

Praise for Programming Kubernetes

Programming Kubernetes fills a gap in the Kubernetes

ecosystem. There’s a plethora of books and

documentation on how to run Kubernetes clusters, but

we’re still working to fill in the space around writing

software with Kubernetes. This book is a much-needed

and well-written guide to “building with and on

Kubernetes.”

—Bryan Liles, Senior Staff Engineer, VMware

This is a book I wish had existed when I started writing

Kubernetes controllers. It serves the reader as a

comprehensive deep dive into the Kubernetes

programming interface and system behavior, and how to

write robust software.

—Michael Gasch, Application Platform

Architect

in the Office of the CTO at VMware

A must-read if you want to extend Kubernetes.

—Dimitris-Ilias Gkanatsios, Technical

Evangelist,

Microsoft Greece

Extending Kubernetes is the only way to deploy and

manage the lifecycle of complex applications. This book

shows how to create your own Kubernetes resources and

how to extend the Kubernetes API.

—Ahmed Belgana, Cloud Build Engineer, SAP

Programming Kubernetes

Developing Cloud-Native Applications

Michael Hausenblas and Stefan

Schimanski

Programming Kubernetes

by Michael Hausenblas and Stefan Schimanski Copyright ©

2019 Michael Hausenblas and Stefan Schimanski. All rights

reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein

Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business,

or sales promotional use. Online editions are also available

for most titles (http://oreilly.com). For more information,

contact our corporate/institutional sales department: 800-

998-9938 or corporate@oreilly.com.

Development Editor: Virginia Wilson

Acquisitions Editor: John Devins

Production Editor: Katherine Tozer

Copyeditor: Rachel Monaghan

Proofreader: Arthur Johnson

Indexer: Judith McConville

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Rebecca Demarest

July 2019: First Edition

Revision History for the First Edition

http://oreilly.com/

2019-07-18: First Release

See http://oreilly.com/catalog/errata.csp?

isbn=9781492047100 for release details.

The O’Reilly logo is a registered trademark of O’Reilly

Media, Inc. Programming Kubernetes, the cover image, and

related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors

and do not represent the publisher’s views. While the

publisher and the authors have used good faith efforts to

ensure that the information and instructions contained in

this work are accurate, the publisher and the authors

disclaim all responsibility for errors or omissions, including

without limitation responsibility for damages resulting from

the use of or reliance on this work. Use of the information

and instructions contained in this work is at your own risk.

If any code samples or other technology this work contains

or describes is subject to open source licenses or the

intellectual property rights of others, it is your

responsibility to ensure that your use thereof complies with

such licenses and/or rights.

978-1-492-04710-0

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781492047100

Preface

Welcome to Programming Kubernetes, and thanks for

choosing to spend some time with us. Before we jump into

the deep end, let’s quickly get a few administrative and

organizational things out of the way. We’ll also share our

motivation for writing this book.

Who Should Read This Book

You’re a developer going cloud-native, or an AppOps or

namespace admin wanting to get the maximum out of

Kubernetes. Vanilla settings don’t do it for you anymore,

and you may have learned about extension points. Good.

You’re in the right place.

Why We Wrote This Book

Both of us have been contributing to, writing about,

teaching, and using Kubernetes since early 2015. We have

developed tooling and apps for Kubernetes and given

workshops about developing on and with Kubernetes a

couple of times. At some point we said, “Why don’t we

write a book?” This would allow even more people,

asynchronously and at their own pace, to learn how to

program Kubernetes. And here we are. We hope you have

as much fun reading the book as we did writing it.

Ecosystem

http://bit.ly/2XmoeKF

In the grand scheme of things, it’s still early days for the

Kubernetes ecosystem. While Kubernetes has, as of early

2018, established itself as the industry standard for

managing containers (and their lifecycles), there is still a

need for good practices on how to write native applications.

The basic building blocks, such as client-go, custom

resources, and cloud-native programming languages, are in

place. However, much of the knowledge is tribal, spread

across people’s minds and scattered over thousands of

Slack channels and StackOverflow answers.

NOTE

At the time of this writing, Kubernetes 1.15 was the latest stable version. The

compiled examples should work with older versions (down to 1.12), but we

are basing the code on newer versions of the libraries, corresponding to

1.14. Some of the more advanced CRD features require 1.13 or 1.14 clusters

to run, CRD conversion in chapter 9 even 1.15. If you don’t have access to a

recent enough cluster, using Minikube or kind on the local workstation is

highly recommended.

Technology You Need to Understand

This intermediate-level book requires a minimal

understanding of a few development and system

administration concepts. Before diving in, you might want

to review the following:

Package management

The tools in this book often have multiple dependencies

that you’ll need to meet by installing some packages.

Knowledge of the package management system on your

machine is therefore required. It could be apt on

Ubuntu/Debian systems, yum on CentOS/RHEL systems,

or port or brew on macOS. Whatever it is, make sure

http://bit.ly/2L5cUMu
http://bit.ly/2WT3k1l
https://kind.sigs.k8s.io/

that you know how to install, upgrade, and remove

packages.

Git

Git has established itself as the standard for distributed

version control. If you are already familiar with CVS and

SVN but have not yet used Git, you should. Version

Control with Git by Jon Loeliger and Matthew

McCullough (O’Reilly) is a good place to start. Together

with Git, the GitHub website is a great resource for

getting started with a hosted repository of your own. To

learn about GitHub, check out their training offerings

and the associated interactive tutorial.

Go

Kubernetes is written in Go. Over the last couple of

years, Go has emerged as the new programming

language of choice in many startups and for many

systems-related open source projects. This book is not

about teaching you Go, but it shows you how to program

Kubernetes using Go. You can learn Go through a variety

of different resources, from online documentation on the

Go website to blog posts, talks, and a number of books.

Conventions Used in This Book

The following typographical conventions are used in this

book:

Italic

Indicates new terms, URLs, email addresses, filenames,

and file extensions.

Constant width

http://shop.oreilly.com/product/0636920022862.do
http://github.com/
https://services.github.com/
http://try.github.io/
http://golang.org/
https://golang.org/doc

Used for program listings, as well as within paragraphs

to refer to program elements such as variable or

function names, databases, data types, environment

variables, statements, and keywords. Also used for

commands and command-line output.

Constant width bold

Shows commands or other text that should be typed

literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied

values or by values determined by context.

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.

WARNING

This element indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. You can

find the code samples used throughout the book in the

GitHub organization for this book.

https://github.com/programming-kubernetes

In general, if example code is offered with this book, you

may use it in your programs and documentation. You do not

need to contact us for permission unless you’re

reproducing a significant portion of the code. For example,

writing a program that uses several chunks of code from

this book does not require permission. Selling or

distributing a CD-ROM of examples from O’Reilly books

does require permission. Answering a question by citing

this book and quoting example code does not require

permission. Incorporating a significant amount of example

code from this book into your product’s documentation

does require permission.

We appreciate, but do not require, attribution. An

attribution usually includes the title, author, publisher, and

ISBN. For example: “Programming Kubernetes by Michael

Hausenblas and Stefan Schimanski (O’Reilly). Copyright

2019 Michael Hausenblas and Stefan Schimanski.”

If you feel your use of code examples falls outside fair use

or the permission given above, feel free to contact us at

permissions@oreilly.com.

Kubernetes manifests, code examples, and other scripts

used in this book are available via GitHub. You can clone

those repositories, go to the relevant chapter and recipe,

and use the code as is.

O’Reilly Online Learning

NOTE

For almost 40 years, O’Reilly Media has provided technology and business

training, knowledge, and insight to help companies succeed.

mailto:permissions@oreilly.com
https://github.com/programming-kubernetes
http://oreilly.com/

Our unique network of experts and innovators share their

knowledge and expertise through books, articles,

conferences, and our online learning platform. O’Reilly’s

online learning platform gives you on-demand access to live

training courses, in-depth learning paths, interactive

coding environments, and a vast collection of text and video

from O’Reilly and 200+ other publishers. For more

information, please visit http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this

book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book where we list errata,

examples, and any additional information. You can access

this page at https://oreil.ly/pr-kubernetes.

Email bookquestions@oreilly.com to comment or ask

technical questions about this book.

For more information about our books, courses,

conferences, and news, see our website at

http://www.oreilly.com.

http://oreilly.com/
https://oreil.ly/pr-kubernetes
mailto:bookquestions@oreilly.com
http://www.oreilly.com/

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

A big “thank you!” goes out to the Kubernetes community

for developing such amazing software and for being a great

bunch of people—open, kind, and always ready to help.

Further, we’re very grateful to our technical reviewers:

Ahmed Belgana, Michael Gasch, Dimitris Gkanatsios,

Mingding Han, Jess Males, Max Neunhöffer, Ewout

Prangsma, and Adrien Trouillaud. You all provided super

valuable and actionable feedback and made the book more

readable and useful to the reader. Thank you for your time

and effort!

Michael would like to express his deepest gratitude to his

awesome and supportive family: my wicked smart and fun

wife, Anneliese; our kids Saphira, Ranya, and Iannis; and

our almost-still-puppy Snoopy.

Stefan would like to thank his wife, Clelia, for being super

supportive and encouraging whenever he was again

“working on the book.” Without her this book wouldn’t be

here. If you find typos in the book, chances are high that

they were proudly contributed by the two cats, Nino and

Kira.

Last but certainly not least, both authors thank the O’Reilly

team, especially Virginia Wilson, for shepherding us

through the process of writing this book, making sure we’d

deliver on time and with the quality expected.

http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Chapter 1. Introduction

Programming Kubernetes can mean different things to

different people. In this chapter, we’ll first establish the

scope and focus of this book. Also, we will share the set of

assumptions about the environment we’re operating in and

what you’ll need to bring to the table, ideally, to benefit

most from this book. We will define what exactly we mean

by programming Kubernetes, what Kubernetes-native apps

are, and, by having a look at a concrete example, what

their characteristics are. We will discuss the basics of

controllers and operators, and how the event-driven

Kubernetes control plane functions in principle. Ready?

Let’s get to it.

What Does Programming Kubernetes

Mean?

We assume you have access to a running Kubernetes

cluster such as Amazon EKS, Microsoft AKS, Google GKE,

or one of the OpenShift offerings.

TIP

You will spend a fair amount of time developing locally on your laptop or

desktop environment; that is, the Kubernetes cluster against which you’re

developing is local, rather than in the cloud or in your datacenter. When

developing locally, you have a number of options available. Depending on

your operating system and other preferences you might choose one (or

maybe even more) of the following solutions for running Kubernetes locally:

kind, k3d, or Docker Desktop.
1

https://kind.sigs.k8s.io/
http://bit.ly/2Ja1LaH
https://dockr.ly/2PTJVLL

We also assume that you are a Go programmer—that is, you

have experience or at least basic familiarity with the Go

programming language. Now is a good time, if any of those

assumptions do not apply to you, to train up: for Go, we

recommend The Go Programming Language by Alan A. A.

Donovan and Brian W. Kernighan (Addison-Wesley) and

Concurrency in Go by Katherine Cox-Buday (O’Reilly). For

Kubernetes, check out one or more of the following books:

Kubernetes in Action by Marko Lukša (Manning)

Kubernetes: Up and Running, 2nd Edition by Kelsey

Hightower et al. (O’Reilly)

Cloud Native DevOps with Kubernetes by John

Arundel and Justin Domingus (O’Reilly)

Managing Kubernetes by Brendan Burns and Craig

Tracey (O’Reilly)

Kubernetes Cookbook by Sébastien Goasguen and

Michael Hausenblas (O’Reilly)

NOTE

Why do we focus on programming Kubernetes in Go? Well, an analogy might

be useful here: Unix was written in the C programming language, and if you

wanted to write applications or tooling for Unix you would default to C. Also,

in order to extend and customize Unix—even if you were to use a language

other than C—you would need to at least be able to read C.

Now, Kubernetes and many related cloud-native technologies, from container

runtimes to monitoring such as Prometheus, are written in Go. We believe

that the majority of native applications will be Go-based and hence we focus

on it in this book. Should you prefer other languages, keep an eye on the

kubernetes-client GitHub organization. It may, going forward, contain a

client in your favorite programming language.

https://www.gopl.io/
http://bit.ly/2tdCt5j
http://bit.ly/2Tb8Ydo
https://oreil.ly/2SaANU4
https://oreil.ly/2BaE1iq
https://oreil.ly/2wtHcAm
http://bit.ly/2FTgJzk
http://bit.ly/2xfSrfT

By “programming Kubernetes” in the context of this book,

we mean the following: you are about to develop a

Kubernetes-native application that directly interacts with

the API server, querying the state of resources and/or

updating their state. We do not mean running off-the-shelf

apps, such as WordPress or Rocket Chat or your favorite

enterprise CRM system, oftentimes called commercially

available off-the-shelf (COTS) apps. Besides, in Chapter 7,

we do not really focus too much on operational issues, but

mainly look at the development and testing phase. So, in a

nutshell, this book is about developing genuinely cloud-

native applications. Figure 1-1 might help you soak that in

better.

Figure 1-1. Different types of apps running on Kubernetes

As you can see, there are different styles at your disposal:

1. Take a COTS such as Rocket Chat and run it on

Kubernetes. The app itself is not aware it runs on

Kubernetes and usually doesn’t have to be.

Kubernetes controls the app’s lifecycle—find node to

run, pull image, launch container(s), carry out health

checks, mount volumes, and so on—and that is that.

2. Take a bespoke app, something you wrote from

scratch, with or without having had Kubernetes as

the runtime environment in mind, and run it on

Kubernetes. The same modus operandi as in the

case of a COTS applies.

3. The case we focus on in this book is a cloud-native

or Kubernetes-native application that is fully aware

it is running on Kubernetes and leverages

Kubernetes APIs and resources to some extent.

The price you pay developing against the Kubernetes API

pays off: on the one hand you gain portability, as your app

will now run in any environment (from an on-premises

deployment to any public cloud provider), and on the other

hand you benefit from the clean, declarative mechanism

Kubernetes provides.

Let’s move on to a concrete example now.

A Motivational Example

To demonstrate the power of a Kubernetes-native app, let’s

assume you want to implement at—that is, schedule the

execution of a command at a given time.

We call this cnat or cloud-native at, and it works as follows.

Let’s say you want to execute the command echo

"Kubernetes native rocks!" at 2 a.m. on July 3, 2019. Here’s

what you would do with cnat:

http://bit.ly/2L4VqzU
http://bit.ly/2RpHhON

$ cat cnat-rocks-example.yaml

apiVersion: cnat.programming-kubernetes.info/v1alpha1

kind: At

metadata:

 name: cnrex

spec:

 schedule: "2019-07-03T02:00:00Z"

 containers:

 - name: shell

 image: centos:7

 command:

 - "bin/bash"

 - "-c"

 - echo "Kubernetes native rocks!"

$ kubectl apply -f cnat-rocks-example.yaml

cnat.programming-kubernetes.info/cnrex created

Behind the scenes, the following components are involved:

A custom resource called cnat.programming-

kubernetes.info/cnrex, representing the schedule.

A controller to execute the scheduled command at

the correct time.

In addition, a kubectl plug-in for the CLI UX would be

useful, allowing simple handling via commands like kubectl

at "02:00 Jul 3" echo "Kubernetes native rocks!" We won’t

write this in this book, but you can refer to the Kubernetes

documentation for instructions.

Throughout the book, we will use this example to discuss

aspects of Kubernetes, its inner workings, and how to

extend it.

For the more advanced examples in Chapters 8 and 9, we

will simulate a pizza restaurant with pizza and topping

objects in the cluster. See “Example: A Pizza Restaurant”

for details.

http://bit.ly/2J1dPuN

Extension Patterns

Kubernetes is a powerful and inherently extensible system.

In general, there are multiple ways to customize and/or

extend Kubernetes: using configuration files and flags for

control plane components like the kubelet or the

Kubernetes API server, and through a number of defined

extension points:

So-called cloud providers, which were traditionally

in-tree as part of the controller manager. As of 1.11,

Kubernetes makes out-of-tree development possible

by providing a custom cloud-controller-manager

process to integrate with a cloud. Cloud providers

allow the use of cloud provider–specific tools like

load balancers or Virtual Machines (VMs).

Binary kubelet plug-ins for network, devices (such as

GPUs), storage, and container runtimes.

Binary kubectl plug-ins.

Access extensions in the API server, such as the

dynamic admission control with webhooks (see

Chapter 9).

Custom resources (see Chapter 4) and custom

controllers; see the following section.

Custom API servers (see Chapter 8).

Scheduler extensions, such as using a webhook to

implement your own scheduling decisions.

Authentication with webhooks.

In the context of this book we focus on custom resources,

controllers, webhooks, and custom API servers, along with

http://bit.ly/2KteqbA
http://bit.ly/2FpHInw
http://bit.ly/2WWlcxk
http://bit.ly/2L1tPzm
http://bit.ly/2XthLgM
http://bit.ly/2x7Unaa
http://bit.ly/2Zzh1Eq
http://bit.ly/2FmH7mu
http://bit.ly/2DwR2Y3
http://bit.ly/2xcg4FL
http://bit.ly/2Oh6DPS

the Kubernetes extension patterns. If you’re interested in

other extension points, such as storage or network plug-ins,

check out the official documentation.

Now that you have a basic understanding of the Kubernetes

extension patterns and the scope of this book, let’s move on

to the heart of the Kubernetes control plane and see how

we can extend it.

Controllers and Operators

In this section you’ll learn about controllers and operators

in Kubernetes and how they work.

Per the Kubernetes glossary, a controller implements a

control loop, watching the shared state of the cluster

through the API server and making changes in an attempt

to move the current state toward the desired state.

Before we dive into the controller’s inner workings, let’s

define our terminology:

Controllers can act on core resources such as

deployments or services, which are typically part of

the Kubernetes controller manager in the control

plane, or can watch and manipulate user-defined

custom resources.

Operators are controllers that encode some

operational knowledge, such as application lifecycle

management, along with the custom resources

defined in Chapter 4.

Naturally, given that the latter concept is based on the

former, we’ll look at controllers first and then discuss the

more specialized case of an operator.

http://bit.ly/2L2SJ1C
http://bit.ly/2Y0L1J9
http://bit.ly/2IWGlxz
http://bit.ly/2WUAEVy

The Control Loop

In general, the control loop looks as follows:

1. Read the state of resources, preferably event-driven

(using watches, as discussed in Chapter 3). See

“Events” and “Edge- Versus Level-Driven Triggers”

for details.

2. Change the state of objects in the cluster or the

cluster-external world. For example, launch a pod,

create a network endpoint, or query a cloud API. See

“Changing Cluster Objects or the External World”

for details.

3. Update status of the resource in step 1 via the API

server in etcd. See “Optimistic Concurrency” for

details.

4. Repeat cycle; return to step 1.

No matter how complex or simple your controller is, these

three steps—read resource state ˃ change the world ˃

update resource status—remain the same. Let’s dig a bit

deeper into how these steps are actually implemented in a

Kubernetes controller. The control loop is depicted in

Figure 1-2, which shows the typical moving parts, with the

main loop of the controller in the middle. This main loop is

continuously running inside of the controller process. This

process is usually running inside a pod in the cluster.

Figure 1-2. Kubernetes control loop

From an architectural point of view, a controller typically

uses the following data structures (as discussed in detail in

Chapter 3):

Informers

Informers watch the desired state of resources in a

scalable and sustainable fashion. They also implement a

resync mechanism (see “Informers and Caching” for

details) that enforces periodic reconciliation, and is

often used to make sure that the cluster state and the

assumed state cached in memory do not drift (e.g., due

bugs or network issues).

Work queues

Essentially, a work queue is a component that can be

used by the event handler to handle queuing of state

changes and help to implement retries. In client-go this

functionality is available via the workqueue package

(see “Work Queue”). Resources can be requeued in case

of errors when updating the world or writing the status

(steps 2 and 3 in the loop), or just because we have to

reconsider the resource after some time for other

reasons.

http://bit.ly/2x7zyeK

For a more formal discussion of Kubernetes as a

declarative engine and state transitions, read “The

Mechanics of Kubernetes” by Andrew Chen and Dominik

Tornow.

Let’s now take a closer look at the control loop, starting

with Kubernetes event-driven architecture.

Events

The Kubernetes control plane heavily employs events and

the principle of loosely coupled components. Other

distributed systems use remote procedure calls (RPCs) to

trigger behavior. Kubernetes does not. Kubernetes

controllers watch changes to Kubernetes objects in the API

server: adds, updates, and removes. When such an event

happens, the controller executes its business logic.

For example, in order to launch a pod via a deployment, a

number of controllers and other control plane components

work together:

1. The deployment controller (inside of kube-controller-

manager) notices (through a deployment informer)

that the user creates a deployment. It creates a

replica set in its business logic.

2. The replica set controller (again inside of kube-

controller-manager) notices (through a replica set

informer) the new replica set and subsequently runs

its business logic, which creates a pod object.

3. The scheduler (inside the kube-scheduler binary)—

which is also a controller—notices the pod (through

a pod informer) with an empty spec.nodeName field. Its

business logic puts the pod in its scheduling queue.

http://bit.ly/2IV2lcb

4. Meanwhile the kubelet—another controller—notices

the new pod (through its pod informer). But the new

pod’s spec.nodeName field is empty and therefore does

not match the kubelet’s node name. It ignores the

pod and goes back to sleep (until the next event).

5. The scheduler takes the pod out of the work queue

and schedules it to a node that has enough free

resources by updating the spec.nodeName field in the

pod and writing it to the API server.

6. The kubelet wakes up again due to the pod update

event. It again compares the spec.nodeName with its

own node name. The names match, and so the

kubelet starts the containers of the pod and reports

back that the containers have been started by

writing this information into the pod status, back to

the API server.

7. The replica set controller notices the changed pod

but has nothing to do.

8. Eventually the pod terminates. The kubelet will

notice this, get the pod object from the API server

and set the “terminated” condition in the pod’s

status, and write it back to the API server.

9. The replica set controller notices the terminated pod

and decides that this pod must be replaced. It

deletes the terminated pod on the API server and

creates a new one.

10. And so on.

As you can see, a number of independent control loops

communicate purely through object changes on the API

server and events these changes trigger through informers.

These events are sent from the API server to the informers

inside the controllers via watches (see “Watches”)—that is,

streaming connections of watch events. All of this is mostly

invisible to the user. Not even the API server audit

mechanism makes these events visible; only the object

updates are visible. Controllers often use log output,

though, when they react on events.

WATCH EVENTS VERSUS THE EVENT OBJECT

Watch events and the top-level Event object in

Kubernetes are two different things:

Watch events are sent through streaming HTTP

connections between the API server and

controllers to drive informers.

The top-level Event object is a resource like pods,

deployments, or services, with the special

property that it has a time-to-live of an hour and

then is purged automatically from etcd.

Event objects are merely a user-visible logging

mechanism. A number of controllers create these events

in order to communicate aspects of their business logic

to the user. For example, the kubelet reports the lifecycle

events for pods (i.e., when a container was started,

restarted, and terminated).

You can list the second class of events happening in the

cluster yourself using kubectl. By issuing the following

command, you see what is going on in the kube-system

namespace:

$ kubectl -n kube-system get events

LAST SEEN FIRST SEEN COUNT NAME

KIND

3m 3m 1 kube-controller-manager-

master.15932b6faba8e5ad Pod

3m 3m 1 kube-apiserver-master.15932b6fa3f3fbbc

Pod

3m 3m 1 etcd-master.15932b6fa8a9a776

Pod

…

2m 3m 2 weave-net-7nvnf.15932b73e61f5bc6

Pod

2m 3m 2 weave-net-7nvnf.15932b73efeec0b3

Pod

2m 3m 2 weave-net-7nvnf.15932b73e8f7d318

Pod

If you want to learn more about events, read Michael

Gasch’s blog post “Events, the DNA of Kubernetes”, where

he provides more background and examples.

Edge- Versus Level-Driven Triggers

Let’s step back a bit and look more abstractly at how we

can structure business logic implemented in controllers,

and why Kubernetes has chosen to use events (i.e., state

changes) to drive its logic.

There are two principled options to detect state change

(the event itself):

Edge-driven triggers

At the point in time the state change occurs, a handler is

triggered—for example, from no pod to pod running.

Level-driven triggers

The state is checked at regular intervals and if certain

conditions are met (for example, pod running), then a

handler is triggered.

The latter is a form of polling. It does not scale well with

the number of objects, and the latency of controllers

noticing changes depends on the interval of polling and

how fast the API server can answer. With many

asynchronous controllers involved, as described in

“Events”, the result is a system that takes a long time to

implement the users’ desire.

http://bit.ly/2MZwbl6

The former option is much more efficient with many

objects. The latency mostly depends on the number of

worker threads in the controller’s processing events.

Hence, Kubernetes is based on events (i.e., edge-driven

triggers).

In the Kubernetes control plane, a number of components

change objects on the API server, with each change leading

to an event (i.e., an edge). We call these components event

sources or event producers. On the other hand, in the

context of controllers, we’re interested in consuming

events—that is, when and how to react to an event (via an

informer).

In a distributed system there are many actors running in

parallel, and events come in asynchronously in any order.

When we have a buggy controller logic, some slightly

wrong state machine, or an external service failure, it is

easy to lose events in the sense that we don’t process them

completely. Hence, we have to take a deeper look at how to

cope with errors.

In Figure 1-3 you can see different strategies at work:

1. An example of an edge-driven-only logic, where

potentially the second state change is missed.

2. An example of an edge-triggered logic, which always

gets the latest state (i.e., level) when processing an

event. In other words, the logic is edge-triggered but

level-driven.

3. An example of an edge-triggered, level-driven logic

with additional resync.

Figure 1-3. Trigger options (edge-driven versus level-driven)

Strategy 1 does not cope well with missed events, whether

because broken networking makes it lose events, or

because the controller itself has bugs or some external

cloud API was down. Imagine that the replica set controller

would replace pods only when they terminate. Missing

events would mean that the replica set would always run

with fewer pods because it never reconciles the whole

state.

Strategy 2 recovers from those issues when another event

is received because it implements its logic based on the

latest state in the cluster. In the case of the replica set

controller, it will always compare the specified replica

count with the running pods in the cluster. When it loses

events, it will replace all missing pods the next time a pod

update is received.

Strategy 3 adds continuous resync (e.g., every five

minutes). If no pod events come in, it will at least reconcile

every five minutes, even if the application runs very stably

and does not lead to many pod events.

Given the challenges of pure edge-driven triggers, the

Kubernetes controllers typically implement the third

strategy.

If you want to learn more about the origins of the triggers

and the motivations for level triggering with reconciliation

in Kubernetes, read James Bowes’s article, “Level

Triggering and Reconciliation in Kubernetes”.

This concludes the discussion of the different, abstract

ways to detect external changes and to react on them. The

next step in the control loop of Figure 1-2 is to change the

cluster objects or to change the external world following

the spec. We’ll look at it now.

Changing Cluster Objects or the External World

In this phase, the controller changes the state of the

objects it is supervising. For example, the ReplicaSet

controller in the controller manager is supervising pods. On

each event (edge-triggered), it will observe the current

state of its pods and compare that with the desired state

(level-driven).

Since the act of changing the resource state is domain- or

task-specific, we can provide little guidance. Instead, we’ll

keep looking at the ReplicaSet controller we introduced

earlier. ReplicaSets are used in deployments, and the

bottom line of the respective controller is: maintain a user-

defined number of identical pod replicas. That is, if there

are fewer pods than the user specified—for example,

because a pod died or the replica value has been increased

http://bit.ly/2FmLLAW
http://bit.ly/2WUAEVy

—the controller will launch new pods. If, however, there are

too many pods, it will select some for termination. The

entire business logic of the controller is available via the

replica_set.go package, and the following excerpt of the Go

code deals with the state change (edited for clarity):

// manageReplicas checks and updates replicas for the given ReplicaSet.

// It does NOT modify <filteredPods>.

// It will requeue the replica set in case of an error while creating/deleting

pods.

func (rsc *ReplicaSetController) manageReplicas(

 filteredPods []*v1.Pod, rs *apps.ReplicaSet,

) error {

 diff := len(filteredPods) - int(*(rs.Spec.Replicas))

 rsKey, err := controller.KeyFunc(rs)

 if err != nil {

 utilruntime.HandleError(

 fmt.Errorf("Couldn't get key for %v %#v: %v", rsc.Kind, rs,

err),

)

 return nil

 }

 if diff < 0 {

 diff *= -1

 if diff > rsc.burstReplicas {

 diff = rsc.burstReplicas

 }

 rsc.expectations.ExpectCreations(rsKey, diff)

 klog.V(2).Infof("Too few replicas for %v %s/%s, need %d, creating %d",

 rsc.Kind, rs.Namespace, rs.Name, *(rs.Spec.Replicas), diff,

)

 successfulCreations, err := slowStartBatch(

 diff,

 controller.SlowStartInitialBatchSize,

 func() error {

 ref := metav1.NewControllerRef(rs,

rsc.GroupVersionKind)

 err := rsc.podControl.CreatePodsWithControllerRef(

 rs.Namespace, &rs.Spec.Template, rs, ref,

)

 if err != nil && errors.IsTimeout(err) {

 return nil

 }

 return err

 },

http://bit.ly/2L4eKxa

)

 if skippedPods := diff - successfulCreations; skippedPods > 0 {

 klog.V(2).Infof("Slow-start failure. Skipping creation of %d

pods," +

 " decrementing expectations for %v %v/%v",

 skippedPods, rsc.Kind, rs.Namespace, rs.Name,

)

 for i := 0; i < skippedPods; i++ {

 rsc.expectations.CreationObserved(rsKey)

 }

 }

 return err

 } else if diff > 0 {

 if diff > rsc.burstReplicas {

 diff = rsc.burstReplicas

 }

 klog.V(2).Infof("Too many replicas for %v %s/%s, need %d, deleting

%d",

 rsc.Kind, rs.Namespace, rs.Name, *(rs.Spec.Replicas), diff,

)

 podsToDelete := getPodsToDelete(filteredPods, diff)

 rsc.expectations.ExpectDeletions(rsKey, getPodKeys(podsToDelete))

 errCh := make(chan error, diff)

 var wg sync.WaitGroup

 wg.Add(diff)

 for _, pod := range podsToDelete {

 go func(targetPod *v1.Pod) {

 defer wg.Done()

 if err := rsc.podControl.DeletePod(

 rs.Namespace,

 targetPod.Name,

 rs,

); err != nil {

 podKey := controller.PodKey(targetPod)

 klog.V(2).Infof("Failed to delete %v, decrementing " +

 "expectations for %v %s/%s",

 podKey, rsc.Kind, rs.Namespace, rs.Name,

)

 rsc.expectations.DeletionObserved(rsKey, podKey)

 errCh <- err

 }

 }(pod)

 }

 wg.Wait()

 select {

 case err := <-errCh:

 if err != nil {

 return err

 }

 default:

 }

 }

 return nil

}

You can see that the controller computes the difference

between specification and current state in the line diff :=

len(filteredPods) - int(*(rs.Spec.Replicas)) and then

implements two cases depending on that:

diff < 0: Too few replicas; more pods must be

created.

diff > 0: Too many replicas; pods must be deleted.

It also implements a strategy to choose pods where it is

least harmful to delete them in getPodsToDelete.

Changing the resource state does not, however, necessarily

mean that the resources themselves have to be part of the

Kubernetes cluster. In other words, a controller can change

the state of resources that are located outside of

Kubernetes, such as a cloud storage service. For example,

the AWS Service Operator allows you to manage AWS

resources. Among other things, it allows you to manage S3

buckets—that is, the S3 controller is supervising a resource

(the S3 bucket) that exists outside of Kubernetes, and the

state changes reflect concrete phases in its lifecycle: an S3

bucket is created and at some point deleted.

This should convince you that with a custom controller you

can manage not only core resources, like pods, and custom

resources, like our cnat example, but even compute or store

resources that exist outside of Kubernetes. This makes

http://bit.ly/2ItJcif

controllers very flexible and powerful integration

mechanisms, providing a unified way to use resources

across platforms and environments.

Optimistic Concurrency

In “The Control Loop”, we discussed in step 3 that a

controller—after updating cluster objects and/or the

external world according to the spec—writes the results

into the status of the resource that triggered the controller

run in step 1.

This and actually any other write (also in step 2) can go

wrong. In a distributed system, this controller is probably

only one of many that update resources. Concurrent writes

can fail because of write conflicts.

To better understand what’s happening, let’s step back a

bit and have a look at Figure 1-4.

Figure 1-4. Scheduling architectures in distributed systems

The source defines Omega’s parallel scheduler architecture

as follows:

2

Our solution is a new parallel scheduler architecture built

around shared state, using lock-free optimistic

concurrency control, to achieve both implementation

extensibility and performance scalability. This

architecture is being used in Omega, Google’s next-

generation cluster management system.

While Kubernetes inherited a lot of traits and lessons

learned from Borg, this specific, transactional control plane

feature comes from Omega: in order to carry out

concurrent operations without locks, the Kubernetes API

server uses optimistic concurrency.

This means, in a nutshell, that if and when the API server

detects concurrent write attempts, it rejects the latter of

the two write operations. It is then up to the client

(controller, scheduler, kubectl, etc.) to handle a conflict and

potentially retry the write operation.

The following demonstrates the idea of optimistic

concurrency in Kubernetes:

var err error

for retries := 0; retries < 10; retries++ {

 foo, err = client.Get("foo", metav1.GetOptions{})

 if err != nil {

 break

 }

 <update-the-world-and-foo>

 _, err = client.Update(foo)

 if err != nil && errors.IsConflict(err) {

 continue

 } else if err != nil {

 break

 }

}

http://bit.ly/2XNSv5p

The code shows a retry loop that gets the latest object foo

in each iteration, then tries to update the world and foo’s

status to match foo’s spec. The changes done before the

Update call are optimistic.

The returned object foo from the client.Get call contains a

resource version (part of the embedded ObjectMeta struct—

see “ObjectMeta” for details), which will tell etcd on the

write operation behind the client.Update call that another

actor in the cluster wrote the foo object in the meantime. If

that’s the case, our retry loop will get a resource version

conflict error. This means that the optimistic concurrency

logic failed. In other words, the client.Update call is also

optimistic.

NOTE

The resource version is actually the etcd key/value version. The resource

version of each object is a string in Kubernetes that contains an integer. This

integer comes directly from etcd. etcd maintains a counter that increases

each time the value of a key (which holds the object’s serialization) is

modified.

Throughout the API machinery code the resource version is (more or less

consequently) handled like an arbitrary string, but with some ordering on it.

The fact that integers are stored is just an implementation detail of the

current etcd storage backend.

Let’s look at a concrete example. Imagine your client is not

the only actor in the cluster that modifies a pod. There is

another actor, namely the kubelet, that constantly modifies

some fields because a container is constantly crashing.

Now your controller reads the pod object’s latest state like

so:

kind: Pod

metadata:

 name: foo

 resourceVersion: 57

spec:

 ...

status:

 ...

Now assume the controller needs several seconds with its

updates to the world. Seven seconds later, it tries to update

the pod it read—for example, it sets an annotation.

Meanwhile, the kubelet has noticed yet another container

restart and updated the pod’s status to reflect that; that is,

resourceVersion has increased to 58.

The object your controller sends in the update request has

resourceVersion: 57. The API server tries to set the etcd key

for the pod with that value. etcd notices that the resource

versions do not match and reports back that 57 conflicts

with 58. The update fails.

The bottom line of this example is that for your controller,

you are responsible for implementing a retry strategy and

for adapting if an optimistic operation failed. You never

know who else might be manipulating state, whether other

custom controllers or core controllers such as the

deployment controller.

The essence of this is: conflict errors are totally normal in

controllers. Always expect them and handle them

gracefully.

It’s important to point out that optimistic concurrency is a

perfect fit for level-based logic, because by using level-

based logic you can just rerun the control loop (see “Edge-

Versus Level-Driven Triggers”). Another run of that loop

will automatically undo optimistic changes from the

previous failed optimistic attempt, and it will try to update

the world to the latest state.

Let’s move on to a specific case of custom controllers

(along with custom resources): the operator.

Operators

Operators as a concept in Kubernetes were introduced by

CoreOS in 2016. In his seminal blog post, “Introducing

Operators: Putting Operational Knowledge into Software”,

CoreOS CTO Brandon Philips defined operators as follows:

A Site Reliability Engineer (SRE) is a person [who]

operates an application by writing software. They are an

engineer, a developer, who knows how to develop

software specifically for a particular application domain.

The resulting piece of software has an application’s

operational domain knowledge programmed into it.

[…]

We call this new class of software Operators. An Operator

is an application-specific controller that extends the

Kubernetes API to create, configure, and manage

instances of complex stateful applications on behalf of a

Kubernetes user. It builds upon the basic Kubernetes

resource and controller concepts but includes domain or

application-specific knowledge to automate common

tasks.

In the context of this book, we will use operators as Philips

describes them and, more formally, require that the

following three conditions hold (see also Figure 1-5):

There’s some domain-specific operational knowledge

you’d like to automate.

http://bit.ly/2ZC4Rui

The best practices for this operational knowledge

are known and can be made explicit—for example, in

the case of a Cassandra operator, when and how to

re-balance nodes, or in the case of an operator for a

service mesh, how to create a route.

The artifacts shipped in the context of the operator

are:

A set of custom resource definitions (CRDs)

capturing the domain-specific schema and

custom resources following the CRDs that, on

the instance level, represent the domain of

interest.

A custom controller, supervising the custom

resources, potentially along with core

resources. For example, the custom controller

might spin up a pod.

Figure 1-5. The concept of an operator

Operators have come a long way from the conceptual work

and prototyping in 2016 to the launch of OperatorHub.io by

Red Hat (which acquired CoreOS in 2018 and continued to

build out the idea) in early 2019. See Figure 1-6 for a

screenshot of the hub in mid-2019 sporting some 17

operators, ready to be used.

http://bit.ly/2x5TSNw
https://operatorhub.io/

Figure 1-6. OperatorHub.io screenshot

Summary

In this first chapter we defined the scope of our book and

what we expect from you. We explained what we mean by

programming Kubernetes and defined Kubernetes-native

apps in the context of this book. As preparation for later

examples, we also provided a high-level introduction to

controllers and operators.

So, now that you know what to expect from the book and

how you can benefit from it, let’s jump into the deep end. In

the next chapter, we’ll take a closer look at the Kubernetes

API, the API server’s inner workings, and how you can

interact with the API using command-line tools such as

curl.

1 For more on this topic, see Megan O’Keefe’s “A Kubernetes Developer

Workflow for MacOS”, Medium, January 24, 2019; and Alex Ellis’s blog

post, “Be KinD to yourself”, December 14, 2018.

2 Source: “Omega: Flexible, Scalable Schedulers for Large Compute

Clusters”, by Malte Schwarzkopf et al., Google AI, 2013.

http://bit.ly/2WXfzu1
http://bit.ly/2XkK9C1
http://bit.ly/2PjYZ59

Chapter 2. Kubernetes API

Basics

In this chapter we walk you through the Kubernetes API

basics. This includes a deep dive into the API server’s inner

workings, the API itself, and how you can interact with the

API from the command line. We will introduce you to

Kubernetes API concepts such as resources and kinds, as

well as grouping and versioning.

The API Server

Kubernetes is made up of a bunch of nodes (machines in

the cluster) with different roles, as shown in Figure 2-1: the

control plane on the master node(s) consists of the API

server, controller manager, and scheduler. The API server is

the central management entity and the only component

that talks directly with the distributed storage component

etcd.

The API server has the following core responsibilities:

To serve the Kubernetes API. This API is used

cluster-internally by the master components, the

worker nodes, and your Kubernetes-native apps, as

well as externally by clients such as kubectl.

To proxy cluster components, such as the

Kubernetes dashboard, or to stream logs, service

ports, or serve kubectl exec sessions.

Serving the API means:

Reading state: getting single objects, listing them,

and streaming changes

Manipulating state: creating, updating, and deleting

objects

State is persisted via etcd.

Figure 2-1. Kubernetes architecture overview

The heart of Kubernetes is its API server. But how does the

API server work? We’ll first treat the API server as a black

box and take a closer look at its HTTP interface, then we’ll

move on to the inner workings of the API server.

The HTTP Interface of the API Server

From a client’s perspective, the API server exposes a

RESTful HTTP API with JSON or protocol buffer (protobuf

for short) payload, which is used mainly for cluster-internal

communication, for performance reasons.

http://bit.ly/1HhFC5L

The API server HTTP interface handles HTTP requests to

query and manipulate Kubernetes resources using the

following HTTP verbs (or HTTP methods):

The HTTP GET verb is used for retrieving the data

with a specific resource (such as a certain pod) or a

collection or list of resources (for example, all pods

in a namespace).

The HTTP POST verb is used for creating a resource,

such as a service or a deployment.

The HTTP PUT verb is used for updating an existing

resource—for example, changing the container

image of a pod.

The HTTP PATCH verb is used for partial updates of

existing resources. Read “Use a JSON merge patch

to update a Deployment” in the Kubernetes

documentation to learn more about the available

strategies and implications here.

The HTTP DELETE verb is used for destroying a

resource in a nonrecoverable manner.

If you look at, say, the Kubernetes 1.14 API reference, you

can see the different HTTP verbs in action. For example, to

list pods in the current namespace with the CLI command

equivalent of kubectl -n THENAMESPACE get pods, you would

issue GET /api/v1/namespaces/THENAMESPACE/pods (see Figure 2-

2).

https://mzl.la/2WX21hL
http://bit.ly/2Xpbi6I
http://bit.ly/2IVevBG

Figure 2-2. API server HTTP interface in action: listing pods in a given

namespace

For an introduction on how the API server HTTP interface

is invoked from a Go program, see “The Client Library”.

API Terminology

Before we get into the API business, let’s first define the

terms used in the context of the Kubernetes API server:

Kind

The type of an entity. Each object has a field Kind

(lowercase kind in JSON, capitalized Kind in Golang),

which tells a client such as kubectl that it represents, for

example, a pod. There are three categories of kinds:

Objects represent a persistent entity in the system—

for example, Pod or Endpoints. Objects have names,

and many of them live in namespaces.

Lists are collections of one or more kinds of entities.

Lists have a limited set of common metadata.

Examples include PodLists or NodeLists. When you do

a kubectl get pods, that’s exactly what you get.

Special-purpose kinds are used for specific actions

on objects and for nonpersistent entities such as

/binding or /scale. For discovery, Kubernetes uses

APIGroup and APIResource; for error results, it uses

Status.

In Kubernetes programs, a kind directly corresponds with a

Golang type. Thus, as Golang types, kinds are singular and

begin with a capital letter.

API group

A collection of Kinds that are logically related. For

example, all batch objects like Job or ScheduledJob are in

the batch API group.

Version

Each API group can exist in multiple versions, and most

of them do. For example, a group first appears as

v1alpha1 and is then promoted to v1beta1 and finally

graduates to v1. An object created in one version (e.g.,

v1beta1) can be retrieved in each of the supported

versions. The API server does lossless conversion to

return objects in the requested version. From the cluster

user’s point of view, versions are just different

representations of the same objects.

TIP

There is no such thing as “one object is in v1 in the cluster, and another

object is in v1beta1 in the cluster.” Instead, every object can be returned as a

v1 representation or in the v1beta1 representation, as the cluster user desires.

Resource

A usually lowercase, plural word (e.g., pods) identifying a

set of HTTP endpoints (paths) exposing the CRUD

(create, read, update, delete) semantics of a certain

object type in the system. Common paths are:

The root, such as …/pods, which lists all instances of

that type

A path for individual named resources, such as

…/pods/nginx

Typically, each of these endpoints returns and receives

one kind (a PodList in the first case, and a Pod in the

second). But in other situations (e.g., in case of errors),

a Status kind object is returned.

In addition to the main resource with full CRUD

semantics, a resource can have further endpoints to

perform specific actions (e.g., …/pod/nginx/port-forward,

…/pod/nginx/exec, or …/pod/nginx/logs). We call these

subresources (see “Subresources”). These usually

implement custom protocols instead of REST—for

example, some kind of streaming connection via

WebSockets or imperative APIs.

TIP

Resources and kinds are often mixed up. Note the clear distinction:

Resources correspond to HTTP paths.

Kinds are the types of objects returned by and received by these

endpoints, as well as persisted into etcd.

Resources are always part of an API group and a version,

collectively referred to as GroupVersionResource (or GVR).

A GVR uniquely defines an HTTP path. A concrete path, for

example, in the default namespace would be

/apis/batch/v1/namespaces/default/jobs. Figure 2-3 shows

an example GVR for a namespaced resource, a Job.

Figure 2-3. Kubernetes API—GroupVersionResource (GVR)

In contrast to the jobs GVR example, cluster-wide resources

such as nodes or namespaces themselves do not have the

$NAMESPACE part in the path. For example, a nodes GVR

example might look as follows: /api/v1/nodes. Note that

namespaces show up in other resources’ HTTP paths but

are also a resource themselves, accessible at

/api/v1/namespaces.

Similarly to GVRs, each kind lives in an API group, is

versioned, and is identified via a GroupVersionKind (GVK).

COHABITATION—KINDS LIVING IN MULTIPLE API

GROUPS

Kinds of the same name may coexist not only in different

versions, but also in different API groups,

simultaneously. For example, Deployment started as an

alpha kind in the extensions group and was eventually

promoted to a stable version in its own group,

apps.k8s.io. We call this cohabitation. While not common

in Kubernetes, there are a handful of them:

Ingress, NetworkPolicy in extensions and

networking.k8s.io

Deployment, DaemonSet, ReplicaSet in extensions and

apps

Event in the core group and events.k8s.io

GVKs and GVRs are related. GVKs are served under HTTP

paths identified by GVRs. The process of mapping a GVK to

a GVR is called REST mapping. We will see RESTMappers that

implement REST mapping in Golang in “REST Mapping”.

From a global point of view, the API resource space

logically forms a tree with top-level nodes including /api,

/apis, and some nonhierarchical endpoints such as /healthz

or /metrics. An example rendering of this API space is

shown in Figure 2-4. Note that the exact shape and paths

depend on the Kubernetes version, with an increasing

tendency to stabilize over the years.

Figure 2-4. An example Kubernetes API space

Kubernetes API Versioning

For extensibility reasons, Kubernetes supports multiple API

versions at different API paths, such as /api/v1 or

/apis/extensions/v1beta1. Different API versions imply

different levels of stability and support:

Alpha level (e.g., v1alpha1) is usually disabled by

default; support for a feature may be dropped at any

time without notice and should be used only in

short-lived testing clusters.

Beta level (e.g., v2beta3) is enabled by default,

meaning that the code is well tested; however, the

semantics of objects may change in incompatible

ways in a subsequent beta or stable release.

Stable (generally available, or GA) level (e.g., v1) will

appear in released software for many subsequent

versions.

Let’s look at how the HTTP API space is constructed: at the

top level we distinguish between the core group—that is,

everything below /api/v1—and the named groups in paths

of the form /apis/$NAME/$VERSION.

NOTE

The core group is located under /api/v1 and not, as one would expect, under

/apis/core/v1, for historic reasons. The core group existed before the concept

of an API group was introduced.

There is a third type of HTTP paths—ones that are not

resource aligned—that the API server exposes: cluster-wide

entities such as /metrics, /logs, or /healthz. In addition, the

API server supports watches; that is, rather than polling

resources at set intervals, you can add a ?watch=true to

certain requests and the API server changes into a watch

modus.

Declarative State Management

Most API objects make a distinction between the

specification of the desired state of the resource and the

status of the object at the current time. A specification, or

spec for short, is a complete description of the desired

state of a resource and is typically persisted in stable

storage, usually etcd.

NOTE

Why do we say “usually etcd“? Well, there are Kubernetes distros and

offerings, such as k3s or Microsoft’s AKS, that have replaced or are working

on replacing etcd with something else. Thanks to the modular architecture of

the Kubernetes control plane, this works just fine.

http://bit.ly/2x5PnTl
https://k3s.io/

Let’s talk a little more about spec (desired state) versus

status (observed state) in the context of the API server.

The spec describes your desired state for the resource,

something you need to provide via a command-line tool

such as kubectl or programmatically via your Go code. The

status describes the observed or actual state of the

resource and is managed by the control plane, either by

core components such as the controller manager or by your

own custom controller (see “Controllers and Operators”).

For example, in a deployment you might specify that you

want 20 replicas of the application to be running at all

times. The deployment controller, part of the controller

manager in the control plane, reads the deployment spec

you provided and creates a replica set, which then takes

care of managing the replicas: it creates the respective

number of pods, which eventually (via the kubelet) results

in containers being launched on worker nodes. If any

replica fails, the deployment controller would make this

known to you in the status. This is what we call declarative

state management—that is, declaring the desired state and

letting Kubernetes take care of the rest.

We will see declarative state management in action in the

next section, as we start to explore the API from the

command line.

Using the API from the Command Line

In this section we’ll be using kubectl and curl to

demonstrate the use of the Kubernetes API. If you’re not

familiar with these CLI tools, now is a good time to install

them and try them out.

For starters, let’s have a look at the desired and observed

state of a resource. We will be using a control plane

component that is likely available in every cluster, the

CoreDNS plug-in (old Kubernetes versions were using kube-

dns instead) in the kube-system namespace (this output is

heavily edited to highlight the important parts):

$ kubectl -n kube-system get deploy/coredns -o=yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: coredns

 namespace: kube-system

 ...

spec:

 template:

 spec:

 containers:

 - name: coredns

 image: 602401143452.dkr.ecr.us-east-2.amazonaws.com/eks/coredns:v1.2.2

 ...

status:

 replicas: 2

 conditions:

 - type: Available

 status: "True"

 lastUpdateTime: "2019-04-01T16:42:10Z"

 ...

As you can see from this kubectl command, in the spec

section of the deployment you’d define characteristics such

as which container image to use and how many replicas

you want to run in parallel, and in the status section you’d

learn how many replicas at the current point in time are

actually running.

To carry out CLI-related operations, we will, for the

remainder of this chapter, be using batch operations as the

running example. Let’s start by executing the following

command in a terminal:

$ kubectl proxy --port=8080

Starting to serve on 127.0.0.1:8080

This command proxies the Kubernetes API to our local

machine and also takes care of the authentication and

authorization bits. It allows us to directly issue requests via

HTTP and receive JSON payloads in return. Let’s do that by

launching a second terminal session where we query v1:

$ curl http://127.0.0.1:8080/apis/batch/v1

{

 "kind": "APIResourceList",

 "apiVersion": "v1",

 "groupVersion": "batch/v1",

 "resources": [

 {

 "name": "jobs",

 "singularName": "",

 "namespaced": true,

 "kind": "Job",

 "verbs": [

 "create",

 "delete",

 "deletecollection",

 "get",

 "list",

 "patch",

 "update",

 "watch"

],

 "categories": [

 "all"

]

 },

 {

 "name": "jobs/status",

 "singularName": "",

 "namespaced": true,

 "kind": "Job",

 "verbs": [

 "get",

 "patch",

 "update"

]

 }

]

}

TIP

You don’t have to use curl along with the kubectl proxy command to get direct

HTTP API access to the Kubernetes API. You can instead use the kubectl get

--raw command: for example, replace curl http://127.0.0.1:8080/apis/batch/v1

with kubectl get --raw /apis/batch/v1.

Compare this with the v1beta1 version, noting that you can

get a list of supported versions for the batch API group

when looking at http://127.0.0.1:8080/apis/batch v1beta1:

$ curl http://127.0.0.1:8080/apis/batch/v1beta1

{

 "kind": "APIResourceList",

 "apiVersion": "v1",

 "groupVersion": "batch/v1beta1",

 "resources": [

 {

 "name": "cronjobs",

 "singularName": "",

 "namespaced": true,

 "kind": "CronJob",

 "verbs": [

 "create",

 "delete",

 "deletecollection",

 "get",

 "list",

 "patch",

 "update",

 "watch"

],

 "shortNames": [

 "cj"

],

 "categories": [

 "all"

]

 },

 {

 "name": "cronjobs/status",

 "singularName": "",

 "namespaced": true,

 "kind": "CronJob",

 "verbs": [

 "get",

 "patch",

 "update"

]

 }

]

}

As you can see, the v1beta1 version also contains the

cronjobs resource with the kind CronJob. At the time of this

writing, cron jobs have not been promoted to v1.

If you want to get an idea of what API resources are

supported in your cluster, including their kinds, whether or

not they are namespaced, and their short names (primarily

for kubectl on the command line), you can use the following

command:

$ kubectl api-resources

NAME SHORTNAMES APIGROUP NAMESPACED KIND

bindings true Binding

componentstatuses cs false ComponentStatus

configmaps cm true ConfigMap

endpoints ep true Endpoints

events ev true Event

limitranges limits true LimitRange

namespaces ns false Namespace

nodes no false Node

persistentvolumeclaims pvc true PersistentVolumeClaim

persistentvolumes pv false PersistentVolume

pods po true Pod

podtemplates true PodTemplate

replicationcontrollers rc true ReplicationController

resourcequotas quota true ResourceQuota

secrets true Secret

serviceaccounts sa true ServiceAccount

services svc true Service

controllerrevisions apps true ControllerRevision

daemonsets ds apps true DaemonSet

deployments deploy apps true Deployment

...

The following is a related command that can be very useful

to determine the different resource versions supported in

your cluster:

$ kubectl api-versions

admissionregistration.k8s.io/v1beta1

apiextensions.k8s.io/v1beta1

apiregistration.k8s.io/v1

apiregistration.k8s.io/v1beta1

appmesh.k8s.aws/v1alpha1

appmesh.k8s.aws/v1beta1

apps/v1

apps/v1beta1

apps/v1beta2

authentication.k8s.io/v1

authentication.k8s.io/v1beta1

authorization.k8s.io/v1

authorization.k8s.io/v1beta1

autoscaling/v1

autoscaling/v2beta1

autoscaling/v2beta2

batch/v1

batch/v1beta1

certificates.k8s.io/v1beta1

coordination.k8s.io/v1beta1

crd.k8s.amazonaws.com/v1alpha1

events.k8s.io/v1beta1

extensions/v1beta1

networking.k8s.io/v1

policy/v1beta1

rbac.authorization.k8s.io/v1

rbac.authorization.k8s.io/v1beta1

scheduling.k8s.io/v1beta1

storage.k8s.io/v1

storage.k8s.io/v1beta1

v1

How the API Server Processes

Requests

Now that you have an understanding of the external-facing

HTTP interface, let’s focus on the inner workings of the API

server. Figure 2-5 shows a high-level overview of the

request processing in the API server.

Figure 2-5. Kubernetes API server request processing overview

So, what actually happens now when an HTTP request hits

the Kubernetes API? On a high level, the following

interactions take place:

1. The HTTP request is processed by a chain of filters

registered in DefaultBuildHandlerChain(). This chain is

defined in k8s.io/apiserver/pkg/server/config.go and

discussed in detail shortly. It applies a series of filter

operations on said request. Either the filter passes

and attaches respective information to the context—

to be precise, ctx.RequestInfo, with ctx being the

context in Go (e.g., the authenticated user)—or, if a

request does not pass a filter, it returns an

appropriate HTTP response code stating the reason

(e.g., a 401 response if the user authentication

failed).

2. Next, depending on the HTTP path, the multiplexer

in k8s.io/apiserver/pkg/server/handler.go routes the

HTTP request to the respective handler.

3. A handler is registered for each API group—see

k8s.io/apiserver/pkg/endpoints/groupversion.go and

k8s.io/apiserver/pkg/endpoints/installer.go for

http://bit.ly/2x9t27e
https://golang.org/pkg/context
https://httpstatuses.com/401
http://bit.ly/2WUd0c6
http://bit.ly/2IvvSKA
http://bit.ly/2Y1eySV

details. It takes the HTTP request as well as the

context (for example, user and access rights) and

retrieves as well as delivers the requested object

from etcd storage.

Let’s now take a closer look at the chain of filters that

DefaultBuildHandlerChain() in server/config.go sets up, and

what happens in each of them:

func DefaultBuildHandlerChain(apiHandler http.Handler, c *Config) http.Handler

{

 h := WithAuthorization(apiHandler, c.Authorization.Authorizer,

c.Serializer)

 h = WithMaxInFlightLimit(h, c.MaxRequestsInFlight,

 c.MaxMutatingRequestsInFlight, c.LongRunningFunc)

 h = WithImpersonation(h, c.Authorization.Authorizer, c.Serializer)

 h = WithAudit(h, c.AuditBackend, c.AuditPolicyChecker, LongRunningFunc)

 ...

 h = WithAuthentication(h, c.Authentication.Authenticator, failed, ...)

 h = WithCORS(h, c.CorsAllowedOriginList, nil, nil, nil, "true")

 h = WithTimeoutForNonLongRunningRequests(h, LongRunningFunc,

RequestTimeout)

 h = WithWaitGroup(h, c.LongRunningFunc, c.HandlerChainWaitGroup)

 h = WithRequestInfo(h, c.RequestInfoResolver)

 h = WithPanicRecovery(h)

 return h

}

All packages are in k8s.io/apiserver/pkg. To review more

specifically:

WithPanicRecovery()

Takes care of recovery and log panics. Defined in

server/filters/wrap.go.

WithRequestInfo()

Attaches a RequestInfo to the context. Defined in

endpoints/filters/requestinfo.go.

WithWaitGroup()

http://bit.ly/2LWUUnQ
http://bit.ly/2LUzTdx
http://bit.ly/2N0zfNB
http://bit.ly/2KvKjQH

Adds all non-long-running requests to a wait group; used

for graceful shutdown. Defined in

server/filters/waitgroup.go.

WithTimeoutForNonLongRunningRequests()

Times out non-long-running requests (like most GET, PUT,

POST, and DELETE requests), in contrast to long-running

requests such as watches and proxy requests. Defined in

server/filters/timeout.go.

WithCORS()

Provides a CORS implementation. CORS, short for cross-

origin resource sharing, is a mechanism that allows

JavaScript embedded in an HTML page to make

XMLHttpRequests to a domain different from the one

that the JavaScript originated in. Defined in

server/filters/cors.go.

WithAuthentication()

Attempts to authenticate the given request as a human

or machine user and stores the user info in the provided

context. On success, the Authorization HTTP header is

removed from the request. If the authentication fails, it

returns an HTTP 401 status code. Defined in

endpoints/filters/authentication.go.

WithAudit()

Decorates the handler with audit logging information for

all incoming requests. The audit log entries contain

information such as the source IP of the request, user

invoking the operation, and namespace of the request.

Defined in admission/audit.go.

WithImpersonation()

http://bit.ly/2ItnsD6
http://bit.ly/2KrKk8r
https://enable-cors.org/
http://bit.ly/2L2A6uJ
http://bit.ly/2Fjzr4b
http://bit.ly/2XpQN9U

Handles user impersonation by checking requests that

attempt to change the user (similar to sudo). Defined in

endpoints/filters/impersonation.go.

WithMaxInFlightLimit()

Limits the number of in-flight requests. Defined in

server/filters/maxinflight.go.

WithAuthorization()

Checks permissions by invoking authorization modules

and passes all authorized requests on to a multiplexer,

which dispatches the request to the right handler. If the

user doesn’t have sufficient rights, it returns an HTTP

403 status code. Kubernetes nowadays uses role-based

access control (RBAC). Defined in

endpoints/filters/authorization.go.

After this generic handler chain is passed (the first box in

Figure 2-5), the actual request processing starts (i.e., the

semantics of the request handler is executed):

Requests for /, /version, /apis, /healthz, and other

nonRESTful APIs are directly handled.

Requests for RESTful resources go into the request

pipeline consisting of:

admission

Incoming objects go through an admission chain.

That chain has some 20 different admission plug-

ins. Each plug-in can be part of the mutating

phase (see the third box in Figure 2-5), part of

the validating phase (see the fourth box in the

figure), or both.

1

http://bit.ly/2L2UETP
http://bit.ly/2IY4unl
http://bit.ly/31M2NSA

In the mutating phase, the incoming request

payload can be changed; for example, the image

pull policy is set to Always, IfNotPresent, or Never

depending on the admission configuration.

The second admission phase is purely for

validation; for example, security settings in pods

are verified, or the existence of a namespace is

verified before creating objects in that

namespace.

validation

Incoming objects are checked against a large

validation logic, which exists for each object type

in the system. For example, string formats are

checked to verify that only valid DNS-compatible

characters are used in service names, or that all

container names in a pod are unique.

etcd-backed CRUD logic

Here the different verbs we saw in “The HTTP

Interface of the API Server” are implemented; for

example, the update logic reads the object from

etcd, checks that no other user has modified the

object in the sense of “Optimistic Concurrency”,

and, if not, writes the request object to etcd.

We will look into all these steps in greater detail in the

following chapters; for example:

Custom resources

Validation in “Validating Custom Resources”, admission

in “Admission Webhooks”, and general CRUD semantics

in Chapter 4

Golang native resource

Validation in “Validation”, admission in “Admission”, and

the implementation of CRUD semantics in “Registry and

Strategy”

Summary

In this chapter we first discussed the Kubernetes API

server as a black box and had a look at its HTTP interface.

Then you learned how to interact with that black box on the

command line, and finally we opened up the black box and

explored its inner workings. By now you should know how

the API server works internally, and how to interact with it

using the CLI tool kubectl for resource exploration and

manipulation.

It’s now time to leave the manual interaction on the

command line behind us and get started with

programmatic API server access using Go: meet client-go,

the core of the Kubernetes “standard library.”

1 In a Kubernetes 1.14 cluster, these are (in this order): AlwaysAdmit,

NamespaceAutoProvision, NamespaceLifecycle, NamespaceExists,

SecurityContextDeny, LimitPodHardAntiAffinityTopology, PodPreset, LimitRanger,

ServiceAccount, NodeRestriction, TaintNodesByCondition, AlwaysPullImages,

ImagePolicyWebhook, PodSecurityPolicy, PodNodeSelector, Priority,

DefaultTolerationSeconds, PodTolerationRestriction, DenyEscalatingExec,

DenyExecOnPrivileged, EventRateLimit, ExtendedResourceToleration,

PersistentVolumeLabel, DefaultStorageClass, StorageObjectInUseProtection,

OwnerReferencesPermissionEnforcement, PersistentVolumeClaimResize,

MutatingAdmissionWebhook, ValidatingAdmissionWebhook, ResourceQuota, and

AlwaysDeny.

Chapter 3. Basics of client-go

We’ll now focus on the Kubernetes programming interface in Go. You’ll learn

how to access the Kubernetes API of the well-known native types like pods,

services, and deployment. In later chapters, these techniques will be extended

to user-defined types. Here, though, we first concentrate on all API objects

that are shipped with every Kubernetes cluster.

The Repositories

The Kubernetes project provides a number of third-party consumable Git

repositories under the kubernetes organization on GitHub. You’ll need to

import all of these with the domain alias k8s.io/… (not

github.com/kubernetes/…) into your project. We’ll present the most important

of these repositories in the following sections.

The Client Library

The Kubernetes programming interface in Go mainly consists of the

k8s.io/client-go library (for brevity we will just call it client-go going forward).

client-go is a typical web service client library that supports all API types that

are officially part of Kubernetes. It can be used to execute the usual REST

verbs:

Create

Get

List

Update

Delete

Patch

Each of these REST verbs are implemented using the “The HTTP Interface of

the API Server”. Furthermore, the verb Watch is supported, which is special for

Kubernetes-like APIs, and one of the main differentiators compared to other

APIs.

client-go is available on GitHub (see Figure 3-1), and used in Go code with the

k8s.io/client-go package name. It is shipped in parallel to Kubernetes itself;

that is, for each Kubernetes 1.x.y release, there is a client-go release with a

matching tag kubernetes-1.x.y.

http://bit.ly/2RryyLM

Figure 3-1. The client-go repository on GitHub

In addition, there is a semantic versioning scheme. For example, client-go

9.0.0 matches the Kubernetes 1.12 release, client-go 10.0.0 matches

Kubernetes 1.13, and so on. There may be more fine-grained releases in the

future. Besides the client code for Kubernetes API objects, client-go also

contains a lot of generic library code. This is also used for user-defined API

objects in Chapter 4. See Figure 3-1 for a list of packages.

While all packages have their use, most of your code that speaks to

Kubernetes APIs will use tools/clientcmd/ to set up a client from a kubeconfig

file and kubernetes/ for the actual Kubernetes API clients. We will see code

doing this very soon. Before that, let’s finish a quick walk through with other

relevant repositories and packages.

Kubernetes API Types

As we have seen, client-go holds the client interfaces. The Kubernetes API Go

types for objects like pods, services, and deployments are located in their own

repository. It is accessed as k8s.io/api in Go code.

Pods are part of the legacy API group (often also called the “core” group)

version v1. Hence, the Pod Go type is found in k8s.io/api/core/v1, and similarly

http://bit.ly/2ZA6dWH

for all other API types in Kubernetes. See Figure 3-2 for a list of packages,

most of which correspond to Kubernetes API groups and their versions.

The actual Go types are contained in a types.go file (e.g.,

k8s.io/api/core/v1/types.go). In addition, there are other files, most of them

automatically generated by a code generator.

Figure 3-2. The API repository on GitHub

API Machinery

Last but not least, there is a third repository called API Machinery, which is

used as k8s.io/apimachinery in Go. It includes all the generic building blocks to

implement a Kubernetes-like API. API Machinery is not restricted to container

management, so, for example, it could be used to build APIs for an online

shop or any other business-specific domain.

Nevertheless, you’ll meet a lot of API Machinery packages in Kubernetes-

native Go code. An important one is k8s.io/apimachinery/pkg/apis/meta/v1. It

contains many of the generic API types such as ObjectMeta, TypeMeta, GetOptions,

and ListOptions (see Figure 3-3).

http://bit.ly/2xAZiR2

Figure 3-3. The API Machinery repository on GitHub

Creating and Using a Client

Now we know all the building blocks to create a Kubernetes client object,

which means we can access resources in a Kubernetes cluster. Assuming you

have access to a cluster in your local environment (i.e., kubectl is properly set

up and credentials are configured), the following code illustrates how you can

use client-go in a Go project:

import (

 metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"

 "k8s.io/client-go/tools/clientcmd"

 "k8s.io/client-go/kubernetes"

)

kubeconfig = flag.String("kubeconfig", "~/.kube/config", "kubeconfig file")

flag.Parse()

config, err := clientcmd.BuildConfigFromFlags("", *kubeconfig)

clientset, err := kubernetes.NewForConfig(config)

pod, err := clientset.CoreV1().Pods("book").Get("example", metav1.GetOptions{})

The code imports the meta/v1 package to get access to metav1.GetOptions.

Furthermore, it imports clientcmd from client-go in order to read and parse

the kubeconfig (i.e., the client configuration with server name, credentials,

etc.). Then it imports the client-go kubernetes package with the client sets for

Kubernetes resources.

The default location for the kubeconfig file is in .kube/config in the user’s

home directory. This is also where kubectl gets the credentials for the

Kubernetes clusters.

That kubeconfig is then read and parsed using clientcmd.BuildConfigFromFlags.

We omitted the mandatory error handling throughout this code, but the err

variable would normally contain, for example, the syntax error if a kubeconfig

is not well formed. As syntax errors are common in Go code, such an error

ought to be checked for properly, like so:

config, err := clientcmd.BuildConfigFromFlags("", *kubeconfig)

if err != nil {

 fmt.Printf("The kubeconfig cannot be loaded: %v\n", err

 os.Exit(1)

}

From clientcmd.BuildConfigFromFlags we get a rest.Config, which you can find in

the k8s.io/client-go/rest package). This is passed to kubernetes.NewForConfig in

order to create the actual Kubernetes client set. It’s called a client set

because it contains multiple clients for all native Kubernetes resources.

When running a binary inside of a pod in a cluster, the kubelet will

automatically mount a service account into the container at

/var/run/secrets/kubernetes.io/serviceaccount. It replaces the kubeconfig file

just mentioned and can easily be turned into a rest.Config via the

rest.InClusterConfig() method. You’ll often find the following combination of

rest.InClusterConfig() and clientcmd.BuildConfigFromFlags(), including support

for the KUBECONFIG environment variable:

config, err := rest.InClusterConfig()

if err != nil {

 // fallback to kubeconfig

 kubeconfig := filepath.Join("~", ".kube", "config")

 if envvar := os.Getenv("KUBECONFIG"); len(envvar) >0 {

 kubeconfig = envvar

 }

 config, err = clientcmd.BuildConfigFromFlags("", kubeconfig)

 if err != nil {

 fmt.Printf("The kubeconfig cannot be loaded: %v\n", err

 os.Exit(1)

 }

}

In the following example code we select the core group in v1 with

clientset.CoreV1() and then access the pod "example" in the "book" namespace:

pod, err := clientset.CoreV1().Pods("book").Get("example", metav1.GetOptions{})

Note that only the last function call, Get, actually accesses the server. Both

CoreV1 and Pods select the client and set the namespace only for the following

Get call (this is often called the builder pattern, in this case to build a request).

The Get call sends an HTTP GET request to

/api/v1/namespaces/book/pods/example on the server, which is set in the

kubeconfig. If the Kubernetes API server answers with HTTP code 200, the

body of the response will carry the encoded pod objects, either as JSON—

which is the default wire format of client-go—or as protocol buffers.

NOTE

You can enable protobuf for native Kubernetes resource clients by modifying the REST config before

creating a client from it:

cfg, err := clientcmd.BuildConfigFromFlags("", *kubeconfig)

cfg.AcceptContentTypes = "application/vnd.kubernetes.protobuf,

 application/json"

cfg.ContentType = "application/vnd.kubernetes.protobuf"

clientset, err := kubernetes.NewForConfig(cfg)

Note that the custom resources presented in Chapter 4 do not support protocol buffers.

Versioning and Compatibility

Kubernetes APIs are versioned. We have seen in the previous section that

pods are in v1 of the core group. The core group actually exists in only one

version today. There are other groups, though—for example, the apps group,

which exists in v1, v1beta2, and v1beta1 (as of this writing). If you look into the

k8s.io/api/apps package, you will find all the API objects of these versions. In

the k8s.io/client-go/kubernetes/typed/apps package, you’ll see the client

implementations for all of these versions.

All of this is only the client side. It does not say anything about the

Kubernetes cluster and its API server. Using a client with a version of an API

group that the API server does not support will fail. Clients are hardcoded to

a version, and the application developer has to select the right API group

version in order to speak to the cluster at hand. See “API Versions and

Compatibility Guarantees” for more on API group compatibility guarantees.

A second aspect of compatibility is the meta API features of the API server

that client-go is speaking to. For example, there are option structs for CRUD

verbs, like CreateOptions, GetOptions, UpdateOptions, and DeleteOptions. Another

important one is ObjectMeta (discussed in detail in “ObjectMeta”), which is part

of every kind. All of these are frequently extended with new features; we

usually call them API machinery features. In the Go documentation of their

fields, comments specify when features are considered alpha or beta. The

same API compatibility guarantees apply as for any other API fields.

In the example that follows, the DeleteOptions struct is defined in the package

k8s.io/apimachinery/pkg/apis/meta/v1/types.go:

http://bit.ly/2L1Nyio
http://bit.ly/2x45Uab
http://bit.ly/2MZ9flL

// DeleteOptions may be provided when deleting an API object.

type DeleteOptions struct {

 TypeMeta `json:",inline"`

 GracePeriodSeconds *int64 `json:"gracePeriodSeconds,omitempty"`

 Preconditions *Preconditions `json:"preconditions,omitempty"`

 OrphanDependents *bool `json:"orphanDependents,omitempty"`

 PropagationPolicy *DeletionPropagation `json:"propagationPolicy,omitempty"`

 // When present, indicates that modifications should not be

 // persisted. An invalid or unrecognized dryRun directive will

 // result in an error response and no further processing of the

 // request. Valid values are:

 // - All: all dry run stages will be processed

 // +optional

 DryRun []string `json:"dryRun,omitempty" protobuf:"bytes,5,rep,name=dryRun"`

}

The last field, DryRun, was added in Kubernetes 1.12 as alpha and in 1.13 as

beta (enabled by default). It is not understood by the API server in earlier

versions. Depending on the feature, passing such an option might simply be

ignored or even rejected. So it is important to have a client-go version that is

not too far off from the cluster version.

TIP

The reference for which fields are available in which quality level is the sources in k8s.io/api, which

are accessible, for example, for Kubernetes 1.13 in the release-1.13 branch. Alpha fields are marked

as such in their description.

There is generated API documentation for easier consumption. It is the same information, though, as

in k8s.io/api.

Last but not least, many alpha and beta features have corresponding feature gates (check here for the

primary source). Features are tracked in issues.

The formally guaranteed support matrix between cluster and client-go

versions is published in the client-go README (see Table 3-1).

http://bit.ly/2Yrhjgq
http://bit.ly/2YrfiB2
http://bit.ly/2RP5nmi
http://bit.ly/2FPZPTT
http://bit.ly/2YuHYcd
http://bit.ly/2RryyLM

Table 3-1. client-go compatibility with Kubernetes versions

Kubernetes

1.9

Kubernetes

1.10

Kubernetes

1.11

Kubernetes

1.12

Kubernetes

1.13

Kubernetes

1.14

Kubernetes

1.15

client-

go 6.0
✓ +– +– +– +– +– +–

client-

go 7.0
+– ✓ +– +– +– +– +–

client-

go 8.0
+– +– ✓ +– +– +– +–

client-

go 9.0
+– +– +– ✓ +– +– +–

client-

go

10.0

+– +– +– +– ✓ +– +–

client-

go

11.0

+– +– +– +– +– ✓ +–

client-

go

12.0

+– +– +– +– +– +– ✓

client-

go

HEAD

+– +– +– +– +– +– +–

✓: both client-go and the Kubernetes version have the same features

and the same API group versions.

+: client-go has features or API group versions that may be absent from

the Kubernetes cluster. This may be because of added functionality in

client-go or because Kubernetes removed old, deprecated functionality.

However, everything they have in common (i.e., most APIs) will work.

–: client-go is knowingly incompatible with the Kubernetes cluster.

The takeaway from Table 3-1 is that the client-go library is supported with its

corresponding cluster version. In case of version skew, developers have to

carefully consider which features and which API groups they use and whether

these are supported in the cluster version the application speaks to.

In Table 3-1, the client-go versions are listed. We briefly mentioned in “The

Client Library” that client-go uses semantic versioning (semver) formally,

though by increasing the major version of client-go each time the minor

version of Kubernetes (the 13 in 1.13.2) is increased. With client-go 1.0 being

released for Kubernetes 1.4, we are now at client-go 12.0 (at the time of this

writing) for Kubernetes 1.15.

This semver applies only to client-go itself, not to API Machinery or the API

repository. Instead, the latter are tagged using Kubernetes versions, as seen

in Figure 3-4. See “Vendoring” to see what this means for vendoring

k8s.io/client-go, k8s.io/apimachinery, and k8s.io/api in your project.

Figure 3-4. client-go versioning

API Versions and Compatibility Guarantees

As seen in the previous section, the selection of the right API group versions

may be crucial if you target different cluster versions with your code.

Kubernetes versions all API groups. A common Kubernetes-style versioning

scheme is used, which consists of alpha, beta, and GA (general availability)

versions.

The pattern is:

v1alpha1, v1alpha2, v2alpha1, and so on are called alpha versions and

considered unstable. This means:

They might go away or change at any time, in any incompatible

way.

Data might be dropped, get lost, or become inaccessible from

Kubernetes version to version.

They are often disabled by default, if the administrator does not

opt in manually.

v1beta1, v1beta2, v2beta1, and so on, are called beta versions. They are

on the way to stability, which means:

They will still exist for at least one Kubernetes release in

parallel to the corresponding stable API version.

They will usually not change in incompatible ways, but there is

no strict guarantee of that.

Objects stored in a beta version will not be dropped or become

inaccessible.

Beta versions are often enabled in clusters by default. But this

might depend on the Kubernetes distribution or cloud provider

used.

v1, v2, and so on are stable, generally available APIs; that is:

They will stay.

They will be compatible.

TIP

Kubernetes has a formal deprecation policy behind these rules of thumb. You can find many more

details about which APIs constructs are considered compatible at the Kubernetes community GitHub.

In connection to API group versions, there are two important points to keep in

mind:

API group versions apply to API resources as a whole, like the format

of pods or services. In addition to API group versions, API resources

might have single fields that are versioned orthogonally; for example,

fields in stable APIs might be marked as alpha quality in their Go inline

code documentation. The same rules as those just listed for API groups

will apply to those fields. For example:

An alpha field in a stable API could become incompatible, lose

data, or go away at any time. For example, the

ObjectMeta.Initializers field, which was never promoted beyond

alpha, will go away in the near future (it is deprecated in 1.14):

// DEPRECATED - initializers are an alpha field and will be removed

// in v1.15.

Initializers *Initializers `json:"initializers,omitempty"

It usually will be disabled by default and must be enabled with

an API server feature gate, like so:

type JobSpec struct {

 ...

 // This field is alpha-level and is only honored by servers that

 // enable the TTLAfterFinished feature.

http://bit.ly/2FOrKU8
http://bit.ly/2XKPWAX

 TTLSecondsAfterFinished *int32 `json:"ttlSecondsAfterFinished,omitempty"

}

The behavior of the API server will differ from field to field.

Some alpha fields will be rejected and some will be ignored if

the corresponding feature gate is not enabled. This is

documented in the field description (see TTLSecondsAfterFinished

in the previous example).

Furthermore, API group versions play a role in accessing the API.

Between different versions of the same resource, there is an on-the-fly

conversion done by the API server. That is, you can access objects

created in one version (e.g., v1beta1) in any of the other supported

versions (e.g., v1) without any further work in your application. This is

very convenient for building backward- and forward-compatible

applications.

Each object stored in etcd is stored in a specific version. By

default, this is called the storage version of that resource. While

the storage version can change from Kubernetes version to

version, the object stored in etcd will not automatically be

updated as of this writing. Hence, the cluster administrator has

to make sure migration happens in time when Kubernetes

clusters are updated, before old version support is dropped.

There is no generic migration mechanism for that, and

migration differs from Kubernetes distribution to distribution.

For the application developer, though, this operational work

should not matter at all. On-the-fly conversion will make sure

the application has a unified picture of the objects in the cluster.

The application will not even notice which storage version is in

use. Storage versioning will be transparent to the written Go

code.

Kubernetes Objects in Go

In “Creating and Using a Client”, we saw how to create a client for the core

group in order to access pods in a Kubernetes cluster. In the following, we

want to look in more detail at what a pod—or any other Kubernetes resource,

for that matter—is in the world of Go.

Kubernetes resources—or more precisely the objects—that are instances of a

kind and are served as a resource by the API server are represented as

structs. Depending on the kind in question, their fields of course differ. But on

the other hand, they share a common structure.

1

From the type system point of view, Kubernetes objects fulfill a Go interface

called runtime.Object from the package k8s.io/apimachinery/pkg/runtime,

which actually is very simple:

// Object interface must be supported by all API types registered with Scheme.

// Since objects in a scheme are expected to be serialized to the wire, the

// interface an Object must provide to the Scheme allows serializers to set

// the kind, version, and group the object is represented as. An Object may

// choose to return a no-op ObjectKindAccessor in cases where it is not

// expected to be serialized.

type Object interface {

 GetObjectKind() schema.ObjectKind

 DeepCopyObject() Object

}

Here, schema.ObjectKind (from the k8s.io/apimachinery/pkg/runtime/schema

package) is another simple interface:

// All objects that are serialized from a Scheme encode their type information.

// This interface is used by serialization to set type information from the

// Scheme onto the serialized version of an object. For objects that cannot

// be serialized or have unique requirements, this interface may be a no-op.

type ObjectKind interface {

 // SetGroupVersionKind sets or clears the intended serialized kind of an

 // object. Passing kind nil should clear the current setting.

 SetGroupVersionKind(kind GroupVersionKind)

 // GroupVersionKind returns the stored group, version, and kind of an

 // object, or nil if the object does not expose or provide these fields.

 GroupVersionKind() GroupVersionKind

}

In other words, a Kubernetes object in Go is a data structure that can:

Return and set the GroupVersionKind

Be deep-copied

A deep copy is a clone of the data structure such that it does not share any

memory with the original object. It is used wherever code has to mutate an

object without modifying the original. See “Global Tags” about code

generation for details on how deep copy is implemented in Kubernetes.

Put simply, an object stores its type and allows cloning.

TypeMeta

While runtime.Object is only an interface, we want to know how it is actually

implemented. Kubernetes objects from k8s.io/api implement the type getter

and setter of schema.ObjectKind by embedding the metav1.TypeMeta struct from

the package k8s.io/apimachinery/meta/v1:

// TypeMeta describes an individual object in an API response or request

// with strings representing the type of the object and its API schema version.

// Structures that are versioned or persisted should inline TypeMeta.

//

// +k8s:deepcopy-gen=false

type TypeMeta struct {

 // Kind is a string value representing the REST resource this object

 // represents. Servers may infer this from the endpoint the client submits

 // requests to.

 // Cannot be updated.

 // In CamelCase.

 // +optional

 Kind string `json:"kind,omitempty" protobuf:"bytes,1,opt,name=kind"`

 // APIVersion defines the versioned schema of this representation of an

 // object. Servers should convert recognized schemas to the latest internal

 // value, and may reject unrecognized values.

 // +optional

 APIVersion string `json:"apiVersion,omitempty"`

}

With this, a pod declaration in Go looks like this:

// Pod is a collection of containers that can run on a host. This resource is

// created by clients and scheduled onto hosts.

type Pod struct {

 metav1.TypeMeta `json:",inline"`

 // Standard object's metadata.

 // +optional

 metav1.ObjectMeta `json:"metadata,omitempty"`

 // Specification of the desired behavior of the pod.

 // +optional

 Spec PodSpec `json:"spec,omitempty"`

 // Most recently observed status of the pod.

 // This data may not be up to date.

 // Populated by the system.

 // Read-only.

 // +optional

 Status PodStatus `json:"status,omitempty"`

}

As you can see, TypeMeta is embedded. Moreover, the pod type has JSON tags

that also declare TypeMeta as being inlined.

NOTE

This ",inline" tag is actually superfluous with the Golang JSON en/decoders: embedded structs are

automatically inlined.

This is different in the YAML en/decoder go-yaml/yaml, which was used in very early Kubernetes code

in parallel to JSON. We inherited the inline tag from that time, but today it is merely documentation

without any effect.

The YAML serializers foudn in k8s.io/apimachinery/pkg/runtime/serializer/yaml use the

sigs.k8s.io/yaml marshal and unmarshal functions. And these in turn encode and decode YAML via

interface{}, and use the JSON encoder into and decoder from Golang API structs.

http://bit.ly/2ZuPZy2
http://bit.ly/2IUGwcC

This matches the YAML representation of a pod, which all Kubernetes users

know:

apiVersion: v1

kind: Pod

metadata:

 namespace: default

 name: example

spec:

 containers:

 - name: hello

 image: debian:latest

 command:

 - /bin/sh

 args:

 - -c

 - echo "hello world"; sleep 10000

The version is stored in TypeMeta.APIVersion, the kind in TypeMeta.Kind.

THE CORE GROUP IS DIFFERENT FOR HISTORIC REASONS

Pods and many other types that were added to Kubernetes very early on

are part of the core group—often also called the legacy group—which is

represented by the empty string. Hence, apiVersion is just set to "v1.”

Eventually API groups were added to Kubernetes, and the group name,

separated by a slash, was prepended to apiVersion. In the case of apps, the

version would be apps/v1. Hence, the apiVersion field is actually misnamed;

it stores the API group name and the version string. This is for historic

reasons because apiVersion was defined when only the core group—and

none of these other API groups—existed.

When running the example in “Creating and Using a Client” to get a pod from

the cluster, notice that the pod object returned by the client does not actually

have the kind and the version set. The convention in client-go–based

applications is that these fields are empty in memory, and they are filled with

the actual values on the wire only when they’re marshaled to JSON or

protobuf. This is done automatically by the client, however, or, more precisely,

by a versioning serializer.

2

BEHIND THE SCENES: HOW DO GO TYPE, PACKAGES, KINDS,

AND GROUP NAMES RELATE?

You might be wondering how the client knows the kind and the API group

to fill in the TypeMeta field. Although this question sounds trivial at first, it is

not:

It looks like the kind is just the Go type name, which could be

derived from an object via reflection. This is mostly true—maybe in

99% of the cases—but there are exceptions (in Chapter 4 you will

learn about custom resources where this does not work).

It looks like the group is just the Go package name (types for the

apps API group are declared in k8s.io/api/apps). This often matches,

but not in all cases: the core group has the empty group name

string, as we have seen. The types for the group

rbac.authorization.k8s.io, for example, are in k8s.io/api/rbac, not in

k8s.io/api/rbac.authorization.k8s.io.

The correct answer to the question of how to fill in the TypeMeta field

involves the concept of a scheme, which will be discussed in more detail in

“Scheme”.

In other words, client-go–based applications check the Golang type of objects

to determine the object at hand. This might differ in other frameworks, like

the Operator SDK (see “The Operator SDK”).

ObjectMeta

In addition to TypeMeta, most top-level objects have a field of type

metav1.ObjectMeta, again from the k8s.io/apimachinery/pkg/meta/v1 package:

type ObjectMeta struct {

 Name string `json:"name,omitempty"`

 Namespace string `json:"namespace,omitempty"`

 UID types.UID `json:"uid,omitempty"`

 ResourceVersion string `json:"resourceVersion,omitempty"`

 CreationTimestamp Time `json:"creationTimestamp,omitempty"`

 DeletionTimestamp *Time `json:"deletionTimestamp,omitempty"`

 Labels map[string]string `json:"labels,omitempty"`

 Annotations map[string]string `json:"annotations,omitempty"`

 ...

}

In JSON or YAML these fields are under metadata. For example, for the

previous pod, metav1.ObjectMeta stores:

metadata:

 namespace: default

 name: example

In general, it contains all metalevel information like name, namespace,

resource version (not to be confused with the API group version), several

timestamps, and the well-known labels and annotations is part of ObjectMeta.

See “Anatomy of a type” for a deeper discussion of ObjectMeta fields.

The resource version was discussed earlier in “Optimistic Concurrency”. It is

hardly ever read or written from client-go code. But it is one of the fields in

Kubernetes that makes the whole system work. resourceVersion is part of

ObjectMeta because each object with embedded ObjectMeta corresponds to a key

in etcd where the resourceVersion value originated.

spec and status

Finally, nearly every top-level object has a spec and a status section. This

convention comes from the declarative nature of the Kubernetes API: spec is

the user desire, and status is the outcome of that desire, usually filled by a

controller in the system. See “Controllers and Operators” for a detailed

discussion of controllers in Kubernetes.

There are only a few exceptions to the spec and status convention in the

system—for example, endpoints in the core group, or RBAC objects like

ClusterRole.

Client Sets

In the introductory example in “Creating and Using a Client”, we saw that

kubernetes.NewForConfig(config) gives us a client set. A client set gives access

to clients for multiple API groups and resources. In the case of

kubernetes.NewForConfig(config) from k8s.io/client-go/kubernetes, we get

access to all API groups and resources defined in k8s.io/api. This is, with a

few exceptions—such as APIServices (for aggregated API servers) and

CustomResourceDefinition (see Chapter 4)—the whole set of resources served by

the Kubernetes API server.

In Chapter 5, we will explain how these client sets are actually generated

from the API types (k8s.io/api, in this case). Third-party projects with custom

APIs use more than just the Kubernetes client sets. What all of the client sets

have in common is a REST config (e.g., returned by

clientcmd.BuildConfigFromFlags("", *kubeconfig), like in the example).

The client set main interface in k8s.io/client-go/kubernetes/typed for

Kubernetes-native resources looks like this:

type Interface interface {

 Discovery() discovery.DiscoveryInterface

 AppsV1() appsv1.AppsV1Interface

 AppsV1beta1() appsv1beta1.AppsV1beta1Interface

 AppsV1beta2() appsv1beta2.AppsV1beta2Interface

 AuthenticationV1() authenticationv1.AuthenticationV1Interface

 AuthenticationV1beta1() authenticationv1beta1.AuthenticationV1beta1Interface

 AuthorizationV1() authorizationv1.AuthorizationV1Interface

 AuthorizationV1beta1() authorizationv1beta1.AuthorizationV1beta1Interface

 ...

}

There used to be unversioned methods in this interface—for example, just

Apps() appsv1.AppsV1Interface—but they were deprecated as of Kubernetes

1.14–based client-go 11.0. As mentioned before, it is seen as a good practice

to be very explicit about the version of an API group that an application uses.

VERSIONED CLIENTS AND INTERNAL CLIENTS IN THE PAST

In the past, Kubernetes had so-called internal clients. These used a

generalized in-memory version for objects called “internal” with

conversions to and from the on-the-wire version.

The hope was to abstract controller code from the actual API version in

use, and to be able to switch to another version with a one-line change. In

practice, the huge additional complexity of implementing conversions and

the amount of knowledge this conversion code required about the

semantics of the objects led to the conclusion that this pattern wasn’t

worth it.

Furthermore, there was never any kind of autonegotiation between the

client and the API server. Even with internal types and clients, the

controllers were hardcoded to a specific version on the wire. So controllers

using internal types were no more compatible in the case of version skew

between client and server than those using versioned API types.

In recent Kubernetes releases, a lot of code was rewritten to get rid of

these internal versions completely. Today there are neither internal

versions in k8s.io/api nor clients available in k8s.io/client-go.

Every client set also gives access to the discovery client (it will be used by the

RESTMappers; see “REST Mapping” and “Using the API from the Command

Line”).

Behind each GroupVersion method (e.g., AppsV1beta1), we find the resources of

the API group—for example:

type AppsV1beta1Interface interface {

 RESTClient() rest.Interface

 ControllerRevisionsGetter

 DeploymentsGetter

 StatefulSetsGetter

}

with RESTClient being a generic REST client, and one interface per resource,

as in:

// DeploymentsGetter has a method to return a DeploymentInterface.

// A group's client should implement this interface.

type DeploymentsGetter interface {

 Deployments(namespace string) DeploymentInterface

}

// DeploymentInterface has methods to work with Deployment resources.

type DeploymentInterface interface {

 Create(*v1beta1.Deployment) (*v1beta1.Deployment, error)

 Update(*v1beta1.Deployment) (*v1beta1.Deployment, error)

 UpdateStatus(*v1beta1.Deployment) (*v1beta1.Deployment, error)

 Delete(name string, options *v1.DeleteOptions) error

 DeleteCollection(options *v1.DeleteOptions, listOptions v1.ListOptions) error

 Get(name string, options v1.GetOptions) (*v1beta1.Deployment, error)

 List(opts v1.ListOptions) (*v1beta1.DeploymentList, error)

 Watch(opts v1.ListOptions) (watch.Interface, error)

 Patch(name string, pt types.PatchType, data []byte, subresources ...string)

 (result *v1beta1.Deployment, err error)

 DeploymentExpansion

}

Depending on the scope of the resource—that is, whether it is cluster or

namespace scoped—the accessor (here DeploymentGetter) may or may not have

a namespace argument.

The DeploymentInterface gives access to all the supported verbs of the

resource. Most of them are self-explanatory, but those requiring additional

commentary are described next.

Status Subresources: UpdateStatus

Deployments have a so-called status subresource. This means that

UpdateStatus uses an additional HTTP endpoint suffixed with /status. While

updates on the /apis/apps/v1beta1/namespaces/ns/deployments/name endpoint

can change only the spec of the deployment, the endpoint

/apis/apps/v1beta1/namespaces/ns/deployments/name/status can change only

the status of the object. This is useful in order to set different permissions for

spec updates (done by a human) and status updates (done by a controller).

By default the client-gen (see “client-gen Tags”) generates the UpdateStatus()

method. The existence of the method does not guarantee that the resource

actually supports the subresource. This will be important when we’re working

with CRDs in “Subresources”.

Listings and Deletions

DeleteCollection allows us to delete multiple objects of a namespace at once.

The ListOptions parameter allows us to define which objects should be deleted

using a field or label selector:

type ListOptions struct {

 ...

 // A selector to restrict the list of returned objects by their labels.

 // Defaults to everything.

 // +optional

 LabelSelector string `json:"labelSelector,omitempty"`

 // A selector to restrict the list of returned objects by their fields.

 // Defaults to everything.

 // +optional

 FieldSelector string `json:"fieldSelector,omitempty"`

 ...

}

Watches

Watch gives an event interface for all changes (adds, removes, and updates) to

objects. The returned watch.Interface from k8s.io/apimachinery/pkg/watch

looks like this:

// Interface can be implemented by anything that knows how to watch and

// report changes.

type Interface interface {

 // Stops watching. Will close the channel returned by ResultChan(). Releases

 // any resources used by the watch.

 Stop()

 // Returns a chan which will receive all the events. If an error occurs

 // or Stop() is called, this channel will be closed, in which case the

 // watch should be completely cleaned up.

 ResultChan() <-chan Event

}

The result channel of the watch interface returns three kinds of events:

// EventType defines the possible types of events.

type EventType string

const (

 Added EventType = "ADDED"

 Modified EventType = "MODIFIED"

 Deleted EventType = "DELETED"

 Error EventType = "ERROR"

)

// Event represents a single event to a watched resource.

// +k8s:deepcopy-gen=true

type Event struct {

 Type EventType

 // Object is:

 // * If Type is Added or Modified: the new state of the object.

 // * If Type is Deleted: the state of the object immediately before

 // deletion.

 // * If Type is Error: *api.Status is recommended; other types may

 // make sense depending on context.

 Object runtime.Object

}

While it is tempting to use this interface directly, in practice it is actually

discouraged in favor of informers (see “Informers and Caching”). Informers

are a combination of this event interface and an in-memory cache with

indexed lookup. This is by far the most common use case for watches. Under

the hood informers first call List on the client to get the set of all objects (as a

baseline for the cache) and then Watch to update the cache. They handle error

conditions correctly—that is, recover from network issues or other cluster

problems.

Client Expansion

DeploymentExpansion is actually an empty interface. It is used to add custom

client behavior, but it’s hardly used in Kubernetes nowadays. Instead, the

client generator allows us to add custom methods in a declarative way (see

“client-gen Tags”).

Note again that all of those methods in DeploymentInterface neither expect

valid information in the TypeMeta fields Kind and APIVersion, nor set those fields

on Get() and List() (see also “TypeMeta”). These fields are filled with real

values only on the wire.

Client Options

It is worth looking at the different options we can set when creating a client

set. In the note before “Versioning and Compatibility”, we saw that we can

switch to the protobuf wire format for native Kubernetes types. Protobuf is

more efficient than JSON (both spacewise and for the CPU load of the client

and server) and therefore preferable.

For debugging purposes and readability of metrics, it is often helpful to

differentiate between different clients accessing the API server. To do so, we

can set the user agent field in the REST config. The default value is

binary/version (os/arch) kubernetes/commit; for example, kubectl will use a user

agent like kubectl/v1.14.0 (darwin/amd64) kubernetes/d654b49. If that pattern

does not suffice for the setup, it can be customized like so:

cfg, err := clientcmd.BuildConfigFromFlags("", *kubeconfig)

cfg.AcceptContentTypes = "application/vnd.kubernetes.protobuf,application/json"

cfg.UserAgent = fmt.Sprintf(

 "book-example/v1.0 (%s/%s) kubernetes/v1.0",

 runtime.GOOS, runtime.GOARCH

)

clientset, err := kubernetes.NewForConfig(cfg)

Other values often overridden in the REST config are those for client-side rate

limiting and timeouts:

// Config holds the common attributes that can be passed to a Kubernetes

// client on initialization.

type Config struct {

 ...

 // QPS indicates the maximum QPS to the master from this client.

 // If it's zero, the created RESTClient will use DefaultQPS: 5

 QPS float32

 // Maximum burst for throttle.

 // If it's zero, the created RESTClient will use DefaultBurst: 10.

 Burst int

 // The maximum length of time to wait before giving up on a server request.

 // A value of zero means no timeout.

 Timeout time.Duration

 ...

}

The QPS value defaults to 5 requests per second, with a burst of 10.

The timeout has no default value, at least not in the client REST config. By

default the Kubernetes API server will timeout every request that is not a

long-running request after 60 seconds. A long-running request can be a watch

request or unbounded requests to subresources like /exec, /portforward, or

/proxy.

GRACEFUL SHUTDOWN AND BEING RESILIENT TO CONNECTION

ERRORS

Requests are split into long-running and non-long-running. Watches are

long-running, while GET, LIST, UPDATE, and the like are non-long-running.

Many subresources (e.g., for log streaming, exec, port-forward) are long-

running as well.

When the Kubernetes API server is restarted (e.g., during an update), it

waits for up to 60 seconds to gracefully shut down. During that time, it

finishes non-long-running requests and then terminates. When it

terminates, long-running requests like ongoing watch connections are cut

off.

Non-long-running requests are bounded by 60 seconds anyway (and then

they timeout). Hence, from the client point of view, the shutdown is

graceful.

In general, application code should always be prepared for requests that

are not successful and should respond in such a way that they are not fatal

for the application. In the world of distributed systems, those connection

errors are normal and nothing to worry about. But special attention is

required to carefully handle error conditions and recover from them.

Error handling is especially important for watches. Watches are long-

running, but they can fail at any time. The informers described in the next

section provide a resilient implementation around watches and handle

errors gracefully—that is, they recover from disconnects with a new

connection. Application code usually will not notice.

Informers and Caching

The client interface in “Client Sets” includes the Watch verb, which offers an

event interface that reacts to changes (adds, removes, updates) of objects.

Informers give a higher-level programming interface for the most common

use case for watches: in-memory caching and fast, indexed lookup of objects

by name or other properties in-memory.

A controller that accesses the API server every time it needs an object creates

a high load on the system. In-memory caching using informers is the solution

to this problem. Moreover, informers can react to changes of objects nearly in

real-time instead of requiring polling requests.

Figure 3-5 shows the conceptional pattern of informers; specifically, they:

Get input from the API server as events.

Offer a client-like interface called Lister to get and list objects from the

in-memory cache.

Register event handlers for adds, removes, and updates.

Implement the in-memory cache using a store.

Figure 3-5. Informers

Informers also have advanced error behavior: when the long-running watch

connection breaks down, they recover from it by trying another watch

request, picking up the event stream without losing any events. If the outage

is long, and the API server lost events because etcd purged them from its

database before the new watch request was successful, the informer will

relist all objects.

Next to relists, there is a configurable resync period for reconciliation

between the in-memory cache and the business logic: the registered event

handlers will be called for all objects each time this period has passed.

Common values are in minutes (e.g., 10 or 30 minutes).

WARNING

The resync is purely in-memory and does not trigger a call to the server. This used to be different but

was eventually changed because the error behavior of the watch mechanism had been improved

enough to make relists unnecessary.

All this advanced and battle-proven error behavior is a good reason for using

informers instead of rolling out custom logic using the client Watch() method

directly. Informers are used everywhere in Kubernetes itself and are one of

the main architectural concepts in the Kubernetes API design.

While informers are preferred over polling, they create load on the API server.

One binary should instantiate only one informer per GroupVersionResource.

To make sharing of informers easy, we can instantiate an informer by using

the shared informer factory.

The shared informer factory allows informers to be shared for the same

resource in an application. In other words, different control loops can use the

same watch connection to the API server under the hood. For example, the

http://bit.ly/2FmeMge

kube-controller-manager, one of the main Kubernetes cluster components (see

“The API Server”), has a larger, two-digit number of controllers. But for each

resource (e.g., pods), there is only one informer in the process.

TIP

Always use a shared informer factory to instantiate informers. Don’t try to instantiate informers

manually. The overhead is minimal, and a nontrivial controller binary that does not use shared

informers probably is opening multiple watch connections for the same resource somewhere.

Starting with a REST config (see “Creating and Using a Client”), it is easy to

create a shared informer factory using a client set. The informers are

generated by a code generator and shipped as part of client-go for the

standard Kubernetes resources in k8s.io/client-go/informers:

import (

 ...

 "k8s.io/client-go/informers"

)

...

clientset, err := kubernetes.NewForConfig(config)

informerFactory := informers.NewSharedInformerFactory(clientset, time.Second*30)

podInformer := informerFactory.Core().V1().Pods()

podInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{

 AddFunc: func(new interface{}) {...},

 UpdateFunc: func(old, new interface{}) {...},

 DeleteFunc: func(obj interface{}) {...},

})

informerFactory.Start(wait.NeverStop)

informerFactory.WaitForCacheSync(wait.NeverStop)

pod, err := podInformer.Lister().Pods("programming-kubernetes").Get("client-go")

The example shows how to get a shared informer for pods.

You can see that informers allow for the addition of event handlers for the

three cases add, update, and delete. These are usually used to trigger the

business logic of a controller—that is, to process a certain object again (see

“Controllers and Operators”). Often those handlers just add the modified

object into a work queue.

ADDITIONAL EVENT HANDLERS AND THE INTERNAL STORE

UPDATE LOGIC

Don’t confuse these handlers with the update logic of the in-memory store

(accessible through the lister in the last line of the example) inside the

informer. The informer will always update its store, but the additional

event handlers just described are optional and meant to be used by the

consumer of the informer.

Also note that many event handlers can be added. The whole shared informer

factory concept exists only because this is so common in controller binaries

with many control loops, each installing event handlers to add objects to their

own work queue.

After registering handlers, the shared informer factory has to be started.

There are Go routines under the hood that do the actual calls to the API

server. The Start method (with a stop channel to control the lifecycle) starts

these Go routines, and the WaitForCacheSync() method makes the code wait for

the first List calls to the clients to finish. If the controller logic requires that

the cache is filled, this WaitForCacheSync call is essential.

In general, the event interface of the watches behind the scenes leads to a

certain lag. In a setup with proper capacity planning, this lag is not huge. Of

course, it is good practice to measure this lag using metrics. But the lag exists

regardless, so the application logic has be built in such a way that the lag

does not harm the behavior of the code.

WARNING

The lag of informers can lead to races between changes the controller makes with client-go directly

on the API server, and the state of the world as known by the informers.

If the controller changes an object, the informer in the same process has to wait until the

corresponding event arrives and the in-memory store is then updated. This process is not

instantaneous, and another controller work loop run might be started through another trigger before

the previous change has become visible.

The resync interval of 30 seconds in this example leads to a complete set of

events being sent to the registered UpdateFunc such that the controller logic is

able to reconcile its state with that of the API server. By comparing the

ObjectMeta.resourceVersion field, it is possible to distinguish a real update from

a resync.

TIP

Choosing a good resync interval depends on the context. For example, 30 seconds is pretty short. In

many situations several minutes, or even 30 minutes, is a good choice. In the worst case, 30 minutes

means that it takes 30 minutes until a bug in the code (e.g., a lost signal due to bad error handling) is

repaired via reconciliation.

Also note that the final line in the example calling Get("client-go") is purely in-

memory; there is no access to the API server. Objects in the in-memory store

cannot be modified directly. Instead, the client set must be used for any write

access to the resources. The informer will then get events from the API server

and update its in-memory store.

NEVER MUTATE OBJECTS FROM INFORMERS

It is very important to remember that any object passed from the listers to

the event handlers is owned by the informers. If you mutate it in any way,

you risk introducing hard-to-debug cache coherency issues into your

application. Always do a deep copy (see “Kubernetes Objects in Go”)

before changing an object.

In general: before mutating an object, always ask yourself who owns this

object or the data structures in it. As a rule of thumb:

Informers and listers own objects they return. Hence, consumers

have to deep-copy before mutation.

Clients return fresh objects, which the caller owns.

Conversions return shared objects. If the caller does own the input

object, it does not own the output.

The informer constructor NewSharedInformerFactory in the example caches all

objects of a resource in all namespaces in the store. If this is too much for the

application, there is an alternative constructor with more flexibility:

// NewFilteredSharedInformerFactory constructs a new instance of

// sharedInformerFactory. Listers obtained via this sharedInformerFactory will be

// subject to the same filters as specified here.

func NewFilteredSharedInformerFactory(

 client versioned.Interface, defaultResync time.Duration,

 namespace string,

 tweakListOptions internalinterfaces.TweakListOptionsFunc

) SharedInformerFactor

type TweakListOptionsFunc func(*v1.ListOptions)

It allows us to specify a namespace and to pass a TweakListOptionsFunc, which

may mutate the ListOptions struct used to list and watch objects using the List

and Watch calls of the client. It can be used to set label or field selectors, for

example.

Informers are one of the building blocks of controllers. In Chapter 6 we will

see what a typical client-go-based controller looks like. After the clients and

informers, the third main building block is the work queue. Let’s look at it

now.

Work Queue

A work queue is a data structure. You can add elements and take elements out

of the queue, in an order predefined by the queue. Formally, this kind of

queue is called a priority queue. client-go provides a powerful implementation

for the purpose of building controllers in k8s.io/client-go/util/workqueue.

More precisely, the package contains a number of variants for different

purposes. The base interface implemented by all variants looks like this:

type Interface interface {

 Add(item interface{})

 Len() int

 Get() (item interface{}, shutdown bool)

 Done(item interface{})

 ShutDown()

 ShuttingDown() bool

}

Here Add(item) adds an item, Len() gives the length, and Get() returns an item

with the highest priority (and it blocks until one is available). Every item

returned by Get() needs a Done(item) call when the controller has finished

processing it. Meanwhile, a repeated Add(item) will only mark the item as dirty

such that it is readded when Done(item) has been called.

The following queue types are derived from this generic interface:

DelayingInterface can add an item at a later time. This makes it easier

to requeue items after failures without ending up in a hot-loop:

type DelayingInterface interface {

 Interface

 // AddAfter adds an item to the workqueue after the

 // indicated duration has passed.

 AddAfter(item interface{}, duration time.Duration)

}

RateLimitingInterface rate-limits items being added to the queue. It

extends the DelayingInterface:

type RateLimitingInterface interface {

 DelayingInterface

 // AddRateLimited adds an item to the workqueue after the rate

 // limiter says it's OK.

 AddRateLimited(item interface{})

 // Forget indicates that an item is finished being retried.

 // It doesn't matter whether it's for perm failing or success;

 // we'll stop the rate limiter from tracking it. This only clears

 // the `rateLimiter`; you still have to call `Done` on the queue.

 Forget(item interface{})

http://bit.ly/2IV0JPz

 // NumRequeues returns back how many times the item was requeued.

 NumRequeues(item interface{}) int

}

Most interesting here is the Forget(item) method: it resets the back-off

of the given item. Usually, it will be called when an item has been

processed successfully.

The rate limiting algorithm can be passed to the constructor

NewRateLimitingQueue. There are several rate limiters defined in the same

package, such as the BucketRateLimiter, the

ItemExponentialFailureRateLimiter, the ItemFastSlowRateLimiter, and the

MaxOfRateLimiter. For more details, you can refer to the package

documentation. Most controllers will just use the

DefaultControllerRateLimiter() *RateLimiter functions, which gives:

An exponential back-off starting at 5 ms and going up to 1,000

seconds, doubling the delay on each error

A maximal rate of 10 items per second and 100 items burst

Depending on the context, you might want to customize the values. A 1,000

seconds maximal back-off per item is a lot for certain controller applications.

API Machinery in Depth

The API Machinery repository implements the basics of the Kubernetes type

system. But what is this type system exactly? What is a type to begin with?

The term type actually does not exist in the terminology of API Machinery.

Instead, it refers to kinds.

Kinds

Kinds are divided into API groups and are versioned, as we already have seen

in “API Terminology”. Therefore, a core term in the API Machinery repository

is GroupVersionKind, or GVK for short.

In Go, each GVK corresponds to one Go type. In contrast, a Go type can

belong to multiple GVKs.

Kinds do not formally map one-to-one to HTTP paths. Many kinds have HTTP

REST endpoints that are used to access objects of the given kind. But there

are also kinds without any HTTP endpoint (e.g.,

admission.k8s.io/v1beta1.AdmissionReview, which is used to call out to a

webhook). There are also kinds that are returned from many endpoints—for

http://bit.ly/2XJXBQD

example, meta.k8s.io/v1.Status, which is returned by all endpoints to report a

nonobject status like an error.

By convention, kinds are formatted in CamelCase like words and are usually

singular. Depending on the context, their concrete format differs. For

CustomResourceDefinition kinds, it must be a DNS path label (RFC 1035).

Resources

In parallel to kinds, as we saw in “API Terminology”, there is the concept of a

resource. Resources are again grouped and versioned, leading to the term

GroupVersionResource, or GVR for short.

Each GVR corresponds to one HTTP (base) path. GVRs are used to identify

REST endpoints of the Kubernetes API. For example, the GVR

apps/v1.deployments maps to

/apis/apps/v1/namespaces/namespace/deployments.

Client libraries use this mapping to construct the HTTP path to access a GVR.

KNOWING WHETHER A RESOURCE IS NAMESPACED OR

CLUSTER-SCOPED

You have to know whether a GVR is namespaced or cluster-scoped in order

to know the HTTP path. Deployments, for example, are namespaced and

therefore get the namespace as part of their HTTP path. Other GVRs, such

as rbac.authorization.k8s.io/v1.clusterroles, are cluster-scoped; for

example, cluster roles can be accessed at

apis/rbac.authorization.k8s.io/v1/clusterroles.

By convention, resources are lowercase and plural, usually corresponding to

the plural words of the parallel kind. They must conform to the DNS path

label format (RFC 1025). As resources map directly to HTTP paths, this is not

surprising.

REST Mapping

The mapping of a GVK to a GVR is called REST mapping.

A RESTMapper is the Golang interface that enables us to request the GVR for a

GVK:

RESTMapping(gk schema.GroupKind, versions ...string) (*RESTMapping, error)

where the type RESTMapping on the right looks like this:

type RESTMapping struct {

 // Resource is the GroupVersionResource (location) for this endpoint.

 Resource schema.GroupVersionResource.

http://bit.ly/31Ktjvz
http://bit.ly/31IqMSC
http://bit.ly/2Y7wYS8

 // GroupVersionKind is the GroupVersionKind (data format) to submit

 // to this endpoint.

 GroupVersionKind schema.GroupVersionKind

 // Scope contains the information needed to deal with REST Resources

 // that are in a resource hierarchy.

 Scope RESTScope

}

In addition, a RESTMapper provides a number of convenience functions:

// KindFor takes a partial resource and returns the single match.

// Returns an error if there are multiple matches.

KindFor(resource schema.GroupVersionResource) (schema.GroupVersionKind, error)

// KindsFor takes a partial resource and returns the list of potential

// kinds in priority order.

KindsFor(resource schema.GroupVersionResource) ([]schema.GroupVersionKind, error)

// ResourceFor takes a partial resource and returns the single match.

// Returns an error if there are multiple matches.

ResourceFor(input schema.GroupVersionResource) (schema.GroupVersionResource, error)

// ResourcesFor takes a partial resource and returns the list of potential

// resource in priority order.

ResourcesFor(input schema.GroupVersionResource) ([]schema.GroupVersionResource, error)

// RESTMappings returns all resource mappings for the provided group kind

// if no version search is provided. Otherwise identifies a preferred resource

// mapping for the provided version(s).

RESTMappings(gk schema.GroupKind, versions ...string) ([]*RESTMapping, error)

Here, a partial GVR means that not all fields are set. For example, imagine

you type kubectl get pods. In that case, the group and the version are missing.

A RESTMapper with enough information might still manage to map it to the v1

Pods kind.

For the preceding deployment example, a RESTMapper that knows about

deployments (more about what this means in a bit) will map

apps/v1.Deployment to apps/v1.deployments as a namespaced resource.

There are multiple different implementations of the RESTMapper interface. The

most important one for client applications is the discovery-based

DeferredDiscoveryRESTMapper in the package k8s.io/client-go/restmapper: it uses

discovery information from the Kubernetes API server to dynamically build up

the REST mapping. It will also work with non-core resources like custom

resources.

Scheme

The final core concept we want to present here in the context of the

Kubernetes type system is the scheme in the package

k8s.io/apimachinery/pkg/runtime.

http://bit.ly/2IujaLU
http://bit.ly/2XroxUq
http://bit.ly/2N1PGJB

A scheme connects the world of Golang with the implementation-independent

world of GVKs. The main feature of a scheme is the mapping of Golang types

to possible GVKs:

func (s *Scheme) ObjectKinds(obj Object) ([]schema.GroupVersionKind, bool, error)

As we saw in “Kubernetes Objects in Go”, an object can return its group and

kind via the GetObjectKind() schema.ObjectKind method. However, these values

are empty most of the time and are therefore pretty useless for identification.

Instead, the scheme takes the Golang type of the given object via reflection

and maps it to the registered GVK(s) of that Golang type. For that to work, of

course, the Golang types have to be registered into the scheme like this:

scheme.AddKnownTypes(schema.GroupVersionKind{"", "v1", "Pod"}, &Pod{})

The scheme is used not only to register the Golang types and their GVK, but

also to store a list of conversion functions and defaulters (see Figure 3-6).

We’ll discuss conversions and defaulters in more detail in Chapter 8. It is the

data source to implement encoders and decoders as well.

Figure 3-6. The scheme, connecting Golang data types with the GVK, conversions, and defaulters

For Kubernetes core types there is a predefined scheme in the client-go client

set in the package k8s.io/client-go/kubernetes/scheme, with all the types

preregistered. Actually, every client set generated by the client-gen code

generator (see Chapter 5) has the subpackage scheme with all types in all

groups and versions in the client set.

With the scheme we conclude our deep dive into API Machinery concepts. If

you only remember one thing about these concepts, let it be Figure 3-7.

Figure 3-7. From Golang types to GVKs to GVRs to an HTTP path—API Machinery in a nutshell

Vendoring

We have seen in this chapter that k8s.io/client-go, k8s.io/api, and

k8s.io/apimachinery are central to Kubernetes programming in Golang.

Golang uses vendoring to include these libraries in a third-party application

source code repository.

Vendoring is a moving target in the Golang community. At the time of this

writing, several vendoring tools are common, such as godeps, dep, and glide.

At the same time, Go 1.12 is getting support for Go modules, which will

probably become the standard vendoring method in the Go community in the

future, but is not ready in the Kubernetes ecosystem at this time.

http://bit.ly/2FkXDn2

Most projects nowadays use either dep or glide. Kubernetes itself in

github.com/kubernetes/kubernetes made the jump to Go modules for the 1.15

development cycle. The following comments are relevant for all of these

vendoring tools.

The source of truth for supported dependency versions in each of the k8s.io/*

repositories is the shipped Godeps/Godeps.json file. It is important to stress

that any other dependency selection can break the functionality of the library.

See “The Client Library” for more on the published tags of k8s.io/client-go,

k8s.io/api, and k8s.io/apimachinery and which tags are compatible with each

other.

glide

Projects using glide can use its ability to read the Godeps/Godeps.json file on

any dependency change. This has proven to work pretty reliably: the

developer has only to declare the right k8s.io/client-go version, and glide will

select the right version of k8s.io/apimachinery, k8s.io/api, and other

dependencies.

For some projects on GitHub, the glide.yaml file might look like this:

package: github.com/book/example

import:

- package: k8s.io/client-go

 version: v10.0.0

...

With that, glide install -v will download k8s.io/client-go and its dependencies

into the local vendor/ package. Here, -v means to drop vendor/ packages from

vendored libraries. This is required for our purposes.

If you update to a new version of client-go by editing glide.yaml, glide update

-v will download the new dependencies, again in the right versions.

dep

dep is often considered more powerful and advanced than glide. For a long

time it was seen as the successor to glide in the ecosystem and seemed

destined to be the Go vendoring tool. At the time of this writing, its future is

not clear, and Go modules seem to be the path forward.

In the context of client-go, it is very important to be aware of a couple of

restrictions of dep:

dep does read Godeps/Godeps.json on the first run of dep init.

dep does not read Godeps/Godeps.json on later dep ensure -update calls.

This means that the resolution for dependencies of client-go is most probably

wrong when the client-go version is updated in Godep.toml. This is

unfortunate, because it requires the developer to explicitly and usually

manually declare all dependencies.

A working and consistent Godep.toml file looks like this:

[[constraint]]

 name = "k8s.io/api"

 version = "kubernetes-1.13.0"

[[constraint]]

 name = "k8s.io/apimachinery"

 version = "kubernetes-1.13.0"

[[constraint]]

 name = "k8s.io/client-go"

 version = "10.0.0"

[prune]

 go-tests = true

 unused-packages = true

the following overrides are necessary to enforce

the given version, even though our

code does not import the packages directly.

[[override]]

 name = "k8s.io/api"

 version = "kubernetes-1.13.0"

[[override]]

 name = "k8s.io/apimachinery"

 version = "kubernetes-1.13.0"

[[override]]

 name = "k8s.io/client-go"

 version = "10.0.0"

WARNING

Not only does Gopkg.toml declare explicit versions for both k8s.io/apimachinery and k8s.io/api, it also

has overrides for them. This is necessary for when the project is started without explicit imports of

packages from those two repositories. In that case, without these overrides dep would ignore the

constraints in the beginning, and the developer would get wrong dependencies from the beginning.

Even the Gopkg.toml file shown here is technically not correct because it is incomplete, as it does not

declare dependencies on all other libraries required by client-go. In the past, an upstream library

broke compilation of client-go. So be prepared for this to happen if you use dep for dependency

management.

Go Modules

Go modules are the future of dependency management in Golang. They were

introduced in Go 1.11 with preliminary support and were further stabilized in

1.12. A number of commands, like go run and go get, work with Go modules by

http://bit.ly/2FmBp3Y

setting the GO111MODULE=on environment variable. In Go 1.13 this will be the

default setting.

Go modules are driven by a go.mod file in the root of a project. Here is an

excerpt of the go.mod file for our github.com/programming-kubernetes/pizza-

apiserver project in Chapter 8:

module github.com/programming-kubernetes/pizza-apiserver

require (

 ...

 k8s.io/api v0.0.0-20190222213804-5cb15d344471 // indirect

 k8s.io/apimachinery v0.0.0-20190221213512-86fb29eff628

 k8s.io/apiserver v0.0.0-20190319190228-a4358799e4fe

 k8s.io/client-go v2.0.0-alpha.0.0.20190307161346-7621a5ebb88b+incompatible

 k8s.io/klog v0.2.1-0.20190311220638-291f19f84ceb

 k8s.io/kube-openapi v0.0.0-20190320154901-c59034cc13d5 // indirect

 k8s.io/utils v0.0.0-20190308190857-21c4ce38f2a7 // indirect

 sigs.k8s.io/yaml v1.1.0 // indirect

)

client-go v11.0.0—matching Kubernetes 1.14—and older versions do not have

explicit support for Go modules. Still, it is possible to use Go modules with the

Kubernetes libraries, as you see in the preceding example.

As long as client-go and the other Kubernetes repositories do not ship a

go.mod file, though (at least until Kubernetes 1.15), the right versions must

be selected manually. That is, you’ll need a complete list of all dependencies

matching the revisions of dependencies of the Godeps/Godeps.json in client-

go.

Also note the not-very-readable revisions in the previous example. They are

pseudo-versions derived from existing tags, or using v0.0.0 as the prefix if

there are no tags. Even worse, you can reference tagged versions in that file,

but the Go module commands will replace those on the next run with the

pseudo-versions.

With client-go v12.0.0—matching Kubernetes 1.15—we ship a go.mod file and

deprecate support for all other vendoring tools (see the corresponding

proposal document). The shipped go.mod file includes all dependencies, and

your project go.mod file no longer has to list all transitive dependencies

manually. In later releases, it’s also possible that the tagging scheme will be

changed to fix the ugly pseudo-revisions and replace them with proper semver

tags. But at the time of this writing, this is still not fully implemented or

decided.

Summary

In this chapter our focus was on the Kubernetes programming interface in Go.

We discussed accessing the Kubernetes API of well-known core types—that is,

http://bit.ly/2IZ9MPg

the API objects that are shipped with every Kubernetes cluster.

With this we’ve covered the basics of the Kubernetes API and its

representation in Go. Now we’re ready to move on to the topic of custom

resources, one of the pillars of operators.

1 See “API Terminology”.

2 kubectl explain pod lets you query the API server for the schema of an object, including field

documentation.

Chapter 4. Using Custom

Resources

In this chapter we introduce you to custom resources (CR),

one of the central extension mechanisms used throughout

the Kubernetes ecosystem.

Custom resources are used for small, in-house

configuration objects without any corresponding controller

logic—purely declaratively defined. But custom resources

also play a central role for many serious development

projects on top of Kubernetes that want to offer a

Kubernetes-native API experience. Examples are service

meshes such as Istio, Linkerd 2.0, and AWS App Mesh, all

of which have custom resources at their heart.

Remember “A Motivational Example” from Chapter 1? At its

core, it has a CR that looks like this:

apiVersion: cnat.programming-kubernetes.info/v1alpha1

kind: At

metadata:

 name: example-at

spec:

 schedule: "2019-07-03T02:00:00Z"

status:

 phase: "pending"

Custom resources are available in every Kubernetes cluster

since version 1.7. They are stored in the same etcd instance

as the main Kubernetes API resources and served by the

same Kubernetes API server. As shown in Figure 4-1,

requests fall back to the apiextensions-apiserver, which

serves the resources defined via CRDs, if they are neither

of the following:

Handled by aggregated API servers (see Chapter 8).

Native Kubernetes resources.

Figure 4-1. The API Extensions API server inside the Kubernetes API server

A CustomResourceDefinition (CRD) is a Kubernetes

resource itself. It describes the available CRs in the cluster.

For the preceding example CR, the corresponding CRD

looks like this:

apiVersion: apiextensions.k8s.io/v1beta1

kind: CustomResourceDefinition

metadata:

 name: ats.cnat.programming-kubernetes.info

spec:

 group: cnat.programming-kubernetes.info

 names:

 kind: At

 listKind: AtList

 plural: ats

 singular: at

 scope: Namespaced

 subresources:

 status: {}

 version: v1alpha1

 versions:

 - name: v1alpha1

 served: true

 storage: true

The name of the CRD—in this case, ats.cnat.programming-

kubernetes.info—must match the plural name followed by

the group name. It defines the kind At CR in the API group

cnat.programming-kubernetes.info as a namespaced resource

called ats.

If this CRD is created in a cluster, kubectl will automatically

detect the resource, and the user can access it via:

$ kubectl get ats

NAME CREATED AT

ats.cnat.programming-kubernetes.info 2019-04-01T14:03:33Z

Discovery Information

Behind the scenes, kubectl uses discovery information from

the API server to find out about the new resources. Let’s

look a bit deeper into this discovery mechanism.

After increasing the verbosity level of kubectl, we can

actually see how it learns about the new resource type:

$ kubectl get ats -v=7

... GET https://XXX.eks.amazonaws.com/apis/cnat.programming-kubernetes.info/

 v1alpha1/namespaces/cnat/ats?limit=500

... Request Headers:

... Accept: application/json;as=Table;v=v1beta1;g=meta.k8s.io,application/json

 User-Agent: kubectl/v1.14.0 (darwin/amd64) kubernetes/641856d

... Response Status: 200 OK in 607 milliseconds

NAME AGE

example-at 43s

The discovery steps in detail are:

1. Initially, kubectl does not know about ats.

2. Hence, kubectl asks the API server about all existing

API groups via the /apis discovery endpoint.

3. Next, kubectl asks the API server about resources in

all existing API groups via the /apis/group version

group discovery endpoints.

4. Then, kubectl translates the given type, ats, to a

triple of:

Group (here cnat.programming-kubernetes.info)

Version (here v1alpha1)

Resource (here ats).

The discovery endpoints provide all the necessary

information to do the translation in the last step:

$ http localhost:8080/apis/

{

 "groups": [{

 "name": "at.cnat.programming-kubernetes.info",

 "preferredVersion": {

 "groupVersion": "cnat.programming-kubernetes.info/v1",

 "version": "v1alpha1“

 },

 "versions": [{

 "groupVersion": "cnat.programming-kubernetes.info/v1alpha1",

 "version": "v1alpha1"

 }]

 }, ...]

}

$ http localhost:8080/apis/cnat.programming-kubernetes.info/v1alpha1

{

 "apiVersion": "v1",

 "groupVersion": "cnat.programming-kubernetes.info/v1alpha1",

 "kind": "APIResourceList",

 "resources": [{

 "kind": "At",

 "name": "ats",

 "namespaced": true,

 "verbs": ["create", "delete", "deletecollection",

 "get", "list", "patch", "update", "watch"

]

 }, ...]

}

This is all implemented by the discovery RESTMapper. We also

saw this very common type of RESTMapper in “REST

Mapping”.

WARNING

The kubectl CLI also maintains a cache of resource types in ~/.kubectl so that

it does not have to re-retrieve the discovery information on every access.

This cache is invalidated every 10 minutes. Hence, a change in the CRD

might show up in the CLI of the respective user up to 10 minutes later.

Type Definitions

Now let’s look at the CRD and the offered features in more

detail: as in the cnat example, CRDs are Kubernetes

resources in the apiextensions.k8s.io/v1beta1 API group

provided by the apiextensions-apiserver inside the

Kubernetes API server process.

The schema of CRDs looks like this:

apiVersion: apiextensions.k8s.io/v1beta1

kind: CustomResourceDefinition

metadata:

 name: name

spec:

 group: group name

 version: version name

 names:

 kind: uppercase name

 plural: lowercase plural name

 singular: lowercase singular name # defaulted to be lowercase kind

 shortNames: list of strings as short names # optional

 listKind: uppercase list kind # defaulted to be kindList

 categories: list of category membership like "all" # optional

 validation: # optional

 openAPIV3Schema: OpenAPI schema # optional

 subresources: # optional

 status: {} # to enable the status subresource (optional)

 scale: # optional

 specReplicasPath: JSON path for the replica number in the spec of the

 custom resource

 statusReplicasPath: JSON path for the replica number in the status of

 the custom resource

 labelSelectorPath: JSON path of the Scale.Status.Selector field in the

 scale resource

 versions: # defaulted to the Spec.Version field

 - name: version name

 served: boolean whether the version is served by the API server # defaults

to false

 storage: boolean whether this version is the version used to store object

 - ...

Many of the fields are optional or are defaulted. We will

explain the fields in more detail in the following sections.

After creating a CRD object, the apiextensions-apiserver

inside of kube-apiserver will check the names and determine

whether they conflict with other resources or whether they

are consistent in themselves. After a few moments it will

report the result in the status of the CRD, for example:

apiVersion: apiextensions.k8s.io/v1beta1

kind: CustomResourceDefinition

metadata:

 name: ats.cnat.programming-kubernetes.info

spec:

 group: cnat.programming-kubernetes.info

 names:

 kind: At

 listKind: AtList

 plural: ats

 singular: at

 scope: Namespaced

 subresources:

 status: {}

 validation:

 openAPIV3Schema:

 type: object

 properties:

 apiVersion:

 type: string

 kind:

 type: string

 metadata:

 type: object

 spec:

 properties:

 schedule:

 type: string

 type: object

 status:

 type: object

 version: v1alpha1

 versions:

 - name: v1alpha1

 served: true

 storage: true

status:

 acceptedNames:

 kind: At

 listKind: AtList

 plural: ats

 singular: at

 conditions:

 - lastTransitionTime: "2019-03-17T09:44:21Z"

 message: no conflicts found

 reason: NoConflicts

 status: "True"

 type: NamesAccepted

 - lastTransitionTime: null

 message: the initial names have been accepted

 reason: InitialNamesAccepted

 status: "True"

 type: Established

 storedVersions:

 - v1alpha1

You can see that the missing name fields in the spec are

defaulted and reflected in the status as accepted names.

Moreover, the following conditions are set:

NamesAccepted describes whether the given names in

the spec are consistent and free of conflicts.

Established describes that the API server serves the

given resource under the names in

status.acceptedNames.

Note that certain fields can be changed long after the CRD

has been created. For example, you can add short names or

columns. In this case, a CRD can be established—that is,

served with the old names—although the spec names have

conflicts. Hence the NamesAccepted condition would be false

and the spec names and accepted names would differ.

Advanced Features of Custom

Resources

In this section we discuss advanced features of custom

resources, such as validation or subresources.

Validating Custom Resources

CRs can be validated by the API server during creation and

updates. This is done based on the OpenAPI v3 schema

specified in the validation fields in the CRD spec.

When a request creates or mutates a CR, the JSON object

in the spec is validated against this spec, and in case of

errors the conflicting field is returned to the user in an

HTTP code 400 response. Figure 4-2 shows where validation

takes places in the request handler inside the apiextensions-

apiserver.

More complex validations can be implemented in validating

admission webhooks—that is, in a Turing-complete

http://bit.ly/2RqtN5i

programming language. Figure 4-2 shows that these

webhooks are called directly after the OpenAPI-based

validations described in this section. In “Admission

Webhooks”, we will see how admission webhooks are

implemented and deployed. There, we’ll look into

validations that take other resources into account and

therefore go far beyond OpenAPI v3 validation. Luckily, for

many use cases OpenAPI v3 schemas are sufficient.

Figure 4-2. Validation step in the handler stack of the apiextensions-apiserver

The OpenAPI schema language is based on the JSON

Schema standard, which uses JSON/YAML itself to express

a schema. Here’s an example:

type: object

properties:

 apiVersion:

 type: string

 kind:

 type: string

 metadata:

 type: object

 spec:

 type: object

 properties:

http://bit.ly/2J7aIT7

 schedule:

 type: string

 pattern: "^\d{4}-([0]\d|1[0-2])-([0-2]\d|3[01])..."

 command:

 type: string

 required:

 - schedule

 - command

 status:

 type: object

 properties:

 phase:

 type: string

required:

- metadata

- apiVersion

- kind

- spec

This schema specifies that the value is actually a JSON

object; that is, it is a string map and not a slice or a value

like a number. Moreover, it has (aside from metadata, kind,

and apiVersion, which are implicitly defined for custom

resources) two additional properties: spec and status.

Each is a JSON object as well. spec has the required fields

schedule and command, both of which are strings. schedule has

to match a pattern for an ISO date (sketched here with

some regular expressions). The optional status property has

a string field called phase.

1

OPENAPI V3 SCHEMAS, COMPLETENESS, AND

THEIR FUTURE

OpenAPI v3 schemas used to be optional in CRDs. Until

Kubernetes 1.14, they were used only for server-side

validation. For that purpose they could also be

incomplete—in other words, they might not specify all

the fields.

Starting with Kubernetes 1.15, the CRD schemas will be

published as part of the Kubernetes API server OpenAPI

spec. This is used especially by kubectl for client-side

validation. Client-side validation complains about

unknown fields. For example, when the user types

foo:bar in an object and the OpenAPI schema does not

specify foo, kubectl will reject the object. Hence, it is

good practice to pass a complete OpenAPI schema.

Finally, in the future custom resource instances will be

pruned. This means that—similarly to native Kubernetes

resource–like pods—unknown (unspecified) fields will

not be persisted. This is important not only for data

consistency, but also for security. This is another reason

why OpenAPI schemas for CRDs should be complete.

For a complete reference, see the OpenAPI v3 schema

documentation.

Creating OpenAPI schemata manually can be tedious.

Luckily, work is underway to make this much easier via

code generation: the Kubebuilder project—see

“Kubebuilder”—has developed crd-gen in

sig.k8s.io/controller-tools, and this is being extended step

by step so that it’s usable in other contexts. The generator

crd-schema-gen is a fork of crd-gen in this direction.

http://bit.ly/2WY8lKY
http://bit.ly/2RqtN5i
http://bit.ly/2J00kvi
http://bit.ly/31N0eQf

Short Names and Categories

Like native resources, custom resources might have long

resource names. They are great on the API level but

tedious to type in the CLI. CRs can have short names as

well, like the native resource daemonsets, which can be

queried with kubectl get ds. These short names are also

known as aliases, and each resource can have any number

of them.

To view all of the available short names, use the kubectl

api-resources command like so:

$ kubectl api-resources

NAME SHORTNAMES APIGROUP NAMESPACED KIND

bindings true Binding

componentstatuses cs false ComponentStatus

configmaps cm true ConfigMap

endpoints ep true Endpoints

events ev true Event

limitranges limits true LimitRange

namespaces ns false Namespace

nodes no false Node

persistentvolumeclaims pvc true PersistentVolumeClaim

persistentvolumes pv false PersistentVolume

pods po true Pod

statefulsets sts apps true StatefulSet

...

Again, kubectl learns about short names via discovery

information (see “Discovery Information”). Here is an

example:

apiVersion: apiextensions.k8s.io/v1beta1

kind: CustomResourceDefinition

metadata:

 name: ats.cnat.programming-kubernetes.info

spec:

 ...

 shortNames:

 - at

After that, a kubectl get at will list all cnat CRs in the

namespace.

Further, CRs—as with any other resource—can be part of

categories. The most common use is the all category, as in

kubectl get all. It lists all user-facing resources in a cluster,

like pods and services.

The CRs defined in the cluster can join a category or create

their own category via the categories field:

apiVersion: apiextensions.k8s.io/v1beta1

kind: CustomResourceDefinition

metadata:

 name: ats.cnat.programming-kubernetes.info

spec:

 ...

 categories:

 - all

With this, kubectl get all will also list the cnat CR in the

namespace.

Printer Columns

The kubectl CLI tool uses server-side printing to render the

output of kubectl get. This means that it queries the API

server for the columns to display and the values in each

row.

Custom resources support server-side printer columns as

well, via additionalPrinterColumns. They are called

“additional” because the first column is always the name of

the object. These columns are defined like this:

apiVersion: apiextensions.k8s.io/v1beta1

kind: CustomResourceDefinition

metadata:

 name: ats.cnat.programming-kubernetes.info

spec:

 additionalPrinterColumns: (optional)

 - name: kubectl column name

 type: OpenAPI type for the column

 format: OpenAPI format for the column (optional)

 description: human-readable description of the column (optional)

 priority: integer, always zero supported by kubectl

 JSONPath: JSON path inside the CR for the displayed value

The name field is the column name, the type is an OpenAPI

type as defined in the data types section of the

specification, and the format (as defined in the same

document) is optional and might be interpreted by kubectl

or other clients.

Further, description is an optional human-readable string,

used for documentation purposes. The priority controls in

which verbosity mode of kubectl the column is displayed. At

the time of this writing (with Kubernetes 1.14), only zero is

supported, and all columns with higher priority are hidden.

Finally, JSONPath defines which values are to be displayed. It

is a simple JSON path inside of the CR. Here, “simple”

means that it supports object field syntax like .spec.foo.bar,

but not more complex JSON paths that loop over arrays or

similar.

With this, the example CRD from the introduction could be

extended with additionalPrinterColumns like this:

additionalPrinterColumns: #(optional)

- name: schedule

 type: string

 JSONPath: .spec.schedule

- name: command

 type: string

 JSONPath: .spec.command

- name: phase

 type: string

 JSONPath: .status.phase

http://bit.ly/2N0DSY4

Then kubectl would render a cnat resource as follows:

$ kubectl get ats

NAME SCHEDULER COMMAND PHASE

foo 2019-07-03T02:00:00Z echo "hello world" Pending

Next up, we have a look at subresources.

Subresources

We briefly mentioned subresources in “Status

Subresources: UpdateStatus”. Subresources are special

HTTP endpoints, using a suffix appended to the HTTP path

of the normal resource. For example, the pod standard

HTTP path is /api/v1/namespace/namespace/pods/name. Pods

have a number of subresources, such as /logs,

/portforward, /exec, and /status. The corresponding

subresource HTTP paths are:

/api/v1/namespace/namespace/pods/name/logs

/api/v1/namespace/namespace/pods/name/portforward

/api/v1/namespace/namespace/pods/name/exec

/api/v1/namespace/namespace/pods/name/status

The subresource endpoints use a different protocol than

the main resource endpoint.

At the time of this writing, custom resources support two

subresources: /scale and /status. Both are opt-in—that is,

they must be explicitly enabled in the CRD.

Status subresource

The /status subresource is used to split the user-provided

specification of a CR instance from the controller-provided

status. The main motivation for this is privilege separation:

The user usually should not write status fields.

The controller should not write specification fields.

The RBAC mechanism for access control does not allow

rules at that level of detail. Those rules are always per

resource. The /status subresource solves this by providing

two endpoints that are resources on their own. Each can be

controlled with RBAC rules independently. This is often

called a spec-status split. Here’s an example of such a rule

for the ats resource, which applies only to the /status

subresource (while "ats" would match the main resource):

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata: ...

rules:

- apiGroups: [""]

 resources: ["ats/status"]

 verbs: ["update", "patch"]

Resources (including custom resources) that have a /status

subresource have changed semantics, also for the main

resource endpoint:

They ignore changes to the status on the main HTTP

endpoint during create (the status is just dropped

during a create) and updates.

Likewise, the /status subresource endpoint ignores

changes outside of the status of the payload. A

create operation on the /status endpoint is not

possible.

Whenever something outside of metadata and outside

of status changes (this especially means changes in

the spec), the main resource endpoint will increase

the metadata.generation value. This can be used as a

trigger for a controller indicating that the user

desire has changed.

Note that usually both spec and status are sent in update

requests, but technically you could leave out the respective

other part in a request payload.

Also note that the /status endpoint will ignore everything

outside of the status, including metadata changes like

labels or annotations.

The spec-status split of a custom resource is enabled as

follows:

apiVersion: apiextensions.k8s.io/v1beta1

kind: CustomResourceDefinition

spec:

 subresources:

 status: {}

 ...

Note here that the status field in that YAML fragment is

assigned the empty object. This is the way to set a field that

has no other properties. Just writing

subresources:

 status:

will result in a validation error because in YAML the result

is a null value for status.

WARNING

Enabling the spec-status split is a breaking change for an API. Old

controllers will write to the main endpoint. They won’t notice that the status

is always ignored from the point where the split is activated. Likewise, a new

controller can’t write to the new /status endpoint until the split is activated.

In Kubernetes 1.13 and later, subresources can be

configured per version. This allows us to introduce the

/status subresource without a breaking change:

apiVersion: apiextensions.k8s.io/v1beta1

kind: CustomResourceDefinition

spec:

 ...

 versions:

 - name: v1alpha1

 served: true

 storage: true

 - name: v1beta1

 served: true

 subresources:

 status: {}

This enables the /status subresource for v1beta1, but not for

v1alpha1.

NOTE

The optimistic concurrency semantics (see “Optimistic Concurrency”) are the

same as for the main resource endpoints; that is, status and spec share the

same resource version counter and /status updates can conflict due to writes

to the main resource, and vice versa. In other words, there is no split of spec

and status on the storage layer.

Scale subresource

The second subresource available for custom resources is

/scale. The /scale subresource is a (projective) view on the

resource, allowing us to view and to modify replica values

only. This subresource is well known for resources like

deployments and replica sets in Kubernetes, which

obviously can be scaled up and down.

The kubectl scale command makes use of the /scale

subresource; for example, the following will modify the

specified replica value in the given instance:

$ kubectl scale --replicas=3 your-custom-resource -v=7

I0429 21:17:53.138353 66743 round_trippers.go:383] PUT

https://host/apis/group/v1/your-custom-resource/scale

apiVersion: apiextensions.k8s.io/v1beta1

kind: CustomResourceDefinition

spec:

 subresources:

 scale:

 specReplicasPath: .spec.replicas

 statusReplicasPath: .status.replicas

 labelSelectorPath: .status.labelSelector

 ...

With this, an update of the replica value is written to

spec.replicas and returned from there during a GET.

The label selector cannot be changed through the /status

subresource, only read. Its purpose is to give a controller

the information to count the corresponding objects. For

example, the ReplicaSet controller counts the corresponding

pods that satisfy this selector.

The label selector is optional. If your custom resource

semantics do not fit label selectors, just don’t specify the

JSON path for one.

2

In the previous example of kubectl scale --replicas=3 ...

the value 3 is written to spec.replicas. Any other simple

JSON path can be used, of course; for example,

spec.instances or spec.size would be a sensible field name,

depending on the context.

THE REPLICA INTEGER VALUE VERSUS THE

CONTROLLER THAT CREATES AND DELETES

REPLICAS

We only speak about reading and setting the replica

integer value in the custom resource. The actual

semantics behind that—for example, the creation and

deletion of instances of the actual replicas—must be

implemented by a custom controller (see “Controllers

and Operators”).

The kind of the object read from or written to the endpoint

is Scale from the autoscaling/v1 API group. Here is what it

looks like:

type Scale struct {

 metav1.TypeMeta `json:",inline"`

 // Standard object metadata; More info: https://git.k8s.io/

 // community/contributors/devel/api-conventions.md#metadata.

 // +optional

 metav1.ObjectMeta `json:"metadata,omitempty"`

 // defines the behavior of the scale. More info:

https://git.k8s.io/community/

 // contributors/devel/api-conventions.md#spec-and-status.

 // +optional

 Spec ScaleSpec `json:"spec,omitempty"`

 // current status of the scale. More info: https://git.k8s.io/community/

 // contributors/devel/api-conventions.md#spec-and-status. Read-only.

 // +optional

 Status ScaleStatus `json:"status,omitempty"`

}

// ScaleSpec describes the attributes of a scale subresource.

type ScaleSpec struct {

 // desired number of instances for the scaled object.

 // +optional

 Replicas int32 `json:"replicas,omitempty"`

}

// ScaleStatus represents the current status of a scale subresource.

type ScaleStatus struct {

 // actual number of observed instances of the scaled object.

 Replicas int32 `json:"replicas"`

 // label query over pods that should match the replicas count. This is the

 // same as the label selector but in the string format to avoid

 // introspection by clients. The string will be in the same

 // format as the query-param syntax. More info about label selectors:

 // http://kubernetes.io/docs/user-guide/labels#label-selectors.

 // +optional

 Selector string `json:"selector,omitempty"`

}

An instance will look like this:

metadata:

 name: cr-name

 namespace: cr-namespace

 uid: cr-uid

 resourceVersion: cr-resource-version

 creationTimestamp: cr-creation-timestamp

spec:

 replicas: 3

 status:

 replicas: 2

 selector: "environment = production"

Note that the optimistic concurrency semantics are the

same for the main resource and for the /scale subresource.

That is, main resource writes can conflict with /scale

writes, and vice versa.

A Developer’s View on Custom

Resources

Custom resources can be accessed from Golang using a

number of clients. We will concentrate on:

Using the client-go dynamic client (see “Dynamic

Client”)

Using a typed client:

As provided by kubernetes-sigs/controller-

runtime and used by the Operator SDK and

Kubebuilder (see “controller-runtime Client of

Operator SDK and Kubebuilder”)

As generated by client-gen, like that in

k8s.io/client-go/kubernetes (see “Typed client

created via client-gen”)

The choice of which client to use depends mainly on the

context of the code to be written, especially the complexity

of implemented logic and the requirements (e.g., to be

dynamic and to support GVKs unknown at compile time).

The preceding list of clients:

Decreases in the flexibility to handle unknown GVKs.

Increases in type safety.

Increases in the completeness of features of the

Kubernetes API they provide.

Dynamic Client

The dynamic client in k8s.io/client-go/dynamic is totally

agnostic to known GVKs. It does not even use any Go types

http://bit.ly/2ZFtDKd
http://bit.ly/2FnmGWA
http://bit.ly/2Y6eeSK

other than unstructured.Unstructured, which wraps just

json.Unmarshal and its output.

The dynamic client makes use of neither a scheme nor a

RESTMapper. This means that the developer has to provide

all the knowledge about types manually by providing a

resource (see “Resources”) in the form of a GVR:

schema.GroupVersionResource{

 Group: "apps",

 Version: "v1",

 Resource: "deployments",

}

If a REST client config is available (see “Creating and

Using a Client”), the dynamic client can be created in one

line:

client, err := NewForConfig(cfg)

The REST access to a given GVR is just as simple:

client.Resource(gvr).

 Namespace(namespace).Get("foo", metav1.GetOptions{})

This gives you the deployment foo in the given namespace.

NOTE

You must know the scope of the resource (i.e., whether it is namespaced or

cluster-scoped). Cluster-scoped resources just leave out the

Namespace(namespace) call.

The input and output of the dynamic client is an

*unstructured.Unstructured—that is, an object that contains

http://bit.ly/2WYZ6oS

the same data structure that json.Unmarshal would output on

unmarshaling:

Objects are represented by map[string]interface{}.

Arrays are represented by []interface{}.

Primitive types are string, bool, float64, or int64.

The method UnstructuredContent() provides access to this

data structure inside of an unstructured object (we can also

just access Unstructured.Object). There are helpers in the

same package to make retrieval of fields easy and

manipulation of the object possible—for example:

name, found, err := unstructured.NestedString(u.Object, "metadata", "name")

which returns the name of the deployment—"foo" in this

case. found is true if the field was actually found (not only

empty, but actually existing). err reports if the type of an

existing field is unexpected (i.e., not a string in this case).

Other helpers are the generic ones, once with a deep copy

of the result and once without:

func NestedFieldCopy(obj map[string]interface{}, fields ...string)

 (interface{}, bool, error)

func NestedFieldNoCopy(obj map[string]interface{}, fields ...string)

 (interface{}, bool, error)

There are other typed variants that do a type-cast and

return an error if that fails:

func NestedBool(obj map[string]interface{}, fields ...string) (bool, bool,

error)

func NestedFloat64(obj map[string]interface{}, fields ...string)

 (float64, bool, error)

func NestedInt64(obj map[string]interface{}, fields ...string) (int64, bool,

error)

func NestedStringSlice(obj map[string]interface{}, fields ...string)

 ([]string, bool, error)

func NestedSlice(obj map[string]interface{}, fields ...string)

 ([]interface{}, bool, error)

func NestedStringMap(obj map[string]interface{}, fields ...string)

 (map[string]string, bool, error)

And finally a generic setter:

func SetNestedField(obj, value, path...)

The dynamic client is used in Kubernetes itself for

controllers that are generic, like the garbage collection

controller, which deletes objects whose parents have

disappeared. The garbage collection controller works with

any resource in the system and hence makes extensive use

of the dynamic client.

Typed Clients

Typed clients do not use map[string]interface{}-like generic

data structures but instead use real Golang types, which

are different and specific for each GVK. They are much

easier to use, have considerably increased type safety, and

make code much more concise and readable. On the

downside, they are less flexible because the processed

types have to be known at compile time, and those clients

are generated, and this adds complexity.

Before going into two implementations of typed clients,

let’s look into the representation of kinds in the Golang

type system (see “API Machinery in Depth” for the theory

behind the Kubernetes type system).

Anatomy of a type

Kinds are represented as Golang structs. Usually the struct

is named as the kind (though technically it doesn’t have to

be) and is placed in a package corresponding to the group

and version of the GVK at hand. A common convention is to

place the GVK group/version.Kind into a Go package:

pkg/apis/group/version

and define a Golang struct Kind in the file types.go.

Every Golang type corresponding to a GVK embeds the

TypeMeta struct from the package

k8s.io/apimachinery/pkg/apis/meta/v1. TypeMeta just consists

of the Kind and ApiVersion fields:

type TypeMeta struct {

 // +optional

 APIVersion string `json:"apiVersion,omitempty"

yaml:"apiVersion,omitempty"`

 // +optional

 Kind string `json:"kind,omitempty" yaml:"kind,omitempty"`

}

In addition, every top-level kind—that is, one that has its

own endpoint and therefore one (or more) corresponding

GVRs (see “REST Mapping”)—has to store a name, a

namespace for namespaced resources, and a pretty long

number of further metalevel fields. All these are stored in a

struct called ObjectMeta in the package

k8s.io/apimachinery/pkg/apis/meta/v1:

type ObjectMeta struct {

 Name string `json:"name,omitempty"`

 Namespace string `json:"namespace,omitempty"`

 UID types.UID `json:"uid,omitempty"`

 ResourceVersion string `json:"resourceVersion,omitempty"`

 CreationTimestamp Time `json:"creationTimestamp,omitempty"`

 DeletionTimestamp *Time `json:"deletionTimestamp,omitempty"`

 Labels map[string]string `json:"labels,omitempty"`

 Annotations map[string]string `json:"annotations,omitempty"`

 ...

}

http://bit.ly/2Y5HdWT
http://bit.ly/2XSt8eo

There are a number of additional fields. We highly

recommend you read through the extensive inline

documentation, because it gives a good picture of the core

functionality of Kubernetes objects.

Kubernetes top-level types (i.e., those that have an

embedded TypeMeta, and an embedded ObjectMeta, and—in

this case—are persisted into etcd) look very similar to each

other in the sense that they usually have a spec and a

status. See this example of a deployment from

k8s.io/kubernetes/apps/v1/types.go:

type Deployment struct {

 metav1.TypeMeta `json:",inline"`

 metav1.ObjectMeta `json:"metadata,omitempty"`

 Spec DeploymentSpec `json:"spec,omitempty"`

 Status DeploymentStatus `json:"status,omitempty"`

}

While the actual content of the types for spec and status

differs significantly between different types, this split into

spec and status is a common theme or even a convention in

Kubernetes, though it’s not technically required. Hence, it

is good practice to follow this structure of CRDs as well.

Some CRD features even require this structure; for

example, the /status subresource for custom resources (see

“Status subresource”)—when enabled—always applies to

the status substructure only of the custom resource

instance. It cannot be renamed.

Golang package structure

As we have seen, the Golang types are traditionally placed

in a file called types.go in the package

pkg/apis/group/version. In addition to that file, there are a

couple more files we want to go through now. Some of them

http://bit.ly/2IutNyh
http://bit.ly/2RroTFb

are manually written by the developer, while some are

generated with code generators. See Chapter 5 for details.

The doc.go file describes the API’s purpose and includes a

number of package-global code generation tags:

// Package v1alpha1 contains the cnat v1alpha1 API group

//

// +k8s:deepcopy-gen=package

// +groupName=cnat.programming-kubernetes.info

package v1alpha1

Next, register.go includes helpers to register the custom

resource Golang types into a scheme (see “Scheme”):

package version

import (

 metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"

 "k8s.io/apimachinery/pkg/runtime"

 "k8s.io/apimachinery/pkg/runtime/schema"

 group "repo/pkg/apis/group"

)

// SchemeGroupVersion is group version used to register these objects

var SchemeGroupVersion = schema.GroupVersion{

 Group: group.GroupName,

 Version: "version",

}

// Kind takes an unqualified kind and returns back a Group qualified GroupKind

func Kind(kind string) schema.GroupKind {

 return SchemeGroupVersion.WithKind(kind).GroupKind()

}

// Resource takes an unqualified resource and returns a Group

// qualified GroupResource

func Resource(resource string) schema.GroupResource {

 return SchemeGroupVersion.WithResource(resource).GroupResource()

}

var (

 SchemeBuilder = runtime.NewSchemeBuilder(addKnownTypes)

 AddToScheme = SchemeBuilder.AddToScheme

)

// Adds the list of known types to Scheme.

func addKnownTypes(scheme *runtime.Scheme) error {

 scheme.AddKnownTypes(SchemeGroupVersion,

 &SomeKind{},

 &SomeKindList{},

)

 metav1.AddToGroupVersion(scheme, SchemeGroupVersion)

 return nil

}

Then, zz_generated.deepcopy.go defines deep-copy

methods on the custom resource Golang top-level types

(i.e., SomeKind and SomeKindList in the preceding example

code). In addition, all substructs (like those for the spec and

status) become deep-copyable as well.

Because the example uses the tag +k8s:deepcopy-gen=package

in doc.go, the deep-copy generation is on an opt-out basis;

that is, DeepCopy methods are generated for every type in

the package that does not opt out with +k8s:deepcopy-

gen=false. See Chapter 5 and especially “deepcopy-gen

Tags” for more details.

Typed client created via client-gen

With the API package pkg/apis/group/version in place, the

client generator client-gen creates a typed client (see

Chapter 5 for details, especially “client-gen Tags”), in

pkg/generated/clientset/versioned by default

(pkg/client/clientset/versioned in old versions of the

generator). More precisely, the generated top-level object

is a client set. It subsumes a number of API groups,

versions, and resources.

The top-level file looks like the following:

http://bit.ly/2GdcikH

// Code generated by client-gen. DO NOT EDIT.

package versioned

import (

 discovery "k8s.io/client-go/discovery"

 rest "k8s.io/client-go/rest"

 flowcontrol "k8s.io/client-go/util/flowcontrol"

 cnatv1alpha1 ".../cnat/cnat-client-go/pkg/generated/clientset/versioned/

)

type Interface interface {

 Discovery() discovery.DiscoveryInterface

 CnatV1alpha1() cnatv1alpha1.CnatV1alpha1Interface

}

// Clientset contains the clients for groups. Each group has exactly one

// version included in a Clientset.

type Clientset struct {

 *discovery.DiscoveryClient

 cnatV1alpha1 *cnatv1alpha1.CnatV1alpha1Client

}

// CnatV1alpha1 retrieves the CnatV1alpha1Client

func (c *Clientset) CnatV1alpha1() cnatv1alpha1.CnatV1alpha1Interface {

 return c.cnatV1alpha1

}

// Discovery retrieves the DiscoveryClient

func (c *Clientset) Discovery() discovery.DiscoveryInterface {

 ...

}

// NewForConfig creates a new Clientset for the given config.

func NewForConfig(c *rest.Config) (*Clientset, error) {

 ...

}

The client set is represented by the interface Interface and

gives access to the API group client interface for each

version—for example, CnatV1alpha1Interface in this sample

code:

type CnatV1alpha1Interface interface {

 RESTClient() rest.Interface

 AtsGetter

}

// AtsGetter has a method to return a AtInterface.

// A group's client should implement this interface.

type AtsGetter interface {

 Ats(namespace string) AtInterface

}

// AtInterface has methods to work with At resources.

type AtInterface interface {

 Create(*v1alpha1.At) (*v1alpha1.At, error)

 Update(*v1alpha1.At) (*v1alpha1.At, error)

 UpdateStatus(*v1alpha1.At) (*v1alpha1.At, error)

 Delete(name string, options *v1.DeleteOptions) error

 DeleteCollection(options *v1.DeleteOptions, listOptions v1.ListOptions)

error

 Get(name string, options v1.GetOptions) (*v1alpha1.At, error)

 List(opts v1.ListOptions) (*v1alpha1.AtList, error)

 Watch(opts v1.ListOptions) (watch.Interface, error)

 Patch(name string, pt types.PatchType, data []byte, subresources

...string)

 (result *v1alpha1.At, err error)

 AtExpansion

}

An instance of a client set can be created with the

NewForConfig helper function. This is analogous to the clients

for core Kubernetes resources discussed in “Creating and

Using a Client”:

import (

 metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"

 "k8s.io/client-go/tools/clientcmd"

 client "github.com/.../cnat/cnat-client-

go/pkg/generated/clientset/versioned"

)

kubeconfig = flag.String("kubeconfig", "~/.kube/config", "kubeconfig file")

flag.Parse()

config, err := clientcmd.BuildConfigFromFlags("", *kubeconfig)

clientset, err := client.NewForConfig(config)

ats := clientset.CnatV1alpha1Interface().Ats("default")

book, err := ats.Get("kubernetes-programming", metav1.GetOptions{})

As you can see, the code generation machinery allows us to

program logic for custom resources in the very same way

as for core Kubernetes resources. Higher-level tools like

informers are also available; see informer-gen in Chapter 5.

controller-runtime Client of Operator SDK and

Kubebuilder

For the sake of completeness, we want to take a quick look

at the third client, which is listed as the second option in “A

Developer’s View on Custom Resources”. The controller-

runtime project provides the basis for the operator solutions

Operator SDK and Kubebuilder presented in Chapter 6. It

includes a client that uses the Go types presented in

“Anatomy of a type”.

In contrast to the client-gen–generated client of the

previous “Typed client created via client-gen”, and similarly

to the “Dynamic Client”, this client is one instance, capable

of handling any kind that is registered in a given scheme.

It uses discovery information from the API server to map

the kinds to HTTP paths. Note that Chapter 6 will go into

greater detail on how this client is used as part of those

two operator solutions.

Here is a quick example of how to use controller-runtime:

import (

 "flag"

 corev1 "k8s.io/api/core/v1"

 metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"

 "k8s.io/client-go/kubernetes/scheme"

 "k8s.io/client-go/tools/clientcmd"

/ g / /

 runtimeclient "sigs.k8s.io/controller-runtime/pkg/client"

)

kubeconfig = flag.String("kubeconfig", "~/.kube/config", "kubeconfig file

path")

flag.Parse()

config, err := clientcmd.BuildConfigFromFlags("", *kubeconfig)

cl, _ := runtimeclient.New(config, client.Options{

 Scheme: scheme.Scheme,

})

podList := &corev1.PodList{}

err := cl.List(context.TODO(), client.InNamespace("default"), podList)

The client object’s List() method accepts any runtime.Object

registered in the given scheme, which in this case is the

one borrowed from client-go with all standard Kubernetes

kinds being registered. Internally, the client uses the given

scheme to map the Golang type *corev1.PodList to a GVK. In

a second step, the List() method uses discovery

information to get the GVR for pods, which is

schema.GroupVersionResource{"", "v1", "pods"}, and therefore

accesses /api/v1/namespace/default/pods to get the list of

pods in the passed namespace.

The same logic can be used with custom resources. The

main difference is to use a custom scheme that contains the

passed Go type:

import (

 "flag"

 corev1 "k8s.io/api/core/v1"

 metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"

 "k8s.io/client-go/kubernetes/scheme"

 "k8s.io/client-go/tools/clientcmd"

 runtimeclient "sigs.k8s.io/controller-runtime/pkg/client"

 cnatv1alpha1 "github.com/.../cnat/cnat-kubebuilder/pkg/apis/cnat/v1alpha1"

)

kubeconfig = flag.String("kubeconfig", "~/.kube/config", "kubeconfig file")

flag.Parse()

config, err := clientcmd.BuildConfigFromFlags("", *kubeconfig)

crScheme := runtime.NewScheme()

cnatv1alpha1.AddToScheme(crScheme)

cl, _ := runtimeclient.New(config, client.Options{

 Scheme: crScheme,

})

list := &cnatv1alpha1.AtList{}

err := cl.List(context.TODO(), client.InNamespace("default"), list)

Note how the invocation of the List() command does not

change at all.

Imagine you write an operator that accesses many different

kinds using this client. With the typed client of “Typed

client created via client-gen”, you would have to pass many

different clients into the operator, making the plumbing

code pretty complex. In contrast, the controller-runtime

client presented here is just one object for all kinds,

assuming all of them are in one scheme.

All three types of clients have their uses, with advantages

and disadvantages depending on the context in which they

are used. In generic controllers that handle unknown

objects, only the dynamic client can be used. In controllers

where type safety helps a lot to enforce code correctness,

the generated clients are a good fit. The Kubernetes project

itself has so many contributors that stability of the code is

very important, even when it is extended and rewritten by

so many people. If convenience and high velocity with

minimal plumbing is important, the controller-runtime client

is a good fit.

Summary

We introduced you to custom resources, the central

extension mechanisms used in the Kubernetes ecosystem,

in this chapter. By now you should have a good

understanding of their features and limitations as well as

the available clients.

Let’s now move on to code generation for managing said

resources.

1 Do not confuse Kubernetes and JSON objects here. The latter is just

another term for a string map, used in the context of JSON and in

OpenAPI.

2 “Projective” here means that the scale object is a projection of the main

resource in the sense that it shows only certain fields and hides everything

else.

Chapter 5. Automating

Code Generation

In this chapter you’ll learn how to use the Kubernetes code

generators in Go projects to write custom resources in a

natural way. Code generators are used a lot in the

implementation of native Kubernetes resources, and we’ll

use the very same generators here.

Why Code Generation

Go is a simple language by design. It lacks higher-level or

even metaprogramming-like mechanisms to express

algorithms on different data types in a generic (i.e., type-

independent) way. The “Go way” is to use external code

generation instead.

Very early in the Kubernetes development process, more

and more code had to be rewritten as more resources were

added to the system. Code generation made the

maintenance of this code much easier. Very early on, the

Gengo library was created, and eventually, based on Gengo,

k8s.io/code-generator was developed as an externally

usable collection of generators. We will use these

generators in the following sections for CRs.

Calling the Generators

Usually, the code generators are called in mostly the same

way in every controller project. Only packages, group

names, and API versions differ. Calling the script

http://bit.ly/2L9kwNJ
http://bit.ly/2Kw8I8U

k8s.io/code-generator/generate-groups.sh or a bash script

like hack/update-codegen.sh is the easiest way to add code

generation to CR Go types from the build system (see the

book’s GitHub repository).

Note that some projects call the generator binaries directly

due to very special requirements and often historic

reasons. For the use case of building a controller for CRs, it

is much easier to just call the generate-groups.sh script

from the k8s.io/code-generator repository:

$ vendor/k8s.io/code-generator/generate-groups.sh all \

 github.com/programming-kubernetes/cnat/cnat-client-go/pkg/generated

 github.com/programming-kubernetes/cnat/cnat-client-go/pkg/apis \

 cnat:v1alpha1 \

 --output-base "${GOPATH}/src" \

 --go-header-file "hack/boilerplate.go.txt"

Here, all means to call all four standard code generators

for CRs:

deepcopy-gen

Generates func (t *T) DeepCopy() *T and func (t *T)

DeepCopyInto(*T) methods.

client-gen

Creates typed client sets.

informer-gen

Creates informers for CRs that offer an event-based

interface to react to changes of CRs on the server.

lister-gen

Creates listers for CRs that offer a read-only caching

layer for GET and LIST requests.

http://bit.ly/2J0s2YL

The last two are the basis for building controllers (see

“Controllers and Operators”). These four code generators

make up a powerful basis for building full-featured,

production-ready controllers using the same mechanisms

and packages that the Kubernetes upstream controllers are

using.

NOTE

There are some more generators in k8s.io/code-generator, mostly for other

contexts. For example, if you build your own aggregated API server (see

Chapter 8), you will work with internal types in addition to versioned types,

and you have to define defaulting functions. Then these two generators,

which you can access by calling the generate-internal-groups.sh script from

k8s.io/code-generator, will become relevant:

conversion-gen

Creates functions for converting between internal and external types.

defaulter-gen

Takes care of defaulting certain fields.

Now let’s look in detail at the parameters to generate-

groups.sh:

The second parameter is the target package name

for the generated clients, listers, and informers.

The third parameter is the base package for the API

group.

The fourth parameter is a space-separated list of API

groups with their versions.

--output-base is passed as a flag to all generators to

define the base directory where the given packages

are found.

http://bit.ly/2L9kSE3

--go-header-file enables us to put copyright headers

into generated code.

Some generators, like deepcopy-gen, create files directly

inside the API group packages. Those files follow a

standard naming scheme with a zz_generated. prefix such

that it is easy to exclude them from version control systems

(e.g., via .gitignore file), though most projects decide to

check generated files in because the Go tooling around

code generators is not well developed.

If the project follows the pattern of k8s.io/sample-controller

—the sample-controller is a blueprint project replicating the

patterns established by the many controllers built in

Kubernetes itself—then the code generation starts with:

$ hack/update-codegen.sh

The cnat example in the sample-controller+client-go variant

in “Following sample-controller” goes this route.

TIP

Usually, in addition to the hack/update-codegen.sh script, there is a second

script called hack/verify-codegen.sh.

This script calls the hack/update-codegen.sh script and checks whether

anything changed, and then it terminates with a nonzero return code if any

of the generated files is not up-to-date.

This is very helpful in a continuous integration (CI) script: if a developer

modified the files by accident or if the files are just outdated, CI will notice

and complain.

Controlling the Generators with Tags

1

http://bit.ly/2UppsTN
http://bit.ly/2J0s2YL
http://bit.ly/2IXUWsy

While some of the code-generator behavior is controlled via

command-line flags as described earlier (especially the

packages to process), a lot more properties are controlled

via tags in your Go files. A tag is a specially formatted Go

comment in the following form:

// +some-tag

// +some-other-tag=value

There are two kind of tags:

Global tags above the package line in a file called

doc.go

Local tags above a type declaration (e.g., above a

struct definition)

Depending on the tags in question, the position of the

comment might be important.

FOLLOW EXAMPLES (INCLUDING COMMENT

BLOCKS) PRECISELY

There are a number of tags that must be in a comment

directly above a type (or the package line for a global

tag), while others must be separated from the type (or

the package line) with at least one empty line in

between them. For example:

// +second-comment-block-tag

// +first-comment-block-tag

type Foo struct {

}

The reason for this distinction is historic: the API

documentation generators in Kubernetes used not to

know about code generation tags and instead exported

only the first comment block. Therefore, tags in that

block would have showed up in API HTML documents.

The code generator tag parsing logic is not always very

consistent, and often the error handling is far from

perfect. While this is improved with each version, be

prepared to follow existing examples very precisely—for

example, an empty line might matter.

Global Tags

Global tags are written into a package’s doc.go. A typical

pkg/apis/group/version/doc.go file looks like this:

// +k8s:deepcopy-gen=package

// Package v1 is the v1alpha1 version of the API.

// +groupName=cnat.programming-kubernetes.info

package v1alpha1

The first line of this file tells deepcopy-gen to create deep-

copy methods by default for every type in that package. If

you have types where deep copy is not necessary, not

desired, or even not possible, you can opt out for them with

the local tag // +k8s:deepcopy-gen=false. If you do not enable

package-wide deep copy, you have to opt in to deep copy

for each desired type via // +k8s:deepcopy-gen=true.

The second tag, // +groupName=example.com, defines the fully

qualified API group name. This tag is necessary if the Go

parent package name does not match the group name.

The file shown here actually comes from the cnat client-go

example pkg/apis/cnat/v1alpha1/doc.go file (see “Following

sample-controller”). There, cnat is the parent package, but

cnat.programming-kubernetes.info is the group name.

With the // +groupName tag, the client generator (see “Typed

client created via client-gen”) will generate a client using

the correct HTTP path /apis/foo.project.example.com.

Besides +groupName there is also +groupGoName, which defines

a custom Go identifier (for variable and type names) to be

used instead of the parent package name. For example, the

generators will use the uppercase parent package name for

identifies by default, which in our example is Cnat. A better

identifier would be CNAt for “Cloud Native At.” With //

+groupGoName=CNAt we could use that instead of Cnat (though

we don’t do that in this example—we’ve stayed with Cnat),

and the client-gen result would look like the following:

type Interface interface {

 Discovery() discovery.DiscoveryInterface

 CNatV1() atv1alpha1.CNatV1alpha1Interface

}

Local Tags

http://bit.ly/2L6M9ad

Local tags are written either directly above an API type or

in the second comment block above it. Here are the main

types in the types.go file of the cnat example:

// AtSpec defines the desired state of At

type AtSpec struct {

 // Schedule is the desired time the command is supposed to be executed.

 // Note: the format used here is UTC time https://www.utctime.net

 Schedule string `json:"schedule,omitempty"`

 // Command is the desired command (executed in a Bash shell) to be

executed.

 Command string `json:"command,omitempty"`

 // Important: Run "make" to regenerate code after modifying this file

}

// AtStatus defines the observed state of At

type AtStatus struct {

 // Phase represents the state of the schedule: until the command is

executed

 // it is PENDING, afterwards it is DONE.

 Phase string `json:"phase,omitempty"`

 // Important: Run "make" to regenerate code after modifying this file

}

// +genclient

// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object

// At runs a command at a given schedule.

type At struct {

 metav1.TypeMeta `json:",inline"`

 metav1.ObjectMeta `json:"metadata,omitempty"`

 Spec AtSpec `json:"spec,omitempty"`

 Status AtStatus `json:"status,omitempty"`

}

// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object

// AtList contains a list of At

type AtList struct {

 metav1.TypeMeta `json:",inline"`

 metav1.ListMeta `json:"metadata,omitempty"`

 Items []At `json:"items"`

}

http://bit.ly/31QosJw

In the following sections we’ll walk through the tags of this

example.

TIP

In this example, the API documentation is in the first comment block, while

we put the tags into the second comment block. This helps to keep the tags

out of the API documentation, if you use some tool to extract the Go doc

comments for that purpose.

deepcopy-gen Tags

Deep-copy method generation is usually enabled for all

types by default via the global // +k8s:deepcopy-gen=package

tag (see “Global Tags”)—that is, with possible opt-out.

However, in the preceding example file (and actually the

whole package), all API types need deep-copy methods.

Hence, we don’t have to opt out locally.

If we had a helper struct in the API types package (this is

usually discouraged to keep API packages clean), we would

have to disable deep-copy generation. For example:

// +k8s:deepcopy-gen=false

//

// Helper is a helper struct, not an API type.

type Helper struct {

 ...

}

runtime.Object and DeepCopyObject

There is a special deep-copy tag that needs more

explanation:

// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object

In “Kubernetes Objects in Go” we saw that runtime.Objects

have to implement the DeepCopyObject() runtime.Object

method. The reason is that generic code within Kubernetes

has to be able to create deep copies of objects. This method

allows that.

HISTORICAL BACKGROUND

Prior to 1.8, the scheme (see “Scheme”) was also

keeping references to type-specific deep-copy functions,

and it had a reflection-based deep-copy implementation.

Both mechanisms were the reason for a number of

nontrivial and hard-to-discover bugs. Therefore,

Kubernetes switched to static deep copy with the

DeepCopyObject method in the runtime.Object interface.

The DeepCopyObject() method does nothing other than

calling the generated DeepCopy method. The signature of the

latter varies from type to type (DeepCopy() *T depends on T).

The signature of the former is always DeepCopyObject()

runtime.Object:

func (in *T) DeepCopyObject() runtime.Object {

 if c := in.DeepCopy(); c != nil {

 return c

 } else {

 return nil

 }

}

Put the local tag // +k8s:deepcopy-

gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object above

your top-level API types to generate this method with

deepcopy-gen. This tells deepcopy-gen to create such a method

for runtime.Object, called DeepCopyObject().

TIP

In the previous example, both At and AtList are top-level types because they

are used as runtime.Objects.

As a rule of thumb, top-level types are those that have metav1.TypeMeta

embedded.

It happens that other interfaces need a way to be deep-

copied. This is usually the case if, for example, API types

have a field of interface type Foo:

type SomeAPIType struct {

 Foo Foo `json:"foo"`

}

As we have seen, API types must be deep-copyable, and

hence the field Foo must be deep-copied too. How could you

do that in a generic way (without type-casts) without

adding DeepCopyFoo() Foo to the Foo interface?

type Foo interface {

 ...

 DeepCopyFoo() Foo

}

In that case the same tag can be used:

// +k8s:deepcopy-gen:interfaces=<package>.Foo

type FooImplementation struct {

 ...

}

There are a few examples beyond runtime.Object in the

Kubernetes source where this tag is actually used:

// +k8s:deepcopy-gen:interfaces=.../pkg/registry/rbac/reconciliation.RuleOwner

// +k8s:deepcopy-

gen:interfaces=.../pkg/registry/rbac/reconciliation.RoleBinding

client-gen Tags

Finally, there are a number of tags to control client-gen,

one of which we saw in the earlier example for At and

AtList:

// +genclient

It tells client-gen to create a client for this type (this is

always opt-in). Note that you don’t have to and indeed must

not put it above the List type of the API objects.

In our cnat example, we use the /status subresource and

update the status of the CRs with the UpdateStatus method

of the client (see “Status subresource”). There are

instances of CRs without a status or without a spec-status

split. In those cases, the following tag avoids the

generation of that UpdateStatus() method:

// +genclient:noStatus

WARNING

Without this tag, client-gen will blindly generate the UpdateStatus() method. It

is important to understand, however, that the spec-status split works only if

the /status subresource is actually enabled in the CustomResourceDefinition

manifest (see “Subresources”).

The existence of the method alone in the client has no effect. Requests to it

without the change in the manifest will even fail.

The client generator has to choose the right HTTP path,

either with or without a namespace. For cluster-wide

resources, you have to use the tag:

// +genclient:nonNamespaced

The default is to generate a namespaced client. Again, this

has to match the scope setting in the CRD manifest. For

special-purpose clients, you might also want to control in

detail which HTTP methods are offered. You can do this by

using a couple of tags, for example:

// +genclient:noVerbs

// +genclient:onlyVerbs=create,delete

// +genclient:skipVerbs=get,list,create,update,patch,delete,watch

// +genclient:method=Create,verb=create,

// result=k8s.io/apimachinery/pkg/apis/meta/v1.Status

The first three should be pretty self-explanatory, but the

last one warrants some explanation.

The type this tag is written above will be create-only and

will not return the API type itself, but a metav1.Status. For

CRs this does not make much sense, but for user-provided

API servers written in Go (see Chapter 8) those resources

can exist, and they do in practice.

One common case for the // +genclient:method= tag is the

addition of a method to scale a resource. In “Scale

subresource” we describe how the /scale subresource can

be enabled for CRs. The following tags create the

corresponding client methods:

// +genclient:method=GetScale,verb=get,subresource=scale,\

// result=k8s.io/api/autoscaling/v1.Scale

// +genclient:method=UpdateScale,verb=update,subresource=scale,\

//

input=k8s.io/api/autoscaling/v1.Scale,result=k8s.io/api/autoscaling/v1.Scale

The first tag creates the getter GetScale. The second creates

the setter UpdateScale.

NOTE

All CR /scale subresources receive and output the Scale type from the

autoscaling/v1 group. In the Kubernetes API there are resources that use

other types for historic reasons.

informer-gen and lister-gen

Both informer-gen and lister-gen process the // +genclient

tag of client-gen. There is nothing else to configure. Each

type that opted in to client generation gets informers and

listers automatically that match the client (if the whole

suite of generators is called via the k8s.io/code-

generator/generate-group.sh script).

The documentation of the Kubernetes generators has a lot

of room for improvement and will certainly be refined

slowly over time. For more information about the different

generators, it is often helpful to look at examples inside

Kubernetes itself—for example, k8s.io/api and OpenShift

API types. Both repositories have many advanced use

cases.

Moreover, don’t hesitate to look into the generators

themselves. deepcopy-gen has some documentation available

inside its main.go file. client-gen has some documentation

available in the Kubernetes contributor documentation.

informer-gen and lister-gen currently don’t have further

documentation, but generate-groups.sh shows how each is

invoked.

Summary

In this chapter we showed you how to use the Kubernetes

code generators for CRs. With that out of the way, we now

http://bit.ly/2ZA6dWH
http://bit.ly/2KxpKnc
http://bit.ly/2x9HmN4
http://bit.ly/2WYNlns
http://bit.ly/31MeSHp

move on to higher-level abstraction tooling—that is,

solutions for writing custom controllers and operators that

enable you to focus on the business logic.

1 The Go tools do not run the generation automatically when needed and

lack a way to define dependencies between source and generated files.

Chapter 6. Solutions for

Writing Operators

So far we’ve had a look at custom controllers and operators

on a conceptual level in “Controllers and Operators” and, in

Chapter 5, how to use Kubernetes code generators—a

rather low-level way to deal with the topic. In this chapter

we’ll walk through three solutions for writing custom

controllers and operators in detail and discuss some more

alternatives.

Using one of the solutions discussed in this chapter should

help you to avoid writing a lot of repetitive code and enable

you to focus on the business logic, rather than on

boilerplate code. It should get you started more quickly and

make you more productive.

NOTE

Operators in general, and the tools we discuss in this chapter specifically, are

still rapidly evolving as of mid-2019. While we do our best, certain commands

and/or their outputs you see shown here, may change. Take this into account,

and make sure that you always use the latest version of the respective tool,

keeping an eye on the respective issue trackers, mailing lists, and Slack

channels.

While there are resources available online that compare

the solutions we discuss here, we will not recommend a

specific solution to you. We do, however, encourage you to

evaluate and compare them yourself and pick the one that

is the best fit for your organization and environment.

http://bit.ly/2ZC5fZT

Preparation

We will be using cnat (cloud-native at, which we introduced

in “A Motivational Example”) as the running example for

the different solutions in this chapter. If you want to follow

along, note that we assume you:

1. Have Go version 1.12 or above installed and set up

properly.

2. Have access to a Kubernetes cluster in version 1.12

or above—either locally through, for example, kind

or k3d, or remotely through your favorite cloud

provider—and kubectl configured to access it.

3. git clone our GitHub repository. The complete,

functioning source code and the necessary

commands shown in the following sections are

available there. Note that what we’re showing here

is how things work from scratch. If you want to see

the results rather than carrying out the steps

yourself, you’re also welcome to clone the repository

and run only the commands to install the CRD,

install the CR, and launch the custom controller.

With these housekeeping items out of the way, let’s jump

into writing operators: we will covers, the sample-controller,

Kubebuilder, and the Operator SDK in this chapter.

Ready? Let’s Go—pun intended!

Following sample-controller

Let’s start off by implementing cnat based on the

k8s.io/sample-controller, which uses the client-go library

directly. The sample-controller uses the k8s.io/code-

http://bit.ly/2N3R6U4
http://bit.ly/2UppsTN
http://bit.ly/2Yas9HK
http://bit.ly/2Kw8I8U

generator to generate a typed client, informers, listers, and

deep-copy functions. Whenever the API types change in

your custom controller—for example, adding a new field in

the custom resource—you have to use the update-

codegen.sh script (see also its source in GitHub) to

regenerate the aforementioned source files.

WARNING

You might have noticed k8s.io being used as the base URL throughout the

book. We introduced its usage in Chapter 3; as a reminder, it is really an alias

for kubernetes.io, and in the context of Go package management it resolves

to github.com/kubernetes. Note that k8s.io does not come with an automatic

redirect. So, for example, k8s.io/sample-controller really means that you

should be looking at github.com/kubernetes/sample-controller, and so on.

OK, let’s implement our cnat operator using client-go,

following the sample-controller. (See the corresponding

directory in our repo.)

Bootstrapping

To begin, do a go get k8s.io/sample-controller to get the

source and dependencies onto your system, which should

be in $GOPATH/src/k8s.io/sample-\controller.

If you start from scratch, copy the content of the sample-

controller directory into a directory of your choice (for

example, we use cnat-client-go in our repo), and you can

run the following command sequence to build and run the

base controller (with the default implementation, not the

cnat business logic yet):

build custom controller binary:

$ go build -o cnat-controller .

http://bit.ly/2Kw8I8U
http://bit.ly/2Fq3Td1
http://bit.ly/2UppsTN
http://bit.ly/2RpHhON
http://bit.ly/2N3R6U4

launch custom controller locally:

$./cnat-controller -kubeconfig=$HOME/.kube/config

This command will launch the custom controller and wait

for you to register the CRD and create a custom resource.

Let’s do this now and see what happens. In a second

terminal session, enter:

$ kubectl apply -f artifacts/examples/crd.yaml

Make sure the CRD is properly registered and available like

so:

$ kubectl get crds

NAME CREATED AT

foos.samplecontroller.k8s.io 2019-05-29T12:16:57Z

Note that you may see other CRDs here, depending on the

Kubernetes distro you’re using; however,

foos.samplecontroller.k8s.io should be listed, at least.

Next, we create the example custom resource

foo.samplecontroller.k8s.io/example-foo and check if the

controller does its job:

$ kubectl apply -f artifacts/examples/example-foo.yaml

foo.samplecontroller.k8s.io/example-foo created

$ kubectl get po,rs,deploy,foo

NAME READY STATUS RESTARTS

AGE

pod/example-foo-5b8c9679d8-xjhdf 1/1 Running 0

67s

NAME DESIRED CURRENT READY AGE

replicaset.extensions/example-foo-5b8c9679d8 1 1 1 67s

NAME READY UP-TO-DATE AVAILABLE

AGE

deployment.extensions/example-foo 1/1 1 1

67s

NAME AGE

foo.samplecontroller.k8s.io/example-foo 67s

Yay, it works as expected! We can now move on to

implementing the actual cnat-specific business logic.

Business Logic

To kick off implementing the business logic, we first

rename the existing directory pkg/apis/samplecontroller to

pkg/apis/cnat and then create our own CRD and custom

resource as follows:

$ cat artifacts/examples/cnat-crd.yaml

apiVersion: apiextensions.k8s.io/v1beta1

kind: CustomResourceDefinition

metadata:

 name: ats.cnat.programming-kubernetes.info

spec:

 group: cnat.programming-kubernetes.info

 version: v1alpha1

 names:

 kind: At

 plural: ats

 scope: Namespaced

$ cat artifacts/examples/cnat-example.yaml

apiVersion: cnat.programming-kubernetes.info/v1alpha1

kind: At

metadata:

 labels:

 controller-tools.k8s.io: "1.0"

 name: example-at

spec:

 schedule: "2019-04-12T10:12:00Z"

 command: "echo YAY"

Note that whenever the API types change—for example,

when you add a new field to the At CRD—you have to

execute the update-codegen.sh script, like so:

$./hack/update-codegen.sh

This will automatically generate the following:

pkg/apis/cnat/v1alpha1/zz_generated.deepcopy.go

pkg/generated/*

In terms of the business logic, we have two parts to

implement in the operator:

In types.go we modify the AtSpec struct to include

the respective fields, such as schedule and command.

Note that you must run update-codegen.sh whenever

you change something here in order to regenerate

dependent files.

In controller.go we change the NewController() and

syncHandler() functions as well as add helper

functions, including creating pods and checking

schedule time.

In types.go, note the three constants representing the three

phases of the At resource: up until the scheduled time in

PENDING, then RUNNING to completion, and finally in the DONE

state:

// +genclient

// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object

const (

 PhasePending = "PENDING"

 PhaseRunning = "RUNNING"

 PhaseDone = "DONE"

)

// AtSpec defines the desired state of At

type AtSpec struct {

 // Schedule is the desired time the command is supposed to be executed.

 // Note: the format used here is UTC time https://www.utctime.net

http://bit.ly/31QosJw
http://bit.ly/31MM4OS

 Schedule string `json:"schedule,omitempty"`

 // Command is the desired command (executed in a Bash shell) to be

 // executed.

 Command string `json:"command,omitempty"`

}

// AtStatus defines the observed state of At

type AtStatus struct {

 // Phase represents the state of the schedule: until the command is

 // executed it is PENDING, afterwards it is DONE.

 Phase string `json:"phase,omitempty"`

}

Note the explicit usage of the build tags +k8s:deepcopy-

gen:interfaces (refer to Chapter 5) so that the respective

sources are autogenerated.

We are now in the position to implement the business logic

of the custom controller. That is, we implement the state

transitions between the three phases—from PhasePending to

PhaseRunning to PhaseDone—in controller.go.

In “Work Queue” we introduced and explained the work

queue that client-go provides. We can now put this

knowledge to work: in the processNextWorkItem() in

controller.go—to be more precise, in lines 176 to 186—you

can find the following (generated) code:

if when, err := c.syncHandler(key); err != nil {

 c.workqueue.AddRateLimited(key)

 return fmt.Errorf("error syncing '%s': %s, requeuing", key, err.Error())

} else if when != time.Duration(0) {

 c.workqueue.AddAfter(key, when)

} else {

 // Finally, if no error occurs we Forget this item so it does not

 // get queued again until another change happens.

 c.workqueue.Forget(obj)

}

This snippet shows how our (yet-to-be-written) custom

syncHandler() function (explained shortly) is invoked and

http://bit.ly/31MM4OS
http://bit.ly/2WYDbyi

covers these three cases:

1. The first if branch requeues the item via the

AddRateLimited() function call, handling transient

errors.

2. The second branch, the else if, requeues the item

via the AddAfter() function call to avoid hot-looping.

3. The last case, the else, is where the item has been

processed successfully and is discarded via the

Forget() function call.

Now that we’ve got a sound understanding of the generic

handling, let’s move on to the business-logic-specific

functionality. Key to it is the aforementioned syncHandler()

function, where we are implementing the business logic of

our custom controller. It has the following signature:

// syncHandler compares the actual state with the desired state and attempts

// to converge the two. It then updates the Status block of the At resource

// with the current status of the resource. It returns how long to wait

// until the schedule is due.

func (c *Controller) syncHandler(key string) (time.Duration, error) {

 ...

}

This syncHandler() function implements the following state

transitions:

...

// If no phase set, default to pending (the initial phase):

if instance.Status.Phase == "" {

 instance.Status.Phase = cnatv1alpha1.PhasePending

}

// Now let's make the main case distinction: implementing

// the state diagram PENDING -> RUNNING -> DONE

switch instance.Status.Phase {

case cnatv1alpha1.PhasePending:

1

 klog.Infof("instance %s: phase=PENDING", key)

 // As long as we haven't executed the command yet, we need

 // to check if it's time already to act:

 klog.Infof("instance %s: checking schedule %q", key,

instance.Spec.Schedule)

 // Check if it's already time to execute the command with a

 // tolerance of 2 seconds:

 d, err := timeUntilSchedule(instance.Spec.Schedule)

 if err != nil {

 utilruntime.HandleError(fmt.Errorf("schedule parsing failed: %v",

err))

 // Error reading the schedule - requeue the request:

 return time.Duration(0), err

 }

 klog.Infof("instance %s: schedule parsing done: diff=%v", key, d)

 if d > 0 {

 // Not yet time to execute the command, wait until the

 // scheduled time

 return d, nil

 }

 klog.Infof(

 "instance %s: it's time! Ready to execute: %s", key,

 instance.Spec.Command,

)

 instance.Status.Phase = cnatv1alpha1.PhaseRunning

case cnatv1alpha1.PhaseRunning:

 klog.Infof("instance %s: Phase: RUNNING", key)

 pod := newPodForCR(instance)

 // Set At instance as the owner and controller

 owner := metav1.NewControllerRef(

 instance, cnatv1alpha1.SchemeGroupVersion.

 WithKind("At"),

)

 pod.ObjectMeta.OwnerReferences = append(pod.ObjectMeta.OwnerReferences,

*owner)

 // Try to see if the pod already exists and if not

 // (which we expect) then create a one-shot pod as per spec:

 found, err := c.kubeClientset.CoreV1().Pods(pod.Namespace).

 Get(pod.Name, metav1.GetOptions{})

 if err != nil && errors.IsNotFound(err) {

 found, err = c.kubeClientset.CoreV1().Pods(pod.Namespace).Create(pod)

 if err != nil {

 return time.Duration(0), err

 }

 klog.Infof("instance %s: pod launched: name=%s", key, pod.Name)

 } else if err != nil {

 // requeue with error

 return time.Duration(0), err

 } else if found.Status.Phase == corev1.PodFailed ||

 found.Status.Phase == corev1.PodSucceeded {

 klog.Infof(

 "instance %s: container terminated: reason=%q message=%q",

 key, found.Status.Reason, found.Status.Message,

)

 instance.Status.Phase = cnatv1alpha1.PhaseDone

 } else {

 // Don't requeue because it will happen automatically

 // when the pod status changes.

 return time.Duration(0), nil

 }

case cnatv1alpha1.PhaseDone:

 klog.Infof("instance %s: phase: DONE", key)

 return time.Duration(0), nil

default:

 klog.Infof("instance %s: NOP")

 return time.Duration(0), nil

}

// Update the At instance, setting the status to the respective phase:

_, err = c.cnatClientset.CnatV1alpha1().Ats(instance.Namespace).

 UpdateStatus(instance)

if err != nil {

 return time.Duration(0), err

}

// Don't requeue. We should be reconcile because either the pod or

// the CR changes.

return time.Duration(0), nil

Further, to set up informers and the controller at large, we

implement the following in NewController():

// NewController returns a new cnat controller

func NewController(

 kubeClientset kubernetes.Interface,

 cnatClientset clientset.Interface,

 atInformer informers.AtInformer,

 podInformer corev1informer.PodInformer) *Controller {

 // Create event broadcaster

 // Add cnat-controller types to the default Kubernetes Scheme so Events

 // can be logged for cnat-controller types.

 utilruntime.Must(cnatscheme.AddToScheme(scheme.Scheme))

 klog.V(4).Info("Creating event broadcaster")

 eventBroadcaster := record.NewBroadcaster()

 eventBroadcaster.StartLogging(klog.Infof)

 eventBroadcaster.StartRecordingToSink(&typedcorev1.EventSinkImpl{

 Interface: kubeClientset.CoreV1().Events(""),

 })

 source := corev1.EventSource{Component: controllerAgentName}

 recorder := eventBroadcaster.NewRecorder(scheme.Scheme, source)

 rateLimiter := workqueue.DefaultControllerRateLimiter()

 controller := &Controller{

 kubeClientset: kubeClientset,

 cnatClientset: cnatClientset,

 atLister: atInformer.Lister(),

 atsSynced: atInformer.Informer().HasSynced,

 podLister: podInformer.Lister(),

 podsSynced: podInformer.Informer().HasSynced,

 workqueue: workqueue.NewNamedRateLimitingQueue(rateLimiter,

"Ats"),

 recorder: recorder,

 }

 klog.Info("Setting up event handlers")

 // Set up an event handler for when At resources change

 atInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{

 AddFunc: controller.enqueueAt,

 UpdateFunc: func(old, new interface{}) {

 controller.enqueueAt(new)

 },

 })

 // Set up an event handler for when Pod resources change

 podInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{

 AddFunc: controller.enqueuePod,

 UpdateFunc: func(old, new interface{}) {

 controller.enqueuePod(new)

 },

 })

 return controller

}

There are two further helper functions we need in order to

make it work: one calculates the time until the schedule,

which looks like this:

func timeUntilSchedule(schedule string) (time.Duration, error) {

 now := time.Now().UTC()

 layout := "2006-01-02T15:04:05Z"

 s, err := time.Parse(layout, schedule)

 if err != nil {

 return time.Duration(0), err

 }

 return s.Sub(now), nil

}

and the other creates a pod with the command to execute,

using a busybox container image:

func newPodForCR(cr *cnatv1alpha1.At) *corev1.Pod {

 labels := map[string]string{

 "app": cr.Name,

 }

 return &corev1.Pod{

 ObjectMeta: metav1.ObjectMeta{

 Name: cr.Name + "-pod",

 Namespace: cr.Namespace,

 Labels: labels,

 },

 Spec: corev1.PodSpec{

 Containers: []corev1.Container{

 {

 Name: "busybox",

 Image: "busybox",

 Command: strings.Split(cr.Spec.Command, " "),

 },

 },

 RestartPolicy: corev1.RestartPolicyOnFailure,

 },

 }

}

We will be reusing these two helper functions and the basic

flow of the business logic as presented here in the

syncHandler() function later in this chapter, so make sure

you familiarize yourself with their details.

Note that from the point of the At resource, the pod is a

secondary resource and the controller must make sure to

clean those pods up or otherwise risk orphaned pods.

Now, sample-controller is a good tool to learn how the

sausage is made, but usually you want to focus on creating

the business logic rather than dealing with the boilerplate

code. For this, there are two related projects you can

choose from: Kubebuilder and the Operator SDK. Let’s

have a look at each and how cnat is implemented with

them.

Kubebuilder

Kubebuilder, owned and maintained by the Kubernetes

Special Interest Group (SIG) API Machinery, is a tool and

set of libraries enabling you to build operators in an easy

and efficient manner. The best resource for a deep dive on

Kubebuilder is the online Kubebuilder book, which walks

you through its components and usage. We will, however,

focus here on implementing our cnat operator with

Kubebuilder (see the corresponding directory in our Git

repository).

First, let’s make sure all the dependencies—that is, dep,

kustomize (see “Kustomize”), and Kubebuilder itself—are

installed:

$ dep version

dep:

 version : v0.5.1

 build date : 2019-03-11

 git hash : faa6189

 go version : go1.12

 go compiler : gc

 platform : darwin/amd64

 features : ImportDuringSolve=false

$ kustomize version

Version: {KustomizeVersion:v2.0.3

http://bit.ly/2I8w9mz
https://book.kubebuilder.io/
http://bit.ly/2RpHhON
http://bit.ly/2Iv6pAS
http://bit.ly/2x9Yrqq
http://bit.ly/2Y3JeCV
http://bit.ly/32pQmfu

GitCommit:a6f65144121d1955266b0cd836ce954c04122dc8

 BuildDate:2019-03-18T22:15:21+00:00 GoOs:darwin GoArch:amd64}

$ kubebuilder version

Version: version.Version{

 KubeBuilderVersion:"1.0.8",

 KubernetesVendor:"1.13.1",

 GitCommit:"1adf50ed107f5042d7472ba5ab50d5e1d357169d",

 BuildDate:"2019-01-25T23:14:29Z", GoOs:"unknown", GoArch:"unknown"

}

We’ll walk you through the steps for writing the cnat

operator from scratch. First, create a directory of your

choice (we use cnat-kubebuilder in our repo) that you’ll use

as the base for all further commands.

WARNING

At the time of this writing, Kubebuilder is moving to a new version (v2).

Since it’s not stable yet, we show the commands and setup for (stable)

version v1.

Bootstrapping

To bootstrap the cnat operator, we use the init command

like so (note that this can take several minutes, depending

on your environment):

$ kubebuilder init \

 --domain programming-kubernetes.info \

 --license apache2 \

 --owner "Programming Kubernetes authors"

Run `dep ensure` to fetch dependencies (Recommended) [y/n]?

y

dep ensure

Running make...

make

go generate ./pkg/... ./cmd/...

go fmt ./pkg/... ./cmd/...

go vet ./pkg/... ./cmd/...

go run vendor/sigs.k8s.io/controller-tools/cmd/controller-gen/main.go all

https://book-v1.book.kubebuilder.io/

CRD manifests generated under 'config/crds'

RBAC manifests generated under 'config/rbac'

go test ./pkg/... ./cmd/... -coverprofile cover.out

? github.com/mhausenblas/cnat-kubebuilder/pkg/apis [no test

files]

? github.com/mhausenblas/cnat-kubebuilder/pkg/controller [no test

files]

? github.com/mhausenblas/cnat-kubebuilder/pkg/webhook [no test

files]

? github.com/mhausenblas/cnat-kubebuilder/cmd/manager [no test

files]

go build -o bin/manager github.com/mhausenblas/cnat-kubebuilder/cmd/manager

On completion of this command, Kubebuilder has

scaffolded the operator, effectively generating a bunch of

files, from the custom controller to a sample CRD. Your

base directory should now look something like the

following (excluding the huge vendor directory for clarity):

$ tree -I vendor

.

├── Dockerfile
├── Gopkg.lock
├── Gopkg.toml
├── Makefile
├── PROJECT
├── bin
│ └── manager
├── cmd
│ └── manager
│ └── main.go
├── config
│ ├── crds
│ ├── default
│ │ ├── kustomization.yaml
│ │ ├── manager_auth_proxy_patch.yaml
│ │ ├── manager_image_patch.yaml
│ │ └── manager_prometheus_metrics_patch.yaml
│ ├── manager
│ │ └── manager.yaml
│ └── rbac
│ ├── auth_proxy_role.yaml
│ ├── auth_proxy_role_binding.yaml
│ ├── auth_proxy_service.yaml
│ ├── rbac_role.yaml

│ └── rbac_role_binding.yaml
├── cover.out
├── hack
│ └── boilerplate.go.txt
└── pkg
 ├── apis
 │ └── apis.go
 ├── controller
 │ └── controller.go
 └── webhook
 └── webhook.go

13 directories, 22 files

Next, we create an API—that is, a custom controller—using

the create api command (this should be faster than the

previous command but still takes a little while):

$ kubebuilder create api \

 --group cnat \

 --version v1alpha1 \

 --kind At

Create Resource under pkg/apis [y/n]?

y

Create Controller under pkg/controller [y/n]?

y

Writing scaffold for you to edit...

pkg/apis/cnat/v1alpha1/at_types.go

pkg/apis/cnat/v1alpha1/at_types_test.go

pkg/controller/at/at_controller.go

pkg/controller/at/at_controller_test.go

Running make...

go generate ./pkg/... ./cmd/...

go fmt ./pkg/... ./cmd/...

go vet ./pkg/... ./cmd/...

go run vendor/sigs.k8s.io/controller-tools/cmd/controller-gen/main.go all

CRD manifests generated under 'config/crds'

RBAC manifests generated under 'config/rbac'

go test ./pkg/... ./cmd/... -coverprofile cover.out

? github.com/mhausenblas/cnat-kubebuilder/pkg/apis [no test

files]

? github.com/mhausenblas/cnat-kubebuilder/pkg/apis/cnat [no test

files]

ok github.com/mhausenblas/cnat-kubebuilder/pkg/apis/cnat/v1alpha1 9.011s

? github.com/mhausenblas/cnat-kubebuilder/pkg/controller [no test

files]

ok github.com/mhausenblas/cnat-kubebuilder/pkg/controller/at 8.740s

? github.com/mhausenblas/cnat-kubebuilder/pkg/webhook [no test

files]

? github.com/mhausenblas/cnat-kubebuilder/cmd/manager [no test

files]

go build -o bin/manager github.com/mhausenblas/cnat-kubebuilder/cmd/manager

Let’s see what has changed, focusing on the two directories

that have received updates and additions:

$ tree config/ pkg/

config/

├── crds
│ └── cnat_v1alpha1_at.yaml
├── default
│ ├── kustomization.yaml
│ ├── manager_auth_proxy_patch.yaml
│ ├── manager_image_patch.yaml
│ └── manager_prometheus_metrics_patch.yaml
├── manager
│ └── manager.yaml
├── rbac
│ ├── auth_proxy_role.yaml
│ ├── auth_proxy_role_binding.yaml
│ ├── auth_proxy_service.yaml
│ ├── rbac_role.yaml
│ └── rbac_role_binding.yaml
└── samples
 └── cnat_v1alpha1_at.yaml
pkg/

├── apis
│ ├── addtoscheme_cnat_v1alpha1.go
│ ├── apis.go
│ └── cnat
│ ├── group.go
│ └── v1alpha1
│ ├── at_types.go
│ ├── at_types_test.go
│ ├── doc.go
│ ├── register.go
│ ├── v1alpha1_suite_test.go
│ └── zz_generated.deepcopy.go
├── controller
│ ├── add_at.go
│ ├── at

│ │ ├── at_controller.go
│ │ ├── at_controller_suite_test.go
│ │ └── at_controller_test.go
│ └── controller.go
└── webhook
 └── webhook.go

11 directories, 27 files

Note the addition of cnat_v1alpha1_at.yaml in config/crds/,

which is the CRD, as well as cnat_v1alpha1_at.yaml (yes,

the same name) in config/samples/, representing a custom

resource example instance of the CRD. Further, in pkg/ we

see a number of new files, most importantly

apis/cnat/v1alpha1/at_types.go and

controller/at/at_controller.go, both of which we will modify

next.

Next, we create a dedicated namespace, cnat, in

Kubernetes and use it as the default, setting the context as

follows (as a good practice, always use a dedicated

namespace, not the default one):

$ kubectl create ns cnat && \

 kubectl config set-context $(kubectl config current-context) --

namespace=cnat

We install the CRD with:

$ make install

go run vendor/sigs.k8s.io/controller-tools/cmd/controller-gen/main.go all

CRD manifests generated under 'config/crds'

RBAC manifests generated under 'config/rbac'

kubectl apply -f config/crds

customresourcedefinition.apiextensions.k8s.io/ats.cnat.programming-

kubernetes.info created

And now we can launch the operator locally:

$ make run

go generate ./pkg/... ./cmd/...

go fmt ./pkg/... ./cmd/...

go vet ./pkg/... ./cmd/...

go run ./cmd/manager/main.go

{"level":"info","ts":1559152740.0550249,"logger":"entrypoint",

 "msg":"setting up client for manager"}

{"level":"info","ts":1559152740.057556,"logger":"entrypoint",

 "msg":"setting up manager"}

{"level":"info","ts":1559152740.1396701,"logger":"entrypoint",

 "msg":"Registering Components."}

{"level":"info","ts":1559152740.1397,"logger":"entrypoint",

 "msg":"setting up scheme"}

{"level":"info","ts":1559152740.139773,"logger":"entrypoint",

 "msg":"Setting up controller"}

{"level":"info","ts":1559152740.139831,"logger":"kubebuilder.controller",

 "msg":"Starting EventSource","controller":"at-controller",

 "source":"kind source: /, Kind="}

{"level":"info","ts":1559152740.139929,"logger":"kubebuilder.controller",

 "msg":"Starting EventSource","controller":"at-controller",

 "source":"kind source: /, Kind="}

{"level":"info","ts":1559152740.139971,"logger":"entrypoint",

 "msg":"setting up webhooks"}

{"level":"info","ts":1559152740.13998,"logger":"entrypoint",

 "msg":"Starting the Cmd."}

{"level":"info","ts":1559152740.244628,"logger":"kubebuilder.controller",

 "msg":"Starting Controller","controller":"at-controller"}

{"level":"info","ts":1559152740.344791,"logger":"kubebuilder.controller",

 "msg":"Starting workers","controller":"at-controller","worker count":1}

Leave the terminal session running and, in a new session,

install the CRD, validate it, and create the sample custom

resource like so:

$ kubectl apply -f config/crds/cnat_v1alpha1_at.yaml

customresourcedefinition.apiextensions.k8s.io/ats.cnat.programming-

kubernetes.info

configured

$ kubectl get crds

NAME CREATED AT

ats.cnat.programming-kubernetes.info 2019-05-29T17:54:51Z

$ kubectl apply -f config/samples/cnat_v1alpha1_at.yaml

at.cnat.programming-kubernetes.info/at-sample created

If you now look at the output of the session where make run

runs, you should notice the following output:

...

{"level":"info","ts":1559153311.659829,"logger":"controller",

 "msg":"Creating Deployment","namespace":"cnat","name":"at-sample-

deployment"}

{"level":"info","ts":1559153311.678407,"logger":"controller",

 "msg":"Updating Deployment","namespace":"cnat","name":"at-sample-

deployment"}

{"level":"info","ts":1559153311.6839428,"logger":"controller",

 "msg":"Updating Deployment","namespace":"cnat","name":"at-sample-

deployment"}

{"level":"info","ts":1559153311.693443,"logger":"controller",

 "msg":"Updating Deployment","namespace":"cnat","name":"at-sample-

deployment"}

{"level":"info","ts":1559153311.7023401,"logger":"controller",

 "msg":"Updating Deployment","namespace":"cnat","name":"at-sample-

deployment"}

{"level":"info","ts":1559153332.986961,"logger":"controller",#

 "msg":"Updating Deployment","namespace":"cnat","name":"at-sample-

deployment"}

This tells us that the overall setup was successful! Now

that we’ve completed the scaffolding and successfully

launched the cnat operator, we can move on to the actual

core task: implementing the cnat business logic with

Kubebuilder.

Business Logic

For starters, we’ll change

config/crds/cnat_v1alpha1_at.yaml and

config/samples/cnat_v1alpha1_at.yaml to our own

definitions of the cnat CRD and custom resource values, re-

using the same structures as in “Following sample-

controller”.

In terms of the business logic, we have two parts to

implement in the operator:

http://bit.ly/2N1jQNb
http://bit.ly/2Xs1F7c

In pkg/apis/cnat/v1alpha1/at_types.go we modify the

AtSpec struct to include the respective fields, such as

schedule and command. Note that you must run make

whenever you change something here in order to

regenerate dependent files. Kubebuilder uses the

Kubernetes generators (described in Chapter 5) and

ships its own set of generators (e.g., to generate the

CRD manifest).

In pkg/controller/at/at_controller.go we modify the

Reconcile(request reconcile.Request) method to create

a pod at the time defined in Spec.Schedule.

In at_types.go:

const (

 PhasePending = "PENDING"

 PhaseRunning = "RUNNING"

 PhaseDone = "DONE"

)

// AtSpec defines the desired state of At

type AtSpec struct {

 // Schedule is the desired time the command is supposed to be executed.

 // Note: the format used here is UTC time https://www.utctime.net

 Schedule string `json:"schedule,omitempty"`

 // Command is the desired command (executed in a Bash shell) to be

executed.

 Command string `json:"command,omitempty"`

}

// AtStatus defines the observed state of At

type AtStatus struct {

 // Phase represents the state of the schedule: until the command is

executed

 // it is PENDING, afterwards it is DONE.

 Phase string `json:"phase,omitempty"`

}

In at_controller.go we implement the state transition

between the three phases, PENDING to RUNNING to DONE:

http://bit.ly/31KNLfO
http://bit.ly/2Iwormg

func (r *ReconcileAt) Reconcile(req reconcile.Request) (reconcile.Result,

error) {

 reqLogger := log.WithValues("namespace", req.Namespace, "at", req.Name)

 reqLogger.Info("=== Reconciling At")

 // Fetch the At instance

 instance := &cnatv1alpha1.At{}

 err := r.Get(context.TODO(), req.NamespacedName, instance)

 if err != nil {

 if errors.IsNotFound(err) {

 // Request object not found, could have been deleted after

 // reconcile request—return and don't requeue:
 return reconcile.Result{}, nil

 }

 // Error reading the object—requeue the request:
 return reconcile.Result{}, err

 }

 // If no phase set, default to pending (the initial phase):

 if instance.Status.Phase == "" {

 instance.Status.Phase = cnatv1alpha1.PhasePending

 }

 // Now let's make the main case distinction: implementing

 // the state diagram PENDING -> RUNNING -> DONE

 switch instance.Status.Phase {

 case cnatv1alpha1.PhasePending:

 reqLogger.Info("Phase: PENDING")

 // As long as we haven't executed the command yet, we need to check if

 // it's already time to act:

 reqLogger.Info("Checking schedule", "Target", instance.Spec.Schedule)

 // Check if it's already time to execute the command with a tolerance

 // of 2 seconds:

 d, err := timeUntilSchedule(instance.Spec.Schedule)

 if err != nil {

 reqLogger.Error(err, "Schedule parsing failure")

 // Error reading the schedule. Wait until it is fixed.

 return reconcile.Result{}, err

 }

 reqLogger.Info("Schedule parsing done", "Result", "diff",

 fmt.Sprintf("%v", d))

 if d > 0 {

 // Not yet time to execute the command, wait until the scheduled

time

 return reconcile.Result{RequeueAfter: d}, nil

 }

 reqLogger.Info("It's time!", "Ready to execute",

instance.Spec.Command)

 instance.Status.Phase = cnatv1alpha1.PhaseRunning

p g

 case cnatv1alpha1.PhaseRunning:

 reqLogger.Info("Phase: RUNNING")

 pod := newPodForCR(instance)

 // Set At instance as the owner and controller

 err := controllerutil.SetControllerReference(instance, pod, r.scheme)

 if err != nil {

 // requeue with error

 return reconcile.Result{}, err

 }

 found := &corev1.Pod{}

 nsName := types.NamespacedName{Name: pod.Name, Namespace:

pod.Namespace}

 err = r.Get(context.TODO(), nsName, found)

 // Try to see if the pod already exists and if not

 // (which we expect) then create a one-shot pod as per spec:

 if err != nil && errors.IsNotFound(err) {

 err = r.Create(context.TODO(), pod)

 if err != nil {

 // requeue with error

 return reconcile.Result{}, err

 }

 reqLogger.Info("Pod launched", "name", pod.Name)

 } else if err != nil {

 // requeue with error

 return reconcile.Result{}, err

 } else if found.Status.Phase == corev1.PodFailed ||

 found.Status.Phase == corev1.PodSucceeded {

 reqLogger.Info("Container terminated", "reason",

 found.Status.Reason, "message", found.Status.Message)

 instance.Status.Phase = cnatv1alpha1.PhaseDone

 } else {

 // Don't requeue because it will happen automatically when the

 // pod status changes.

 return reconcile.Result{}, nil

 }

 case cnatv1alpha1.PhaseDone:

 reqLogger.Info("Phase: DONE")

 return reconcile.Result{}, nil

 default:

 reqLogger.Info("NOP")

 return reconcile.Result{}, nil

 }

 // Update the At instance, setting the status to the respective phase:

 err = r.Status().Update(context.TODO(), instance)

 if err != nil {

 return reconcile.Result{}, err

 }

 // Don't requeue. We should be reconcile because either the pod

 // or the CR changes.

 return reconcile.Result{}, nil

}

Note here that the Update call at the end operates on the

/status subresource (see “Status subresource”) instead of

the whole CR. Hence, here we follow the best practice of a

spec-status split.

Now, once the CR example-at is created, we see the

following output of the locally executed operator:

$ make run

...

{"level":"info","ts":1555063897.488535,"logger":"controller",

 "msg":"=== Reconciling At","namespace":"cnat","at":"example-at"}

{"level":"info","ts":1555063897.488621,"logger":"controller",

 "msg":"Phase: PENDING","namespace":"cnat","at":"example-at"}

{"level":"info","ts":1555063897.4886441,"logger":"controller",

 "msg":"Checking schedule","namespace":"cnat","at":"example-at",

 "Target":"2019-04-12T10:12:00Z"}

{"level":"info","ts":1555063897.488703,"logger":"controller",

 "msg":"Schedule parsing done","namespace":"cnat","at":"example-at",

 "Result":"2019-04-12 10:12:00 +0000 UTC with a diff of 22.511336s"}

{"level":"info","ts":1555063907.489264,"logger":"controller",

 "msg":"=== Reconciling At","namespace":"cnat","at":"example-at"}

{"level":"info","ts":1555063907.489402,"logger":"controller",

 "msg":"Phase: PENDING","namespace":"cnat","at":"example-at"}

{"level":"info","ts":1555063907.489428,"logger":"controller",

 "msg":"Checking schedule","namespace":"cnat","at":"example-at",

 "Target":"2019-04-12T10:12:00Z"}

{"level":"info","ts":1555063907.489486,"logger":"controller",

 "msg":"Schedule parsing done","namespace":"cnat","at":"example-at",

 "Result":"2019-04-12 10:12:00 +0000 UTC with a diff of 12.510551s"}

{"level":"info","ts":1555063917.490178,"logger":"controller",

 "msg":"=== Reconciling At","namespace":"cnat","at":"example-at"}

{"level":"info","ts":1555063917.4902349,"logger":"controller",

 "msg":"Phase: PENDING","namespace":"cnat","at":"example-at"}

{"level":"info","ts":1555063917.490247,"logger":"controller",

 "msg":"Checking schedule","namespace":"cnat","at":"example-at",

 "Target":"2019-04-12T10:12:00Z"}

{"level":"info","ts":1555063917.490278,"logger":"controller",

 "msg":"Schedule parsing done","namespace":"cnat","at":"example-at",

 "Result":"2019-04-12 10:12:00 +0000 UTC with a diff of 2.509743s"}

{"level":"info","ts":1555063927.492718,"logger":"controller",

 "msg":"=== Reconciling At","namespace":"cnat","at":"example-at"}

{"level":"info","ts":1555063927.49283,"logger":"controller",

 "msg":"Phase: PENDING","namespace":"cnat","at":"example-at"}

{"level":"info","ts":1555063927.492857,"logger":"controller",

 "msg":"Checking schedule","namespace":"cnat","at":"example-at",

 "Target":"2019-04-12T10:12:00Z"}

{"level":"info","ts":1555063927.492915,"logger":"controller",

 "msg":"Schedule parsing done","namespace":"cnat","at":"example-at",

 "Result":"2019-04-12 10:12:00 +0000 UTC with a diff of -7.492877s"}

{"level":"info","ts":1555063927.4929411,"logger":"controller",

 "msg":"It's time!","namespace":"cnat","at":

 "example-at","Ready to execute":"echo YAY"}

{"level":"info","ts":1555063927.626236,"logger":"controller",

 "msg":"=== Reconciling At","namespace":"cnat","at":"example-at"}

{"level":"info","ts":1555063927.626303,"logger":"controller",

 "msg":"Phase: RUNNING","namespace":"cnat","at":"example-at"}

{"level":"info","ts":1555063928.07445,"logger":"controller",

 "msg":"Pod launched","namespace":"cnat","at":"example-at",

 "name":"example-at-pod"}

{"level":"info","ts":1555063928.199562,"logger":"controller",

 "msg":"=== Reconciling At","namespace":"cnat","at":"example-at"}

{"level":"info","ts":1555063928.199645,"logger":"controller",

 "msg":"Phase: DONE","namespace":"cnat","at":"example-at"}

{"level":"info","ts":1555063937.631733,"logger":"controller",

 "msg":"=== Reconciling At","namespace":"cnat","at":"example-at"}

{"level":"info","ts":1555063937.631783,"logger":"controller",

 "msg":"Phase: DONE","namespace":"cnat","at":"example-at"}

...

To verify whether our custom controller has done its job,

execute:

$ kubectl get at,pods

NAME AGE

at.cnat.programming-kubernetes.info/example-at 11m

NAME READY STATUS RESTARTS AGE

pod/example-at-pod 0/1 Completed 0 38s

Great! The example-at-pod has been created, and now it’s

time to see the result of the operation:

$ kubectl logs example-at-pod

YAY

When you’re done developing the custom controller, using

local mode as shown here, you’ll likely want to build a

container image out of it. This custom controller container

image can subsequently be used, for example, in a

Kubernetes deployment. You can use the following

command to generate the container image and push it into

the repo quay.io/pk/cnat:

$ export IMG=quay.io/pk/cnat:v1

$ make docker-build

$ make docker-push

With this we move on to the Operator SDK, which shares

some of Kubebuilder’s code base and APIs.

The Operator SDK

To make it easier to build Kubernetes applications,

CoreOS/Red Hat has put together the Operator

Framework. Part of that is the Operator SDK, which

enables developers to build operators without requiring

deep knowledge of Kubernetes APIs.

The Operator SDK provides the tools to build, test, and

package operators. While there is much more functionality

available in the SDK, especially around testing, we focus

here on implementing our cnat operator with the SDK (see

the corresponding directory in our Git repository).

First things first: make sure to install the Operator SDK

and check if all dependencies are available:

http://bit.ly/2KtpK7D
http://bit.ly/2RpHhON
http://bit.ly/2FpCtE9
http://bit.ly/2ZBQlCT

$ dep version

dep:

 version : v0.5.1

 build date : 2019-03-11

 git hash : faa6189

 go version : go1.12

 go compiler : gc

 platform : darwin/amd64

 features : ImportDuringSolve=false

 $ operator-sdk --version

operator-sdk version v0.6.0

Bootstrapping

Now it’s time to bootstrap the cnat operator as follows:

$ operator-sdk new cnat-operator && cd cnat-operator

Next, and very similar to Kubebuilder, we add an API—or

simply put: initialize the custom controller like so:

$ operator-sdk add api \

 --api-version=cnat.programming-kubernetes.info/v1alpha1 \

 --kind=At

$ operator-sdk add controller \

 --api-version=cnat.programming-kubernetes.info/v1alpha1 \

 --kind=At

These commands generate the necessary boilerplate code

as well as a number of helper functions, such as the deep-

copy functions DeepCopy(), DeepCopyInto(), and

DeepCopyObject().

Now we’re in a position to apply the autogenerated CRD to

the Kubernetes cluster:

$ kubectl apply -f deploy/crds/cnat_v1alpha1_at_crd.yaml

$ kubectl get crds

NAME CREATED AT

ats.cnat.programming-kubernetes.info 2019-04-01T14:03:33Z

Let’s launch our cnat custom controller locally. With this, it

can start processing requests:

$ OPERATOR_NAME=cnatop operator-sdk up local --namespace "cnat"

INFO[0000] Running the operator locally.

INFO[0000] Using namespace cnat.

{"level":"info","ts":1555041531.871706,"logger":"cmd",

 "msg":"Go Version: go1.12.1"}

{"level":"info","ts":1555041531.871785,"logger":"cmd",

 "msg":"Go OS/Arch: darwin/amd64"}

{"level":"info","ts":1555041531.8718028,"logger":"cmd",

 "msg":"Version of operator-sdk: v0.6.0"}

{"level":"info","ts":1555041531.8739321,"logger":"leader",

 "msg":"Trying to become the leader."}

{"level":"info","ts":1555041531.8743382,"logger":"leader",

 "msg":"Skipping leader election; not running in a cluster."}

{"level":"info","ts":1555041536.1611362,"logger":"cmd",

 "msg":"Registering Components."}

{"level":"info","ts":1555041536.1622112,"logger":"kubebuilder.controller",

 "msg":"Starting EventSource","controller":"at-controller",

 "source":"kind source: /, Kind="}

{"level":"info","ts":1555041536.162519,"logger":"kubebuilder.controller",

 "msg":"Starting EventSource","controller":"at-controller",

 "source":"kind source: /, Kind="}

{"level":"info","ts":1555041539.978822,"logger":"metrics",

 "msg":"Skipping metrics Service creation; not running in a cluster."}

{"level":"info","ts":1555041539.978875,"logger":"cmd",

 "msg":"Starting the Cmd."}

{"level":"info","ts":1555041540.179469,"logger":"kubebuilder.controller",

 "msg":"Starting Controller","controller":"at-controller"}

{"level":"info","ts":1555041540.280784,"logger":"kubebuilder.controller",

 "msg":"Starting workers","controller":"at-controller","worker count":1}

Our custom controller will remain in this state until we

create a CR, ats.cnat.programming-kubernetes.info. So

let’s do that:

$ cat deploy/crds/cnat_v1alpha1_at_cr.yaml

apiVersion: cnat.programming-kubernetes.info/v1alpha1

kind: At

metadata:

 name: example-at

spec:

 schedule: "2019-04-11T14:56:30Z"

 command: "echo YAY"

$ kubectl apply -f deploy/crds/cnat_v1alpha1_at_cr.yaml

$ kubectl get at

NAME AGE

at.cnat.programming-kubernetes.info/example-at 54s

Business Logic

In terms of the business logic, we have two parts to

implement in the operator:

In pkg/apis/cnat/v1alpha1/at_types.go we modify the

AtSpec struct to include the respective fields, such as

schedule and command, and use operator-sdk generate

k8s to regenerate code, as well as using the operator-

sdk generate openapi command for the OpenAPI bits.

In pkg/controller/at/at_controller.go we modify the

Reconcile(request reconcile.Request) method to create

a pod at the time defined in Spec.Schedule.

The changes applied to the bootstrapped code in greater

detail are as follows (focusing on the relevant bits). In

at_types.go:

// AtSpec defines the desired state of At

// +k8s:openapi-gen=true

type AtSpec struct {

 // Schedule is the desired time the command is supposed to be executed.

 // Note: the format used here is UTC time https://www.utctime.net

 Schedule string `json:"schedule,omitempty"`

 // Command is the desired command (executed in a Bash shell) to be

executed.

 Command string `json:"command,omitempty"`

}

http://bit.ly/31Ip2sF
http://bit.ly/2Fpo5Mi

// AtStatus defines the observed state of At

// +k8s:openapi-gen=true

type AtStatus struct {

 // Phase represents the state of the schedule: until the command is

executed

 // it is PENDING, afterwards it is DONE.

 Phase string `json:"phase,omitempty"`

}

In at_controller.go we implement the state diagram for the

three phases, PENDING to RUNNING to DONE.

NOTE

The controller-runtime is another SIG API Machinery–owned project, aimed at

providing a common set of low-level functionality for building controllers in

the form of Go packages. See Chapter 4 for more details.

As both Kubebuilder and the Operator SDK share the

controller runtime, the Reconcile() function is in fact the

same:

func (r *ReconcileAt) Reconcile(request reconcile.Request) (reconcile.Result,

error) {

 the-same-as-for-kubebuilder

}

Once the CR example-at is created, we see the following

output of the locally executed operator:

$ OPERATOR_NAME=cnatop operator-sdk up local --namespace "cnat"

INFO[0000] Running the operator locally.

INFO[0000] Using namespace cnat.

...

{"level":"info","ts":1555044934.023597,"logger":"controller_at",

 "msg":"=== Reconciling At","namespace":"cnat","at":"example-at"}

{"level":"info","ts":1555044934.023713,"logger":"controller_at",

 "msg":"Phase: PENDING","namespace":"cnat","at":"example-at"}

{"level":"info","ts":1555044934.0237482,"logger":"controller_at",

 "msg":"Checking schedule","namespace":"cnat","at":

http://bit.ly/2ZFtDKd

 "example-at","Target":"2019-04-12T04:56:00Z"}

{"level":"info","ts":1555044934.02382,"logger":"controller_at",

 "msg":"Schedule parsing done","namespace":"cnat","at":"example-at",

 "Result":"2019-04-12 04:56:00 +0000 UTC with a diff of 25.976236s"}

{"level":"info","ts":1555044934.148148,"logger":"controller_at",

 "msg":"=== Reconciling At","namespace":"cnat","at":"example-at"}

{"level":"info","ts":1555044934.148224,"logger":"controller_at",

 "msg":"Phase: PENDING","namespace":"cnat","at":"example-at"}

{"level":"info","ts":1555044934.148243,"logger":"controller_at",

 "msg":"Checking schedule","namespace":"cnat","at":"example-at",

 "Target":"2019-04-12T04:56:00Z"}

{"level":"info","ts":1555044934.1482902,"logger":"controller_at",

 "msg":"Schedule parsing done","namespace":"cnat","at":"example-at",

 "Result":"2019-04-12 04:56:00 +0000 UTC with a diff of 25.85174s"}

{"level":"info","ts":1555044944.1504588,"logger":"controller_at",

 "msg":"=== Reconciling At","namespace":"cnat","at":"example-at"}

{"level":"info","ts":1555044944.150568,"logger":"controller_at",

 "msg":"Phase: PENDING","namespace":"cnat","at":"example-at"}

{"level":"info","ts":1555044944.150599,"logger":"controller_at",

 "msg":"Checking schedule","namespace":"cnat","at":"example-at",

 "Target":"2019-04-12T04:56:00Z"}

{"level":"info","ts":1555044944.150663,"logger":"controller_at",

 "msg":"Schedule parsing done","namespace":"cnat","at":"example-at",

 "Result":"2019-04-12 04:56:00 +0000 UTC with a diff of 15.84938s"}

{"level":"info","ts":1555044954.385175,"logger":"controller_at",

 "msg":"=== Reconciling At","namespace":"cnat","at":"example-at"}

{"level":"info","ts":1555044954.3852649,"logger":"controller_at",

 "msg":"Phase: PENDING","namespace":"cnat","at":"example-at"}

{"level":"info","ts":1555044954.385288,"logger":"controller_at",

 "msg":"Checking schedule","namespace":"cnat","at":"example-at",

 "Target":"2019-04-12T04:56:00Z"}

{"level":"info","ts":1555044954.38534,"logger":"controller_at",

 "msg":"Schedule parsing done","namespace":"cnat","at":"example-at",

 "Result":"2019-04-12 04:56:00 +0000 UTC with a diff of 5.614691s"}

{"level":"info","ts":1555044964.518383,"logger":"controller_at",

 "msg":"=== Reconciling At","namespace":"cnat","at":"example-at"}

{"level":"info","ts":1555044964.5184839,"logger":"controller_at",

 "msg":"Phase: PENDING","namespace":"cnat","at":"example-at"}

{"level":"info","ts":1555044964.518566,"logger":"controller_at",

 "msg":"Checking schedule","namespace":"cnat","at":"example-at",

 "Target":"2019-04-12T04:56:00Z"}

{"level":"info","ts":1555044964.5186381,"logger":"controller_at",

 "msg":"Schedule parsing done","namespace":"cnat","at":"example-at",

 "Result":"2019-04-12 04:56:00 +0000 UTC with a diff of -4.518596s"}

{"level":"info","ts":1555044964.5186849,"logger":"controller_at",

 "msg":"It's time!","namespace":"cnat","at":"example-at",

 "Ready to execute":"echo YAY"}

{"level":"info","ts":1555044964.642559,"logger":"controller_at",

{ , , gg _ ,

 "msg":"=== Reconciling At","namespace":"cnat","at":"example-at"}

{"level":"info","ts":1555044964.642622,"logger":"controller_at",

 "msg":"Phase: RUNNING","namespace":"cnat","at":"example-at"}

{"level":"info","ts":1555044964.911037,"logger":"controller_at",

 "msg":"=== Reconciling At","namespace":"cnat","at":"example-at"}

{"level":"info","ts":1555044964.9111192,"logger":"controller_at",

 "msg":"Phase: RUNNING","namespace":"cnat","at":"example-at"}

{"level":"info","ts":1555044966.038684,"logger":"controller_at",

 "msg":"=== Reconciling At","namespace":"cnat","at":"example-at"}

{"level":"info","ts":1555044966.038771,"logger":"controller_at",

 "msg":"Phase: DONE","namespace":"cnat","at":"example-at"}

{"level":"info","ts":1555044966.708663,"logger":"controller_at",

 "msg":"=== Reconciling At","namespace":"cnat","at":"example-at"}

{"level":"info","ts":1555044966.708749,"logger":"controller_at",

 "msg":"Phase: DONE","namespace":"cnat","at":"example-at"}

...

Here you can see the three phases of our operator: PENDING

until timestamp 1555044964.518566, then RUNNING, then DONE.

To validate the function of our custom controller and check

the result of the operation, enter:

$ kubectl get at,pods

NAME AGE

at.cnat.programming-kubernetes.info/example-at 23m

NAME READY STATUS RESTARTS AGE

pod/example-at-pod 0/1 Completed 0 46s

$ kubectl logs example-at-pod

YAY

When you’re done developing the custom controller, using

local mode as shown here, you’ll likely want to build a

container image out of it. This custom controller container

image can subsequently be used, for example, in a

Kubernetes deployment. You can use the following

command to generate the container image:

$ operator-sdk build $REGISTRY/PROJECT/IMAGE

Here are some further resources to learn more about the

Operator SDK and examples around it:

“A Complete Guide to Kubernetes Operator SDK” by

Toader Sebastian on BanzaiCloud

Rob Szumski’s blog post “Building a Kubernetes

Operator for Prometheus and Thanos”

“Kubernetes Operator Development Guidelines for

Improved Usability” from CloudARK on ITNEXT

To wrap up this chapter, let’s look at some alternative ways

to write custom controllers and operators.

Other Approaches

In addition to, or potentially in combination with, the

approaches we’ve discussed, you might want to have a look

at the following projects, libraries, and tools:

Metacontroller

The basic idea of Metacontroller is to provide you with a

declarative specification of the state and changes,

interfacing with JSON, based on a level-triggered

reconciliation loop. That is, you receive JSON describing

the observed state and return JSON describing your

desired state. This is especially useful for rapid

development of automation in dynamic scripting

languages like Python or JavaScript. In addition to

simple controllers, Metacontroller allows you to

compose APIs into higher-level abstractions—for

example, BlueGreenDeployment.

KUDO

http://bit.ly/2RqkGSf
http://bit.ly/2KvgHmu
http://bit.ly/31P7rPC
https://metacontroller.app/
http://bit.ly/31KNTfi
https://kudo.dev/

Similar to Metacontroller, KUDO provides a declarative

approach to building Kubernetes operators, covering the

entire application lifecycle. In a nutshell, it’s

Mesosphere’s experience from Apache Mesos

frameworks, ported to Kubernetes. KUDO is highly

opinionated but also easy to use and requires little to no

coding; essentially, all you have to specify is a collection

of Kubernetes manifests with a built-in logic to define

what is executed when.

Rook operator kit

This is a common library for implementing operators. It

originated from the Rook operator but has been spun

out into a separate, independent project.

ericchiang/k8s

This is a slimmed-down Go client by Eric Chiang

generated using the Kubernetes protocol buffer support.

It behaves similarly to the official Kubernetes client-go,

but imports only two external dependencies. While it

comes with certain limitations—for example, in terms of

cluster access configuration—it is a simple-to-use Go

package.

kutil

AppsCode provides Kubernetes client-go add-ons via

kutil.

CLI-client-based approaches

A client-side approach, mainly for experimentation and

testing, is to leverage kubectl programmatically (e.g., the

kubecuddler library).

http://bit.ly/2J34faw
http://bit.ly/2ZHc5h0
http://bit.ly/2ZBQIxh
http://bit.ly/2Fq3ojh
http://bit.ly/2L3CDoi

NOTE

While we focus on writing operators using the Go programming language in

this book, you can write operators in other languages. Two notable examples

are Flant’s Shell-operator, which enables you to write operators in good old

shell scripts, and Zalando’s Kopf (Kubernetes operators framework), a

Python framework and a library.

As mentioned at the beginning of this chapter, the operator

field is rapidly evolving, and more and more practitioners

are sharing their knowledge in the form of code and best

practices, so keep an eye on new tooling here. Make sure

to check out online resources and forums, such as the

#kubernetes-operators, #kubebuilder, and #client-go-docs

channels on the Kubernetes Slack, to learn about new

approaches and/or discuss issues and receive help when

you’re stuck.

Uptake and Future Directions

The jury is still out on which of the approaches to write

operators will be the most popular and widely used. In the

context of the Kubernetes project, there are activities in

several SIGs when it comes to CRs and controllers. The

main stakeholder is the SIG API Machinery, which owns

CRs and controllers and is responsible for the Kubebuilder

project. The Operator SDK has increased its efforts to align

with the Kubebuilder API, so there’s a lot of overlap.

Summary

In this chapter we had a look at different tools allowing you

to write custom controllers and operators more efficiently.

Traditionally, following the sample-controller was the only

http://bit.ly/2ZxkZ0m
http://bit.ly/2WRXU6Q
http://bit.ly/2RuTPEp
http://bit.ly/2I8w9mz

option out there, but with Kubebuilder and the Operator

SDK you now have two options that allow you to focus on

the business logic of your custom controller rather than

dealing with boilerplate. And luckily these two tools share a

lot of APIs and code, so moving from one to the other

should not be too difficult.

Now, let’s see how to deliver the results of our labor—that

is, how to package and ship the controllers we’ve been

writing.

1 We’re only showing the relevant sections here; the function itself has a

lot of other boilerplate code we’re not concerned with for our purposes.

Chapter 7. Shipping

Controllers and Operators

Now that you’re familiar with the development of custom

controllers, let’s move on to the topic of how to make your

custom controllers and operators production-ready. In this

chapter we’ll discuss the operational aspects of controllers

and operators, showing you how to package them, walking

you through best practices for running controllers in

production, and making sure that your extension points

don’t break your Kubernetes cluster, security, or

performance-wise.

Lifecycle Management and Packaging

In this section we consider the lifecycle management of

operators. That is, we will discuss how to package and ship

your controller or operator, as well as how to handle

upgrades. When you’re ready to ship your operator to

users, you’ll need a way for them to install it. For this, you

need to package the respective artifacts, such as YAML

manifests that define the controller binary (typically as a

Kubernetes deployment), along with the CRDs and security-

related resources, such as service accounts and the

necessary RBAC permissions. Once your targeted users

have a certain version of the operator running, you will also

want to have a mechanism in place for upgrading the

controller, considering versioning and potentially zero-

downtime upgrades.

Let’s start with the low-hanging fruit: packaging and

delivering your controllers so that a user can install it in a

straightforward manner.

Packaging: The Challenge

While Kubernetes defines resources with manifests,

typically written in YAML, a low-level interface to declare

the state of resources, these manifest files have

shortcomings. Most importantly in the context of packaging

containerized apps, the YAML manifests are static; that is,

all values in a YAML manifest are fixed. This means that if

you want to change the container image in a deployment

manifest, for example, you have to create a new manifest.

Let’s look at a concrete example. Assume you have the

following Kubernetes deployment encoded in a YAML

manifest called mycontroller.yaml, representing the custom

controller you’d like users to install:

apiVersion: apps/v1beta1

kind: Deployment

metadata:

 name: mycustomcontroller

spec:

 replicas: 1

 template:

 metadata:

 labels:

 app: customcontroller

 spec:

 containers:

 - name: thecontroller

 image: example/controller:0.1.0

 ports:

 - containerPort: 9999

 env:

 - name: REGION

 value: eu-west-1

http://bit.ly/2WZ1uRD

Imagine the environment variable REGION defines certain

runtime properties of your controller, such as the

availability of other services like a managed service mesh.

In other words, while the default value of eu-west-1 might

be a sensible one, users can and likely will overwrite it,

based on their own preferences or policies.

Now, given that the YAML manifest mycontroller.yaml itself

is a static file with all values defined at the time of writing

—and clients such as kubectl don’t inherently support

variable parts in the manifest—how do you enable users to

supply variable values or overwrite existing values at

runtime? That is, how in the preceding example can a user

set REGION to, say, us-east-2 when they’re installing it, using

(for example) kubectl apply?

To overcome these limitations of build-time, static YAML

manifests in Kubernetes, there are a few options to

templatize the manifests (Helm, for example) or otherwise

enable variable input (Kustomize), depending on user-

provided values or runtime properties.

Helm

Helm, which touts itself as the package manager for

Kubernetes, was originally developed by Deis and is now a

Cloud Native Computing Foundation (CNCF) project with

major contributors from Microsoft, Google, and Bitnami

(now part of VMware).

Helm helps you to install and upgrade Kubernetes

applications by defining and applying so-called charts,

effectively parameterized YAML manifests. Here is an

excerpt of an example chart template:

https://helm.sh/
https://www.cncf.io/
http://bit.ly/2XmLk3R

apiVersion: apps/v1

kind: Deployment

metadata:

 name: {{ include "flagger.fullname" . }}

...

spec:

 replicas: 1

 strategy:

 type: Recreate

 selector:

 matchLabels:

 app.kubernetes.io/name: {{ template "flagger.name" . }}

 app.kubernetes.io/instance: {{ .Release.Name }}

 template:

 metadata:

 labels:

 app.kubernetes.io/name: {{ template "flagger.name" . }}

 app.kubernetes.io/instance: {{ .Release.Name }}

 spec:

 serviceAccountName: {{ template "flagger.serviceAccountName" . }}

 containers:

 - name: flagger

 securityContext:

 readOnlyRootFilesystem: true

 runAsUser: 10001

 image: "{{ .Values.image.repository }}:{{ .Values.image.tag }}"

As you can see, variables are encoded in {{

._Some.value.here_ }} format, which happens to be Go

templates.

To install a chart, you can run the helm install command.

While Helm has several ways to find and install charts, the

easiest is to use one of the official stable charts:

get the latest list of charts:

$ helm repo update

install MySQL:

$ helm install stable/mysql

Released smiling-penguin

list running apps:

$ helm ls

NAME VERSION UPDATED STATUS CHART

http://bit.ly/2N2Q3DW

smiling-penguin 1 Wed Sep 28 12:59:46 2016 DEPLOYED mysql-0.1.0

remove it:

$ helm delete smiling-penguin

Removed smiling-penguin

In order to package your controller, you will need to create

a Helm chart for it and publish it somewhere, by default to

a public repository indexed and accessible through the

Helm Hub, as depicted in Figure 7-1.

Figure 7-1. Helm Hub screenshot showing publicly available Helm charts

For further guidance on how to create Helm charts, peruse

the following resources at your leisure:

Bitnami’s excellent article “How to Create Your First

Helm Chart”.

“Using S3 as a Helm Repository”, if you want to

keep the charts in your own organization.

https://hub.helm.sh/
http://bit.ly/2ZIlODJ
http://bit.ly/2KzwLDY

The official Helm docs: “The Chart Best Practices

Guide”.

Helm is popular, partly because of its ease of use for end

users. However, some argue that the current Helm

architecture introduces security risks. The good news is

that the community is actively working on addressing

those.

Kustomize

Kustomize provides a declarative approach to configuration

customization of Kubernetes manifest files, adhering to the

familiar Kubernetes API. It was introduced in mid-2018 and

is now a Kubernetes SIG CLI project.

You can install Kustomize on your machine, as a

standalone, or, if you have a more recent kubectl version

(newer than 1.14), it is shipped with kubectl and activated

with the -k command-line flag.

So, Kustomize lets you customize the raw YAML manifest

files, without touching the original manifest. But how does

this work in practice? Let’s assume you want to package

our cnat custom controller; you’d define a file called

kustomize.yaml that looks something like:

imageTags:

 - name: quay.io/programming-kubernetes/cnat-operator

 newTag: 0.1.0

resources:

- cnat-controller.yaml

Now you can apply this to the cnat-controller.yaml file, say,

with the following content:

apiVersion: apps/v1beta1

kind: Deployment

http://bit.ly/31GbayW
http://bit.ly/2WXM5vZ
https://kustomize.io/
http://bit.ly/2L5Ec5f
http://bit.ly/2Y3JeCV
http://bit.ly/2IEYqRG

metadata:

 name: cnat-controller

spec:

 replicas: 1

 template:

 metadata:

 labels:

 app: cnat

 spec:

 containers:

 - name: custom-controller

 image: quay.io/programming-kubernetes/cnat-operator

Use kustomize build and—leaving the cnat-controller.yaml

file unchanged!—the output is then:

apiVersion: apps/v1beta1

kind: Deployment

metadata:

 name: cnat-controller

spec:

 replicas: 1

 template:

 metadata:

 labels:

 app: cnat

 spec:

 containers:

 - name: custom-controller

 image: quay.io/programming-kubernetes/cnat-operator:0.1.0

The output of kustomize build can then, for example, be

used in a kubectl apply command, with all the

customizations applied for you, automatically.

For a more detailed walk-through of Kustomize and how to

use it, check out the following resources:

Sébastien Goasguen’s blog post “Configuring

Kubernetes Applications with kustomize".

Kevin Davin’s post “Kustomize—The right way to do

templating in Kubernetes”.

http://bit.ly/2LbCDTr
http://bit.ly/2JbgJOR
http://bit.ly/2JpJgPm

The video “TGI Kubernetes 072: Kustomize and

friends”, where you can watch Joe Beda apply it.

Given the native support of Kustomize in kubectl, it’s likely

that an increasing number of users will adopt it. Note that

while it solves some problems (customization), there are

other areas of the lifecycle management, such as

validations and upgrades, that may require you to use

Kustomize together with languages such as Google’s CUE.

To wrap up this packaging topic, let’s review some other

solutions practitioners use.

Other Packaging Options

Some notable alternatives to the aforementioned packaging

options—and the many others in the wild—are:

UNIX tooling

In order to customize values of raw Kubernetes

manifests, you can use a range of CLI tools such as sed,

awk, or jq in shell scripts. This is a popular solution and,

at least until the arrival of Helm, likely the most widely

used option—not least because it minimizes

dependencies and is rather portable across *nix

environments.

Traditional configuration management systems

You can use any of the traditional configuration

management systems, such as Ansible, Puppet, Chef, or

Salt, to package and deliver your operator.

Cloud-native languages

A new generation of so-called cloud-native programming

languages, such as Pulumi and Ballerina, allows for,

http://bit.ly/2XoHm6C
http://bit.ly/32heAZl
http://bit.ly/2X553FE
http://bit.ly/2Rwh5lu

among other things, packaging and lifecycle

management of Kubernetes-native apps.

ytt

With ytt you have another option for a YAML templating

tool using a language that is itself a modified version of

Google’s configuration language Starlark. It operates

semantically on the YAML structures and focuses on

reusability.

Ksonnet

A configuration management tool for Kubernetes

manifests, originally developed by Heptio (now

VMware), Ksonnet has been deprecated and is not

actively worked on anymore, so use it at your own risk.

Read more about the options discussed here in Jesse Suen’s

post “The State of Kubernetes Configuration Management:

An Unsolved Problem”.

Now that we’ve discussed the packaging options in general,

let’s look at best practices for packaging and shipping

controllers and operators.

Packaging Best Practices

When packaging and publishing your operator, make sure

you are aware of the following best practices. These apply

regardless of which mechanism you choose (Helm,

Kustomize, shell scripts, etc.):

Provide a proper access control setup: this means

defining a dedicated service account for the

controller along with the RBAC permissions on a

least-privileges basis; see “Getting the Permissions

Right” for further details.

https://get-ytt.io/
http://bit.ly/2NaqoJh
https://ksonnet.io/
http://bit.ly/2N9BkXM

Consider the scope of your custom controller: will it

look after CRs in one namespace or more than one

namespace? Check out Alex Ellis’s Twitter

conversation about the pros and cons of the different

approaches.

Test and profile your controller so that you have an

idea of its footprint and scalability. For example, Red

Hat has put together a detailed set of requirements

with instructions in the OperatorHub contribution

guide.

Make sure the CRDs and controller are well

documented, ideally with the inline docs available on

godoc.org and a set of usage examples; see Banzai

Cloud’s bank-vaults operator for inspiration.

Lifecycle Management

A broader and more holistic approach, compared to

package/ship, is that of lifecycle management. The basic

idea is to consider the entire supply chain, from

development to shipping to upgrades, and automate as

much as possible. In this area, CoreOS (and later Red Hat)

was again a trailblazer: applying the same logic that led to

operators to their lifecycle management. In other words: in

order to install and later upgrade the custom controller of

an operator, you’d have a dedicated operator that knows

how to, well, handle operators. And indeed, part of the

Operator Framework—which also provides the Operator

SDK, as discussed in “The Operator SDK”—is the so-called

Operator Lifecycle Manager (OLM).

Jimmy Zelinskie, one of the main people behind OLM,

phrased it as follows:

http://bit.ly/2ZHd5S7
http://bit.ly/2IEplx4
https://godoc.org/
http://bit.ly/2XtfPVB
http://bit.ly/2HIfDcR
http://bit.ly/2KEfoSu

OLM does a lot for Operator authors, but it also solves an

important problem that not many people have thought

about yet: how do you effectively manage first-class

extensions to Kubernetes over time?

In a nutshell, OLM provides a declarative way to install and

upgrade operators and their dependencies, complementary

packaging solutions such as Helm. It’s up to you if you

want to buy into the full-blown OLM solution or create an

ad hoc solution for the versioning and upgrading challenge;

however, you should have some strategy in place here. For

certain areas—for example, the certification process for the

Operator Hub by Red Hat—it’s not only recommended but

mandatory for any nontrivial deployment scenario, even if

you don’t aim at the Hub.

Production-Ready Deployments

In this section we review and discuss how to make your

custom controllers and operators production-ready. The

following is a high-level checklist:

Use Kubernetes deployments or DaemonSets to

supervise your custom controller so that they are

restarted automatically when they fail—and fail they

will.

Implement health checks through dedicated

endpoints for liveness and readiness probes. This,

together with the previous step, makes your

operations more resilient.

Consider a leader-follower/standby model to make

sure that even when your controller pod crashes,

someone else can take over. Note, however, that

synchronizing state is a nontrivial task.

http://bit.ly/2KBlymy
http://bit.ly/2q7vR7Y

Provide access control resources, such as service

account and roles, applying the least-privileges

principle; see “Getting the Permissions Right” for

details.

Consider automated builds, including testing. Some

more tips are available in “Automated Builds and

Testing”.

Proactively tackle monitoring and logging; see

“Custom Controllers and Observability” for the what

and how.

We also suggest that you peruse the aforementioned article

“Kubernetes Operator Development Guidelines for

Improved Usability” to learn more.

Getting the Permissions Right

Your custom controller is part of the Kubernetes control

plane. It needs to read the state of resources, create

resources inside as well as (potentially) outside

Kubernetes, and communicate the state of its own

resources. For all of this, the custom controller needs the

right set of permissions, expressed through a set of role-

based access control (RBAC)–related settings. Getting this

right is the topic of this section.

First things first: always create a dedicated service account

to run your controller. In other words: never use the default

service account in a namespace.

To make your life easier, you can define a ClusterRole with

the necessary RBAC rules along with a RoleBinding to bind it

to a specific namespace, effectively reusing the role across

namespaces, as explained in the Using RBAC Authorization

entry.

1

http://bit.ly/31P7rPC
http://bit.ly/2RwoSQp
http://bit.ly/2LdVFsj

Following the least-privileges principle, assign only the

permissions necessary for the controller to carry out its

work. For example, if a controller only manages pods, there

is no need to provide it with the permissions to list or

create deployments or services. Also, make sure that the

controller does not install the CRDs and/or the admission

webhooks. In other words, the controller should not have

permissions to manage CRDs and webhooks.

Common tooling for creating custom controllers, as

discussed in Chapter 6, typically provides functionality for

generating RBAC rules out-of-the-box. For example,

Kubebuilder generates the following RBAC assets, along

with an operator:

$ ls -al rbac/

total 40

drwx------ 7 mhausenblas staff 224 12 Apr 09:52 .

drwx------ 7 mhausenblas staff 224 12 Apr 09:55 ..

-rw------- 1 mhausenblas staff 280 12 Apr 09:49 auth_proxy_role.yaml

-rw------- 1 mhausenblas staff 257 12 Apr 09:49

auth_proxy_role_binding.yaml

-rw------- 1 mhausenblas staff 449 12 Apr 09:49 auth_proxy_service.yaml

-rw-r--r-- 1 mhausenblas staff 1044 12 Apr 10:50 rbac_role.yaml

-rw-r--r-- 1 mhausenblas staff 287 12 Apr 10:50 rbac_role_binding.yaml

Looking at the autogenerated RBAC roles and bindings

reveals a fine-grained setup. In rbac_role.yaml you can find:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 creationTimestamp: null

 name: manager-role

rules:

- apiGroups:

 - apps

 resources:

 - deployments

 verbs: ["get", "list", "watch", "create", "update", "patch", "delete"]

- apiGroups:

http://bit.ly/2RRCyFO

 - apps

 resources:

 - deployments/status

 verbs: ["get", "update", "patch"]

- apiGroups:

 - cnat.programming-kubernetes.info

 resources:

 - ats

 verbs: ["get", "list", "watch", "create", "update", "patch", "delete"]

- apiGroups:

 - cnat.programming-kubernetes.info

 resources:

 - ats/status

 verbs: ["get", "update", "patch"]

- apiGroups:

 - admissionregistration.k8s.io

 resources:

 - mutatingwebhookconfigurations

 - validatingwebhookconfigurations

 verbs: ["get", "list", "watch", "create", "update", "patch", "delete"]

- apiGroups:

 - ""

 resources:

 - secrets

 verbs: ["get", "list", "watch", "create", "update", "patch", "delete"]

- apiGroups:

 - ""

 resources:

 - services

 verbs: ["get", "list", "watch", "create", "update", "patch", "delete"]

Looking at these permissions that Kubebuilder generates in

v1, you’ll likely be a little taken aback. We certainly were:

best practice tells us that a controller, if it does not have

very good reasons for doing so, should not be able to:

Write resources that are only read in the code,

generally. For example, if you only watch services

and deployments, do remove the create, update, patch,

and delete verbs in the role.

Access all secrets; that is, always restrict this to the

most minimal set of secrets necessary.

2

Write MutatingWebhookConfigurations or

ValidatingWebhookConfigurations. This is equivalent to

getting access to any resource in the cluster.

Write CustomResourceDefinitions. Note that this is not

allowed in the cluster role just shown, but it’s

important to mention here, nevertheless: CRD

creation should be done by a separate process, not

by the controller itself.

Write the /status subresource (see “Subresources”)

of foreign resources that it is not managing. For

example, deployments here are not managed by the

cnat controller and should not be in scope.

Kubebuilder, of course, is not really able to understand

what your controller code is actually doing. So it’s not

surprising that the generated RBAC rules are far too

relaxed. We recommend double-checking the permissions

and reducing them to the absolute minimum, following the

preceding checklist.

WARNING

Having read access to all secrets in the system gives a controller access to

all service account tokens. This is equivalent to having access to all

passwords in the cluster. Having write access to MutatingWebhookConfigurations

or ValidatingWebhookConfigurations allows you to intercept and manipulate

every API request in the system. This opens the door to rootkits in a

Kubernetes cluster. Both are obviously highly dangerous and considered

antipatterns, so it’s best to avoid them.

To avoid having too much power—that is, to restrict access rights to those

that are absolutely necessary—consider using audit2rbac. This tool uses

audit logs to generate an appropriate set of permissions, leading to more

secure setups and fewer headaches down the road.

http://bit.ly/2IDW1qm

From rbac_role_binding.yaml you can learn:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 creationTimestamp: null

 name: manager-rolebinding

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: manager-role

subjects:

- kind: ServiceAccount

 name: default

 namespace: system

For more best practices on RBAC and tooling around it,

check out RBAC.dev, a website dedicated to RBAC in

Kubernetes. Let’s move on now to testing and performance

considerations for custom controllers.

Automated Builds and Testing

As a best practice in cloud-native land, consider an

automated build of your custom controller. This is usually

called continuous build or continuous integration (CI) and

comprises unit tests, integration tests, building the

container image, and potentially even sanity or smoke

tests. The Cloud Native Computing Foundation (CNCF)

maintains an interactive listing of the many open source CI

tools available.

When building your controller, keep in mind that it should

consume as few compute resources as possible, while at

the same time serving as many clients as possible. Each

CR, based on the CRD(s) you define, is a proxy for a client.

But how do you know how much it consumes, if and where

it leaks memory, and how well it scales?

https://rbac.dev/
http://bit.ly/1Z9jXp5
http://bit.ly/2J2vy4L

You can and indeed should carry out a number of tests,

once the development of your custom controller stabilizes.

These can include the following, but may not be limited to

them:

Performance-related tests, as found in Kubernetes

itself as well as the kboom tool, can provide you with

data around scaling and resource footprints.

Soak tests—for example, the ones used in

Kubernetes—aim at long-term usage, from several

hours to days, with the goal of unveiling any leaking

of resources, like files or main memory.

As a best practice, these tests should be part of your CI

pipeline. In other words, automate the building of the

custom controller, testing, and packaging from day one. For

a concrete example setup we encourage you to check out

Marko Mudrinić’s excellent post “Spawning Kubernetes

Clusters in CI for Integration and E2E tests”.

Next, we’ll look at best practices that provide the basis for

effective troubleshooting: built-in support for observability.

Custom Controllers and Observability

In this section we look at observability aspects of your

custom controllers, specifically logging and monitoring.

Logging

Make sure you provide enough logging information to aid

troubleshooting (in production). As usual in a containerized

setup, log information is sent to stdout, where it can be

consumed either on a per-pod basis with the kubectl logs

command or in an aggregated form. Aggregates can be

provided using cloud-provider-specific solutions, such as

http://bit.ly/2X556g8
http://bit.ly/2Fuy4zU
http://bit.ly/2KBZmZc
http://bit.ly/2FwN1RU
http://bit.ly/2WXD85D

Stackdriver in Google Cloud or CloudWatch in AWS, or

bespoke solutions like the Elasticsearch-Logstash-

Kibana/Elasticsearch-Fluentd-Kibana stack. See also

Kubernetes Cookbook by Sébastien Goasguen and Michael

Hausenblas (O’Reilly) for recipes on this topic.

Let’s look at an example excerpt of our cnat custom

controller log:

{ "level":"info",

 "ts":1555063927.492718,

 "logger":"controller",

 "msg":"=== Reconciling At" }

{ "level":"info",

 "ts":1555063927.49283,

 "logger":"controller",

 "msg":"Phase: PENDING" }

{ "level":"info",

 "ts":1555063927.492857,

 "logger":"controller",

 "msg":"Checking schedule" }

{ "level":"info",

 "ts":1555063927.492915,

 "logger":"controller",

 "msg":"Schedule parsing done" }

The how of logging: in general, we prefer structured

logging and adjustable log levels, at least debug and info.

There are two methods widely used across the Kubernetes

code base, and unless you have good reasons not to, you

should consider using those:

The logger interface—for example, as found in

httplog.go, along with a concrete type (respLogger)—

captures things like the status and errors.

klog, a fork of Google’s glog, is a structured logger

used throughout Kubernetes, and while it has its

idiosyncrasies, it’s worth knowing.

http://bit.ly/2FTgJzk
http://bit.ly/31TPRu3
http://bit.ly/2WWV54w
http://bit.ly/31OJxUu

The what of logging: make sure to have detailed log

information for the normal case of your business logic

operation. For example, from our Operator SDK

implementation of the cnat controller, in at_controller.go,

set up the logger like so:

reqLogger := log.WithValues("namespace", request.Namespace, "at",

request.Name)

And then in the business logic, in the Reconcile(request

reconcile.Request) function:

case cnatv1alpha1.PhasePending:

 reqLogger.Info("Phase: PENDING")

 // As long as we haven't executed the command yet, we need to check if it's

 // already time to act:

 reqLogger.Info("Checking schedule", "Target", instance.Spec.Schedule)

 // Check if it's already time to execute the command with a tolerance of

 // 2 seconds:

 d, err := timeUntilSchedule(instance.Spec.Schedule)

 if err != nil {

 reqLogger.Error(err, "Schedule parsing failure")

 // Error reading the schedule. Wait until it is fixed.

 return reconcile.Result{}, err

 }

 reqLogger.Info("Schedule parsing done", "Result", "diff", fmt.Sprintf("%v",

d))

 if d > 0 {

 // Not yet time to execute the command, wait until the scheduled time

 return reconcile.Result{RequeueAfter: d}, nil

 }

 reqLogger.Info("It's time!", "Ready to execute", instance.Spec.Command)

 instance.Status.Phase = cnatv1alpha1.PhaseRunning

This Go snippet gives you a good idea of what to log, and

especially when to use reqLogger.Info and reqLogger.Error.

With Logging 101 out of the way, let’s move on to a related

topic: metrics!

Monitoring, instrumentation, and auditing

http://bit.ly/2Fpo5Mi

A great open source, container-ready monitoring solution

you can use across environments (on-premises and in the

cloud) is Prometheus. Alerting on each event is not

practical, so you might want to think about who needs to be

informed about what kind of event. For example, you could

have a policy that node-related or namespace-related

events are handled by infrastructure admins, and

namespace admins or developers are paged for pod-level

events. In this context, in order to visualize the metrics

you’ve gathered, the most popular solution is certainly

Grafana; see Figure 7-2 for an example of Prometheus

metrics visualized in Grafana, taken from the Prometheus

documentation.

If you are using a service mesh—for example, based on the

Envoy proxy (like Istio or App Mesh), or Linkerd—then

instrumentation typically comes for free or is achievable

with minimal (configuration) effort. Otherwise, you will

have to use the respective libraries, such as those provided

by Prometheus, to expose the relevant metrics in your code

yourself. In this context, you might also want to check out

the fledgling Service Mesh Interface (SMI) project,

introduced in early 2019, which aims to provide a

standardized interface for service meshes, based on CRs

and controllers.

https://prometheus.io/
https://grafana.com/
http://bit.ly/2Oi4YcA
https://envoy.com/
http://bit.ly/2xb2qmv
https://smi-spec.io/

Figure 7-2. Prometheus metrics visualized in Grafana

Another useful feature Kubernetes offers via the API server

is auditing, which allows you to record a sequence of

activities affecting the cluster. Different strategies are

available in the auditing policy, from no logging to logging

event metadata, request bodies, and response bodies. You

can choose between a simple log backend and using a

webhook for integrating with third-party systems.

Summary

This chapter focused on how to make your operators

production-ready by discussing operational aspects of

controllers and operators, including packaging, security,

and performance.

http://bit.ly/2O4WBkL

With this we’ve covered the basics of writing and using

custom Kubernetes controllers and operators, so now we

move on to another way to extend Kubernetes: developing

a custom API server.

1 See also Luc Juggery’s post “Kubernetes Tips: Using a ServiceAccount”

for a detailed discussion of service account usage.

2 We did, however, raise Issue 748 against the Kubebuilder project.

http://bit.ly/2X0fjKK
http://bit.ly/2J7Qys4

Chapter 8. Custom API

Servers

As an alternative to CustomResourceDefinitions, you can

use a custom API server. Custom API servers can serve API

groups with resources the same way the main Kubernetes

API server does. In contrast to CRDs, there are hardly any

limits to what you can do with a custom API server.

This chapter begins by listing a number of reasons why

CRDs might not be the right solution for your use case. It

describes the aggregation pattern that makes it possible to

extend the Kubernetes API surface with a custom API

server. Finally, you’ll learn to actually implement a custom

API server using Golang.

Use Cases for Custom API Servers

A custom API server can be used in place of CRDs. It can

do everything that CRDs can do and offers nearly infinite

flexibility. Of course, this comes at a cost: complexity of

both development and operation.

Let’s look at some limits of CRDs as of the time of this

writing (when Kubernetes 1.14 was the stable release).

CRDs:

Use etcd as their storage medium (or whatever the

Kubernetes API server uses).

Do not support protobuf, only JSON.

Support only two kinds of subresources: /status and

/scale (see “Subresources”).

Do not support graceful deletion. Finalizers can

simulate this but do not allow a custom graceful

deletion time.

Add significantly to the Kubernetes API server’s CPU

load, because all algorithms are implemented in a

generic way (for example, validation).

Implement only standard CRUD semantics for the

API endpoints.

Do not support cohabitation of resources (i.e.,

resources in different API groups or resources of

different names that share storage).

A custom API server, in contrast, does not have these

restrictions. A custom API server:

Can use any storage medium. There are custom API

servers, such as:

The metrics API server, which stores data in

memory for maximum performance

API servers mirroring a Docker registry in

OpenShift

API servers writing to a time series database

API servers mirroring cloud APIs

API servers mirroring other API objects, like

projects in OpenShift that mirror Kubernetes

namespaces

Can provide protobuf support like all native

Kubernetes resources do. For this you must create a

1

2

http://bit.ly/2FvgfAV
http://redhat.com/openshift
http://redhat.com/openshift

.proto file by using go-to-protobuf and then using the

protobuf compiler protoc to generate serializers,

which are then compiled into the binary.

Can provide any custom subresource; for example,

the Kubernetes API server provides /exec, /logs,

/port-forward, and more, most of which use very

custom protocols like WebSockets or HTTP/2

streaming.

Can implement graceful deletion as Kubernetes does

for pods. kubectl waits for the deletion, and the user

can even provide a custom graceful termination

period.

Can implement all operations like validation,

admission, and conversion in the most efficient way

using Golang, without a roundtrip through

webhooks, which add further latency. This can

matter for high performance use cases or if there is

a large number of objects. Think about pod objects

in a huge cluster with thousands of nodes, and two

magnitudes more pods.

Can implement custom semantics, like the atomic

reservation of a service IP in the core v1 Service

kind. At the moment the service is created, a unique

service IP is assigned and directly returned. To a

limited degree, special semantics like this can of

course be implemented with admission webhooks

(see “Admission Webhooks”), though those webhooks

can never reliably know whether the passed object

was actually created or updated: they are called

optimistically, but a later step in the request pipeline

might cancel the request. In other words: side

http://bit.ly/31OLSie

effects in webhooks are tricky because there is no

undo trigger if a request fails.

Can serve resources that have a common storage

mechanism (i.e., a common etcd key path prefix) but

live in different API groups or are named differently.

For example, Kubernetes stores deployments and

other resources in the API group extensions/v1 and

then moves them to more specific API groups like

apps/v1.

In other words, custom API servers are a solution for

situations where CRDs are still limited. In transitional

scenarios where it is important to not break resource

compatibility when moving to new semantics, custom API

servers are often much more flexible.

Example: A Pizza Restaurant

To learn how custom API servers are implemented, in this

section we will look at an example project: a custom API

server implementing a pizza restaurant API. Let’s take a

look at the requirements.

We want to create two kinds in the restaurant.programming-

kubernetes.info API group:

Topping

Pizza toppings (e.g., salami, mozzarella, or tomato)

Pizza

The type of pizza offered in the restaurant

The toppings are cluster-wide resources and hold only a

floating-point value for the cost of one unit of the topping.

An instance is as simple as:

apiVersion: restaurant.programming-kubernetes.info/v1alpha1

kind: Topping

metadata:

 name: mozzarella

spec:

 cost: 1.0

Each pizza can have an arbitrary number of toppings; for

example:

apiVersion: restaurant.programming-kubernetes.info/v1alpha1

kind: Pizza

metadata:

 name: margherita

spec:

 toppings:

 - mozzarella

 - tomato

The list of toppings is ordered (like any list in YAML or

JSON), but the order does not really matter for the

semantics of the type. The customer will get the same pizza

in any case. We want to allow duplicates in the list in order

to allow, say, a pizza with extra cheese.

All this can be implemented easily with CRDs. Now let’s

add some requirements that go beyond the basic CRD

capabilities:

We want to allow only toppings in a pizza

specification that have a corresponding Topping

object.

We also want to assume that we first introduced this

API as a v1alpha1 version but eventually learned that

we want another representation of the toppings in

the v1beta1 version of the same API.

In other words, we want to have two versions and convert

seamlessly between them.

3

The full implementation of this API as a custom API server

can be found at the book’s GitHub repository. In the rest of

this chapter, we will go through all the major parts of that

project and learn how it works. In the process, you’ll see a

lot of the concepts presented in the previous chapter in a

different light: namely, the Golang implementation that is

also behind the Kubernetes API server. A number of design

decisions highlighted in CRDs also will become clearer.

Hence, we highly recommend you read through this

chapter even if you don’t plan to go the route of a custom

API server. Maybe the concepts presented here will be

made available for CRDs as well in the future, in which

case having knowledge of custom API servers will be useful

to you.

The Architecture: Aggregation

Before going into the technical implementation details, we

want to take a higher-level view of the custom API server

architecture in the context of a Kubernetes cluster.

Custom API servers are processes serving API groups,

usually built using the generic API server library

k8s.io/apiserver. These processes can run inside or outside

of the cluster. In the former case, they run inside pods, with

a service in front.

The main Kubernetes API server, called kube-apiserver, is

always the first point of contact for kubectl and other API

clients. API groups served by a custom API server are

proxied by the kube-apiserver process to the custom API

server process. In other words, the kube-apiserver process

knows about all of the custom API servers and the API

http://bit.ly/2x9C3gR
http://bit.ly/2X3joNX

groups they serve, in order to be able to proxy the right

requests to them.

The component doing this proxying is inside the kube-

apiserver process and is called kube-aggregator. The process

of proxying API requests to the custom API server is called

API aggregation.

Let’s look a bit more into the path of requests targeted at a

custom API server, but coming in at the Kubernetes API

server TCP socket (see Figure 8-1):

1. Requests are received by the Kubernetes API server.

2. They pass the handler chain consisting of

authentication, audit logging, impersonation, max-in-

flight throttling, authorization, and more (the figure

is just a sketch and is not complete).

3. As the Kubernetes API server knows the aggregated

APIs, it can intercept requests to the HTTP path

/apis/aggregated-API-group-name.

4. The Kubernetes API server forwards the request to

the custom API server.

http://bit.ly/2X10C9W

Figure 8-1. Kubernetes main API server kube-apiserver with an integrated

kube-aggregator

The kube-aggregator proxies requests under the HTTP path

for an API group version (i.e., everything under /apis/group-

name/version). It does not have to know the actual served

resources in the API group version.

In contrast, the kube-aggregator serves the discovery

endpoints /apis and /apis/group-name of all aggregated

custom API servers itself (it uses the defined order

explained in the following section) and returns the results

without talking to the aggregated custom API servers.

Instead it uses the information from the APIService

resource. Let’s look at this process in detail.

API Services

For the Kubernetes API server to know about the API

groups a custom API server serves, one APIService object

must be created in the apiregistration.k8s.io/v1 API group.

These objects list only the API groups and versions, not

resources or any further details:

apiVersion: apiregistration.k8s.io/v1beta1

kind: APIService

metadata:

 name: name

spec:

 group: API-group-name

 version: API-group-version

 service:

 namespace: custom-API-server-service-namespace

 name: -API-server-service

 caBundle: base64-caBundle

 insecureSkipTLSVerify: bool

 groupPriorityMinimum: 2000

 versionPriority: 20

The name is arbitrary, but for clarity we suggest you use a

name that identifies the API group name and version—e.g.,

group-name-version.

The service can be a normal ClusterIP service in the cluster,

or it can be an ExternalName service with a given DNS name

for out-of-cluster custom API servers. In both cases, the

port must be 443. No other service port is supported (at the

time of this writing). Service target port mapping allows

any chosen, preferably nonrestricted, higher port to be

used for the custom API server pods, so this is not a major

restriction.

The certificate authority (CA) bundle is used for the

Kubernetes API server to trust the contacted service. Note

that API requests can contain confidential data. To avoid

man-in-the-middle attacks, it is highly recommended that

you set the caBundle field and not use the

insecureSkipTLSVerify alternative. This is especially

important for any production cluster, including a

mechanism for certificate rotation.

http://bit.ly/2X0zEEu

Finally, there are two priorities in the APIService object.

These have some tricky semantics, described in the Golang

code documentation for the APIService type:

// GroupPriorityMininum is the priority this group should have at least.

Higher

// priority means that the group is preferred by clients over lower priority

ones.

// Note that other versions of this group might specify even higher

// GroupPriorityMinimum values such that the whole group gets a higher

priority.

//

// The primary sort is based on GroupPriorityMinimum, ordered highest number

to

// lowest (20 before 10). The secondary sort is based on the alphabetical

// comparison of the name of the object (v1.bar before v1.foo). We'd recommend

// something like: *.k8s.io (except extensions) at 18000 and PaaSes

// (OpenShift, Deis) are recommended to be in the 2000s

GroupPriorityMinimum int32 `json:"groupPriorityMinimum"`

// VersionPriority controls the ordering of this API version inside of its

// group. Must be greater than zero. The primary sort is based on

// VersionPriority, ordered highest to lowest (20 before 10). Since it's

inside

// of a group, the number can be small, probably in the 10s. In case of equal

// version priorities, the version string will be used to compute the order

// inside a group. If the version string is "kube-like", it will sort above

non

// "kube-like" version strings, which are ordered lexicographically. "Kube-

like"

// versions start with a "v", then are followed by a number (the major

version),

// then optionally the string "alpha" or "beta" and another number (the minor

// version). These are sorted first by GA > beta > alpha (where GA is a

version

// with no suffix such as beta or alpha), and then by comparing major version,

// then minor version. An example sorted list of versions:

// v10, v2, v1, v11beta2, v10beta3, v3beta1, v12alpha1, v11alpha2, foo1,

foo10.

VersionPriority int32 `json:"versionPriority"`

In other words, the GroupPriorityMinimum value determines

where the group is prioritized. If multiple APIService objects

for different versions differ, the highest value rules.

The second priority just orders the versions among each

other to define the preferred version to be used by dynamic

clients.

Here is a list of the GroupPriorityMinimum values for the

native Kubernetes API groups:

var apiVersionPriorities = map[schema.GroupVersion]priority{

 {Group: "", Version: "v1"}: {group: 18000, version: 1},

 {Group: "extensions", Version: "v1beta1"}: {group: 17900, version: 1},

 {Group: "apps", Version: "v1beta1"}: {group:

17800, version: 1},

 {Group: "apps", Version: "v1beta2"}: {group:

17800, version: 9},

 {Group: "apps", Version: "v1"}: {group:

17800, version: 15},

 {Group: "events.k8s.io", Version: "v1beta1"}: {group:

17750, version: 5},

 {Group: "authentication.k8s.io", Version: "v1"}: {group:

17700, version: 15},

 {Group: "authentication.k8s.io", Version: "v1beta1"}: {group:

17700, version: 9},

 {Group: "authorization.k8s.io", Version: "v1"}: {group:

17600, version: 15},

 {Group: "authorization.k8s.io", Version: "v1beta1"}: {group:

17600, version: 9},

 {Group: "autoscaling", Version: "v1"}: {group:

17500, version: 15},

 {Group: "autoscaling", Version: "v2beta1"}: {group:

17500, version: 9},

 {Group: "autoscaling", Version: "v2beta2"}: {group:

17500, version: 1},

 {Group: "batch", Version: "v1"}: {group:

17400, version: 15},

 {Group: "batch", Version: "v1beta1"}: {group:

17400, version: 9},

 {Group: "batch", Version: "v2alpha1"}: {group:

17400, version: 9},

 {Group: "certificates.k8s.io", Version: "v1beta1"}: {group:

17300, version: 9},

 {Group: "networking.k8s.io", Version: "v1"}: {group:

17200, version: 15},

 {Group: "networking.k8s.io", Version: "v1beta1"}: {group:

17200, version: 9},

 {Group: "policy", Version: "v1beta1"}: {group:

17100, version: 9},

, },

 {Group: "rbac.authorization.k8s.io", Version: "v1"}: {group:

17000, version: 15},

 {Group: "rbac.authorization.k8s.io", Version: "v1beta1"}: {group:

17000, version: 12},

 {Group: "rbac.authorization.k8s.io", Version: "v1alpha1"}: {group:

17000, version: 9},

 {Group: "settings.k8s.io", Version: "v1alpha1"}: {group:

16900, version: 9},

 {Group: "storage.k8s.io", Version: "v1"}: {group:

16800, version: 15},

 {Group: "storage.k8s.io", Version: "v1beta1"}: {group:

16800, version: 9},

 {Group: "storage.k8s.io", Version: "v1alpha1"}: {group:

16800, version: 1},

 {Group: "apiextensions.k8s.io", Version: "v1beta1"}: {group:

16700, version: 9},

 {Group: "admissionregistration.k8s.io", Version: "v1"}: {group:

16700, version: 15},

 {Group: "admissionregistration.k8s.io", Version: "v1beta1"}: {group:

16700, version: 12},

 {Group: "scheduling.k8s.io", Version: "v1"}: {group:

16600, version: 15},

 {Group: "scheduling.k8s.io", Version: "v1beta1"}: {group:

16600, version: 12},

 {Group: "scheduling.k8s.io", Version: "v1alpha1"}: {group:

16600, version: 9},

 {Group: "coordination.k8s.io", Version: "v1"}: {group:

16500, version: 15},

 {Group: "coordination.k8s.io", Version: "v1beta1"}: {group:

16500, version: 9},

 {Group: "auditregistration.k8s.io", Version: "v1alpha1"}: {group:

16400, version: 1},

 {Group: "node.k8s.io", Version: "v1alpha1"}: {group:

16300, version: 1},

 {Group: "node.k8s.io", Version: "v1beta1"}: {group:

16300, version: 9},

}

So using 2000 for PaaS-like APIs means that they are placed

at the end of this list.

The order of the API groups plays a role during the REST

mapping process in kubectl (see “REST Mapping”). This

means it has actual influence on the user experience. If

4

there are conflicting resource names or short names, the

one with the highest GroupPriorityMinimum value wins.

Also, in the special case of replacing of an API group

version using a custom API server, this priority ordering

might be of use. For example, you could replace a native

Kubernetes API group with a modified one (for whatever

reason) by placing the custom API service at a position with

a lower GroupPriorityMinimum value than the one in the upper

table.

Note again that the Kubernetes API server does not need to

know the list of resources for either of the discovery

endpoints /apis, and /apis/group-name, or for proxying. The

list of resources is returned only via the third discovery

endpoint, /apis/group-name/version. But as we have seen in

the previous section, this endpoint is served by the

aggregated custom API server, not by kube-aggregator.

Inner Structure of a Custom API Server

A custom API server resembles most of the parts that make

up the Kubernetes API server, though of course with

different API group implementations, and without an

embedded kube-aggregator or an embedded apiextension-

apiserver (which serves CRDs). This leads to nearly the

same architectural picture (shown in Figure 8-2) as the one

in Figure 8-1:

Figure 8-2. An aggregated custom API server based on k8s.io/apiserver

We observe a number of things. An aggregated API server:

Has the same basic internal structure as the

Kubernetes API server.

Has its own handler chain, including authentication,

audit, impersonation, max-in-flight throttling, and

authorization (we will explain throughout this

chapter why this is necessary; see, for example,

“Delegated Authorization”).

Has its own resource handler pipeline, including

decoding, conversion, admission, REST mapping,

and encoding.

Calls admission webhooks.

Might write to etcd (it can use a different storage

backend, though). The etcd cluster does not have to

be the same as the one used by the Kubernetes API

server.

Has its own scheme and registry implementation for

custom API groups. The registry implementation

might differ and be customized to any degree.

Does authentication again. It usually does client

certificate authentication and token-based

authentication, calling back to the Kubernetes API

server with a TokenAccessReview request. We will

discuss the authentication and trust architecture in

more detail shortly.

Does its own auditing. This means the Kubernetes

API server audits certain fields, but only on the meta

level. Object-level auditing is done in the aggregated

custom API server.

Does its own authentication using

SubjectAccessReview requests to the Kubernetes API

server. We will discuss authorization in more detail

shortly.

Delegated Authentication and Trust

An aggregated custom API server (based on

k8s.io/apiserver) is built on the same authentication library

as the Kubernetes API server. It can use client certificates

or tokens to authenticate a user.

Because an aggregated custom API server is architecturally

placed behind the Kubernetes API server (i.e., the

Kubernetes API server receives requests and proxies them

to the aggregated custom API server), requests are already

authenticated by the Kubernetes API server. The

Kubernetes API server stores the result of the

http://bit.ly/2X3joNX

authentication—that is, the username and group

membership—in HTTP request headers, usually X-Remote-

User and X-Remote-Group (these can be configured with the --

requestheader-username-headers and --requestheader-group-

headers flags).

The aggregated custom API server has to know when to

trust these headers; otherwise, any other caller could claim

to have done authentication and could set these headers.

This is handled by a special request header client CA. It is

stored in the config map kube-system/extension-apiserver-

authentication (filename requestheader-client-ca-file). Here

is an example:

apiVersion: v1

kind: ConfigMap

metadata:

 name: extension-apiserver-authentication

 namespace: kube-system

data:

 client-ca-file: |

 -----BEGIN CERTIFICATE-----

 ...

 -----END CERTIFICATE-----

 requestheader-allowed-names: '["aggregator"]'

 requestheader-client-ca-file: |

 -----BEGIN CERTIFICATE-----

 ...

 -----END CERTIFICATE-----

 requestheader-extra-headers-prefix: '["X-Remote-Extra-"]'

 requestheader-group-headers: '["X-Remote-Group"]'

 requestheader-username-headers: '["X-Remote-User"]'

With this information, an aggregated custom API server

with default settings will authenticate:

Clients using client certificates matching the given

client-ca-file

Clients preauthenticated by the Kubernetes API

server whose requests are forwarded using the

given requestheader-client-ca-file and whose

username and group memberships are stored in the

given HTTP headers X-Remote-Group and X-Remote-User

Last but not least, there is a mechanism called

TokenAccessReview that forwards bearer tokens (received via

the HTTP header Authorization: bearer token) back to the

Kubernetes API server in order to verify whether they are

valid. The token access review mechanism is disabled by

default but can optionally be enabled; see “Options and

Config Pattern and Startup Plumbing”.

We will see in the following sections how delegated

authentication is actually set up. While we’ve gone into

detail about this mechanism here, inside an aggregated

custom API server this is mostly done automatically by the

k8s.io/apiserver library. But knowing what is going on

behind the curtain is certainly valuable, especially where

security is involved.

Delegated Authorization

After authentication has been done, each request must be

authorized. Authorization is based on the username and

group list. The default authorization mechanism in

Kubernetes is role-based access control (RBAC).

RBAC maps identities to roles, and roles to authorization

rules, which finally accept or reject requests. We won’t go

into all the details here about RBAC authorization objects

like roles and cluster roles, or role bindings and cluster

role bindings (see “Getting the Permissions Right” for

more). From an architectural point of view it is enough to

know that an aggregated custom API server authorizes

requests using delegated authorization via

SubjectAccessReviews. It does not evaluate RBAC rules itself

but instead delegates evaluation to the Kubernetes API

server.

WHY AGGREGATED API SERVERS ALWAYS HAVE

TO DO ANOTHER AUTHORIZATION STEP

Each request received by the Kubernetes API server and

forwarded to an aggregated custom API server passes

authentication and authorization (see Figure 8-1). This

means an aggregated custom API server could skip the

delegated authorization part for such requests.

But this preauthorization is not guaranteed and might

go away at any time (there are plans to split kube-

aggregator from kube-apiserver for better security and

more scalability in the future). In addition, requests

going directly to the aggregated custom API server

(e.g., authenticated via client certificates or token

access review) do not pass the Kubernetes API server

and therefore are not preauthorized.

In other words, skipping delegated authorization opens

up a security hole and is therefore highly discouraged.

Let’s look at delegated authorization in more detail now.

A subject access review is sent from the aggregated custom

API server to the Kubernetes API server on a request (if it

does not find an answer in its authorization cache). Here is

an example of such a review object:

apiVersion: authorization.k8s.io/v1

kind: SubjectAccessReview

spec:

 resourceAttributes:

 group: apps

 resource: deployments

 verb: create

 namespace: default

 version: v1

 name: example

 user: michael

 groups:

 - system:authenticated

 - admins

 - authors

The Kubernetes API server receives this from the

aggregated custom API server, evaluates the RBAC rules in

the cluster, and makes a decision, returning a

SubjectAccessReview object with a status field set; for

example:

apiVersion: authorization.k8s.io/v1

kind: SubjectAccessReview

status:

 allowed: true

 denied: false

 reason: "rule foo allowed this request"

Note here that it is possible that both allowed and denied are

false. This means that the Kubernetes API server could not

make a decision, in which case another authorizer inside an

aggregated custom API server can make a decision (API

servers implement an authorization chain that is queried

one by one, with delegated authorization being one of the

authorizers in that chain). This can be used to model

nonstandard authorization logic—that is, if in certain cases

there are no RBAC rules but an external authorization

system is used instead.

Note that for performance reasons, the delegated

authorization mechanism maintains a local cache in each

aggregated custom API server. By default, it caches 1,024

authorization entries with:

5 minutes expiry for allowed authorization requests

30 seconds expiry for denied authorization requests

These values can be customized via --authorization-webhook-

cache-authorized-ttl and --authorization-webhook-cache-

unauthorized-ttl.

We’ll see in the following sections how delegated

authorization is set up in code. Again, as with

authentication, inside an aggregated custom API server

delegated authorization is mostly done automatically by the

k8s.io/apiserver library.

Writing Custom API Servers

In the previous sections we looked at the architecture of

aggregated API servers. In this section we want to look at

the implementation of an aggregated custom API server in

Golang.

The main Kubernetes API server is implemented via the

k8s.io/apiserver library. A custom API server will use the

very same code. The main difference is that our custom API

server will run in-cluster. This means that it can assume

that a kube-apiserver is available in the cluster and use it to

do delegated authorization and to retrieve other kube-

native resources.

We also assume that an etcd cluster is available and ready

to be used by the aggregated custom API server. It is not

important whether this etcd is dedicated or shared with the

Kubernetes API server. Our custom API server will use a

different etcd key space to avoid conflicts.

The code examples in this chapter refer to the example

code on GitHub, so look there for the complete source

code. We will show only the most interesting excerpt here,

but you can always go to the complete example project,

experiment with it, and—very important for learning—run

it in a real cluster.

This pizza-apiserver project implements the example API

shown in “Example: A Pizza Restaurant”.

Options and Config Pattern and Startup

Plumbing

1. The k8s.io/apiserver library uses an options and

config pattern to create a running API server.

We’ll start with a couple of option structs that are bound to

flags. Take them from k8s.io/apiserver and add our custom

options. Option structs from k8s.io/apiserver can be

tweaked in-code for special use cases, and the provided

flags can be applied to a flag set in order to be accessible

to the user.

In the example we start very simply by basing everything

on the RecommendedOptions. These recommended options set

up everything as needed for a “normal” aggregated custom

API server for simple APIs, like this:

import (

 ...

 informers "github.com/programming-kubernetes/pizza-apiserver/pkg/

 generated/informers/externalversions"

)

const defaultEtcdPathPrefix = "/registry/restaurant.programming-

http://bit.ly/2x9C3gR
http://bit.ly/2x9C3gR

kubernetes.info"

type CustomServerOptions struct {

 RecommendedOptions *genericoptions.RecommendedOptions

 SharedInformerFactory informers.SharedInformerFactory

}

func NewCustomServerOptions(out, errOut io.Writer) *CustomServerOptions {

 o := &CustomServerOptions{

 RecommendedOptions: genericoptions.NewRecommendedOptions(

 defaultEtcdPathPrefix,

 apiserver.Codecs.LegacyCodec(v1alpha1.SchemeGroupVersion),

 genericoptions.NewProcessInfo("pizza-apiserver", "pizza-

apiserver"),

),

 }

 return o

}

The CustomServerOptions embed RecommendedOptions and add

one field on top. NewCustomServerOptions is the constructor

that fills the CustomServerOptions struct with default values.

Let’s look into some of the more interesting details:

defaultEtcdPathPrefix is the etcd prefix for all of our

keys. As a key space, we use /registry/pizza-

apiserver.programming-kubernetes.info, clearly

distinct from Kubernetes keys.

SharedInformerFactory is the process-wide shared

informer factory for our own CRs to avoid

unnecessary informers for the same resources (see

Figure 3-5). Note that it is imported from the

generated informer code in our project and not from

client-go.

NewRecommendedOptions sets everything up for an

aggregated custom API server with default values.

Let’s take a quick look at NewRecommendedOptions:

return &RecommendedOptions{

 Etcd: NewEtcdOptions(storagebackend.NewDefaultConfig(prefix,

codec)),

 SecureServing: sso.WithLoopback(),

 Authentication: NewDelegatingAuthenticationOptions(),

 Authorization: NewDelegatingAuthorizationOptions(),

 Audit: NewAuditOptions(),

 Features: NewFeatureOptions(),

 CoreAPI: NewCoreAPIOptions(),

 ExtraAdmissionInitializers:

 func(c *server.RecommendedConfig) ([]admission.PluginInitializer, error)

{

 return nil, nil

 },

 Admission: NewAdmissionOptions(),

 ProcessInfo: processInfo,

 Webhook: NewWebhookOptions(),

}

All of these can be tweaked if necessary. For example, if a

custom default serving port is desired,

RecommendedOptions.SecureServing.SecureServingOptions.BindPor

t can be set.

Let’s briefly go through the existing option structs:

Etcd configures the storage stack that reads and

write to etcd.

SecureServing configures everything around HTTPS

(i.e., ports, certificates, etc.)

Authentication sets up delegated authentication as

described in “Delegated Authentication and Trust”.

Authorization sets up delegated authorization as

described in “Delegated Authorization”.

Audit sets up the auditing output stack. This is

disabled by default, but can be set to output an audit

log file or to send audit events to an external

backend.

Features configures feature gates of alpha and beta

features.

CoreAPI holds a path to a kubeconfig file to access the

main API server. This defaults to using the in-cluster

configuration.

Admission is a stack of mutating and validating

admission plug-ins that execute for every incoming

API request. This can be extended with custom in-

code admission plug-ins, or the default admission

chain can be tweaked for the custom API server.

ExtraAdmissionInitializers allows us to add more

initializers for admission. Initializers implement the

plumbing of, for example, informers or clients

through the custom API server. See “Admission” for

more about custom admission.

ProcessInfo holds information for event object

creation (i.e., a process name and a namespace). We

have set it to pizza-apiserver for both values.

Webhook configures how webhooks operate (e.g.,

general setting for authentication and admission

webhook). It is set up with good defaults for a

custom API server that runs inside of a cluster. For

API servers outside of the cluster, this would be the

place to configure how it can reach the webhook.

Options are coupled with flags; that is, they are

conventionally on the same abstraction level as flags. As a

rule of thumb, options do not hold “running” data

structures. They are used during startup and then

converted to configuration or server objects, which are

then run.

Options can be validated via the Validate() error method.

This method will also check that the user-provided flag

values make logical sense.

Options can be completed in order to set default values,

which should not show up in the flags’ help text but which

are necessary to get a complete set of options.

Options are converted to a server configuration (“config”)

by the Config() (*apiserver.Config, error) method. This is

done by starting with a recommended default configuration

and then applying the options to it:

func (o *CustomServerOptions) Config() (*apiserver.Config, error) {

 err := o.RecommendedOptions.SecureServing.MaybeDefaultWithSelfSignedCerts(

 "localhost", nil, []net.IP{net.ParseIP("127.0.0.1")},

)

 if err != nil {

 return nil, fmt.Errorf("error creating self-signed cert: %v", err)

 }

 [... omitted o.RecommendedOptions.ExtraAdmissionInitializers ...]

 serverConfig := genericapiserver.NewRecommendedConfig(apiserver.Codecs)

 err = o.RecommendedOptions.ApplyTo(serverConfig, apiserver.Scheme);

 if err != nil {

 return nil, err

 }

 config := &apiserver.Config{

 GenericConfig: serverConfig,

 ExtraConfig: apiserver.ExtraConfig{},

 }

 return config, nil

}

The config created here contains runnable data structures;

in other words, configs are runtime objects, in contrast to

the options, which correspond to flags. The line

o.RecommendedOptions.SecureServing.MaybeDefaultWithSelfSigned

Certs creates self-signed certificates in case the user has

not passed flags for pregenerated certificates.

As we’ve described, genericapiserver.NewRecommendedConfig

returns a default recommended configuration, and

RecommendedOptions.ApplyTo changes it according to flags

(and other customized options).

The config struct of the pizza-apiserver project itself is just

a wrapper around the RecommendedConfig for our example

custom API server:

type ExtraConfig struct {

 // Place your custom config here.

}

type Config struct {

 GenericConfig *genericapiserver.RecommendedConfig

 ExtraConfig ExtraConfig

}

// CustomServer contains state for a Kubernetes custom api server.

type CustomServer struct {

 GenericAPIServer *genericapiserver.GenericAPIServer

}

type completedConfig struct {

 GenericConfig genericapiserver.CompletedConfig

 ExtraConfig *ExtraConfig

}

type CompletedConfig struct {

 // Embed a private pointer that cannot be instantiated outside of

 // this package.

 *completedConfig

}

If more state for a running custom API server is necessary,

ExtraConfig is the place to put it.

Similarly to option structs, the config has a Complete()

CompletedConfig method that sets default values. Because it

is necessary to actually call Complete() for the underlying

configuration, it is common to enforce that via the type

system by introducing the unexported completedConfig data

type. The idea here is that only a call to Complete() can turn

a Config into a completeConfig. The compiler will complain if

this call is not done:

func (cfg *Config) Complete() completedConfig {

 c := completedConfig{

 cfg.GenericConfig.Complete(),

 &cfg.ExtraConfig,

 }

 c.GenericConfig.Version = &version.Info{

 Major: "1",

 Minor: "0",

 }

 return completedConfig{&c}

}

Finally, the completed config can be turned into a

CustomServer runtime struct via the New() constructor:

// New returns a new instance of CustomServer from the given config.

func (c completedConfig) New() (*CustomServer, error) {

 genericServer, err := c.GenericConfig.New(

 "pizza-apiserver",

 genericapiserver.NewEmptyDelegate(),

)

 if err != nil {

 return nil, err

 }

 s := &CustomServer{

 GenericAPIServer: genericServer,

 }

 [... omitted API installation ...]

 return s, nil

}

Note that we have intentionally omitted the API installation

part here. We’ll come back to this in “API Installation” (i.e.,

how you wire the registries into the custom API server

during startup). A registry implements the API and storage

semantics of an API group. We will see this for the

restaurant API group in “Registry and Strategy”.

The CustomServer object can finally be started with the

Run(stopCh <-chan struct{}) error method. This is called by

the Run method of the options in our example. That is,

CustomServerOptions.Run:

Creates the config

Completes the config

Creates the CustomServer

Calls CustomServer.Run

This is the code:

func (o CustomServerOptions) Run(stopCh <-chan struct{}) error {

 config, err := o.Config()

 if err != nil {

 return err

 }

 server, err := config.Complete().New()

 if err != nil {

 return err

 }

 server.GenericAPIServer.AddPostStartHook("start-pizza-apiserver-

informers",

 func(context genericapiserver.PostStartHookContext) error {

 config.GenericConfig.SharedInformerFactory.Start(context.StopCh)

 o.SharedInformerFactory.Start(context.StopCh)

 return nil

 },

)

 return server.GenericAPIServer.PrepareRun().Run(stopCh)

}

The PrepareRun() call wires up the OpenAPI specification

and might do other post-API-installation operations. After

calling it, the Run method starts the actual server. It blocks

until stopCh is closed.

This example also wires a post-start hook named start-

pizza-apiserver-informers. As the name suggests, a post-

start hook is called after the HTTPS server is up and

listening. Here, it starts the shared informer factories.

Note that even local in-process informers of resources

provided by the custom API server itself speak via HTTPS

to the localhost interface. So it makes sense to start them

after the server is up and the HTTPS port is listening.

Also note that the /healthz endpoint returns success only

after all post-start hooks have finished successfully.

With all the little plumbing pieces in place, the pizza-

apiserver project wraps everything up into a cobra

command:

// NewCommandStartCustomServer provides a CLI handler for 'start master'

command

// with a default CustomServerOptions.

func NewCommandStartCustomServer(

 defaults *CustomServerOptions,

 stopCh <-chan struct{},

) *cobra.Command {

 o := *defaults

 cmd := &cobra.Command{

 Short: "Launch a custom API server",

 Long: "Launch a custom API server",

 RunE: func(c *cobra.Command, args []string) error {

 if err := o.Complete(); err != nil {

 return err

 }

 if err := o.Validate(); err != nil {

 return err

 }

 if err := o.Run(stopCh); err != nil {

 return err

 }

 return nil

 },

 }

 flags := cmd.Flags()

 o.RecommendedOptions.AddFlags(flags)

 return cmd

}

With NewCommandStartCustomServer the main() method of the

process is pretty simple:

func main() {

 logs.InitLogs()

 defer logs.FlushLogs()

 stopCh := genericapiserver.SetupSignalHandler()

 options := server.NewCustomServerOptions(os.Stdout, os.Stderr)

 cmd := server.NewCommandStartCustomServer(options, stopCh)

 cmd.Flags().AddGoFlagSet(flag.CommandLine)

 if err := cmd.Execute(); err != nil {

 klog.Fatal(err)

 }

}

Note especially the call to SetupSignalHandler: it wires Unix

signal handling. On SIGINT (triggered when you press Ctrl-C

in a terminal) and SIGKILL, the stop channel is closed. The

stop channel is passed to the running custom API server,

and it shuts down when the stop channel is closed. Hence,

the main loop will initiate a shutdown when one of the

signals is received. This shutdown is graceful in the sense

that running requests are finished (for up to 60 seconds by

default) before termination. It also makes sure that all

requests are sent to the audit backend and no audit data is

dropped. After all that, cmd.Execute() will return and the

process will terminate.

The First Start

Now we have everything in place to start the custom API

server for the first time. Assuming you have a cluster

configured in ~/.kube/config, you can use it for delegated

authentication and authorization:

$ cd $GOPATH/src/github.com/programming-kubernetes/pizza-apiserver

$ etcd &

$ go run . --etcd-servers localhost:2379 \

 --authentication-kubeconfig ~/.kube/config \

 --authorization-kubeconfig ~/.kube/config \

 --kubeconfig ~/.kube/config

I0331 11:33:25.702320 64244 plugins.go:158]

 Loaded 3 mutating admission controller(s) successfully in the following

order:

 NamespaceLifecycle,MutatingAdmissionWebhook,PizzaToppings.

I0331 11:33:25.702344 64244 plugins.go:161]

 Loaded 1 validating admission controller(s) successfully in the following

order:

 ValidatingAdmissionWebhook.

I0331 11:33:25.714148 64244 secure_serving.go:116] Serving securely on

[::]:443

It will start up and start serving the generic API endpoints:

$ curl -k https://localhost:443/healthz

ok

We can also list the discovery endpoint, but the result is not

very satisfying yet—we have not created an API, so the

discovery is empty:

$ curl -k https://localhost:443/apis

{

 "kind": "APIGroupList",

 "groups": []

}

Let’s take a look from a higher level:

We have started a custom API server with the

recommended options and config.

We have a standard handler chain that includes

delegated authentication, delegated authorization,

and auditing.

We have an HTTPS server running and serving

requests for the generic endpoints: /logs, /metrics,

/version, /healthz, and /apis.

Figure 8-3 shows this from 10,000 feet.

Figure 8-3. The custom API server without APIs

Internal Types and Conversion

Now that we’ve set up a running custom API server, it’s

time to actually implement APIs. Before doing so, we have

to understand API versions and how they are handled

inside of an API server.

Every API server serves a number of resources and

versions (see Figure 2-3). Some resources have multiple

versions. To make multiple versions of a resource possible,

the API server converts between versions.

To avoid quadratic growth of necessary conversions

between versions, API servers use an internal version when

implementing the actual API logic. The internal version is

also often called hub version because it is a kind of hub

that every other version is converted to and from (see

Figure 8-4). The internal API logic is implemented just once

for that hub version.

Figure 8-4. Conversion from and to the hub version

Figure 8-5 shows how the API servers make use of the

internal version in the life-cycle of an API request:

The user sends a request using a specific version

(e.g., v1).

The API server decodes the payload and converts it

to the internal version.

The API server passes the internal version through

admission and validation.

The API logic is implemented for internal versions in

the registry.

etcd reads and writes the versioned object (e.g., v2—

the storage version); that is, it converts from and to

the internal version.

Finally, the result is converted to the request

version, in this case, v1.

Figure 8-5. Conversion of API objects during the lifecycle of a request

On each edge between the internal hub version and the

external version, a conversion takes place. In Figure 8-6,

you can count the number of conversions per request

handler. In a writing operation (like creation and update),

at least four conversions are done, and even more if

admission webhooks are deployed in the cluster. As you can

see, conversion is a crucial operation in every API

implementation.

Figure 8-6. Conversions and defaulting during the lifecycle of a request

In addition to conversion, Figure 8-6 also shows when

defaulting takes place. Defaulting is the process of filling in

unspecified field values. Defaulting is highly coupled with

conversion, and is always done on the external version

when it comes in from the user’s request, from etcd or from

an admission webhook, but never when converted from the

hub to the external version.

WARNING

Conversion is crucial for the API server mechanics. It is also crucial that all

conversions (back and forth) must be correct in the sense of being

roundtrippable. Roundtrippable means that we can convert back and forth in

the version graph (Figure 8-4) starting with random values, and we never

lose any information; that is, conversions are bijective, or one-to-one. For

example, we must be able to go from a random (but valid) v1 object to the

internal hub type, then to v1alpha1, back to the internal hub type, and then

back to v1. The resulting object must be equivalent to the original.

Making types roundtrippable often requires a lot of thought; it nearly always

drives the API design of new versions and also influences the extension of old

types in order to store the information that new versions carry.

In short: getting roundtripping right is hard—very hard at times. See

“Roundtrip Testing” to learn how roundtripping can be tested effectively.

Defaulting logic can changed during the lifecycle of an API

server. Imagine you add a new field to a type. The user

might have old objects stored on disk, or the etcd may have

old objects. If that new field has a default, this field value is

set when the old, stored objects are sent to the API server,

or when the user retrieves one of the old objects from etcd.

It looks like the new field has existed forever, while in

reality the defaulting process in the API server sets the

field values during the processing of the request.

Writing the API Types

As we have seen, to add an API to the custom API server,

we have to write the internal hub version types and the

external version types and convert between them. This is

what we’ll look at now for the pizza example project.

API types are traditionally placed into the pkg/apis/group-

name package of the project with pkg/apis/group-

name/types.go for internal types and pkg/apis/group-

http://bit.ly/2x9C3gR

name/version/types.go for the external versions). So, for our

example, pkg/apis/restaurant,

pkg/apis/restaurant/v1alpha1/types.go, and

pkg/apis/restaurant/v1beta1/types.go.

Conversions will be created at pkg/apis/group-

name/version/zz_generated.conversion.go (for conversion-gen

output) and pkg/apis/group-name/version/conversion.go for

custom conversions written by the developer.

In a similar way, defaulting code will be created for

defaulter-gen output at pkg/apis/group-

name/version/zz_generated.defaults.go and at pkg/apis/group-

name/version/defaults.go for custom defaulting code written

by the developer. We have both

pkg/apis/restaurant/v1alpha1/defaults.go and

pkg/apis/restaurant/v1beta1/defaults.go in our example.

We go into more detail about conversion and defaulting in

“Conversions” and “Defaulting”.

With the exception of conversion and defaulting, we’ve

seen most of this process already for

CustomResourceDefinitions in “Anatomy of a type”. Native

types for the external versions in our custom API server are

defined exactly the same way.

In addition, we have pkg/apis/group-name/types.go for the

internal types, the hub types. The main difference is that in

the latter the SchemeGroupVersion in the register.go file

references runtime.APIVersionInternal (which is a shortcut

for "__internal").

// SchemeGroupVersion is group version used to register these objects

var SchemeGroupVersion = schema.GroupVersion{Group: GroupName, Version:

runtime.APIVersionInternal}

Another difference between pkg/apis/group-name/types.go

and the external type files is the lack of JSON and protobuf

tags.

TIP

JSON tags are used by some generators to detect whether a types.go file is

for an external version or the internal version. So always drop those tags

when copying and pasting external types in order to create or update the

internal types.

Last but not least, there is a helper to install all versions of

an API group into a scheme. This helper is traditionally

placed in pkg/apis/group-name/install/install.go. For our

custom API server pkg/apis/restaurant/install/install.go, it

looks as simple as this:

// Install registers the API group and adds types to a scheme

func Install(scheme *runtime.Scheme) {

 utilruntime.Must(restaurant.AddToScheme(scheme))

 utilruntime.Must(v1beta1.AddToScheme(scheme))

 utilruntime.Must(v1alpha1.AddToScheme(scheme))

 utilruntime.Must(scheme.SetVersionPriority(

 v1beta1.SchemeGroupVersion,

 v1alpha1.SchemeGroupVersion,

))

}

Because we have multiple versions, the priority has to be

defined. This order will be used to determine the default

storage version of the resource. It used to also play a role

in version selection in internal clients (clients that return

internal version objects; refer back to the note “Versioned

Clients and Internal Clients in the Past”). But internal

clients are deprecated and are going away. Even code

inside an API server will use an external version client in

the future.

Conversions

Conversion takes an object in one version and converts it

into an object in another version. Conversion is

implemented through conversion functions, some of them

manually written (placed into pkg/apis/group-

name/version/conversion.go by convention), and others

autogenerated by conversion-gen (placed by convention into

pkg/apis/group-name/version/zz_generated.conversion.go).

Conversion is initiated via a scheme (see “Scheme”) using

the Convert() method, passing the source object in and the

target object out:

func (s *Scheme) Convert(in, out interface{}, context interface{}) error

The context is described as follows:

// ...an optional field that callers may use to pass info to conversion

functions.

It is used only in very special cases and is usually nil. Later

in the chapter we will look at the conversion function

scope, which allows us to access this context from within

conversion functions.

To do the actual conversion, the scheme knows about all

the Golang API types, their GroupVersionKinds, and the

conversion functions between GroupVersionKinds. For this,

conversion-gen registers generated conversion functions via

the local scheme builder. In our example custom API server,

the zz_generated.conversion.go file starts like this:

func init() {

 localSchemeBuilder.Register(RegisterConversions)

}

http://bit.ly/31RewiP

// RegisterConversions adds conversion functions to the given scheme.

// Public to allow building arbitrary schemes.

func RegisterConversions(s *runtime.Scheme) error {

 if err := s.AddGeneratedConversionFunc(

 (*Topping)(nil),

 (*restaurant.Topping)(nil),

 func(a, b interface{}, scope conversion.Scope) error {

 return Convert_v1alpha1_Topping_To_restaurant_Topping(

 a.(*Topping),

 b.(*restaurant.Topping),

 scope,

)

 },

); err != nil {

 return err

 }

 ...

 return nil

}

...

The function

Convert_v1alpha1_Topping_To_restaurant_Topping() is

generated. It takes a v1alpha1 object and converts it to the

internal type.

NOTE

The preceding complicated type conversion turns the typed conversion

function into a uniformly typed func(a, b interface{}, scope conversion.Scope)

error. The scheme uses the latter types because it can call them without the

use of reflection. Reflection is slow due to the many necessary allocations.

The manually written conversions in conversion.go take

precedence during generation in the sense that conversion-

gen skips generation for types if it finds a manually written

function in the packages with the Convert_source-package-

basename_KindTo_target-package-basename_Kind conversion

function naming pattern. For example:

func Convert_v1alpha1_PizzaSpec_To_restaurant_PizzaSpec(

 in *PizzaSpec,

 out *restaurant.PizzaSpec,

 s conversion.Scope,

) error {

 ...

 return nil

}

In the simplest case, conversion functions just copy over

values from the source to the target object. But for the

previous example, which converts a v1alpha1 pizza

specification to the internal type, simple copying is not

enough. We have to adapt the different structure, which

actually looks like the following:

func Convert_v1alpha1_PizzaSpec_To_restaurant_PizzaSpec(

 in *PizzaSpec,

 out *restaurant.PizzaSpec,

 s conversion.Scope,

) error {

 idx := map[string]int{}

 for _, top := range in.Toppings {

 if i, duplicate := idx[top]; duplicate {

 out.Toppings[i].Quantity++

 continue

 }

 idx[top] = len(out.Toppings)

 out.Toppings = append(out.Toppings, restaurant.PizzaTopping{

 Name: top,

 Quantity: 1,

 })

 }

 return nil

}

Clearly, no code generation can be so clever as to foresee

what the user intended when defining these different types.

Note that during conversion the source object must never

be mutated. But it is completely normal and, often for

performance reasons, highly recommended to reuse data

structures of the source in the target object if the types

match.

This is so important that we reiterate it in a warning,

because it has implications not only for the implementation

of conversion but also for callers of conversions and

consumers of conversion output.

WARNING

Conversion functions must not mutate the source object, but the output is

allowed to share data structures with the source. This means that consumers

of conversion output have to make sure not to mutate an object if the original

object must not be mutated.

For example, assume you have a pod *core.Pod in the internal version, and

you convert it to v1 as podv1 *corev1.Pod, and mutate the resulting podv1. This

might also mutate the original pod. If the pod came from an informer, this is

highly dangerous because informers have a shared cache and mutating pod

makes the cache inconsistent.

So, be aware of this property of conversion and do deep copies if necessary

to avoid undesired and potentially dangerous mutations.

While this sharing of data structures leads to some risk, it

also can avoid unnecessary allocations in many situations.

Generated code goes so far that the generator compares

source and target structs and uses Golang’s unsafe

packages to convert pointers to structs of the same

memory layout via a simple type conversion. Because the

internal type and the v1beta1 types for a pizza in our

example have the same memory layout, we get this:

func autoConvert_restaurant_PizzaSpec_To_v1beta1_PizzaSpec(

 in *restaurant.PizzaSpec,

 out *PizzaSpec,

 s conversion.Scope,

) error {

 out.Toppings = *(*[]PizzaTopping)(unsafe.Pointer(&in.Toppings))

 return nil

}

On the machine language level, this is a NOOP and

therefore as fast as it can get. It avoids allocating a slice in

this case and copying item by item from in to out.

Last but not least, some words about the third argument of

conversion functions: the conversion scope conversion.Scope.

The conversion scope provides access to a number of

conversion metalevel values. For example, it allows us to

access the context value that is passed to the scheme’s

Convert(in, out interface{}, context interface{}) error

method via:

s.Meta().Context

It also allows us to call the scheme conversion for subtypes

via s.Convert, or without considering the registered

conversion functions at all via s.DefaultConvert.

In most conversion cases, though, there is no need to use

the scope at all. You can just ignore its existence for the

sake of simplicity until you hit a tricky situation where

more context than the source and target object is

necessary.

Defaulting

Defaulting is the step in an API request’s lifecycle that sets

default values for omitted fields in incoming objects (from

the client or from etcd). For example, a pod has a

restartPolicy field. If the user does not specify it, a value

will default to Always.

Imagine we are using a very old Kubernetes version around

the year 2014. The field restartPolicy was just introduced

to the system in the latest release at that time. After an

upgrade of your cluster, there is a pod in etcd without the

restartPolicy field. A kubectl get pod would read the old pod

from etcd and the defaulting code would add the default

value Always. From the user’s point of view, magically the

old pod suddenly has the new restartPolicy field.

Refer back to Figure 8-6 to see where defaulting takes

place today in the Kubernetes request pipeline. Note that

defaulting is done only for external types, not internal

types.

Now let’s look at the code that does defaulting. Defaulting

is initiated by the k8s.io/apiserver code via the scheme,

similarly to conversion. Hence, we have to register

defaulting functions into the scheme for our custom types.

Again, similarly to conversions, most defaulting code is just

generated with the defaulter-gen binary. It traverses API

types and creates defaulting functions in pkg/apis/group-

name/version/zz_generated.defaults.go. The code doesn’t do

anything by default other than calling defaulting functions

for the substructures.

You can define your own defaulting logic by following the

defaulting function naming pattern SetDefaultsKind:

func SetDefaultsKind(obj *Type) {

 ...

}

http://bit.ly/2J108vK

In addition, and unlike with conversions, we have to call

the registration of the generated function on the local

scheme builder manually. This is unfortunately not done

automatically:

func init() {

 localSchemeBuilder.Register(RegisterDefaults)

}

Here, RegisterDefaults is generated inside package

pkg/apis/group-name/version/zz_generated.defaults.go.

For defaulting code, it is crucial to know when a field was

set by the user and when it wasn’t. This is not that clear in

many cases.

Golang has zero values for every type and sets them if a

field is not found in the passed JSON or protobuf. Imagine a

default of true for a boolean field foo. The zero value is

false. Unfortunately, it is not clear whether false was set

due to the user’s input or because false is just the zero

value of booleans.

To avoid this situation, often a pointer type must be used in

the Golang API types (e.g., *bool in the preceding case). A

user-provided false would lead to a non-nil boolean pointer

to a false value, and a user-provided true would lead to the

non-nil boolean pointer and a true value. A not-provided

field leads to nil. This can be detected in the defaulting

code:

func SetDefaultsKind(obj *Type) {

 if obj.Foo == nil {

 x := true

 obj.Foo = &x

 }

}

This gives the desired semantics: “foo defaults to true.”

TIP

This trick of using a pointer works for primitive types like strings. For maps

and arrays, it is often hard to reach roundtrippability without identifying nil

maps/arrays and empty maps/arrays. Most defaulters for maps and arrays in

Kubernetes therefore apply the default in both cases, working around

encoding and decoding bugs.

Roundtrip Testing

Getting conversions right is hard. Roundtrip tests are an

essential tool to check automatically in a randomized test

that conversions behave as planned and do not lose data

when converting from and to all known group versions.

Roundtrip tests are usually placed with the install.go file

(for example, into

pkg/apis/restaurant/install/roundtrip_test.go) and just call

the roundtrip test functions from API Machinery:

import (

 ...

 "k8s.io/apimachinery/pkg/api/apitesting/roundtrip"

 restaurantfuzzer "github.com/programming-kubernetes/pizza-

apiserver/pkg/apis/

 restaurant/fuzzer"

)

func TestRoundTripTypes(t *testing.T) {

 roundtrip.RoundTripTestForAPIGroup(t, Install, restaurantfuzzer.Funcs)

}

Internally, the RoundTripTestForAPIGroup call installs the API

group into a temporary scheme using the Install functions.

Then it creates random objects in the internal version using

the given fuzzer, and then converts them to some external

version and back to internal. The resulting objects must be

equivalent to the original. This test is done hundreds or

thousand of times with all external versions.

A fuzzer is a function that return a slice of randomizer

functions for the internal types and their subtypes. In our

example, the fuzzer is placed into the package

pkg/apis/restaurant/fuzzer/fuzzer.go and contains a

randomizer for the spec struct:

// Funcs returns the fuzzer functions for the restaurant api group.

var Funcs = func(codecs runtimeserializer.CodecFactory) []interface{} {

 return []interface{}{

 func(s *restaurant.PizzaSpec, c fuzz.Continue) {

 c.FuzzNoCustom(s) // fuzz first without calling this function

again

 // avoid empty Toppings because that is defaulted

 if len(s.Toppings) == 0 {

 s.Toppings = []restaurant.PizzaTopping{

 {"salami", 1},

 {"mozzarella", 1},

 {"tomato", 1},

 }

 }

 seen := map[string]bool{}

 for i := range s.Toppings {

 // make quantity strictly positive and of reasonable size

 s.Toppings[i].Quantity = 1 + c.Intn(10)

 // remove duplicates

 for {

 if !seen[s.Toppings[i].Name] {

 break

 }

 s.Toppings[i].Name = c.RandString()

 }

 seen[s.Toppings[i].Name] = true

 }

 },

 }

}

If no randomizer function is given, the underlying library

github.com/google/gofuzz will generically try to fuzz the

object by setting random values for base types and diving

recursively into pointers, structs, maps, and slices,

eventually calling custom randomizer functions if they are

given by the developer.

When writing a randomizer function for one of the types, it

is convenient to call c.FuzzNoCustom(s) first. It randomizes

the given object s and also calls custom functions for

substructures, but not for s itself. Then the developer can

restrict and fix the random values to make the object valid.

WARNING

It is important to make fuzzers as general as possible in order to cover as

many valid objects as possible. If the fuzzer is too restrictive, the test

coverage will be bad. In many cases during the development of Kubernetes,

regressions were not caught because the fuzzers in place were not good.

On the other hand, a fuzzer only has to consider objects that validate and are

the projection of actual objects definable in the external versions. Often you

have to restrict the random values set by c.FuzzNoCustom(s) in a way that the

randomized object becomes valid. For example, a string holding a URL does

not have to roundtrip for arbitrary values if validation will reject arbitrary

strings anyway.

Our preceding PizzaSpec example first calls

c.FuzzNoCustom(s) and then fixes up the object by:

Defaulting the nil case for toppings

Setting a reasonable quantity for each topping

(without that, the conversion to v1alpha1 will explode

in complexity, introducing high quantities into a

string list)

http://bit.ly/2KJrb27

Normalizing the topping names, as we know that

duplicated toppings in a pizza spec will never

roundtrip (for the internal types, note that v1alpha1

types have duplication)

Validation

Incoming objects are validated shortly after they have been

deserialized, defaulted, and converted to the internal

version. Figure 8-5 showed earlier how validation is done

between mutating admission plug-ins and validating

admission plug-ins, long before the actual creation or

update logic is executed.

This means validation has to be implemented only once for

the internal version, not for all external versions. This has

the advantage that it obviously saves implementation work

and also ensures consistency between versions. On the

other hand, it means that validation errors do not refer to

the external version. This can actually be observed with

Kubernetes resources, but in practice it is no big deal.

In this section, we’ll look at the implementation of

validation functions. The wiring into the custom API server

—namely, calling validation from the strategy that

configures the generic registry—will be covered in the next

section. In other words, Figure 8-5 is slightly misleading in

favor of visual simplicity.

For now it should be enough to look at the entry point into

the validation inside the strategy:

func (pizzaStrategy) Validate(

 ctx context.Context, obj runtime.Object,

) field.ErrorList {

 pizza := obj.(*restaurant.Pizza)

 return validation.ValidatePizza(pizza)

}

This calls out to the ValidateKind(obj *Kind) field.ErrorList

validation function in the validation package of the API

group pkg/apis/group/validation.

The validation functions return an error list. They are

usually written in the same style, appending return values

to an error list while recursively diving into the type, one

validation function per struct:

// ValidatePizza validates a Pizza.

func ValidatePizza(f *restaurant.Pizza) field.ErrorList {

 allErrs := field.ErrorList{}

 errs := ValidatePizzaSpec(&f.Spec, field.NewPath("spec"))

 allErrs = append(allErrs, errs...)

 return allErrs

}

// ValidatePizzaSpec validates a PizzaSpec.

func ValidatePizzaSpec(

 s *restaurant.PizzaSpec,

 fldPath *field.Path,

) field.ErrorList {

 allErrs := field.ErrorList{}

 prevNames := map[string]bool{}

 for i := range s.Toppings {

 if s.Toppings[i].Quantity <= 0 {

 allErrs = append(allErrs, field.Invalid(

 fldPath.Child("toppings").Index(i).Child("quantity"),

 s.Toppings[i].Quantity,

 "cannot be negative or zero",

))

 }

 if len(s.Toppings[i].Name) == 0 {

 allErrs = append(allErrs, field.Invalid(

 fldPath.Child("toppings").Index(i).Child("name"),

 s.Toppings[i].Name,

 "cannot be empty",

))

 } else {

 if prevNames[s.Toppings[i].Name] {

 allErrs = append(allErrs, field.Invalid(

 fldPath.Child("toppings").Index(i).Child("name"),

 s.Toppings[i].Name,

 "must be unique",

))

 }

 prevNames[s.Toppings[i].Name] = true

 }

 }

 return allErrs

}

Note how the field path is maintained using Child and Index

calls. The field path is the JSON path, which is printed in

case of errors.

Often there is an additional set of validation functions that

differs slightly for updates (while the preceding set is used

for creation). In our example API server, this could look like

the following:

func (pizzaStrategy) ValidateUpdate(

 ctx context.Context,

 obj, old runtime.Object,

) field.ErrorList {

 objPizza := obj.(*restaurant.Pizza)

 oldPizza := old.(*restaurant.Pizza)

 return validation.ValidatePizzaUpdate(objPizza, oldPizza)

}

This can be used to verify that no read-only fields are

changed. Often an update validation calls the normal

validation functions as well and only adds checks relevant

for the update.

NOTE

Validation is the right place to restrict object names on creation—for

example, to be single-word only, or to not include any non-alpha-numeric

characters.

Actually, any ObjectMeta field can technically be restricted in a custom way,

though that’s not desirable for many fields because it might break core API

machinery behavior. A number of resources restrict the names because, for

example, the name will show up in other systems or in other contexts that

require a specially formatted name.

But even if there are special ObjectMeta validations in place in a custom API

server, the generic registry will validate against generic rules in any case,

after the custom validation has passed. This allows us to return more specific

error messages from the custom code first.

Registry and Strategy

So far, we have seen how API types are defined and

validate. The next step is the implementation of the REST

logic for those API types. Figure 8-7 shows the registry as a

central part of the implementation of an API group. The

generic REST request handler code in k8s.io/apiserver calls

out to the registry.

Figure 8-7. Resource storage and generic registry

Generic registry

The REST logic is usually implemented by what is called

the generic registry. It is—as the name suggests—a generic

implementation of the registry interfaces in the package

k8s.io/apiserver/pkg/registry/rest.

The generic registry implements the default REST behavior

for “normal” resources. Nearly all Kubernetes resources

use this implementation. Only a few, specifically those that

do not persist objects (e.g., SubjectAccessReview; see

“Delegated Authorization”), have custom implementations.

In k8s.io/apiserver/pkg/registry/rest/rest.go you will find

many interfaces, loosely corresponding to HTTP verbs and

certain API functionalities. If an interface is implemented

by a registry, the API endpoint code will offer certain REST

features. Because the generic registry implements most of

the k8s.io/apiserver/pkg/registry/rest interfaces, resources

that use it will support all the default Kubernetes HTTP

verbs (see “The HTTP Interface of the API Server”). Here is

a list of those interfaces that are implemented, with the

GoDoc description from the Kubernetes source code:

CollectionDeleter

An object that can delete a collection of RESTful

resources

Creater

An object that can create an instance of a RESTful

object

CreaterUpdater

A storage object that must support both create and

update operations

Exporter

An object that knows how to strip a RESTful resource

for export

Getter

An object that can retrieve a named RESTful resource

GracefulDeleter

An object that knows how to pass deletion options to

allow delayed deletion of a RESTful object

Lister

An object that can retrieve resources that match the

provided field and label criteria

Patcher

A storage object that supports both get and update

Scoper

An object that must be specified and indicates what

scope the resource

Updater

An object that can update an instance of a RESTful

object

Watcher

An object that should be implemented by all storage

objects that want to offer the ability to watch for

changes through the Watch API

Let’s look at one of the interfaces, Creater:

// Creater is an object that can create an instance of a RESTful object.

type Creater interface {

 // New returns an empty object that can be used with Create after request

 // data has been put into it.

 // This object must be a pointer type for use with

Codec.DecodeInto([]byte,

 // runtime.Object)

 New() runtime.Object

 // Create creates a new version of a resource.

 Create(

 ctx context.Context,

 obj runtime.Object,

 createValidation ValidateObjectFunc,

 options *metav1.CreateOptions,

) (runtime.Object, error)

}

A registry implementing this interface will be able to create

objects. In contrast to NamedCreater, the name of the new

object either comes from ObjectMeta.Name or is generated via

ObjectMeta.GenerateName. If a registry implements

NamedCreater, the name can also be passed through the

HTTP path.

It is important to understand that the implemented

interfaces determine which verbs will be supported by the

API endpoint that is created while installing the API into

the custom API server. See “API Installation” for how this is

done in the code.

Strategy

The generic registry can be customized to a certain degree

using an object called a strategy. The strategy provides

callbacks to functionality like validation, as we saw in

“Validation”.

The strategy implements the REST strategy interfaces

listed here with their GoDoc description (see

k8s.io/apiserver/pkg/registry/rest for their definitions):

RESTCreateStrategy

Defines the minimum validation, accepted input, and

name generation behavior to create an object that

follows Kubernetes API conventions.

RESTDeleteStrategy

Defines deletion behavior on an object that follows

Kubernetes API conventions.

RESTGracefulDeleteStrategy

Must be implemented by the registry that supports

graceful deletion.

GarbageCollectionDeleteStrategy

Must be implemented by the registry that wants to

orphan dependents by default.

RESTExportStrategy

Defines how to export a Kubernetes object.

RESTUpdateStrategy

Defines the minimum validation, accepted input, and

name generation behavior to update an object that

follows Kubernetes API conventions.

Let’s look again at the strategy for the creation case:

type RESTCreateStrategy interface {

 runtime.ObjectTyper

 // The name generator is used when the standard GenerateName field is set.

 // The NameGenerator will be invoked prior to validation.

 names.NameGenerator

 // NamespaceScoped returns true if the object must be within a namespace.

 NamespaceScoped() bool

 // PrepareForCreate is invoked on create before validation to normalize

 // the object. For example: remove fields that are not to be persisted,

 // sort order-insensitive list fields, etc. This should not remove fields

 // whose presence would be considered a validation error.

 //

 // Often implemented as a type check and an initailization or clearing of

 // status. Clear the status because status changes are internal. External

 // callers of an api (users) should not be setting an initial status on

 // newly created objects.

 PrepareForCreate(ctx context.Context, obj runtime.Object)

 // Validate returns an ErrorList with validation errors or nil. Validate

 // is invoked after default fields in the object have been filled in

 // before the object is persisted. This method should not mutate the

 // object.

 Validate(ctx context.Context, obj runtime.Object) field.ErrorList

 // Canonicalize allows an object to be mutated into a canonical form. This

 // ensures that code that operates on these objects can rely on the common

 // form for things like comparison. Canonicalize is invoked after

 // validation has succeeded but before the object has been persisted.

 // This method may mutate the object. Often implemented as a type check or

 // empty method.

 Canonicalize(obj runtime.Object)

}

The embedded ObjectTyper recognizes objects; that is, it

checks whether an object in a request is supported by the

registry. This is important to create the right kind of objects

(e.g., via a “foo” resource, only “Foo” resources should be

created).

The NameGenerator obviously generates names from the

ObjectMeta.GenerateName field.

Via NamespaceScoped the strategy can support cluster-wide or

namespaced resources by returning either false or true.

The PrepareForCreate method is called with the incoming

object before validation.

The Validate method we’ve seen before in “Validation”: it’s

the entry point to the validation functions.

Finally, the Canonicalize method does normalization (e.g.,

sorting of slices).

Wiring a strategy into the generic registry

The strategy object is plugged into a generic registry

instance. Here is the REST storage constructor for our

custom API server on GitHub:

// NewREST returns a RESTStorage object that will work against API services.

func NewREST(

 scheme *runtime.Scheme,

 optsGetter generic.RESTOptionsGetter,

) (*registry.REST, error) {

 strategy := NewStrategy(scheme)

 store := &genericregistry.Store{

 NewFunc: func() runtime.Object { return &restaurant.Pizza{} },

 NewListFunc: func() runtime.Object { return &restaurant.PizzaList{}

},

http://bit.ly/2Y0Mtyn

 PredicateFunc: MatchPizza,

 DefaultQualifiedResource: restaurant.Resource("pizzas"),

 CreateStrategy: strategy,

 UpdateStrategy: strategy,

 DeleteStrategy: strategy,

 }

 options := &generic.StoreOptions{

 RESTOptions: optsGetter,

 AttrFunc: GetAttrs,

 }

 if err := store.CompleteWithOptions(options); err != nil {

 return nil, err

 }

 return ®istry.REST{store}, nil

}

It instantiates the generic registry object

genericregistry.Store and sets a few fields. Many of these

fields are optional and store.CompleteWithOptions will default

them if they are not set by the developer.

You can see how the custom strategy is first instantiated

via the NewStrategy constructor and then plugged into the

registry for create, update, and delete operators.

In addition, the NewFunc is set to create a new object

instance, and the NewListFunc field is set to create a new

object list. The PredicateFunc translates a selector (which

could be passed to a list request) into a predicate function,

filtering runtime objects.

The returned object is a REST registry, just a simple

wrapper in our example project around the generic registry

object to make the type our own:

type REST struct {

 *genericregistry.Store

}

http://bit.ly/2Rxcv6G

With this we have everything to instantiate our API and

wire it into the custom API server. In the following section

we’ll see how to create an HTTP handler out of it.

API Installation

To activate an API in an API server, two steps are

necessary:

1. The API version must be installed into the API type’s

(and conversion and defaulting functions’) server

scheme.

2. The API version must be installed into the server

HTTP multiplexer (mux).

The first step is usually done using init functions

somewhere centrally in the API server bootstrapping. This

is done in pkg/apiserver/apiserver.go in our example

custom API server, where the serverConfig and CustomServer

objects are defined (see “Options and Config Pattern and

Startup Plumbing”):

import (

 ...

 "k8s.io/apimachinery/pkg/runtime"

 "k8s.io/apimachinery/pkg/runtime/serializer"

 "github.com/programming-kubernetes/pizza-

apiserver/pkg/apis/restaurant/install"

)

var (

 Scheme = runtime.NewScheme()

 Codecs = serializer.NewCodecFactory(Scheme)

)

Then for each API group that should be served, we call the

Install() function:

func init() {

 install.Install(Scheme)

}

For technical reasons, we also have to add some discovery-

related types to the scheme (this will probably go away in

future versions of k8s.io/apiserver):

func init() {

 // we need to add the options to empty v1

 // TODO: fix the server code to avoid this

 metav1.AddToGroupVersion(Scheme, schema.GroupVersion{Version: "v1"})

 // TODO: keep the generic API server from wanting this

 unversioned := schema.GroupVersion{Group: "", Version: "v1"}

 Scheme.AddUnversionedTypes(unversioned,

 &metav1.Status{},

 &metav1.APIVersions{},

 &metav1.APIGroupList{},

 &metav1.APIGroup{},

 &metav1.APIResourceList{},

)

}

With this we have registered our API types in the global

scheme, including conversion and defaulting functions. In

other words, the empty scheme of Figure 8-3 now knows

everything about our types.

The second step is to add the API group to the HTTP mux.

The generic API server code embedded into our

CustomServer struct provides the InstallAPIGroup(apiGroupInfo

*APIGroupInfo) error method, which sets up the whole

request pipeline for an API group.

The only thing we have to do is to provide a properly filled

APIGroupInfo struct. We do this in the constructor New()

(*CustomServer, error) of the completedConfig type:

// New returns a new instance of CustomServer from the given config.

func (c completedConfig) New() (*CustomServer, error) {

 genericServer, err := c.GenericConfig.New("pizza-apiserver",

 genericapiserver.NewEmptyDelegate())

 if err != nil {

 return nil, err

 }

 s := &CustomServer{

 GenericAPIServer: genericServer,

 }

 apiGroupInfo :=

genericapiserver.NewDefaultAPIGroupInfo(restaurant.GroupName,

 Scheme, metav1.ParameterCodec, Codecs)

 v1alpha1storage := map[string]rest.Storage{}

 pizzaRest := pizzastorage.NewREST(Scheme,

c.GenericConfig.RESTOptionsGetter)

 v1alpha1storage["pizzas"] = customregistry.RESTInPeace(pizzaRest)

 toppingRest := toppingstorage.NewREST(

 Scheme, c.GenericConfig.RESTOptionsGetter,

)

 v1alpha1storage["toppings"] = customregistry.RESTInPeace(toppingRest)

 apiGroupInfo.VersionedResourcesStorageMap["v1alpha1"] = v1alpha1storage

 v1beta1storage := map[string]rest.Storage{}

 pizzaRest = pizzastorage.NewREST(Scheme,

c.GenericConfig.RESTOptionsGetter)

 v1beta1storage["pizzas"] = customregistry.RESTInPeace(pizzaRest)

 apiGroupInfo.VersionedResourcesStorageMap["v1beta1"] = v1beta1storage

 if err := s.GenericAPIServer.InstallAPIGroup(&apiGroupInfo); err != nil {

 return nil, err

 }

 return s, nil

}

The APIGroupInfo has references to the generic registry that

we customized in “Registry and Strategy” via a strategy.

For each group version and resource, we create an instance

of the registry using the implemented constructors.

The customregistry.RESTInPeace wrapper is just a helper that

panics when the registry constructors return an error:

func RESTInPeace(storage rest.StandardStorage, err error) rest.StandardStorage

{

 if err != nil {

 err = fmt.Errorf("unable to create REST storage: %v", err)

 panic(err)

 }

 return storage

}

The registry itself is version-independent, as it operates on

internal objects; refer back to Figure 8-5. Hence, we call

the same registry constructor for each version.

The call to InstallAPIGroup finally leads us to a complete

custom API server ready to serve our custom API group, as

shown earlier in Figure 8-7.

After all this heavy plumbing, it is time to see our new API

groups in action. For this we start up the server as shown

in “The First Start”. But this time the discovery info is not

empty but instead shows our newly registered resource:

$ curl -k https://localhost:443/apis

{

 "kind": "APIGroupList",

 "groups": [

 {

 "name": "restaurant.programming-kubernetes.info",

 "versions": [

 {

 "groupVersion": "restaurant.programming-kubernetes.info/v1beta1",

 "version": "v1beta1"

 },

 {

 "groupVersion": "restaurant.programming-kubernetes.info/v1alpha1",

 "version": "v1alpha1"

 }

],

 "preferredVersion": {

 "groupVersion": "restaurant.programming-kubernetes.info/v1beta1",

 "version": "v1beta1"

 },

 "serverAddressByClientCIDRs": [

 {

 "clientCIDR": "0.0.0.0/0",

 "serverAddress": ":443"

 }

]

 }

]

}

With this, we have nearly reached our goal to serve the

restaurant API. We have wired the API group versions,

conversions are in place, and validation is working.

What’s missing is a check that a topping mentioned in a

pizza actually exists in the cluster. We could add this in the

validation functions. But traditionally these are just format

validation functions, which are static and do not need other

resources to run.

In contrast, more complex checks are implemented in

admission—the topic of the next section.

Admission

Every request passes the chain of admission plug-ins after

being unmarshaled, defaulted, and converted to internal

types; refer back to Figure 8-2. More precisely, requests

pass admission twice:

The mutating plug-ins

The validating plug-ins

Admission plug-ins can be both mutating and validating

and therefore can potentially get called twice by the

admission mechanism:

Once in the mutation phase, called for all mutating

plug-ins sequentially

Once in the validation phase, called (potentially

parallelized) for all validating plug-ins

More precisely, a plug-in can implement both the mutating

and the validating admission interface, with two different

methods for both cases.

NOTE

Before the separation into mutating and validating, there was just one call to

each plug-in. It was nearly impossible to keep an eye on which mutation each

plug-in did and which admission plug-in order therefore made sense to lead

to consistent behavior for the user.

This two-step architecture at least ensures that a validation is done at the

end for all plug-ins, which guarantees consistency.

In addition, the chain (i.e., the order of plug-ins for both

admission phases) is the same. Plug-ins are always enabled

or disabled for both phases at the same time.

Admission plug-ins, at least those implemented in Golang

as described in this chapter, work with internal types. In

contrast, webhook admission plug-ins (see “Admission

Webhooks”) are based on external types and involve

conversion on the way to the webhook and back (in case of

mutating webhooks).

But after all this theory, let’s get into the code.

Implementation

An admission plug-in is a type implementing:

The admission plug-in interface Interface

Optionally the MutatingInterface

Optionally the ValidatingInterface

All three can be found in the package

k8s.io/apiserver/pkg/admission:

// Operation is the type of resource operation being checked for

// admission control

type Operation string.

// Operation constants

const (

 Create Operation = "CREATE"

 Update Operation = "UPDATE"

 Delete Operation = "DELETE"

 Connect Operation = "CONNECT"

)

// Interface is an abstract, pluggable interface for Admission Control

// decisions.

type Interface interface {

 // Handles returns true if this admission controller can handle the given

 // operation where operation can be one of CREATE, UPDATE, DELETE, or

 // CONNECT.

 Handles(operation Operation) bool.

}

type MutationInterface interface {

 Interface

 // Admit makes an admission decision based on the request attributes.

 Admit(a Attributes, o ObjectInterfaces) (err error)

}

// ValidationInterface is an abstract, pluggable interface for Admission

Control

// decisions.

type ValidationInterface interface {

 Interface

 // Validate makes an admission decision based on the request attributes.

 // It is NOT allowed to mutate.

 Validate(a Attributes, o ObjectInterfaces) (err error)

}

You see that the Interface method Handles is responsible for

filtering on the operation. The mutating plug-ins are called

via Admit and the validating plug-ins are called via Validate.

The ObjectInterfaces gives access to helpers usually

implemented by a scheme:

type ObjectInterfaces interface {

 // GetObjectCreater is the ObjectCreater for the requested object.

 GetObjectCreater() runtime.ObjectCreater

 // GetObjectTyper is the ObjectTyper for the requested object.

 GetObjectTyper() runtime.ObjectTyper

 // GetObjectDefaulter is the ObjectDefaulter for the requested object.

 GetObjectDefaulter() runtime.ObjectDefaulter

 // GetObjectConvertor is the ObjectConvertor for the requested object.

 GetObjectConvertor() runtime.ObjectConvertor

}

The attributes passed to the plug-in (via Admit or Validate or

both) basically contain all the information extractable from

a request that is important to implementing advanced

checks:

// Attributes is an interface used by AdmissionController to get information

// about a request that is used to make an admission decision.

type Attributes interface {

 // GetName returns the name of the object as presented in the request.

 // On a CREATE operation, the client may omit name and rely on the

 // server to generate the name. If that is the case, this method will

 // return the empty string.

 GetName() string

 // GetNamespace is the namespace associated with the request (if any).

 GetNamespace() string

 // GetResource is the name of the resource being requested. This is not

the

 // kind. For example: pods.

 GetResource() schema.GroupVersionResource

 // GetSubresource is the name of the subresource being requested. This is

a

 // different resource, scoped to the parent resource, but it may have a

 // different kind.

 // For instance, /pods has the resource "pods" and the kind "Pod", while

 // /pods/foo/status has the resource "pods", the sub resource "status",

and

 // the kind "Pod" (because status operates on pods). The binding resource

for

 // a pod, though, may be /pods/foo/binding, which has resource "pods",

 // subresource "binding", and kind "Binding".

 GetSubresource() string

 // GetOperation is the operation being performed.

 GetOperation() Operation

 // IsDryRun indicates that modifications will definitely not be persisted

for

 // this request. This is to prevent admission controllers with side

effects

 // and a method of reconciliation from being overwhelmed.

 // However, a value of false for this does not mean that the modification

will

 // be persisted, because it could still be rejected by a subsequent

 // validation step.

 IsDryRun() bool

 // GetObject is the object from the incoming request prior to default

values

 // being applied.

 GetObject() runtime.Object

 // GetOldObject is the existing object. Only populated for UPDATE

requests.

 GetOldObject() runtime.Object

 // GetKind is the type of object being manipulated. For example: Pod.

 GetKind() schema.GroupVersionKind

 // GetUserInfo is information about the requesting user.

 GetUserInfo() user.Info

 // AddAnnotation sets annotation according to key-value pair. The key

 // should be qualified, e.g., podsecuritypolicy.admission.k8s.io/admit-

policy,

 // where "podsecuritypolicy" is the name of the plugin,

"admission.k8s.io"

 // is the name of the organization, and "admit-policy" is the key

 // name. An error is returned if the format of key is invalid. When

 // trying to overwrite annotation with a new value, an error is

 // returned. Both ValidationInterface and MutationInterface are

 // allowed to add Annotations.

 AddAnnotation(key, value string) error

}

In the mutating case—that is, in the implementation of the

Admit(a Attributes) error method—the attributes can be

mutated, or more precisely, the object returned from

GetObject() runtime.Object can.

In the validating case, mutation is not allowed.

Both cases permit the call to AddAnnotation(key, value

string) error, which allows us to add annotations that end

up in the audit output of the API server. This can be helpful

in order to understand why an admission plug-in mutated

or rejected a request.

Rejection is signaled by returning a non-nil error from

Admit or Validate.

TIP

It is good practice for mutating admission plug-ins to also validate the

changes in the validating admission phase. The reason is that other plug-ins,

including webhook admission plug-ins, might add further changes. If an

admission plug-in guarantees that certain invariants are fulfilled, only the

validation step can make sure this is really the case.

Admission plug-ins have to implement the Handles(operation

Operation) bool method from the admission.Interface

interfaces. There is a helper in the same package called

Handler. It can be instantiated using NewHandler(ops

...Operation) *Handler and implements the Handles method

by embedding Handler into the custom admission plug-in:

type CustomAdmissionPlugin struct {

 *admission.Handler

 ...

}

Admission plug-ins should always check the

GroupVersionKind of the passed object first:

func (d *PizzaToppingsPlugin) Admit(

 a admission.Attributes,

 o ObjectInterfaces,

) error {

 // we are only interested in pizzas

 if a.GetKind().GroupKind() != restaurant.Kind("Pizza") {

 return nil

 }

 ...

}

and similarly for the validating case:

func (d *PizzaToppingsPlugin) Validate(

 a admission.Attributes,

 o ObjectInterfaces,

) error {

 // we are only interested in pizzas

 if a.GetKind().GroupKind() != restaurant.Kind("Pizza") {

 return nil

 }

 ...

}

WHY THE API SERVER PLUMBING DOES NOT

PREFILTER OBJECTS

For native admission plug-ins there is no registration

mechanism that makes the information of supported

objects available for the API server machinery in order

to call plug-ins only for objects they support. One reason

is that many plug-ins in the Kubernetes API server

(where the admission mechanism was invented) support

a large number of objects.

The full example admission implementation looks like this:

// Admit ensures that the object in-flight is of kind Pizza.

// In addition checks that the toppings are known.

func (d *PizzaToppingsPlugin) Validate(

 a admission.Attributes,

 _ admission.ObjectInterfaces,

) error {

 // we are only interested in pizzas

 if a.GetKind().GroupKind() != restaurant.Kind("Pizza") {

 return nil

 }

 if !d.WaitForReady() {

 return admission.NewForbidden(a, fmt.Errorf("not yet ready"))

 }

 obj := a.GetObject()

 pizza := obj.(*restaurant.Pizza)

 for _, top := range pizza.Spec.Toppings {

 err := _, err := d.toppingLister.Get(top.Name)

 if err != nil && errors.IsNotFound(err) {

 return admission.NewForbidden(

 a,

 fmt.Errorf("unknown topping: %s", top.Name),

)

 }

 }

 return nil

}

It takes the following steps:

1. Checks that the passed object is of the right kind

2. Forbids access before the informers are ready

3. Verifies via the toppings informer lister that each

topping mentioned in the pizza specification actually

exists as a Topping object in the cluster

Note here that the lister is just an interface to the informer

in-memory store. So these Get calls will be fast.

Registering

Admission plug-ins must be registered. This is done

through a Register function:

func Register(plugins *admission.Plugins) {

 plugins.Register(

 "PizzaTopping",

 func(config io.Reader) (admission.Interface, error) {

 return New()

 },

)

}

This function is added to the plug-in list in the

RecommendedOptions (see “Options and Config Pattern and

Startup Plumbing”):

func (o *CustomServerOptions) Complete() error {

 // register admission plugins

 pizzatoppings.Register(o.RecommendedOptions.Admission.Plugins)

 // add admisison plugins to the RecommendedPluginOrder

 oldOrder := o.RecommendedOptions.Admission.RecommendedPluginOrder

 o.RecommendedOptions.Admission.RecommendedPluginOrder =

 append(oldOrder, "PizzaToppings")

 return nil

}

Here, the RecommendedPluginOrder list is prepopulated with

the generic admission plug-ins, which every API server

should keep enabled to be a good API convention citizen in

the cluster.

It is best practice not to touch the order. One reason is that

getting the order right is far from trivial. Of course, adding

a custom plug-in at a location other than the end of the list

is fine, if it is strictly necessary for the plug-in behavior.

The user of the custom API server will be able to disable a

custom admission plug-in with the usual admission chain

configuration flags (--disable-admission-plugins, for

example). By default our own plug-in is enabled, because

we don’t explicitly disable it.

Admission plug-ins can be configured using a configuration

file. To do so, we parse the output of the io.Reader in the

Register function shown previously. The --admission-control-

config-file allows us to pass a configuration file to the plug-

in, like so:

kind: AdmissionConfiguration

apiVersion: apiserver.k8s.io/v1alpha1

plugins:

- name: CustomAdmissionPlugin

 path: custom-admission-plugin.yaml

Alternatively, we can do inline configuration to have all our

admission configuration in one place:

kind: AdmissionConfiguration

apiVersion: apiserver.k8s.io/v1alpha1

plugins:

- name: CustomAdmissionPlugin

 configuration:

 your-custom-yaml-inline-config

We briefly mentioned that our admission plug-in uses the

toppings informer to check for the existence of toppings

mentioned in the pizza. We have not talked about how to

wire that into the admission plug-in. Let’s do this now.

Plumbing resources

Admission plug-ins often need clients and informers or

other resources to implement their behavior. We can do this

resource plumbing using plug-in initializers.

There are a number of standard plug-in initializers. If your

plug-in wants to be called by them, it has to implement

certain interfaces with callback methods (for more on this,

see k8s.io/apiserver/pkg/admission/initializer):

// WantsExternalKubeClientSet defines a function that sets external ClientSet

// for admission plugins that need it.

type WantsExternalKubeClientSet interface {

 SetExternalKubeClientSet(kubernetes.Interface)

 admission.InitializationValidator

}

// WantsExternalKubeInformerFactory defines a function that sets

InformerFactory

// for admission plugins that need it.

type WantsExternalKubeInformerFactory interface {

 SetExternalKubeInformerFactory(informers.SharedInformerFactory)

 admission.InitializationValidator

}

// WantsAuthorizer defines a function that sets Authorizer for admission

// plugins that need it.

type WantsAuthorizer interface {

 SetAuthorizer(authorizer.Authorizer)

 admission.InitializationValidator

}

// WantsScheme defines a function that accepts runtime.Scheme for admission

// plugins that need it.

type WantsScheme interface {

 SetScheme(*runtime.Scheme)

 admission.InitializationValidator

}

Implement some of these and the plug-in gets called during

launch, in order to get access to, say, Kubernetes resources

or the API server global scheme.

In addition, the admission.InitializationValidator interface

is supposed to be implemented to do a final check that the

plug-in is properly set up:

// InitializationValidator holds ValidateInitialization functions, which are

// responsible for validation of initialized shared resources and should be

// implemented on admission plugins.

type InitializationValidator interface {

 ValidateInitialization() error

}

Standard initializers are great, but we need access to the

toppings informer. So, let’s look at how to add our own

initializers. An initializer consists of:

A Wants* interface (e.g.,

WantsRestaurantInformerFactory), which should be

implemented by an admission plug-in:

// WantsRestaurantInformerFactory defines a function that sets

// InformerFactory for admission plugins that need it.

type WantsRestaurantInformerFactory interface {

 SetRestaurantInformerFactory(informers.SharedInformerFactory)

 admission.InitializationValidator

}

The initializer struct, implementing

admission.PluginInitializer:

func (i restaurantInformerPluginInitializer) Initialize(

 plugin admission.Interface,

) {

 if wants, ok := plugin.(WantsRestaurantInformerFactory); ok {

 wants.SetRestaurantInformerFactory(i.informers)

 }

}

In other words, the Initialize() method checks that

the passed plug-in implements the corresponding

custom initializer Wants* interface. If that is the case,

the initializer will call the method on the plug-in.

Plumbing of the initializer constructor into

RecommendedOptions.Extra\AdmissionInitializers (see

“Options and Config Pattern and Startup

Plumbing”):

func (o *CustomServerOptions) Config() (*apiserver.Config, error) {

 ...

 o.RecommendedOptions.ExtraAdmissionInitializers =

 func(c *genericapiserver.RecommendedConfig) (

 []admission.PluginInitializer, error,

) {

 client, err :=

clientset.NewForConfig(c.LoopbackClientConfig)

 if err != nil {

 return nil, err

 }

 informerFactory := informers.NewSharedInformerFactory(

 client, c.LoopbackClientConfig.Timeout,

)

 o.SharedInformerFactory = informerFactory

 return []admission.PluginInitializer{

 custominitializer.New(informerFactory),

 }, nil

 }

 ...

}

This code creates a loopback client for the

restaurant API group, creates a corresponding

informer factory, stores it in the options o, and

returns a plug-in initializer for it.

SYNCING INFORMERS

If informers are used in admission plug-ins, always

check first that the informers are synced before using

them in the actual Admit() or Validate() functions. Reject

requests with a Forbidden error before that is the case.

Using the Handler helper struct described in

“Implementation”, we can do this using the

Handler.WaitForReady() function easily:

if !d.WaitForReady() {

 return admission.NewForbidden(

 a, fmt.Errorf("not yet ready to handle request"),

)

}

To include a custom informer HasSynced() method in this

WaitForReady() method, add it to the ready functions from

the initializer implementation, like so:

func (d *PizzaToppingsPlugin) SetRestaurantInformerFactory(

f informers.SharedInformerFactory) {

 d.toppingLister = f.Restaurant().V1Alpha1().Toppings().Lister()

d.SetReadyFunc(f.Restaurant().V1Alpha1().Toppings().Informer().HasSynced)

}

As promised, admission is the last step in the

implementation to complete our custom API server for the

restaurant API group. Now we want to see it in action, but

not artificially on the local machine, but rather in a real

Kubernetes cluster. This means we have to take a look at

the deployment of an aggregated custom API server.

Deploying Custom API Servers

In “API Services”, we saw the APIService object, which is

used to register the custom API server API group versions

with the aggregator inside the Kubernetes API server:

apiVersion: apiregistration.k8s.io/v1beta1

kind: APIService

metadata:

 name: name

spec:

 group: API-group-name

 version: API-group-version

 service:

 namespace: custom-API-server-service-namespace

 name: custom-API-server-service

 caBundle: base64-caBundle

 insecureSkipTLSVerify: bool

 groupPriorityMinimum: 2000

 versionPriority: 20

The APIService object points to a service. Usually, this

service will be a normal cluster IP service: that is, the

custom API server is deployed into the cluster using pods.

The service forwards the requests to the pods.

Let’s look at the Kubernetes manifest to implement this.

Deployment Manifests

We have the following manifests (found in the example

code on GitHub) that will be part of an in-cluster

deployment of a custom API service:

An APIService for both versions v1alpha1:

apiVersion: apiregistration.k8s.io/v1beta1

kind: APIService

metadata:

http://bit.ly/2J6CVIz

 name: v1alpha1.restaurant.programming-kubernetes.info

spec:

 insecureSkipTLSVerify: true

 group: restaurant.programming-kubernetes.info

 groupPriorityMinimum: 1000

 versionPriority: 15

 service:

 name: api

 namespace: pizza-apiserver

 version: v1alpha1

…and v1beta1:

apiVersion: apiregistration.k8s.io/v1beta1

kind: APIService

metadata:

 name: v1alpha1.restaurant.programming-kubernetes.info

spec:

 insecureSkipTLSVerify: true

 group: restaurant.programming-kubernetes.info

 groupPriorityMinimum: 1000

 versionPriority: 15

 service:

 name: api

 namespace: pizza-apiserver

 version: v1alpha1

Note here that we set insecureSkipTLSVerify. This is

OK for development but inadequate for any

production deployment. We’ll see how to fix this in

“Certificates and Trust”.

A Service in front of the custom API server instances

running in the cluster:

apiVersion: v1

kind: Service

metadata:

 name: api

 namespace: pizza-apiserver

spec:

 ports:

 - port: 443

 protocol: TCP

 targetPort: 8443

 selector:

 apiserver: "true"

A Deployment (as shown here) or DaemonSet for the

custom API server pods:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: pizza-apiserver

 namespace: pizza-apiserver

 labels:

 apiserver: "true"

spec:

 replicas: 1

 selector:

 matchLabels:

 apiserver: "true"

 template:

 metadata:

 labels:

 apiserver: "true"

 spec:

 serviceAccountName: apiserver

 containers:

 - name: apiserver

 image: quay.io/programming-kubernetes/pizza-apiserver:latest

 imagePullPolicy: Always

 command: ["/pizza-apiserver"]

 args:

 - --etcd-servers=http://localhost:2379

 - --cert-dir=/tmp/certs

 - --secure-port=8443

 - --v=4

 - name: etcd

 image: quay.io/coreos/etcd:v3.2.24

 workingDir: /tmp

A namespace for the service and the deployment to

live in:

apiVersion: v1

kind: Namespace

metadata:

 name: pizza-apiserver

spec: {}

Often, the aggregated API server is deployed to some

nodes reserved for control plane pods, usually called

masters. In that case, a DaemonSet is a good choice to run

one custom API server instance per master node. This leads

to a high availability setup. Note, that API servers are

stateless, which means they can easily be deployed

multiple times and no leader election is necessary.

With these manifests, we are nearly done. As is so often the

case, though, a secure deployment needs some more

thought. You might have noticed that the pods (defined via

the preceding deployment) use a custom service account,

apiserver. This can be created via another manifest:

kind: ServiceAccount

apiVersion: v1

metadata:

 name: apiserver

 namespace: pizza-apiserver

This service account needs a number of permissions, which

we can add via RBAC objects.

Setting Up RBAC

The service account of an API service first needs some

generic permissions to participate in:

namespace lifecycle

Objects can be created only in an existing namespace,

and are deleted when the namespace is deleted. For this

the API server has to get, list, and watch namespaces.

admission webhooks

Admission webhooks configured via

MutatingWebhookConfigurations and

ValidatedWebhookConfigurations are called from each API

server independently. For this the admission mechanism

in our custom API server has to get, list, and watch

these resources.

We configure both by creating an RBAC cluster role:

kind: ClusterRole

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: aggregated-apiserver-clusterrole

rules:

- apiGroups: [""]

 resources: ["namespaces"]

 verbs: ["get", "watch", "list"]

- apiGroups: ["admissionregistration.k8s.io"]

 resources: ["mutatingwebhookconfigurations",

"validatingwebhookconfigurations"]

 verbs: ["get", "watch", "list"]

and binding it to our service account apiserver via a

ClusterRoleBinding:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: pizza-apiserver-clusterrolebinding

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: aggregated-apiserver-clusterrole

subjects:

- kind: ServiceAccount

 name: apiserver

 namespace: pizza-apiserver

For delegated authentication and authorization, the service

account has to be bound to the preexisting RBAC role

extension-apiserver-authentication-reader:

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: pizza-apiserver-auth-reader

 namespace: kube-system

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: extension-apiserver-authentication-reader

subjects:

- kind: ServiceAccount

 name: apiserver

 namespace: pizza-apiserver

and the preexisting RBAC cluster role system:auth-delegator:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: pizza-apiserver:system:auth-delegator

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: system:auth-delegator

subjects:

- kind: ServiceAccount

 name: apiserver

 namespace: pizza-apiserver

Running the Custom API Server Insecurely

Now with all manifests in place and RBAC set up, let’s

deploy the API server to a real cluster.

From a checkout of the GitHub repository, and with

configured kubectl with cluster-admin privileges (this is

needed because RBAC rules can never escalate access):

$ cd $GOPATH/src/github.com/programming-kubernetes/pizza-apiserver

$ cd artifacts/deployment

$ kubectl apply -f ns.yaml # create the namespace first

$ kubectl apply -f . # creating all manifests described above

Now the custom API server is launching:

$ kubectl get pods -A

NAMESPACE NAME READY STATUS AGE

pizza-apiserver pizza-apiserver-7779f8d486-8fpgj 0/2 ContainerCreating 1s

$ # some moments later

$ kubectl get pods -A

pizza-apiserver pizza-apiserver-7779f8d486-8fpgj 2/2 Running 75s

When it is running, we double-check that the Kubernetes

API server does aggregation (i.e., proxying of requests).

First check via APIServices whether the Kubernetes API

server thinks that our custom API server is available:

http://bit.ly/2x9C3gR

$ kubectl get apiservices v1alpha1.restaurant.programming-kubernetes.info

NAME SERVICE AVAILABLE

v1alpha1.restaurant.programming-kubernetes.info pizza-apiserver/api True

This looks good. Let’s try to list pizzas, with logging

enabled to see whether something goes wrong:

$ kubectl get pizzas --v=7

...

... GET https://localhost:58727/apis?timeout=32s

...

... GET https://localhost:58727/apis/restaurant.programming-kubernetes.info/

 v1alpha1?timeout=32s

...

... GET https://localhost:58727/apis/restaurant.programming-kubernetes.info/

 v1beta1/namespaces/default/pizzas?limit=500

... Request Headers:

... Accept: application/json;as=Table;v=v1beta1;g=meta.k8s.io,

application/json

... User-Agent: kubectl/v1.15.0 (darwin/amd64) kubernetes/f873d2a

... Response Status: 200 OK in 6 milliseconds

No resources found.

This looks very good. We see that kubectl queries the

discovery information to find out what a pizza is. It queries

the restaurant.programming-kubernetes.info/v1beta1 API

to list the pizzas. Unsurprisingly, there aren’t any yet. But

we can of course change that:

$ cd ../examples

$ # install toppings first

$ ls topping* | xargs -n 1 kubectl create -f

$ kubectl create -f pizza-margherita.yaml

pizza.restaurant.programming-kubernetes.info/margherita created

$ kubectl get pizza -o yaml margherita

apiVersion: restaurant.programming-kubernetes.info/v1beta1

kind: Pizza

metadata:

 creationTimestamp: "2019-05-05T13:39:52Z"

 name: margherita

 namespace: default

 resourceVersion: "6"

 pizzas/margherita

 uid: 42ab6e88-6f3b-11e9-8270-0e37170891d3

spec:

 toppings:

 - name: mozzarella

 quantity: 1

 - name: tomato

 quantity: 1

status: {}

This looks awesome. But the margherita pizza was easy.

Let’s try defaulting in action by creating an empty pizza

that does not list any toppings:

apiVersion: restaurant.programming-kubernetes.info/v1alpha1

kind: Pizza

metadata:

 name: salami

spec:

Our defaulting should turn this into a salami pizza with a

salami topping. Let’s try:

$ kubectl create -f empty-pizza.yaml

pizza.restaurant.programming-kubernetes.info/salami created

$ kubectl get pizza -o yaml salami

apiVersion: restaurant.programming-kubernetes.info/v1beta1

kind: Pizza

metadata:

 creationTimestamp: "2019-05-05T13:42:42Z"

 name: salami

 namespace: default

 resourceVersion: "8"

 pizzas/salami

 uid: a7cb7af2-6f3b-11e9-8270-0e37170891d3

spec:

 toppings:

 - name: salami

 quantity: 1

 - name: mozzarella

 quantity: 1

 - name: tomato

 quantity: 1

status: {}

This looks like a delicious salami pizza.

Now let’s check whether our custom admission plug-in is

working. We first delete all pizzas and toppings, and then

try to re-create the pizzas:

$ kubectl delete pizzas --all

pizza.restaurant.programming-kubernetes.info "margherita" deleted

pizza.restaurant.programming-kubernetes.info "salami" deleted

$ kubectl delete toppings --all

topping.restaurant.programming-kubernetes.info "mozzarella" deleted

topping.restaurant.programming-kubernetes.info "salami" deleted

topping.restaurant.programming-kubernetes.info "tomato" deleted

$ kubectl create -f pizza-margherita.yaml

Error from server (Forbidden): error when creating "pizza-margherita.yaml":

 pizzas.restaurant.programming-kubernetes.info "margherita" is forbidden:

 unknown topping: mozzarella

No margherita without mozzarella, like in any good Italian

restaurant.

Looks like we are done implementing what we described in

“Example: A Pizza Restaurant”. But not quite. Security.

Again. We have not taken care of the proper certificates. A

malicious pizza seller could try to get between our users

and the custom API server because the Kubernetes API

server just accepts any serving certificates without

checking them. Let’s fix this.

Certificates and Trust

The APIService object contains the caBundle field. This

configures how the aggregator (inside the Kubernetes API

server) trusts the custom API server. This CA bundle

contains the certificate (and intermediate certificates) used

to verify that the aggregated API server has the identity it

claims to have. For any serious deployment, put the

corresponding CA bundle into this field.

WARNING

While insecureSkipTLSVerify is allowed in an APIService in order to disable

certification verification, it is a bad idea to use this in a production setup.

The Kubernetes API server sends requests to a trusted aggregated API

server. Setting insecureSkipTLSVerify to true means that any other actor can

claim to be the aggregated API server. This is obviously insecure and should

not be used in production environments.

The reverse trust from the custom API server to the

Kubernetes API server, and its preauthentication of

requests, is described in “Delegated Authentication and

Trust”. We don’t have to do anything extra.

Back to the pizza example: to make it secure, we need a

serving certificate and a key for the custom API server in

the deployment. We put both into a serving-cert secret and

mount it into the pod at /var/run/apiserver/serving-cert/tls.

{crt,key}. Then we use the tls.crt file as CA in the

APIService. This can all be found in the example code on

GitHub.

The certificate-generation logic is scripted in a Makefile.

Note that in a real-world scenario we’d probably have some

kind of cluster or company CA we can plug into the

APIService.

To see it in action, either start with a new cluster or just

reuse the previous one and apply the new, secure

manifests:

$ cd ../deployment-secure

$ make

openssl req -new -x509 -subj "/CN=api.pizza-apiserver.svc"

 -nodes -newkey rsa:4096

 -keyout tls.key -out tls.crt -days 365

Generating a 4096 bit RSA private key

......................++

http://bit.ly/2XxtJWP
http://bit.ly/2KGn0nw

..++

writing new private key to 'tls.key'

...

$ ls *.yaml | xargs -n 1 kubectl apply -f

clusterrolebinding.rbac.authorization.k8s.io/pizza-apiserver:system:auth-

delegator unchanged

rolebinding.rbac.authorization.k8s.io/pizza-apiserver-auth-reader unchanged

deployment.apps/pizza-apiserver configured

namespace/pizza-apiserver unchanged

clusterrolebinding.rbac.authorization.k8s.io/pizza-apiserver-

clusterrolebinding unchanged

clusterrole.rbac.authorization.k8s.io/aggregated-apiserver-clusterrole

unchanged

serviceaccount/apiserver unchanged

service/api unchanged

secret/serving-cert created

apiservice.apiregistration.k8s.io/v1alpha1.restaurant.programming-

kubernetes.info configured

apiservice.apiregistration.k8s.io/v1beta1.restaurant.programming-

kubernetes.info configured

Note here the correct common name CN=api.pizza-

apiserver.svc in the certificate. The Kubernetes API server

proxies the request to the api/pizza-apiserver service and

hence its DNS name must be put into the certificate.

We double-check that we really have disabled the

insecureSkipTLSVerify flag in the APIService:

$ kubectl get apiservices v1alpha1.restaurant.programming-kubernetes.info -o

yaml

apiVersion: apiregistration.k8s.io/v1

kind: APIService

metadata:

 name: v1alpha1.restaurant.programming-kubernetes.info

 ...

spec:

 caBundle: LS0tLS1C...

 group: restaurant.programming-kubernetes.info

 groupPriorityMinimum: 1000

 service:

 name: api

 namespace: pizza-apiserver

 version: v1alpha1

 versionPriority: 15

y

status:

 conditions:

 - lastTransitionTime: "2019-05-05T14:07:07Z"

 message: all checks passed

 reason: Passed

 status: "True"

 type: Available

artifacts/deploymen

This looks as expected: insecureSkipTLSVerify is gone and

the caBundle field is filled with a base64 value of our

certificate And: the service is still available.

Now let’s see whether kubectl can still query the API:

$ kubectl get pizzas

No resources found.

$ cd ../examples

$ ls topping* | xargs -n 1 kubectl create -f

topping.restaurant.programming-kubernetes.info/mozzarella created

topping.restaurant.programming-kubernetes.info/salami created

topping.restaurant.programming-kubernetes.info/tomato created

$ kubectl create -f pizza-margherita.yaml

pizza.restaurant.programming-kubernetes.info/margherita created

The margherita pizza is back. This time it is perfectly

secured. No chance for a malicious pizza seller to start a

man-in-the-middle attack. Buon appetito!

Sharing etcd

Aggregated API servers using the RecommendOptions (see

“Options and Config Pattern and Startup Plumbing”) use

etcd for storage. This means that any deployment of a

custom API server requires an etcd cluster to be available.

This cluster can be in-cluster—for example, deployed using

the etcd operator. This operator allows us to launch and

administrate an etcd cluster in a declarative way. The

http://bit.ly/2JTz8SK

operator will do updates, up and down scaling, and backup.

This reduces the operational overhead a lot.

Alternatively, the etcd of the cluster control plane (i.e., that

of kube-apiserver) can be used. Depending on the

environment—self-deployed, on-premise, or hosted services

like Google Container Engine (GKE)—this might be viable,

or it might be impossible because the user has no access to

the cluster at all (as is the case with GKE). In the viable

cases, the custom API server has to use a key path that is

distinct from the one used by the Kubernetes API server or

other etcd consumers. In our example custom API server, it

looks like this:

const defaultEtcdPathPrefix =

 "/registry/pizza-apiserver.programming-kubernetes.github.com"

func NewCustomServerOptions() *CustomServerOptions {

 o := &CustomServerOptions{

 RecommendedOptions: genericoptions.NewRecommendedOptions(

 defaultEtcdPathPrefix,

 ...

),

 }

 return o

}

This etcd path prefix is different from Kubernetes API

server paths, which use different group API names.

Last but not least, etcd can be proxied. The project

etcdproxy-controller implements this mechanism using the

operator pattern; that is, etcd proxies can be deployed

automatically to the cluster and configured using EtcdProxy

objects.

The etcd proxies will automatically do key mapping, so it is

guaranteed that etcd key prefixes will not conflict. This

http://bit.ly/2Na2VrN

allows us to share etcd clusters for multiple aggregated API

servers without worrying that one aggregated API server

reads or changes the data of another one. This will improve

security in an environment where shared etcd clusters are

required, for example, due to resource constraints or to

avoid operational overhead.

Depending on the context, one of these options must be

chosen. Finally, aggregated API servers can of course also

use other storage backends, at least in theory, as it requires

a lot of custom code to implement the k8s.io/apiserver

storage interfaces.

Summary

This was a pretty large chapter, and you made it to the end.

You’ve gotten a lot of background about APIs in Kubernetes

and how they are implemented.

We saw how aggregation of custom API servers fits into the

architecture of a Kubernetes cluster. We saw how a custom

API server receives requests that are proxies from the

Kubernetes API server. We have seen how the Kubernetes

API server preauthenticates these requests, and how API

groups are implemented, with external versions and

internal versions. We learned how objects are decoded into

the Golang structs, how they are defaulted, how they are

converted to internal types, and how they go through

admission and validation and finally reach the registry. We

saw how a strategy is plugged into a generic registry to

implement “normal” Kubernetes-like REST resources, how

we can add custom admissions, and how to configure a

custom admission plug-in with a custom initializer. We now

know how to do all the plumbing to start up a custom API

server with a multiversion API group, and how to deploy

the API group in a cluster with APIServices. We saw how to

configure RBAC rules to allow the custom API server to do

its job. We discussed how kubectl queries API groups.

Finally, we learned how to secure the connection to our

custom API server with certificates.

This was a lot. Now you have a much better understanding

of what APIs are in Kubernetes and how they are

implemented, and hopefully you are motivated to do one or

more of the following:

Implement your own custom API server

Learn about the inner workings of Kubernetes

Contribute to Kubernetes in the future

We hope that you have found this a good starting point.

1 Graceful deletion means that the client can pass a graceful deletion

period as part of the deletion call. The actual deletion is done by a

controller asynchronously (the kubelet does that for pods) by doing a

forced deletion. This way pods have time to cleanly shut down.

2 Kubernetes uses cohabitation to migrate resources (e.g., deployments

from the extensions/v1beta1 API group) to subject-specific API groups (e.g.,

apps/v1). CRDs have no concept of shared storage.

3 We’ll see in Chapter 9 that CRD conversion and admission webhooks

available in the latest Kubernetes versions also allow us to add these

features to CRDs.

4 PaaS stands for Platform as a Service.

Chapter 9. Advanced

Custom Resources

In this chapter we walk you through advanced topics about

CRs: versioning, conversion, and admission controllers.

With multiple versions, CRDs become much more serious

and are much less distinguishable from Golang-based API

resources. Of course, at the same time the complexity

considerably grows, both in development and maintenance

but also operationally. We call these features “advanced”

because they move CRDs from being a manifest (i.e., purely

declarative) into the Golang world (i.e., into a real software

development project).

Even if you do not plan to build a custom API server and

instead intend to directly switch to CRDs, we highly

recommend not skipping Chapter 8. Many of the concepts

around advanced CRDs have direct counterparts in the

world of custom API servers and are motivated by them.

Reading Chapter 8 will make it much easier to understand

this chapter as well.

The code for all the examples shown and discussed here is

available via the GitHub repository.

Custom Resource Versioning

In Chapter 8 we saw how resources are available through

different API versions. In the example of the custom API

server, the pizza resources exist in version v1alpha1 and

v1beta1 at the same time (see “Example: A Pizza

http://bit.ly/2RBSjAl

Restaurant”). Inside of the custom API server, each object

in a request is first converted from the API endpoint

version to an internal version (see “Internal Types and

Conversion” and Figure 8-5) and then converted back to an

external version for storage and to return a response. The

conversion mechanism is implemented by conversion

functions, some of them manually written, and some

generated (see “Conversions”).

Versioning APIs is a powerful mechanism to adapt and

improve APIs while keeping compatibility for older clients.

Versioning plays a central role everywhere in Kubernetes to

promote alpha APIs to beta and eventually to general

availability (GA). During this process APIs often change

structure or are extended.

For a long time, versioning was a feature available only

through aggregated API servers as presented in Chapter 8.

Any serious API needs versioning eventually, as it is not

acceptable to break compatibility with consumers of the

API.

Luckily, versioning for CRDs has been added very recently

to Kubernetes—as alpha in Kubernetes 1.14 and promoted

to beta in 1.15. Note that conversion requires OpenAPI v3

validation schemas that are structural (see “Validating

Custom Resources”). Structural schema are basically what

tools like Kubebuilder produce anyway. We will discuss the

technical details in “Structural Schemas”.

We’ll show you how versioning works here as it will play a

central role in many serious applications of CRs in the near

future.

Revising the Pizza Restaurant

To learn how CR conversion works, we’ll reimplement the

pizza restaurant example from Chapter 8, this time purely

with CRDs—that is, without the aggregated API server

involved.

For conversion, we will concentrate on the Pizza resource:

apiVersion: restaurant.programming-kubernetes.info/v1alpha1

kind: Pizza

metadata:

 name: margherita

spec:

 toppings:

 - mozzarella

 - tomato

This object should have a different representation of the

toppings slice in the v1beta1 version:

apiVersion: restaurant.programming-kubernetes.info/v1beta1

kind: Pizza

metadata:

 name: margherita

spec:

 toppings:

 - name: mozzarella

 quantity: 1

 - name: tomato

 quantity: 1

While in v1alpha1, repetition of toppings is used to

represent an extra cheese pizza, we do this in v1beta1 by

using a quantity field for each topping. The order of

toppings does not matter.

We want to implement this translation—converting from

v1alpha1 to v1beta1 and back. Before we do so, though, let’s

define the API as a CRD. Note here that we cannot have an

aggregated API server and CRDs of the same GroupVersion

in the same cluster. So make sure that the APIServices

from Chapter 8 are removed before continuing with the

CRDs here.

apiVersion: apiextensions.k8s.io/v1beta1

kind: CustomResourceDefinition

metadata:

 name: pizzas.restaurant.programming-kubernetes.info

spec:

 group: restaurant.programming-kubernetes.info

 names:

 kind: Pizza

 listKind: PizzaList

 plural: pizzas

 singular: pizza

 scope: Namespaced

 version: v1alpha1

 versions:

 - name: v1alpha1

 served: true

 storage: true

 schema: ...

 - name: v1beta1

 served: true

 storage: false

 schema: ...

The CRD defines two versions: v1alpha1 and v1beta1. We set

the former as the storage version (see Figure 9-1), meaning

every object to be stored in etcd is first converted to

v1alpha1.

Figure 9-1. Conversion and storage version

As the CRD is defined currently, we can create an object as

v1alpha1 and retrieve it as v1beta1, but both API endpoints

return the same object. This is obviously not what we want.

But we’ll improve this very soon.

But before we do that, we’ll set up the CRD in a cluster and

create a margherita pizza:

apiVersion: restaurant.programming-kubernetes.info/v1alpha1

kind: Pizza

metadata:

 name: margherita

spec:

 toppings:

 - mozzarella

 - tomato

We register the preceding CRD and then create the

margherita object:

$ kubectl create -f pizza-crd.yaml

$ kubectl create -f margherita-pizza.yaml

As expected, we get back the same object for both versions:

$ kubectl get pizza margherita -o yaml

apiVersion: restaurant.programming-kubernetes.info/v1beta1

kind: Pizza

metadata:

 creationTimestamp: "2019-04-14T11:39:20Z"

 generation: 1

 name: margherita

 namespace: pizza-apiserver

 resourceVersion: "47959"

 selfLink: /apis/restaurant.programming-

kubernetes.info/v1beta1/namespaces/pizza-apiserver/

 pizzas/margherita

 uid: f18427f0-5ea9-11e9-8219-124e4d2dc074

spec:

 toppings:

 - mozzarella

 - tomato

Kubernetes uses the canonical version order; that is:

v1alpha1

Unstable: might go away or change any time and often

disabled by default.

v1beta1

Towards stable: exists at least in one release in parallel

to v1; contract: no incompatible API changes.

v1

Stable or generally available (GA): will stay for good,

and will be compatible.

The GA versions come first in that order, then the betas,

and then the alphas, with the major version ordered from

high to low and the same for the minor version. Every CRD

version not fitting into this pattern comes last, ordered

alphabetically.

In our case, the preceding kubectl get pizza therefore

returns v1beta1, although the created object was in version

v1alpha1.

Conversion Webhook Architecture

Now let’s add the conversion from v1alpha1 to v1beta1 and

back. CRD conversions are implemented via webhooks in

Kubernetes. Figure 9-2 shows the flow:

1. The client (e.g., our kubectl get pizza margherita)

requests a version.

2. etcd has stored the object in some version.

3. If the versions do not match, the storage object is

sent to the webhook server for conversion. The

webhook returns a response with the converted

object.

4. The converted object is sent back to the client.

Figure 9-2. Conversion webhook

We have to implement this webhook server. Before doing

so, let’s look at the webhook API. The Kubernetes API

server sends a ConversionReview object in the API group

apiextensions.k8s.io/v1beta1:

type ConversionReview struct {

 metav1.TypeMeta `json:",inline"`

 Request *ConversionRequest

 Response *ConversionResponse

}

The request field is set in the payload sent to the webhook.

The response field is set in the response.

The request looks like this:

type ConversionRequest struct {

 ...

 // `desiredAPIVersion` is the version to convert given objects to.

 // For example, "myapi.example.com/v1."

 DesiredAPIVersion string

 // `objects` is the list of CR objects to be converted.

 Objects []runtime.RawExtension

}

The DesiredAPIVersion string has the usual apiVersion format

we know from TypeMeta: group/version.

The objects field has a number of objects. It is a slice

because for one list request for pizzas, the webhook will

receive one conversion request, with this slice being all

objects for the list request.

The webhook converts and sets the response:

type ConversionResponse struct {

 ...

 // `convertedObjects` is the list of converted versions of

`request.objects`

 // if the `result` is successful otherwise empty. The webhook is expected

to

 // set apiVersion of these objects to the

ConversionRequest.desiredAPIVersion.

 // The list must also have the same size as input list with the same

objects

 // in the same order (i.e. equal UIDs and object meta).

 ConvertedObjects []runtime.RawExtension

 // `result` contains the result of conversion with extra details if the

 // conversion failed. `result.status` determines if the conversion failed

 // or succeeded. The `result.status` field is required and represents the

 // success or failure of the conversion. A successful conversion must set

 // `result.status` to `Success`. A failed conversion must set

`result.status`

 // to `Failure` and provide more details in `result.message` and return

http

 // status 200. The `result.message` will be used to construct an error

 // message for the end user.

 Result metav1.Status

}

The result status tells the Kubernetes API server whether

the conversion was successful.

But when in the request pipeline is our conversion webhook

actually called? What kind of input object can we expect?

To understand this better, take a look at the general

request pipeline in Figure 9-3: all those solid and striped

circles are where conversion takes place in the

k8s.io/apiserver code.

Figure 9-3. Conversion webhook calls for CRs

In contrast to aggregated custom API servers (see “Internal

Types and Conversion”), CRs do not use internal types but

convert directly between the external API versions. Hence,

only those yellow circles are actually doing conversions in

Figure 9-4; the solid circles are NOOPs for CRDs. In other

words: CRD conversion takes place only from and to etcd.

Figure 9-4. Where conversion takes place for CRs

Therefore, we can assume our webhook will be called from

those two places in the request pipeline (refer to Figure 9-

3).

Also note that patch requests do automatic retries on

conflict (updates cannot retry, and they respond with errors

directly to the caller). Each retry consists of a read and

write to etcd (the yellow circles in Figure 9-3) and therefore

leads to two calls to the webhook per iteration.

WARNING

All the warnings about the criticality of conversion in “Conversions” apply

here as well: conversions must be correct. Bugs quickly lead to data loss and

inconsistent behavior of the API.

Before we start implementing the webhook, some final

words about what the webhook can do and must avoid:

The order of the objects in request and response

must not change.

ObjectMeta with the exception of labels and

annotation must not be mutated.

Conversion is all or nothing: either all objects are

successfully converted or all fail.

Conversion Webhook Implementation

With the theory behind us, we are ready to start the

implementation of the webhook project. You can find the

source at the repository, which includes:

A webhook implementation as an HTTPS web server

A number of endpoints:

/convert/v1beta1/pizza converts a pizza object

between v1alpha1 and v1beta1.

/admit/v1beta1/pizza defaults the

spec.toppings field to mozzarella, tomato,

salami.

/validate/v1beta1/pizza verifies that each

specified topping has a corresponding

toppings object.

The last two endpoints are admission webhooks, which will

be discussed in detail in “Admission Webhooks”. The same

webhook binary will serve both admission and conversion.

The v1beta1 in these paths should not be confused with

v1beta1 of our restaurant API group, but it is meant as the

apiextensions.k8s.io API group version we support as a

webhook. Someday v1 of that webhook API will be

http://bit.ly/2IHXKLn

supported, at which time we’ll add the corresponding v1 as

another endpoint, in order to support old (as of today) and

new Kubernetes clusters. It is possible to specify inside the

CRD manifest which versions a webhook supports.

Let’s look into how this conversion webhook actually

works. Afterwards we will take a deeper dive into how to

deploy the webhook into a real cluster. Note again that

webhook conversion is still alpha in 1.14 and must be

enabled manually using the CustomResourceWebhookConversion

feature gate, but it is available as beta in 1.15.

Setting Up the HTTPS Server

The first step is to start a web server with support for

transport layer security, or TLS (i.e., HTTPS). Webhooks in

Kubernetes require HTTPS. The conversion webhook even

requires certificates that are successfully checked by the

Kubernetes API server against the CA bundle provided in

the CRD object.

In the example project, we make use of the secure serving

library that is part of the k8s.io/apiserver. It provides all

TLS flags and behavior you might be used to from

deploying a kube-apiserver or an aggregated API server

binary.

The k8s.io/apiserver secure serving code follows the

options-config pattern (see “Options and Config Pattern and

Startup Plumbing”). It is very easy to embed that code into

your own binary:

func NewDefaultOptions() *Options {

 o := &Options{

 *options.NewSecureServingOptions(),

 }

 o.SecureServing.ServerCert.PairName = "pizza-crd-webhook"

 return o

1

}

type Options struct {

 SecureServing options.SecureServingOptions

}

type Config struct {

 SecureServing *server.SecureServingInfo

}

func (o *Options) AddFlags(fs *pflag.FlagSet) {

 o.SecureServing.AddFlags(fs)

}

func (o *Options) Config() (*Config, error) {

 err := o.SecureServing.MaybeDefaultWithSelfSignedCerts("0.0.0.0", nil,

nil)

 if err != nil {

 return nil, err

 }

 c := &Config{}

 if err := o.SecureServing.ApplyTo(&c.SecureServing); err != nil {

 return nil, err

 }

 return c, nil

}

In the main function of the binary, this Options struct is

instantiated and wired to a flag set:

opt := NewDefaultOptions()

fs := pflag.NewFlagSet("pizza-crd-webhook", pflag.ExitOnError)

globalflag.AddGlobalFlags(fs, "pizza-crd-webhook")

opt.AddFlags(fs)

if err := fs.Parse(os.Args); err != nil {

 panic(err)

}

// create runtime config

cfg, err := opt.Config()

if err != nil {

 panic(err)

}

stopCh := server.SetupSignalHandler()

...

// run server

restaurantInformers.Start(stopCh)

if doneCh, err := cfg.SecureServing.Serve(

 handlers.LoggingHandler(os.Stdout, mux),

 time.Second * 30, stopCh,

); err != nil {

 panic(err)

} else {

 <-doneCh

}

In place of the three dots, we set up the HTTP multiplexer

with our three paths as follows:

// register handlers

restaurantInformers := restaurantinformers.NewSharedInformerFactory(

 clientset, time.Minute * 5,

)

mux := http.NewServeMux()

mux.Handle("/convert/v1beta1/pizza", http.HandlerFunc(conversion.Serve))

mux.Handle("/admit/v1beta1/pizza",

http.HandlerFunc(admission.ServePizzaAdmit))

mux.Handle("/validate/v1beta1/pizza",

 http.HandlerFunc(admission.ServePizzaValidation(restaurantInformers)))

restaurantInformers.Start(stopCh)

As the pizza validation webhook at the path

/validate/v1beta1/pizza has to know the existing topping

objects in the cluster, we instantiate a shared informer

factory for the restaurant.programming-kubernetes.info API

group.

Now we’ll look at the actual conversion webhook

implementation behind conversion.Serve. It is a normal

Golang HTTP handler function, meaning it gets a request

and a response writer as arguments.

The request body contains a ConversionReview object from

the API group apiextensions.k8s.io/v1beta1. Hence, we have

to first read the body from the request, and then decode

the byte slice. We do this by using a deserializer from API

Machinery:

func Serve(w http.ResponseWriter, req *http.Request) {

 // read body

 body, err := ioutil.ReadAll(req.Body)

 if err != nil {

 responsewriters.InternalError(w, req,

 fmt.Errorf("failed to read body: %v", err))

 return

 }

 // decode body as conversion review

 gv := apiextensionsv1beta1.SchemeGroupVersion

 reviewGVK := gv.WithKind("ConversionReview")

 obj, gvk, err := codecs.UniversalDeserializer().Decode(body, &reviewGVK,

 &apiextensionsv1beta1.ConversionReview{})

 if err != nil {

 responsewriters.InternalError(w, req,

 fmt.Errorf("failed to decode body: %v", err))

 return

 }

 review, ok := obj.(*apiextensionsv1beta1.ConversionReview)

 if !ok {

 responsewriters.InternalError(w, req,

 fmt.Errorf("unexpected GroupVersionKind: %s", gvk))

 return

 }

 if review.Request == nil {

 responsewriters.InternalError(w, req,

 fmt.Errorf("unexpected nil request"))

 return

 }

 ...

}

This code makes use of the codec factory codecs, which is

derived from a scheme. This scheme has to include the

types of apiextensions.k8s.io/v1beta1. We also add the

types of our restaurant API group. The passed

ConversionReview object will have our pizza type embedded

in a runtime.RawExtension type—more about that in a second.

First let’s create our scheme and the codec factory:

import (

 apiextensionsv1beta1 "k8s.io/apiextensions-

apiserver/pkg/apis/apiextensions/v1beta1"

 "github.com/programming-kubernetes/pizza-crd/pkg/apis/restaurant/install"

 ...

)

var (

 scheme = runtime.NewScheme()

 codecs = serializer.NewCodecFactory(scheme)

)

func init() {

 utilruntime.Must(apiextensionsv1beta1.AddToScheme(scheme))

 install.Install(scheme)

}

A runtime.RawExtension is a wrapper for Kubernetes-like

objects embedded in a field of another object. Its structure

is actually very simple:

type RawExtension struct {

 // Raw is the underlying serialization of this object.

 Raw []byte `protobuf:"bytes,1,opt,name=raw"`

 // Object can hold a representation of this extension - useful for working

 // with versioned structs.

 Object Object `json:"-"`

}

In addition, runtime.RawExtension has special JSON and

protobuf marshaling two methods. Moreover, there is

special logic around the conversion to runtime.Object on the

fly, when converting to internal types—that is, automatic

encoding and decoding.

In this case of CRDs, we don’t have internal types, and

therefore that conversion magic does not play a role. Only

RawExtension.Raw is filled with a JSON byte slice of the pizza

object sent to the webhook for conversion. Thus, we will

have to decode this byte slice. Note again that one

ConversionReview potentially carries a number of objects,

such that we have to loop over all of them:

// convert objects

review.Response = &apiextensionsv1beta1.ConversionResponse{

 UID: review.Request.UID,

 Result: metav1.Status{

 Status: metav1.StatusSuccess,

 },

}

var objs []runtime.Object

for _, in := range review.Request.Objects {

 if in.Object == nil {

 var err error

 in.Object, _, err = codecs.UniversalDeserializer().Decode(

 in.Raw, nil, nil,

)

 if err != nil {

 review.Response.Result = metav1.Status{

 Message: err.Error(),

 Status: metav1.StatusFailure,

 }

 break

 }

 }

 obj, err := convert(in.Object, review.Request.DesiredAPIVersion)

 if err != nil {

 review.Response.Result = metav1.Status{

 Message: err.Error(),

 Status: metav1.StatusFailure,

 }

 break

 }

 objs = append(objs, obj)

}

The convert call does the actual conversion of in.Object,

with the desired API version as the target version. Note

here that we break the loop immediately when the first

error occurs.

Finally, we set the Response field in the ConversionReview

object and write it back as the response body of the request

using API Machinery’s response writer, which again uses

our codec factory to create a serializer:

if review.Response.Result.Status == metav1.StatusSuccess {

 for _, obj = range objs {

 review.Response.ConvertedObjects =

 append(review.Response.ConvertedObjects,

 runtime.RawExtension{Object: obj},

)

 }

}

// write negotiated response

responsewriters.WriteObject(

 http.StatusOK, gvk.GroupVersion(), codecs, review, w, req,

)

Now, we have to implement the actual pizza conversion.

After all this plumbing above, the conversion algorithm is

the easiest part. It just checks that we actually got a pizza

object of the known versions and then does the conversion

from v1beta1 to v1alpha1 and vice versa:

func convert(in runtime.Object, apiVersion string) (runtime.Object, error) {

 switch in := in.(type) {

 case *v1alpha1.Pizza:

 if apiVersion != v1beta1.SchemeGroupVersion.String() {

 return nil, fmt.Errorf("cannot convert %s to %s",

 v1alpha1.SchemeGroupVersion, apiVersion)

 }

 klog.V(2).Infof("Converting %s/%s from %s to %s", in.Namespace,

in.Name,

 v1alpha1.SchemeGroupVersion, apiVersion)

 out := &v1beta1.Pizza{

 TypeMeta: in.TypeMeta,

 ObjectMeta: in.ObjectMeta,

 Status: v1beta1.PizzaStatus{

 Cost: in.Status.Cost,

 },

 }

 out.TypeMeta.APIVersion = apiVersion

 idx := map[string]int{}

 for _, top := range in.Spec.Toppings {

 if i, duplicate := idx[top]; duplicate {

 out.Spec.Toppings[i].Quantity++

 continue

 }

 idx[top] = len(out.Spec.Toppings)

 out.Spec.Toppings = append(out.Spec.Toppings,

v1beta1.PizzaTopping{

 Name: top,

 Quantity: 1,

 })

 }

 return out, nil

 case *v1beta1.Pizza:

 if apiVersion != v1alpha1.SchemeGroupVersion.String() {

 return nil, fmt.Errorf("cannot convert %s to %s",

 v1beta1.SchemeGroupVersion, apiVersion)

 }

 klog.V(2).Infof("Converting %s/%s from %s to %s",

 in.Namespace, in.Name, v1alpha1.SchemeGroupVersion, apiVersion)

 out := &v1alpha1.Pizza{

 TypeMeta: in.TypeMeta,

 ObjectMeta: in.ObjectMeta,

 Status: v1alpha1.PizzaStatus{

 Cost: in.Status.Cost,

 },

 }

 out.TypeMeta.APIVersion = apiVersion

 for i := range in.Spec.Toppings {

 for j := 0; j < in.Spec.Toppings[i].Quantity; j++ {

 out.Spec.Toppings = append(

 out.Spec.Toppings, in.Spec.Toppings[i].Name)

 }

 }

 return out, nil

 default:

 }

 klog.V(2).Infof("Unknown type %T", in)

 return nil, fmt.Errorf("unknown type %T", in)

}

Note that in both directions of the conversion, we just copy

TypeMeta and ObjectMeta, change the API version to the

desired one, and then convert the toppings slice, which is

actually the only part of the objects which structurally

differs.

If there are more versions, another two-way conversion is

necessary between all of them. Alternatively, of course, we

could use a hub version as in aggregated API servers (see

“Internal Types and Conversion”), instead of implementing

conversions from and to all supported external versions.

Deploying the Conversion Webhook

We now want to deploy the conversion webhook. You can

find all the manifests on GitHub.

Conversion webhooks for CRDs are launched in the cluster

and put behind a service object, and that service object is

referenced by the conversion webhook specification in the

CRD manifest:

apiVersion: apiextensions.k8s.io/v1beta1

kind: CustomResourceDefinition

metadata:

 name: pizzas.restaurant.programming-kubernetes.info

spec:

 ...

 conversion:

 strategy: Webhook

 webhookClientConfig:

 caBundle: BASE64-CA-BUNDLE

http://bit.ly/2KEx4xo

 service:

 namespace: pizza-crd

 name: webhook

 path: /convert/v1beta1/pizza

The CA bundle must match the serving certificate used by

the webhook. In our example project, we use a Makefile to

generate certificates using OpenSSL and plug them into

the manifests using text replacement.

Note here that the Kubernetes API server assumes that the

webhook supports all specified versions of the CRD. There

is also only one such webhook possible per CRD. But as

CRDs and conversion webhooks are usually owned by the

same team, this should be enough.

Also note that the service port must be 443 in the current

apiextensions.k8s.io/v1beta1 API. The service can map this,

however, to any port used by the webhook pods. In our

example, we map 443 to 8443, served by the webhook

binary.

Seeing Conversion in Action

Now that we understand how the conversion webhook

works and how it is wired into the cluster, let’s see it in

action.

We assume you’ve checked out the example project. In

addition, we assume that you have a cluster with webhook

conversion enabled (either via feature gate in a 1.14 cluster

or through a 1.15+ cluster, which has webhook conversion

enabled by default). One way to get such a cluster is via the

kind project, which provides support for Kubernetes 1.14.1

and a local kind-config.yaml file to enable the alpha feature

gate for webhook conversion (“What Does Programming

http://bit.ly/2FukVac
http://bit.ly/2X75lvS

Kubernetes Mean?” linked a number of other options for

development clusters):

kind: Cluster

apiVersion: kind.sigs.k8s.io/v1alpha3

kubeadmConfigPatchesJson6902:

- group: kubeadm.k8s.io

 version: v1beta1

 kind: ClusterConfiguration

 patch: |

 - op: add

 path: /apiServer/extraArgs

 value: {}

 - op: add

 path: /apiServer/extraArgs/feature-gates

 value: CustomResourceWebhookConversion=true

Then we can create a cluster:

$ kind create cluster --image kindest/node-images:v1.14.1 --config kind-

config.yaml

$ export KUBECONFIG="$(kind get kubeconfig-path --name="kind")"

Now we can deploy our manifests:

$ cd pizza-crd

$ cd manifest/deployment

$ make

$ kubectl create -f ns.yaml

$ kubectl create -f pizza-crd.yaml

$ kubectl create -f topping-crd.yaml

$ kubectl create -f sa.yaml

$ kubectl create -f rbac.yaml

$ kubectl create -f rbac-bind.yaml

$ kubectl create -f service.yaml

$ kubectl create -f serving-cert-secret.yaml

$ kubectl create -f deployment.yaml

These manifests contain the following files:

ns.yaml

Creates the pizza-crd namespace.

http://bit.ly/2KEx4xo

pizza-crd.yaml

Specifies the pizza resource in the

restaurant.programming-kubernetes.info API group, with

the v1alpha1 and v1beta1 versions, and the webhook

conversion configuration as shown previously.

topping-crd.yaml

Specifies the toppings CR in the same API group, but

only in the v1alpha1 version.

sa.yaml

Introduces the webhook service account.

rbac.yaml

Defines a role to read, list, and watch toppings.

rbac-bind.yaml

Binds the earlier RBAC role to the webhook service

account.

service.yaml

Defines the webhook services, mapping port 443 to 8443

of the webhook pods.

serving-cert-secret.yaml

Contains the serving certificate and private key to be

used by the webhook pods. The certificate is also used

directly as the CA bundle in the preceding pizza CRD

manifest.

deployment.yaml

Launches webhook pods, passing --tls-cert-file and --

tls-private-key the serving certificate secret.

After this we can create a margherita pizza finally:

$ cat ../examples/margherita-pizza.yaml

apiVersion: restaurant.programming-kubernetes.info/v1alpha1

kind: Pizza

metadata:

 name: margherita

spec:

 toppings:

 - mozzarella

 - tomato

$ kubectl create ../examples/margherita-pizza.yaml

pizza.restaurant.programming-kubernetes.info/margherita created

Now, with the conversion webhook in place, we can

retrieve the same object in both versions. First explicitly in

the v1alpha1 version:

$ kubectl get pizzas.v1alpha1.restaurant.programming-kubernetes.info \

 margherita -o yaml

apiVersion: restaurant.programming-kubernetes.info/v1alpha1

kind: Pizza

metadata:

 creationTimestamp: "2019-04-14T21:41:39Z"

 generation: 1

 name: margherita

 namespace: pizza-crd

 resourceVersion: "18296"

 pizzas/margherita

 uid: 15c1c06a-5efe-11e9-9230-0242f24ba99c

spec:

 toppings:

 - mozzarella

 - tomato

status: {}

Then the same object as v1beta1 shows the different

toppings structure:

$ kubectl get pizzas.v1beta1.restaurant.programming-kubernetes.info \

 margherita -o yaml

apiVersion: restaurant.programming-kubernetes.info/v1beta1

kind: Pizza

metadata:

 creationTimestamp: "2019-04-14T21:41:39Z"

 generation: 1

 name: margherita

 namespace: pizza-crd

 resourceVersion: "18296"

 pizzas/margherita

 uid: 15c1c06a-5efe-11e9-9230-0242f24ba99c

spec:

 toppings:

 - name: mozzarella

 quantity: 1

 - name: tomato

 quantity: 1

status: {}

Meanwhile, in the log of the webhook pod we see this

conversion call:

I0414 21:46:28.639707 1 convert.go:35] Converting pizza-crd/margherita

 from restaurant.programming-kubernetes.info/v1alpha1

 to restaurant.programming-kubernetes.info/v1beta1

10.32.0.1 - - [14/Apr/2019:21:46:28 +0000]

 "POST /convert/v1beta1/pizza?timeout=30s HTTP/2.0" 200 968

Hence, the webhook is doing its job as expected.

Admission Webhooks

In “Use Cases for Custom API Servers” we discussed the

use cases in which an aggregated API server is a better

choice than using CRs. A lot of the reasons given are about

having the freedom to implement certain behavior using

Golang instead of being restricted to declarative features in

CRD manifests.

We have seen in the previous section how Golang is used to

build CRD conversion webhooks. A similar mechanism is

used to add custom admission to CRDs, again in Golang.

Basically we have the same freedom as with custom

admission plug-ins in aggregated API servers (see

“Admission”): there are mutating and validating admission

webhooks, and they are called at the same position as for

native resources, as shown in Figure 9-5.

Figure 9-5. Admission in the CR request pipeline

We saw CRD validation based on OpenAPI in “Validating

Custom Resources”. In Figure 9-5, validation is done in the

box labeled “Validation.” The validating admission

webhooks are called after that, the mutating admission

webhooks before.

The admission webhooks are put nearly at the end of the

admission plug-in order, before quota. Admission webhooks

are beta in Kubernetes 1.14 and therefore available in most

clusters.

TIP

For v1 of the admission webhooks API, it is planned to allow up to two passes

through the admission chain. This means that an earlier admission plug-in or

webhook can depend on the output of later plug-ins or webhooks, to a certain

degree. So, in the future this mechanism will get even more powerful.

Admission Requirements in the Restaurant

Example

The restaurant example uses admission for multiple things:

spec.toppings defaults if it is nil or empty to

mozzarella, tomato, and salami.

Unknown fields should be dropped from the CR

JSON and not persisted in etcd.

spec.toppings must contain only toppings that have a

corresponding topping object.

The first two use cases are mutating; the third use case is

purely validating. Therefore, we will use one mutating

webhook and one validating webhook to implement those

steps.

NOTE

Work is in progress on native defaulting via OpenAPI v3 validation schemas.

OpenAPI has a default field, and the API server will apply that in the future.

Moreover, dropping unknown fields will become the standard behavior for

every resource, done by the Kubernetes API server through a mechanism

called pruning.

Pruning is available as beta in Kubernetes 1.15. Defaulting is planned to be

available as beta in 1.16. When both features are available in the target

cluster, the two use cases from the preceding list can be implemented

without any webhook at all.

http://bit.ly/2ZFH8JY
http://bit.ly/2Xzt2wm

Admission Webhook Architecture

Admission webhooks are structurally very similar to the

conversion webhooks we saw earlier in the chapter.

They are deployed in the cluster, put behind a service

mapping port 443 to some port of the pods, and called

using a review object, AdmissionReview in the API group

admission.k8s.io/v1beta1:

// AdmissionReview describes an admission review request/response.

type AdmissionReview struct {

 metav1.TypeMeta `json:",inline"`

 // Request describes the attributes for the admission request.

 // +optional

 Request *AdmissionRequest `json:"request,omitempty"`

 // Response describes the attributes for the admission response.

 // +optional

 Response *AdmissionResponse `json:"response,omitempty"`

}

The AdmissionRequest contains all the information we are

used to from the admission attributes (see

“Implementation”):

// AdmissionRequest describes the admission.Attributes for the admission

request.

type AdmissionRequest struct {

 // UID is an identifier for the individual request/response. It allows us

to

 // distinguish instances of requests which are otherwise identical

(parallel

 // requests, requests when earlier requests did not modify etc). The UID

is

 // meant to track the round trip (request/response) between the KAS and

the

 // WebHook, not the user request. It is suitable for correlating log

entries

 // between the webhook and apiserver, for either auditing or debugging.

 UID types.UID `json:"uid"`

 // Kind is the type of object being manipulated. For example: Pod

 Kind metav1.GroupVersionKind `json:"kind"`

 // Resource is the name of the resource being requested. This is not the

 // kind. For example: pods

 Resource metav1.GroupVersionResource `json:"resource"`

 // SubResource is the name of the subresource being requested. This is a

 // different resource, scoped to the parent resource, but it may have a

 // different kind. For instance, /pods has the resource "pods" and the

kind

 // "Pod", while /pods/foo/status has the resource "pods", the sub resource

 // "status", and the kind "Pod" (because status operates on pods). The

 // binding resource for a pod though may be /pods/foo/binding, which has

 // resource "pods", subresource "binding", and kind "Binding".

 // +optional

 SubResource string `json:"subResource,omitempty"`

 // Name is the name of the object as presented in the request. On a

CREATE

 // operation, the client may omit name and rely on the server to generate

 // the name. If that is the case, this method will return the empty

string.

 // +optional

 Name string `json:"name,omitempty"`

 // Namespace is the namespace associated with the request (if any).

 // +optional

 Namespace string `json:"namespace,omitempty"`

 // Operation is the operation being performed

 Operation Operation `json:"operation"`

 // UserInfo is information about the requesting user

 UserInfo authenticationv1.UserInfo `json:"userInfo"`

 // Object is the object from the incoming request prior to default values

 // being applied

 // +optional

 Object runtime.RawExtension `json:"object,omitempty"`

 // OldObject is the existing object. Only populated for UPDATE requests.

 // +optional

 OldObject runtime.RawExtension `json:"oldObject,omitempty"`

 // DryRun indicates that modifications will definitely not be persisted

 // for this request.

 // Defaults to false.

 // +optional

 DryRun *bool `json:"dryRun,omitempty"`

}

The same AdmissionReview object is used for both mutating

and validating admission webhooks. The only difference is

that in the mutating case, the AdmissionResponse can have a

field patch and patchType, to be applied inside the

Kubernetes API server after the webhook response has

been received there. In the validating case, these two fields

are kept empty on response.

The most important field for our purposes here is the Object

field, which—as in the preceding conversion webhook—

uses the runtime.RawExtension type to store a pizza object.

We also get the old object for update requests and could,

say, check for fields that are meant to be read-only but are

changed in a request. We don’t do this here in our example.

But you will encounter many cases in Kubernetes where

such logic is implemented—for example, for most fields of a

pod, as you can’t change the command of a pod after it is

created.

The patch returned by the mutating webhook must be of

type JSON Patch (see RFC 6902) in Kubernetes 1.14. This

patch describes how the object should be modified to fulfill

the required invariant.

Note that it is best practice to validate every mutating

webhook change in a validating webhook at the very end,

at least if those enforced properties are significant for the

behavior. Imagine some other mutating webhook touches

the same fields in an object. Then you cannot be sure that

the mutating changes will survive until the end of the

mutating admission chain.

There is no order currently in mutating webhooks other

than alphabetic order. There are ongoing discussions to

change this in one way or another in the future.

For validating webhooks the order does not matter,

obviously, and the Kubernetes API server even calls

validating webhooks in parallel to reduce latency. In

contrast, mutating webhooks add latency to every request

that passes through them, as they are called sequentially.

Common latencies—of course heavily depending on the

environment—are around 100ms. So running many

webhooks in sequence leads to considerable latencies that

the user will experience when creating or updating objects.

Registering Admission Webhooks

Admission webhooks are not registered in the CRD

manifest. The reason is that they apply not only to CRDs,

but to any kind of resource. You can even add custom

admission webhooks to standard Kubernetes resources.

Instead there are registration objects:

MutatingWebhookRegistration and

ValidatingWebhookRegistration. They differ only in the kind

name:

apiVersion: admissionregistration.k8s.io/v1beta1

kind: MutatingWebhookConfiguration

metadata:

 name: restaurant.programming-kubernetes.info

webhooks:

- name: restaurant.programming-kubernetes.info

 failurePolicy: Fail

 sideEffects: None

 admissionReviewVersions:

 - v1beta1

 rules:

 - apiGroups:

 - "restaurant.programming-kubernetes.info"

 apiVersions:

 - v1alpha1

 - v1beta1

 operations:

 - CREATE

 - UPDATE

 resources:

 - pizzas

 clientConfig:

 service:

 namespace: pizza-crd

 name: webhook

 path: /admit/v1beta1/pizza

 caBundle: CA-BUNDLE

This registers our pizza-crd webhook from the beginning of

the chapter for mutating admission for our two versions of

the resource pizza, the API group restaurant.programming-

kubernetes.info, and the HTTP verbs CREATE and UPDATE

(which includes patches as well).

There are further ways in webhook configurations to

restrict the matching resources—for example, a namespace

selector (to exclude, e.g., a control plane namespace to

avoid bootstrapping issues) and more advanced resource

patterns with wildcards and subresources.

Last but not least is a failure mode, which can be either

Fail or Ignore. It specifies what to do if the webhook cannot

be reached or fails for other reasons.

WARNING

Admission webhooks can break clusters if they are deployed in the wrong

way. Admission webhook matching core types can make the whole cluster

inoperable. Special care must be taken to call admission webhooks for non-

CRD resources.

Specifically, it is good practice to exclude the control plane and the webhook

resources themselves from the webhook.

Implementing an Admission Webhook

With the work we’ve done on the conversion webhook in

the beginning of the chapter, it is not hard to add admission

capabilities. We also saw that the paths

/admit/v1beta1/pizza and /validate/v1beta1/pizza are

registered in the main function of the pizza-crd-webhook

binary:

mux.Handle("/admit/v1beta1/pizza",

http.HandlerFunc(admission.ServePizzaAdmit))

mux.Handle("/validate/v1beta1/pizza", http.HandlerFunc(

admission.ServePizzaValidation(restaurantInformers)))

The first part of the two HTTP handler implementations

looks nearly the same as for the conversion webhook:

func ServePizzaAdmit(w http.ResponseWriter, req *http.Request) {

 // read body

 body, err := ioutil.ReadAll(req.Body)

 if err != nil {

 responsewriters.InternalError(w, req,

 fmt.Errorf("failed to read body: %v", err))

 return

 }

 // decode body as admission review

 reviewGVK :=

admissionv1beta1.SchemeGroupVersion.WithKind("AdmissionReview")

 decoder := codecs.UniversalDeserializer()

 into := &admissionv1beta1.AdmissionReview{}

 obj, gvk, err := decoder.Decode(body, &reviewGVK, into)

 if err != nil {

 responsewriters.InternalError(w, req,

 fmt.Errorf("failed to decode body: %v", err))

 return

 }

 review, ok := obj.(*admissionv1beta1.AdmissionReview)

 if !ok {

 responsewriters.InternalError(w, req,

 fmt.Errorf("unexpected GroupVersionKind: %s", gvk))

 return

 }

 if review.Request == nil {

 responsewriters.InternalError(w, req,

 fmt.Errorf("unexpected nil request"))

 return

 }

 ...

}

In the case of the validating webhook, we have to wire the

informer (used to check that toppings exist in the cluster).

We return an internal error as long as the informer is not

synced. An informer that is not synced has incomplete data,

so the toppings might not be known and the pizza would be

rejected although they are valid:

func ServePizzaValidation(informers restaurantinformers.SharedInformerFactory)

 func (http.ResponseWriter, *http.Request)

{

 toppingInformer := informers.Restaurant().V1alpha1().Toppings().Informer()

 toppingLister := informers.Restaurant().V1alpha1().Toppings().Lister()

 return func(w http.ResponseWriter, req *http.Request) {

 if !toppingInformer.HasSynced() {

 responsewriters.InternalError(w, req,

 fmt.Errorf("informers not ready"))

 return

 }

 // read body

 body, err := ioutil.ReadAll(req.Body)

 if err != nil {

 responsewriters.InternalError(w, req,

 fmt.Errorf("failed to read body: %v", err))

 return

 }

 // decode body as admission review

 gv := admissionv1beta1.SchemeGroupVersion

 reviewGVK := gv.WithKind("AdmissionReview")

 obj, gvk, err := codecs.UniversalDeserializer().Decode(body,

&reviewGVK,

 &admissionv1beta1.AdmissionReview{})

 if err != nil {

 responsewriters.InternalError(w, req,

 fmt.Errorf("failed to decode body: %v", err))

 return

 }

 review, ok := obj.(*admissionv1beta1.AdmissionReview)

 if !ok {

 responsewriters.InternalError(w, req,

 fmt.Errorf("unexpected GroupVersionKind: %s", gvk))

 return

 }

 if review.Request == nil {

 responsewriters.InternalError(w, req,

 fmt.Errorf("unexpected nil request"))

 return

 }

 ...

 }

}

As in the webhook conversion case, we have set up the

scheme and the codec factory with the admission API group

and our restaurant API group:

var (

 scheme = runtime.NewScheme()

 codecs = serializer.NewCodecFactory(scheme)

)

func init() {

 utilruntime.Must(admissionv1beta1.AddToScheme(scheme))

 install.Install(scheme)

}

With these two, we decode the embedded pizza object (this

time only one, no slice) from the AdmissionReview:

// decode object

if review.Request.Object.Object == nil {

 var err error

 review.Request.Object.Object, _, err =

 codecs.UniversalDeserializer().Decode(review.Request.Object.Raw, nil,

nil)

 if err != nil {

 review.Response.Result = &metav1.Status{

 Message: err.Error(),

 Status: metav1.StatusFailure,

 }

 responsewriters.WriteObject(http.StatusOK, gvk.GroupVersion(),

 codecs, review, w, req)

 return

 }

}

Then we can do the actual mutating admission (the

defaulting of spec.toppings for both API versions):

orig := review.Request.Object.Raw

var bs []byte

switch pizza := review.Request.Object.Object.(type) {

case *v1alpha1.Pizza:

 // default toppings

 if len(pizza.Spec.Toppings) == 0 {

 pizza.Spec.Toppings = []string{"tomato", "mozzarella", "salami"}

 }

 bs, err = json.Marshal(pizza)

 if err != nil {

 responsewriters.InternalError(w, req,

 fmt.Errorf"unexpected encoding error: %v", err))

 return

 }

case *v1beta1.Pizza:

 // default toppings

 if len(pizza.Spec.Toppings) == 0 {

 pizza.Spec.Toppings = []v1beta1.PizzaTopping{

 {"tomato", 1},

 {"mozzarella", 1},

 {"salami", 1},

 }

 }

 bs, err = json.Marshal(pizza)

 if err != nil {

 responsewriters.InternalError(w, req,

 fmt.Errorf("unexpected encoding error: %v", err))

 return

 }

default:

 review.Response.Result = &metav1.Status{

 Message: fmt.Sprintf("unexpected type %T",

review.Request.Object.Object),

 Status: metav1.StatusFailure,

 }

 responsewriters.WriteObject(http.StatusOK, gvk.GroupVersion(),

 codecs, review, w, req)

 return

}

Alternatively, we could use the conversion algorithms from

the conversion webhook and then implement defaulting

only for one of the versions. Both approaches are possible,

and which one makes more sense depends on the context.

Here, the defaulting is simple enough to implement it

twice.

The final step is to compute the patch—the difference

between the original object (stored in orig as JSON) and

the new defaulted one:

// compare original and defaulted version

ops, err := jsonpatch.CreatePatch(orig, bs)

if err != nil {

 responsewriters.InternalError(w, req,

 fmt.Errorf("unexpected diff error: %v", err))

 return

}

review.Response.Patch, err = json.Marshal(ops)

if err != nil {

 responsewriters.InternalError(w, req,

 fmt.Errorf("unexpected patch encoding error: %v", err))

 return

}

typ := admissionv1beta1.PatchTypeJSONPatch

review.Response.PatchType = &typ

review.Response.Allowed = true

We use the JSON-Patch library (a fork of Matt Baird’s with

critical fixes) to derive the patch from the original object

orig and the modified object bs, both passed as JSON byte

slices. Alternatively, we could operate directly on untyped

JSON data and create the JSON-Patch manually. Again, it

depends on the context. Using a diff library is convenient.

Then, as in the webhook conversion, we conclude by

writing the response to the response writer, using the

codec factory created previously:

http://bit.ly/2IKxwIk
http://bit.ly/2xfBIsN
http://bit.ly/2XxKfWP

responsewriters.WriteObject(

 http.StatusOK, gvk.GroupVersion(), codecs, review, w, req,

)

The validating webhook is very similar, but it uses the

toppings lister from the shared informer to check for the

existence of the topping objects:

switch pizza := review.Request.Object.Object.(type) {

case *v1alpha1.Pizza:

 for _, topping := range pizza.Spec.Toppings {

 _, err := toppingLister.Get(topping)

 if err != nil && !errors.IsNotFound(err) {

 responsewriters.InternalError(w, req,

 fmt.Errorf("failed to lookup topping %q: %v", topping, err))

 return

 } else if errors.IsNotFound(err) {

 review.Response.Result = &metav1.Status{

 Message: fmt.Sprintf("topping %q not known", topping),

 Status: metav1.StatusFailure,

 }

 responsewriters.WriteObject(http.StatusOK, gvk.GroupVersion(),

 codecs, review, w, req)

 return

 }

 }

 review.Response.Allowed = true

case *v1beta1.Pizza:

 for _, topping := range pizza.Spec.Toppings {

 _, err := toppingLister.Get(topping.Name)

 if err != nil && !errors.IsNotFound(err) {

 responsewriters.InternalError(w, req,

 fmt.Errorf("failed to lookup topping %q: %v", topping, err))

 return

 } else if errors.IsNotFound(err) {

 review.Response.Result = &metav1.Status{

 Message: fmt.Sprintf("topping %q not known", topping),

 Status: metav1.StatusFailure,

 }

 responsewriters.WriteObject(http.StatusOK, gvk.GroupVersion(),

 codecs, review, w, req)

 return

 }

 }

 review.Response.Allowed = true

default:

 review.Response.Result = &metav1.Status{

 Message: fmt.Sprintf("unexpected type %T",

review.Request.Object.Object),

 Status: metav1.StatusFailure,

 }

}

responsewriters.WriteObject(http.StatusOK, gvk.GroupVersion(),

 codecs, review, w, req)

Admission Webhook in Action

We deploy the two admission webhooks by creating the two

registration objects in the cluster:

$ kubectl create -f validatingadmissionregistration.yaml

$ kubectl create -f mutatingadmissionregistration.yaml

After this, we can’t create pizzas with unknown toppings

anymore:

$ kubectl create -f ../examples/margherita-pizza.yaml

Error from server: error when creating "../examples/margherita-pizza.yaml":

 admission webhook "restaurant.programming-kubernetes.info" denied the

request:

 topping "tomato" not known

Meanwhile, in the webhook log we see:

I0414 22:45:46.873541 1 pizzamutation.go:115] Defaulting pizza-crd/ in

 version admission.k8s.io/v1beta1, Kind=AdmissionReview

10.32.0.1 - - [14/Apr/2019:22:45:46 +0000]

 "POST /admit/v1beta1/pizza?timeout=30s HTTP/2.0" 200 871

10.32.0.1 - - [14/Apr/2019:22:45:46 +0000]

 "POST /validate/v1beta1/pizza?timeout=30s HTTP/2.0" 200 956

After creating the toppings in the example folder, we can

create the margherita pizza again:

$ kubectl create -f ../examples/topping-tomato.yaml

$ kubectl create -f ../examples/topping-salami.yaml

$ kubectl create -f ../examples/topping-mozzarella.yaml

$ kubectl create -f ../examples/margherita-pizza.yaml

pizza.restaurant.programming-kubernetes.info/margherita created

Last but not least, let’s check that defaulting works as

expected. We want to create an empty pizza:

apiVersion: restaurant.programming-kubernetes.info/v1alpha1

kind: Pizza

metadata:

 name: salami

spec:

This is supposed to be defaulted to a salami pizza, and it is:

$ kubectl create -f ../examples/empty-pizza.yaml

pizza.restaurant.programming-kubernetes.info/salami created

$ kubectl get pizza salami -o yaml

apiVersion: restaurant.programming-kubernetes.info/v1beta1

kind: Pizza

metadata:

 creationTimestamp: "2019-04-14T22:49:40Z"

 generation: 1

 name: salami

 namespace: pizza-crd

 resourceVersion: "23227"

 uid: 962e2dda-5f07-11e9-9230-0242f24ba99c

spec:

 toppings:

 - name: tomato

 quantity: 1

 - name: mozzarella

 quantity: 1

 - name: salami

 quantity: 1

status: {}

Voilà, a salami pizza with all the toppings that we expect.

Enjoy!

Before concluding the chapter, we want to look toward an

apiextensions.k8s.io/v1 API group version (i.e., nonbeta,

general availability) of CRDs—namely, the introduction of

structural schemas.

Structural Schemas and the Future of

CustomResourceDefinitions

From Kubernetes 1.15 on, the OpenAPI v3 validation

schema (see “Validating Custom Resources”) is getting a

more central role for CRDs in the sense that it will be

mandatory to specify a schema if any of these new features

is used:

CRD conversion (see Figure 9-2)

Pruning (see “Pruning Versus Preserving Unknown

Fields”)

Defaulting (see “Default Values”)

OpenAPI Schema Publishing

Strictly speaking, the definition of a schema is still optional

and every existing CRD will keep working, but without a

schema your CRD is excluded from any new feature.

In addition, the specified schema must follow certain rules

to enforce that the specified types are actually sane in the

sense of adhering to the Kubernetes API conventions. We

call these structural schema.

Structural Schemas

A structural schema is an OpenAPI v3 validation schema

(see “Validating Custom Resources”) that obeys the

following rules:

http://bit.ly/2RzeA1O
http://bit.ly/2Nfd9Hn

1. The schema specifies a nonempty type (via type in

OpenAPI) for the root, for each specified field of an

object node (via properties or additionalProperties in

OpenAPI), and for each item in an array node (via

items in OpenAPI), with the exception of:

A node with x-kubernetes-int-or-string: true

A node with x-kubernetes-preserve-unknown-

fields: true

2. For each field in an object and each item in an array,

which is set within an allOf, anyOf, oneOf, or not, the

schema also specifies the field/item outside of those

logical junctors.

3. The schema does not set description, type, default,

additionProperties, or nullable within an allOf, anyOf,

oneOf, or not, with the exception of the two patterns

for x-kubernetes-int-or-string: true (see “IntOrString

and RawExtensions”).

4. If metadata is specified, then only restrictions on

metadata.name and metadata.generateName are allowed.

Here is an example that is not structural:

properties:

 foo:

 pattern: "abc"

 metadata:

 type: object

 properties:

 name:

 type: string

 pattern: "^a"

 finalizers:

 type: array

 items:

 type: string

 pattern: "my-finalizer"

anyOf:

- properties:

 bar:

 type: integer

 minimum: 42

 required: ["bar"]

 description: "foo bar object"

It is not a structural schema because of the following

violations:

The type at the root is missing (rule 1).

The type of foo is missing (rule 1).

bar inside of anyOf is not specified outside (rule 2).

bar’s type is within anyOf (rule 3).

The description is set within anyOf (rule 3).

metadata.finalizer might not be restricted (rule 4).

In contrast, the following, corresponding schema is

structural:

type: object

description: "foo bar object"

properties:

 foo:

 type: string

 pattern: "abc"

 bar:

 type: integer

 metadata:

 type: object

 properties:

 name:

 type: string

 pattern: "^a"

anyOf:

- properties:

 bar:

 minimum: 42

 required: ["bar"]

Violations of the structural schema rules are reported in

the NonStructural condition in the CRD.

Verify for yourself that the schema of the cnat example in

“Validating Custom Resources” and the schemas in the

pizza CRD example are indeed structural.

Pruning Versus Preserving Unknown Fields

CRDs traditionally store any (possibly validated) JSON as is

in etcd. This means that unspecified fields (if there is an

OpenAPI v3 validation schema at all) will be persisted. This

is in contrast to native Kubernetes resources like a pod. If

the user specifies a field spec.randomField, this will be

accepted by the API server HTTPS endpoint but dropped

(we call this pruning) before writing that pod to etcd.

If a structural OpenAPI v3 validation schema is defined

(either in the global spec.validation.openAPIV3Schema or for

each version), we can enable pruning (which drops

unspecified fields on creation and on update) by setting

spec.preserveUnknownFields to false.

Let’s look at the cnat example. With a Kubernetes 1.15

cluster at hand, we enable pruning:

apiVersion: apiextensions.k8s.io/v1beta1

kind: CustomResourceDefinition

metadata:

 name: ats.cnat.programming-kubernetes.info

spec:

 ...

 preserveUnknownFields: false

2

http://bit.ly/31MrFcO

Then we try to create an instance with an unknown field:

apiVersion: cnat.programming-kubernetes.info/v1alpha1

kind: At

metadata:

 name: example-at

spec:

 schedule: "2019-07-03T02:00:00Z"

 command: echo "Hello, world!"

 someGarbage: 42

If we retrieve this object with kubectl get at example-at, we

see that the someGarbage value is dropped:

apiVersion: cnat.programming-kubernetes.info/v1alpha1

kind: At

metadata:

 name: example-at

spec:

 schedule: "2019-07-03T02:00:00Z"

 command: echo "Hello, world!"

We say that someGarbage has been pruned.

As of Kubernetes 1.15, pruning is available in

apiextensions/v1beta1, but it defaults to off; that is,

spec.preserveUnknownFields defaults to true. In

apiextensions/v1, no new CRD with

spec.preserveUnknownFields: true will be allowed to be

created.

Controlling Pruning

With spec.preserveUnknownField: false in the CRD, pruning is

enabled for all CRs of that type and in all versions. It is

possible, though, to opt out of pruning for a JSON subtree

via x-kubernetes-preserve-unknown-fields: true in the

OpenAPI v3 validation schema:

type: object

properties:

 json:

 x-kubernetes-preserve-unknown-fields: true

The field json can store any JSON value, without anything

being pruned.

It is possible to partially specify the permitted JSON:

type: object

properties:

 json:

 x-kubernetes-preserve-unknown-fields: true

 type: object

 description: this is arbitrary JSON

With this approach, only object type values are allowed.

Pruning is enabled again for each specified property (or

additionalProperties):

type: object

properties:

 json:

 x-kubernetes-preserve-unknown-fields: true

 type: object

 properties:

 spec:

 type: object

 properties:

 foo:

 type: string

 bar:

 type: string

With this, the value:

json:

 spec:

 foo: abc

 bar: def

 something: x

 status:

 something: x

will be pruned to:

json:

 spec:

 foo: abc

 bar: def

 status:

 something: x

This means that the something field in the specified spec

object is pruned (because “spec” is specified), but

everything outside is not. status is not specified such that

status.something is not pruned.

IntOrString and RawExtensions

There are situations where structural schemas are not

expressive enough. One of those is a polymorphic field—

one that can be of different types. We know IntOrString

from native Kubernetes API types.

It is possible to have IntOrString in CRDs using the x-

kubernetes-int-or-string: true directive inside the schema.

Similarly, runtime.RawExtensions can be declared using the x-

kubernetes-embedded-object: true.

For example:

type: object

properties:

 intorstr:

 type: object

 x-kubernetes-int-or-string: true

 embedded:

 x-kubernetes-embedded-object: true

 x-kubernetes-preserve-unknown-fields: true

This declares:

A field called intorstr that holds either an integer or

a string

A field called embedded that holds a Kubernetes-like

object such as a complete pod specification

Refer to the official CRD documentation for all the details

about these directives.

The last topic we want to talk about that depends on

structural schemas is defaulting.

Default Values

In native Kubernetes types, it is common to default certain

values. Defaulting used to be possible for CRDs only by way

of mutating admission webhooks (see “Admission

Webhooks”). As of Kubernetes 1.15, however, defaulting

support is added (see the design document) to CRDs

directly via the OpenAPI v3 schema described in the

previous section.

NOTE

As of 1.15 this is still an alpha feature, meaning it’s disabled by default

behind the feature gate CustomResourceDefaulting. But with promotion to beta,

probably in 1.16, it will become ubiquitous in CRDs.

In order to default certain fields, just specify the default

value via the default keyword in the OpenAPI v3 schema.

This is very useful when you are adding new fields to a

type.

http://bit.ly/2Lnmw61
http://bit.ly/2ZFH8JY

Starting with the schema of the cnat example from

“Validating Custom Resources”, let’s assume we want to

make the container image customizable, but default to a

busybox image. For that we add the image field of string type

to the OpenAPI v3 schema and set the default to busybox:

type: object

properties:

 apiVersion:

 type: string

 kind:

 type: string

 metadata:

 type: object

 spec:

 type: object

 properties:

 schedule:

 type: string

 pattern: "^\d{4}-([0]\d|1[0-2])-([0-2]\d|3[01])..."

 command:

 type: string

 image:

 type: string

 default: "busybox"

 required:

 - schedule

 - command

 status:

 type: object

 properties:

 phase:

 type: string

required:

- metadata

- apiVersion

- kind

- spec

If the user creates an instance without specifying the

image, the value is automatically set:

apiVersion: cnat.programming-kubernetes.info/v1alpha1

kind: At

metadata:

 name: example-at

spec:

 schedule: "2019-07-03T02:00:00Z"

 command: echo "hello world!"

On creation, this turns automatically into:

apiVersion: cnat.programming-kubernetes.info/v1alpha1

kind: At

metadata:

 name: example-at

spec:

 schedule: "2019-07-03T02:00:00Z"

 command: echo "hello world!"

 image: busybox

This looks super convenient and significantly improves the

user experience of CRDs. What’s more, all old objects

persisted in etcd will automatically inherit the new field

when read from the API server.

Note that persisted objects in etcd will not be rewritten

(i.e., migrated automatically). In other words, on read the

default values are only added on the fly and are only

persisted when the object is updated for another reason.

Summary

Admission and conversion webhooks take CRDs to a

completely different level. Before these features, CRs were

mostly used for small, not-so-serious use cases, often for

configuration and for in-house applications where API

compatibility was not that important.

With webhooks CRs look much more like native resources,

with a long lifecycle and powerful semantics. We have seen

3

how to implement dependencies between different

resources and how to set defaulting of fields.

At this point you probably have a lot of ideas about where

these features can be used in existing CRDs. We are

curious to see the innovations of the community based on

these features in the future.

1 apiextensions.k8s.io and admissionregistration.k8s.io are both scheduled

to be promoted to v1 in Kubernetes 1.16.

2 We use the cnat example instead of the pizza example due to the simple

structure of the former—for example, there’s only one version. Of course,

all of this scales to multiple versions (i.e., one schema version).

3 For example, via kubectl get ats -o yaml.

Appendix A. Resources

General

The official Kubernetes Documentation

The Kubernetes community on GitHub

The client-go docs channel on the Kubernetes Slack

instance

Kubernetes deep dive: API Server – part 1

Kubernetes deep dive: API Server – part 2

Kubernetes deep dive: API Server – part 3

Kubernetes API Server, Part I

The Mechanics of Kubernetes

GoDoc for k8s.io/api

Books

Kubernetes: Up and Running, 2nd Edition by Kelsey

Hightower et al. (O’Reilly)

Cloud Native DevOps with Kubernetes by John

Arundel and Justin Domingus (O’Reilly)

Managing Kubernetes by Brendan Burns and Craig

Tracey (O’Reilly)

Kubernetes Cookbook by Sébastien Goasguen and

Michael Hausenblas (O’Reilly)

https://kubernetes.io/docs/home
http://bit.ly/2LX2YF8
https://red.ht/2IJBDEk
https://red.ht/2RAEv9s
https://red.ht/2NaXgBD
http://bit.ly/2IKh0be
http://bit.ly/2IV2lcb
https://godoc.org/k8s.io/api
https://oreil.ly/2SaANU4
https://oreil.ly/2BaE1iq
https://oreil.ly/2wtHcAm
http://bit.ly/2FTgJzk

The Kubebuilder Book

Tutorials and Examples

Kubernetes by Example

The Katacoda Kubernetes Playground

Banzai Cloud Operator SDK

Operator Developer Guide

Articles

Writing a Kubernetes Operator in Golang

Stay Informed with Kubernetes Informers

Events, the DNA of Kubernetes

Kubernetes Events Explained

Level Triggering and Reconciliation in Kubernetes

Comparing Kubernetes Operator Pattern with

Alternatives

Kubernetes Operators

Kubernetes Custom Resource, Controller and

Operator Development Tools

Demystifying Kubernetes Operators with the

Operator SDK: Part 1

Under the Hood of Kubebuilder Framework

Best Practices for Building Kubernetes Operators

and Stateful Apps

https://book.kubebuilder.io/
http://kubernetesbyexample.com/
http://bit.ly/31Sydqp
http://bit.ly/2ZG3OtA
http://bit.ly/2Fx4zh4
http://bit.ly/2Ei2hCr
http://bit.ly/2Y5OKYX
http://bit.ly/31Tvey8
http://bit.ly/2XzwEOM
http://bit.ly/2FmLLAW
http://bit.ly/2XxGEYO
https://kubedex.com/operators
http://bit.ly/2FpO4Ug
http://bit.ly/2NbGRwZ
http://bit.ly/2X2NpgX
http://bit.ly/2NdvQeJ

Kubernetes Operator Development Guidelines

Mutating Webhooks with slok/kubewebhook

Repositories

kubernetes-client organization

kubernetes/kubernetes

kubernetes/perf-tests

cncf/apisnoop

open-policy-agent/gatekeeper

stakater/Konfigurator

ynqa/kubernetes-rust

hossainemruz/k8s-initializer-finalizer-practice

munnerz/k8s-api-pager-demo

m3db/m3db-operator

http://bit.ly/31P7rPC
http://bit.ly/2RyScG1
http://bit.ly/2xfSrfT
http://bit.ly/2SltTLP
http://bit.ly/2X556g8
http://bit.ly/32u5SqN
http://bit.ly/2LXCpiX
http://bit.ly/2JBX8HO
https://github.com/ynqa/kubernetes-rust
http://bit.ly/30GzTSF
http://bit.ly/30Ep2IT
http://bit.ly/2XURVi2

Index

A

access control

best practices, Packaging Best Practices

for production-ready deployment, Production-Ready

Deployments

read access, Getting the Permissions Right

role-based access control (RBAC), How the API Server

Processes Requests, Status subresource, Getting the

Permissions Right, Delegated Authorization

write access, Getting the Permissions Right

admission

chain, Admission, Registering

configuration, Registering

initializers, Options and Config Pattern and Startup

Plumbing, Plumbing resources

mutating, Validation, Admission

order, Admission

plug-in, How the API Server Processes Requests,

Admission, Registering

register, Registering

validating, Validation, Admission

admission webhooks

architecture, Admission Webhook Architecture

example, Admission Requirements in the Restaurant

Example

implementing, Implementing an Admission Webhook

overview of, Admission Webhooks

registering, Registering Admission Webhooks

using, Admission Webhook in Action

aggregated API server (see aggregation)

aggregation, Custom API Servers, Deploying Custom API

Servers, Certificates and Trust, Custom Resource

Versioning, Setting Up the HTTPS Server

aggregator (see aggregation)

alpha versions, API Versions and Compatibility Guarantees

Ansible, Other Packaging Options

API groups, API Terminology

API Machinery features, Versioning and Compatibility, API

Machinery in Depth-Scheme (see also Kubernetes API)

API servers (see custom API servers)

API Services, API Services

auditing, Monitoring, instrumentation, and auditing

authentication, Delegated Authentication and Trust

authorization, Delegated Authorization

automated builds, Production-Ready Deployments,

Automated Builds and Testing

B

Ballerina, Other Packaging Options

bearer tokens, Delegated Authentication and Trust

beta versions, API Versions and Compatibility Guarantees

Borg, Optimistic Concurrency

builder pattern, Creating and Using a Client

C

caching

cache coherency issues, Informers and Caching

in-memory, Informers and Caching-Informers and

Caching

work queues, Work Queue

categories, Short Names and Categories

certificates and trust, Certificates and Trust

Chang, Eric, Other Approaches

charts, Helm

Chef, Other Packaging Options

CLI-client based operator creation, Other Approaches

client sets

client expansion, Client Expansion

client options, Client Options

creating, Creating and Using a Client

discovery client, Client Sets

listings and deletions, Listings and Deletions

main interface, Client Sets

role of, Client Sets

status subresources, Status Subresources: UpdateStatus

versioned clients and internal clients, Client Sets

watches, Watches

client-gen tags, client-gen Tags

client-go

API Machinery repository, API Machinery in Depth-

Scheme

client sets, Client Sets-Client Options

custom resource access, Dynamic Client

downloading, The Client Library

informers and caching, Informers and Caching-Work

Queue

Kubernetes objects in Go, Kubernetes Objects in Go-spec

and status

repositories, The Repositories-API Versions and

Compatibility Guarantees

vendoring, Vendoring-Go Modules

versioning scheme, The Client Library

clients

controller-runtime client, controller-runtime Client of

Operator SDK and Kubebuilder

creating and using, Creating and Using a Client

dynamic clients, Dynamic Client

loopback client, Plumbing resources

typed clients, Typed Clients-Typed client created via

client-gen

cloud-native applications

example of, A Motivational Example

types of apps running on Kubernetes, What Does

Programming Kubernetes Mean?

cloud-native languages, Other Packaging Options

cnat (cloud-native at) example, A Motivational Example

code examples, obtaining and using, Using Code Examples

code generation

benefits of, Automating Code Generation

calling code generators, Calling the Generators

client-gen tags, client-gen Tags

controlling with tags, Controlling the Generators with

Tags

deepcopy-gen tags, deepcopy-gen Tags

global tags for, Global Tags

informer-gen and lister-gen, informer-gen and lister-gen

local tags for, Local Tags

runtime.Object and DeepCopyObject, runtime.Object and

DeepCopyObject

cohabitation, API Terminology, Use Cases for Custom API

Servers

command line interface (CLI), Using the API from the

Command Line-Using the API from the Command Line

comments and questions, How to Contact Us

commercially available off-the-shelf (COTS) apps, What

Does Programming Kubernetes Mean?

compatibility

compatibility guarantees, API Versions and Compatibility

Guarantees

formally guaranteed support matrix, Versioning and

Compatibility

versioning and, Versioning and Compatibility

configuration management systems, Other Packaging

Options

conflict errors, Optimistic Concurrency

connection errors, Client Options

continuous integration (CI), Automated Builds and Testing

controller-runtime client, controller-runtime Client of

Operator SDK and Kubebuilder

controllers and operators

changing cluster objects or the external world, Changing

Cluster Objects or the External World

control loop, The Control Loop

custom controller scope, Packaging Best Practices

documenting with inline docs, Packaging Best Practices

edge- versus level-driven triggers, Edge- Versus Level-

Driven Triggers

events, Events

footprint and scalability of, Packaging Best Practices

functions of, Controllers and Operators

lifecycle management, Lifecycle Management

operators, Operators

optimistic concurrency, Optimistic Concurrency

packaging, Lifecycle Management and Packaging-

Packaging Best Practices

production-ready deployments, Production-Ready

Deployments-Monitoring, instrumentation, and auditing

writing custom, Solutions for Writing Operators-Uptake

and Future Directions

conversion, Inner Structure of a Custom API Server,

Internal Types and Conversion, API Installation

conversion-gen, Conversions

ConversionReview, Conversion Webhook Architecture

function, Conversions

naming pattern, Conversions

lossless, API Terminology

on-the-fly, API Versions and Compatibility Guarantees

webhooks, Custom Resource Versioning, Conversion

Webhook Architecture

core group, TypeMeta

CoreOS, Operators

CRUD verbs, Versioning and Compatibility

curl, Using the API from the Command Line

custom API servers

architecture, The Architecture: Aggregation-Delegated

Authorization

aggregation, The Architecture: Aggregation

API services, API Services

delegated authentication and trust, Delegated

Authentication and Trust

delegated authorization, Delegated Authorization

inner structure of, Inner Structure of a Custom API

Server

benefits of, Use Cases for Custom API Servers

CRD drawbacks, Use Cases for Custom API Servers

CustomResourceDefinition, Using Custom Resources-

controller-runtime Client of Operator SDK and

Kubebuilder

deploying, Deploying Custom API Servers-Sharing etcd

certificates and trust, Certificates and Trust

deployment manifests, Deployment Manifests

RBAC setup, Setting Up RBAC

running insecurely, Running the Custom API Server

Insecurely

sharing etcd, Sharing etcd

example of, Example: A Pizza Restaurant

writing, Writing Custom API Servers-Plumbing resources

admission, Admission

API installation, API Installation

conversions, Conversions

defaulting, Defaulting

existing option structs, Options and Config Pattern and

Startup Plumbing

first start, The First Start

internal types and conversion, Internal Types and

Conversion

options and config pattern, Options and Config Pattern

and Startup Plumbing

registry and strategy, Registry and Strategy

roundtrip testing, Roundtrip Testing

validation, Validation

writing API types, Writing the API Types

custom resource definitions (CRDs)

accessing, A Developer’s View on Custom Resources

accessing with client-go dynamic client, Dynamic Client

accessing with controller-runtime client, controller-

runtime Client of Operator SDK and Kubebuilder

accessing with typed clients, Typed Clients-Typed client

created via client-gen

admission webhooks, Admission Webhooks-Admission

Webhook in Action

availability of, Using Custom Resources

best practices, Packaging Best Practices

defining, Using Custom Resources

discovery information, Discovery Information

limits of, Use Cases for Custom API Servers

printer columns, Printer Columns

role of, Operators, Using Custom Resources

short names and categories, Short Names and Categories

structural schemas, Structural Schemas and the Future

of CustomResourceDefinitions-Default Values

subresources, Subresources-Scale subresource

type definitions, Type Definitions

validating custom resources, Validating Custom

Resources

versioning, Custom Resource Versioning-Seeing

Conversion in Action

writing with code generators, Automating Code

Generation-Summary

custom resources (CR) (see custom resource definitions

(CRDs))

D

declarative state management, Declarative State

Management

decoding, Inner Structure of a Custom API Server

deep copies, deepcopy-gen Tags-runtime.Object and

DeepCopyObject

deep copy, Kubernetes Objects in Go

deep-copy

deep-copy methods, Golang package structure

deepcopy-gen, Calling the Generators

DeepCopyObject tag, runtime.Object and DeepCopyObject

defaulting, Internal Types and Conversion, Defaulting, API

Installation, Default Values

defaulter-gen, Calling the Generators

delegated authentication, Delegated Authentication and

Trust

delegated authorization, Delegated Authorization

dep (vendoring tool), dep

deployment (controllers and operators)

access control, Getting the Permissions Right

automated builds and testing, Automated Builds and

Testing

custom controller observability, Custom Controllers and

Observability

lifecycle management, Lifecycle Management

overview of, Lifecycle Management and Packaging

packaging best practices, Packaging Best Practices

packaging challenges, Packaging: The Challenge

packaging with Helm, Helm

packaging with Kustomize, Kustomize

packaging with other tools, Other Packaging Options

production-ready overview, Production-Ready

Deployments

deployment (custom API servers)

certificates and trust, Certificates and Trust

deployment manifests, Deployment Manifests

RBAC setup, Setting Up RBAC

running insecurely, Running the Custom API Server

Insecurely

sharing etcd, Sharing etcd

desired state, Declarative State Management

discovery, Short Names and Categories, controller-runtime

Client of Operator SDK and Kubebuilder

endpoint, The First Start

RESTMapper, REST Mapping

discovery client, Client Sets

discovery mechanism, Discovery Information

distributed version control, Technology You Need to

Understand

dynamic clients, Dynamic Client

E

edge-driven triggers, Edge- Versus Level-Driven Triggers

encoding, Inner Structure of a Custom API Server

errors

advanced error behavior of informers, Informers and

Caching

cache coherency issues, Informers and Caching

conflict errors, Optimistic Concurrency

connection errors, Client Options

coping with trigger errors, Edge- Versus Level-Driven

Triggers

event handlers, Informers and Caching

event producers, Edge- Versus Level-Driven Triggers

event sources, Edge- Versus Level-Driven Triggers

events

overview of, Events

watch events versus event objects, Events

extension patterns

aggregated API servers, Custom API Servers-Sharing

etcd

custom resource definitions (CRDs), Using Custom

Resources-controller-runtime Client of Operator SDK and

Kubebuilder

overview of, Extension Patterns

external version, Internal Types and Conversion

F

feature gate, Options and Config Pattern and Startup

Plumbing, Default Values

field selector, Listings and Deletions

Flant’s Shell operator, Other Approaches

fuzzers, Roundtrip Testing

G

general availability (GA), Custom Resource Versioning

generator

client-gen, Status Subresources: UpdateStatus, Scheme,

Global Tags

conversion-gen, Conversions

deepcopy-gen, Calling the Generators

defaulter-gen, Calling the Generators

informer-gen, informer-gen and lister-gen

lister-gen, informer-gen and lister-gen

generic registry, Generic registry

Git, Technology You Need to Understand

glide (vendoring tool), glide

global tags, Global Tags

Go modules, Go Modules

Go programming language, Technology You Need to

Understand, What Does Programming Kubernetes Mean?,

Basics of client-go (see also client-go)

Go types, Kubernetes API Types, TypeMeta

Golang package structure, Golang package structure

Golang types, API Terminology, Typed Clients

graceful shutdowns, Client Options

graceful termination, Use Cases for Custom API Servers

GroupVersion (GV), Client Sets

GroupVersionKind (GVK), API Terminology, Kubernetes

Objects in Go, Kinds, Conversions, Implementation

GroupVersionResource (GVR), API Terminology, Resources

H

handler chain, Inner Structure of a Custom API Server

health checks, Production-Ready Deployments

Helm, Helm

HTTP interface, The HTTP Interface of the API Server,

Kubernetes API Versioning, How the API Server Processes

Requests-How the API Server Processes Requests, The

Client Library

hub version, Internal Types and Conversion

I

impersonation, Inner Structure of a Custom API Server

in-cluster config, Creating and Using a Client

informer-gen, informer-gen and lister-gen

informers

caching and, Informers and Caching-Informers and

Caching

overview of, The Control Loop

syncing, Plumbing resources

work queues, Work Queue

internal version, Internal Types and Conversion

IntORString, IntOrString and RawExtensions

K

kinds

categories of, API Terminology

formatting of, Kinds

function of, API Terminology

GroupVersionKind (GVK), API Terminology, Kinds

kinds versus resources, API Terminology

living in multiple API groups, API Terminology

relation to Go type, packages, and group names,

TypeMeta

typed clients and, Anatomy of a type

klog, Logging

ksonnet, Other Packaging Options

kube-aggregator, The Architecture: Aggregation, Delegated

Authorization

kube-apiserver, Type Definitions, The Architecture:

Aggregation, Delegated Authorization, Sharing etcd,

Setting Up the HTTPS Server

kube-controller-manager, Events, Informers and Caching

kube-dns, Using the API from the Command Line

kube-scheduler, Events

kube-system, Events, Using the API from the Command

Line

Kubebuilder

additional resources, Kubebuilder

base directory, Bootstrapping

bootstrapping, Bootstrapping

business logic, Business Logic-Business Logic

commands

kubebuilder create api, Bootstrapping

kubebuilder init, Bootstrapping

controller-runtime client of, controller-runtime Client of

Operator SDK and Kubebuilder

create api command, Bootstrapping

custom resource definition, Bootstrapping

custom resource installation and validation,

Bootstrapping

dedicated namespace creation, Bootstrapping

local operator launch, Bootstrapping

versions, Kubebuilder

kubeconfig, Creating and Using a Client

kubectl, Events, The API Server, Using the API from the

Command Line, Creating and Using a Client, Discovery

Information, Validating Custom Resources

kubectl api-resources, Using the API from the Command

Line, Short Names and Categories

kubectl api-versions, Using the API from the Command Line

kubectl apply, Packaging: The Challenge, Kustomize

kubectl apply -f, Bootstrapping, Bootstrapping,

Bootstrapping

kubectl create -f, Running the Custom API Server

Insecurely

kubectl delete, Running the Custom API Server Insecurely

kubectl get --raw, Using the API from the Command Line

kubectl get apiservices, Running the Custom API Server

Insecurely

kubectl get at example-at, Pruning Versus Preserving

Unknown Fields

kubectl get at,pods, Business Logic

kubectl get crds, Bootstrapping, Bootstrapping,

Bootstrapping

kubectl get ds, Short Names and Categories

kubectl get pod, Defaulting

kubectl logs, Logging

kubectl logs example-at-pod, Business Logic

kubectl proxy, Using the API from the Command Line

kubectl scale --replicas 3, Scale subresource

kubecuddler, Other Approaches

kubelet, Events, Optimistic Concurrency, Declarative State

Management

Kubernetes

additional resources, What Does Programming

Kubernetes Mean?, The Control Loop, Events, Edge-

Versus Level-Driven Triggers, General

API versioning, Kubernetes API Versioning

controllers and operators, Controllers and Operators-

Operators

documentation, A Motivational Example, Versioning and

Compatibility

ecosystem for, Ecosystem

extension patterns, Extension Patterns

local development environment, What Does Programming

Kubernetes Mean?

meaning of programming Kubernetes, What Does

Programming Kubernetes Mean?

native app example, A Motivational Example

optimistic concurrency in, Optimistic Concurrency

prerequisites to learning, Technology You Need to

Understand

programming in Go, What Does Programming Kubernetes

Mean?

types of apps running on, What Does Programming

Kubernetes Mean?

versions discussed, Ecosystem

Kubernetes API

API Machinery repository, API Machinery

API versioning, Kubernetes API Versioning, Versioning

and Compatibility

architecture and core responsibilities, The API Server

benefits of, What Does Programming Kubernetes Mean?

command line control, Using the API from the Command

Line-Using the API from the Command Line

declarative state management, Declarative State

Management

Go types repository, Kubernetes API Types

HTTP interface of, The HTTP Interface of the API Server

request processing, How the API Server Processes

Requests-How the API Server Processes Requests, Client

Options

terminology, API Terminology-API Terminology

Kubernetes objects in Go

ObjectMeta, ObjectMeta

overview of, Kubernetes Objects in Go

spec and a status section, spec and status

TypeMeta, TypeMeta

KUDO, Other Approaches

Kustomize, Kustomize

kutil, Other Approaches

L

label selector, Listings and Deletions

leader-follower/standby model, Production-Ready

Deployments

least-privileges principle, Getting the Permissions Right

legacy group, TypeMeta

level-driven triggers, Edge- Versus Level-Driven Triggers

lifecycle management, Lifecycle Management

lister-gen, informer-gen and lister-gen

local development environment, What Does Programming

Kubernetes Mean?

local tags, Local Tags

logging, Production-Ready Deployments, Logging

long-running requests, Client Options

M

manifest files, Kustomize

masters, Deployment Manifests

Metacontroller, Other Approaches

metadata, ObjectMeta

monitoring and logging, Production-Ready Deployments,

Custom Controllers and Observability

mutating plug-ins, Admission

O

ObectTyper, Strategy

ObjectMeta, ObjectMeta

OLM (Operator Lifecycle Management), Lifecycle

Management

Omega (Google research paper), Optimistic Concurrency

OpenAPI schema language, Validating Custom Resources

Operator SDK

additional resources, Business Logic

bootstrapping, Bootstrapping

business logic, Business Logic

controller-runtime client of, controller-runtime Client of

Operator SDK and Kubebuilder

installing, The Operator SDK

OperatorHub.io, Operators

operators (see also controllers and operators)

building with Operator SDK, The Operator SDK-Business

Logic

following sample-controller, Following sample-controller-

Business Logic

implementing with Kubebuilder, Kubebuilder-Business

Logic

other approaches to writing, Other Approaches

overview of, Operators

preparation for writing, Preparation

writing custom, Solutions for Writing Operators

optimistic concurrency, Optimistic Concurrency

option-config pattern, Options and Config Pattern and

Startup Plumbing, Setting Up the HTTPS Server

P

package management, Technology You Need to

Understand, Kubernetes API Types, dep, Helm

packaging

best practices, Packaging Best Practices

challenges of, Packaging: The Challenge

lifecycle management, Lifecycle Management

other options for, Other Packaging Options

with Helm, Helm

with Kustomize, Kustomize

parallel scheduler architecture, Optimistic Concurrency

Plumi, Other Packaging Options

polling, Edge- Versus Level-Driven Triggers

post-start hook, Options and Config Pattern and Startup

Plumbing

printer columns, Printer Columns

priority queues, Work Queue

Prometheus, Monitoring, instrumentation, and auditing

protocol buffers (protobuf), Creating and Using a Client

pruning, Pruning Versus Preserving Unknown Fields

Puppet, Other Packaging Options

Q

questions and comments, How to Contact Us

R

rate limiting, Client Options

read access, Getting the Permissions Right

reflection, Scheme

registry, Options and Config Pattern and Startup Plumbing

relist period, Informers and Caching

remote procedure calls (RPCs), Events

replica integer value, Scale subresource

repositories

API Machinery, API Machinery

API versions and compatibility guarantees, API Versions

and Compatibility Guarantees

client library, The Client Library

creating and using clients, Creating and Using a Client

importing, The Repositories

Kubernetes API Go types, Kubernetes API Types

third-party applications, Vendoring

versioning and compatibility, Versioning and

Compatibility

request processing, How the API Server Processes

Requests-How the API Server Processes Requests, Client

Options

resource version, Optimistic Concurrency

resource version conflict errors, Optimistic Concurrency

resources

example Kubernetes API space, API Terminology

formatting of, Resources

GroupVersionResource (GVR), API Terminology,

Resources

namespaces versus cluster-scoped, Resources

overview of, API Terminology

resources versus kinds, API Terminology

subresources, API Terminology

REST client, Client Sets

REST config, Client Sets, Informers and Caching, Dynamic

Client

REST mapping, API Terminology, REST Mapping

REST verbs, The Client Library

resync period, Informers and Caching

role-based access control (RBAC), How the API Server

Processes Requests, Status subresource, Getting the

Permissions Right, Delegated Authorization, Setting Up

RBAC

Rook operator kit, Other Approaches

roundtrippable conversion, Internal Types and Conversion,

Roundtrip Testing

runtime.Object, Kubernetes Objects in Go, Scheme,

runtime.Object and DeepCopyObject

S

Salt, Other Packaging Options

sample-controller

bootstrapping, Bootstrapping

business logic implementation, Business Logic-Business

Logic

implementing operators following, Following sample-

controller

scale subresource, Scale subresource

schema, structural, Structural Schemas and the Future of

CustomResourceDefinitions

schemes, Scheme

semantic versioning (semver), Versioning and

Compatibility, Go Modules

server request processing, How the API Server Processes

Requests-How the API Server Processes Requests, Client

Options

server-side printing, Printer Columns

service account, Deployment Manifests

shared informer factory, Informers and Caching

short names, Short Names and Categories

Site Reliability Engineers (SREs), Operators

spec and a status section, spec and status, Status

subresource

specifications (specs), Declarative State Management

state change

declarative state management, Declarative State

Management

detecting, Edge- Versus Level-Driven Triggers

status (observed state), Declarative State Management

status subresources, Status Subresources: UpdateStatus,

Status subresource

storage versions, API Versions and Compatibility

Guarantees

stores, Informers and Caching

strategy, Strategy

structural schemas

controlling pruning, Controlling Pruning

default values, Default Values

IntOrString and RawExtensions, IntOrString and

RawExtensions

overview of, Structural Schemas and the Future of

CustomResourceDefinitions

pruning versus preserving unknown fields, Pruning

Versus Preserving Unknown Fields

subject access review, Delegated Authorization, Generic

registry

subresources, API Terminology, Subresources-Scale

subresource

T

testing, Automated Builds and Testing

third-party applications, Vendoring

throttling, Client Options

burst, Client Options

queries per second, Client Options

timeouts, Client Options

triggers

coping with errors, Edge- Versus Level-Driven Triggers

edge- versus level-driven triggers, Edge- Versus Level-

Driven Triggers

type definitions, Type Definitions

type system, API Machinery in Depth

typed clients, Typed Clients-Typed client created via client-

gen

TypeMeta, TypeMeta

U

UNIX tooling, for packaging, Other Packaging Options

user agents, Client Options

V

validating plug-ins, Admission

validation, Validation

vendoring

dep, dep

glide, glide

Go modules, Go Modules

role of, Vendoring

tools for, Vendoring

version control, Technology You Need to Understand

versioning

conversion webhook architecture, Conversion Webhook

Architecture

conversion webhook deployment, Deploying the

Conversion Webhook

conversion webhook implementation, Conversion

Webhook Implementation

example, Revising the Pizza Restaurant

HTTPs server setup, Setting Up the HTTPS Server

overview of, Custom Resource Versioning

process of, Seeing Conversion in Action

versions, in Kubernetes API, API Terminology, Versioning

and Compatibility

W

WATCH verb, The Client Library

watches, Events, Watches, Client Options

webhooks

admission webhooks, Admission Webhooks-Admission

Webhook in Action

conversion webhook architecture, Conversion Webhook

Architecture

conversion webhook deployment, Deploying the

Conversion Webhook

conversion webhook implementation, Conversion

Webhook Implementation

work queues, The Control Loop, Work Queue

write access, Getting the Permissions Right

X

x-kubernetes-embedded-object: true, IntOrString and

RawExtensions

x-kubernetes-int-or-string: true, IntOrString and

RawExtensions

x-kubernetes-preserve-unknown-fields: true, Controlling

Pruning

Y

YAML manifests, Packaging: The Challenge

ytt, Other Packaging Options

Z

Zalando’s Kopf, Other Approaches

About the Authors

Michael Hausenblas is a developer advocate at Amazon

Web Services, part of the container service team focusing

on container security. Michael shares his experience

around cloud native infrastructure and apps through

demos, blog posts, books, public speaking engagements,

and contributions to open source software. Before AWS,

Michael worked at Red Hat, Mesosphere, MapR, and in two

research institutions in Ireland and Austria.

Stefan Schimanski is a principal software engineer for

Go, Kubernetes, and OpenShift at Red Hat. His focus is the

Kubernetes API server, especially the implementation of

CustomResourceDefinitions, API Machinery in general, and

the publishing of the Kubernetes staging repositories

client-go, apimachinery, api, and more. Before Red Hat,

Stefan worked at Mesosphere on Marathon, Spark, and

their Kubernetes offering, and as a freelancer and

consultant in high availability and distributed systems. In a

former life Stefan did research in Mathematical Logic

about constructive mathematics, type systems, and lambda

calculus.

Colophon

The animal on the cover of Programming Kubernetes is a

green sandpiper (Tringa ochropus). Both the genus and

species name come from Ancient Greek. A small wading

bird called trungas once caught Aristotle’s attention, and

ochropus breaks down into the Ancient Greek words for

“ochre” and “foot,” okhros and pous.

The green sandpiper has only one close living relative: the

solitary sandpiper. Green sandpipers enjoy an extremely

large range, spanning almost every continent. They are

native to Asia and migrate to warmer climates during

winter. They wade and feed in a variety of marshy

environments. In the ponds, rivers, and wet woodland,

green sandpipers find insects, spiders, small crustaceans,

fish, and plants to eat.

Green sandpipers have a wide breast and short neck. Their

beaks are long and slim. Up close, their greenish-brown

wings reveal small, light dots. This feather coloring is the

opposite of their eggs, which are buff with brown speckles.

A typical clutch averages two to four eggs, which hatch in

three weeks. Green sandpipers incubate in the abandoned

nests of other birds or even squirrels.

Many of the animals on O’Reilly covers are endangered; all

of them are important to the world.

The cover illustration is by Karen Montgomery, based on a

black and white engraving from Shaw’s Zoology. The cover

fonts are Gilroy Semibold and Guardian Sans. The text font

is Adobe Minion Pro; the heading font is Adobe Myriad

Condensed; and the code font is Dalton Maag’s Ubuntu

Mono.

	Preface
	Who Should Read This Book
	Why We Wrote This Book
	Ecosystem
	Technology You Need to Understand
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. Introduction
	What Does Programming Kubernetes Mean?
	A Motivational Example
	Extension Patterns
	Controllers and Operators
	The Control Loop
	Events
	Edge- Versus Level-Driven Triggers
	Changing Cluster Objects or the External World
	Optimistic Concurrency
	Operators

	Summary

	2. Kubernetes API Basics
	The API Server
	The HTTP Interface of the API Server
	API Terminology
	Kubernetes API Versioning
	Declarative State Management

	Using the API from the Command Line
	How the API Server Processes Requests
	Summary

	3. Basics of client-go
	The Repositories
	The Client Library
	Kubernetes API Types
	API Machinery
	Creating and Using a Client
	Versioning and Compatibility
	API Versions and Compatibility Guarantees

	Kubernetes Objects in Go
	TypeMeta
	ObjectMeta
	spec and status

	Client Sets
	Status Subresources: UpdateStatus
	Listings and Deletions
	Watches
	Client Expansion
	Client Options

	Informers and Caching
	Work Queue

	API Machinery in Depth
	Kinds
	Resources
	REST Mapping
	Scheme

	Vendoring
	glide
	dep
	Go Modules

	Summary

	4. Using Custom Resources
	Discovery Information
	Type Definitions
	Advanced Features of Custom Resources
	Validating Custom Resources
	Short Names and Categories
	Printer Columns
	Subresources

	A Developer’s View on Custom Resources
	Dynamic Client
	Typed Clients
	controller-runtime Client of Operator SDK and Kubebuilder

	Summary

	5. Automating Code Generation
	Why Code Generation
	Calling the Generators
	Controlling the Generators with Tags
	Global Tags
	Local Tags
	deepcopy-gen Tags
	runtime.Object and DeepCopyObject
	client-gen Tags
	informer-gen and lister-gen

	Summary

	6. Solutions for Writing Operators
	Preparation
	Following sample-controller
	Bootstrapping
	Business Logic

	Kubebuilder
	Bootstrapping
	Business Logic

	The Operator SDK
	Bootstrapping
	Business Logic

	Other Approaches
	Uptake and Future Directions
	Summary

	7. Shipping Controllers and Operators
	Lifecycle Management and Packaging
	Packaging: The Challenge
	Helm
	Kustomize
	Other Packaging Options
	Packaging Best Practices
	Lifecycle Management

	Production-Ready Deployments
	Getting the Permissions Right
	Automated Builds and Testing
	Custom Controllers and Observability

	Summary

	8. Custom API Servers
	Use Cases for Custom API Servers
	Example: A Pizza Restaurant
	The Architecture: Aggregation
	API Services
	Inner Structure of a Custom API Server
	Delegated Authentication and Trust
	Delegated Authorization

	Writing Custom API Servers
	Options and Config Pattern and Startup Plumbing
	The First Start
	Internal Types and Conversion
	Writing the API Types
	Conversions
	Defaulting
	Roundtrip Testing
	Validation
	Registry and Strategy
	API Installation
	Admission

	Deploying Custom API Servers
	Deployment Manifests
	Setting Up RBAC
	Running the Custom API Server Insecurely
	Certificates and Trust
	Sharing etcd

	Summary

	9. Advanced Custom Resources
	Custom Resource Versioning
	Revising the Pizza Restaurant
	Conversion Webhook Architecture
	Conversion Webhook Implementation
	Setting Up the HTTPS Server
	Deploying the Conversion Webhook
	Seeing Conversion in Action

	Admission Webhooks
	Admission Requirements in the Restaurant Example
	Admission Webhook Architecture
	Registering Admission Webhooks
	Implementing an Admission Webhook
	Admission Webhook in Action

	Structural Schemas and the Future of CustomResourceDefinitions
	Structural Schemas
	Pruning Versus Preserving Unknown Fields
	Controlling Pruning
	IntOrString and RawExtensions
	Default Values

	Summary

	A. Resources
	General
	Books
	Tutorials and Examples
	Articles
	Repositories

	Index

