expiration, time zones, and
iBeacons.

In this chapter you are going to learn how to take advantage of the new iOS 7
Passbook features, and still remain iOS 6 compatible for those slow upgraders.

Since this book covers only the new iOS 7 APIs you will need to know the basics of
creating passes in Passbook and how the PassKit web-service works. You can get
up to speed by checking out some or all of the following resources:

• iOS 6 by Tutorials (http://www.raywenderlich.com/store/ios-6-by-tutorials)
covers everything about creating Passbook passes in over 200 pages of high
quality tutorials.

• For just the basics, there’s an iOS 6-only version of the Passbook chapter online
for free (http://www.raywenderlich.com/20734/beginning-passbook-part-1).

• Apple has its own Passbook documentation and reference material available online
(https://developer.apple.com/passbook/).

This chapter is split into two sections. In the first section, you are going to cover
the visual updates to passes in iOS 7 and build a checklist for updating your
existing passes.

In section 2 you’ll work on updating a sample iPhone app and several existing
passes provided with this chapter; you are going to fix some existing in iOS 6
issues in the passes and add new features for iOS 7.

Chapter 27: What’s New in
PassKit, Part 1
By Marin Todorov

iOS 7 by Tutorials Chapter 27: What’s New in PassKit, Part 1

 813

Getting started
Throughout this chapter you will be working on a project – the iPhone app of a
fictitious amusement park called Crazy Rides. For the purposes of this chapter,
pretend that the app is live on the App Store and you have a list of issues to fix and
several new features to add.

Grab the starter project for this chapter called CrazyRidesStarterProject.

The “Crazy Rides” park lets its users buy 3-month passes to its 2 biggest
attractions – the “Black Friday” and “Wild Roller”:

Furthermore, users can buy a coupon that entitles them to get two cotton candies
for the price of one:

The app is very simple and consists of two view controllers – the home screen
where the users buy the different passes, and an extra screen where users can
reserve a seat on one of the rides.

Note: The purchasing process in this example app is only a mockup; you can
buy as many pretend passes and cotton candy coupons as you like.

iOS 7 by Tutorials Chapter 27: What’s New in PassKit, Part 1

 814

Since you will be working mostly on the “Black Friday” pass in this chapter, you will
need to do a bit of setup before being able to start working with the code.

Certificate setup
First, you’ll need a pass certificate. Sign in to the Apple Developer Center and click
on Certificates, Identifiers & Profiles. On the next screen, open up the menu
item called Pass Type IDs, as below:

You should now see the list of your existing pass IDs, which might be empty if you
haven’t created any passes before. Click on the + button to add a new pass
identifier.

In the next form enter Black Friday Ride Pass as the pass Description and
pass.com.yourcompany.crazyrides.blackfriday as the Identifier. The IDs
need to be unique so fill in your own name or company in the identifier.

Click Register in the Overview scren to finish creating your new pass ID. You will
see the following confirmation that the pass was created:

Click Done to go back to the pass ID list. Select the Black Friday Ride Pass item
in the list and click on the Settings button, as below:

iOS 7 by Tutorials Chapter 27: What’s New in PassKit, Part 1

 815

You’re now on the certificate generation page. Click Create Certificate… On the
next screen, you’ll need to upload a Certificate Signing Request – just follow the
steps listed on the page and click Continue. Upload your CSR file and finally click
Generate; it could take a moment before the next page shows up, so be patient:

You should see the confirmation that the certificate was generated successfully, as
so:

Click on Download to transfer the certificate file to your computer. Next, double-
click the file to install the certificate in your Keychain. Now you should see the new
pass certificate in your certificates list as below:

You might need to select My Certificates in the Keychain window to find the new
certificate Make sure you can find the certificate with your new pass ID.

Open up the starter project in Xcode; use the Project Navigator to locate and open
CrazyRides/Passes/Configuration/bf3monthspass.plist. You will see the file
contains two keys passTypeIdentifier and teamIdentifier, as shown below:

iOS 7 by Tutorials Chapter 27: What’s New in PassKit, Part 1

 816

Fill in your unique passTypeIdentifier as the value of this key.

If you know your team ID, enter it as value of the other key, skip the instructions
below and jump straight to the Running the Crazy Rides app section.

To retrieve your team ID, go to the home page of the Apple Developer Center and
click the Member Center link at the top of the page.

Towards the top-left corner you will see the name of your organization; click it to
retrieve your organization’s details.

On the next screen you will see your team ID; it’s a 10 character alphanumerical
string. Copy that string and paste it into the teamIdentifier’s value back in Xcode.

You should have the two configuration variables set, like so:

To make your life easier, the starter project includes a pass-building script that
rebuilds the Black Friday pass each time you build the Xcode project. This way you
can focus on working on the pass code and leave the building of manifests and
signature creation to Xcode.

Note that you may need to make the pass-building script executable on your
machine before continuing. To do this, make sure the scripts are executable by
using the chmod 755 command.

Running the Crazy Rides app
Build and run your app; if a dialogue pops up and asks you to give Xcode access to
your Keychain, that’s to be expected. Click Allow or Always Allow if you don’t
want to be asked every time you run the project.

Note: Xcode runs an app called signpass to generate the passes that go into
the app’s bundle. You’ll explore that in more detail in just a bit.

iOS 7 by Tutorials Chapter 27: What’s New in PassKit, Part 1

 817

The app will then appear in all of its loop-the-loop glory:

Everything appears to be hooked up correctly; you can move on to working with
the code.

Note: For those of you who are curious to know what’s happening during the
build process, here’s what Xcode does behind the scenes.

First, Xcode runs buildpasses.sh in the project directory before compiling the
app. buildpasses.sh executes passdata, which grabs the values from

iOS 7 by Tutorials Chapter 27: What’s New in PassKit, Part 1

 818

bf3monthspass.plist and puts them into pass.json. The source code of
passdata is provided along with the rest of this chapter’s assets.

signpass grabs the pass source files and compiles them using the matching
certificate from your keychain. The source code for signpass is available from
Apple here:
https://developer.apple.com/downloads/index.action?name=Passbook)

Finally, Xcode includes bf3monthspass.pkpass in the app bundle and runs
the app.

Visual updates to passes in iOS 7
Before starting to dig into the code, consider what the iOS 7 visual update means
for Passbook. Have a look at the same pass previewed in Passbook on iOS 6 on the
left, and iOS 7 on the right:

Notice the updates to the pass to bring it in line with the new iOS 7 design
paradigm:

• The text is now flat rather than inset.

• All uppercase letters are used for smaller sized labels.

• No gradient is applied to the front of the pass.

• No shine is applied to the pass picture, even if you specify you want it.

• The buttons match the iOS 7 UI.

iOS 7 by Tutorials Chapter 27: What’s New in PassKit, Part 1

 819

• The width of the pass is now the full width of the screen: 320pt.

• Finally, you have an extra button to share this pass with others.

Due to the new styling, the layout of the fields might vary between iOS 6 and iOS 7
for some passes. The changes aren’t especially jarring, but there are some quick
steps you can take to ensure iOS 7 compatibility:

1. Open the pass in iOS 7 and check that the layout is preserved.

2. The fonts and UI are automatically changed by Passbook; still, it’s up to you to
check whether the pass still looks okay.

3. Your strip image is scaled up to match the new 320pt width, but you should
update the original image to match the new pass size for pixel perfection.

4. Remove any etching you had previously applied to your logo image.

These tweaks should be enough for 95% of the passes you’ll encounter. As with
general app design, your passes should fit with the new iOS 7 style by removing
extra shine, shadows, etching or bevels on images.

Don’t worry about the back of your existing passes; visually, the back remains
largely the same as before, except the buttons at the top are now iOS 7 style
buttons, as shown below:

Fixing iOS 6 issues
The existing Crazy Rides has a list of pass issues for you to fix. Your task is to work
through this list and fix the issues one by one for all of your iOS 7 customers!

Wrong time zone offsets for date fields
Run the starter project and open the Black Friday pass. Flip it over by tapping the i
button and have a look at the opening and closing times. The amusement park is
open from 8 AM until 8PM, but Passbook automatically adjusts the date fields to
your own time zone.

iOS 7 by Tutorials Chapter 27: What’s New in PassKit, Part 1

 820

Depending on your location you’ll see different times, but here’s what the back of
the pass looks like in some cities:

To prevent this kind of confusion, Apple introduced a new key for the date fields
called ignoresTimeZone. In the starter project directory, navigate to the file
passes/bf3monthspass/pass.json and open it with your favorite text editor.

Scroll through the file and find where the two date fields are located. They will look
like this:

{
 "dateStyle" : "PKDateStyleNone",
 "label" : "Opens at:",
 "key" : "date",
 "value" : "2013-08-19T08:00-02:00",
 "timeStyle" : "PKDateStyleShort"
},
{
 "dateStyle" : "PKDateStyleNone",
 "label" : "Closes at:",
 "key" : "dateEnd",
 "value" : "2013-08-19T20:00-02:00",
 "timeStyle" : "PKDateStyleShort"
}

Under each opening curly brace, add the following key to tell Passbook to ignore
the time zone offset:

"ignoresTimeZone" : true,

Don’t forget the comma at the end of the line!

That’s everything you need to do about the time zone issue.

Build and run your project, open the Black Friday pass, and flip it over: you can see
the correct opening and closing times no matter where you’re located:

iOS 7 by Tutorials Chapter 27: What’s New in PassKit, Part 1

 821

Data-detector false positives
Data detectors are great when you use them in your own apps; however, in
Passbook the back fields have all data detectors enabled for all the text all the time,
so sometimes pieces of text are recognized in error.

You might have noticed the following false positive on the back of the Black Friday
pass:

The text clearly states “Your purchase number is …” but since that particular
purchase number is also a valid telephone number, Passbook links that number to
the Phone app.

In iOS 7 you can specify which data detectors should be enabled. Open
passes/bf3monthspass/pass.json in your text editor again and find the receipt
field as follows:

{
 "label" : "Paper receipt",
 "key" : "receipt",
 "value" : "Your purchase number is 234-235-5678. If …"
}

dataDetectorTypes is the new key that controls which data detectors are enabled;
by default, all detectors are enabled. You can use one or a combination of detectors
from the following list:

• PKDataDetectorTypePhoneNumber: phone numbers

• PKDataDetectorTypeLink: web URLs

iOS 7 by Tutorials Chapter 27: What’s New in PassKit, Part 1

 822

• PKDataDetectorTypeAddress: addresses
• PKDataDetectorTypeCalendarEvent: dates, time ranges, etc.
The receipt field has two pieces of interesting information for data detectors: the
purchase number (which looks like a phone number) and a URL to a support page.
You want the URL data detector to work, but you need to disable that pesky phone
number data detector.

Before the opening curly bracket in that last code fragment, add the following line:

"dataDetectorTypes" : [
 "PKDataDetectorTypeLink"
],

Now run the app again and you’ll notice that the purchase number is not recognized
as a phone number anymore:

Making links easier on the eyes
If you read through the whole text in the receipt field on the back of the pass,
you’ll see that the owner of the pass can tap on the provided link and print
themselves a paper receipt. Again, all of this functionality is just mocked up this
sample project.

The included link takes up a lot of space and isn’t all that attractive:

www.crazyridesllc.com/receipts/print.php?show=clientconfirmation&receipt
Id=234-235-5678&source=passbook

Apple adds a new key attributedValue as an alternative to the value key; it can
contain a restricted set of HTML markup to provide a text link instead of the raw
URL using the <a href> tag.

Add this key to the receipt field above the existing value key:

"attributedValue" : "Your purchase number is 234-235-5678. If you need a
paper receipt for tax purposes you can print it <a
href='http://www.crazyridesllc.com/receipts/print.php?show=clientconfirm
ation&receiptId=234-235-5678&source=passbook'>at our web site",

iOS 7 by Tutorials Chapter 27: What’s New in PassKit, Part 1

 823

The contents of the attributedValue are similar to those of value; the only
difference is that the link is wrapped up in an <a> tag to look a little more attractive
when it’s rendered.

You still need to leave the value key for the users running on iOS 6 – they’re stuck
looking at the ugly link until they upgrade to iOS 7.

Build and run your app, and check out the Paper receipt field, which looks much
nicer now:

To wrap up the list of potential iOS 6 Passbook migration issues, iOS 7 will now
check that fields on the back of the pass have unique names. Some passes that
work on iOS 6 will be invalid when installed on iOS 7.

Passbook improvement in iOS 7
Now you are going to add a few features to your pass that are only available in iOS
7.

Handling expiration dates
If you look at the header on the front of the pass, you will notice that the pass has
an expiration date. However, when this expiration date comes and goes, nothing
really happens. Your server needs to send an update to the pass and somehow turn
it into an expired pass.

In iOS 7 there’s a new pass field to specify the expiry date of the pass. Even if the
user is not online, Passbook will display the pass as expired. The new pass JSON
key is called expirationDate and accepts a standard W3C formatted date.

The expiration date on the Black Friday pass header is the 20th of August, so add a
new JSON key to the top level in passes/bf3monthspass/pass.json as follows:

"expirationDate" : "2013-08-20T00:00-02:00",

Build and run your app; you should see the barcode dimmed and an expiration
message displayed, as below:

iOS 7 by Tutorials Chapter 27: What’s New in PassKit, Part 1

 824

It’s important to notice that the pass is not automatically destroyed; it remains in
the user’s pass library and the user can still interact with it.

Just as with iOS 6, it’s up to your backend service and database logic to actually
expire the passes. The nice expiration message is really a convenience method to
show the customer that the pass is expired.

Open up pass.json and change the expiration date to the following:

"expirationDate" : "2020-08-20T00:00-02:00",

This way you can keep working with the pass, as it will be good well into the year
2020! If it’s already 2020 and you’re reading this (and still working with iOS 7), we
need to have a little chat.

Immediate invalidation
Sometimes you want to expire a pass immediately. There can be many reasons for
this: the payment for the pass was denied, the user cancelled the purchase
manually, or maybe a user had couple of beers too many and is now banned from
the amusement park!

Doing this on the backend side is usually pretty easy – just delete or hide the pass
in the database. But how do you notify users that their pass is not valid anymore?

In iOS 7 there’s a new way to do that. Add the following code to the top level of
your JSON in passes/bf3monthspass/pass.json:

"voided": true,

When you update the pass with this field it will immediately show the user that it’s
expired.

If you plan to use the expirationDate or voided fields in your pass, it’s a good idea
to add these expiration policies to your terms and conditions right on the back of
the pass itself.

Remove the voided line you added to the JSON; you’ll need a valid pass to work
with the rest of the examples in this chapter and the next.

iOS 7 by Tutorials Chapter 27: What’s New in PassKit, Part 1

 825

Fine tune location relevancy
One of the best features of Passbook is that when you’re close to a location that
accepts passes that you own, your lock screen will show any relevant passes to
remind you to use them.

Assume Crazy Rides wants the Black Friday pass to appear on the device’s lock
screen only when the user is within 15 meters of the ride’s entrance. You would add
the relevant location information with the new maxDistance key, like so:

"locations": [
 {
 "latitude" : 42.136848,
 "longitude" : 24.73196,
 "maxDistance": 15
 }
],

That’s all you need to do to refine the location relevance of the pass. Actually you
can be even more precise by using iBeacons, which you’ll implement in the next
chapter.

Challenges
You’ve already covered all the basics of the new in iOS 7 Passbook features. You
will continue with the new Passbook APIs in the next chapter by learning how to
implement a whole new level of location awareness to a pass, working with pass
bundles, and increasing the connection between passes and apps.

However you can still achieve an even better result on the Black Friday by taking on
a challenge by yourself.

Challenge 1: expiration date backfield
Add a new date field to the Black Friday pass. Set it to display the month, day and
year, make it ignore the time zone offset of the current user location.

If in doubt check the pass backfields specification and the date field properties
online:

https://developer.apple.com/library/ios/ -
documentation/UserExperience/Reference/PassKit_Bundle/Chapters/FieldDictionary.
html

In the previous chapter you worked on the Black Friday pass that comes with the
Crazy Rides app. You made a number of improvements to the pass, making use of
the new pass features available in iOS 7.

However, you didn’t get to look at what’s new with the PassKit.framework, and
you definitely haven’t seen some of the really cool stuff like working with iBeacons
and distribution via QR codes.

This chapter will take you through the rest of the Passbook updates in iOS 7. You’ll
continue to work with the Crazy Rides app and its integration with Passbook.

Note that you need two test devices running iOS 7 to test the iBeacon portion of
this chapter.

Pushing Passbook integration further
In this section of the book you are going to take on more complicated requests
from your fictional employer Crazy Rides and provide much better Passbook
integration for their business.

Using iBeacons to activate passes
In the previous chapter you set the Black Friday location relevancy precision to
make the pass appear when the user was a certain distance from the ride entrance.
But imagine the following scenario: a shuttle train runs around the Crazy Rides
amusement park and takes visitors directly to the Black Friday ride. Passengers
need to present their Black Friday pass to get on the train.

The pass needs to know when it’s in the vicinity of the current location of the train,
but the train’s a moving target! You can’t hard code the coordinates of a moving
train into your app. However – this seems like a perfect opportunity for an iBeacon!

Chapter 28: What’s New in
PassKit, Part 2
By Marin Todorov

iOS 7 by Tutorials Chapter 28: What’s New in PassKit, Part 2

 827

Note: If you’re new to iBeacons, check out Chapter 24, “What’s New in Core
Location” for tons of background info and a fun example.

If the train had an iBeacon on board, you could instruct Passbook to show the pass
on the lock screen in the vicinity of that beacon.

Locate passes/bf3monthspass/pass.json and open it up in your favorite text
editor. Add the following key to the top level of the JSON code:

 "beacons" : [
 {
 "proximityUUID" : "74278BDA-B644-4520-8F0C-720EAF059935",
 "relevantText" : "Catch The Black Friday Train!"
 }
],

The proximityUUID key specifies the UUID of the Bluetooth beacon, and
relevantText contains the lock screen notification message. Since beacon region
monitoring is now a built-in feature in iOS 7, Passbook only needs the UUID and will
detect the beacon automatically when it’s nearby.

When you come near a beacon, the pass notification will appear on your lock
screen, as shown below:

Note the preview of the actual pass – another nice feature of iOS 7.

To test this feature, you will need an iOS 7 device to act as your Bluetooth beacon.
Apple has an iBeacon test app called AirLocate. Open
https://developer.apple.com/downloads/index.action and search for “AirLocate” to
find the sample app. Install the AirLocate app, and perform the following
configuration on your device as shown below:

iOS 7 by Tutorials Chapter 28: What’s New in PassKit, Part 2

 828

1. Tap on Configuration.

2. Tap UUID to change the beacon UUID to match what you entered in the JSON
earlier. The app ships with a few pre-defined UUIDs, and it just so happens that
the third entry in the list matches up exactly to what you entered in the JSON
earlier, so just select that!

3. Turn on the Enabled switch.

4. Tap on Save to persist your changes.

Once your changes are saved, your device will become an iBeacon and will keep
broadcasting the UUID you selected as long as the app is in the foreground. The
lock screen sends the app to the background and kills the iBeacon broadcasting, so
keep an eye on it.

Have a look at your primary device; once it picks up on the iBeacon from your
secondary device, you should see a notification appear on your lock screen for the
pas in question.

Pass bundles
Now it’s time to finally have a look into improving the iPhone app itself.

Open MasterViewController.m and find the following line at the top of the file:

#import <PassKit/PassKit.h>

Replace this with the new @import syntax as below:

@import PassKit;

iOS 7 by Tutorials Chapter 28: What’s New in PassKit, Part 2

 829

Often your customers will want to purchase several passes at once; until now the
user had to view and download one pass at a time, which was a tedious operation.
You can now offer pass bundles, where users can buy one package containing all
the passes.

If you scroll down the file and take a look at the following method:

-(PKPass*)passWithName:(NSString*)name

This method loads the contents of a .pkpass file from the app’s bundle and
initializes a new PKPass instance with the contents of the pass file. A bit further
down, you’ll find the next method:

-(void)showPassWithName:(NSString*)name

This method calls passWithName: to get a PKPass instance and uses a
PKAddPassesViewController to display the pass on the screen which gives the user a
chance to add this new pass to their Passbook library.

Your task is to build upon this code so users can get a bundle of passes in one shot.
First, you are going to create a simple method to create an array of all the passes
that’ll make up the pass bundle. Add the following method to the
MasterViewController class body:

-(NSArray*)passBundle
{
 return @[[self passWithName:@"bf3monthspass"],
 [self passWithName:@"ww3monthspass"],
 [self passWithName:@"cottoncandy2for1"]];
}

This simple method returns an array containing the three passes bundled in the
app.

You need one more method to present these passes to the user. Add the following
method:

-(void)showPassBundle
{
//show the 3 passes in the add pass controller
NSArray* passes = [self passBundle];

PKAddPassesViewController* addPasses =
 [[PKAddPassesViewController alloc] initWithPasses: passes];

[self presentViewController:addPasses
 animated:YES
 completion:nil];

iOS 7 by Tutorials Chapter 28: What’s New in PassKit, Part 2

 830

}

Here you create an instance of PKAddPassesViewController, but this time you use
the new in iOS 7 initializer initWithPasses: that takes an array of PKPass objects as
opposed to a single pass.

Now find to the method stub for actionPassBundle: and add the following line:

[self showPassBundle];

That’s it! Build and run your app and tap the “Bundle: three month passes” option
to try the new functionality you’ve just built:

Tap the Add All button at the top of the pass display to add all three passes to
your library at once. That’s much easier than adding them one at a time.

But what if Crazy Rides expanded to a hundred rides – would users even want to
have a look at the pass previews? You’ll need to offer users the chance to add all
the available passes without previewing them first.

Replace the contents of actionPassBundle: with the following code:

//fetch the user pass library
PKPassLibrary* passLibrary = [[PKPassLibrary alloc] init];

//add 3 passes at once
[passLibrary addPasses:[self passBundle]
 withCompletionHandler:^(PKPassLibraryAddPassesStatus status) {
 //callback block

 }];

With this new approach, you fetch an instance of PKPassLibrary and call
addPasses:withCompletionHandler:, passing the list of passes and a callback block.
This API will attempt to install the passes without displaying them on screen.

iOS 7 by Tutorials Chapter 28: What’s New in PassKit, Part 2

 831

Build and run your app; tap the button to add the passes to your library. You’ll be
presented with the following alert message:

Cancel and Add All will work as expected, but if you tap on Review nothing
happens. This is because it’s up to you to present the bundle for review to the user.
Luckily, you have this code already — you just need to hook it up.

The callback block takes a status parameter; this status code of type
PKPassLibraryAddPassesStatus is your clue to whether the user wants to review the
passes or have them added straight to their library.

The PKPassLibraryAddPassesStatus enumeration contains three constants:

1. PKPassLibraryShouldReviewPasses – the user wants to review the passes and it’s
up to you to present them on screen.

2. PKPassLibraryDidCancelAddPasses – the user cancelled the operation.

3. PKPassLibraryDidAddPasses – the user added the passes to their library.

Paste the following code in the empty completion block body:

//call on the main thread
[self performSelectorOnMainThread:
 @selector(bundleAddDidCompleteWithCode:)
 withObject:@(status)
 waitUntilDone:NO];

There is no guarantee as to which thread the callback block will end up on, so you
need to switch to the main thread to interact with the UI.

Next, add the following method:

-(void)bundleAddDidCompleteWithCode:(NSNumber*)status
{
//action completed
if ([status intValue]==PKPassLibraryShouldReviewPasses) {

iOS 7 by Tutorials Chapter 28: What’s New in PassKit, Part 2

 832

 //the user wants to review the pass bundle
 [self showPassBundle];

} else if ([status intValue]==PKPassLibraryDidAddPasses) {
 //success message
 [[[UIAlertView alloc] initWithTitle:@"Thanks!"
 message:@"Thanks for purchasing the 2 passes bundle, we've thrown in
also a cotton candy coupon. Enjoy!"
 delegate:nil
 cancelButtonTitle:@"Close"
 otherButtonTitles: nil] show];
 }
}

If the status code is PKPassLibraryShouldReviewPasses, then you fire up the familiar
showPassBundle; if the user added all passes, show a confirmation alert.

Build and run your app; this time tapping the Review button displays the pass
bundle where the user can review each of the passes before adding them to the
library.

Connecting to your app on a different level
One of the best Passbook features is that the user can jump to your app directly
from one of their passes in Passbook. You’ve probably already seen app icons on
the back of different passes; when Open is tapped, the target app launches on the
device:

You achieve this by including the relevant app IDs to your pass app store
identifiers, like so:

"associatedStoreIdentifiers" : [
 403497940, 424600440
],

iOS 7 by Tutorials Chapter 28: What’s New in PassKit, Part 2

 833

You can include multiple IDs here, and Passbook only uses the first one it
encounters in associatedStoreIdentifiers that matches the device type. For
instance, you can include the app IDs of an iPhone-only app and an iPad app, and
Passbook will automatically select the ID appropriate for the current device.

Launching the related application is convenient, but in iOS 7 you can now send
additional data from the pass to the application. That means you can add some
special behavior to your app when it launches via Passbook.

Acknowledgment
Since the connection between a pass and an app is based on the App Store ID, you
have probably guessed you will need a live app in the App Store to implement this
next part. If you have any apps at all in the App Store, you can use their app and
bundle IDs. However, if you don’t have any published apps, you can follow along by
reading, or skip straight to the Distributing passes with QR codes section.

This is indeed a hack, but since Passbook doesn’t provide a Sandbox service for
proper testing, this is the way you will have to do it. This testing will only affect
your test device and will not affect the real life users of your app.

First, delete the Crazy Rides app from your device. Then install your own app from
the App Store on your device.

Next, find your app’s Bundle ID. The easiest way to do this is to go to your app’s
Info.plist and grab the ID which follows the format
com.yourdomain.yourappname.

Switch back to the Crazy Rides app in Xcode and set your bundle ID as the bundle
ID of Crazy Rides, as so:

Press and hold the Option key on your keyboard and choose Product/Clean Build
Folder … to clean the project build location. This will ensure any new builds use
the new bundle ID.

To fetch your app’s App Store ID, head to https://itunesconnect.apple.com and log
in with your Apple credentials. Click on the link Manage Your Apps. Select the app
you will be using for this chapter, and on the next screen you’ll find your numeric
Apple ID.

iOS 7 by Tutorials Chapter 28: What’s New in PassKit, Part 2

 834

Now open up passes/bf3monthspass/pass.json in a text editor and add your
Apple ID to the top level of the JSON hierarchy:

 "associatedStoreIdentifiers" : [
 0000000000
],

Fill in your own App Store ID for 0000000000. Don’t add quotes around the value
since it’s a number, not a string.

Now launch the Crazy Rides app. You’ll notice it replaces the real app on your
device with Crazy Rides since the bundle IDs match. Add the Black Friday pass to
your Passbook; flip the pass over and you’ll see the associated app strip:

Tapping on this button should open the Crazy Rides app.

One way to improve the user experience with Black Friday is to take the user
directly to the “reserve a seat” screen when somebody launches the Crazy Rides
app from the Black Friday pass.

Switch to the JSON source file of the pass and add the following key:

"appLaunchURL" : "crazyrides://bookseat",

When you specify an appLaunchURL for the pass, Passbook will not only launch your
companion app, but will also pass this URL to the app.

First you’ll add the URL scheme crazyrides to your app. Select the Crazy Rides
project file at the top of the Project Navigator in Xcode, then make sure that the
Info tab is selected. Scroll down and open the strip saying URL Types (0). Click
on the + button to add a new URL scheme to the app.

Enter passes.crazyrides as the Identifier, and crazyrides as the URL
Schemes. That’s all you have to do; your form should look like the image below:

iOS 7 by Tutorials Chapter 28: What’s New in PassKit, Part 2

 835

Select Product/Clean from Xcode’s menu and build and run your app so the URL
scheme is registered. Your app is now registered to handle URLs for the crazyrides
scheme; however, your app won’t do anything specific when the app is invoked
with a URL.

To add this functionality, open AppDelegate.m and add the following stub:

/* if app is launched from a pass, go to booking screen */
-(void)handleURL:(NSURL*)url userInfo:(NSDictionary*)info
{

}

You’ll come back to this in just a second. Find application:
didFinishLaunchingWithOptions:, and add the following code just before the final
return statement:

/* handle app launch from URL */
if (launchOptions[UIApplicationLaunchOptionsURLKey]) {

[self handleURL: launchOptions[UIApplicationLaunchOptionsURLKey]
 userInfo:launchOptions[UIApplicationLaunchOptionsAnnotationKey]
];

}

If a URL was passed to your app, you’ll find it in the
UIApplicationLaunchOptionsURLKey key of the launchOptions dictionary. The
UIApplicationLaunchOptionsAnnotationKey contains any additional data objects that
were passed to the app at launch time.

The code above covers the case when your app isn’t running and is launched by
tapping on the button on the back of the pass. Additionally, the
UIApplicationDelegate protocol features a separate method to handle situations
when your app is already running and invoked from a URL.

Add the following method to the AppDelegate class body:

iOS 7 by Tutorials Chapter 28: What’s New in PassKit, Part 2

 836

- (BOOL)application:(UIApplication *)application
 openURL:(NSURL *)url sourceApplication:(NSString *)
 sourceApplication annotation:(id)annotation
{
 /* if app is awakend from a pass, go to booking screen */
 [self handleURL: url userInfo: annotation];
 return YES;
}

In the method above, you simply pass the URL and the annotation object along to
your own method.

Now you can implement the body of handleURL:userInfo:. It needs to handle two
distinct situations; one where the app has just started, and another where the app
is already running and is could have any view opened.

Replace the body of handleURL:userInfo: with the following code:

-(void)handleURL:(NSURL*)url userInfo:(NSDictionary*)info
{
 if ([url.host isEqualToString:@"bookseat"]) {
 //open the book ride screen, and let it handle the booking
 UIApplication* app = [UIApplication sharedApplication];
 UINavigationController* navigationCtr=
 (UINavigationController*)app.keyWindow.rootViewController;
 [navigationCtr popToRootViewControllerAnimated:NO];
 [navigationCtr.topViewController
 performSegueWithIdentifier:@"bookRide" sender:nil];
 }
}

First you check if the host property of the url equals bookseat; if so, then show the
screen to reserve a seat. Next, you get a handle to the app’s navigation controller
and pop all view controllers except the home screen. Then all you need to do is
perform the bookRide segue, which pushes the reserve seat view controller to the
view controller stack.

Build and run your app and add the Black Friday pass to your Passbook again. Now
switch to Passbook and flip over the pass; you should see the button to the
companion app. Tap Open and … oh joy! Crazy Rides opens up takes you straight
to the reserve a seat screen, as below:

iOS 7 by Tutorials Chapter 28: What’s New in PassKit, Part 2

 837

Wouldn’t it be great, though, if the user could tap Open on the Black Friday pass
and see the reservation dialogue for that particular ride?

You can do that by adding additional information to the appLaunchURL key.

Open up passes/bf3monthspass/pass.json and modify the appLaunchURL as
below:

"appLaunchURL" : "crazyrides://bookseat/?Black%20Friday",

You’ve added a query string to the URL containing the text “Black Friday”. It’s been
URL encoded, so the space between the words is represented by %20.

Note: If you want to read more about URLs or you are unclear about what a
query string is, read up on it here:

http://en.wikipedia.org/wiki/Uniform_resource_locator

Now that the extra query string information is coming along for the ride, you need
to do something with it. Open AppDelegate.h, and add the following property just
after the window property:

@property (strong, nonatomic) NSString* bookingSeatOnRide;

This property holds the name of the ride that is being sent through userInfo.

Now open AppDelegate.m and find the following line of code:

if ([url.host isEqualToString:@"bookseat"]) {

Add the following code directly underneath:

self.bookingSeatOnRide = [url.query
 stringByReplacingPercentEscapesUsingEncoding:
 NSUTF8StringEncoding];

iOS 7 by Tutorials Chapter 28: What’s New in PassKit, Part 2

 838

This fetches the incoming query string and calls
stringByReplacingPercentEscapesUsingEncoding: to decode the special characters,
such as %20 for the space character. It then saves the decoded string to the new
class property.

Now it’s finally time to look into the code of BookSeatViewController, which is where
the user can reserve a seat on a ride.

Open ViewControllers/BookSeatViewController.m. A quick look reveals some
key methods:

-(IBAction)actionReserveSeat:(UIButton*)sender

This action method is connected to both buttons – it checks the sender’s tag and
determines the name of the ride. Then it passes this ride name to the following
method:

-(void)bookRideWithName:(NSString*)rideName

This method takes a ride name and shows a confirmation dialog to the user where
they have the option to proceed with the reservation or cancel it altogether.

-(void)alertView:(UIAlertView *)alertView
didDismissWithButtonIndex:(NSInteger)buttonIndex

This is the UIAlertView callback method – if the user taps the button Absolutely –
they will receive a confirmation for their reservation.

Your task is to add some code to viewDidAppear: to check if a ride name was
passed in from a URL and stored in the AppDelegate’s property. If so, it invokes
bookRideWithName: right away.

Add the following code to viewDidAppear:

AppDelegate* ad = [UIApplication sharedApplication].delegate;if
(ad.bookingSeatOnRide) {
 [self bookRideWithName: ad.bookingSeatOnRide];
 ad.bookingSeatOnRide = nil;
}

If the app delegate has something stored in bookingSeatOnRide, pass it on to
bookRideWithName:. You then set bookingSeatOnRide to nil so that the dialog doesn’t
show up automatically the next time this view controller appears on the screen.

Build and run your app; this time when you click on the App icon on the back of the
pass, you’ll be asked right away to confirm your seat reservation on the Black
Friday ride:

iOS 7 by Tutorials Chapter 28: What’s New in PassKit, Part 2

 839

What other information can you send from Passbook to your app, and how will you
use it? That’s only limited by your imagination!

Distributing passes with QR codes
The final feature you’ll cover in this chapter is distributing passes via QR codes. The
iOS 7 SDK now includes a QR code reader, which is integrated into Passbook.

Note: Curious about the new machine-readable code detectors included in iOS
7? Check out Chapter 22, “What’s New in AVFoundation” for more details.

The Crazy Rides people are very happy with their iPhone app and the passes they
distribute to customers. They see a fair amount of digital pass usage, which is
making their lives considerably easier.

They now want to conduct a survey in the park so their visitors can rate their
experience on the Black Friday ride, and they would also like to monitor the results
of the survey in real-time.

To do this, you will make use of the new built-in QR scanner in Passbook. If you
haven’t used it yet, launch Passbook right now and tap Scan Code. The scanner
will read a QR code with a URL that points to a .pkpass file.

This is great for distributing coupons and passes, but how does this apply to a
survey? With a backend web server, you can prepare two QR codes which point to
the following URLs:

https://yourdomain.com/getPass.php?answer=Great&source=rideExit
https://yourdomain.com/getPass.php?answer=SoSo&source=rideExit

As you see, both URLs point to the same PHP script, but one of the codes passes
the survey answer “Great” and the other “SoSo”.

Note: Getting a web server with PHP set up is out of scope for this chapter,
but you can at least follow along with the concepts. If you have the server

iOS 7 by Tutorials Chapter 28: What’s New in PassKit, Part 2

 840

skills, a sample implementation of getPass.php is included in the resources
for this chapter. It writes out the survey responses to a CSV file and returns a
Cotton Candy coupon as a reward to the people taking the poll.

These are two example QR codes with the “Great” and “So So” answers encoded in
the URLs:

You can scan either of them, and a Candy Coupon will start downloading to your
Passbook, as so:

iOS 7 by Tutorials Chapter 28: What’s New in PassKit, Part 2

 841

As the actual connection to your website and the pass download happens on the
customer’s iPhone, you don’t need to do anything else besides display the QR
codes.

For more details on how the poll works behind the scenes, have a look at the folder
blackFridayPoll in this chapter’s assets. The 20 lines of PHP are pretty
straightforward; they simply store the results in a .csv file and serve up a pre-built
.pkpass files for download.

Feel free to experiment with this; you can dynamically build different passes and
provide them for download, maybe include a personal message and/or special pass
to the users who didn’t enjoy the ride, and so forth.

iOS 7 by Tutorials Chapter 28: What’s New in PassKit, Part 2

 842

Challenges
Passbook has really matured as a technology in iOS 7; Apple has clearly shown that
they are willing to keep developing Passbook as a core part of iOS.

The Black Friday pass is much more polished and more interactive. Using the app,
especially in connection with the pass, is a much more interesting and connective
experience.

Well, it’s not over until it’s over; if you don’t want to end your Passbook experience
just yet, try this little follow-up challenge on your own.

Challenge 1: Reading the user info programmatically
Imagine that during the purchase process of the Black Friday pass your server also
includes the customer name within the pass data.

Do this yourself manually:

• Add a new top-level key in the JSON called userInfo – make it a dictionary.

• Within userInfo add a key called customerName and set a string value for it
containing the imaginary customer’s name for example “Brad Pitt”.

Your task is to modify the Crazy Rides app so that it asks the user whether they are
sure they want to import the Black Friday pass into their library and call the user by
their name. Keep the message short and funny, like “Are you double sure,
<Customer Name>?”, like so:

To find the class reference for PKPass from Xcode’s menu choose
Help/Documentation and API reference, and search for PKPass:

iOS 7 by Tutorials Chapter 28: What’s New in PassKit, Part 2

 843

To add the required feature you’ll have to modify MasterViewController.m:

• Remove the current code from actionBuy3MonthPass:

• Fetch an instance of the Black Friday pass – use passWithName: to get a PKPass
object.

• Using the pass object get the customerName key out of the userInfo property of
PKPass.

• Now show a UIAlertView to ask the user if they want to import the pass, show
two buttons “Yes” and “No” as on the screenshot above. Set the delegate to self,
so you can handle a tap on Yes.

• Finally add an alertView:didDismissWithButtonIndex: method, and if the tapped
buttonIndex was 1 invoke the following:

[self showPassWithName:@"bf3monthspass"]

Good luck with this challenge and your future Passbook adventures!

If you want to monetize your app, there are three primary models to choose from:

1. Make Your App Paid. This is the most straightforward route; simply assign a
price to your app and be done with it. However, users find the “free” price point
to be most attractive.

2. Add In-App Purchases. Another great option is adding in-app purchases –
whether your app is paid or “freemium”. However, this can require a lot of work,
as you have to add a bunch of code, set up an in-app store, handle receipt
validation, and design your app with in-app purchases in mind.

3. Add Advertisements. This approach combines the best of both worlds: you can
launch a free app, ask users for their time instead of their money, and still create
a passive revenue stream.

Apple has a built-in ad network called iAd that has been around since iOS4. iAd is
an easy way to display ads sold by Apple through your app. These ads tend to be
high quality and generous revenue share (70% to app developers), but sometimes
have a low fill rate.

When the user taps an iAd, it expands to full screen. When the iAd is closed, the
user returns to where they left off in the app. This results in a very streamlined
user experience — probably the best advertisement model in the industry.

With a proven ad distribution and display model and a generous revenue-sharing
program, iAd is arguably one of the most valuable tools in your monetization
strategy.

In this chapter, you will integrate iAd into a sample project called “Pushitup”, an
app to help you track your progress on push-up workouts. Along the way, you’ll
learn about the various types of iAds, how to sign up for the iAd network, and how
to enable iAd in your applications.

Chapter 29: Introduction to iAd
By Cesare Rocchi

iOS 7 by Tutorials Chapter 29: Introduction to iAd

 846

Getting Started
In the resources for this chapter, you will find a starter project for the app with the
user interface pre-created – but without any iAds.

The main view controller contains a tab bar with three sections: Push-ups, Tips and
Videos.

• Push-ups displays the results of previous workout sessions in a collection view.
Tapping a single session displays the session details in a single view. Tapping the
+ button creates a new session to store the number of push-ups and the date of
the session.

• Tips displays a list of tips to help you improve your push-up technique. Tapping
an entry in the list displays the title, date, and full text of the tip.

• Videos displays a list of videos available in the app which explain the finer points
of push-up technique.

Build and run the project; play around with it for a bit to get a feel for how the app
works. Doing the push-ups in real life is optional – but it couldn’t hurt! :] This is the
first view controller, showing the list of push-up sessions.

When you tap a push-up you can see its details.

iOS 7 by Tutorials Chapter 29: Introduction to iAd

 847

The other sections are organized in a similar fashion: a view controller with a list of
items and a detail view controller to show the specifics of an item.

Before you dive into code, first let’s talk a little more about iAd and what options
you have when working with it.

The iAd workflow
At its core, iAd is an advertising network which many companies use to publicize
their products and services. Here’s the workflow for iAd behind the scenes:

1. A company signs a contract with Apple to publicize their product or service.

2. You sign a contract with Apple to show ads within your application.

3. You enable your application to show iAds.

4. The iAd framework delivers advertisements to fill the advertising spaces you
have placed in your application.

5. You earn money when your customers view or interact with the advertisements.

If you’re like most developers, you like to get the paperwork out of the way as
quickly as possible so that you can get started coding. The next section quickly
walks you through the signup process so that you can get busy extending your app
to support the iAd framework!

Signing up for iAd
Log in into http://itunesconnect.apple.com as the administrator of your account and
click on Contracts, Tax, and Banking, as indicated below:

iOS 7 by Tutorials Chapter 29: Introduction to iAd

 848

Check that the “Contracts in Effect” section includes an entry for “iAd Network” as
shown in the following screenshot:

If you don’t see an entry for iAd, then simply apply for the iAd contract by clicking
the view button corresponding to the iAd contract and follow instructions.

You only have to perform this step once; occasionally Apple changes clauses in the
iAd developer agreement and prompts you to accept these changes on your iTunes
Connect page, but beyond that there’s no further action required to sign up for iAd.

iOS 7 by Tutorials Chapter 29: Introduction to iAd

 849

That’s it for the necessary paperwork; you’re now free to start implementing iAd in
your apps!

Integrating iAd into your app
It’s quite easy to integrate iAd into your app. You simply provide “spaces” in your
application and link to the iAd framework. At runtime, the iAd framework queries
the network for an advertisement with your preferred content and sized to fit the ad
formats in your application.

Each view in your application is a potential home for an advertisement. Although
sticking an ad on every view sounds like the best revenue-generating strategy, it’s
a poor idea in practice. The user experience of your app is paramount, and you
don’t want to compromise the usage of your app just to shoehorn in a few ads.

Instead, you’ll want to use high-traffic and high-visibility areas of your app, such as
views that are used frequently when your app is running, or “loading” screens
before content. Similarly, you want to avoid areas in your app that aren’t frequently
used. For example, your app’s “Settings” view isn’t opened very often, so placing
an ad there is likely a waste of effort.

It’s also important to not overuse ads (such as placing more than one ad in a single
view), or to try to trick users into tapping ads. Your user experience will suffer as a
result – and your app is likely to be rejected from the App Store.

Types of Advertisements
There are four types of advertisements available in the iAd framework:

1. Banner

2. Interstitial

3. IAB medium rectangle

4. Pre-roll video

The banner is the classic in-app advertisement. It displays a narrow strip at the
top or bottom of your view that extends the full width of the screen. This strip has
different heights depending on the device:

• iPhone and iPod Touch, portrait: 50 points

• iPhone and iPod Touch, landscape: 32 points

• iPad, all orientations: 66 points

When the user taps the banner, it shows a full-screen interactive advertisement.
When the user closes the ad, they automatically return to their original place in the
app.

iOS 7 by Tutorials Chapter 29: Introduction to iAd

 850

The interstitial is a full-screen advertisement shown between view transitions. For
example, when a user selects an item in a table view, the app shows an interactive
full-screen advertisement as soon as the new view controller is pushed. When the
user closes the ad, the table’s detail view controller is revealed.

The IAB medium rectangle works much like a banner with fixed dimensions of
300 by 250 points. This type of ad works well when placed inline with other
components, such as in the middle of a scroll view.

Note: Wondering what IAB stands for? This refers to the Interactive
Advertising Bureau which maintains a list of standard ad sizes. The 300x250
ad size is known as a “medium rectangle” or “big box” in industry-speak.

The pre-roll video is brand-new in iOS 7. It’s very similar to the video
advertisements on YouTube that play before your requested video is streamed.
After a few seconds the pre-roll gives the user the option to engage with the video
or skip it and move on to the main content.

The best way to learn about each of these ad types is by getting your hands dirty
and implementing each of them in your sample project. The following section shows
you how to link the iAd framework to the starter app and get started in the world of
in-app advertising!

Linking to the iAd framework
Before you do anything with iAd, you first need to add the iAd framework to your
project and import its header file.

To do this, select the root of the project, click the Build Phases tab and expand
the section Link Binary with Libraries. Tap the + button and select
iAd.framework from the list.

iOS 7 by Tutorials Chapter 29: Introduction to iAd

 851

Since ads will be displayed in different areas of the app, it makes sense to import
the framework into the pre-compiled header. Open Supporting Files\Pushitup-
Prefix.pch and add the following import statement under the other #import
statements:

@import iAd;

That’s it – you’re ready to work with iAd!

Adding a banner
The banner is the simplest form of advertising in the iAd platform and is available
on iPhone, iPod Touch and iPad targets.

Previous versions of iAd required some fiddly code to rearrange the views of an app
and make room for the banner1. In iOS 7, adding a banner to a view controller is
now extremely simple.

Next, you have to tell iOS 7 to display an ad in the view controller of interest. To do
this, open PushupListViewController.m, and add the following line of code to the
end of viewDidLoad:

self.canDisplayBannerAds = YES;

That’s all you need! The above code displays a banner ad at the bottom of the view
controller; that’s Apple’s recommended location for banner ads.
canDisplayBannerAds instructs iAd to enable ads on this view controller and resize
the view as necessary.

Build and run your application; you should see a banner ad at the bottom of the
screen, as demonstrated in the following screenshot:

1 Take a look at this tutorial for an example: http://www.raywenderlich.com/1371/how-to-integrate-
iad-into-your-iphone-app
2 If you are not familiar with this class you can check out the sample code provided by Apple here:

iOS 7 by Tutorials Chapter 29: Introduction to iAd

 852

Scroll to the bottom of the collection view; you’ll notice that the banner is not
simply an overlay that covers a portion of the view. The original view has been
automatically resized to make room for the banner.

Here’s what’s happening under the hood:

• Setting canDisplayBannerAds = YES wraps the original view in a property called
originalContentView.

• Once loaded, the framework moves the banner onto the screen and resizes
originalContentView accordingly.

• When the banner disappears, the framework resizes the view to its original
dimensions.

Tapping on the banner displays the full-screen ad and calls viewWillDisappear:.
This method is the perfect place to halt any intense action in your app or pause the
playback of audio or video files that might clash with the ad media.

Dismissing the full screen ad calls viewDidAppear: where you can resume any
paused activities or media playback.

Note: The loading and refreshing of ads is managed completely by the iAd
framework. Your code doesn’t need to request new banners; it’s completely
automated and new banners are displayed as they become available.

Adding interstitial ads
Unlike banners which take up a small amount of space, an interstitial advertisement
fills the screen. iOS 4.3 introduced this type of ad to the iPad, and iOS 7 brings
interstitial ads to the iPhone.

Interstitial advertisements appear when transitions occur in your app. For example,
when the user selects a push-up tip in the list view, the app transitions from

iOS 7 by Tutorials Chapter 29: Introduction to iAd

 853

TipListViewController to TipViewController. iAd listens for this transition and
displays an advertisement just as TipViewController becomes visible.

Open AppDelegate.m and add the following line to
application:didFinishLaunchingWithOptions: just before the return statement:

 [UIViewController prepareInterstitialAds];

This call pre-fetches interstitials in the background to have them ready for
transitions. Since view transitions are fairly quick, it’s critical to call
prepareInterstitialAds as early as possible in your application’s lifecycle to give
the framework enough time to retrieve and prepare the ads for display.

Now you need to give the iAd framework some information about the transitions to
listen for.

Open TipListViewController.m and modify prepareForSegue:sender: as shown
below:

- (void)prepareForSegue:(UIStoryboardSegue *)segue
 sender:(id)sender
{
 if ([[segue identifier] isEqualToString:@"showDetail"]) {
 NSIndexPath *indexPath =
 [self.tableView indexPathForSelectedRow];
 Tip *tip = self.tips[indexPath.row];

 // add these lines below
 UIViewController *c = segue.destinationViewController;

 if ([[UIDevice currentDevice] userInterfaceIdiom] ==
 UIUserInterfaceIdiomPhone) {
 c.interstitialPresentationPolicy =
 ADInterstitialPresentationPolicyAutomatic;
 }
 // end lines to add
 [[segue destinationViewController] setTip:tip];
 }
}

In the above code, you check the device type to ensure that interstitials will only
display on an iPhone. Then you set interstitialPresentationPolicy to
ADInterstitialPresentationPolicyAutomatic which tells the framework that a
transition from TipListViewController to TipViewController is a candidate for an
interstitial advertisement.

Build and run your app on an iPhone or iPhone simulator; switch to the Tips tab,
select one of the list items and check out the full-screen interstitial ad.

iOS 7 by Tutorials Chapter 29: Introduction to iAd

 854

Return to the list view and select a few more items in the list. You’ll notice that the
interstitial ad doesn’t appear for every transition to TipViewController. What gives?

Ads are displayed according to the policy set at design time.
ADInterstitialPresentationPolicyAutomatic gives the framework full control of the
timing of ads; to manage the timing yourself, set the policy to
ADInterstitialPresentationPolicyManual. When the policy is manual you have to
explicitly request an ad using the method requestInterstitialAdPresentation, as in
the following code snippet.

UIViewController *c = segue.destinationViewController;
c.interstitialPresentationPolicy =
 ADInterstitialPresentationPolicyManual;
[c requestInterstitialAdPresentation];

This will allow you to display a banner when you think it’s appropriate.

Adding IAB medium rectangle
The IAB medium rectangle banner is quite similar to the regular banner ad;
however, this ad type is only available on the iPad. It has a predictable size of 300
by 250 points, cycles through different ads, and shows a full screen interstitial ad
when tapped.

TipViewController is a great candidate for this type of ad; there’s room to show an
ad directly beneath the date label.

Open TipViewController.h and add the following line to the class definition:

@interface TipViewController : UIViewController
 <ADBannerViewDelegate>

This implements the ADBannerViewDelegate protocol in TipViewController.

iOS 7 by Tutorials Chapter 29: Introduction to iAd

 855

Next, open TipViewController.m and add the following code to the end of
viewDidLoad:

 if ([[UIDevice currentDevice] userInterfaceIdiom] ==
 UIUserInterfaceIdiomPad) {
 self.bannerView = [[ADBannerView alloc]
 initWithAdType:ADAdTypeMediumRectangle];
 self.bannerView.delegate = self;
 self.bannerView.center = self.view.center;
 self.bannerView.hidden = YES;
 [self.view addSubview:self.bannerView];
 }

The above code checks to see if the app is running on the iPad. If so, then it sets
the ad type, centers the ad horizontally and vertically. Finally, it adds the
advertisement view by calling addSubview:.

Next, add the following two methods (still in TipViewController.m):

- (void)bannerViewDidLoadAd:(ADBannerView *)adView {
 self.bannerView.hidden = NO;
 [self updateUI];
}

- (void)bannerView:(ADBannerView *)banner
 didFailToReceiveAdWithError:(NSError *)error {
 NSLog(@"banner failed loading");
 self.bannerView.hidden = YES;
 [self updateUI];
}

The first method triggers on a successful ad request and shows the ad by setting
the hidden property of the advertisement subview to NO. The second method
triggers on an unsuccessful ad request and hides the subview by setting hidden to
YES. The user is never aware that the banner didn’t load successfully. Both methods
include a call to updateUI. This method resizes the text view to make room for the
ad when it’s loaded or sets the text to its original dimensions when the ad fails to
load.

- (void) updateUI {

 if (!self.bannerView.hidden) {

 self.bannerView.center = self.view.center;
 CGRect adFrame = self.bannerView.frame;

iOS 7 by Tutorials Chapter 29: Introduction to iAd

 856

 adFrame.origin.y = self.dateLabel.frame.origin.y +
 self.dateLabel.frame.size.height + 70;
 self.bannerView.frame = adFrame;

 CGRect textFrame = self.bodyTipTextView.frame;
 textFrame.origin.y = adFrame.origin.y +
 adFrame.size.height;
 textFrame.size.height -= adFrame.size.height+ 20;
 self.bodyTipTextView.frame = textFrame;

 } else {

 CGRect textFrame = self.bodyTipTextView.frame;
 textFrame.origin.y = self.dateLabel.frame.origin.y + 70;
 textFrame.size.height =
 self.containerView.frame.size.height –
 textFrame.origin.y -20;
 self.bodyTipTextView.frame = textFrame;
 }
}

As a final touch you should re-layout the view also when the device rotates. Still in
TipViewController.m add the following method.

-(void)willAnimateRotationToInterfaceOrientation:
 (UIInterfaceOrientation)toInterfaceOrientation
 duration:(NSTimeInterval)duration {
 [self updateUI];
}

Build and run your app on an iPad or iPad simulator; select the Tips tab and tap a
single tip in the list. You should see your ad displayed in the middle of the tip text,
as shown in the following screenshot:

iOS 7 by Tutorials Chapter 29: Introduction to iAd

 857

Rotate the device in landscape and you will see the following layout.

Turn on Airplane mode to simulate a failure with the iAd network and repeat the
steps above. You should see the log statement appear in the console and the
banner view should not be visible, showing no indication that the ad request failed.

Pre-roll video advertisements
If your app includes the functionality to display videos you can show video
advertisements before your video content. We can increase the revenue of Pushitup
by displaying video ads before playing the video tips included in the app.

Pre-roll advertisements are integrated through the class MPMoviePlayerController2;
it’s been included in the starter project for you. As with interstitials, the app needs
to perform a pre-fetch step for the pre-roll ads as early as possible

Open AppDelegate.m and add the following line to application:
didFinishLaunchingWithOptions:, right before the return YES statement:

 [MPMoviePlayerController preparePrerollAds];

This tells the iAd framework to begin fetching the pre-roll advertisements.

Next, open VideoListViewController.m, locate the following line in
tableView:didSelectRowAtIndexPath:

 [self.moviePlayerController play];

…and replace it with the following code:

 [self.moviePlayerController

2 If you are not familiar with this class you can check out the sample code provided by Apple here:
http://developer.apple.com/library/ios/#samplecode/MoviePlayer_iPhone/Introduction/Intro.html#/
/apple_ref/doc/uid/DTS40007798

iOS 7 by Tutorials Chapter 29: Introduction to iAd

 858

 playPrerollAdWithCompletionHandler:^(NSError *error) {

 if (error)
 NSLog(@"error in playing preroll");

 [self.moviePlayerController play];

}];

playPrerollAdWithCompletionHandler: plays the pre-roll ad if one is available. When
the pre-roll finishes playing or is interrupted by the user, the completion handler is
called and control returns to this block of code. Any errors are logged and video
playback begins.

Much like interstitials, pre-rolls are only shown if the video is available. Therefore
you might not see them every time you play your main video.

The following screenshot demonstrates what the user will see when a pre-roll plays:

At this point you’ve covered the full range of ads available, but you might want to
tweak the frequency with which ads are rotated to see how different ads appear in
your app. The next section describes how to control this and other options for
developer-mode apps.

Settings for testing
When you are testing your app embedding iAd you probably prefer to tweak the
way ads are loaded from the network. Sometimes you might need a very high
frequency, sometimes a very low one. There are a several developer settings on
your device that control the fill rate and refresh rate of iAd.

Open the Settings app on the device and select the Developer entry shown in the
screenshot below:

iOS 7 by Tutorials Chapter 29: Introduction to iAd

 859

This lets you modify the parameters below which affect the display of ads:

• Fill Rate – sets the percentage of requests for ads

• Refresh Rate – sets the frequency with which ads are refreshed

• Highlight Clipped Banners – when turned on it highlights clipped banners:
green means everything is ok, red means the banner is clipped. This is useful
especially for IAB Medium rectangles which are placed in line with content.

• Unlimited Ad Presentation – when turned on sets to zero the time between
interstitial and pre-roll ads presentation. Turn it on during development so you
don’t need to wait before presenting another ad when you are testing.

Note that these settings only affect applications running in developer mode; these
settings don’t influence the behavior of other installed apps.

You’ve covered all of the critical bits of working with iAd; the only thing left to do is
enable the iAd network when publishing your app to the App Store.

Enabling iAd in your app
Ads won’t automatically show up in your app unless you enable iAd in iTunes
Connect before publishing to the App Store.

Once you’ve entered all of the requisite information as part of the submission
process, you’ll arrive at the “Prepare for Upload” state. Click on the Set up iAd
Network button on the right as shown below:

iOS 7 by Tutorials Chapter 29: Introduction to iAd

 860

You’ll be presented with a dialog that invites you to enable iAd for your app. Click
the blue Enable iAd Network button, then the Save button, as illustrated below:

Now iAd is enabled for your app and you can proceed with the rest of the
submission process. If you ever need to disable iAd in your app, you’ll need to go
through the submission process again and ensure that iAd is disabled for the new
version of your app.

iOS 7 by Tutorials Chapter 29: Introduction to iAd

 861

Adding a banner programmatically
You might not be happy with the default position of banners. For example, you
think it would be better to show a banner at the top of a table view. In this case it’s
not enough to set the canDisplayBannerAds = YES. You have to write some code.

In this section you will learn how to add a banner view as a header in a table view.
Start by opening VideoListViewController.m and add change the declaration as
follows:

@interface VideoListViewController () <ADBannerViewDelegate>

Below the properties already declared add two more.

@property (nonatomic, strong) ADBannerView *bannerView;
@property (nonatomic, assign) BOOL adLoaded;

At the end of viewDidLoad add these two lines to initialize the banner view and set
the video view controller as delegate.

self.bannerView = [[ADBannerView alloc]
 initWithAdType:ADAdTypeBanner];
self.bannerView.delegate = self;

Next add the following methods of the delegate

- (void)bannerViewDidLoadAd:(ADBannerView *)banner {
 NSLog(@"did load");
 self.adLoaded = YES;
 [self.tableView reloadData];
}

- (void)bannerView:(ADBannerView *)banner
 didFailToReceiveAdWithError:(NSError *)error {
 NSLog(@"error in loading banner");
 self.adLoaded = NO;
 [self.tableView reloadData];
}

The first marks the banner as visible, while the second hides it. Both contain a call
to tableView’s reloadData to refresh the table when an ad is loaded. Next, set the
banner view as the view for the table’s header, by adding the following method

- (UIView *)tableView:(UITableView *)tableView
 viewForHeaderInSection:(NSInteger)section {
 return self.bannerView;

iOS 7 by Tutorials Chapter 29: Introduction to iAd

 862

}

Finally, implement the tableView:heightForHeaderInSection: to dynamically set
height of the header according to the status of the ad (loaded or not) and the type
of device3.

- (CGFloat)tableView:(UITableView *)tableView
 heightForHeaderInSection:(NSInteger)section {
 if (self.adLoaded) {
 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {
 return 66;
 } else {
 return 50;
 }
 }
 return 0;
}

Build and run the application and the video list view controller will show a banner as
the header of the table view.

Test it also on the iPad and notice that the resize of the width is automatically
managed.

3 The size of banners changes according to the device. Check this link for more information:
http://developer.apple.com/library/ios/documentation/userexperience/conceptual/iAd_Guide/Banne
rAdvertisements/BannerAdvertisements.html#//apple_ref/doc/uid/TP40009881-CH3-SW8

iOS 7 by Tutorials Chapter 29: Introduction to iAd

 863

Adopting the same technique you can place banner ads wherever you like in your
application. The skeleton to adopt is the following

1. Initialize an instance of AdViewBanner

2. Implement the delegate methods bannerViewDidLoadAd and
bannerView:didFailToReceiveAdWithError:.

3. Update the UI taking into account the state of the banner, visible or hidden.

Now it’s time to move to another advanced topic: ad mediation.

Ad Mediation
iAd is a great resource for monetizing an iOS application. Advertisements are
carefully curated and do not break the user experience of the app.

However, iAd isn’t perfect – sometimes it does not have enough fill rate to display
ads for all the impressions you might have. You might want to display iAds when
they’re available, and ads from other networks the rest of the time.

To do this, you can use an ad mediation framework, which allows you to display ads
from different networks (including iAd) within your app easily. An ad mediation
framework typically consists of two parts:

• A client SDK that you integrate into your app

• A server-side component that serves ads to your app

To use an ad mediation framework, you typically create an account, set up an
application on their web site, and install the SDK in your app. Then you can activate
different ad networks and tweak the ratio of advertisements between the networks.
For example, you could set up the platform to serve iAd 70% of the time and ads
from another network for the remaining 30%.

In this section you will learn about one popular ad mediation framework
(mopub.com) and integrate it Pushitup. You will configure ads to be served by two
different networks, iAd and Millennial Media (http://www.millennialmedia.com).

iOS 7 by Tutorials Chapter 29: Introduction to iAd

 864

Creating a Mopub account and app
The first step is to create an account on Mopub. Visit http://www.mopub.com, click
on the Sign Up button on the top right and follow the instructions.

Once you are done visit this link https://app.mopub.com/dashboard/ and login with
your credentials. Now click on the “Inventory” link at the top and you will end up on
this screen.

Enter the details of your app, the category, you choose Phone as device format
and Banner as ad format. Then click Save at the bottom right.

After you finish creating your app, you should see your Ad Unit ID listed on the
page. Copy it and save it somewhere because you will need it later.

You’ll also see a big blue button that says Download MoPub iOS SDK. Let’s do
that next!

Integrating the SDK
Click the blue button on the left to download the SDK.

iOS 7 by Tutorials Chapter 29: Introduction to iAd

 865

Unzip the file and drag the whole folder on the root of the Xcode project. Then
select Project Root / Target / Build Phases and link against the following
frameworks:

• QuartzCore

• MobileCoreServices.framework

• MessageUI.framework

• MediaPlayer.framework

• CoreTelephony.framework

• CoreLocation.framework

• AVFoundation.framework

• AudioToolbox.framework

• AdSupport.framework

Still in Build Phases expand Compile Sources, select all the files in the folder
MoPubSDK and add the compiler flag -fno-objc-arc as in the following
screenshot:

Select the Build Settings tab, search for Other Linker Flags and add the flag -
ObjC.

iOS 7 by Tutorials Chapter 29: Introduction to iAd

 866

Open PushupViewController.m, import MPAdView and modify the interface
declaration like this:

@interface PushupViewController () <MPAdViewDelegate>

@property (nonatomic, strong) MPAdView *adView;

- (void) configureView;

@end

At the end of viewDidLoad add the following snippet, using the ad ID saved
previously.

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPhone) {
 self.adView = [[MPAdView alloc] initWithAdUnitId:@"YOUR_ID"
 size:MOPUB_BANNER_SIZE];
 self.adView.delegate = self;
 self.adView.center = self.view.center;
 self.adView.hidden = YES;
 [self.adView loadAd];
 [self.view addSubview:self.adView];
}

Finally add the following two methods:

-(UIViewController *)viewControllerForPresentingModalView {
 return self;
}

-(void)adViewDidLoadAd:(MPAdView *)view {
 CGRect frame = self.adView.frame;
 CGSize size = [self.adView adContentViewSize];
 frame.origin.y = [[UIScreen mainScreen]
 applicationFrame].size.height - size.height - 95;
 self.adView.frame = frame;
 self.adView.hidden = NO;

iOS 7 by Tutorials Chapter 29: Introduction to iAd

 867

}

The first sets the current instance of PushupViewController as the host for the ad
and the second arranges the UI to show the banner. Build and run the application
on the iPhone, select a push-up and you will see the test ad from Mopub.

This means you are on the right path. Let’s move on the back-end to tweak some
settings.

Setting up ad networks
The great feature of an ad mediation network is that you can tweak the appearance
of ads by setting properties on a server, without the need to recompile the
application. Visit this URL https://app.mopub.com/networks/ and click on the Set
up iAd button. Scroll to the App Targeting section, enable it for the Pushitup
application, click on the More Options on the right and set 50 for the allocation
value. You will end up with this screen:

This says that iAd is enabled and the 50% of ads served will be from Apple. Click
save at the bottom right. Build and run the application on iPhone or iPhone
simulator and repeat the previous test. You will see test ads from both iAd and
mopub.

Now let’s add the Millennial ad network. If you don’t have it already, create an
account: visit this URL https://tools.mmedia.com/login/register and follow the
instructions. Once you are done login and visit this URL

iOS 7 by Tutorials Chapter 29: Introduction to iAd

 868

https://tools.mmedia.com/apps/manageApps and tap Add an App. Choose iOS as
platform and click next at the bottom right. Enter the following details and click
Finish.

The next step would be the configuration of the SDK but the Mopub SDK
downloaded previously already includes the support to the Millenial network. All you
need is the API ID of the application you have just created.

Skip the SDK configuration step, visit https://tools.mmedia.com/apps/manageApps,
select the only app in the list, scroll to the bottom and on the right you’ll find the
API ID. Copy it and save it somewhere. You will need it in a few minutes.

[

Now head back to the Mopub back-end and visit
https://app.mopub.com/networks/. On the right choose Add a Network and select
Millennial Media. In the App Targeting section enable this network, paste the
API ID copied previously and set the allocation to 50%. Finally click Save at the
bottom right.

iOS 7 by Tutorials Chapter 29: Introduction to iAd

 869

Build and run the application to check that ads from both iAd and Millennial appear
in the push-up detail view:

Note: Millennial takes up to 48 hours to review your app and put it live.
During this time you will see test ads.

iOS 7 by Tutorials Chapter 29: Introduction to iAd

 870

Congratulations - now you have two networks serving ads to your app! Another
cool benefit is you can tweak its advertising settings without the need to release a
new version.

Challenges
Advertisements can be a great source of revenue for your apps. At this point, you
have a great foundation on how to ad ads to your app, whether via iAds or using an
ad mediation framework like mopub.com.

You have learned how to setup an iAd banner view, how to use interstitial ads
(automatic and manual), how to show a IAB Medium banner in an iPad application
and how to play pre-roll ads before video contents.

You have also covered also tips and tricks, like showing a banner in a table view’s
header and dynamically re-arranging the layout of a view when a banner is loaded
or unloaded. Finally you have learned how to set up and tweak Mopub, an ad
mediation platform.

But don’t go yet – we have three challenges for you to get some extra experience
with iAd!

Challenge 1
Most of the techniques illustrated in this chapter have been implemented via code
but you can use Storyboards as well. Here is a challenge for you. In the final
project open PushupViewController.m and modify viewDidLoad as follows:

- (void)viewDidLoad {
 [super viewDidLoad];
 self.containerView.layer.shadowColor =
 [UIColor lightGrayColor].CGColor;
 self.containerView.layer.shadowOffset = CGSizeMake(0, 2);
 self.containerView.layer.shadowRadius = 0.5f;
 self.containerView.layer.shadowOpacity = 1.0f;
 [self configureView];

 //self.iAdView.hidden = YES;
 self.iAdView.delegate = self;
}

 Now when the user opens the view no ad is displayed. Try adding a simple banner
at the bottom of the iPhone app using Storyboards. Here are a few hints:

• The banner should appear right above the tab bar, as we have seen in previous
examples. Hint: use Auto Layout to make the banner stick to the bottom bar.

iOS 7 by Tutorials Chapter 29: Introduction to iAd

 871

• Remember that when the view gets opened there might not be an ad available
right away. Hint: hide the banner before rendering the view to avoid displaying a
white strip (banner placeholder).

• Remember that the loading of a banner can fail (e.g. when there is no network
connection. Hint: set PushupViewController as delegate for ADBannerView and hide
the ad view when the loading of an ad fails.

• Finally, the opposite of the previous case, display a banner when it’s loaded
successfully.

Feel free to take a peak at the project named “Pushitup-final-Challenge1” to check
the solution for this challenge.

Challenge 2
In the example using MoPub, the banner overlays the view. Your challenge is to
reposition the elements of the view so that the banner does not overlay any of
them. Here are a few hints:

• Much like AdBannerView, MPAdView has a few delegate methods (in particular
adViewDidLoadAd: and adViewDidFailToLoadAd: that you should implement to
know the status of the ad view.

• Use them to make room for the banner by repositioning the other elements.

• A bonus if you use an animation to do it.

Feel free to check out the solution in the project “Pushitup-final-Challenge2”. In this
case I did not use Auto Layout.

Challenge 3
While working on the second challenge you might have noticed that you do not
need to reposition elements on the iPhone 5, because there is enough room to
show the banner. Review the solution to challenge 2 and apply animations only
when the device is an iPhone 4. To detect the size of the device you can use this
handy method:

[[UIScreen mainScreen] applicationFrame].size.height

You can check out my solution in the project “Pushitup-final-Challenge3”.

Now go forth and add some iAds to your apps – and hopefully make some money!
!

We hope that you had some great adventures (and a lot of fun!) while reading this
book. If you cherry-picked chapters according to your own interests and projects,
that’s great — hopefully you learned a lot and got your projects started off on the
right foot. And if you read this entire book from cover to cover, then take a bow —
you are a coding beast!

You now have experience with the new APIs in iOS 7, and are familiar with what it
takes to make your app fit in with the new iOS 7 design paradigm. If you’re like us,
learning about all these new technologies and concepts has you brimming over with
ideas. We can’t wait to see what you come up with!

If you have any questions or comments, please stop by our forums at
http://www.raywenderlich.com/forums.

We have one final question for you. Has our focus on design, engagement, and
practice helped to improve this book? Please email me anytime at
ray@raywenderlich.com to let me know either way.

Thank you again for purchasing this book. Your continued support is what makes
the tutorials, books, and other things we do at raywenderlich.com possible — we
truly appreciate it!

Best of luck with your iOS adventures,

- Christine, Soheil, Chris B, Colin, Charlie, Matt, Greg, Matthijs,
Felipe, Jeremy, Mic, Pietro, Cesare, Jamie, Marin, Chris W, Ray,
and Vicki

 (the raywenderlich.com Tutorial Team and friends!)

Conclusion

	Cover
	Table of Contents : Overview
	Introduction
	Section I: Design
	Chapter 1: Designing for iOS 7
	Chapter 2: UIKit Dynamics and Motion Effects
	Chapter 3: Custom View Controller Transitions
	Chapter 4: Beginning Text Kit
	Chapter 5: Intermediate Text Kit
	Chapter 6: Transitioning to iOS 7‐Quick Start
	Chapter 7: Transitioning to iOS 7‐What’s New with Auto Layout
	Chapter 8: Transitioning to iOS 7‐Advanced Topics

	Section II: What’s New in Xcode 5
	Chapter 9: What’s New in Xcode 5
	Chapter 10: What’s New in Objective-C and Foundation
	Chapter 11: Unit Testing in Xcode 5
	Chapter 12: Beginning Source Control in Xcode 5
	Chapter 13: Intermediate Source Control in Xcode 5
	Chapter 14: Beginning Continous Integration in Xcode 5
	Chapter 15: Intermediate Continuous Integration in Xcode 5

	Section III: Major New Features
	Chapter 16: Networking with NSURLSession
	Chapter 17: Beginning Multitasking
	Chapter 18: Intermediate Multitasking
	Chapter 19: JavaScript Core
	Chapter 20: Airdrop
	Chapter 21: Peer-to-Peer Connectivity

	Section IV: Minor New Features
	Chapter 22: What’s New in AV Foundation
	Chapter 23: What’s New in MapKit
	Chapter 24: What’s New in CoreLocation

	Section V: Bonus Chapters
	Chapter 25: Beginning Inter-App Audio
	Chapter 26: Intermediate Inter-App Audio
	Chapter 27: What’s New in PassKit, Part 1
	Chapter 28: What’s New in PassKit, Part 2
	Chapter 29: Introduction to iAd

	Conclusion

