
Database Design
and
Relational Theory

Normal Forms and All That Jazz
—
Second Edition
—
C. J. Date

Database Design and
Relational Theory

Normal Forms and All That Jazz

Second Edition

C. J. Date

Database Design and Relational Theory: Normal Forms and All That Jazz

ISBN-13 (pbk): 978-1-4842-5539-1 ISBN-13 (electronic): 978-1-4842-5540-7
https://doi.org/10.1007/978-1-4842-5540-7

Copyright © 2019 by C. J. Date

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484255391. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

C. J. Date
Healdsburg, California, USA

https://doi.org/10.1007/978-1-4842-5540-7

In computing, elegance is not a dispensable luxury
but a quality that decides between success and failure.

—Edsger W. Dijkstra

The ill design is most ill for the designer.

—Hesiod

It is to be noted that when any part of this paper is dull
there is design in it.

—Sir Richard Steele

The idea of a formal design discipline is often rejected on account of
vague cultural / philosophical condemnations such as “stifling

creativity”; this is more pronounced … where a romantic vision of
“the humanities” in fact idealizes technical incompetence …

[We] know that for the sake of reliability and intellectual control
we have to keep the design simple and disentangled.

—Edsger W. Dijkstra

My designs are strictly honorable.

—Anon.

——— ♦♦♦♦♦ ———

To my wife Lindy

and my daughters Sarah and Jennie

with all my love

v

Part I: Setting the Scene ... 1

Chapter 1: Preliminaries ... 3

Some Quotes from the Literature �� 4

A Note on Terminology �� 6

The Running Example ��� 8

Keys �� 10

The Place of Design Theory��� 12

Aims of this Book �� 16

Concluding Remarks ��� 17

Exercises ��� 19

Answers �� 20

Chapter 2: Prerequisites ... 23

Overview ��� 24

Relations and Relvars ��� 24

Predicates and Propositions ��� 28

More on Suppliers and Parts ��� 31

Exercises ��� 34

Answers �� 37

Table of Contents

About the Author ... xiii

Preface to the First Edition ..xv

Preface to the Second Edition ..xix

vi

Part II: Functional Dependencies, Boyce/Codd Normal Form,
and Related Matters ... 45

Chapter 3: Normalization: Some Generalities ... 47

Normalization Serves Two Purposes ��� 49

Update Anomalies ��� 53

The Normal Form Hierarchy �� 54

Normalization and Constraints �� 57

Equality Dependencies �� 58

Concluding Remarks ��� 61

Exercises ��� 62

Answers �� 63

Chapter 4: FDs and BCNF (Informal) ... 65

First Normal Form ��� 65

Violating First Normal Form �� 69

Functional Dependencies �� 72

Keys Revisited ��� 74

Second Normal Form �� 76

Third Normal Form �� 78

Boyce/Codd Normal Form ��� 79

Exercises ��� 82

Answers �� 85

Chapter 5: FDs and BCNF (Formal) ... 97

Preliminary Definitions �� 97

Functional Dependencies Revisited �� 100

Boyce/Codd Normal Form Revisited ��� 102

Heath’s Theorem ��� 105

Exercises ��� 110

Answers �� 111

Table of ConTenTs

vii

Chapter 6: Preserving FDs .. 117

An Unfortunate Conflict ��� 119

Another Example ��� 123

… And Another ��� 125

… And Still Another �� 127

A Procedure that Works �� 129

Identity Decompositions�� 134

More on the Conflict �� 136

Independent Projections ��� 137

Exercises ��� 138

Answers �� 140

Chapter 7: FD Axiomatization ... 145

Armstrong’s Axioms �� 146

Additional Rules �� 147

Proving the Additional Rules ��� 150

Another Kind of Closure �� 151

Exercises ��� 153

Answers �� 154

Chapter 8: Denormalization .. 161

“Denormalize for Performance” (?) �� 161

What Does Denormalization Mean? �� 163

What Denormalization Isn’t (I) ��� 165

What Denormalization Isn’t (II) �� 169

Denormalization Considered Harmful (I) ��� 172

Denormalization Considered Harmful (II) �� 174

Concluding Remarks ��� 176

Exercises ��� 177

Answers �� 179

Table of ConTenTs

viii

Part III: Join Dependencies, Fifth Normal Form, and Related Matters 183

Chapter 9: JDs and 5NF (Informal) ... 185

Join Dependencies—the Basic Idea ��� 186

A Relvar in BCNF and Not 5NF �� 190

Cyclic Rules ��� 194

Concluding Remarks ��� 195

Exercises ��� 197

Answers �� 197

Chapter 10: JDs and 5NF (Formal).. 201

Join Dependencies Revisited �� 201

Fifth Normal Form ��� 204

JDs Implied by Keys �� 207

A Useful Theorem �� 211

FDs Aren’t JDs ��� 212

Update Anomalies Revisited�� 213

Exercises ��� 215

Answers �� 217

Chapter 11: Implicit Dependencies ... 221

Irrelevant Components �� 222

Combining Components �� 223

Irreducible JDs �� 224

Summary So Far ��� 228

The Chase Algorithm ��� 231

Concluding Remarks ��� 235

Exercises ��� 236

Answers �� 238

Chapter 12: MVDs and 4NF ... 241

An Introductory Example ��� 242

Multivalued Dependencies (Informal) ��� 244

Table of ConTenTs

ix

Multivalued Dependencies (Formal) ��� 246

Fourth Normal Form �� 247

MVD Axiomatization �� 250

Embedded Dependencies ��� 251

Exercises ��� 252

Answers �� 254

Part IV: Further Normal Forms.. 261

Chapter 13: ETNF, RFNF, SKNF ... 263

5 NF Is Too Strong �� 265

The First Example: What 5NF Does �� 265

The Second Example: Why 5NF Does Too Much �� 266

Essential Tuple Normal Form �� 268

Definitions and Theorems �� 268

A Relvar in ETNF and Not 5NF ��� 271

A Relvar in 4NF and Not ETNF ��� 274

Our Choice of Name ��� 274

Redundancy Free Normal Form �� 275

A Relvar in RFNF and Not 5NF ��� 278

A Relvar in ETNF and Not RFNF ��� 279

Superkey Normal Form ��� 279

A Relvar in SKNF and Not 5NF ��� 280

A Relvar in RFNF and Not SKNF ��� 280

Concluding Remarks ��� 280

Exercises ��� 282

Answers �� 283

Chapter 14: 6NF .. 287

Sixth Normal Form for Regular Data ��� 288

Sixth Normal Form for Temporal Data ��� 291

Exercises ��� 301

Answers �� 302

Table of ConTenTs

x

Chapter 15: The End Is Not Yet ... 307

Domain-Key Normal Form��� 308

Elementary Key Normal Form ��� 310

Overstrong PJ/NF �� 311

“Restriction-Union” Normal Form ��� 312

Exercises ��� 313

Answers �� 313

Part V: Orthogonality .. 317

Chapter 16: The Principle of Orthogonal Design ... 319

Two Cheers for Normalization ��� 319

A Motivating Example ��� 322

A Simpler Example �� 324

Tuples vs� Propositions ��� 328

The First Example Revisited �� 333

The Second Example Revisited ��� 337

The Final Version (?) �� 337

A Clarification �� 338

Concluding Remarks ��� 341

Exercises ��� 342

Answers �� 343

Part VI: Redundancy ... 347

Chapter 17: We Need More Science .. 349

A Little History ��� 353

Predicates vs� Constraints �� 356

Example 1 ��� 357

Example 2 ��� 359

Example 3 ��� 360

Table of ConTenTs

xi

Example 4 ��� 360

Example 5 ��� 361

Example 6 ��� 362

Example 7 ��� 366

Example 8 ��� 368

Example 9 ��� 369

Example 10 ��� 371

Example 11 ��� 372

Example 12 ��� 372

Managing Redundancy ��� 374

1� Raw Design Only ��� 374

2� Declare the Constraint ��� 375

3� Use a View ��� 375

4� Use a Snapshot �� 376

Refining the Definition �� 377

Examples 1 and 2 �� 383

Example 3 �� 383

Example 4 �� 383

Example 5 �� 383

Example 6 �� 384

Example 7 �� 384

Example 8 �� 384

Examples 9 and 10 �� 385

Example 11 �� 388

Example 12 �� 388

Concluding Remarks ��� 388

Exercises ��� 389

Answers �� 389

Table of ConTenTs

xii

Part VII: Appendixes ... 391

Appendix A: What Is Database Design, Anyway? ... 393

Logical vs� Physical Design ��� 398

The Role of Theory �� 399

Predicates ��� 400

Rules ��� 402

Redundancy �� 403

“Eventual Consistency” ��� 405

Appendix B: More on Consistency .. 407

The Database Is a Logical System �� 408

Proving that 1 = 0 ��� 411

Wrong Answers ��� 412

Generalizing the Argument �� 414

Why Integrity Checking Must Be Immediate ��� 415

Appendix C: Primary Keys Are Nice but Not Essential .. 417

Arguments in Defense of the PK:AK Distinction �� 419

Relvars with Two or More Keys ��� 422

The Invoices and Shipments Example �� 426

One Primary Key per Entity Type? ��� 430

The Applicants and Employees Example ��� 431

Concluding Remarks ��� 434

Appendix D: Historical Notes .. 437

Index ... 443

Table of ConTenTs

xiii

About the Author

C. J. Date is an independent author, lecturer, researcher, and consultant, specializing

in relational database technology. He is best known for his book An Introduction to

Database Systems (8th edition, Addison-Wesley, 2004), which has sold some 900,000

copies at the time of writing and is used by several hundred colleges and universities

worldwide. He is also the author of numerous other books on database management,

including most recently:

• From Ventus: Go Faster! The TransRelationalTM Approach to DBMS

Implementation (2002, 2011)

• From Addison-Wesley: Databases, Types, and the Relational Model:

The Third Manifesto (3rd edition, with Hugh Darwen, 2007)

• From Trafford: Logic and Databases: The Roots of Relational Theory

(2007) and Database Explorations: Essays on The Third Manifesto and

Related Topics (with Hugh Darwen, 2010)

• From Apress: Date on Database: Writings 2000-2006 (2006)

• From Morgan Kaufmann: Time and Relational Theory: Temporal

Databases in the Relational Model and SQL (with Hugh Darwen and

Nikos A. Lorentzos, 2014)

• From O’Reilly: Relational Theory for Computer Professionals: What

Relational Databases Are Really All About (2013); View Updating and

Relational Theory: Solving the View Update Problem (2013); SQL and

Relational Theory: How to Write Accurate SQL Code (3rd edition, 2015);

The New Relational Database Dictionary (2016); and Type Inheritance

and Relational Theory: Subtypes, Supertypes, and Substitutability (2016)

• From Lulu: E. F. Codd and Relational Theory: A Detailed Review and

Analysis of Codd’s Major Database Writings (2019)

Mr Date was inducted into the Computing Industry Hall of Fame in 2004. He enjoys a

reputation that is second to none for his ability to explain complex technical subjects in a

clear and understandable fashion.

xv

Preface to the First Edition

This book began life as a comparatively short chapter in a book called Database in

Depth: Relational Theory for Practitioners (O’Reilly, 2005). That book was superseded

by a greatly expanded version called SQL and Relational Theory: How to Write Accurate

SQL Code (O’Reilly, 2009), where the design material, since it was somewhat tangential

to the main theme of the book, ceased to be a chapter as such and became a (somewhat

longer) appendix instead. I subsequently began work on a second edition of this latter

book.1 During the course of that work, I found there was so much that needed to be said

on the subject of database design in general that the appendix threatened to grow out of

all proportion to the rest of the book. Since the topic was, as I’ve indicated, rather out of

line with the major emphasis of that book anyway, I decided to cut the Gordian knot and

separate the material out into a book of its own: the one you’re looking at right now.

Three points arise immediately from the foregoing:

• First, the present book does assume you’re familiar with material

covered in the SQL and Relational Theory book (in particular, it

assumes you know exactly what relations, attributes, and tuples are).

I make no apology for this state of affairs, however, since the present

book is aimed at database professionals and database professionals

ought really to be familiar with most of what’s in that earlier book,

anyway.

• Second, the previous point notwithstanding, there’s unavoidably a

small amount of overlap between this book and that earlier book. I’ve

done my best to keep that overlap to a minimum, however.

1 That second edition was published by O’Reilly in 2012. It was followed in 2015 by a third. Thus,
all references to that book in what follows should be understood as referring to that third edition
specifically (where it makes any difference).

xvi

• Third, there are, again unavoidably, many references in this book

to that earlier one. Now, most references in this book to other

publications are given in full, as in this example:

Ronald Fagin: “Normal Forms and Relational Database

Operators,” Proc. 1979 ACM SIGMOD International Conference on

Management of Data, Boston, Mass. (May/June 1979)

In the case of references to the SQL and Relational Theory book in

particular, however, from this point forward I’ll give them in the

form of that abbreviated title alone.

Actually I’ve published several short pieces over the years, in one place or another,

on various aspects of design theory, and the present book is intended among other

things to preserve the good parts of those earlier writings. But it’s not just a cobbling

together of previously published material, and I sincerely hope it won’t be seen as such.

For one thing, it contains much new material. For another, it presents a more coherent,

and I think much better, perspective on the subject as a whole (I’ve learned a lot myself

over the years!). Indeed, even when a portion of the text is based on some earlier

publication, the material in question has been totally rewritten and, I trust, improved.

Now, there’s no shortage of books on database design—so what makes this one

different? In fact I don’t think there’s a book on the market that’s quite like this one. There

are many books (of considerably varying quality, in my not unbiased opinion) on design

practice, but those books (again, in my own opinion) usually don’t do a very good job of

explaining the underlying theory. And there are a few books on design theory, too, but

they tend to be aimed at theoreticians, not practitioners, and to be rather academic in

tone. What I want to do is bridge the gap; in other words, I want to explain the theory in a

way that practitioners should be able to understand, and I want to show why that theory

is of considerable practical importance. What I’m not trying to do is be exhaustive; I don’t

want to discuss the theory in every last detail, I want to concentrate on what seem to me

the important parts (though, naturally, my treatment of the parts I do cover is meant to be

precise and accurate, as far as it goes). Also, I’m aiming at a judicious blend of the formal and

the informal; in other words, I’m trying to provide a gentle introduction to the theory, so that:

 a. You can use important theoretical results to help you actually do

design, and

 b. You’ll be able, if you’re so inclined, to go to the more academic

texts and understand them.

PrefaCe To The firsT ediTion

xvii

In the interest of readability, I’ve deliberately written a fairly short book, and I’ve

deliberately made each chapter fairly short, too.2 (I’m a great believer in doling out

information in small and digestible chunks.) Also, every chapter includes a set of

exercises (answers to most of which are given in Appendix D at the back of the book),3

and I do recommend that you have a go at some of those exercises if not all. Some of

them are intended to show how to apply the theoretical ideas in practice; others provide

(in the answers if not in the exercises as such) additional information on the subject

matter, over and above what’s covered in the main body of the text; and still others are

meant—for example, by asking you to prove some simple theoretical result—to get you to

gain some understanding as to what’s involved in “thinking like a theoretician.” Overall,

I’ve tried to give some insight into what design theory is and why it is the way it is.

 Prerequisites
My target audience is database professionals: more specifically, database professionals

with a more than passing interest in database design. In particular, therefore, I assume

you’re reasonably familiar with the relational model, or at least with certain aspects of

that model (Chapter 2 goes into more detail on these matters). As already indicated,

familiarity with the SQL and Relational Theory book would be helpful.

 Logical vs. Physical Design
This book is about design theory; by definition, therefore, it’s about logical design, not

physical design. Of course, I’m not saying physical design is unimportant (of course not);

but I am saying it’s a distinct activity, separate from and subsequent to logical design. To

spell the point out, the “right” way to design a database is as follows:

 1. Do a clean logical design first. Then, as a separate and subsequent

step:

2 Sadly, the second edition is somewhat larger than its predecessor. That always happens with
new editions, of course, though in the present case the increase is due in part to the fact that—in
response to reader requests—I’ve increased the font size. In any case, at least the individual
chapters are still fairly short. Mostly.

3 In response to reader requests again, in this second edition I’ve moved the answers that are
specific to a given chapter to the end of the chapter in question and deleted the old Appendix D.

PrefaCe To The firsT ediTion

xviii

 2. Map that logical design into whatever physical structures the

target DBMS happens to support.4

Note, therefore, that the physical design should be derived from the logical design

and not the other way around. (Ideally, in fact, the system should be able to derive the

physical design “automatically” from the logical design, without the need for human

involvement in the process at all.)5

To repeat, the book is about design theory. So another thing it’s not about is the

various ad hoc design methodologies—entity / relationship modeling and the like—

that have been proposed over the years, at one time or another. Of course, I realize that

certain of those methodologies are fairly widely used in practice, but the fact remains

that they enjoy comparatively little by way of a solid theoretical basis. As a result, they’re

mostly beyond the scope of a book like this one. However, I do have a few remarks here

and there on such “nontheoretical” matters (especially in Chapters 8 and 17, also in

Appendix C).

Acknowledgments
I’d like to thank Hugh Darwen, Ron Fagin, David McGoveran, and Andy Oram for their

meticulous reviews of earlier drafts of this book. Each of these reviewers helped correct

a number of misconceptions on my part (rather more such, in fact, than I like to think).

Of course, it goes without saying that any remaining errors are my responsibility. I’d also

like to thank Chris Adamson for help with certain technical questions, and my wife Lindy

for her support throughout the production of this book, as well as all of its predecessors.

C. J. Date
Healdsburg, California

2012 (minor revisions 2019)

4 DBMS = database management system. Note that there’s a logical difference between a DBMS
and a database! Unfortunately, the industry very commonly uses the term database when it
means either some DBMS product, such as Oracle, or the particular copy of such a product that
happens to be installed on some particular computer. I do not follow that usage in this book. The
problem is, if you call the DBMS a database, then what do you call the database?

5 This idea isn’t as farfetched as it might seem. See my book Go Faster! The TransRelationalTM
Approach to DBMS Implementation (Ventus, 2002, 2011), available as a free download from
http://bookboon.com.

PrefaCe To The firsT ediTion

http://bookboon.com/

xix

Preface to the Second Edition

This edition differs from its predecessor in many ways. The overall objective remains

the same, of course—I’m still trying to provide a gentle introduction to design theory—

but the text has been revised throughout to reflect, among other things, experience

gained from teaching live classes based on the first edition. Quite a lot of new material

has been added (including new chapters on sixth normal form and the various normal

forms between fourth and fifth, and a couple of new appendixes on database design

in general). Examples, exercises, and answers have been expanded and improved in

various respects, and the text has been subjected to a thorough overhaul throughout.

Numerous cosmetic improvements and a variety of technical corrections—an

embarrassingly large number of these, I’m sorry to have to report—have also been made.

The net effect is to make the text rather more comprehensive (but, sadly, some 50%

bigger) than its predecessor.

My thanks to O’Reilly Media Inc. (publisher of the first edition) for permission to

place this second edition with a different publisher.

C. J. Date
Healdsburg, California

2019

PART I

Setting the Scene

This part of the book consists of two introductory chapters, the titles of which

(“Preliminaries” and “Prerequisites,” respectively) are more or less self-explanatory.

3
© C. J. Date 2019
C. J. Date, Database Design and Relational Theory, https://doi.org/10.1007/978-1-4842-5540-7_1

CHAPTER 1

Preliminaries
(On being asked what jazz is:)
Man, if you gotta ask, you’ll never know.

—Louis Armstrong (attrib.)

This book has as its subtitle Normal Forms and All That Jazz. Clearly some explanation is

needed! First of all, of course, I’m talking about design theory—database design theory,

that is—and everybody knows that normal forms are a major component of that theory;

hence the first part of the subtitle. But there’s more to that theory than just normal

forms, and that fact accounts for that subtitle’s second part. Third, it’s unfortunately the

case that—from the practitioner’s point of view, at any rate—design theory seems to be

riddled with terms and concepts that are hard to understand and don’t seem to have

much to do with design as actually done in practice. That’s why I framed the latter part

of my subtitle in colloquial (not to say slangy) terms; I wanted to convey the idea that,

although we’d necessarily be dealing with “difficult” material on occasion, the treatment

of that material would be as undaunting and unintimidating as I could make it. But

whether I’ve succeeded in that aim is for you to judge, of course.

I’d also like to say a little more on the question of whether design theory has anything

to do with design as carried out in practice. Let me be clear: Nobody could, or should,

claim that database design is easy. But a sound knowledge of the theory can only help.

In fact, if you want to do design properly—if you want to build databases that are as

robust, flexible, and accurate as they’re supposed to be—then you simply have to come

to grips with the theory. There’s just no alternative: at least, not if you want to claim to be

a design professional. Design theory is the scientific foundation for database design, just

as the relational model is the scientific foundation for database technology in general.

And just as anyone professionally involved in database technology in general needs to be

familiar with the relational model, so anyone involved in database design in particular

needs to be familiar with design theory. Proper design is so important! After all, the

4

database lies at the heart of so much of what we do in the computing world; so if it’s

badly designed, the negative impacts can be extraordinarily widespread.

 Some Quotes from the Literature
Since we’re going to be talking quite a lot about normal forms, I thought it might be—well,

not exactly enlightening, but entertaining, possibly (?)—to begin with a few quotes from

the literature. The starting point for the whole concept of normal forms is, of course, first

normal form (1NF), and so an obvious question is: Do you know what 1NF is? As the

following quotes demonstrate (sources omitted to protect the guilty), a lot of people don’t:

• To achieve first normal form, each field in a table must convey

unique information.

• An entity is said to be in the first normal form (1NF) when all

attributes are single valued.

• A relation is in 1NF if and only if all underlying domains contain

atomic values only.

• If there are no repeating groups of attributes, then [the table] is in 1NF.

Now, it might be argued that some if not all of these quotes are at least vaguely

correct—but they’re all hopelessly sloppy, even when they’re generally on the right lines.

Note: In case you’re wondering, I’ll be giving a precise and accurate definition of 1NF in

Chapter 4.

Let’s take a closer look at what’s going on here. Here again is the first of the foregoing

quotes, now given in full:

• To achieve first normal form, each field in a table must convey

unique information. For example, if you had a Customer table with

two columns for the telephone number, your design would violate

first normal form. First normal form is fairly easy to achieve, since few

folks would see a need for duplicate information in a table.

OK, so apparently we’re talking about a design that looks

something like this:

Chapter 1 preliminaries

5

Now, I can’t say whether this is a good design or not, but it certainly doesn’t

violate 1NF. (I can’t say whether it’s a good design because I don’t know exactly what

“two columns for the telephone number” means—the phrase “duplicate information

in a table” suggests we’re recording the same phone number twice, but such an

interpretation is absurd on its face. But even if that interpretation is correct, it still

wouldn’t constitute a violation of 1NF as such.)

Here’s another quote:

• First Normal Form ... means the table should have no “repeating

groups” of fields ... A repeating group is when you repeat the same

basic attribute (field) over and over again. A good example of this is

when you wish to store the items you buy at a grocery store ... [and

the writer goes on to give an example, presumably meant to illustrate

the concept of a repeating group, of a table called Item Table, with

columns called Customer, Item1, Item2, Item3, and Item4]:

Well, this design is almost certainly bad—what happens if the customer doesn’t

purchase exactly four items?—but the reason it’s bad isn’t that it violates 1NF; like the

previous example, in fact, it’s a 1NF design. So, while it might perhaps be claimed—

indeed, it often is claimed—that 1NF does mean, loosely, “no repeating groups,” a

repeating group is not “when you repeat the same basic attribute over and over again.”1

How about this one (a cry for help found on the Internet)? I’m quoting it absolutely

verbatim, except that I’ve added some boldface:

• I have been trying to find the correct way of normalizing tables in

Access. From what I understand, it goes from the 1st normal form to

2nd, then 3rd. Usually, that’s as far as it goes, but sometimes to the

5th and 6th. Then, there’s also the Cobb 3rd. This all makes sense to

me. I am supposed to teach a class in this starting next week, and I

just got the textbook. It says something entirely different. It says 2nd

normal form is only for tables with a multiple-field primary key, 3rd

normal form is only for tables with a single-field key. 4th normal form

1 At the same time it’s not as easy as you might think to say exactly what it is! See further discussion
in Chapter 4.

Chapter 1 preliminaries

6

can go from 1st to 4th, where there are no independent one-to-many

relationships between primary key and non-key fields. Can someone

clear this up for me please?

And one more (this time with a “helpful” response):

• It’s not clear to me what “normalized” means. Can you be specific

about what normalization rules you are referring to? In what way is

my schema not normalized?

Normalization: The process of replacing duplicate things with a

reference to the original thing.

For example, given “john is-a person” and “john obeys army,” one

observes that the “john” in the second sentence is a duplicate of

“john” in the first sentence. Using the means provided by your

system, the second sentence should be stored as “->john obeys

army.”

 A Note on Terminology
As I’m sure you noticed, the quotes in the previous section were expressed for the

most part in the familiar “user friendly” terminology of tables, rows, and columns (or

fields). In this book, by contrast, I’ll favor the more formal terms relation, tuple (usually

pronounced to rhyme with couple), and attribute. I apologize if this decision on my part

makes the text a little harder to follow, but I do have my reasons. As I said in SQL and

Relational Theory:2

I’m generally sympathetic to the idea of using more user friendly

terms, if they can help make the ideas more palatable. In the case

at hand, however, it seems to me that, regrettably, they don’t

make the ideas more palatable; instead, they distort them, and

in fact do the cause of genuine understanding a grave disservice.

2 I remind you from the preface that throughout this book I use SQL and Relational Theory as an
abbreviated form of reference to my book SQL and Relational Theory: How to Write Accurate SQL
Code (3rd edition, O’Reilly, 2015).

Chapter 1 preliminaries

7

The truth is, a relation is not a table, a tuple is not a row, and

an attribute is not a column. And while it might be acceptable

to pretend otherwise in informal contexts—indeed, I often do

so myself—I would argue that it’s acceptable only if all parties

involved understand that those more user friendly terms are

just an approximation to the truth and fail overall to capture the

essence of what’s really going on. To put it another way: If you

do understand the true state of affairs, then judicious use of the

user friendly terms can be a good idea; but in order to learn and

appreciate that true state of affairs in the first place, you really do

need to come to grips with the formal terms.

To the foregoing, let me add that (as I said in the preface) I do assume you know

exactly what relations, attributes, and tuples are—though in fact formal definitions of

these constructs can be found in Chapter 5.

There’s another terminological matter I need to get out of the way, too. The relational

model is, of course, a data model. Unfortunately, however, this latter term has two quite

distinct meanings in the database world.3 The first and more fundamental one is this:

Definition (data model, first sense): An abstract, self-contained,

logical definition of the data structures, data operators, and so

forth, that together make up the abstract machine with which

users interact.

This is the meaning we have in mind when we talk about the relational model in

particular: The data structures in the relational model are relations, of course, and the

data operators are the relational operators projection, join, and all the rest. (As for that

“and so forth” in the definition, it covers such matters as keys, foreign keys, and various

related concepts.)

The second meaning of the term data model is as follows:

Definition (data model, second sense): A model of the data

(especially the persistent data) of some particular enterprise.

3 This observation is undeniably correct. However, one reviewer wanted me to add that the two
meanings can be thought of as essentially the same concept at different levels of abstraction. I
hope that helps!

Chapter 1 preliminaries

8

In other words, a data model in the second sense is just a (logical, and possibly

somewhat abstract) database design. For example, we might speak of the data model for

some bank, or some hospital, or some government department.

Having explained these two different meanings, I’d like to draw your attention to an

analogy that I think nicely illuminates the relationship between them:

• A data model in the first sense is like a programming language, whose

constructs can be used to solve many specific problems but in and of

themselves have no direct connection with any such specific problem.

• A data model in the second sense is like a specific program written in

that language—it uses the facilities provided by the model, in the first

sense of that term, to solve some specific problem.

It follows from all of the above that if we’re talking about data models in the second

sense, then we might reasonably speak of “relational models” in the plural, or “a”

relational model, with an indefinite article. But if we’re talking about data models in the

first sense, then there’s only one relational model, and it’s the relational model, with the

definite article.

Now, as you are probably aware, most writings on database design, especially if their

focus is on pragma rather than the underlying theory, use the term “model,” or the term

“data model,” exclusively in the second sense. But—please note very carefully!—I don’t

follow this practice in the present book; in fact, I don’t use the term “model” at all, except

occasionally to refer to the relational model as such.

 The Running Example
Now let me introduce the example I’ll be using as a basis for most of the discussions in

the rest of the book: the familiar—not to say hackneyed—suppliers-and-parts database.

(I apologize for dragging out this old warhorse yet one more time, but I do believe that

using essentially the same example in a variety of different books and publications can

help, not hinder, the learning process.) Sample values are shown in Figure 1-1 on the

next page.4 To elaborate:

4 For reasons that might or might not become clear later, the values shown in Fig. 1.1 differ in two
small respects from those in other books of mine: First, the status for supplier S2 is shown as 30
instead of 10; second, the city for part P3 is shown as Paris instead of Oslo.

Chapter 1 preliminaries

9

• Suppliers: Relvar S denotes suppliers.5 Each supplier has one supplier

number (SNO), unique to that supplier; one name (SNAME), not

necessarily unique (though the SNAME values in Figure 1-1 do

happen to be unique); one status value (STATUS), representing

some kind of ranking or preference level among suppliers; and one

location (CITY).

• Parts: Relvar P denotes parts (more accurately, kinds of parts). Each

kind of part has one part number (PNO), which is unique; one name

(PNAME), not necessarily unique; one color (COLOR); one weight

(WEIGHT); and one location where parts of that kind are stored (CITY).

• Shipments: Relvar SP denotes shipments—it shows which parts are

supplied, or shipped, by which suppliers. Each shipment has one

supplier number (SNO), one part number (PNO), and one quantity

(QTY). Also, I assume for the sake of the example that there’s at most

one shipment at any given time for a given supplier and a given

part, and so each shipment has a supplier-number / part-number

combination that’s unique.

5 If you don’t know what a relvar is, for now you can just take it to be a table in the usual database
sense. See Chapter 2 for further explanation.

Figure 1-1. The suppliers-and-parts database—sample values

Chapter 1 preliminaries

10

 Keys
Before going any further, I need to review the familiar concept of keys, in the relational

sense of that term. First of all, as I’m sure you know, every relvar has at least one

candidate key. A candidate key is basically just a unique identifier; in other words,

it’s a combination of attributes—often but not always a “combination” consisting of

just a single attribute—such that every tuple in the relvar has a unique value for the

combination in question. For example, with respect to the database of Figure 1-1:

• Every supplier has a unique supplier number and every part has a

unique part number, so {SNO} is a candidate key for S and {PNO} is a

candidate key for P.

• As for shipments, given the assumption that there’s at most one

shipment at any given time for a given supplier and a given part,

{SNO,PNO} is a candidate key for SP.

Note the braces, by the way; to repeat, candidate keys are always combinations, or sets, of

attributes (even when the set in question contains just one attribute), and the conventional

representation of a set on paper is as a commalist of elements enclosed in braces.

this is the first time i’ve mentioned the term commalist, which i’ll be using from
time to time in the pages ahead. it can be defined as follows. let xyz be some
syntactic construct (for example, “attribute name”); then the term xyz commalist
denotes a sequence of zero or more xyz’s in which each pair of adjacent xyz’s is
separated by a comma (blank spaces appearing immediately before or after any
comma are ignored). For example, if A, B, and C are attribute names, then the
following are all attribute name commalists:

A , B , C

C , A , B

B

A , C

so too is the empty sequence of attribute names.

Chapter 1 preliminaries

11

moreover, when some commalist is enclosed in braces and thereby denotes
a set, then (a) blank spaces appearing immediately after the opening brace or
immediately before the closing brace are ignored, (b) the order in which the
elements appear within the commalist is immaterial (because sets have no
ordering to their elements), and (c) if an element appears more than once, it’s
treated as if it appeared just once (because sets don’t contain duplicate elements).

Next, as I’m sure you also know, a primary key is a candidate key that’s been singled

out in some way for some kind of special treatment. Now, if the relvar in question

has just one candidate key, then it doesn’t make any real difference if we call that key

primary. But if the relvar has two or more candidate keys, then it’s usual to choose one

of them to be primary, meaning it’s somehow “more equal than the others.” Suppose,

for example, that suppliers always have both a unique supplier number and a unique

supplier name, so that {SNO} and {SNAME} are both candidate keys. Then we might

choose {SNO}, say, to be the primary key.

Observe now that I said it’s usual to choose a primary key. Indeed it is usual—but

it’s not 100% necessary. If there’s just one candidate key, then there’s no choice and no

problem; but if there are two or more, then having to choose one and make it primary

smacks a little bit of arbitrariness, at least to me. (Certainly there are situations where

there don’t seem to be any really good reasons for making such a choice. There might

even be good reasons for not doing so. Appendix C elaborates on such matters.) For

reasons of familiarity, I’ll usually follow the primary key discipline myself in this

book—and in pictures like Figure 1-1 I’ll indicate primary key attributes by double

underlining—but I want to stress the fact that it’s really candidate keys, not primary

keys, that are significant from a relational point of view, and indeed from a design theory

point of view as well. Partly for such reasons, from this point forward I’ll use the term

key, unqualified, to mean any candidate key, regardless of whether the candidate key in

question has additionally been designated as primary. (In case you were wondering, the

special treatment enjoyed by primary keys over other candidate keys is mainly syntactic

in nature, anyway; it isn’t fundamental, and it isn’t very important.)

More terminology: First, a key involving two or more attributes is said to be composite

(and a noncomposite key is sometimes said to be simple). Second, if a given relvar has

two or more keys and one is chosen as primary, then the others are sometimes said

Chapter 1 preliminaries

12

to be alternate keys (see Appendix C). Third, a foreign key is a combination, or set,

of attributes FK in some relvar R2 such that each FK value is required to be equal to

some value of some key K in some relvar R1 (R1and R2 not necessarily distinct).6 With

reference to Figure 1-1, for example, {SNO} and {PNO} are both foreign keys in relvar SP,

corresponding to keys {SNO} and {PNO} in relvars S and P, respectively.

 The Place of Design Theory
As I said in the preface, by the term design I mean logical design, not physical design.

Logical design is concerned with what the database looks like to the user (which means,

loosely, what relvars exist and what constraints apply to those relvars); physical design,

by contrast, is concerned with how a given logical design maps to physical storage.7

And the term design theory refers specifically to logical design, not physical design—the

point being that physical design is necessarily dependent on aspects (performance

aspects in particular) of the target DBMS, whereas logical design is, or should be, DBMS

independent. Throughout this book, then, the unqualified term design should be

understood to mean logical design specifically, unless the context demands otherwise.

Now, design theory as such isn’t part of the relational model; rather, it’s a separate

theory that builds on top of that model. (It’s appropriate to think of it as part of relational

theory in general, but it’s not, to repeat, part of the relational model per se.) Thus, design

concepts such as further normalization are themselves based on more fundamental

notions—e.g., the projection and join operators of the relational algebra—that are part

of the relational model. (All of that being said, however, it could certainly be argued that

design theory is a logical consequence of the relational model, in a sense. In other words,

I think it would be inconsistent to agree with the relational model in general but not to

agree with the design theory that’s based on it.)

The overall objective of logical design is to achieve a design that’s (a) hardware

independent, for obvious reasons; (b) operating system and DBMS independent, again

for obvious reasons; and finally, and perhaps a little controversially, (c) application

independent (in other words, we’re concerned primarily with what the data is, rather

than with how it’s going to be used). Application independence in this sense is desirable

6 This definition is deliberately a little simplified (though it’s good enough for present purposes).
A better one can be found in Chapter 3, also in SQL and Relational Theory.

7 Be aware, however, that other writers (a) use those terms logical design and physical design to
mean something else and (b) use other terms to mean what I mean by those terms. Caveat lector.

Chapter 1 preliminaries

13

for the very good reason that it’s normally—perhaps always—the case that not all

uses to which the data will be put are known at design time; thus, we want a design

that’ll be robust, in the sense that it won’t be invalidated by the advent of application

requirements that weren’t foreseen at the time of the original design. Observe that one

important consequence of this state of affairs is that we aren’t (or at least shouldn’t be)

interested in making design compromises for physical performance reasons. Design

theory in general, and individual database designs in particular, should never be driven

by mere performance considerations.

Back to design theory as such. As we’ll see, that theory includes a number of formal

theorems, theorems that provide practical guidelines for designers to follow. So if you’re

a designer, you need to be familiar with those theorems. Let me quickly add that I don’t

mean you need to know how to prove the theorems in question (though in fact the

proofs are often quite simple); what I mean is, you need to know what the theorems

say—i.e., you need to know the results—and you need to be prepared to apply those

results. That’s the nice thing about theorems: Once somebody’s proved them, then their

results become available for anybody to use whenever they need to.

Now, it’s sometimes claimed, not entirely unreasonably, that all design theory really

does is bolster up your intuition. What do I mean by this remark? Well, consider the

suppliers-and-parts database. The obvious design for that database is the one illustrated

in Figure 1-1; I mean, it’s “obvious” that three relvars are necessary, that attribute

STATUS belongs in relvar S, that attribute COLOR belongs in relvar P, that attribute QTY

belongs in relvar SP, and so on. But why exactly are these things obvious? Well, suppose

we try a different design; for example, suppose we move the STATUS attribute out of

relvar S and into relvar SP (intuitively the wrong place for it, of course, since status is a

property of suppliers, not shipments). Figure 1-2 on the next page shows a sample value

for this revised shipments relvar, which I’ll call STP to avoid confusion:8

8 For obvious reasons, throughout this book I use T, not S, as an abbreviation for STATUS.

Chapter 1 preliminaries

14

A glance at the figure is sufficient to show what’s wrong with this design: It’s

redundant, in the sense that every tuple for supplier S1 tells us S1 has status 20, every

tuple for supplier S2 tells us S2 has status 30, and so on.9 And design theory tells us that

not designing the database in the obvious way will lead to such redundancy, and tells

us also (albeit implicitly, perhaps) what the consequences of such redundancy will

be. In other words, design theory is largely—though not exclusively—about reducing

redundancy, as we’ll see. (As an aside, I remark that partly for such reasons, the theory

has been described, perhaps a little unkindly, as a good source of bad examples.)

Now, if design theory really does just bolster up your intuition, then it might be (and

indeed has been) criticized on the grounds that it’s really all just common sense anyway.

By way of example, consider relvar STP again. As I’ve said, that relvar is obviously badly

designed; the redundancies are obvious, the consequences are obvious too, and any

competent human designer would “naturally” avoid such a design, even if that designer

had no explicit knowledge of design theory at all. But what does “naturally” mean here?

What principles are being applied by that human designer in opting for a more “natural”

(and better) design?

The answer is: They’re exactly the principles that design theory talks about (the

principles of normalization, for example). In other words, competent designers already

have those principles in their brain, as it were, even if they’ve never studied them

formally and can’t put a name to them or articulate them precisely. So yes, the principles

are common sense—but they’re formalized common sense. (Common sense might be

9 You might notice another problem, too: The design can’t properly represent suppliers like supplier
S5 who currently supply no parts at all. This problem and others like it are discussed in Chapter 3.

Figure 1-2. Relvar STP—sample value

Chapter 1 preliminaries

15

common, but it’s not always easy to say exactly what it is!) What design theory does is

state in a precise way what certain aspects of common sense consist of. In my opinion,

that’s the real achievement—or one of the real achievements, anyway—of the theory: It

formalizes certain commonsense principles, thereby opening the door to the possibility

of mechanizing those principles (that is, incorporating them into computerized design

tools). Critics of the theory often miss this point; they claim, quite rightly, that the

ideas are mostly just common sense, but they don’t seem to realize it’s a significant

achievement to state what common sense means in a precise and formal way.

As a kind of postscript to the foregoing, I note that common sense might not always

be that common anyway. The following lightly edited extract from a paper by Robert

R. Brown10 illustrates the point. Brown begins by giving “a simplified real example”—his

words—involving an employee file (with fields for employee number, employee name,

phone number, department number, and manager name) and a department file (with

fields for department number, department name, manager name, and manager’s phone

number), where everything has the intuitively obvious meaning. Then he continues:

The actual database on which this example is based had many

more files and fields and much more redundancy. When the

designer was asked his reasons for such a design, he cited

performance and the difficulty of doing joins. Even though the

redundancy should be clear to you in my example, it was not that

evident in the design documentation. In large databases with

many more files and fields, it is impossible to find the duplications

without doing extensive information analysis and without having

extended discussions with the experts in the user organizations.

Incidentally, there’s another quote I like a lot—in fact, I used it as an epigraph in SQL

and Relational Theory—that supports my contention that practitioners really do need to

know the theoretical foundations of their field. It’s from Leonardo da Vinci (and is thus

some 500 years old!), and it goes like this (I’ve added the boldface):

Those who are enamored of practice without theory are like a pilot

who goes into a ship without rudder or compass and never has

any certainty where he is going. Practice should always be based
upon a sound knowledge of theory.

10 Robert R. Brown: “Database Systems in Engineering: Key Problems, and Potential Solutions,” in
the proceedings of a database symposium held in Sydney, Australia (November 15th-17th, 1984).

Chapter 1 preliminaries

16

 Aims of this Book
If you’re like me, you’ll have encountered lots of design theory terms in the literature and

live presentations and the like—terms such as projection-join normal form, the chase,

join dependency, FD preservation, and many others—and I’m sure you’ve wondered

from time to time exactly what they all mean. Thus, it’s one of my aims in this book to

explain such terms: to define them carefully and accurately, to explain their relevance

and applicability, and generally to remove any air of mystery that might seem to

surround them. And if I’m successful in that aim, I’ll have gone a good way to explaining

what design theory is and why it’s important (indeed, a possible alternative title for

the book could well be Database Design Theory: What It Is and Why You Should Care).

Overall, it’s my goal to provide a painless introduction to design theory for database

professionals. More specifically, what I want to do is the following:

• Review, albeit from a possibly unfamiliar perspective, aspects of

design you should already be familiar with

• Explore in depth aspects you’re probably not already familiar with

• Provide clear and accurate explanations and definitions (with plenty

of examples) of all pertinent concepts

• Not spend too much time on material that’s widely understood

already, such as second and third normal form (2NF and 3NF)11

All of that being said, I should say too that database design is not my favorite subject.

The reason it’s not is that much of that subject is still somewhat ... well, subjective.

As I said earlier, design theory is the scientific foundation for database design. Sadly,

however, there are numerous design issues that the theory simply doesn’t address at

all (at least, not yet). Thus, while the formal principles I’ll be describing in this book do

represent the scientific part of design, there are other parts that, as I’ve put it elsewhere,

are still much more in the nature of an artistic endeavor. Indeed, one message of the

book is precisely that we need more science in this field (see Chapter 17).

11 However, I will at least give precise definitions of those familiar concepts for reasons of
completeness. Since I’m sure they really are familiar, however, I’ll take the liberty of appealing to
them from time to time even before we get to those definitions.

Chapter 1 preliminaries

17

To put a more positive spin on matters, I’d like to draw your attention to the

following. Design theory is, at least in part, about capturing the meaning of data, and as

Codd himself once said in connection with that notion:12

[The] task of capturing the meaning of data (in a reasonably

formal way) is never ending ... The goal is nevertheless an

extremely important one because even small successes can bring

understanding and order into the field of database design.

In fact, I’ll go further: If your design violates any of the known science, then, as I’ve

written elsewhere (in a slightly different context), the one thing you can be sure of is

that things will go wrong. And though it might be hard to say exactly what will go wrong,

and it might be hard to say whether things will go wrong in a major or minor way, you

know—it’s guaranteed—that they will go wrong. Theory is important.

 Concluding Remarks
This book grew in the writing; it turns out that, despite the slightly negative tone of

some of the remarks in the previous section, there’s really quite a lot of good material to

cover. What’s more, the material builds. Thus, while the first few chapters might seem

to be going rather slowly, I think you’ll find the pace picks up later on. Part of the point

is the number of terms and concepts that need to be introduced; the ideas aren’t really

difficult, but they can seem a little overwhelming, at least until you’re comfortable

with the terminology. For that reason, at least in certain key parts of the book, I’ll be

presenting the material twice—first from an informal perspective, and then again from

a more formal one. (As Bertrand Russell once memorably said: Writing can be either

readable or precise, but not at the same time. I’m trying to have my cake and eat it too.)

12 The quote—which I’ve edited somewhat here (the italics are mine)—is taken from Codd’s paper
“Extending the Database Relational Model to Capture More Meaning,” ACM Transactions on
Database Systems 4, No. 4 (1979). E. F. (“Ted”) Codd was, of course, the inventor of the relational
model. What’s more, he was also the person who first defined the concept of normalization in
general, as well as the first three normal forms (1NF, 2NF, 3NF) in particular.

Chapter 1 preliminaries

18

And talking of Bertrand Russell, it seems appropriate to close this chapter with

another wonderful quote from his writings:13

I have been accused of a habit of changing my opinions ... I am

not myself in any degree ashamed of [that habit]. What physicist

who was already active in 1900 would dream of boasting that his

opinions had not changed during the last half century? ... The

kind of philosophy that I value and have endeavoured to pursue

is scientific, in the sense that there is some definite knowledge to

be obtained and that new discoveries can make the admission

of former error inevitable to any candid mind. For what I have

said, whether early or late, I do not claim the kind of truth which

theologians claim for their creeds. I claim only, at best, that the

opinion expressed was a sensible one to hold at the time ... I

should be much surprised if subsequent research did not show

that it needed to be modified. [Such opinions were not] intended

as pontifical pronouncements, but only as the best I could do at

the time towards the promotion of clear and accurate thinking.

Clarity, above all, has been my aim.

I’ve quoted this extract elsewhere—in the preface to my book An Introduction to

Database Systems (8th edition, Addison-Wesley, 2004) in particular. The reason

I mention this latter book is that it includes among other things a tutorial treatment

of some of the material covered in more depth in the present book. But the world has

moved on; my own understanding of the theory is, I hope, quite a lot better than it was

when I wrote that earlier book, and there are aspects of the treatment in that book that

I would frankly now like to revise. One problem with that earlier treatment was that I

attempted to make the material more palatable by adopting the fiction that every relvar

has just one key, which could then harmlessly be regarded as the primary key. But a

consequence of that simplifying assumption was that several of the definitions I gave

(e.g., of 2NF and 3NF) were less than fully accurate. This state of affairs has led to a

certain amount of confusion in the community—partly my fault, I freely admit, but partly

also the fault of people who took the definitions out of context.

13 The quote is from the preface to The Bertrand Russell Dictionary of Mind, Matter and Morals
(ed., Lester E. Denonn; Citadel Press, 1993). I’ve edited it just slightly here.

Chapter 1 preliminaries

19

 Exercises
The purpose of these exercises is to give some idea of the scope of the chapters to come,

and also perhaps to test the extent of your existing knowledge. They can’t be answered

from material in the present chapter alone.

 1.1 Is it true that the relational model doesn’t require relvars to be in

any particular normal form?

 1.2 Should data redundancy always be eliminated? Can it be?

 1.3 What’s the difference between 3NF and BCNF?

 1.4 Is it true that every “all key” relvar is in BCNF?

 1.5 Is it true that every binary relvar is in 4NF?

 1.6 Is it true that every “all key” relvar is in 5NF?

 1.7 Is it true that every binary relvar is in 5NF?

 1.8 Is it true that if a relvar is in BCNF but not 5NF, then it must be all

key?

 1.9 Is it true that if a relvar has just one key and just one other

attribute, then it’s in 5NF?

 1.10 Can you give a precise definition of 5NF?

 1.11 Is it true that if a relvar is in 5NF, then it’s redundancy free?

 1.12 What precisely is denormalization?

 1.13 What’s Heath’s Theorem, and why is it important?

 1.14 What’s The Principle of Orthogonal Design?

 1.15 What makes some JDs irreducible and others not?

 1.16 What’s dependency preservation, and why is it important?

 1.17 What’s the chase?

 1.18 How many normal forms can you name?

Chapter 1 preliminaries

20

 Answers
Note: All mistakes in this and other “Answers” sections in this book are deliberate <joke>.

 1.1 Yes, it is. Good design benefits the user, and to some extent the

DBMS as well, but the relational model as such doesn’t care how

the database happens to be designed, just so long as the objects

it has to deal with are indeed relations and not something else

(which, sadly, they often are, in SQL14).

 1.2 See Chapter 17.

 1.3 See Chapters 4 and 5.

 1.4 Yes (see Chapters 4 and 5).

 1.5 No. (Actually, it’s not even true that every binary relvar is in

2NF. See Exercise 4.6.)

 1.6 No (see Chapters 9 and 10).

 1.7 No a fortiori, given the answer to Exercise 1.5.

 1.8 No (see Chapter 13).

 1.9 No (see Chapter 13).

 1.10 See Chapter 10.

 1.11 No (see Chapters 9 and 17).

 1.12 See Chapter 8.

 1.13 See Chapter 5.

 1.14 See Chapter 16.

14 Actually, “the objects the DBMS has to deal with” are never relations in SQL!—except in the
very special case in which the object in question is an SQL table with (a) just one column (and
that column is properly named), (b) no duplicate rows, and (c) no nulls. Moreover, to comply
with the prescriptions of the relational model, they should also (d) contain no pointers (see the
answer to Exercise 2.2h in Chapter 2).

Chapter 1 preliminaries

21

 1.15 See Chapter 11.

 1.16 See Chapter 7.

 1.17 See Chapter 11.

 1.18 See Chapter 15.

Chapter 1 preliminaries

23
© C. J. Date 2019
C. J. Date, Database Design and Relational Theory, https://doi.org/10.1007/978-1-4842-5540-7_2

CHAPTER 2

Prerequisites

The world is everything that is the case.

—Ludwig Wittgenstein: Tractatus Logico-Philosophicus (1921)

You’re supposed to be a database professional, by which I mean someone who (a) is

a database practitioner and (b) has a reasonable degree of familiarity with relational

theory. Please note that—I’m sorry to have to say this, but it’s true—a knowledge of SQL,

no matter how deep, is not sufficient to satisfy part (b) of this requirement. As I said in

SQL and Relational Theory:

I’m sure you know something about SQL; but—and I apologize

for the possibly offensive tone here—if your knowledge of the

relational model derives only from your knowledge of SQL, then

I’m afraid you won’t know the relational model as well as you

should, and you’ll probably know some things that ain’t so.

I can’t say it too strongly: SQL and the relational model aren’t the

same thing.

The purpose of this chapter, then, is to tell you some things that I hope you already

know. If you do, then the chapter will serve as a refresher; if you don’t, then I hope it’ll

serve as an adequate tutorial. More specifically, what I want to do is spell out in some

detail certain fundamental aspects of relational theory that I’ll be relying on heavily

in the pages ahead. The aspects in question are ones that, in my experience, database

practitioners often aren’t aware of (at least, not explicitly). Of course, there are other

aspects of relational theory I’ll be relying on as well, but I’ll elaborate on those, if I think

it necessary, when I come to make use of them.

24

 Overview
Let me begin by giving a quick summary, mainly just for purposes of subsequent

reference, of those “fundamental aspects of relational theory” just mentioned:

• Any given database consists of a set of relation variables (relvars for

short).

• The value of any given relvar at any given time is a relation value

(relation for short).

• Every relvar represents a certain predicate (the “relvar predicate”).

• Within any given relvar, every tuple represents a certain proposition.

• Relvar R at time T contains all and only those tuples that represent

instantiations of the predicate corresponding to relvar R that evaluate

to TRUE at time T.

The next two sections (which are heavily based on material from SQL and Relational

Theory) elaborate on these ideas.

 Relations and Relvars
Take another look at Figure 1-1, the suppliers-and-parts database, in Chapter 1. That

figure shows three relations: namely, the relations that happen to exist in the database at

some particular time. But if we were to look at the same database at some different time,

we would probably see three different relations appearing in their place. In other words,

S, P, and SP are really variables—relation variables, to be precise—and just like variables

in general, they have different values at different times. And since they’re relation

variables specifically, their values at any given time are, of course, relation values.

As a basis for examining these ideas further, consider Figure 2-1. That figure shows

(a) on the left, a very much reduced version of the shipments relation from Figure 1-1;

(b) on the right, the relation that results after a certain update has been performed. Using

the terminology of the previous paragraph, we can say that (a) on the left of the figure we

see the relation value that’s the value of relation variable SP at some particular time T1;

(b) on the right, we see the relation value that’s the value of that same relation variable at

some presumably later time T2, after an additional tuple has been inserted.

Chapter 2 prerequisites

25

So there’s an obvious logical difference between relation values and relation

variables. The trouble is, the database community has historically used the same term,

relation, to stand for both concepts, and that practice has certainly led to confusion (not

least in contexts that are the subject of the present book, such as further normalization).

In this book, therefore, I’ll distinguish very carefully between the two from this point

forward—I’ll talk in terms of relation values when I mean relation values and relation

variables when I mean relation variables. However, I’ll also abbreviate relation value,

most of the time, to just relation (exactly as we abbreviate integer value most of the

time to just integer). And I’ll abbreviate relation variable most of the time to relvar;

for example, I’ll say the suppliers-and-parts database contains three relvars (more

precisely, three base relvars; views are relvars too, but I have little to say about views as

such in this book).

actually, there’s one thing i do want to say about views. The Principle of
Interchangeability (of views and base relvars) says, in effect, that—at least as
far as the user is concerned—views are supposed to look and feel just like base
relvars. (i don’t mean views that are defined as mere shorthands, i mean views
that are intended to insulate the user from the “real” database in some way. see
Chapter 17 for an elaboration of this point.) in general, in fact, the user interacts
not with a database that contains base relvars only (the “real” database), but rather
with what might be called a user database that contains some mixture of base
relvars and views. But that user database is supposed to look and feel just like a
real database as far as the user is concerned; thus, all of the design principles to

Figure 2-1. Relation values and variables—an example

Chapter 2 prerequisites

26

be discussed in this book, such as the principles of normalization, apply equally
well to such user databases, not just to the “real” database. For this reason, i’ll feel
free to use the unqualified term relvar throughout this book, relying on context to
indicate whether the term refers to base relvars and views equally, or just to base
relvars (or just to views) specifically.

Let’s get back to Figure 2-1. As that figure suggests, relations have two parts, a heading

and a body. Basically, the heading is a set of attributes, and the body is a set of tuples

that conform to that heading. For example, the two relations shown in Figure 2- 1 both

have a heading consisting of three attributes; also, the relation on the left of that figure

has a body consisting of two tuples and the one on the right has a body consisting of

three. Note, therefore, that a relation doesn’t really contain tuples, at least not directly—it

contains a body, and that body in turn contains the tuples. In practice, however, we do

usually talk as if relations contained tuples directly, for simplicity. Points arising:

• The terminology of headings and bodies extends in the obvious way

to relvars too. Of course, the heading of a relvar (like that of a relation)

never changes—it’s identical to the heading of all possible relations

that might ever be assigned to the relvar in question. By contrast, the

body does change; to be specific, it changes as updates are performed

on the relvar in question.

• I’ve said a heading is a set of attributes. As far as the present book is

concerned, however, it’s simpler to think of a heading as just a set of

attribute names—an oversimplification, certainly, but not one that

has any serious negative impact on the matters to be discussed.

• Actually it would be more correct to think of a heading as a set of

attribute-name / type-name pairs (while retaining the requirement

that the attribute names in question must all be distinct, of course).

For example, I’m going to assume in examples throughout this book

that attributes SNO and PNO are each of type CHAR (character

strings of arbitrary length) and attribute QTY is of type INTEGER

Chapter 2 prerequisites

27

(integers).1 And when I talk about tuples conforming to some

heading, I mean each attribute value within the tuple in question

must be a value of the pertinent type. For example, in order for a

tuple to conform to the heading of relvar SP, it must have attributes

SNO, PNO, and QTY (and no others), and the values of those

attributes must be of types CHAR, CHAR, and INTEGER, respectively.

All of that being said, I must now say too that types are mostly not

very important for the purposes of relational design theory. That’s

why I’ll feel free from this point forward to simplify my definition

of what a heading is. What’s more, I’ll also feel free, in most of my

sample relations and relvars (and relvar definitions), to show the

attribute names only and not bother about or even mention the

corresponding types.

• The number of attributes in a given heading is the degree (sometimes

the arity) of that heading. It’s also the degree of any relation or relvar

having that heading.

Note: The term degree is also used in connection with both tuples

and keys (and foreign keys). For example, the tuples of relvar SP

are all, like that relvar itself, of degree three; the sole key of that

relvar, {SNO,PNO}, is of degree two; and the two foreign keys in

that relvar, {SNO} and {PNO}, are each of degree one.

• The number of tuples in a given body is the cardinality of that body.

It’s also the cardinality of any relation or relvar having that body.2

• The degree (of a heading or relation or whatever) can be any

nonnegative integer. Degree 1 is said to be unary; degree 2, binary;

degree 3, ternary; and so on. More generally, degree n is said to be n-ary.

1 It might be more appropriate to define QTY to be of type NONNEGATIVE_INTEGER (with the
obvious semantics), but few DBMSs if any currently support such a type. Of course, we could
introduce it as a user defined type, but I don’t want to get into the complications of user defined
types in this book.

2 I say “any” relation having that body, but actually two distinct relations can have the same body if
and only if the body in question is empty. If it isn’t, then there’s exactly one relation that has the
body in question (see the formal definition of relation in Chapter 5).

Chapter 2 prerequisites

28

 Predicates and Propositions
Again consider the shipments relvar SP. Like all relvars, that relvar is supposed to

represent some portion of the real world. In fact, I can be more precise: The heading of

that relvar represents a certain predicate, meaning it’s a kind of generic statement about

some portion of the real world (it’s generic because it’s parameterized, as I’ll explain in

just a moment). The predicate in question (i.e., the one for relvar SP) is quite simple:

Supplier SNO supplies part PNO in quantity QTY.

This predicate is the intended interpretation—in other words, the meaning—for, or

of, relvar SP.

perhaps i should say a little more about the way i use the term predicate in
this book. First of all, you’re probably familiar with the term already, since sqL
uses it extensively to refer to boolean or truth valued expressions (it talks about
comparison predicates, iN predicates, eXists predicates, and so on). however,
while this usage on sqL’s part isn’t exactly incorrect, it does usurp a very general
term—one that’s extremely important in database contexts—and give it a rather
specialized meaning, which is why i prefer not to follow that usage myself.

second, i should explain in the interest of accuracy that a predicate isn’t really a
statement as such; rather, it’s the assertion made by that statement. For example,
the predicate for relvar sp is what it is, regardless of whether it’s expressed in
english or spanish or whatever. For simplicity, however, i’ll assume in what follows
that a predicate is indeed just a statement per se, typically but not necessarily
expressed in some natural language such as english.

Finally, i’ve now explained what i mean by the term, but you should be aware
that—the previous paragraph notwithstanding—there seems to be little
consensus, even among logicians, as to exactly what a predicate is. in particular,
some writers regard a predicate as a purely formal construct that has no meaning
in itself, and regard what i’ve called the intended interpretation as something
distinct from the predicate as such. i don’t want to get into arguments about such

Chapter 2 prerequisites

29

matters here; for further discussion, i refer you to the paper “What’s a predicate?”
in Database Explorations: Essays on The Third Manifesto and Related Topics, by
C. J. Date and hugh Darwen (trafford, 2010).

You can think of a predicate, a trifle loosely, as a truth valued function. Like all

functions, it has a set of parameters; it returns a result when it’s invoked; and (because

it’s truth valued) that result is either TRUE or FALSE. In the case of the predicate for

relvar SP, for example, the parameters are SNO, PNO, and QTY (corresponding of course

to the attributes of the relvar), and they stand for values of the applicable types (CHAR,

CHAR, and INTEGER, respectively, in this simple example). And when we invoke

the function—when we instantiate the predicate, as the logicians say—we substitute

arguments for the parameters. Suppose we substitute the arguments S1, P1, and 300,

respectively. We obtain the following statement:

Supplier S1 supplies part P1 in quantity 300.

This statement is in fact a proposition, which in logic is something that evaluates to

either TRUE or FALSE, unconditionally. Here are a couple of examples:

 1. Edward Abbey wrote The Monkey Wrench Gang.

 2. William Shakespeare wrote The Monkey Wrench Gang.

The first of these is true and the second false. Don’t fall into the common trap of

thinking that propositions must always be true! However, the ones I’m talking about at

the moment are supposed to be true ones, as I now explain:

• First of all, as I’ve already said, every relvar has an associated

predicate, called the relvar predicate for the relvar in question.

(So Supplier SNO supplies part PNO in quantity QTY is the relvar

predicate for relvar SP.)

• Let relvar R have predicate P. Then every tuple t appearing in R

at some given time T can be regarded as representing a certain

proposition p, derived by invoking (or instantiating) P at that time T

with the attribute values from t as arguments.

• And (very important!) we assume by convention that each

proposition p obtained in this manner evaluates to TRUE.

Chapter 2 prerequisites

30

Given the sample value shown for relvar SP on the left of Figure 2-1, for example, we

assume the following propositions both evaluate to TRUE at time T1:

Supplier S1 supplies part P1 in quantity 300.

Supplier S2 supplies part P1 in quantity 300.

What’s more, we go further: If at some given time T a certain tuple plausibly could

appear in some relvar but doesn’t, then we’re entitled to assume that the corresponding

proposition is false at that time T. For example, the tuple

('S1' , 'P2' , 200)

(to adopt an obvious shorthand notation) is certainly a plausible SP tuple; but it doesn’t

appear in relvar SP at time T1—I’m referring to Figure 2-1 again—and so we’re entitled

to assume that it’s not the case that the following proposition is true at time T1:

Supplier S1 supplies part P2 in quantity 200.

(On the other hand, this proposition is true at time T2.)

To sum up: A given relvar R contains, at any given time, all and only the tuples that

represent true propositions (true instantiations of the relvar predicate for R) at the time

in question—or, at least, that’s what we always assume in practice. In other words, we

adopt in practice what’s called The Closed World Assumption. And since that assumption

is so crucial—it underlies just about everything we do when we use a database, even

though it’s seldom acknowledged explicitly—I’d like to spell it out here for the record:

Definition (The Closed World Assumption): Let relvar R have

predicate P. Then The Closed World Assumption (CWA) says

(a) if tuple t appears in R at time T, then the instantiation p of P

corresponding to t is assumed to be true at time T; conversely, (b)

if tuple t plausibly could appear in R at time T but doesn’t, then

the instantiation p of P corresponding to t is assumed to be false at

time T. In other words (a trifle loosely): Tuple t appears in relvar R

at time T if and only if it “satisfies the predicate” for R at time T.

Chapter 2 prerequisites

31

 More on Suppliers and Parts
Now let’s get back to the suppliers-and-parts database as such, with sample values as

shown in Figure 1-1 in the previous chapter. Here now are definitions of the three relvars

in that database, expressed in a language called Tutorial D (see further explanation

following the definitions):

VAR S BASE RELATION

 { SNO CHAR , SNAME CHAR , STATUS INTEGER , CITY CHAR }

 KEY { SNO } ;

VAR P BASE RELATION

 { PNO CHAR , PNAME CHAR , COLOR CHAR , WEIGHT RATIONAL , CITY CHAR }

 KEY { PNO } ;

VAR SP BASE RELATION

 { SNO CHAR , PNO CHAR , QTY INTEGER }

 KEY { SNO , PNO }

 FOREIGN KEY { SNO } REFERENCES S

 FOREIGN KEY { PNO } REFERENCES P ;

As I said, these definitions are expressed in a language called Tutorial D. Now,

I believe that language is pretty much self-explanatory; however, a comprehensive

description can be found if needed in the book Databases, Types, and the Relational

Model: The Third Manifesto (3rd edition), by C. J. Date and Hugh Darwen (Addison-

Wesley, 2007).3 Note: As its title suggests, that book also introduces and explains The

Third Manifesto, a precise though somewhat formal definition of the relational model

and a supporting type theory (including, incidentally, a comprehensive model of type

inheritance).4 In particular, it uses the name D as a generic name for any language that

conforms to the principles laid down by The Third Manifesto. Any number of distinct

languages could qualify as a valid D; sadly, however, SQL isn’t one of them, which is

3 Actually Tutorial D (note the boldface!) has been revised and extended somewhat since that
book was published. A description of the revised version, which is the version I’ll be using
throughout the present book, can be found in Database Explorations: Essays on The Third
Manifesto and Related Topics, by C. J. Date and Hugh Darwen (Trafford, 2010), as well as on the
website www.thethirdmanifesto.com.

4 See the website mentioned in the previous footnote, www.thethirdmanifesto.com, for further
information.

Chapter 2 prerequisites

http://www.thethirdmanifesto.com
http://www.thethirdmanifesto.com

32

why examples in this book are expressed for the most part in Tutorial D and not in SQL.

(Of course, Tutorial D is a valid D; in fact, it was explicitly designed to be suitable as a

vehicle for illustrating and teaching the ideas of The Third Manifesto.)

this is as good a point as any to mention that the terminology used in the present
book is based on that of The Third Manifesto (“the Manifesto” for short). as a
consequence, it does differ on occasion from that found in some of the design
theory literature. For example, that literature typically doesn’t talk about relation
headings; instead, it uses the term relation schema.5 Nor does it talk about relation
variables (relvars); instead, what this book refers to as a (relation) value that’s
assigned to some relvar it calls an instance of the corresponding schema.

Back to the relvar definitions. As you can see, each of those definitions includes a

KEY specification, which means that every relation that might ever be assigned to any

of those relvars is required to satisfy the corresponding key constraint. (Recall from

Chapter 1 that every relvar does have at least one key.) For example, every relation that

might ever be assigned to relvar S is required to satisfy the constraint that no two distinct

tuples in that relation have the same SNO value. What’s more, I’m going to assume

throughout this book, barring explicit statements to the contrary, that the following

functional dependency6 (FD) also holds in relvar S:

{ CITY } → { STATUS }

You can read this FD, informally, as STATUS is functionally dependent on CITY, or as

CITY functionally determines STATUS, or more simply as just CITY arrow STATUS. What

it means is that every relation that might ever be assigned to relvar S is required to satisfy

the constraint that if two tuples in that relation have the same CITY value, then they

5 I mustn’t give the impression that headings and (relation) schemas are exactly the same thing.
Rather, a schema is the combination of a heading together with certain dependencies (see the
next footnote), including but not necessarily limited to functional and join dependencies as
discussed in detail later in this book.

6 Also known as functional dependence. The terms dependence and dependency are used more or
less interchangeably in the literature. However, dependence seems slightly better for the concept
in general and dependency seems slightly better for a specific instance of the concept (and when
a plural is needed—as it is in connection with instances of the concept but not with the concept
as such—dependencies seems to trip off the tongue a little better than dependences does).

Chapter 2 prerequisites

33

must also have the same STATUS value.7 Observe that the sample value of relvar S given

in Figure 1-1 does indeed satisfy this constraint. Note: I’ll have a great deal more to say

about FDs later in Parts II and III of this book, but I’m sure you’re already familiar with

the basic idea anyway.

Now, just as KEY specifications are used to declare key constraints, so we need some

kind of syntax in order to be able to declare FD constraints. Tutorial D provides no

specific syntax for that purpose, however8 (neither does SQL, come to that). It does allow

them to be expressed in a somewhat roundabout fashion—for example:

CONSTRAINT XCT

 COUNT (S { CITY }) = COUNT (S { CITY , STATUS }) ;

Explanation: In Tutorial D, an expression of the form rx{A1,...,An} denotes the

projection on attributes A1, ..., An of the relation r that results from evaluation of the

relational expression rx. If the current value of relvar S is the relation s, therefore,

(a) the expression S{CITY} denotes the projection of s on CITY; (b) the expression

S{CITY,STATUS} denotes the projection of s on CITY and STATUS; and (c) the constraint

overall—which I’ve named, arbitrarily, XCT—requires the cardinalities, denoted by the

two COUNT invocations, of those two projections to be equal. (If it’s not obvious that

requiring these two cardinalities to be equal is equivalent to requiring the desired FD

constraint to hold, try interpreting constraint XCT as stated in terms of the sample data

in Figure 1-1.)

7 This example of what FDs mean also serves to show why such dependencies are called
functional. To elaborate: A function in mathematics is a mapping from one set A to another set
B, not necessarily distinct from A, with the property that each element in A maps to just one
element in B (but any number of distinct elements in A can map to the same element in B). In
the example, therefore, we could say there’s a mapping from the set of CITY values in S to the set
of STATUS values in S, and that mapping is indeed a mathematical function.

8 One reason it doesn’t is that if the design recommendations discussed in the present book are
followed, there should rarely be a need to declare FDs explicitly anyway.

Chapter 2 prerequisites

34

You might feel, not unreasonably, that those appeals to COuNt in the formulation
of constraint XCt are somehow a little inelegant. if so, then here’s an alternative
formulation that avoids them:

CONSTRAINT XCT

WITH (CT := S { CITY , STATUS }) :

AND ((CT JOIN (CT RENAME { STATUS AS X }) , STATUS = X) ;

Explanation: First, the With specification (“With (…):”) serves merely to introduce
a name, Ct, that can be used later in the overall expression to avoid having to write
out the expression it stands for, possibly several times over. second, the Tutorial D
reNaMe operator is more or less self-explanatory (but is defined anyway, in the
answer to exercise 2.15). third, the Tutorial D expression aND(rx,bx), where rx is a
relational expression and bx is a boolean expression, returns true if and only if the
condition denoted by bx evaluates to true for every tuple in the relation denoted
by rx.

The foregoing state of affairs notwithstanding, I’ll assume throughout this book that

FDs can be stated (or “declared”) using the simple arrow notation illustrated earlier.

Analogous remarks apply to other kinds of dependencies also (in particular, to join

dependencies and multivalued dependencies, which I’ll be introducing in Chapters 9

and 12, respectively).

I’ll close this chapter with a little teaser. Assuming the only constraints that apply

to the suppliers-and-parts database are the foregoing FD constraint and the specified

key (and foreign key) constraints, then we can say that relvars S, P, and SP are in second,

fifth, and sixth normal form, respectively. To understand the significance of these

observations, please read on!

 Exercises
The purpose of these exercises is to test your knowledge of relational theory. Most of

them can’t be answered from material in the present chapter alone. However, everything

mentioned in those exercises, and in the answers to them in the next section, is

discussed in detail in SQL and Relational Theory.

Chapter 2 prerequisites

35

 2.1 What’s The Information Principle?

 2.2 Which of the following statements are true?

 a. Relations (and hence relvars) have no ordering to their tuples.

 b. Relations (and hence relvars) have no ordering to their attributes.

 c. Relations (and hence relvars) never have any unnamed attributes.

 d. Relations (and hence relvars) never have two or more attributes with the

same name.

 e. Relations (and hence relvars) never contain duplicate tuples.

 f. Relations (and hence relvars) never contain nulls.

 g. Relations (and hence relvars) are always in 1NF.

 h. The types over which relational attributes are defined can be arbitrarily

complex.

 i. Relations (and hence relvars) themselves have types.

 2.3 Which of the following statements are true?

 a. Every subset of a heading is a heading.

 b. Every subset of a body is a body.

 c. Every subset of a tuple is a tuple.

 2.4 The term domain is usually found in texts on relational theory, but

it wasn’t mentioned in the body of the chapter. What do you make

of this fact?

 2.5 Define the terms proposition and predicate. Give examples.

 2.6 State the predicates for relvars S, P, and SP from the suppliers-and-

parts database.

 2.7 Let DB be any database you happen to be familiar with and let R

be any relvar in DB. What’s the predicate for R? Note: The point

of this exercise is to get you to apply some of the ideas discussed

in the body of this chapter to your own data, in an attempt to get

you thinking about data in general in such terms. Obviously the

exercise has no unique right answer.

Chapter 2 prerequisites

36

 2.8 Explain The Closed World Assumption in your own terms. Could

there be such a thing as The Open World Assumption?

 2.9 Give definitions, as precise as you can make them, of the terms

tuple and relation.

 2.10 State as precisely as you can what it means for (a) two tuples to be

equal; (b) two relations to be equal.

 2.11 A tuple is a set (a set of components); so do you think it might

make sense to define versions of the usual set operators (union,

intersection, etc.) that apply to tuples?

 2.12 To repeat, a tuple is a set of components. But the empty set is a

legitimate set; thus, we could define an empty tuple to be a tuple

where the pertinent set of components is empty. What are the

implications? Can you think of any uses for such a tuple?

 2.13 A key is a set of attributes and the empty set is a legitimate set;

thus, we could define an empty key to be a key where the pertinent

set of attributes is empty. What are the implications? Can you

think of any uses for such a key?

 2.14 A predicate has a set of parameters and the empty set is a

legitimate set; thus, a predicate could have an empty set of

parameters. What are the implications?

 2.15 The normalization discipline makes heavy use of the relational

operators projection and join. Give definitions, as precise as you

can make them, of these two operators. Also, have a go at defining

the attribute renaming operator (RENAME in Tutorial D).

 2.16 The operators of the relational algebra form a closed system. What

do you understand by this remark?

Chapter 2 prerequisites

37

 Answers

 2.1 The Information Principle is a fundamental principle that

underpins the entire relational model. It can be stated as follows:

Definition (The Information Principle): The only kind of

variable allowed in a relational database is the relation variable or

relvar. Equivalently, the entire information content of the database

at any given time is represented in one and only one way—

namely, as values in attribute positions in tuples in relations.

Note that SQL tables (at least, SQL tables in the database) that

involve left to right column ordering or contain duplicate rows or

nulls all violate The Information Principle (see the answer to the

next exercise). Interestingly, however, SQL tables with anonymous

columns or columns with nonunique names apparently don’t

violate the principle. The reason is that the principle as stated

applies explicitly to relvars or relations in the database. And while

SQL tables in general can have anonymous columns or columns

with nonunique names, such tables can’t be part of the database.

This state of affairs suggests rather strongly that The Information

Principle could do with a little tightening up.

 2.2 True. b. True. c. True. d. True. e. True. f. True. g. True. h. False.

However, it’s “almost” true; there are two small exceptions, both

of which I’ll simplify just slightly for present purposes. The first is

that if relation r is of type T, then no attribute of r can itself be of

type T. The second is that no relation in the database can have an

attribute of any pointer type.9 i. True.

Subsidiary exercise: Would any of the foregoing answers change if

the original statements were framed in terms of SQL tables instead

of relations and relvars?

9 The first exception here is a logical necessity. The second isn’t but is, rather, a deliberate
limitation imposed by the relational model.

Chapter 2 prerequisites

38

Answer: Yes, they would all change except for a. and h. In the

case of h., moreover, the answer ought really to change too, from

“False” to “False, but even more so.” One reason for this state of

affairs—not the only one—is that SQL has no proper notion of

table type, and SQL columns thus can’t possibly be of such a type

a fortiori.

 2.3 True. b. True. c. True. Note: Let me state for the record here that

throughout this book, in accordance with standard mathematical

practice, I take expressions of the form “B is a subset of A” (in

symbols, “B ⊆ A”) to include the possibility that B and A might

be equal. Thus, e.g., every heading is a subset of itself, and so is

every body, and so is every tuple. When I want to exclude such

a possibility, I’ll talk explicitly in terms of proper subsets (in

symbols, “B ⊂ A”). For example, the body of our usual suppliers

relation is certainly a subset of itself, but not a proper subset

of itself (no set is a proper subset of itself). What’s more, the

foregoing remarks apply equally to supersets, mutatis mutandis;

for example, the body of our usual suppliers relation is a superset

of itself, but not a proper superset of itself. More terminology: A set

is said to include its subsets. By the way, don’t confuse inclusion

with containment—a set includes its subsets but contains its

elements.

 2.4 The reason the term wasn’t mentioned in the body of the chapter

is that it’s just a synonym for type. (Early relational writings, my

own included, tended to use it, but more recent ones use type

instead, since it’s shorter and has a more extensive pedigree

anyway, at least in the computing world.) Thus, a domain is a

named, finite set of values—all possible values of some specific

kind: for example, all possible integers, or all possible character

strings, or all possible triangles, or all possible XML documents,

or all possible relations with a specific heading (etc., etc.). By the

way, don’t confuse domains as understood in the relational world

with the construct of the same name in SQL, which (as explained

in SQL and Relational Theory) can be regarded at best as a very

weak kind of type.

Chapter 2 prerequisites

39

 2.5 See the body of the chapter.

 2.6 Relvar S: Supplier SNO is named SNAME and is located in city

CITY, which has status STATUS. Relvar P: Part PNO is named

PNAME, has color COLOR and weight WEIGHT, and is stored in

city CITY. Relvar SP: Supplier SNO supplies part PNO in quantity

QTY.

 2.7 No answer provided.

 2.8 The Closed World Assumption says, loosely, that everything stated

or implied by the database is true and everything else is false.10

And The Open World Assumption—yes, there is such a thing—

says that everything stated or implied by the database is true and

everything else is unknown. What are the implications? Well,

first let’s agree to abbreviate Closed World Assumption and Open

World Assumption to CWA and OWA, respectively. Now consider

the query “Is supplier S6 in Rome?” (meaning, more precisely, “Is

there a tuple for supplier S6 in relvar S with CITY value equal to

Rome?”). Tutorial D formulation:

(S WHERE SNO = 'S6' AND CITY = 'Rome') { }

As explained in SQL and Relational Theory, this expression

evaluates to either TABLE_DEE or TABLE_DUM. TABLE_DEE and

TABLE_DUM are the only relations of degree zero; TABLE_DEE

contains just one tuple (the empty tuple, in fact), and TABLE_DUM

contains no tuples at all. Under the CWA, moreover, if the result is

TABLE_DEE, it means the answer is yes, it’s indeed the case that

supplier S6 exists and is in Rome; if the result is TABLE_DUM,

it means the answer is no, it’s not the case that supplier S6

10 To illustrate what I mean by “stated or implied” here, consider the shipment tuple (S1, P1,300)
shown in Figure 1-1. (Re the lack of quotes around S1 and P1 here, see footnote 12 later in
this chapter.) That tuple states the proposition “Supplier S1 supplies part P1 in quantity 300.”
However, it also implies several further propositions─for example, the propositions “Supplier S1
supplies some part in quantity 300”; “Supplier S1 supplies some part in some quantity”; “Some
supplier supplies some part in quantity 300”; and even “Some supplier supplies some part in
some quantity.” (To pursue the point a moment longer, in fact that tuple (S1, P1,300) implies
exactly seven such “further propositions.” Why exactly seven, do you think?)

Chapter 2 prerequisites

40

exists and is in Rome. Under the OWA, by contrast, TABLE_DEE

still means yes, but TABLE_DUM means it’s unknown whether

supplier S6 exists and is in Rome.

Now consider the query “If supplier S6 exists, is that supplier in

Rome?” (note the logical difference between this query and the

one discussed above). Observe that the answer to this query has

to be no if relvar S shows supplier S6 as existing but in some city

other than Rome, regardless of whether we’re talking about the

CWA or the OWA.11 So here’s the Tutorial D formulation:

TABLE_DEE MINUS ((S WHERE SNO = 'S6' AND

CITY ≠ 'Rome') { })

Note carefully, therefore, that if this expression evaluates to

TABLE_DUM, that TABLE_DUM has to mean no, even under

the OWA. Thus, the OWA suffers from an inherent ambiguity:

Sometimes TABLE_DUM has to mean unknown and sometimes

it has to mean no—and of course we can’t say (in general) which

interpretation applies when.

Just to beat the point to death: TABLE_DEE and TABLE_DUM

simply do mean yes and no, respectively, in the relational world,

and there’s no “third relation” of degree zero available to represent

the “third truth value” that the OWA fundamentally requires.

Thus, the OWA and the relational model are fundamentally

incompatible with one another.

 2.9 Precise definitions are given in Chapter 5.

 2.10 Two values of any kind are equal if and only if they’re the very

same value (meaning they must be of the same type, a fortiori). So

two tuples are equal if and only if they’re the very same tuple, and

11 By contrast, the answer has to be yes if relvar S has no tuple for supplier S6 (in logic, “if p then q”
is true if p is false—again, regardless of whether we’re talking about the CWA or the OWA).

Chapter 2 prerequisites

41

two relations are equal if and only if they’re the very same relation.

But we can be more specific and spell out the details, thus:

 a. Two tuples t and t' are equal if and only if they have the same

attributes A1, ..., An and for all i (i = 1, ..., n), the value of Ai in t

is equal to the value of Ai in t'.

 b. Two relations r and r' are equal if and only if they have the

same heading and the same body (i.e., their headings are equal

and their bodies are equal). Note in particular, therefore, that

two “empty relations” (i.e., relations without any tuples, or

equivalently relations with empty bodies) are equal if and only

if their headings are equal.

 2.11 Yes! However, we would of course want such operators always

to produce a valid tuple as a result (i.e., we would want closure

for such operations, just as we have closure for relational

operations—see the answer to Exercise 2.16 below). For tuple

union, for example, we would want the input tuples to be such

that attributes with the same name have the same value (and

are therefore of the same type, a fortiori). By way of example, let

t1 and t2 be a supplier tuple and a shipment tuple, respectively,

and let t1 and t2 have the same SNO value. Then the union of t1

and t2, UNION{t1,t2}, is—to use Tutorial D notation—a tuple

of type TUPLE {SNO CHAR, SNAME CHAR, STATUS INTEGER,

CITY CHAR, PNO CHAR, QTY INTEGER}, with attribute values

as in t1 or t2 or both (as applicable). E.g., if t1 is (S1,Smith,

20,London) and t2 is (S1,P1,300)—to use the shorthand notation

for tuples introduced in the section “Predicates and Propositions”

in the body of the chapter12—then their union is the tuple

(S1,Smith,20,London,P1,300). Note: This operation might equally

well be called tuple join instead of tuple union.

12 Actually it’s a simplified form of that shorthand, because I haven’t even bothered to show the
single quotes that really ought to enclose character string values such as ‘S1’ and ‘London’.
Please note that I’ll be making heavy use of this simplified shorthand in the pages ahead, at least
in regular text.

Chapter 2 prerequisites

42

By the way, it’s not just the usual set operators that might be

adapted to apply to tuples—the same goes for certain of the well

known relational operators, too (as in fact I’ve just suggested

with respect to join in particular). One important example is the

tuple projection operator, which is a straightforward adaptation

of the relational projection operator. For example, let t be a

supplier tuple; then the projection t{SNO,CITY} of t on attributes

{SNO,CITY} is that subtuple of t that contains just the SNO and

CITY components from t. (Of course, a subtuple is itself a tuple in

its own right.) Likewise, t{CITY} is that subtuple of t that contains

just the CITY component from t, and t{ } is that subtuple of t that

contains no components at all (in other words, it’s the 0-tuple—

see the answer to Exercise 2.12 below). In fact, it’s worth noting

explicitly that every tuple has a projection on the empty set of

attributes whose value is, precisely, the 0-tuple.

 2.12 The empty tuple (note that there’s exactly one such; equivalently,

all empty tuples are equal to one another) is the same thing as the

0-tuple, mentioned in the answer to the previous exercise. As for

uses for such a tuple, I’ll just say that, conceptually at least, the fact

that such a tuple does exist is crucially important in numerous ways.

In particular, the empty tuple is the only tuple in the special relation

TABLE_DEE, already mentioned in the answer to Exercise 2.8.

 2.13 To say relvar R has an empty key is to say R can never contain more

than one tuple. Why? Because every tuple has the same value for the

empty set of attributes—namely, the empty tuple (see the answers

to the previous two exercises); thus, if R had an empty key, and if R

were to contain two or more tuples, we would have a key uniqueness

violation on our hands. And, yes, constraining R never to contain

more than one tuple could certainly be useful. I’ll leave finding an

example of such a situation as a subsidiary exercise.

 2.14 A predicate with an empty set of parameters is a proposition.

In other words, a proposition is a degenerate predicate; all

propositions are predicates, but “most” predicates aren’t

propositions.

Chapter 2 prerequisites

43

 2.15 Definitions of projection and join are given in Chapter 5, but

here’s a definition of RENAME:

Definition (attribute renaming): Let r be a relation, let A be an

attribute of r, and let r not have an attribute named B. Then the

renaming r RENAME {A AS B} is a relation r' with (a) heading

identical to that of r except that attribute A in that heading is

renamed B and (b) body identical to that of r except that all

references to A in that body (more precisely, in tuples in that

body) are replaced by references to B.

Note: Tutorial D additionally supports a form of RENAME that

allows two or more separate attribute renamings to be carried

out in parallel (“multiple RENAME”). Examples are given in

Chapter 16.

 2.16 The relational algebra consists of operators that (speaking very

loosely) allow us to derive “new” relations from “old” ones. Each

such operator takes one or more relations as input and produces

another relation as output (for example, the difference operator

takes two relations as input and “subtracts” one from the other

to derive another relation as output). And it’s because the output

is the same kind of thing as the input (or inputs) that the algebra

is said to be a closed system. In particular. it’s that closure

property that (among other things) lets us write nested relational

expressions—since the output from every operation is the same

kind of thing as the input, the output from one operation can

become input to another. For example, we can take the difference

between relations r1 and r2 (in that order), feed the result as input

to a union with some relation r3, feed that result as input to a

projection or restriction, and so on.

Chapter 2 prerequisites

PART II

Functional Dependencies,
Boyce/Codd Normal Form,
and Related Matters

Although normal forms as such aren’t the whole of design theory, it’s undeniable that

they’re a very large part of that theory, and they form the principal topic of Parts II–IV

of this book. The present part, Part II, takes the story as far as Boyce/Codd normal form

(BCNF), which is “the” normal form with respect to functional dependencies (FDs).

47
© C. J. Date 2019
C. J. Date, Database Design and Relational Theory, https://doi.org/10.1007/978-1-4842-5540-7_3

CHAPTER 3

Normalization: Some
Generalities

Normal: See abnormal.

—from an early IBM PL/I reference manual (1960s)

In this chapter, I want to clarify certain general aspects of further normalization before

I start getting into specifics (which I’ll do in the next chapter). I’ll begin by taking a

closer look at the sample value of relvar S from Figure 1-1 (repeated for convenience as

Figure 3-1 below):

Recall now that the functional dependency (FD)

{ CITY } → { STATUS }

Figure 3-1. The suppliers relvar—sample value

48

holds in relvar S (I’ve included an arrow in the figure to suggest this fact). Because that

FD holds in that relvar,1 it turns out that the relvar is in second normal form (2NF) but

not in third (3NF). As a consequence, it suffers from redundancy; to be specific, the fact

that a given city has a given status appears many times, in general. And the discipline

of further normalization—which, please note, from this point forward I’ll abbreviate

most of the time to just normalization, unqualified—would therefore suggest that we

decompose the relvar into two relvars SNC and CT of lesser degree, as indicated in

Figure 3-2 (which shows, of course, values for those relvars corresponding to the sample

value shown for relvar S in Figure 3-1).

Points arising from this example:

• First, the decomposition, or normalization, certainly eliminates the

redundancy—the fact that a given city has a given status now appears

exactly once.

• Second, the decomposition process is basically a process of taking

projections—the relations shown in Figure 3-2 are each projections

of the relation shown in Figure 3-1. In fact, we can write a couple of

equations:2

SNC = S { SNO , SNAME , CITY }

CT = S { CITY , STATUS }

Figure 3-2. Relvars SNC and CT—sample values

1 And because no others do, apart from ones implied by the sole key {SNO}. See Chapter 4.
2 Recall from Chapter 2 that the Tutorial D syntax of the form rx{A1,...,An} denotes the projection
on attributes A1, ..., An of the relation r that results from evaluating the relational expression
rx. Note: Tutorial D also supports syntax of the form rx{ALL BUT B1,...,Bm}, which denotes the
projection of the relation r that results from evaluation of the relational expression rx on all of
its attributes except for B1, ..., Bm. For example, the projection corresponding to SNC in the
example could alternatively be expressed thus: S {ALL BUT STATUS}.

Chapter 3 NormalizatioN: Some GeNeralitieS

49

Note: Other kinds of decomposition are also possible, but

I’ll assume until further notice that the term decomposition,

unqualified, means decomposition via projection specifically.

• Third, the decomposition process is nonloss (also called lossless)—

no information is lost in the process, because the relation shown in

Figure 3-1 can be reconstructed by taking the join of the relations

shown in Figure 3-2:

S = SNC JOIN CT

(Tutorial D syntax again). Thus, we can say the relation in

Figure 3-1 and the pair of relations in Figure 3-2 are information

equivalent—or, to state the matter more precisely, for any query

that can be performed against the relation of Figure 3-1, there’s a

corresponding query that can be performed against the relations

of Figure 3-2 (and vice versa) that produces the same result.

Clearly, such “losslessness” of decompositions is an important

property; whatever we do by way of normalization, we certainly

mustn’t lose any information when we do it.

• It follows from the foregoing that just as projection is the

decomposition operator (with respect to normalization as

conventionally understood), so join is the corresponding

recomposition operator.

 Normalization Serves Two Purposes
So far, so good; this is all very familiar stuff. But now I want to point out that if you’ve

been paying careful attention, you might reasonably accuse me of practicing a tiny

(?) deception in the foregoing ... To be specific, I’ve considered what it means for a

decomposition of relations to be nonloss; but normalization, which is what we’re

supposed to be talking about, isn’t a matter of decomposing relations, it’s a matter of

decomposing relvars. (After all, database design by definition is all about choosing what

relvars, not what relations, should exist in the database.)

Chapter 3 NormalizatioN: Some GeNeralitieS

50

Suppose we do decide to perform the suggested decomposition of relvar S into

relvars SNC and CT. Observe that now I really am talking about relvars and not relations;

for definiteness, however, let’s assume the relvars in question have the sample values

shown in Figures 3-1 and 3-2, respectively. For definiteness again, let’s focus on relvar

CT specifically. Well, that relvar is indeed a relvar—I mean, it’s a variable—and so we can

update it. For example (using the shorthand notation for tuples introduced in Chapter 2),

we might insert the tuple

('Rome' , 10)

But after that update, relvar CT contains a tuple that had no counterpart in relvar S (it

doesn’t have a counterpart in relvar SNC either, come to that). Now, such a possibility is

often used—indeed, Codd used it himself in his very first papers on normalization (see

Appendix D)—as an argument in favor of doing the decomposition in the first place: The

resulting two-relvar design is capable of representing certain information that the original

one-relvar design isn’t. (In the case at hand, it can represent status information for cities

that currently have no supplier located in them.) But that same fact also means that the

two designs aren’t really information equivalent after all, and moreover that relvar CT isn’t

exactly a “projection” of relvar S after all3—it contains a tuple that isn’t a projection of, or

otherwise derived from, any tuple in relvar S.4 Or rather (and perhaps more to the point),

CT isn’t a projection of the join of SNC and CT, either, and so that join “loses information,”

in a sense; to be specific, it loses the information that the status for Rome is 10.5

A similar situation arises if we delete the tuple

('S5' , 'Adams' , 'Athens')

3 See later in this section for an explanation of why I place the term “projection” in quotation
marks here.

4 Regarding the idea that it might make sense to talk about projections of tuples, see the answer to
Exercise 2.11 in Chapter 2.

5 Joins such as that of SNC and CT are sometimes called lossy joins for this very reason. However,
this term is probably best avoided, because it could also be used to refer to joins such as the join
of the projections of S on{SNO,SNAME,STATUS} and {CITY,STATUS}, which lose information for
a different reason. See the discussion of this latter example in the section “Heath’s Theorem” in
Chapter 5; see also Exercise 3.2.

Chapter 3 NormalizatioN: Some GeNeralitieS

51

from relvar SNC. After that update, we could say, a trifle loosely,6 that relvar S contains

a tuple that has no counterpart in relvar SNC (though it does have one in relvar CT). So

again the two designs aren’t really information equivalent; and this time relvar S isn’t

exactly a “join” of relvars SNC and CT, since it contains a tuple that doesn’t correspond

to any tuple in relvar SNC.

The two designs are thus not information equivalent after all. But didn’t I say earlier

that “losslessness” of decompositions is an important property? Don’t we generally

assume that if Design B is produced by normalizing Design A, then Design B and Design

A are supposed to be information equivalent? What exactly is going on here?

In order to answer these questions, it’s helpful to look at the relvar predicates. The

predicate for SNC is:

Supplier SNO is named SNAME and is located in city CITY.

And the predicate for CT is:

City CITY has status STATUS.

Now suppose it’s possible for a city to have a status even if no supplier is located in

that city; in other words, suppose it’s possible for relvar CT to contain a tuple such as

(Rome,10) that has no counterpart in relvar SNC.7 Then the design consisting of just relvar

S is simply wrong. That is, if it’s possible for a true instantiation to exist of the predicate

City CITY has status STATUS without there existing—at the same time and with the same

CITY value—a true instantiation of the predicate Supplier SNO is named SNAME and

is located in city CITY, then a design consisting just of relvar S doesn’t faithfully reflect

the state of affairs in the real world (because that design is incapable of representing the

status for a city in which no supplier is located).

Similarly, suppose it’s possible for a supplier to be located in a city even if that city

has no status; in other words, suppose it’s possible for relvar SNC to contain a tuple,

say (S6,Lopez,Madrid), that has no counterpart in relvar CT. Then, again, the design

consisting just of relvar S is simply incorrect, because it requires every city in which a

supplier is located to have some status.

6 In effect, by pretending that relvars S, SNC, and CT all coexist—living alongside one another, as it
were.

7 Note that I write (Rome,10) here instead of (‘Rome’,10), omitting the single quotes that ought
really to enclose character string values. See footnote 12 in Chapter 2.

Chapter 3 NormalizatioN: Some GeNeralitieS

52

Here’s another way to look at the foregoing argument. Suppose the design consisting

just of relvar S did faithfully reflect the state of affairs in the real world after all. Then

relvars SNC and CT would be subject to the following integrity constraint (“Every city in

SNC appears in CT and vice versa”):

CONSTRAINT ... SNC { CITY } = CT { CITY } ;

But this constraint—which is an example of what later I’m going to be calling an

equality dependency or EQD—manifestly isn’t satisfied in the example under discussion.

Note: For simplicity, I haven’t bothered to give this constraint a name, as you can see.

Indeed, I’ll omit such names from all of my examples in this book from this point

forward, except where there’s some compelling reason to do otherwise.

To sum up, we see that normalization can be (and is) used to address two rather

different problems:

 1. It can be used to fix a logically incorrect design, as in the example

discussed earlier in this section. Exercise: Do issues analogous to

those raised in that example apply to the STP example from the

section “The Place of Design Theory” in Chapter 1? (Answer: Yes,

they do.)

 2. It can be used to reduce redundancy in an otherwise logically

correct design. (Obviously a design doesn’t have to be logically

incorrect in the foregoing sense in order to display redundancy.)

Much confusion arises in practice because these two cases are often not clearly

distinguished. Indeed, most of the literature focuses on Case 2—and for definiteness I’ll

assume Case 2 myself in what follows, where it makes any difference—but please don’t

lose sight of Case 1, which in practice is at least as important, if not more so.

Further, I should point out that, strictly speaking, the terminology of projections and

joins applies only to Case 2. That’s because in Case 1, as we’ve seen, the “new” relvars

aren’t necessarily projections of the “old” one, nor is the “old” one necessarily the join

of the “new” ones (if you see what I mean). In fact, what does it mean to talk about

projections and joins of relvars (as opposed to relations) anyway? Well, as I’ve written

elsewhere, more or less:8

8 E.g., in The New Relational Database Dictionary (O’Reilly, 2016).

Chapter 3 NormalizatioN: Some GeNeralitieS

53

By definition, the operators projection, join, and so on apply to

relation values specifically. In particular, of course, they apply to the

values that happen to be the current values of relvars. It thus clearly

makes sense to talk about, e.g., the projection of relvar S on attributes

{CITY,STATUS}, meaning the relation that results from taking the

projection on those attributes of the relation that’s the current

value of that relvar S. In some contexts, however (normalization,

for example), it turns out to be convenient to use expressions

like “the projection of relvar S on attributes {CITY,STATUS}” in a

slightly different sense. To be specific, we might say, loosely but very

conveniently, that some relvar, CT, is the projection of relvar S on

attributes {CITY,STATUS}—meaning, more precisely, that the value

of relvar CT at all times is equal to the projection on those attributes

of the value of relvar S at the time in question. In a sense, therefore,

we can talk in terms of projections of relvars per se, rather than

just in terms of projections of current values of relvars. Analogous

remarks apply to all of the relational operations.

In other words, we do still use the projection / join terminology, even in Case 1. Such

talk is somewhat inappropriate—not to say sloppy—but it is at least succinct. But it would

really be more accurate to say, not that decomposition is a process of taking projections

as such, but rather that it’s a process that’s reminiscent of, but not quite the same as, what

we do when we take projections (and similarly for recomposition and join).

 Update Anomalies
The concept of update anomalies is frequently mentioned in connection with

normalization. Now, it should be clear that redundancy of any kind can always lead

to anomalies—because redundancy means, loosely, that some piece of information

is represented twice, and so there’s always the possibility that the two representations

don’t agree (i.e., if one is updated and the other isn’t). More specifically, let’s consider

the case of relvar S, where the following FD holds:

{ CITY } → { STATUS }

The redundancy, as such, that this FD gives rise to—viz., the repeated, or duplicated,

representation of the fact that a given city has a given status—has already been

Chapter 3 NormalizatioN: Some GeNeralitieS

54

discussed. It leads to anomalies like the following (these examples assume the sample

value shown for relvar S in Figure 3-1):

• Insertion anomaly: We can’t insert the fact that the status for Rome

is 10 until there’s a supplier in Rome.

• Deletion anomaly: If we delete the only supplier in Athens, we lose

the fact that the status for Athens is 30.

• Modification anomaly: We can’t change (“modify”) the city for a

given supplier without changing (“modifying”) the status for that

supplier as well (in general). And we can’t modify the status for a

given supplier without making the same modification for all suppliers

in the pertinent city.

Replacing relvar S by the two “projection” relvars SNC and CT solves these problems

(how, exactly?). Moreover, let me state for the record that relvar S is (as previously

noted) in second normal form and not in third, while relvars SNC and CT are both in

third normal form, and in fact in BCNF as well. In general, BCNF is the solution to the

problems caused by the kinds of anomalies mentioned above.

 The Normal Form Hierarchy
As you know, there are many different normal forms. Figure 3-3 below is our first take

on what I’ll call the normal form hierarchy (but please note immediately that I’ll be

expanding that hierarchy in later chapters—in Chapters 13-15, to be specific).

Figure 3-3. The normal form hierarchy (I)

Chapter 3 NormalizatioN: Some GeNeralitieS

55

Points arising:

• First of all, you might think the hierarchy is upside down, since it

shows the highest normal form at the bottom and the lowest at the

top. I don’t want to argue the point; let me just say that showing it the

way I’ve done in the figure fits better (in my view) with the fact that,

e.g., all 2NF relvars are in 1NF but some 1NF relvars aren’t in 2NF.

• There are many different normal forms: first, second, third,

and so on. The figure shows six of them, but as you can see they

aren’t labeled first, ..., sixth (not quite)—there’s an interloper,

BCNF, between third and fourth. I’ll explain the reason for this

terminological oddity in Chapter 4; for now, let me just say that the

name BCNF is short for Boyce/Codd normal form. Despite the BCNF

exception, however, it’s convenient to use the term nth normal form

to refer generically to the different levels of normalization, and I’ll

adopt that usage from time to time in what follows.

• The figure also shows a deliberate gap between BCNF and

4NF. However, that gap isn’t meant to suggest there might be some

“missing” normal forms at that point (in fact there aren’t); rather, it

reflects the fact that there’s a kind of conceptual jump, or shift, in the

hierarchy between the first four normal forms and the last two. See

Part III of this book for further explanation.

• All of the normal forms apart from the first (1NF) are defined in

terms of certain dependencies—in this context, just another term for

integrity constraints. The principal kinds of dependencies from a

normalization perspective are functional dependencies (FDs) and

join dependencies (JDs).

• BCNF and 5NF are highlighted (set in boldface) in the figure to

indicate their relative importance, compared to the other normal

forms shown. BCNF is defined in terms of functional dependencies,

and 5NF is defined in terms of join dependencies. Indeed, as we’ll see

in subsequent chapters , BCNF is really “the” normal form so far as

functional dependencies (FDs) are concerned, and 5NF is really “the”

normal form so far as join dependencies (JDs) are concerned.

Chapter 3 NormalizatioN: Some GeNeralitieS

56

• Generally speaking, the higher the level of normalization the

better, from a design point of view—because the higher the level of

normalization, the fewer the redundancies that can occur, and the

fewer the update anomalies that can therefore occur as well.

• It’s possible for a relvar to be in nth normal form and not in (n+1)st.

• By contrast, if relvar R is in (n+1)st normal form, then it’s certainly in

nth. In other words, fifth normal form (5NF) implies fourth normal

form (4NF), and so on. It follows that to say that, e.g., relvar R is in

BCNF doesn’t preclude the possibility that R is in 5NF as well. In

practice, however, it’s common for statements to the effect that relvar

R is in, say, BCNF to be taken to mean that R is in BCNF and not in

any higher normal form. Please note carefully, therefore, that I do not

follow that usage in this book.

• If relvar R is in nth normal form and not in (n+1)st, then it can always

be decomposed via projection, in a nonloss way, such that (a) the

projections are, typically, in (n+1)st normal form and (b) R is equal to

the join of those projections.

• Finally, it follows from the previous point that any given relvar R can

always be decomposed into 5NF projections in particular. In other

words, 5NF is always achievable.

A note on the concept of redundancy: In Chapter 1 I said design theory is largely—not

exclusively—about reducing redundancy, and I’ve referred to redundancy repeatedly

in the present chapter; in particular, I’ve said the higher the level of normalization,

the more redundancy is prevented. But coming up with a precise definition of what

redundancy really is seems to be quite difficult!—so much so, in fact, that I don’t think

it would be appropriate, at this early point in the book, even to try to define it, and so I

won’t. In other words, I’m just going to assume until further notice that we can at least

recognize it (redundancy, that is) when we see it—though, actually, even that’s a pretty

big assumption. Chapter 17 examines the concept in depth.

Chapter 3 NormalizatioN: Some GeNeralitieS

57

 Normalization and Constraints
There’s another issue that arises in connection with normalization, one that’s often

overlooked. Again consider the example of decomposing relvar S into its projections

SNC and CT—SNC on {SNO,SNAME,CITY} and CT on {CITY,STATUS}. Then there are

three cases to consider:

 1. Suppose the original design, consisting of just relvar S, was at least

logically correct (i.e., it merely suffered from redundancy). As I

pointed out in the section “Normalization Serves Two Purposes,”

then, there’s a certain constraint (an “equality dependency”) that

holds between the two projections:

CONSTRAINT ... SNC { CITY } = CT { CITY } ;

(“every city in SNC appears in CT and vice versa”).

 2. Alternatively, suppose it’s possible for one of SNC and CT to

contain a tuple that has no counterpart in the other, while the

converse is not possible. To fix our ideas, suppose again that it’s

possible for CT to contain a tuple such as (Rome,10) that has no

counterpart in SNC, while SNC can never contain a tuple that has

no counterpart in CT. Then a foreign key constraint holds between

the two projections (from SNC to CT, in the specific example just

mentioned):9

FOREIGN KEY { CITY } REFERENCES CT

 3. The third possibility, perhaps less likely than the first two, is that

CT and SNC might both be allowed to contain tuples with no

counterpart in the other. For example, it might be that CT contains

the tuple (Rome,10) but no supplier is located in Rome, while SNC

contains the tuple (S6,Lopez, Madrid) but Madrid has no status.

In this case, clearly there’s no constraint involving cities that holds

between the two relvars at all (at least, let’s assume not for the

sake of the example).

9 In fact such foreign key constraints held in Case 1 also, but were subsumed by the EQD that also
held in that case.

Chapter 3 NormalizatioN: Some GeNeralitieS

58

Now, simplifying somewhat, I’ve said that a relvar R in nth normal form can always

be nonloss decomposed into projections in (n+1)st normal form. As the foregoing

discussion indicates, however, such decomposition usually means there’s at least one

new constraint that now needs to be maintained. What makes matters worse is that

the constraint in question is a multirelvar constraint (i.e., it spans two relvars, and in

some cases possibly more than two). So there’s a tradeoff: Do we want the benefits of

decomposition, or do we want to avoid that multirelvar constraint?10

it might be argued, at least in the SNC and Ct example, that the decomposition
also means there’s now a constraint that doesn’t have to be maintained:
viz., the FD {CitY} → {StatUS}. But this argument isn’t entirely valid—all the
decomposition does, in this respect, is move that constraint from one relvar to
another (actually from relvar S to relvar Ct, where it’s maintained as a side effect
of maintaining the constraint that {CitY} is a key).

Now, in the simple example under discussion, the benefits of doing the

decomposition almost certainly outweigh the benefits of not doing so. But such is

not always the case; indeed, the question of whether or not to decompose, in more

complicated situations, can be a fairly vexing one. In what follows, in order to avoid a

lot of repetitive text, I’ll generally assume we do always want to do the decomposition—

but please don’t forget there can sometimes be persuasive arguments for not doing so,

especially in examples more complex than the one at hand, such as are discussed in

Parts III and IV of this book.

 Equality Dependencies
Again consider the example of decomposing relvar S into its projections SNC and CT

on {SNO,SNAME,CITY} and {CITY,STATUS}, respectively. Assume the case in which the

following constraint holds between the two projections:

CONSTRAINT ... SNC { CITY } = CT { CITY } ;

10 Of course, maintaining that constraint, if it has to be done, should be done by the system and
not the user—but the constraint will at least have to be declared, and users will have to be aware
of it.

Chapter 3 NormalizatioN: Some GeNeralitieS

59

(“every city in SNC appears in CT and vice versa”). As mentioned in the previous

section, this constraint is an example of what’s called an equality dependency. I’ll define

that concept precisely in just a moment. First, however, I want to introduce a convention

that I’ll be using from this point forward for simplifying the notation for projection

slightly.11 Let relational expression rx evaluate to relation r; let relation r have heading H;

let X be a subset of H; and let A1, ..., An be all of the attributes of X (i.e., X = {A1, ..., An}).

Then we allow the projection expression rx{A1,...,An} to be abbreviated—a trifle

illogically—to just rx{X}.

Now I can define the EQD concept:

Definition (equality dependency): Loosely, a constraint that

requires two specified relations to be equal. More precisely, let

R1 and R2 be relvars with headings H1 and H2, respectively.

Also, let X1 and X2 be subsets of H1 and H2, respectively, such

that there exists a possibly empty set of attribute renamings such

that the result, R, of applying those renamings to the projection

R1 on the attributes of X1 has heading X2. Then an equality

dependency (EQD) between R1 and R2 is a statement to the

effect that R and the projection of R2 on the attributes of X2 must

be equal—i.e., R = R2{X2}.

In fact, equality dependencies are an important special case of a more general

phenomenon known as inclusion dependencies:

Definition (inclusion dependency): Loosely, a constraint

that requires one specified relation to be included in another.

More precisely, let R1 and R2 be relvars with headings H1 and

H2, respectively. Also, let X1 and X2 be subsets of H1 and H2,

respectively, such that there exists a possibly empty set of attribute

renamings such that the result, R, of applying those renamings to

the projection R1 on the attributes of X1} has heading X2. Then

an inclusion dependency (IND) from R1 to R2 is a statement

to the effect that R must be included in (i.e., be a subset of) the

projection of R2 on the attributes of X2—in symbols, R ⊆ R2{X2}.

11 I.e., in definitions and the like, not in concrete Tutorial D syntax. Note: Later I’ll be using the
same kind of simplification for tuple projection as well as regular relational projection
(see Chapter 5).

Chapter 3 NormalizatioN: Some GeNeralitieS

60

Points arising from this latter definition:

• A foreign key constraint is a special case of an IND. In the suppliers-

and- parts database, for example, {SNO} in relvar SP is a foreign key,

referencing the key {SNO} in relvar S; thus, there’s an IND from SP

to S—the projection of SP on {SNO} is included in the projection of S

on {SNO} (in symbols, SP{SNO} ⊆ S{SNO}). But note that (to use the

notation of the foregoing definition) INDs in general, unlike foreign

key constraints in particular, don’t require X2 to be a key12 for R2.

• As already noted, an EQD is a special case of an IND, too. To be

more specific, the EQD “A = B” is equivalent to the pair of INDs “A is

included in B” and “B is included in A” (in symbols, A ⊆ B and B ⊆ A).

In other words, an EQD is an IND that goes both ways, as it were.

Now, we’re going to be seeing lots of examples of EQDs in particular, as opposed

to INDs in general, in the pages ahead. In fact this state of affairs should be obvious:

Nonloss decomposing a relvar into projections usually leads to INDs at least and often

to EQDs, as we already know. However, it’s EQDs that don’t arise as a result of nonloss

decomposition that are the interesting ones, in a way. The reason is that the existence of

such an EQD often turns out to be a mark of redundancy—because if (as I put it earlier)

some piece of information is represented twice, an EQD might be what’s needed to keep

the two representations in agreement.

if you’ve never heard of eQDs before, you might be wondering why not, given their
conceptual importance. Certainly they don’t seem to have received very much
attention in the literature. in my opinion, the most likely reason for this unfortunate
state of affairs is the SQl language ... as you’ll know if you’ve ever tried the exercise,
eQDs are extremely awkward to formulate in SQl, because SQl has no direct way of
expressing relational comparisons.13 a striking example in support of this contention
can be found in the discussion of example 12 in Chapter 17 of this book.

12 Or even a superkey (see Chapter 4).
13 By SQL here, I mean SQL as defined by the SQL standard. The situation is even worse in

mainstream implementations, where most EQDs can’t be formulated at all, owing to the fact
that the implementations in question don’t allow subqueries in constraint formulations.

Chapter 3 NormalizatioN: Some GeNeralitieS

61

 Concluding Remarks
I’d like to close this chapter by addressing a question I haven’t discussed in this book at

all so far. It’s a matter of terminology. To be specific, why are 1NF, 2NF, and the rest called

normal forms, anyway? Come to that, why is normalization called normalization?

The answers to these questions derive from mathematics, though the ideas

involved spill over into several related disciplines, including the computing discipline

in particular. In mathematics, we often find ourselves having to deal with some large,

possibly even infinite, set of objects of some kind: for example, the set of all matrices,

or the set of all rational numbers, or—coming a little closer to home—the set of all

relations. In such a situation, it’s desirable to find a set of canonical forms for the objects

in question.14 Here’s a definition:

Definition (canonical form): Given a set s1, together with

a defined notion of equivalence among elements of that set,

subset s2 of s1 is a set of canonical forms for s1 if and only if every

element x1 of s1 is equivalent to just one element x2 of s2 under

that notion of equivalence (and that element x2 is the canonical

form for the element x1).15 Various “interesting” properties that

apply to x1 also apply to x2; thus, we can study just the small set

s2, not the large set s1, in order to prove a variety of “interesting”

theorems or results.

As a trivial illustration of this notion, let s1 be the (infinite) set of nonnegative

integers {0,1,2,...}, and let two such integers be equivalent if and only if they leave the

same remainder on division by five. Then we can define s2 to be the set {0,1,2,3,4}. As

for an “interesting” theorem that applies in this example, let x1, y1, and z1 be any three

elements of s1 (i.e., any three nonnegative integers), and let their canonical forms in s2

be x2, y2, and z2, respectively; then the product y1 × z1 is equivalent to x1 if and only if

the product y2 × z2 is equivalent to x2.

Now, normal form is just another term for canonical form. So when we talk about

normal forms in the database context, we’re talking about a canonical representation for

data. To spell the point out: Any given collection of data can be represented relationally

14 Floating point numbers provide an obvious example in computing.
15 It’s reasonable to require also that every element x2 of s2 be equivalent to at least one element x1

of s1.

Chapter 3 NormalizatioN: Some GeNeralitieS

62

in many different ways, as we know. Of course, all of those ways are—in fact, must

be—information equivalent; that is, information equivalence is the “defined notion of

equivalence” we appeal to in this particular context. However, some of those ways (i.e.,

of representing the given information) are preferred over others for various reasons. And

those preferred ways are, of course, the relational normal forms that are the subject of

much of this book.

As for the term normalization, it simply refers to the general process of mapping

some given object into its canonical equivalent. In the database context in particular,

therefore, it’s used (as we know) to refer to the process of mapping some given relvar into

a collection of relvars that (a) when considered together, are information equivalent to

the original relvar, but (b) are each individually in some preferred normal form.

To the foregoing I should perhaps add the following. As far as I know, Codd himself

never mentioned, in his early writings on the subject, his reasons for introducing the

terminology of normal forms or normalization. But many years afterward, he did go on

record with his own, possibly tongue in cheek, explanation:16

Interviewer: Where did “normalization” come from?

Codd: It seemed to me essential that some discipline be

introduced into database design. I called it normalization because

then President Nixon was talking a lot about normalizing relations

with China. I figured that if he could normalize relations, so could I.

 Exercises

 3.1 Consider the STP example from the section “The Place of Design

Theory” in Chapter 1. Give examples of the update anomalies

that can arise with that design. Also give an appropriate

decomposition, and show how that decomposition avoids those

anomalies.

16 In “A Fireside Chat: Interview with Dr. Edgar F. Codd” (DBMS Magazine 6, No. 13, December
1993).

Chapter 3 NormalizatioN: Some GeNeralitieS

63

 3.2 Nonloss decomposition is based on the idea that a relation can

be decomposed into projections in such a way that the original

relation can be recovered by joining those projections back

together again. In fact, if projections r1 and r2 of relation r are

such that every attribute of r is retained in at least one of r1 and r2,

then joining r1 and r2 will always produce every tuple of r (as well

as others, possibly). Prove this assertion.

Note: It follows from the foregoing that the problem with a

decomposition that’s not nonloss isn’t that the join loses tuples—

rather, it’s that it produces additional, or “spurious,” ones. Since

we have no way in general of knowing which if any of the tuples in

the join are spurious and which are genuine, the decomposition

has lost information.

 3.3 “Normalization serves two purposes.” Explain this remark in your

own words. Do you think the point is widely understood?

 3.4 Explain the following in your own words: (a) equality dependency;

(b) inclusion dependency; (c) foreign key constraint; (d) canonical

form.

 Answers

 3.1 With reference to the sample value shown for relvar STP in

Chapter 1 (Figure 1-2), we can’t insert the fact that supplier S5

has status 30 until supplier S5 supplies some part; we can’t delete

the shipment for supplier S3 without losing the fact that supplier

S3 has status 30; and we can’t modify the status in one tuple for

a given supplier, say supplier S1, without modifying it in all of

them. The obvious decomposition is into relvars with headings

{SNO,STATUS} and {SNO,PNO,QTY}; it’s also obvious that this

decomposition avoids the anomalies.

Chapter 3 NormalizatioN: Some GeNeralitieS

64

Note: It’s worth pointing out that the insertion and deletion

anomalies in this example are caused by the fact that the design is

logically incorrect, whereas the modification anomaly is caused by

the fact that it displays redundancy (see Exercise 3.3).

 3.2 Let the heading of r be partitioned into sets of attributes X, Y,

and Z, and let the projections r1 and r2 be on {X,Y} and {Y,Z},

respectively. (Note that X, Y, and Z are disjoint by definition.) Now

let (x,y,z) be a tuple of r;17 then (x,y) and (y,z) are tuples of r1 and

r2, respectively, and so (x,y,z) is a tuple in the join of r1 and r2.

Subsidiary exercise: What happens to the foregoing proof if the set

Y is empty?

 3.3 The two purposes (correcting an incorrect design and reducing

redundancy) are explained in the body of the chapter. As for

whether you think the point is widely understood: Well, only you

can answer this question, but speaking for myself I have to say I

don’t think it is.

 3.4 See the body of the chapter.

17 Of course, x, y, and z here are to be understood as values of X, Y, and Z, respectively.

Chapter 3 NormalizatioN: Some GeNeralitieS

65
© C. J. Date 2019
C. J. Date, Database Design and Relational Theory, https://doi.org/10.1007/978-1-4842-5540-7_4

CHAPTER 4

FDs and BCNF (Informal)

It is downright sinful to teach the abstract before the concrete.

—Z. A. Melzak: Companion to Concrete Mathematics (1973)

As noted in the previous chapter, Boyce/Codd normal form (BCNF for short) is defined

in terms of functional dependencies (FDs); indeed, it’s really the normal form with

respect to functional dependencies, just as—to get ahead of ourselves for a moment—

5NF is really the normal form with respect to join dependencies (JDs). The overall

purpose of the present chapter is to explain BCNF and FDs in detail; as the chapter

title indicates, however, the various explanations and associated definitions are all

intentionally a little informal at this stage. (Informal, but not inaccurate; I won’t tell any

deliberate lies.) A more formal treatment of the material appears in the next chapter.

 First Normal Form
Let relation r have attributes A1, ..., An, of types T1, ..., Tn, respectively. By definition,

then, if tuple t appears in relation r, the value of attribute Ai in t is, and of course must

be, of type Ti (i = 1, ..., n). For example, if r is the relation that’s the current value of the

shipments relvar SP (see Figure 1-1 in Chapter 1), then every tuple in r has an SNO value

that’s of type CHAR, a PNO value that’s also of type CHAR, and a QTY value that’s of type

INTEGER.

Now, another way of saying what the first two sentences of the previous paragraph

say is simply that relation r is in first normal form (1NF). Thus, every relation is in 1NF!—

because a “relation” r for which those two sentences fail to hold simply isn’t a relation

66

in the first place. My apologies for the repetition, therefore, but here for the record is a

precise definition:1

Definition (first normal form): Let relation r have attributes

A1, ..., An, of types T1, ..., Tn, respectively. Then r is in first normal

form (1NF) if and only if, for all tuples t appearing in r, the value of

attribute Ai in t is of type Ti (i = 1, ..., n).

To say it in different words, 1NF just means that each tuple in the relation in question

contains exactly one value, of the appropriate type, for each attribute. Observe in

particular, therefore, that 1NF places absolutely no limitation on what those attribute

types are allowed to be.2 They can even be relation types! That is, relations with relation

valued attributes—RVAs for short—are legal (you might be surprised to hear this, but it’s

true). An example is given in Figure 4-1 below.

1 One reviewer accused me of rewriting history with this definition. Guilty as charged, perhaps,
but I do have my reasons; to be specific, earlier “definitions” of the concept were all, in my
opinion, either too vague to be useful or flat out wrong. See SQL and Relational Theory for
further discussion, also Exercise 4.16 at the end of the chapter.

2 This sentence is 100% correct as stated. However, I don’t want to mislead you; the fact is, there
are some exceptions—exceptions, that is, to the statement that relational attributes can be of any
type whatsoever—but those exceptions have nothing to do with 1NF as such. (The exceptions
in question were given in the answer to Exercise 2.2 in Chapter 2, but I repeat them here for
convenience. First, if relation r is of type T, then no attribute of r can itself be of type T (think
about it!). Second, no relation in the database can have an attribute of any pointer type.)

Figure 4-1. A relation with a relation valued attribute

Chapter 4 FDs anD BCnF (InFormal)

67

I’ll have more to say about RVAs in just a moment, but first I need to get a couple of

small points out of the way. To start with, I need to define what it means for a relation to

be normalized:

Definition (normalized): Relation r is normalized if and only if

it’s in 1NF.

In other words, normalized and first normal form mean exactly the same thing—all

normalized relations are in 1NF, all 1NF relations are normalized. The reason for this

slightly strange state of affairs is that normalized was the original (historical) term; the

term 1NF wasn’t introduced until people started talking about 2NF and higher levels

of normalization, when a term was needed to describe relations3 that weren’t in one of

those higher normal forms. Of course, it’s common nowadays for the term normalized

to be used to mean some higher normal form (often 3NF specifically, or perhaps BCNF);

indeed, I’ve been known to use it that way myself, though I generally try not to—because

strictly speaking such usage is sloppy and incorrect, and it’s probably better avoided

unless there’s no chance of confusion.

Turning to the second of my “small points”: Observe now that all of the discussions

in this section so far (the definitions in particular) have been framed in terms of

relations, not relvars. But since every relation that can ever be assigned to a relvar is in

1NF by definition, no harm is done if we extend the 1NF concept in the obvious way to

apply to relvars as well—and it’s desirable to do so, because (as we’ll see) all of the other

normal forms are defined to apply to relvars, not relations. In fact, it could be argued that

the reason 1NF is defined in terms of relations and not relvars has to do with the fact that

it was, regrettably, many years before that distinction (I mean the distinction between

relations and relvars) was properly drawn, anyway.

Back to RVAs. I’ve said, in effect, that relvars with RVAs are legal—but now I need

to add that from a design point of view, at least, such relvars are usually (not always)

contraindicated. Now, this fact doesn’t mean you should avoid RVAs entirely (in

particular, there’s no problem if some attribute of some query result happens to be

relation valued)—it just means we don’t usually want RVAs “designed into the database,”

3 Or relvars, rather (see my second “small point” in just a moment).

Chapter 4 FDs anD BCnF (InFormal)

68

as it were. I don’t want to get into a lot of detail on this issue in this book; let me just say

that relvars with RVAs tend to look very much like the hierarchic structures found in

older, nonrelational systems like IMS,4 and all of the old problems that used to arise with

hierarchies therefore raise their ugly head once again. Here for reference is a list of some

of those problems:

• The fundamental point is that hierarchies are asymmetric. Thus,

while they might make some tasks easier, they certainly make others

more difficult.

• As a specific illustration of the previous point, queries in particular

are asymmetric, as well as being more complicated than their

symmetric counterparts. For example, consider what’s involved in

formulating the queries “Get part numbers for parts supplied by

supplier S2” and “Get supplier numbers for suppliers who supply

part P2” against the relation of Figure 4-1. The natural language

versions of these queries are symmetric with respect to each other,

but their formulations in SQL5—or Tutorial D, or any other formal

language, come to that—most certainly aren’t (see Exercise 4.14).

• Similar remarks apply to security and integrity constraints.

• Similar remarks apply to updates, perhaps with even more force.

• There’s no guidance, in general, as to how to choose the “best”

hierarchy. In the case of suppliers and parts, for example, should we

make parts subordinate to suppliers—which is effectively what the

design illustrated in Figure 4-1 does—or suppliers subordinate to

parts?

• Even “natural” hierarchies like organization charts and bill

of materials structures are still best represented, usually, by

nonhierarchic designs.

4 And, perhaps more to the point, newer ones like XML (see Exercise 4.12).
5 I note in passing that SQL does support something a little bit like RVAs, in the form of columns
whose type is RT MULTISET, where RT is some specified “row type.”

Chapter 4 FDs anD BCnF (InFormal)

69

 Violating First Normal Form
By now you might be wondering, if all relvars are in 1NF by definition, what it could

possibly mean for something not to be in 1NF. Perhaps surprisingly, this question does

have a sensible answer. The point is, today’s commercial DBMSs don’t properly support

relvars (or relations) at all—instead, they support a construct that for convenience I’ll

call a table, though by that term I don’t necessarily mean to limit myself to the kinds

of tables found in SQL systems specifically.6 And tables, as opposed to relvars, might

indeed not be in 1NF. To elaborate:

Definition (normalized table): A table is in first normal form

(1NF)—equivalently, such a table is normalized—if and only if it’s

a direct and faithful representation of some relvar.

So of course the question is: What does it mean for a table to be a direct and faithful

representation of a relvar? The answer to this question involves five basic requirements,

all of which are immediate consequences of the fact that the value of a relvar at any given

time is (of course) always a relation specifically:

 1. The table never contains any duplicate rows.

 2. There’s no left to right ordering to the columns.

 3. There’s no top to bottom ordering to the rows.

 4. All columns are regular columns.

 5. Every row and column intersection always contains exactly one

value of the applicable type, and nothing else.

6 As we’ve seen, the relational world in general very unfortunately uses the term relation to mean
sometimes a relation value and sometimes a relation variable. In exactly the same kind of way,
SQL in particular uses the term table to mean sometimes a table value and sometimes a table
variable. Be aware, therefore, that in this section I use the term table to mean a table variable
specifically, not a table value.

Chapter 4 FDs anD BCnF (InFormal)

70

Requirements 1-3 are self-explanatory,7 but the other two merit a little more

explanation, perhaps. First, then, consider Requirement 4 (“All columns are regular

columns”). In order to satisfy this requirement, the table in question must be such that

both of the following are true:

 a. Every column has a proper name (i.e., one that could be specified

as a column name in a CREATE TABLE statement, in SQL terms),

and that name is unique among the column names that apply to

the table in question.

 b. No row is allowed to contain anything extra, over and above values

of those columns just mentioned. Thus, there are no “hidden”

columns that can be accessed only by special operators instead of

by regular column references (where a “regular column reference”

is basically just a column name), and there are no columns that

cause invocations of regular operators on rows to have irregular

effects. In particular, therefore, there are no identifiers other than

regular relational key values (no hidden “row IDs” or “object IDs,”

as are unfortunately found in some SQL products today), and

there are no hidden timestamps as are found in certain “temporal

database” proposals in the literature.

As for Requirement 5: Observe first of all that this requirement means that nulls

are prohibited (since nulls, whatever else they might be, certainly aren’t values). More

generally, however, the requirement is intended to address the issue of data value

atomicity. That’s the one thing that “everybody knows” about relations in the relational

model—namely, that attribute values within such relations are supposed to be atomic

(right?). So what exactly does atomic mean in this context? Well, in his famous 1970

paper,8 Codd merely said it meant “nondecomposable.” And in later writings he went

on to say that nondecomposable in turn meant “nondecomposable by the DBMS,”

which I take to mean there’s no way the user can ask the DBMS to perform some such

7 Though I note I passing that Requirement 2 in particular effectively means that SQL tables
are never normalized—except, possibly, in the case of such a table with just one column (see
footnote 14 in Chapter 1). However, the disciplines recommended in SQL and Relational Theory
allow us among other things to treat such tables as if they were normalized after all (most of the
time but, sadly, not all of the time).

8 E. F. Codd: “A Relational Model of Data for Large Shared Data Banks,” Communications of the
ACM 13, No. 6 (June 1970).

Chapter 4 FDs anD BCnF (InFormal)

71

decomposition, either explicitly or implicitly, on his or her behalf. All right, so let’s

consider a few examples:

• Character strings: Are character strings nondecomposable in the

foregoing sense? Clearly not—think of SQL’s SUBSTRING, LIKE, and

concatenate operators, for example, all of which clearly rely on the

fact that character strings in general have some internal structure and

are thus decomposable into smaller pieces. Yet surely no one would

argue that character strings shouldn’t be allowed in relations.

• Fixed point numbers: Can be decomposed into integer and fractional parts.

• Integers: Can be decomposed into their prime factors. (Of

course, I realize this isn’t the kind of decomposability we usually

consider in this context; I’m just trying to show that the notion of

decomposability is itself open to a variety of interpretations.)

• Dates and times: Can be decomposed into year / month / day and

hour / minute / second components, respectively.

• Relational expressions: Consider, e.g., view definitions in the catalog.

Such expressions are certainly “decomposable”—decomposable by

the DBMS, in fact—because if they weren’t, there’d be no point in

keeping them in the catalog in the first place.

The bottom line from all of these examples, and many others like them, is that if

relation r has an attribute A, then the values of A within r can be anything whatsoever,

just so long as they’re values of the type T that’s the type defined for that attribute A. And

that type T in turn can be any type whatsoever!9 It can even be a relation type (whence

the possibility of relation valued attributes, discussed a few pages back).

the 1nF “atomicity” requirement is sometimes stated in the form “no repeating
groups.” Indeed, I’ve stated it in that form myself in numerous earlier writings—in the
previous edition of the present book in particular, where I attempted (but failed, I think)
to give a precise definition of what a repeating group might be. on further reflection,
I’ve come to the conclusion that it’s better not to try to think about repeating groups
at all in this context, but rather to focus on (and then, as I’ve just done, to debunk!) the

9 Except as noted in footnote 2.

Chapter 4 FDs anD BCnF (InFormal)

72

notion of atomicity instead. In other words, I now think the injunction against repeating
groups is and always was essentially meaningless—and I hereby apologize to anyone
who might have been misled by my earlier efforts in this regard.

In conclusion, if any of the five requirements are violated, the table in question

doesn’t “directly and faithfully” represent a relvar, and all bets are off. In particular,

relational operators such as join are no longer guaranteed to work as expected (as you’ll

already know if—as I assume—you’re familiar with SQL). The relational model deals

with relation values and variables, and relation values and variables only.

 Functional Dependencies
So much for 1NF; now I can move on and begin to discuss some of the higher normal

forms. Now, I’ve already said that Boyce/Codd normal form (BCNF) is defined in terms

of functional dependencies (FDs), and of course the same is true of second normal form

(2NF) and third normal form (3NF) as well. So here’s a definition:

Definition (functional dependency): Let X and Y be subsets of

the heading of relvar R; then the functional dependency (FD)

X → Y

holds in R if and only if, whenever two tuples of R agree on X, they

also agree on Y.10 X and Y here are called the determinant and

the dependant, respectively, and the FD overall can be read as “X

functionally determines Y,” or as “Y is functionally dependent on

X,” or more simply just as “X arrow Y.”

Here are a couple of examples:

• The FD {CITY} → {STATUS} holds in relvar S, as we know from

Chapter 2. Note the braces, by the way; X and Y in the definition are

subsets of the heading of R, and are therefore sets (of attributes), even

when, as in the example, they happen to be singleton sets. By the

same token, X and Y values are tuples, even when, as in the example,

they happen to be tuples of degree one.

10 “Agree on,” in contexts like the one at hand, is standard shorthand for “have the same value for.”

Chapter 4 FDs anD BCnF (InFormal)

73

• The FD {SNO} → {SNAME,STATUS} also holds in relvar S, because

{SNO} is a key—in fact, the only key—for that relvar, and there are always

“arrows out of keys” (see the section “Keys,” immediately following this

one). Note: In case it isn’t obvious, I use the phrase “arrow out of X” to

mean there exists some Y such that the FD X → Y holds in the pertinent

relvar (where X and Y are subsets of the heading of that relvar).

Now here’s a useful thing to remember: If the FD X → Y holds in relvar R, then the FD

X'' → Y' also holds in relvar R for all supersets X'' of X and all subsets Y' of Y (just so long

as X'' is still a subset of the heading, of course). In other words, we can always add attributes

to the determinant or subtract them from the dependant, and what we get will still be an FD

that holds in the relvar in question. For example, here’s another FD that holds in relvar S:

{ SNO , CITY } → { STATUS }

(I started with the FD {SNO} → {SNAME,STATUS} and added CITY to the determinant

and subtracted SNAME from the dependant.)

I also need to explain what it means for an FD to be trivial:

Definition (trivial FD): The FD X → Y is trivial if and only if

there’s no way it can be violated.

For example, the following FDs all hold trivially in any relvar with attributes called

STATUS and CITY:11

{ CITY , STATUS } → { CITY }

{ CITY , STATUS } → { STATUS }

{ CITY } → { CITY }

{ CITY } → { }

To elaborate briefly (but considering just the first of these examples, for simplicity):

If two tuples have the same value for CITY and STATUS, they certainly have the same

value for CITY. In fact, it’s easy to see that the FD X → Y is trivial if and only if Y is a subset

of X (in symbols, Y ⊆ X). Now, when we’re doing database design, we don’t usually

bother with trivial FDs because they’re, well, trivial; but when we’re trying to be formal

and precise about these matters—in particular, when we’re trying to develop a theory of

design—then we need to take all FDs into account, trivial ones as well as nontrivial.

11 In connection with the last of these examples in particular, see Exercise 4.10 at the end of the
chapter.

Chapter 4 FDs anD BCnF (InFormal)

74

 Keys Revisited
I discussed the concept of keys in general terms in Chapter 1, but it’s time to get a little

more precise about the matter and to introduce some more terminology. First, here for

the record is a precise definition of the term candidate key—which, as noted in Chapter 1,

I abbreviate to just key throughout most of this book:

Definition (candidate key, key): Let K be a subset of the heading

of relvar R. Then K is a candidate key (or just a key for short) for R

if and only if it possesses both of the following properties:

 1. Uniqueness: No legitimate value for R contains two distinct

tuples with the same value for K.

 2. Irreducibility: No proper subset of K has the uniqueness property.

this is the first definition we’ve encountered that involves some kind of
irreducibility, but we’ll meet several more in the pages ahead—irreducibility of
one kind or another is ubiquitous, and important, throughout the field of design
theory in general, as we’ll see. regarding key irreducibility in particular, one reason
(not the only one) why it’s important is that if we were to specify a “key” that
wasn’t irreducible, the DBms wouldn’t be able to enforce the proper uniqueness
constraint. For example, suppose we told the DBms (lying!) that {sno,CItY} was
a key, and in fact the only key, for relvar s. then the DBms couldn’t enforce the
constraint that supplier numbers are “globally” unique; instead, it could enforce
only the weaker constraint that supplier numbers are “locally” unique, in the sense
that they’re unique within the pertinent city.

I’m not going to discuss the foregoing definition any further here, since the concept

is so familiar12—but observe how the next few definitions depend on it:

Definition (key attribute): Attribute A of relvar R is a key attribute

for R if and only if it’s part of at least one key of R.

12 Do note, however, that there’s no suggestion that relvars have just one key. Au contraire, in fact:
A relvar can have any number of distinct keys, subject only to a limit that’s a logical consequence
of the degree of the relvar in question (see Exercise 4.9 at the end of the chapter).

Chapter 4 FDs anD BCnF (InFormal)

75

Definition (nonkey attribute): Attribute A of relvar R is a nonkey

attribute for R if and only if it’s not part of any key of R.13

For example, in relvar SP, SNO and PNO are key attributes and

QTY is a nonkey attribute.

Definition (“all key” relvar): A relvar is “all key” if and only

if the entire heading is a key (in which case it’s the only key,

necessarily)—equivalently, if and only if no proper subset of the

entire heading is a key.

Note: If a relvar is “all key,” then it certainly has no nonkey

attributes, but the converse is false—a relvar can be such that all of

its attributes are key attributes and yet not be “all key” (right?).

Definition (superkey): Let SK be a subset of the heading of

relvar R. Then SK is a superkey for R if and only if it possesses the

following property:

 1. Uniqueness: No legitimate value for R contains two distinct

tuples with the same value for SK.

More succinctly, a superkey for R is a subset of the heading of R

that’s unique but not necessarily irreducible. In other words, we

might say, loosely, that a superkey is a superset of a key (“loosely,”

because of course the superset in question must still be a subset

of the pertinent heading). Observe, therefore, that all keys are

superkeys, but “most” superkeys aren’t keys. Note: A superkey that

isn’t a key is sometimes said to be a proper superkey.

It’s convenient to define the notion of a subkey also:

Definition (subkey): Let SK be a subset of the heading of relvar R.

Then SK is a subkey for R if and only if it’s a subset of at least one

key of R.

Note: A subkey that isn’t a key is sometimes said to be a proper

subkey.

13 As a historical note, I remark that key and nonkey attributes were called prime and nonprime
attributes, respectively, in Codd’s original normalization papers (see Appendix D).

Chapter 4 FDs anD BCnF (InFormal)

76

By way of example, consider relvar SP, which has just one key, viz., {SNO,PNO}. That

relvar has:

 a. Two superkeys:

{ SNO , PNO }

{ SNO , PNO , QTY }

Note that the heading is always a superkey for any relvar R.

 b. Four subkeys:

{ SNO , PNO }

{ SNO }

{ PNO }

{ }

Note that the empty set of attributes is always a subkey for any relvar R.

To close this section, note that if H and SK are the heading and a superkey,

respectively, for relvar R, then the FD SK → H holds in R, necessarily. (Equivalently, the

FD SK → Y holds in R for all subsets Y of H.) The reason is that if two tuples of R have

the same value for SK, then they must in fact be the very same tuple, in which case they

obviously must have the same value for Y. Of course, all of these remarks apply in the

important special case in which SK is not just a superkey but a key; as I put it earlier (very

loosely, of course), there are always arrows out of keys. In fact, we can now make a more

general statement: There are always arrows out of superkeys.

 Second Normal Form
There’s one more concept I need to introduce, viz., FD irreducibility (another kind of

irreducibility, observe), before I can get on to the definitions of 2NF, 3NF, and BCNF as such:

Definition (irreducible FD): The FD X → Y is irreducible with

respect to relvar R (or just irreducible, if R is understood) if and

only if it holds in R and X' → Y doesn’t hold in R for any proper

subset X' of X.

Chapter 4 FDs anD BCnF (InFormal)

77

For example, the FD {SNO,PNO} → {QTY} is irreducible with respect to relvar

SP. Note: This kind of irreducibility is sometimes referred to more explicitly as left

irreducibility (since it’s really the left side of the FD that we’re talking about), but I’ve

chosen to elide that “left” here for simplicity.

Now—at last, you might be forgiven for thinking—I can define 2NF:

Definition (second normal form): Relvar R is in second normal

form (2NF) if and only if, for every key K of R and every nonkey

attribute A of R, the FD K → {A} (which holds in R, necessarily) is

irreducible.

Note: The following (“preferred”) definition is logically equivalent to the one just

given—see Exercise 4.4 at the end of the chapter—but can sometimes be more useful:

Definition (second normal form, preferred): Relvar R is in

second normal form (2NF) if and only if, for every nontrivial

FD X → Y that holds in R, at least one of the following is true:

 a. X is a superkey.

 b. Y is a subkey.

 c. X is not a subkey.

Points arising:

• First of all, please understand that it would be very unusual to regard

2NF as the ultimate goal of the design process. In fact, both 2NF

and 3NF are mainly of historical interest; they’re both regarded at

best as stepping stones on the way to BCNF, which is of much more

pragmatic (as well as theoretical) interest.

• Definitions of 2NF in the literature often take the form “R is in 2NF if

and only if it’s in 1NF and” However, such definitions are usually

based on a mistaken understanding of what 1NF is. As we’ve seen,

all relvars are in 1NF, and the words “it’s in 1NF and” therefore add

nothing.

Chapter 4 FDs anD BCnF (InFormal)

78

Let’s look at an example. Actually, it’s usually more instructive with the normal forms

to look at a counterexample rather than an example per se. Consider, therefore, a revised

version of relvar SP—let’s call it SCP—that has an additional attribute CITY, representing

the city of the applicable supplier. Here are some sample tuples:

This relvar clearly suffers from redundancy: Every tuple for supplier S1 tells us S1 is

in London, every tuple for supplier S2 tells us S2 is in Paris, and so on. And (appealing to

the first of the foregoing definitions of 2NF) the relvar isn’t in second normal form—its

sole key is {SNO,PNO}, and the FD {SNO,PNO} → {CITY} therefore certainly holds, but

that FD isn’t irreducible; to be specific, we can drop PNO from the determinant and what

remains, {SNO} → {CITY}, is still an FD that holds in the relvar. Equivalently, we can say

the FD {SNO} → {CITY} holds and is nontrivial; moreover, (a) {SNO} isn’t a superkey,

(b) {CITY} isn’t a subkey, and (c) {SNO} is a subkey, and so again (appealing now to the

second, “preferred” definition of 2NF) the relvar isn’t in second normal form.

 Third Normal Form
This time I’ll just start with my preferred definition:

Definition (third normal form, preferred): Relvar R is in third

normal form (3NF) if and only if, for every nontrivial FD X → Y

that holds in R, at least one of the following is true:

 a. X is a superkey.

 b. Y is a subkey.

Chapter 4 FDs anD BCnF (InFormal)

79

Points arising:

• To repeat something I said in the previous section (and contrary to

popular opinion, perhaps), 3NF is mainly of historical interest—it

should be regarded at best as no more than a stepping stone on the

way to BCNF. Note: The reason I say contrary to popular opinion here

is that many of the “definitions” of 3NF commonly found (at least in

the popular literature) are actually definitions of BCNF—and BCNF,

as I’ve already indicated, is important. Caveat lector.

• Definitions of 3NF in the literature often take the form “R is in 3NF

if and only if it’s in 2NF and” I prefer a definition that makes no

mention of 2NF. Note, however, that my definition of 3NF can in

fact be derived from my preferred definition for 2NF by dropping

condition (c) (“X is not a subkey”). It follows that 3NF implies 2NF—

that is, if a relvar is in 3NF, then it’s certainly in 2NF.

We’ve already seen an example of a relvar that’s in 2NF but not 3NF: namely,

the suppliers relvar S (see Figure 3-1 in Chapter 3). To elaborate: The nontrivial

FD {CITY} → {STATUS} holds in that relvar, as we know; moreover, {CITY} isn’t a

superkey and {STATUS} isn’t a subkey, and so the relvar isn’t in 3NF. (It’s certainly in

2NF, however. Exercise: Check this claim!)

 Boyce/Codd Normal Form
As I said earlier, Boyce/Codd normal form (BCNF) is the normal form with respect to

FDs—but now I can define it precisely:

Definition (Boyce/Codd normal form): Relvar R is in Boyce/Codd

normal form (BCNF) if and only if, for every nontrivial FD X → Y

that holds in R, the following is true:

 a. X is a superkey.

Points arising:

• It follows from the definition that the only FDs that hold in a BCNF

relvar are either trivial ones (we can’t get rid of those, obviously)

or arrows out of superkeys (we can’t get rid of those, either). Or as

some people like to say: Every fact is a fact about the key, the whole

Chapter 4 FDs anD BCnF (InFormal)

80

key, and nothing but the key—though I must immediately add that

this informal characterization, intuitively attractive though it is, isn’t

really accurate, because it assumes among other things that there’s

just one key.

• The definition makes no reference to 2NF or 3NF. Note, however, that

the definition can be derived from the 3NF definition by dropping

condition (b) (“Y is a subkey”). It follows that BCNF implies 3NF—

that is, if a relvar is in BCNF, then it’s certainly in 3NF.

By way of an example of a relvar that’s in 3NF but not BCNF, consider a revised

version of the shipments relvar—let’s call it SNP—that has an additional attribute

SNAME, representing the name of the pertinent supplier. Suppose also that supplier

names are necessarily unique (i.e., no two suppliers ever have the same name at the

same time). Here are some sample tuples:

Once again we observe some redundancy: Every tuple for supplier S1 tells us S1 is

named Smith, every tuple for supplier S2 tells us S2 is named Jones, and so on; likewise,

every tuple for Smith tells us Smith’s supplier number is S1, every tuple for Jones tells us

Jones’s supplier number is S2, and so on. And the relvar isn’t in BCNF. First of all, it has

two keys, {SNO,PNO} and {SNAME,PNO}.14 Second, every subset of the heading—the

subset {QTY} in particular—is (of course) functionally dependent on both of those keys.

Third, however, the FDs {SNO} → {SNAME} and {SNAME} → {SNO} also hold; these FDs

are certainly not trivial, nor are they arrows out of superkeys, and so the relvar isn’t in

BCNF (though it is in 3NF).

14 That’s why I didn’t show any double underlining when I showed the sample tuples—there
are two candidate keys, and there doesn’t seem to be any good reason to make either of them
primary and thus somehow “more equal than the other.”

Chapter 4 FDs anD BCnF (InFormal)

81

Finally, as I’m sure you know, the normalization discipline says: If relvar R isn’t in

BCNF, then decompose it into projections that are. In the case of relvar SNP, either of the

following decompositions will meet this objective:

• Projecting on {SNO,SNAME} and {SNO,PNO,QTY}

• Projecting on {SNO,SNAME} and {SNAME,PNO,QTY}

I can now explain why BCNF is the odd one out, as it were, in not simply being called

“nth normal form” for some n. To quote from the paper in which Codd first described

this new normal form:15

More recently, Boyce and Codd developed the following

definition: A [relvar] R is in third normal form if it is in first normal

form and, for every attribute collection C of R, if any attribute not

in C is functionally dependent on C, then all attributes in R are

functionally dependent on C [in other words, C is a superkey].

So Codd was giving here what he regarded as a “new and improved” definition of

third normal form. But the trouble was, the new definition was (and is) strictly stronger

than the old one; that is, any relvar that’s in 3NF by the new definition is certainly in 3NF

by the old one, but the converse isn’t true—a relvar can be in 3NF by the old definition

and not in 3NF by the new one (relvar SNP, discussed above, is a case in point). So what

that “new and improved” definition really defined was a new and stronger normal form,

which therefore needed a distinct name of its own. However, by the time this point was

adequately recognized, Fagin had already defined what he called fourth normal form, so

that name wasn’t available.16 Hence the anomalous name Boyce/Codd normal form.

15 E. F. Codd: “Recent Investigations into Relational Data Base Systems,” Proc. IFIP Congress,
Stockholm, Sweden (1974).

16 Actually, when Raymond Boyce first came up with what became BCNF, he did call it fourth! The
paper in which he first described the concept, IBM Technical Disclosure Bulletin 16, No. 1 (June
1973), had as its title “Fourth Normal Form and its Associated Decomposition Algorithm.” Since
that paper predated Fagin’s paper on 4NF by several years (see Appendix D), Boyce’s original
name could perfectly well have been used at the time. It was Codd who insisted on calling the
new normal form “third”—describing Boyce’s definition as merely an improved version of one
that already existed—and who thereby gave rise to a confusion (admittedly minor, but all logical
differences are big differences) that continues to this day.

Chapter 4 FDs anD BCnF (InFormal)

82

 Exercises

 4.1 How many FDs hold in relvar SP? Which ones are trivial? Which

are irreducible?

 4.2 Is it true that the FD concept relies on the notion of tuple equality?

 4.3 Give examples from your own work environment of (a) a relvar

not in 2NF; (b) a relvar in 3NF but not 2NF; (c) a relvar in BCNF

but not 3NF.

 4.4 Prove that the two definitions of 2NF given in the body of the

chapter are logically equivalent.

 4.5 Is it true that if a relvar isn’t in 2NF, then it must have a composite

key?

 4.6 Is it true that every binary relvar is in BCNF?

 4.7 (Same as Exercise 1.4.) Is it true that every “all key” relvar is in

BCNF?

 4.8 Write Tutorial D CONSTRAINT statements to express the fact that

the pair of FDs {SNO} → {SNAME} and {SNAME} → {SNO} hold in

relvar SNP (see the section “Boyce/Codd Normal Form”).

Note: This is the first exercise in any chapter that asks you to give

an answer in Tutorial D. Of course, I realize you might not be

completely conversant with that language; in all such exercises,

therefore—for example, in Exercises 4.14 and 4.15 below—please

just do the best you can. I do think it’s worth your while at least to

attempt the exercises in question.

 4.9 Let R be a relvar of degree n. What’s the maximum number of

FDs that can possibly hold in R (trivial ones as well as nontrivial)?

What’s the maximum number of keys it can have?

 4.10 Given that X and Y in the FD X → Y are both sets of attributes,

what happens if either of those sets is empty?

Chapter 4 FDs anD BCnF (InFormal)

83

 4.11 Can you think of a situation in which it really would be reasonable

to have a base relvar with an RVA?

 4.12 There’s been a lot of discussion in the industry in recent years

of the possibility of XML databases. But XML documents are

inherently hierarchic in nature; so do you think the criticisms of

hierarchies in the body of the chapter apply to XML databases?

(Well, yes, they do, as I indicated in footnote 4 earlier in the

chapter. So what do you conclude?)

 4.13 In Chapter 1 I said I’d be indicating primary key attributes, in

tabular pictures of relations, by double underlining. At that point,

however, I hadn’t properly discussed the difference between

relations and relvars, and now we know that keys in general apply

to relvars, not relations. Yet we’ve seen several tabular pictures

since then that represent relations as such (I mean, relations that

aren’t just a sample value for some relvar)—see, e.g., Figure 4-1

for three examples17—and I’ve certainly been using the double

underlining convention in those pictures. So what can we say

about that convention now?

 4.14 Give Tutorial D formulations of the following queries against the

relation shown in Figure 4-1:

 a. Get part numbers for parts supplied by supplier S2.

 b. Get supplier numbers for suppliers who supply part P2.

 4.15 Suppose we need to update the database to show that supplier S2

supplies part P5 in a quantity of 500. Give Tutorial D formulations

of the required update against (a) the non RVA design of

Figure 1-1, (b) the RVA design of Figure 4-1.

 4.16 Given the RVA design illustrated in Figure 4-1, state as precisely as

you can the corresponding relvar predicate.

17 Yes, I do mean three.

Chapter 4 FDs anD BCnF (InFormal)

84

 4.17 Here are some definitions of 1NF from the technical literature. In

view of the discussion of such matters in the body of the present

chapter, do you have any comments on them?

• First normal form (1NF) … states that the domain of an attribute

must include only atomic (simple, indivisible) values and that the

value of any attribute in a tuple must be a single value from the

domain of that attribute … 1NF disallows having a set of values,

a tuple of values, or a combination of both as an attribute value

for a single tuple … 1NF disallows “relations within relations” or

“relations as attribute values within tuples” … the only attribute

values permitted by 1NF are single atomic (or indivisible) values

(Ramez Elmasri and Shamkant B. Navathe, Fundamentals of

Database Systems, 4th edition, Addison-Wesley, 2004)

• A relation is in first normal form if every field contains only

atomic values, that is, no lists or sets (Raghu Ramakrishnan and

Johannes Gehrke, Database Management Systems, 3rd edition,

McGraw-Hill, 2003)

• First normal form is simply the condition that every component

of every tuple is an atomic value (Hector Garcia-Molina, Jeffrey

D. Ullman, and Jennifer Widom, Database Systems: The Complete

Book, Prentice Hall, 2002)

• A domain is atomic if elements of the domain are considered

to be indivisible units … we say that a relation schema R is in

first normal form (1NF) if the domains of all attributes of R are

atomic (Abraham Silberschatz, Henry F. Korth, and S. Sudarshan,

Database System Concepts, 4th edition, McGraw-Hill, 2002)

• A relation is said to be in first normal form (abbreviated 1NF) if

and only if it satisfies the condition that it contains scalar values

only (C. J. Date, An Introduction to Database Systems, 6th edition,

Addison-Wesley, 1995)

Chapter 4 FDs anD BCnF (InFormal)

85

 Answers

 4.1 The complete set of FDs—what’s known, formally, as the closure

(see Chapter 7), though it has nothing to do with the closure

property of the relational algebra—for relvar SP contains a total of

31 distinct FDs, as follows:

{ SNO , PNO , QTY } → { SNO , PNO , QTY }

{ SNO , PNO , QTY } → { SNO , PNO }

{ SNO , PNO , QTY } → { SNO , QTY }

{ SNO , PNO , QTY } → { PNO , QTY }

{ SNO , PNO , QTY } → { SNO }

{ SNO , PNO , QTY } → { PNO }

{ SNO , PNO , QTY } → { QTY }

{ SNO , PNO , QTY } → { }

{ SNO , PNO } → { SNO , PNO , QTY }

{ SNO , PNO } → { SNO , PNO }

{ SNO , PNO } → { SNO , QTY }

{ SNO , PNO } → { PNO , QTY }

{ SNO , PNO } → { SNO }

{ SNO , PNO } → { PNO }

{ SNO , PNO } → { QTY }

{ SNO , PNO } → { }

{ SNO , QTY } → { SNO , QTY }

{ SNO , QTY } → { SNO }

{ SNO , QTY } → { QTY }

{ SNO , QTY } → { }

{ PNO , QTY } → { PNO , QTY }

{ PNO , QTY } → { PNO }

{ PNO , QTY } → { QTY }

{ PNO , QTY } → { }

{ SNO } → { SNO }

{ SNO } → { }

Chapter 4 FDs anD BCnF (InFormal)

86

{ PNO } → { PNO }

{ PNO } → { }

{ QTY } → { QTY }

{ QTY } → { }

{ } → { }

Of these, the only ones that aren’t trivial are the following four:

{ SNO , PNO } → { SNO , PNO , QTY }

{ SNO , PNO } → { SNO , QTY }

{ SNO , PNO } → { PNO , QTY }

{ SNO , PNO } → { QTY }

And the only ones that are irreducible are the following eleven:

{ SNO , PNO } → { SNO , PNO , QTY }

{ SNO , PNO } → { SNO , PNO }

{ SNO , PNO } → { SNO , QTY }

{ SNO , PNO } → { PNO , QTY }

{ SNO , PNO } → { QTY }

{ SNO , QTY } → { SNO , QTY }

{ PNO , QTY } → { PNO , QTY }

{ SNO } → { SNO }

{ PNO } → { PNO }

{ QTY } → { QTY }

{ } → { }

 4.2 Yes, it is (“whenever two tuples agree on X, they also agree on Y”

implies an equality comparison between the projections of the

tuples in question on the attributes of X and Y, respectively, and

those two projections in turn are themselves tuples). Note: See the

answer to Exercise 2.10 in Chapter 2 regarding the notion of tuple

equality in general.

Chapter 4 FDs anD BCnF (InFormal)

87

 4.3 No answer provided.

 4.4 First of all, here again are the two definitions, numbered for

purposes of subsequent reference:

 1. Relvar R is in 2NF if and only if, for every key K of R and every

nonkey attribute A of R, the FD K → {A} is irreducible.

 2. Relvar R is in 2NF if and only if, for every nontrivial FD X → Y

that holds in R, at least one of the following is true: (a) X is a

superkey; (b) Y is a subkey; (c) X is not a subkey.

Let R not be in 2NF by Definition 1. Then there exists an FD—

nontrivial by definition—K → {A}, where K is a key of R and A is

a nonkey attribute of R, that holds in R and is reducible. Since it’s

reducible, the (also nontrivial) FD X → {A} holds in R for some

proper subkey X (X ⊂ K). Thus, denoting {A} by Y, we have a

nontrivial FD X → Y that holds in R such that X isn’t a superkey,

Y isn’t a subkey, and X is a subkey. So R isn’t in 2NF by Definition 2.

So, loosely, Definition 2 implies Definition 1.18

Now let R not be in 2NF by Definition 2. Then there exists a

nontrivial FD X → Y (F, say) that holds in R, such that X isn’t a

superkey, Y isn’t a subkey, and X is a subkey. But if X is a subkey and

not a superkey, it must be a proper subkey of some key K. Now there

are two cases to consider:

 a. Y contains a nonkey attribute A. In this case K → {A} holds

in R but is reducible, and so R isn’t in 2NF by Definition 1;

so, again loosely, Definition 1 implies Definition 2.

 b. No such F exists such that Y contains a nonkey attribute

A. But then, for every F, every attribute A contained in Y is

such that {A} is a subkey. Hence R is in 3NF (and therefore

certainly in 2NF): Contradiction.

It follows that Definitions 1 and 2 are equivalent.

18 You might think this is the wrong way round, but it isn’t. What I’ve shown is that not 2NF by
Definition 1 implies not 2NF by Definition 2. Given that “p implies q” is equivalent to “(not p) or
q,” therefore, it follows that what I’ve shown is that 2NF by Definition 2 implies 2NF by Definition
1, or (loosely) Definition 2 implies Definition 1 as stated. Apologies if you find this confusing!

Chapter 4 FDs anD BCnF (InFormal)

88

 4.5 Consider the following (invalid!) argument.

Let relvar R not be in 2NF. Then there must be some key K of R

and some nonkey attribute A of R such that the FD K → {A} (which

holds in R, necessarily) is reducible—meaning some attribute can

be dropped from K, yielding K' say, such that the FD K' → {A} still

holds. Hence K must be composite.

This argument appears to show that the answer to the exercise must

be yes—i.e., if a relvar isn’t in 2NF, it must have a composite key. But

the argument is incorrect! Here’s a counterexample. Let USA be a

binary relvar with attributes COUNTRY and STATE; the predicate is

STATE is part of COUNTRY, but COUNTRY is the United States in

every tuple. Now, {STATE} is the sole key for this relvar, and the

FD {STATE} → {COUNTRY} thus certainly holds. However, the

FD { } → {COUNTRY} clearly holds as well (see the answer to

Exercise 4.10 below); the FD {STATE} → {COUNTRY} is thus

reducible, and so the relvar isn’t in 2NF, and yet the key {STATE}

isn’t composite.

 4.6 No! By way of a counterexample, consider relvar USA from the

answer to the previous exercise. That relvar is subject to the FD

{ } → {COUNTRY}, which is neither trivial nor an arrow out of a

superkey, and so the relvar isn’t in BCNF. (In fact, of course, it isn’t

even in 2NF, as we saw in the answer to the previous exercise.) It

follows that the relvar can be nonloss decomposed into its two

unary projections on {COUNTRY} and {STATE}, respectively.

(Note that the corresponding join, needed to reconstruct the

original relvar, in fact reduces to a cartesian product.)

 4.7 Yes, it is. If no nontrivial FDs hold at all—which is certainly the

case for an “all key” relvar—then there’s certainly no nontrivial FD

that holds for which the determinant isn’t a superkey, and so the

relvar is in BCNF.

 4.8 CONSTRAINT ...

 COUNT (SNP { SNO , SNAME }) = COUNT (SNP { SNO }) ;

CONSTRAINT ...

 COUNT (SNP { SNO , SNAME }) = COUNT (SNP { SNAME }) ;

Chapter 4 FDs anD BCnF (InFormal)

89

Note: This trick for specifying that an FD holds (i.e., by stating that

two projections have the same cardinality) certainly does the job.

As noted in Chapter 2, however, it’s hardly very elegant, and for

that reason I showed an alternative approach to formulating such

constraints, using AND, JOIN, and RENAME, in that chapter. Here

are revised formulations of the two constraints just shown that

make use of that alternative approach:

CONSTRAINT ...

 WITH (SS := S { SNO , SNAME }) :

 AND ((SS JOIN (SS RENAME { SNAME AS X }) , SNAME = X) ;

CONSTRAINT

 WITH (SS := S { SNO , SNAME }) :

 AND ((SS JOIN (SS RENAME { SNO AS X }) , SNO = X) ;

Alternatively, Hugh Darwen and I have proposed19 that

Tutorial D should support another form of CONSTRAINT

statement in which the usual boolean expression is replaced

by a relational expression accompanied by one or more key

specifications. Under this proposal, the foregoing constraints

could be expressed as a single constraint, thus:

CONSTRAINT ... SNP { SNO , SNAME }

 KEY { SNO }

 KEY { SNAME } ;

Explanation: Think of the relational expression—SNP

{SNO,SNAME}, in the example—as defining some temporary

relvar (perhaps a view); then the key specifications—KEY {SNO}

and KEY {SNAME}, in the example—indicates that the specified

attributes would constitute keys for that relvar.20

19 In our book Database Explorations: Essays on The Third Manifesto and Related Topics (Trafford,
2010) and elsewhere.

20 Actually there’s no need for the projection in the example—CONSTRAINT SNP KEY {SNO} KEY
{SNAME} would suffice.

Chapter 4 FDs anD BCnF (InFormal)

90

As an aside, I note that Darwen and I have also proposed allowing

foreign key constraints to be specified for expressions in the same

kind of way.

 4.9 Let the FD X → Y hold in R. By definition, X and Y are subsets of

the heading of R. Given that a set of n elements has 2n possible

subsets, it follows that each of X and Y has 2n possible values, and

hence an upper limit on the number of possible FDs that might

hold in R is 2² n. For example, if R is of degree five, the upper limit

on the number of FDs that might hold is 1,024 (of which 243 are

trivial). Subsidiary exercises:

 a. Where did that figure of 243 come from?

Answer: I’ll let you figure this one out for yourself!

 b. Suppose those 1,024 FDs do all in fact hold. What can we

conclude about R in that case?

Answer: It must have cardinality less than two. The reason is

that one FD that holds in such a case is { } → H, where H is the

heading; it follows that { } is a key, and so R is constrained to

contain at most one tuple, as explained in the answer to the

next exercise below.

As for how many keys R can have: Let m be the smallest integer

greater than or equal to n/2. R will have the maximum possible

number of keys if either (a) every distinct set of m attributes is a key

or (b) m is odd and every distinct set of (m – 1) attributes is a

key. Either way, it follows that the maximum number of keys is

n! / (m! × (n – m)!).21 For example, a relvar of degree five can have at

most ten, and one of degree three can have at most three, distinct

keys. (An example of this latter case can be found in Appendix C.)

 4.10 Let the specified FD X → Y hold in relvar R. Now, every tuple

(regardless of whether it’s a tuple of R) has the same value—

namely, the 0-tuple—for the projection of that tuple over the

21 The symbol r! is pronounced “r factorial” (sometimes “r bang”) and denotes the product
r × (r-1) × … × 2 × 1.

Chapter 4 FDs anD BCnF (InFormal)

91

empty set of attributes (see the answer to Exercise 2.12 in

Chapter 2). If Y is empty, therefore, the FD X → Y holds for all

possible sets X of attributes of R; in fact, it’s a trivial FD (and so it

isn’t very interesting), because the empty set is a subset of every

set and so Y is definitely a subset of X in this case. On the other

hand, if X is empty, the FD X → Y means that, at any given time,

all tuples of R have the same value for Y (since they certainly

all have the same value for X). What’s more, if Y in turn is the

entire heading of R–in other words, if X is a superkey—then R is

constrained to contain at most one tuple (for otherwise R would

suffer from a superkey uniqueness violation). Note: In this latter

case, X isn’t just a superkey but in fact a key, since it’s certainly

irreducible. What’s more, it’s the only key, because every other

subset of the heading includes it as a proper subset.

 4.11 Consider a relvar (FDR, say) in the database catalog whose

purpose is to record the FDs that hold in various relvars in the

database. Given that an FD is an expression of the form X → Y

where X and Y are sets of attribute names, a reasonable design

for that relvar FDR is one with attributes R (relvar name), X

(determinant), and Y (dependant), and predicate (deliberately

stated here somewhat loosely) The FD X → Y holds in relvar R. For

any given relvar R in the database, therefore, the corresponding

tuple in relvar FDR has X and Y values that are each relations of

degree one, the tuples of which contain names of attributes of

relvar R (and so X and Y are RVAs).

For another example, involving a “user relvar” instead of a relvar in

the catalog, you might like to think about the following problem:

I decided to throw a party, so I drew up a list of people I wanted

to invite and made some preliminary soundings. The response

was good, but several people made their acceptance conditional

on the acceptance of certain other invitees. For example, Bob and

Cal both said they would come if and only if Amy came; Fay said

she would come if and only if Don and Eve both came; Guy said

he would come anyway; Hal said he would come if and only if Bob

Chapter 4 FDs anD BCnF (InFormal)

92

and Amy both came; and so on. Design a database to show whose

acceptance is based on whose. (With acknowledgments to Hugh

Darwen.)

It seems to me that a reasonable design here would involve a

relvar with two attributes X and Y, both relation valued, and

predicate (again deliberately stated somewhat loosely) The set of

people X will attend if and only if the set of people Y will attend.

Subsidiary exercise: Can you think of any refinements you might

want to make to this design? Hint: Is it true that Bob will attend if

and only if Bob will attend?

 4.12 Well, I don’t know what you conclude, but I know what I do. One

thing I conclude is that we should always be on our guard against

getting seduced by the latest fad. (I could say quite a lot more

regarding this latter, but I don’t think this book is the right place

for it.)

 4.13 There are two cases to consider:

 a. The relation depicted is a sample value for some relvar R.

 b. The relation depicted is a sample value for some relational

expression rx, where rx is something other than a simple

relvar reference (where a relvar reference is basically just the

pertinent relvar name).

In Case a., double underlining simply indicates that a primary key

PK has been declared for R22 and the pertinent attribute is part of

PK. In Case b., you can think of rx as the defining expression for

some temporary relvar R (think of it as a view defining expression

and R as the corresponding view, if you like); then double

underlining indicates that a primary key PK could in principle be

declared for R and the pertinent attribute is part of PK.

22 Well, that’s not quite the situation as far as this book is concerned, because in this book I almost
never declare primary keys as such (in fact Tutorial D provides no way of doing so)—but I think
you see what I mean.

Chapter 4 FDs anD BCnF (InFormal)

93

 4.14 I assume for the sake of this exercise and the next that the relation

shown in Figure 4-1 is a sample value for a relvar SPQ. Here then

are Tutorial D formulations (not the only ones possible) for the

two queries:

 a. ((SPQ WHERE SNO = 'S2') UNGROUP (PQ)) { PNO }

 b. ((SPQ UNGROUP (PQ)) WHERE PNO = 'P2') { SNO }

Observe that the first of these expressions involves a restriction

followed by an ungrouping, while the second involves an

ungrouping followed by a restriction (there’s the asymmetry).

Note: The UNGROUP operator wasn’t discussed in the body of the

chapter, but its semantics should be obvious from the examples.

Basically, it’s used to map a relation with an RVA to one without

such an attribute. (There’s a GROUP operator too, for “going the

other way”—that is, mapping a relation without an RVA to one

with one.) For further explanation, see SQL and Relational Theory.

 4.15 Here I think it might be helpful first to give part of the Tutorial D

grammar for <relation assign>, which is the fundamental

relational update operator in Tutorial D. (Please note that the

grammar is slightly simplified for present purposes, though. As for

the names of the various syntactic categories, they’re meant to be

intuitively self-explanatory.)

<relation assign>

 ::= <relvar name> := <relation exp>

 | <insert> | <delete> | <update>

<insert>

 ::= INSERT <relvar name> <relation exp>

<delete>

 ::= DELETE <relvar name> <relation exp>

 | DELETE <relvar name> [WHERE <boolean exp>]

Chapter 4 FDs anD BCnF (InFormal)

94

<update>

 ::= UPDATE <relvar name> [WHERE <boolean exp>] :

 { <attribute assign commalist> }

And an <attribute assign>, if the attribute in question happens

to be relation valued, is basically just a <relation assign> (except

that the pertinent <attribute name> appears in place of the target

<relvar name> in that <relation assign>), and that’s where we came

in. Here then are Tutorial D statements for the required updates:

 a. INSERT SP RELATION { TUPLE { 'S2' , 'P5' , 500 } } ;

 b. UPDATE SPQ WHERE SNO = 'S2' :

{ INSERT PQ RELATION { TUPLE { PNO 'P5' , QTY 500 } } } ;

 4.16 Supplier SNO supplies part PNO in quantity QTY if and only if

(PNO,QTY) is a tuple in PQ.

 4.17 One obvious comment is that I was just as confused as everybody

else, back in 1995! Though I did inadvertently (?) conceal my

confusion by using the comparatively respectable term scalar

from the programming languages world in place of that rather

suspect term atomic. However, I’ve come to realize that scalar is

really no more formal or precise than atomic is, in this context.

The fact is, neither term has any absolute meaning—it simply

depends on what we want to do with the data. For example,

sometimes we want to deal with an entire set of part numbers as

a single thing; at other times, we want to deal with individual part

numbers within that set—but then we're descending to a lower

level of detail (in other words, to a lower level of abstraction). The

following analogy might help clarify this point. In physics—which

after all is where the “atomicity” terminology comes from—the

situation is precisely parallel: Sometimes we want to think about

individual physical atoms as indivisible objects; at other times,

we want to think about the protons, neutrons, and electrons that

go to make up those atoms. And of course those protons and

neutrons aren't really indivisible, either—they contain a variety of

“subsubatomic” particles called quarks. And so on, possibly (?).

Chapter 4 FDs anD BCnF (InFormal)

95

One last point: An attempt might be made to rescue the notion

of absolute atomicity, as follows. Let’s agree to say a value is not

atomic if and only if operators exist to "take the value apart," as

it were. (I think this idea, or something very like it, was probably

what was in Codd’s mind when he said that nondecomposable

meant, specifically, “nondecomposable by the DBMS.”) Thus,

a character string isn’t atomic because it can be taken apart by

means of the SUBSTRING operator; a set isn’t atomic because

it can be taken apart by means of operators that extract either

elements or subsets from the set; and so on. By contrast, a fixed

point number is atomic, if there are no operators to extract its

integer and fractional parts (say). But even if we were to accept

this argument, it seems to me we would then also have to accept

the argument that the very same value might be atomic today

and composite tomorrow! Such would be the case for a fixed

point number, for example, if there were originally no operators

to extract its integer and fractional parts but such operators

were subsequently introduced. And it further seems to me that

if the notion of atomicity is time dependent in this way, then (as

previously claimed) it really doesn’t have any absolute meaning.

Chapter 4 FDs anD BCnF (InFormal)

97
© C. J. Date 2019
C. J. Date, Database Design and Relational Theory, https://doi.org/10.1007/978-1-4842-5540-7_5

CHAPTER 5

FDs and BCNF (Formal)
What’s formal is normal
What’s not so is not
And if normal is formal,
Informal is what?

—Anon: Where Bugs Go

Now I want to step back, take a deep breath as it were, and consider FDs and BCNF all

over again—but this time I want to do it properly (with apologies for the small amount

of repetition involved). As you’ll quickly see, the treatment in this chapter is rather more

abstract than that in the previous one; it shouldn’t be too difficult to follow, if you’re fully

comfortable with the material of that previous chapter, but it’ll certainly be more formal.

For that reason, I don’t want you to look at this chapter at all until you’ve absorbed

everything in the previous one. (Of course, that shouldn’t be hard to do, since most of

what was in that chapter was surely familiar to you anyway.)

One general point up front: Since BCNF is the normal form with respect to FDs,

I won’t have anything to say in this chapter regarding 2NF or 3NF (or indeed 1NF).

As I’ve more or less said already, 2NF and 3NF just aren’t all that interesting in

themselves any more.

 Preliminary Definitions
In this section I simply give definitions, with little by way of further elaboration, of a few

familiar but absolutely fundamental concepts—definitions that are rather more precise

than the ones typically found in the literature (as well as being more precise, in some

98

cases, than the ones given earlier in this book). Production of examples to illustrate the

definitions is left as an exercise.

Definition (heading): A heading H is a set of attribute names.

I remind you that the foregoing definition is deliberately not quite the same as the

one I gave in Chapter 2, q.v. In fact it’s simpler than that previous definition,1 and so

therefore are certain of the definitions to come.

Definition (tuple): A tuple with heading H is a set of ordered

pairs <A,v> (one such pair for each attribute name A appearing

in H), where v is a value. The phrase tuple with heading H can be

abbreviated to just tuple, if H is either understood or irrelevant for

the purpose at hand.

Definition (tuple projection): Let t be a tuple with heading H and

let X be a subset of H. Then the (tuple) projection t{X} of t on the

attributes of X is a tuple with heading X—namely, that subset of t

containing just those <A,v> pairs such that A appears in X.2

The foregoing definition defines a version of the usual relational projection operator

that applies to individual tuples (see Exercise 2.11 in Chapter 2). I’ll be appealing to this

definition many times in the pages ahead. Note that, just as every projection of a relation

is itself a relation, so every projection of a tuple is itself a tuple.

Definition (relation): A relation r is an ordered pair <H,h>, where

h is a set of tuples (the body of r) all having heading H. H is the

heading of r and the attributes of H are the attributes of r. The

tuples of h are the tuples of r.

Definition (projection): Let r be the relation <H,h> and let X be

a subset of H. Then the projection r{X} of r on the attributes of X is

the relation <X,x>, where x is the set of all tuples t{X} such that t is

a tuple of h.

1 In particular because it ignores attribute types. In fact I’m going to ignore attribute types
throughout the rest of this chapter (except in the definition of join), and indeed throughout most
of the rest of this book.

2 Refer to the section “Equality Dependencies” in Chapter 3 for an explanation of the shorthand
notation I’m using here.

Chapter 5 FDs anD BCnF (Formal)

99

Definition (join): Let relations r1, ..., rn (n ≥ 0) be joinable—i.e.,

let them be such that attributes with the same name are of the

same type. Then the join of r1, ..., rn, JOIN {r1,...,rn}, is a relation

with (a) heading the union of the headings of r1, ..., rn and (b)

body the set of all tuples t such that t is the union of a tuple from

r1, ..., and a tuple from rn.

Points arising:

• The kind of join just defined is what’s sometimes called, more

explicitly, the natural join.

• Note carefully that join as defined here is an n-adic operator, not a

dyadic operator merely—n = 2 is just a common special case. (As for

n < 2, see Exercise 5.1 at the end of the chapter.) Precisely because of

this fact, Tutorial D uses the prefix syntactic style mentioned in the

definition—

JOIN { r1 , ..., rn }

—though in the special case of n = 2, it supports an infix style as well:

r1 JOIN r2

In this book, however, I’ll favor the prefix style from this point

forward.

• Note too that in the special case in which no two of the operand

relations r1, ..., rn have any attribute names in common, join reduces

to cartesian product.

One final definition to close this section:

Definition (relation variable, relvar): A relation variable or relvar

with heading H is a variable R such that a value r can be assigned

to that variable only if that value r is a relation with heading H. The

attributes of H are the attributes of R. Also, if relation r is assigned

to relvar R, then the body and tuples of r are the body and tuples

of R, respectively, under that assignment.

Chapter 5 FDs anD BCnF (Formal)

100

Note: The foregoing definition says that relation r can be assigned to relvar R only if

it has the same heading as R. More precisely, relation r can be assigned to relvar R if and

only if (a) it has the same heading as R and (b) it satisfies all of the constraints that apply

to R, where the phrase “all of the constraints that apply to R” includes the functional

dependencies that hold in R—see the section immediately following—but isn’t limited to

functional dependencies alone.

 Functional Dependencies Revisited
Now I’m in a position to deal properly with the concept of functional dependence. Again

I’ll be presenting precise definitions—but in this section (as compared to the previous

one) I’ll have rather more to say about those definitions and some of their implications.

Definition (functional dependency): Let H be a heading; then a

functional dependency (FD) with respect to H is an expression of

the form X → Y, where X (the determinant) and Y (the dependant)

are both subsets of H. The phrase FD with respect to H can be

abbreviated to just FD, if H is understood.

Here are a couple of examples:

{ CITY } → { STATUS }

{ CITY } → { SNO }

Note carefully that—contrary to popular opinion, perhaps—FDs are formally

defined with respect to some heading, not with respect to some relation or some relvar.

The two FDs just shown, for example, are defined with respect to any heading that

contains attributes called CITY, STATUS, and SNO (and others as well, possibly). Note

too that from a formal point of view, an FD is just an expression: an expression that,

when interpreted with respect to some specific relation, becomes a proposition that

(by definition) evaluates to either TRUE or FALSE. For example, if the two FDs shown

above are interpreted with respect to the relation that’s the current value of relvar S (see

Figure 1-1 in Chapter 1), then the first evaluates to TRUE and the second to FALSE. Of

course, it’s common informally to define such an expression to be an FD, in some

specific context, only if it evaluates to TRUE in that context; however, such a definition

leaves no way of saying a given relation fails to satisfy, or in other words violates, some

Chapter 5 FDs anD BCnF (Formal)

101

given FD. Why? Because, by that informal definition, an FD that isn’t satisfied wouldn’t

be an FD in the first place! For example, we wouldn’t be able to say the relation that’s the

current value of relvar S violates the second of the FDs shown above.

I really can’t stress the foregoing point strongly enough. For most people, it

represents a shift in thinking; however, it’s a shift that has to be made if you’re ever to

understand what design theory is all about. The point is this: Most writings on FDs—

including the early research papers that first introduced the concept—don’t actually

define the concept of an FD, as such, at all! Instead, they say something along the lines

of “Y is functionally dependent on X in relation r if and only if, whenever two tuples

of r agree on X, they also agree on Y.” Which is perfectly true, of course—but it’s not a

definition of an FD; instead, it’s a definition of what it means for an FD to be satisfied.

But if we want to develop a theory of FDs as such, then we clearly need to be able to talk

about FDs as objects in their own right, divorced from the context of some particular

relation or some particular relvar. More specifically, we need to divorce the idea of an

FD as such from the idea that it might have some interpretation, or meaning, in some

context. In fact, design theory can be regarded as a small piece of logic, and logic isn’t

about meaning at all—it’s about formal manipulations.

To get back to the definitions:

Definition (satisfying or violating an FD): Let relation r have

heading H and let X → Y be an FD, F say, with respect to H. If all

pairs of tuples t1 and t2 of r are such that whenever t1{X} = t2{X},

then t1{Y} = t2{Y}, then r satisfies F; otherwise r violates F.

Observe that it’s relations, not relvars, that satisfy or violate some given FD. For

example, the relation that’s the current value of relvar S (see Figure 3-1) satisfies both of

these FDs—

{ CITY } → { STATUS }

{ SNAME } → { CITY }

—and violates this one:

{ CITY } → { SNO }

Definition (FD holding): The FD F holds in relvar R (equivalently,

relvar R is subject to the FD F) if and only if every relation that can

be assigned to relvar R satisfies F. The FDs that hold in relvar R are

the FDs of R.

Chapter 5 FDs anD BCnF (Formal)

102

Important: Please note the terminological distinction I’m drawing here—FDs are

satisfied (or violated) by relations, but hold (or don’t hold) in relvars. Please note too that

I’ll adhere to this distinction throughout this book. By way of example, the following FD

holds in relvar S—

{ CITY } → { STATUS }

—and these two don’t:

{ SNAME } → { CITY }

{ CITY } → { SNO }

(Contrast the examples following the previous definition.) So now, at last, we know

precisely what it means for a given relvar to be subject to a given FD.

 Boyce/Codd Normal Form Revisited
With a proper understanding of FDs under our belt, as it were, I can now go on to tackle

the question of what it means for a relvar to be in BCNF. Again I proceed by means of a

series of precise definitions.

Definition (trivial FD): Let X → Y be an FD, F say, with respect

to heading H. Then F is trivial if and only if it’s satisfied by every

relation with heading H.

Now, in Chapter 4 I defined a trivial FD to be one that can’t possibly be violated.

There’s nothing wrong with that definition, of course; however, the one just given is

preferable because it explicitly mentions the pertinent heading. I also said in Chapter

4 that it’s easy to see that the FD X → Y is trivial if and only if Y is a subset of X. Well,

that’s true too; but I can now say that this latter fact isn’t really a definition but rather a

theorem, easily proved from the definition as such. (On the other hand, the definition as

such isn’t very helpful in determining whether a given FD is trivial, whereas the theorem

is. For that reason, we might regard the theorem as an operational definition, inasmuch

as it provides an effective test that can easily be applied in practice.) Let me state the

theorem explicitly for the record:

Theorem: Let X → Y be an FD, F say. Then F is trivial if and only if

the dependant Y is a subset of the determinant X (in symbols, Y ⊆ X).

Chapter 5 FDs anD BCnF (Formal)

103

Distinctions like the one I’m drawing here are sometimes characterized as
semantic vs. syntactic distinctions. to spell the point out: the original definition—F
is trivial if and only if it’s satisfied by every relation with the pertinent heading—is
semantic, because it defines what the concept means; by contrast, the theorem, or
what I’ve called the “operational” definition—F is trivial if and only if Y is a subset
of X—is syntactic, because it provides a check that can be performed in a purely
syntactic way. We’ll be meeting this distinction between semantic and syntactic
notions again (fairly frequently, in fact) in the pages ahead. Indeed, one case in
point arises almost immediately in connection with the notion of FD irreducibility
(see below).

To continue with the definitions:

Definition (superkey): A superkey of relvar R is a subset SK of the

heading H of R such that the FD SK → H holds in R (“is an FD of

R”). That FD is a superkey constraint on R.

For example, {SNO}, {SNO,CITY}, and {SNO,CITY,STATUS} are all superkeys for

relvar S.

Definition (irreducible FD): The FD X → Y is irreducible with

respect to relvar R (or just irreducible, if R is understood) if and

only if it holds in R and X' → Y doesn’t hold in R for any proper

subset X' of X.

For example, the FD {CITY} → {STATUS} is irreducible with respect to relvar S. By

contrast, the FD {CITY,SNO} → {STATUS}, though certainly an FD of S, is reducible with

respect to S. Observe that while FDs as such are defined with respect to some heading,

FD irreducibility is defined with respect to some relvar. In other words, FDs as such are

just a syntactic notion (an FD is just an expression that takes a certain syntactic form),

while FD irreducibility is a matter of semantics (it has to do with what the pertinent FD

means in connection with the pertinent relvar). Note: I don’t assume in what follows that

the FDs we’re talking about are irreducible ones only, though in practice we typically do.

Definition (key): A key of relvar R is a subset K of the heading H

of R such that the FD K → H is an irreducible FD of R. That FD is a

key constraint on R.

Chapter 5 FDs anD BCnF (Formal)

104

Note the appeal to FD irreducibility in the foregoing definition.

Definition (FD implied by keys): Let relvar R have heading H

and let X → Y be an FD, F say, with respect to H. Then F is implied

by the keys of R if and only if every relation r that satisfies R’s key

constraints also satisfies F.

This definition requires some elaboration. First of all, if some relation satisfies some

key constraint, then of course it satisfies the pertinent uniqueness requirement; and

if it satisfies the uniqueness requirement for the set of attributes that constitute some

key, it certainly also satisfies the uniqueness requirement for every superset of that

set of attributes (just so long as that superset is a subset of the pertinent heading, of

course)—in other words, for every corresponding superkey. Thus, the phrase “satisfies

R’s key constraints” in the definition could be replaced by the phrase “satisfies R’s

superkey constraints” without making any significant difference. Likewise, the concept

“implied by keys” could just as well be “implied by superkeys,” again without making any

significant difference.

Second, what happens if the FD F mentioned in the definition is trivial? Well, in that

case, by definition, F is satisfied by every relation r with heading H, and so F is certainly

satisfied by every relation r that satisfies R’s key constraints, a fortiori. So trivial FDs are

always “implied by keys,” trivially.

Third, then, suppose F is nontrivial. Then it’s easy to prove the following theorem:

Theorem: Let F be an FD that holds in relvar R. Then F is implied

by the keys of R if and only if it’s a superkey constraint on R.

In other words, it’s like that business with trivial FDs: The formal definition as such

isn’t much help in determining whether a given FD is implied by keys, but the theorem

is. For that reason, we can regard the theorem as an operational definition, since it

provides an effective test that can easily be applied in practice.

And now, at last, I can define BCNF:

Definition (Boyce/Codd normal form): Relvar R is in Boyce/Codd

normal form (BCNF) if and only if every FD of R is implied by the

keys of R.

Chapter 5 FDs anD BCnF (Formal)

105

However, given the various definitions and theorems already discussed in this

section, we can see that the following operational or “syntactic” definition (or theorem)

is valid too:

Definition (Boyce/Codd normal form): Relvar R is in Boyce/Codd

normal form (BCNF) if and only for every nontrivial FD X → Y that

holds in R, X is a superkey for R.

As I put it in Chapter 4, it follows from this definition that the only FDs that

hold in a BCNF relvar are either trivial ones (we can’t get rid of those, obviously)

or arrows out of superkeys (we can’t get rid of those, either). Though now I’d like

to add that when I talk about “getting rid of” some FD, I fear I’m being—I hope

uncharacteristically—a little sloppy ... For example, consider relvar S. That relvar is

subject to the FD {CITY} → {STATUS}, among others; as explained in Chapter 3,

therefore, the recommendation is to decompose the relvar into its projections SNC,

on {SNO,SNAME,CITY}, and CT, on {CITY,STATUS}. But if we do, then the

FD {SNO} → {STATUS}, which also holds in relvar S, “disappears,” in a sense; thus

we have indeed “gotten rid of it,” in a sense. But what does it mean to say the FD has

disappeared? The answer is: It’s been replaced by a multirelvar constraint (that is, a

constraint that spans two or more relvars). So the constraint certainly still exists—it

just isn’t an FD any more.3 Similar remarks apply throughout this book whenever I

talk of “getting rid of” dependencies of any kind, be they FDs or otherwise.

 Heath’s Theorem
Consider relvar S once again, with its FD {CITY} → {STATUS}. Suppose we decompose

that relvar, not as in Chapter 3 into relvars SNC and CT, but instead into relvars SNT

and CT—where CT is the same as before, but SNT has heading {SNO,SNAME,STATUS}

instead of {SNO,SNAME,CITY}. Sample values for SNT and CT corresponding to the

value shown for S in Figure 3-1 are shown in Figure 5-1:

3 Well ... it is an FD, but one that holds in the join of two relvars (viz., SNC and CT), rather than
in an individual relvar as such. Note, however, that enforcing the key constraints on those two
relvars will enforce that multirelvar constraint “automatically”; that is, the multirelvar constraint
in question is implied by—equivalently, is a logical consequence of—certain explicitly declared
constraints (actually key constraints, in the case at hand).

Chapter 5 FDs anD BCnF (Formal)

106

Given this decomposition, I hope you can see that:

• Relvars SNT and CT are both in BCNF (the keys are {SNO} and

{CITY}, respectively, and the only nontrivial FDs that hold in those

relvars are “arrows out of superkeys”).

• Unlike the decomposition in Chapter 3, however, this decomposition

is not nonloss but lossy. For example, we can’t tell from Figure 5-1

whether supplier S2 is in Paris or Athens—note what happens if we

join the two projections together4—and so we’ve lost information.

Let’s take a slightly closer look at this example. First of all, here are the predicates for

relvars SNT and CT:

• SNC: Supplier SNO is named SNAME and has status STATUS.

• CT: City CITY has status STATUS.

So the predicate for the join of those two relvars is:

Supplier SNO is named SNAME and has status STATUS and city

CITY has status STATUS.

Now recall the predicate for relvar S (see the answer to Exercise 2.6 in Chapter 2):

Supplier SNO is named SNAME and is located in city CITY, which

has status STATUS.

4 See the remarks on lossy joins in footnote 5 in Chapter 3 (in the section “Normalization Serves
Two Purposes”); see also the answer to Exercise 3.2 in that same chapter.

Figure 5-1. Relvars SNT and CT—sample values

Chapter 5 FDs anD BCnF (Formal)

107

This latter predicate is clearly not the same as the predicate for the join. To be more

precise, if some given tuple t satisfies it, then that tuple t also satisfies the predicate for

the join, but the converse is false. That’s why the join “loses information” or “is lossy”—

just because some tuple appears in the join, we can’t assume it also appears in the

original relvar S.

So what exactly is it that makes some decompositions nonloss and others lossy? This

is the question that lies at the heart of normalization theory. It can be stated formally thus:

Let r be a relation and let r1, ..., rn be projections of r. What
conditions must be satisfied in order for r to be equal to the join
of those projections?

(By the way, note the tacit assumption here that—as noted earlier—join is an n-adic

operator.)

An important, albeit partial, answer to this question was provided by Ian Heath in

19715 when he proved the following theorem:

Heath’s Theorem (for relations): Let relation r have heading H

and let X, Y, and Z be such that their union is equal to H (so X, Y,

and Z are all subsets of H). Let XY denote the union of X and Y,

and similarly for XZ. If r satisfies the FD X → Y, then r is equal to

the join of its projections on XY and XZ.

By way of example, consider the suppliers relation once again (i.e., the current value

of relvar S as shown in Figure 3-1). That relation satisfies the FD {CITY} → {STATUS}.

Thus, taking X as {CITY}, Y as {STATUS}, and Z as {SNO,SNAME}, Heath’s Theorem tells

us that the decomposition of that relation into its projections on the sets of attributes

{CITY,STATUS} and {CITY,SNO,SNAME}6 is nonloss—as indeed we already know.

Now, it’s important to understand that (to repeat) Heath’s answer to the original

question was only partial. I’ll explain what this means in terms of the foregoing example.

Basically, the theorem does tell us the decomposition into projections SNC and CT

(see Figure 3-2 in Chapter 3) is nonloss; however, it doesn’t tell us the one into SNT

and CT (see Figure 5-1) is lossy. In other words, if we decompose on the basis of an FD,

5 In his paper “Unacceptable File Operations in a Relational Database,” Proc. 1971 ACM SIGFIDET
Workshop on Data Description, Access, and Control, San Diego, Calif. (November 11th-12th, 1971).

6 Or, as we would “more naturally” tend to write them, interchanging the two sets of attributes
and specifying the individual attributes in a “more natural” order, on {SNO,SNAME,CITY} and
{CITY,STATUS}.

Chapter 5 FDs anD BCnF (Formal)

108

as we did in the example of Figure 3-2, then Heath’s Theorem says the decomposition

will be nonloss; but if we decompose on some other basis, as we did in the example of

Figure 5- 1, then the theorem has nothing to say on the matter. Thus, the theorem gives

a sufficient condition, but not a necessary one, for a given (binary) decomposition to

be nonloss. It follows that it might be possible to decompose relation r in a nonloss

way into its projections on XY and XZ even if it doesn’t satisfy the FD X → Y. Note: I’ll

be describing a stronger form of Heath’s Theorem, one that gives both necessary and

sufficient conditions for a given decomposition to be nonloss, later in this book (see

Chapter 12).

As an aside, I remark that in the paper in which he proved his theorem, Heath also

gave a definition of what he called “third” normal form that was in fact a definition of

BCNF. Since that definition preceded Boyce and Codd’s definition by some three years, it

seems to me that BCNF ought by rights to be called Heath normal form. But it isn’t.

Now, in Chapter 3, in the section “Normalization Serves Two Purposes,” I said

something like the following:

If you’ve been paying careful attention, you might reasonably

accuse me of practicing a tiny deception in the foregoing

discussion. To be specific, I’ve considered what it means for a

decomposition of relations to be nonloss; but normalization,

which is what we’re supposed to be talking about, isn’t a matter of

decomposing relations, it’s a matter of decomposing relvars.

Well, these remarks apply here too! So let’s get back to relvars ... Consider relvar S

once again. Suppose we do decide to perform the recommended decomposition into the

“projection” relvars SNC and CT; moreover, suppose we want that decomposition to be

nonloss, as indeed we surely do. In other words, what we want is for the decomposition

to be such that, at all times, the current value of relvar S is equal to the join of the current

values of SNC and CT.7 That is, we want relvar S to be subject to the following integrity

constraint, YCT (actually it’s an equality dependency—see Chapter 3):

CONSTRAINT YCT

 S = JOIN { S { SNO , SNAME , CITY } , S { CITY , STATUS } } ;

7 Here I’m adopting once again the convenient fiction that relvars S, SNC, and CT all coexist (living
alongside one another, as it were).

Chapter 5 FDs anD BCnF (Formal)

109

Now, recall from Chapter 2 that relvar S is certainly subject to the constraint that I

there called XCT:

CONSTRAINT XCT

 COUNT (S { CITY }) = COUNT (S { CITY , STATUS }) ;

Just to remind you, this latter constraint merely says the FD {CITY} → {STATUS}

holds in S. Appealing to Heath’s Theorem, therefore, we see that every possible value of

relvar S, since it necessarily satisfies constraint XCT, necessarily satisfies constraint YCT

as well. And it follows that constraint XCT implies constraint YCT (meaning, to spell the

point out, that if relvar S is subject to XCT—which it is—then it’s necessarily subject to

YCT as well). So constraint YCT does hold, and the decomposition of relvar S into relvars

SNC and CT is indeed nonloss, as required. It follows that we can take Heath’s Theorem

as applying to relvars after all, not just to relations. So let’s restate it accordingly:

Heath’s Theorem (for relvars): Let relvar R have heading H and

let X, Y, and Z be such that their union is equal to H (so X, Y, and

Z are all subsets of H). Let XY denote the union of X and Y, and

similarly for XZ. If R is subject to the FD X → Y, then R can be

nonloss decomposed into its projections on XY and XZ.

There’s one further point I want to make on the general topic of nonloss

decomposition (to BCNF or otherwise). Once again consider relvar S, with its

FD {CITY} → {STATUS}. By Heath’s Theorem, that relvar can be nonloss decomposed

into its projections on {SNO,SNAME,CITY} and {CITY,STATUS}. However, it can

clearly also be nonloss decomposed into those two projections together with (say)

the projection on {SNAME,STATUS}; that is, if we join all three of those projections

together, we get back to where we started. (Check this claim for yourself, using our

usual sample value for relvar S, if it isn’t immediately obvious.) However, that third

projection clearly isn’t needed in the process of reconstructing the original relvar.

Now, when we’re doing database design, for obvious reasons we usually consider

only decompositions for which every projection is needed in the reconstruction

process—but in this book I’m discussing decompositions in general, and I won’t

limit myself to those in which every projection is needed for reconstruction (barring

explicit statements to the contrary, of course).

Chapter 5 FDs anD BCnF (Formal)

110

 Exercises

 5.1 The version of join defined in the body of the chapter is an n-adic

operator for arbitrary n ≥ 0, not just a dyadic one (n = 2). So what

happens if n = 1? Or n = 0?

 5.2 Define as precisely as you can what it means for a relvar to be

subject to a functional dependency.

 5.3 Consider the following FDs:

 a. { CITY } → { STATUS }

 b. { SNO , CITY } → { STATUS }

 c. { SNO } → { SNO }

 d. { SNO , CITY } → { SNO }

 e. { SNO } → { SNO , CITY }

 f. { SNAME , SNO } → { STATUS , CITY }

 g. { SNO } → { STATUS }

 h. { SNAME } → { STATUS , SNO }

Which of these FDs are trivial? Which ones are satisfied by the

current value of relvar S as given in Figure 3-1? Which hold in

relvar S? Which are irreducible with respect to relvar S?

 5.4 Prove Heath’s Theorem (original version). Prove also that the

converse of that theorem isn’t valid. Note: In this connection, see

also Exercise 11.3 in Chapter 11.

 5.5 What exactly does it mean to say an FD is implied by a superkey?

Or a key?

 5.6 Here’s a predicate:

On day D during period P, student S is attending lesson L, which is
being taught by teacher T in classroom C , where D is a day of the
week (Monday- Friday) and P is a period (1-8) within the day.
Lessons are one period in duration and have a lesson identifier
L that’s unique with respect to all lessons taught in the week.

Chapter 5 FDs anD BCnF (Formal)

111

Design a set of BCNF relvars for this database. What are the keys?

 5.7 Design a database for the following. The entities to be

represented are employees and programmers. Every programmer

is an employee, but not every employee is a programmer.

Employees have an employee number, name, and salary.

Programmers have a (single) programming language skill. What

difference would it make to your design if programmers could

have two or more such skills?

 5.8 The definition of key given in the body of the chapter is somewhat

different in form from the definition given in Chapter 4. Are those

definitions logically equivalent?

 Answers

 5.1 The join of a single relation, JOIN{r}, is just r; the join of no

relations at all, JOIN{ }, is TABLE_DEE (the only relation of degree

zero and cardinality one). For further explanation, see SQL and

Relational Theory.

 5.2 See the body of the chapter.

 5.3 FDs c. and d. (only) are trivial. All eight FDs a. – h. are satisfied by

the current value of relvar S. All but h. hold in relvar S. FDs a., c.,

e., and g. are irreducible with respect to relvar S; FDs b., d., and

f. are reducible. (As for h., the question of irreducibility doesn’t

arise, since that FD doesn’t hold in the relvar. Check the definition

of FD irreducibility if you don’t immediately grasp this point.)

 5.4 The original version of Heath’s Theorem says that if (a) relation

r has heading H, (b) X, Y, and Z are subsets of H whose union is

equal to H, and (c) r satisfies the FD X → Y, then (d) r is equal to

the join of its projections on XY and XZ (where XY denotes the

union of X and Y, and similarly for XZ). In what follows, I show a

proof of this theorem in excruciating detail. Note: The proof makes

much use of expressions of the form “t ∈ r.” This expression can be

read as “tuple t appears in relation r.”

Chapter 5 FDs anD BCnF (Formal)

112

First consider the simplest possible case, in which X, Y, and Z are

singleton sets (i.e., contain just one attribute each). Let the attributes

in question be A, B, and C, respectively. Now, we know from the

answer to Exercise 3.2 in Chapter 3 that no tuple of r is lost by taking

the projections r1 of r on XY (i.e., on {A,B}) and r2 of r on XZ (i.e., on

{A,C}), respectively, and then joining r1 and r2 back together again.

I now show that, conversely, every tuple of the join is indeed a tuple

of r (in other words, the join doesn’t generate any “spurious” tuples).

Let (a,b,c) ∈ JOIN {r1,r2}. In order to generate such a tuple in the

join, we must have (a,b) ∈ r1 and (a,c) ∈ r2. Hence there must exist

tuples (a,b,c') ∈ r and (a,b',c) ∈ r for some b' and some c'. But r

satisfies {A} → {B}; hence b = b', and so (a,b,c) ∈ r.

The next simplest case is the one in which X, Y, and Z aren’t

necessarily singleton sets but are pairwise disjoint. In this case,

we can effectively regard the attributes constituting X as a single

attribute (and similarly for Y and Z), and the argument of the

previous paragraph then applies directly.

We now need to consider what happens if X, Y, and Z aren’t

pairwise disjoint. There are three cases to consider: X and Y not

disjoint, X and Z not disjoint, and Y and Z not disjoint.

First, then, let X and Y not be disjoint, but let X and Z be disjoint

and let Y and Z be disjoint (hence Z = H – XY). Recall now that if

X → Y is satisfied, then so is X → Y' for all subsets Y' of Y. Hence

the FD X → Y – X is satisfied. But X and Y – X are disjoint; by the

previous result, therefore, r is equal to the join of its projections

on (a) the union of X and Y – X and (b) XZ. But (again) X and Y – X

are disjoint, so their union is equal to XY. So the theorem applies

in this case also, and we can (and I will) assume without loss of

generality in the remainder of the proof that X and Y are disjoint.

Now let X and Z not be disjoint, but let Y and Z be disjoint. By the

previous result, then, r is equal to the join of its projections on (a)

XY and (b) the union of X and Z – X. But the union of X and Z – X is

equal to XZ. So the theorem applies in this case also, and we can

(and I will) assume without loss of generality in the remainder of

the proof that X and Z are disjoint.

Chapter 5 FDs anD BCnF (Formal)

113

Now let Y and Z not be disjoint. Let W = Z – Y. Since r satisfies the FD

X → Y, then, it also satisfies the FD X → Y – W, and Y – W and Z are

disjoint. By the previous result, therefore, r is equal to the join of its

projections on (a) the union of X and Y – W and (b) XZ. I now appeal

to a lemma, easily proved (see below), to the effect that if (a) r1 and r2

are projections of r such that JOIN{r1,r2} = r, (b) H' is a subset of H but

a superset of the heading of r1, and (c) r' is the projection of r on H',

then (d) JOIN{r',r2} = r; in other words, loosely, r1 can be extended

with arbitrary attributes of r2 without altering the result of the join.

From this lemma, it follows immediately that r is equal to the join of

its projections on XY and XZ; so the theorem applies in this case also.

Conclusion: Heath’s Theorem is valid in all possible cases.

Lemma: let r have heading H and let H be partitioned into A, B, C, and D, and
assume for simplicity that none of these four subsets is empty. (extending the proof
to cover the case where that assumption fails to hold is left as a subsidiary exercise.)
Without loss of generality, we can treat A, B, C, and D as if they were individual
attributes. so let r1 = R{A,B } and r2 = r {B,C,D }, and let (a,b) ∈ r1 and (b,c,d) ∈ r2.
since r = JoIn{r1,r2 }, it follows that (a,b,c,d) ∈ r; hence (a,b,c) ∈ r {A,B,C } and
(b,c,d) ∈ r {B,C,D }; hence (a,b,c,d) ∈ JoIn{r {A,B,C },r {B,C,D }}. the desired result
follows—r {B,C,D } is r2, and r {A,B,C } can be taken as r', with H' = {A,B,C }.

The converse of Heath’s Theorem would say that if relation r is

equal to the join of its projections on XY and XZ, then r satisfies

the FD X → Y. This converse is false. To show this is so, it’s

sufficient to exhibit a counterexample. So consider a relvar CTX,

with attributes CNO (course), TNO (teacher), and XNO (textbook),

and predicate Course CNO can be taught by teacher TNO and uses

textbook XNO. Here’s a sample value for this relvar:

Chapter 5 FDs anD BCnF (Formal)

114

This sample value is equal to the join of its projections on

{CNO,TNO} and {CNO,XNO}, but it clearly fails to satisfy the FD

{CNO} → {TNO} (or the FD {CNO → {XNO}, come to that). Note:

I’ll have more to say about this particular example in Chapter 12.

 5.5 See the body of the chapter.

 5.6 Suppose we start with a relvar with attributes D, P, S, L, T, and C

corresponding to parameters of the predicate in the obvious way.

Then the following nontrivial FDs hold in that relvar:

{ L } → { D , P , C , T }

{ D , P , C } → { L , T }

{ D , P , T } → { L , C }

{ D , P , S } → { L , C , T }

A possible set of BCNF relvars (in outline) is:8

SCHEDULE { L , D , P , C , T }

 KEY { L }

 KEY { D , P , C }

 KEY { D , P , T }

STUDYING { S , L }

 KEY { S , L }

Note that the FD {D,P,S} → {L,C,T} is “lost” in this decomposition

(see Chapter 6).

 5.7 The simplest design (in outline) is:

EMP { ENO , ENAME , SALARY }

 KEY { ENO }

PGMR { ENO , LANG }

 KEY { ENO }

 FOREIGN KEY { ENO } REFERENCES EMP

8 Subsidiary exercise: What are the predicates for these relvars?

Chapter 5 FDs anD BCnF (Formal)

115

Every employee has a tuple in EMP (and EMP has no other tuples).

Employees who happen to be programmers additionally have a

tuple in PGMR (and PGMR has no other tuples). Note that the

join of EMP and PGMR gives full information—employee number,

name, salary, and language skill—for programmers (only).

The only significant difference if programmers could have two or

more language skills is that relvar PGMR would be “all key” (i.e.,

its sole key would be {ENO,LANG}), thus:

PGMR { ENO , LANG }

 KEY { ENO , LANG }

 FOREIGN KEY { ENO } REFERENCES EMP

 5.8 Yes, they are (of course!).

Chapter 5 FDs anD BCnF (Formal)

117
© C. J. Date 2019
C. J. Date, Database Design and Relational Theory, https://doi.org/10.1007/978-1-4842-5540-7_6

CHAPTER 6

Preserving FDs
Nature does require
Her times of preservation

—William Shakespeare: Henry VIII (1613)

Once again consider our usual suppliers relvar S. Since {SNO} is a key, that relvar is

certainly subject to the FD {SNO} → {STATUS}. Thus, taking X as {SNO}, Y as {STATUS},

and Z as {SNAME,CITY}, Heath’s Theorem tells us we can decompose that relvar into

relvars SNC and ST, where SNC has heading {SNO,SNAME,CITY} and ST has heading

{SNO,STATUS}. Sample values for SNC and ST corresponding to the value shown for S in

Figure 3-1 are shown in Figure 6-1:

In this decomposition:

• Relvars SNC and ST are both in BCNF—{SNO} is the key for both, and

the only nontrivial FDs that hold in those relvars are “arrows out of

superkeys.”

• What’s more, the decomposition is certainly nonloss (as is in fact

guaranteed by Heath’s Theorem)—if we join SNC and ST together, we

get back to S.

Figure 6-1. Relvars SNC and ST─sample values

118

• However, the FD {CITY} → {STATUS} has been lost—by which I mean,

of course, that it’s been replaced by a certain multirelvar constraint,

as explained in the previous chapter.1 The multirelvar constraint in

question can be stated as follows:

CONSTRAINT ... WITH (SNCT := JOIN { SNC , ST }) :

 COUNT (SNCT { CITY }) =

 COUNT (SNCT { CITY , STATUS }) ;

Explanation: What this constraint says is that if we join SNC and

ST, we get a result—call it SNCT—in which the number of distinct

cities is equal to the number of distinct city / status pairs. And

the fact that this latter property holds is equivalent to saying

that the FD {CITY} → {STATUS} holds in that join, and hence in

the original relvar S also (since the decomposition was nonloss,

meaning S and that join SNCT are logically identical).

So we’ve “lost” an FD. What are the implications? Well, certainly the multirelvar

constraint that replaces it is harder to state, as we’ve just seen. More to the point,

perhaps, it’s harder to enforce: harder, that is, than it would have been with the

preferred decomposition into projections SNC and CT, as illustrated in Figure 3-2 in

Chapter 3.2 For example, suppose we update relvar SNC to change the city for supplier

S1 from London to Athens; then we must also update relvar ST to change the status for

supplier S1 from 20 to 30—because if we don’t, then joining SNC and ST back together

will produce a result that isn’t a legitimate value for relvar S. (By contrast, if we update

relvar SNC to change the city for supplier S2 from Paris to Athens, then we don’t have

to update relvar ST as well—but we still have to inspect relvar ST in order to determine

that fact.)

1 To say an FD is “lost” in such circumstances is usual but is also (as explained at the end of the
section “Boyce/Codd Normal Form Revisited” in the previous chapter) a trifle inappropriate—to
repeat, what’s really happening here is that the FD in question has been replaced by another
constraint. However, the present situation differs from that described in the previous chapter in
that the new constraint isn’t enforced automatically as a logical consequence of enforcing certain
other constraints. That’s the point.

2 There might be performance penalties, too. Now, I shouldn’t really mention this fact; as I said
in Chapter 1, I never want performance considerations to be the driving force behind my logical
design. But in the case at hand, performance is just an additional point that happens to reinforce
my main argument.

Chapter 6 preserving FDs

119

it might be possible, given a well architected DBMs, to get the system to do that
necessary inspection of relvar st “automatically,” instead of the user having to do
it. it might even be possible to get the system to perform any necessary additional
updates “automatically,” too. even in such a system, however, it’s still the case
that the constraint is harder to enforce (i.e., more work still has to be done, even if
it’s done by the system and not the user). in any case, such possibilities are just a
pipedream at the time of writing—today’s commercial products mostly don’t even
allow multirelvar constraints to be stated, in general, let alone enforce them; the
foregoing possibilities are out of reach today, and dealing with (and in particular
enforcing) such constraints is thus the user’s responsibility.

So the message is: Try to choose a decomposition that preserves FDs instead of one

that loses them. (In the case at hand, replacing the projection on {SNO,STATUS} by that

on {CITY,STATUS} solves the problem.) Loosely speaking, in other words, if the FD X → Y

holds in the original relvar, try not to choose a decomposition in which X winds up in one

relvar and Y in another. Note: Of course, I’m assuming here that the decomposition isn’t

being done on the basis of that FD X → Y itself—because if it is, we’ll effectively wind up

with two X’s, one of which will be in the same relvar as Y (necessarily so) and the other

won’t. I’m also assuming, tacitly, that X → Y is part of what’s called an irreducible cover

for the total set of FDs that hold in the original relvar. I’ll be discussing irreducible covers

later in this chapter.

 An Unfortunate Conflict
The basic idea of FD preservation is fairly straightforward; unfortunately, however,

there are complications, and it turns out that there’s quite a bit more that needs to be

said on the subject. By way of a gentle introduction to some of those complications, I’ll

present what some might regard as a pathological example. We’re given a relvar SJT

Chapter 6 preserving FDs

120

with attributes S (student), J (subject), and T (teacher), and predicate Student S is taught

subject J by teacher T. The following business rules apply:3

• For each subject, each student of that subject is taught by only one

teacher.

• Each teacher teaches only one subject.

• Each student studies several subjects, and hence is taught by several

teachers (in general).

• Each subject is studied by several students (in general).

• Each subject is taught by several teachers (in general).

• Distinct students of the same subject might or might not be taught

that subject by the same teacher.

A sample value for this relvar that conforms to these rules is shown in Figure 6-2:

Figure 6-2. Sample value for relvar SJT

3 This is the first time we’ve encountered the term business rule in this book, but we’ll see many
more examples of its use in later chapters. Basically, a business rule is a statement, usually
expressed (as here) somewhat informally in natural language, that’s supposed to capture some
aspect of what the data in the database means and/or how it’s constrained. There’s no consensus
on any more precise definition of the term, though most writers would at least agree that relvar
predicates are an important special case. See Appendix A for further discussion.

What are the FDs for relvar SJT? From the first business rule, we have {S,J} → {T}.

From the second, we have {T} → {J}. A careful analysis of the remaining rules shows that

no other FDs hold other than ones that are either trivial or reducible (or both). Thus, the

only nontrivial, irreducible FDs that hold are these two:

{ S , J } → { T }

{ T } → { J }

Chapter 6 preserving FDs

121

So what are the keys? Well, {S,J} is a key, since the entire heading is clearly

functionally dependent on {S,J} and not on any proper subset of {S,J}. Also, {S,T} is a key,

because:

 a. It’s certainly the case, given that the FD {T} → {J} holds, that the

entire heading is functionally dependent on {S,T}.

 b. It’s also the case, given that the FDs {S} → {J} and {T} → {S} do not

hold, that the entire heading isn’t functionally dependent on any

proper subset of {S,T}.

So there are two keys, {S,J} and {S,T}.4 Perhaps more to the point, {T} is not a key, and

so relvar SJT is subject to an FD that’s not “an arrow out of a key” (i.e., it’s not implied

by keys, to state the matter a trifle more formally). As a consequence, the relvar isn’t in

BCNF, though it is in 3NF. (Exercise: Check this claim.) And it suffers from redundancy; for

example, given the sample value shown in Figure 6-2, the fact that Professor White teaches

Math appears twice. As you would expect, therefore, it also suffers from update anomalies;

for example, with respect to Figure 6-2 again, we can’t delete the fact that Jones is studying

Physics without losing the information that Professor Brown teaches Physics.

Now, we can get over these problems by decomposing the relvar appropriately.

Applying Heath’s Theorem to the FD {T} → {J} (take X, Y, and Z to be {T}, {J}, and {S},

respectively), we obtain the following nonloss decomposition:

TJ { T , J }

 KEY { T }

TS { T , S }

 KEY { T , S }

I’ll leave it as another exercise for you (a) to show the values of these two relvars

corresponding to the value of SJT shown in Figure 6-2, (b) to show that these relvars are

in BCNF, and (c) to check that the decomposition does in fact avoid the redundancy and

update anomalies mentioned above. Observe in particular that the FD {T} → {J} becomes

a key constraint in this decomposition; in the original design, by contrast, it wasn’t, and so

it had to be stated and enforced separately (over and above the key constraints, I mean).

4 Which overlap, as you can see. By the way, as with relvar SNP in Chapter 4, I’ve chosen not to
make either of those keys primary, which is why there’s no double underlining in Figure 6-2.

Chapter 6 preserving FDs

122

So far, so good. But there’s another problem. The fact is, although the decomposition

into TJ and TS does indeed solve certain problems, it unfortunately introduces others. To

be specific, the FD

{ S , J } → { T }

is lost (certainly it isn’t implied by the FD {T} → {J}, which is the only nontrivial FD to

hold in the result of the decomposition). As a consequence, relvars TJ and TS can’t be

independently updated. For example, an attempt to insert the tuple

(Smith , Prof. Brown)

into TS must be rejected, because Professor Brown teaches Physics and Smith is

already being taught Physics by Professor Green; yet this fact can’t be detected without

inspecting TJ.

To sum up, what the example shows is as follows: There are two objectives we

typically aim for in nonloss decomposition, BCNF projections and FD preservation, and,

sadly, these objectives can be in conflict with one another. In other words, it isn’t always

possible to achieve both.

Now, at this point in an earlier draft of this chapter, I wrote the following:

So which objective do we give up on? Well, I’d tell you if I could,

but I can’t. What the SJT example demonstrates is that the theory

of normalization, important though it is, isn’t enough as it stands;

I mean, there are questions it doesn’t answer. So the message is:

We need more science! Normalization theory is certainly scientific,

but it doesn’t solve all design problems.

At the prompting of one of my reviewers, however, I’ve come to the conclusion that the

foregoing paragraph is probably overstated. It’s not so much more science we need here,

it’s better implementations! That is, the main argument for tolerating a less than properly

normalized design, in cases like the one at hand, is the fact that today’s DBMSs make it

quite awkward to deal with multirelvar constraints like the “lost” FD in the example. So

let me set a stake in the ground and state for the record that dependency preservation is

probably the objective to give up on, in those cases in which there’s a conflict.5

5 In the case at hand, of course, we must decompose the relvar as indicated if we want to be able
to record the fact that (say) Professor Black teaches physics even though Professor Black has no
students at the moment.

Chapter 6 preserving FDs

123

 Another Example
I suggested at the beginning of the previous section that the SJT example might be

considered pathological. Now, however, I’m going to claim it’s not, not entirely; I’m

going to give several more examples that (as far as I’m concerned) demonstrate that the

issue of FD preservation arises more often than you might think.

Normalization as commonly perceived is a process of stepping from 1NF to 2NF to

3NF (etc.) in sequence. Let’s agree to refer to that process as commonly perceived—i.e.,

stepping from 1NF to 2NF to 3NF (etc.) in sequence—as “the conventional normalization

procedure.” In this section and the next two, then, I want to present a series of examples

to demonstrate that the conventional normalization procedure isn’t necessarily a good

idea if followed too blindly. My first example involves a relvar that looks like this:

RX1 { SNO , PNO , CITY , STATUS , QTY }

The name RX1 stands for “relvar example 1”; the predicate is Supplier SNO is located

in city CITY, which has status STATUS, and supplies part PNO in quantity QTY. (I ignore

supplier names for simplicity.) Let’s assume, reasonably enough, that the following FDs

hold in this relvar:

{ SNO } → { CITY }

{ CITY } → { STATUS }

{ SNO , PNO } → { QTY }

Now, it’s intuitively obvious that the following FDs hold as well, implicitly:6

{ SNO } → { STATUS }

{ SNO , PNO } → { CITY , STATUS }

In fact, the last of these FDs can be expanded to {SNO,PNO} → H, where H is the

entire heading; in other words, {SNO,PNO} is a key for relvar RX1.

Recall now that a relvar R is in 2NF if and only if, for every key K and every nonkey

attribute A, the FD K → {A} is irreducible. Clearly, then, RX1 isn’t in 2NF, because the

FD {SNO,PNO} → {CITY} is “an FD out of a key” of RX1 but isn’t irreducible; to be

specific, it isn’t irreducible because the FD {SNO} → {CITY} also holds in that relvar. The

conventional normalization procedure would thus recommend that we decompose the

6 I’ll have quite a lot more to say on the notion of FDs holding implicitly (“implicit FDs”) in the
next chapter, also in Chapter 11.

Chapter 6 preserving FDs

124

relvar by applying Heath’s Theorem to that FD {SNO} → {CITY}. But if we do, then this is

what we get:

RX1A { SNO , CITY }

 KEY { SNO }

RX1B { SNO , PNO , STATUS , QTY }

 KEY { SNO , PNO }

Observe now that the FD {CITY} → {STATUS} is lost in this decomposition. So one

immediate lesson from this example is that the issue of FD preservation can be relevant

to the step from 1NF to 2NF—not just to the step from 3NF to BCNF, which was the step

illustrated by the SJT example in the previous section.

relvar rX1a here is certainly in 2nF. By contrast, relvar rX1B isn’t, because the
FD {snO,pnO} → {statUs} is reducible. so we can apply heath’s theorem again
to decompose it into its projections on {snO,statUs} and {snO,pnO,QtY}, both of
which are in 2nF; however, the damage has already been done, as it were—the FD
{CitY} → {statUs} has already been lost.

How can we preserve the FD in this example? One answer is: By decomposing on

the basis, not of the FD {SNO} → {CITY}, but rather of the FD {SNO} → {CITY,STATUS}.

Note carefully, however, that this FD isn’t one of the FDs originally listed explicitly, nor

is it one of the ones I said were obviously implied by those explicit ones; it’s thus unlikely

to have been chosen as a basis for decomposition in the conventional normalization

procedure. Nevertheless, suppose we do choose it and perform the corresponding

decomposition. Here’s the result:

RX1A′ { SNO , CITY , STATUS }
 KEY { SNO }

RX1B′ { SNO , PNO , QTY }
 KEY { SNO , PNO }

In this decomposition, STATUS appears in the relvar with key {SNO} and not the

relvar with key {SNO,PNO}, and the FD {CITY} → {STATUS} is thereby preserved. Note:

Of course, relvar RX1A′ here is still not in 3NF, so we would probably want to decompose

it further. Again, however, we need to be a little careful; to be specific, we need to

Chapter 6 preserving FDs

125

decompose on the basis of the FD {CITY} → {STATUS}, not {SNO} → {STATUS}, or we’ll

lose an FD again. But {CITY} → {STATUS} is the FD the conventional normalization

procedure would tell us to use, so there shouldn’t be a problem here.

Now, an alternative to the foregoing would be to decompose the original relvar RX1

on the basis of the FD {CITY} → {STATUS}, yielding:

RX1A′′ { CITY , STATUS }
 KEY { CITY }

RX1B′′ { SNO , PNO , CITY , QTY }
 KEY { SNO , PNO }

This decomposition also preserves the FD {CITY} → {STATUS}. Note, however, that

this FD isn’t the one that caused the original 2NF violation in relvar RX1 (it isn’t “an

arrow out of a proper subkey”); again, therefore, it’s quite unlikely in practice, if we’re

following the conventional normalization procedure, that we would have chosen it as a

basis for decomposition at this stage. Note also that relvar RX1B′′ here is still not in 3NF,

so we would probably want to decompose it further. I’ll leave the details of that further

decomposition for you to think about.

 … And Another
Let’s look at another example. Suppose suppliers are partitioned into classes (C1, C2,

etc.), so we have a relvar RX2 that looks like this (I’ll ignore supplier names for simplicity,

as I did in the RX1 example):

RX2 { SNO , CLASS , CITY , STATUS }

 KEY { SNO }

The predicate is Supplier SNO is in class CLASS, is located in city CITY, and has status

STATUS. Suppose also that (a) each class has just one status and (b) each city has just

one status as well, but that (c) classes and cities are otherwise quite independent of each

other. Then the following FDs hold:

{ CLASS } → { STATUS }

{ CITY } → { STATUS }

Chapter 6 preserving FDs

126

Note: I’m also assuming there’s a business rule in effect that says that, for any given

supplier, the city status is equal to the class status (that’s why we’re able to get away with

just one STATUS attribute instead of two).7

Recall now that a relvar R is in 3NF if and only if, for every nontrivial FD X → Y that

holds in R, either X is a superkey or Y is a subkey (or both). Clearly, then, RX2 isn’t in

3NF, because in the FD {CITY} → {STATUS}, {CITY} isn’t a superkey and {STATUS} isn’t

a subkey. The conventional normalization procedure would thus recommend that we

decompose the relvar by applying Heath’s Theorem to that FD {CITY} → {STATUS}. But if

we do, this is what we get (two projection relvars both in 3NF):

RX2A { CITY , STATUS }

 KEY { CITY }

RX2B { SNO , CLASS , CITY }

 KEY { SNO }

Observe now that the FD {CLASS} → {STATUS} is lost in this decomposition. (Of

course, if we had done the decomposition on the basis of that FD instead of the FD

{CITY} → {STATUS}, then this latter FD would have been lost instead.) So now we see the

issue of FD preservation can also be relevant to the step from 2NF to 3NF.

Now, we can preserve the FD in this example by decomposing on the basis of the FD

{SNO} → {CLASS,CITY}—though once again this FD is unlikely to have been chosen as a

basis for decomposition, since it wasn’t stated explicitly.8 Be that as it may, here’s the result:

RX2A′ { CLASS , CITY , STATUS }
 KEY { CLASS , CITY }

RX2B′ { SNO , CLASS , CITY }
 KEY { SNO }

7 So a more accurate version of the predicate would be: Supplier SNO is in class CLASS (which has
status STATUS) and is located in city CITY (which also has status STATUS).

8 Nor is it likely to have been, either, since {SNO} is a key (in fact the only key) for relvar RX2. At most
we might expect to see two FDs stated separately, viz., {SNO} → {CLASS} and {SNO} → {CITY}—but
even that’s pretty unlikely.

Chapter 6 preserving FDs

127

In this decomposition, {CLASS,CITY} is a (composite) foreign key in RX2B′,
referencing RX2A′. Relvar RX2B′ is in 3NF. However, relvar R2XA′ isn’t even in 2NF,

since the FD {CLASS,CITY} → {STATUS} is clearly reducible. So if we decide to keep that

relvar, the FDs {CLASS} → {STATUS} and {CITY} → {STATUS} will have to be separately

stated and enforced.9 Alternatively, we could decompose the relvar into its projections

on {CLASS,STATUS} and {CITY,STATUS}, in which case an appropriate multirelvar

constraint will have to be separately stated and enforced. Exercise: What would that

constraint look like?

 … And Still Another
Consider now a revised version of the example from the previous section in which (a)

suppliers are again partitioned into classes, but (b) each class now has just one city

(where each city in turn has just one status, as before). So we have a relvar RX3 that looks

like this (once again I ignore supplier names for simplicity):

RX3 { SNO , CLASS , CITY , STATUS }

In fact, of course, RX3 has the same heading as RX2 did, but the predicate is

different: Supplier SNO is in class CLASS, which has city CITY, which has status STATUS.

The following FDs hold among others:

{ SNO } → { CLASS }

{ CLASS } → { CITY }

{ CITY } → { STATUS }

Relvar RX3 isn’t in 3NF, because in the FD {CLASS} → {CITY}, {CLASS} isn’t a

superkey and {CITY} isn’t a subkey. (The same goes for {CITY} → {STATUS}, mutatis

mutandis.) The conventional normalization procedure would thus recommend that we

9 Note, moreover, that relvar RX2A′ isn’t really even a correct design, since it prohibits tuples
in which the specified class and city have different status values. To put it another way, the
predicate for that relvar isn’t just Class CLASS and city CITY have status STATUS—rather, it’s
something like this: There exists some supplier s such that s has class CLASS and city CITY, both of
which have status STATUS.

Chapter 6 preserving FDs

128

decompose the relvar by applying Heath’s Theorem to that FD {CLASS} → {CITY}. But if

we do, this is what we get:

RX3A { CLASS , CITY }

 KEY { CLASS }

RX3B { SNO , CLASS , STATUS }

 KEY { SNO }

In this decomposition, RX3A is in 3NF but RX3B is only in 2NF—and as you can see,

the FD {CITY} → {STATUS} is lost. In fact, it would have been better to decompose on the

basis of that FD {CITY} → {STATUS}:

RX3A′ { CITY , STATUS }
 KEY { CITY }

RX3B′ { SNO , CLASS , CITY }
 KEY { SNO }

RX3A′ is in 3NF while RX3B′ is only in 2NF, but at least the FD {CITY} → {STATUS}

has been preserved. What’s more, we can now go on to decompose RX3B′ on the basis of

the FD {CLASS} → {CITY} to obtain:

RX3BA′ { CLASS , CITY }
 KEY { CLASS }

RX3BB′ { SNO , CLASS }
 KEY { SNO }

These relvars are both in 3NF.

So now we’ve seen four different examples of decompositions in which FDs are or

might be lost. There’s a lot more that could be said on the topic, but one clear message

is: The conventional normalization procedure—in fact, the one that’s often taught in

practice!—is inadequate in several respects. To be specific:

• Conventional wisdom has it that FD preservation is relevant only to

the step from 3NF to BCNF, but as we’ve seen such isn’t necessarily

the case.

• The FDs typically suggested by the conventional normalization

procedure as the basis for decomposition aren’t necessarily the best

ones to use.

Chapter 6 preserving FDs

129

• That procedure also assumes the best design can be found by

stepping from 1NF to 2NF to 3NF (etc.) in sequence, which again isn’t

necessarily the case.

Of course, the very nomenclature of “first,” “second,” etc. reinforces this last

perception; but that nomenclature is really nothing more than a historical accident, in

a way. I mean, if the first of the normal forms to be defined had been BCNF—which it

easily could have been, since the definition is so conceptually simple, involving as it does

no mention of FD irreducibility, nonkey attributes, subkeys, 1NF, 2NF, or 3NF—then

there would really never have been any need to call out 2NF and 3NF as specific normal

forms, as such, at all.10

 A Procedure that Works
Here now is a procedure that’s guaranteed to produce a decomposition in which all

relvars are in 3NF (though not necessarily BCNF) and all FDs are preserved.11 For

convenience, I’ll refer to it in what follows as the 3NF procedure. The input is a relvar R

and what’s called an irreducible cover, C say, for the FDs that hold in R. I’ll explain what

an irreducible cover is in a few moments—by the way, there’s that word irreducible

again—but let me state the procedure first:

 1. Let S be a set of headings. Initialize S to the empty set, { }.

 2. Let X be the left side (the determinant) of some FD in C; let the

complete set of FDs in C with left side X be X → Y1, ..., X → Yn;

and let the union of Y1, ... Yn be Y. Add the union of X and Y to S.

Perform this step for each distinct X.

 3. Let U be the set of attributes of R not contained in any element of

S. If U is nonempty, add U to S.

 4. If no element of S is a superkey for R, add some key K of R to S.

10 In support of this contention, I’d like to quote something Codd himself had to say in the paper
in which he introduced 2NF and 3NF (see Appendix D): “The basic ideas underlying [2NF and
3NF] are simple, but they have many subtle ramifications. The author has found that numerous
examples are needed to explain and motivate the precise definitions of these normal forms.”

11 I give this procedure partly just for historical reasons. You can skip it if you like.

Chapter 6 preserving FDs

130

At the conclusion of this procedure, the elements of S are the headings of a set of

3NF relvars into which R can be nonloss decomposed without losing any FDs. Note in

particular that the procedure makes no explicit mention of 2NF, not even as some kind of

stepping stone.

So how does it work? Clearly, the notion of an irreducible cover is important. In

order to explain that notion, let me first call out something I’ve appealed to several times

already in passing: namely, the fact that some FDs imply others. As a simple example, the

FDs X → Y and Y → Z together imply the FD X → Z—by which I mean, if the first two FDs

are satisfied by relation r, then the third one must be satisfied by r as well. Or, perhaps

more to the point: If the first two hold in relvar R, then the third one must hold in R as

well. We saw an illustration in the previous section, in connection with relvar RX3,

where the FDs {CLASS} → {CITY} and {CITY} → {STATUS} both held, and so the

FD {CLASS} → {STATUS} held as well.

So some FDs imply others. Given a set F of FDs, then, we can sensibly talk about a

cover for F. Here’s the definition:

Definition (cover): A cover for a set F of FDs is a set C of FDs such

that every FD in F is implied by the FDs in C.

As a trivial example, let F be the set:

{ X → Y , Y → Z , X → Z }

Then the following are both covers for F:

{ X → Y , Y → Z }

{ X → Y , Y → Z , X → Z }

This example illustrates two points right away: First, covers aren’t unique, in general;

second, any set of FDs is certainly a cover for itself, because among other things every FD

implies itself. A third and more important point is the following: Enforcing the FDs in a

cover C for a given set F will “automatically” enforce those in that set F. Thus, given some

set F of FDs that need to be enforced, it’s sufficient to find some cover C for F and enforce

the FDs in C instead. (In fact, it’s sufficient to enforce the FDs in an irreducible cover for

F, as will quickly become clear.)

Chapter 6 preserving FDs

131

Now I can define what it means for a cover to be irreducible:

Definition (irreducible cover): A cover C for a set F of FDs

is irreducible if and only if it possesses all of the following

properties:

 1. Singleton dependant: Every FD in C has just one attribute on

the right side.

 2. Irreducible determinant: Every FD in C is itself irreducible.12

 3. No redundant FDs: No FD can be discarded from C without

losing the property that C is a cover for F.

Of course, the following question arises immediately: Given some specific set of FDs,

how can we find an irreducible cover for that set? I’ll answer this question properly in the

next chapter. For now, let me just give an example—viz., the following set of FDs, which

constitute an irreducible cover for the FDs that hold in our usual suppliers relvar S:

{ SNO } → { SNAME }

{ SNO } → { CITY }

{ CITY } → { STATUS }

To elaborate briefly: It’s certainly the case that every FD that holds in S is implied by

these three FDs taken together, so these three certainly constitute a cover. Also, each of

the three has a singleton dependant; no attribute can be dropped from any of the three

determinants; and none of the three FDs can be discarded. Thus, it follows that the cover

is in fact an irreducible one. By contrast, the following sets of FDs are also covers for the

FDs that hold in S, but they’re not irreducible (in each case, why not?):

1. { SNO } → { SNAME , CITY }

{ CITY } → { STATUS }

12 I’m being sloppy here. Recall from Chapters 4 and 5 that FD irreducibility is defined only with
respect to some relvar—but I haven’t said anything here about the FDs in F as holding in any
relvar, and there’s thus no context that would allow us to talk legitimately about FDs being
irreducible. What I mean, however, is that no attribute can be discarded from the left side of any
FD in C without losing the property that C is a cover for F.

Chapter 6 preserving FDs

132

2. { SNO , SNAME } → { CITY }

{ SNO } → { SNAME }

{ CITY } → { STATUS }

3. { SNO } → { SNAME }

{ SNO } → { CITY }

{ CITY } → { STATUS }

{ SNO } → { STATUS }

Now let’s get back to the 3NF procedure. In particular, let’s see how it works out for

the SJT example.13 Just to remind you, the relvar had attributes S, J, and T; keys {S,J} and

{S,T}; and was subject to the FD {T} → {J}. So these FDs hold:

{ S , J } → { T }

{ S , T } → { J }

{ T } → { J }

It’s easy to see, however, that the FD {S,T} → {J} is redundant here—in fact I effectively

assumed as much when I first discussed this example earlier in the chapter—and hence

that the other two FDs together form an irreducible cover (which I’ll call C):

{ S , J } → { T }

{ T } → { J }

Now we can apply the 3NF procedure. We start with an empty set of headings S. The

second step does two things: It gathers together FDs in C that have the same left side—

something that’s effectively already been done in the example—and then adds the sets

(actually headings)

{ S , J , T }

{ T , J }

to S. The third step has no effect, since every attribute of the original relvar is now

contained in at least one element of S. The last step also has no effect, since the element

{S,J,T} of S is a superkey for the original relvar. Overall, therefore, the 3NF procedure tells

13 Of course SJT is already in 3NF, but we can still apply the procedure to it—and I have my
reasons, which I trust will quickly become apparent, for wanting to do so.

Chapter 6 preserving FDs

133

us that relvar S can be nonloss decomposed, in an FD preserving way, into its projections

on {S,J,T} and {T,J}. Points arising:

• The projection on {S,J,T} is of course identical to the original relvar!—

in other words, it’s an identity projection (see the next section), and

there isn’t much decomposition, as such, going on here.

• There doesn’t actually seem to be much point in maintaining the

second relvar (i.e., the projection on {T,J}) as well as the original one,

unless we want to be able to say that, e.g., Professor Black teaches

Physics without there existing, at the same time, some student

who’s actually being taught by Professor Black. If we don’t want this

ability, we probably won’t want to maintain that relvar. Thus, the

decomposition produced by the 3NF procedure isn’t necessarily a

recommended one—but, to repeat, it’s one in which all relvars are in

3NF and all FDs are preserved.

I’ll leave it as an exercise (Exercise 6.3) to show what happens when the 3NF

procedure is applied to relvars RX1, RX2, and RX3. Meanwhile, I’d like to close this

section with a few words regarding BCNF and a possible BCNF procedure.

First, we can add another (fifth) step to the 3NF procedure, as follows:

 5. Let Z be an element of S such that the projection P of relvar R on the

attributes of Z is not in BCNF; let X → Y be an FD of C that holds in

P; and let X not be a superkey for P. Replace Z in S by (a) the union

of X and Y and (b) the difference Z – Y between Z and Y (in that

order). Perform this step for each distinct Z and each distinct X.

Now, the 3NF procedure applied to relvar SJT produced a set S consisting of the

headings {T,J} and {S,J,T}. The projection of SJT on {T,J} is in BCNF, but the (identity)

projection of SJT on {S,J,T} isn’t, because the FD {T} → {J} holds in this latter projection

and {T} isn’t a superkey. Applying Step 5, therefore, we delete the heading {S,J,T} and

insert (a) the union of {T} and {J}—but this insertion has no effect, since that union is

already an element of S—and (b) the difference between {S,J,T} and {J}, in that order.

Thus, S winds up with the following headings as elements:

{ S , T }

{ T , J }

Chapter 6 preserving FDs

134

And these two headings are the headings of a set of BCNF relvars into which SJT can

be nonloss decomposed (the keys for those relvars are {S,T} and {T}, respectively). Thus,

adding Step 5 to the 3NF procedure converts it into a BCNF procedure, though without

any guarantee that FDs will be preserved. (In fact, of course, it’s impossible to provide any

such guarantee, since we already know that BCNF and FD preservation can be conflicting

objectives.) However, any FDs lost are ones that can’t be preserved without violating BCNF.

Actually we can simplify matters somewhat and go straight to BCNF, bypassing 3NF

entirely, using the following procedure (the input is as for the 3NF procedure—i.e., it

consists of a relvar R and an irreducible cover C for the FDs that hold in R):

 1. Initialize S to contain just the heading of R.

 2. (Same as Step 2 of the 3NF procedure.) Let X be the left side (the

determinant) of some FD in C; let the complete set of FDs in C with

left side X be X → Y1, ..., X → Yn; and let the union of Y1, ... Yn be Y.

Add the union of X and Y to S. Perform this step for each distinct X.

 3. (Same as Step 5 above.) Let Z be an element of S such that the

projection P of R on the attributes of Z is not in BCNF; let X → Y

be an FD of C that holds in P; and let X not be a superkey for P.

Replace Z in S by (a) the union of X and Y and (b) the difference

Z – Y between Z and Y (in that order). Perform this step for each

distinct Z and each distinct X.

At the conclusion of this procedure, the elements of S are the headings of a set of

BCNF relvars into which R can be nonloss decomposed, though not necessarily without

losing FDs. Note that the procedure makes no mention of either 2NF or 3NF.

 Identity Decompositions
It’s a bit of a digression from the main theme of this chapter, but I’d like to elaborate

briefly on the concept of an identity projection. Here’s a definition (I define it for relvars,

but of course a precisely analogous definition applies to relations as well—and tuples

too, come to that):

Definition (identity projection): The identity projection of a

given relvar is the projection of that relvar on all of its attributes.

Now, it should be obvious that any relvar can be nonloss decomposed, albeit

trivially, into its identity projection. However, some people don’t like to think of such a

Chapter 6 preserving FDs

135

decomposition as being a decomposition, as such, at all (as I said in connection with the

SJT example, there isn’t much decomposition, as such, going on here). If you happen to

be one of those people, then you might prefer the following way of looking at the matter.

Let relvar R have heading H. Then it’s certainly true that the FD { } → { } holds in R, where

{ } is the empty set of attributes (this FD is trivial, of course, and holds in every relvar). By

Heath’s Theorem, therefore—take X, Y, and Z to be { }, { }, and H, respectively—R can be

nonloss decomposed into its projections R1 and R2, where:

 1. The heading XY of R1 is the union of { } and { }, which reduces to just

{ }; i.e., R1 is the projection of R on no attributes at all, and its value

is either TABLE_DUM, if R is empty, or TABLE_DEE otherwise.14

 2. The heading XZ of R2 is the union of { } and H, which reduces to

just H; i.e., R2 is the projection of R on all of its attributes, or in

other words the identity projection of R.

Now, I hope it’s clear that this decomposition is nonloss—R is certainly equal to

the join of R1 and R2. (On the other hand, it’s also true that the combination of R1 and

R2 fails to meet the usual requirement that both projections should be needed in the

reconstruction process.)

While I’m on the subject of what might be called identity decompositions, let me

remark that any relvar can also always be decomposed (again trivially, but this time

“horizontally” instead of “vertically”) into the corresponding identity restriction.15 Here’s

a definition (again I define it for relvars, but of course an analogous concept applies to

relations as well, though not this time to tuples):

Definition (identity restriction): The identity restriction of

a given relvar R is any restriction of R in which the restriction

condition is identically true—in other words, any restriction of R

that’s logically equivalent to one of the following form:

R WHERE TRUE

14 TABLE_DUM and TABLE_DEE are pet names for, respectively, the unique relation with no
attributes and no tuples and the unique relation with no attributes and one tuple (we’ve met
these relations before, in the answer to Exercise 2.8 in Chapter 2). For further discussion, see
SQL and Relational Theory.

15 For precise definitions of restriction and the associated notion of a restriction condition, see the
answer to Exercise 15.3 in Chapter 15.

Chapter 6 preserving FDs

136

Note: In logic, something that’s identically true, such as the boolean expression

CITY = CITY, is called a tautology. Thus, we can say the identity restriction of relvar R is

any restriction in which the restriction condition is a tautology.

I remark in passing that any given relvar R also always has an empty restriction,16

which we can denote thus:

R WHERE FALSE

The (disjoint!) union of the identity restriction and the empty restriction of a given

relvar R is of course identically equal to R. Note: In logic, something that’s identically

false, such as the boolean expression CITY ≠ CITY, is called a contradiction; thus, we can

say the empty restriction of relvar R is any restriction in which the restriction condition is

a contradiction.17

 More on the Conflict
To revert to the main theme of the chapter: By now we’ve seen several examples in

which FDs might be lost. In most of those examples, we could avoid losing the FD by

being careful; in one case, however (the SJT example), the objectives of preserving FDs

and BCNF decomposition were genuinely in conflict with each other. So the obvious

question arises: Can we characterize those cases where there really is a conflict? The

answer is yes; in fact, it’s easy to do so.

Let R be the relvar we’re dealing with, and let C be an irreducible cover for the FDs

that hold in R. Construct an FD graph as follows:

 1. Create a node for each attribute of R.

 2. Let X → Y be an FD in C for which X involves two or more

attributes; create a “supernode” containing just the nodes for

the attributes named in X. (If you’re doing this on paper, you

could draw a circle enclosing the individual attribute nodes.)

Supernodes are considered to be nodes. Repeat this step for each

FD in C for which the determinant involves two or more attributes.

16 So too does any given relation r, of course.
17 The term contradiction doesn’t mean quite the same in logic as it does in ordinary discourse,

but the difference isn’t important for present purposes.

Chapter 6 preserving FDs

137

 3. Let X → Y be an FD in C. Draw a directed arc from the node for X

to the node for Y. Repeat this step for each FD in C.

 4. If and only if the finished graph contains any cycles (where a cycle

is a sequence of two or more directed arcs from a node to itself),

then R cannot be nonloss decomposed into BCNF projections

without losing an FD.

As an exercise, try applying the foregoing procedure to the various examples discussed

earlier in the chapter. When you do, you’ll quickly understand (if you haven’t done so

already) what’s really going on here. To spell the point out: There’s a genuine conflict only

if the relvar involves a pattern of FDs akin to the pattern that obtains in the SJT example.

 Independent Projections
To close this chapter, I’d like to return to the example I opened it with. Just to remind you,

that example involved the nonloss decomposition of our usual suppliers relvar S into its

projections SNC on {SNO,SNAME,CITY} and ST on {SNO,STATUS}. That decomposition

lost the FD {CITY} → {STATUS}, with the consequence that updates to either of the

projections sometimes required updates to the other, in order to enforce the constraint

that each city has just one status. By contrast, the “sensible” decomposition of S into its

projections SNC (on {SNO,SNAME,CITY}) and CT (on {CITY,STATUS}) suffers from no

such problem—updates can be made to either projection without regard to the other.18

For the sake of the present discussion, let me refer to decompositions like the

one into SNC and ST as bad and decompositions like the one into SNC and CT as

good. As we’ve seen, then, the projections in a good decomposition can be updated

independently of each other; for that reason, they’re sometimes referred to explicitly

as independent projections. By contrast, the projections in a bad decomposition aren’t

independent in that same sense. So we can say that in order to preserve FDs, we want a

decomposition in which the projections are independent. And there’s a theorem, due to

Jorma Rissanen, that can help in this regard. Before I state that theorem, however, let me

give a precise definition of what it means for two projections to be independent:

18 Except that there might be a foreign key constraint, or even an equality dependency, between
{CITY} in CT and {CITY} in SNC (see Chapter 3).

Chapter 6 preserving FDs

138

Definition (independent projections): Projections R1 and R2

of relvar R are independent if and only if every FD that holds in R

also holds in the join of R1 and R2.

Here now is the theorem:

Rissanen’s Theorem: Let relvar R, with heading H, have projections

R1 and R2, with headings H1 and H2, respectively; further, let H1 and

H2 both be proper subsets of H, let their union be equal to H, and

let their intersection be nonempty.19 Then projections R1 and R2 are

independent if and only if (a) their common attributes constitute a

superkey for at least one of them and (b) every FD that holds in R is

implied by those that hold in at least one of them.

Consider the “good” decomposition of S into its projections SNC and CT. Those two

projections are independent, because (a) the set of common attributes is just {CITY}

and {CITY} is a superkey—actually a key—for CT, and (b) every FD that holds in S either

holds in one of the two projections or is implied by those that do (see the next chapter).

By contrast, consider the “bad” decomposition into the projections SNC and ST. Here

the projections aren’t independent, because the FD {CITY} → {STATUS} can’t be inferred

from those holding in those projections (though it’s at least true that the set of common

attributes, {SNO}, is a superkey—actually a key—for both).

As a historical note, I observe that it was Rissanen’s work on independent projections

(which was done, or at least published, in 1977) that laid the foundation for the theory of

what we now call FD preservation.

 Exercises

 6.1 Relvar SJT from the section “An Unfortunate Conflict” is subject

to the FD {S,J} → {T}. Write a Tutorial D CONSTRAINT statement

to express the multirelvar constraint that replaces this FD if we

decompose SJT into its projections TJ and TS on {T,J} and {T,S},

respectively.

19 The condition that the intersection of H1 and H2 be nonempty is as in Rissanen’s original
statement of the theorem but appears to be unnecessary.

Chapter 6 preserving FDs

139

 6.2 (Repeated from the body of the chapter.) Suppose relvar RX2A′ from

section “... And Another” is decomposed into its projections on

{CLASS,STATUS} and {CITY,STATUS}. As noted in that section, an

appropriate multirelvar constraint will now have to be separately

stated and enforced. What does that constraint look like?

 6.3 The following relvar is intended to represent a set of United States

street addresses:

ADDR { STREET , CITY , STATE , ZIP }

Using Tutorial D syntax, a typical tuple of this relvar might look

like this:

TUPLE { STREET '1600 Pennsylvania Ave.' ,

 CITY 'Washington' , STATE 'DC' , ZIP '20500' }

Assume, not entirely unrealistically, that the following FDs hold in

this relvar and are irreducible:

{ STREET , CITY , STATE } → { ZIP }

{ ZIP } → { CITY , STATE }

How would you decompose this relvar?

 6.4 Show the effects of applying the 3NF procedure to relvars RX1,

RX3, and RX2 (note the sequence here!) from the body of the

chapter.

 6.5 Here’s a predicate:

Film star S plays role R in movie M, which was directed by
director D and released in year Y; further, star S was born on
date B and therefore has zodiac sign Z and Chinese zodiac C,
and Z and C together determine S’s horoscope H.

Give a set of FDs that capture the foregoing state of affairs. State

any assumptions you make regarding business rules that might be

in effect. Also, apply the BCNF procedure to obtain an appropriate

set of BCNF relvars. Does that procedure lose any FDs?

Chapter 6 preserving FDs

140

 Answers

 6.1 CONSTRAINT ... WITH (SJT := JOIN { TJ , TS }) :

 COUNT (SJT) =

 COUNT (SJT { S , J }) ;

Or, using the alternative style for constraints described in the

answer to Exercise 4.8 in Chapter 4:

CONSTRAINT ... JOIN { TJ , TS } KEY { S , J } ;

 6.2 Let LT and CT be the projections of RX2A′ on {CLASS,STATUS}

and {CITY,STATUS}, respectively. Then (a) {CLASS} and {CITY}

will be foreign keys in RX2B′, referencing LT and CT, respectively,

and (b) the following multirelvar constraint will also hold:

CONSTRAINT ... WITH (LTX := LT RENAME { STATUS AS X } ,

 CTY := CT RENAME { STATUS AS Y }) :

 AND (JOIN { RX2B′ , LTX , CTY } , X = Y) ;

 6.3 The first of the given FDs means {STREET,CITY,STATE} is a key;

the second means the relvar isn’t in BCNF. However, if we use

Heath’s Theorem to decompose it (on the basis of the functional

dependency {ZIP} → {CITY,STATE}) into BCNF projections as

follows—

ZCT { ZIP , CITY , STATE }

 KEY { ZIP }

ZR { ZIP , STREET }

 KEY { ZIP , STREET }

—then we lose the FD {STREET,CITY,STATE} → {ZIP}. As a result,

relvars ZCT and ZR can’t be independently updated. (Subsidiary

exercise: Develop some sample values for ZCT and ZR to illustrate

this point.) Of course, if we don’t perform this decomposition,

there’ll be some redundancy; to be specific, the fact that a given

zip code corresponds to a particular city and state will appear

Chapter 6 preserving FDs

141

several times. But does that redundancy cause problems? Given

that the zip code for a given city and state doesn’t change very

often, the answer is “possibly, but not very often.” (On the other

hand, it’s not true that zip codes never change.)

 6.4 Here’s an irreducible cover for RX1:

{ SNO , PNO } → { QTY }

{ SNO } → { CITY }

{ CITY } → { STATUS }

The 3NF procedure yields {SNO,PNO,QTY}, {SNO,CITY}, and

{CITY,STATUS}.

Next, RX3. An irreducible cover:

{ SNO } → { CLASS }

{ CLASS } → { CITY }

{ CITY } → { STATUS }

The 3NF procedure yields {SNO,CLASS}, {CLASS,CITY}, and

{CITY,STATUS}.

Finally RX2. Irreducible cover:

{ SNO } → { CLASS }

{ SNO } → { CITY }

{ CLASS } → { STATUS }

{ CITY } → { STATUS }

The 3NF procedure yields {SNO,CLASS,CITY}, {CLASS,STATUS},

and {CITY,STATUS}. The interesting thing about this example is

that (as was shown in the body of the chapter) if we decompose

on the basis of the FD {SNO} → {CLASS,CITY}, we obtain

{SNO,CLASS,CITY} and {CLASS,CITY,STATUS} as the 3NF

projection headings, and that’s not what we get from the 3NF

procedure. In fact, the result of the 3NF procedure requires the

following rather complicated multirelvar constraint (an equality

dependency) to be maintained:

CONSTRAINT ... JOIN { SLC , LT } = JOIN { SLC , CT } ;

Chapter 6 preserving FDs

142

(“for a given supplier, class status = city status”; SLC, LT, and

CT here denote the projections of RX2 on {SNO,CLASS,CITY},

{CLASS,STATUS}, and {CITY,STATUS}, respectively). The example

thus illustrates the point that although the 3NF procedure is

certainly guaranteed to yield 3NF projections and not to lose any

FDs, it probably shouldn’t be followed too blindly.

Note: Suppose we were to name the status attributes in relvars LT

and CT differently, thus:

LT { CLASS , CLASS_STATUS }

CT { CITY , CITY_STATUS }

Then the constraint that the two status values must be equal for

any given supplier might be stated thus:

CONSTRAINT ... IS_EMPTY ((JOIN { SLC , LT , CT })

 WHERE CLASS_STATUS ≠ CITY_STATUS) ;

(The Tutorial D expression IS_EMPTY (rx) returns TRUE if the

relation r denoted by the relational expression rx is empty and

FALSE otherwise.) Alternatively:

CONSTRAINT ...

 AND (JOIN { SLC , LT , CT } ,

CLASS_STATUS = CITY_STATUS) ;

The overall message of this example might be put this way: This

whole business of losing or preserving FDs in particular is really

just a special case of a more general phenomenon: namely, that

if we start with some design D1 and map it into some logically

equivalent design D2, then in general that process will involve

some restructuring of constraints as well as of relvars, necessarily

(as should in fact be obvious).

Chapter 6 preserving FDs

143

 6.5 Assumptions: No star plays more than one role in any given movie;

no movie has more than one director. (Are these assumptions

reasonable?) FDs:

{ S , M } → { R }

{ M } → { D , Y }

{ S } → { B }

{ B } → { Z , C }

{ Z , C } → { H }

If all nine attributes are combined in a single relvar, then that

relvar is only in 1NF ({S,M} is a key). The BCNF procedure yields

{S,M,R}, {M,D,Y}, {S,B}, {B,Z,C}, and {Z,C,H}. No FDs are lost.

Chapter 6 preserving FDs

145
© C. J. Date 2019
C. J. Date, Database Design and Relational Theory, https://doi.org/10.1007/978-1-4842-5540-7_7

CHAPTER 7

FD Axiomatization

[The] true and solid living axioms

—Francis Bacon: The New Organon (1620)

I’ve touched on the point several times already that some FDs imply others; now it’s time

to get more specific. First of all, however, I need to introduce some notation—notation

that (a) reduces the number of keystrokes required in formal proofs and the like and (b)

can also help, sometimes, to see the forest as well as the trees, as it were.

As you might recall, Heath’s Theorem as I stated it in Chapter 5 included the

following sentence: Let XY denote the union of X and Y, and similarly for XZ. The

notation I want to introduce is basically just an extension of this simple idea (it’s a trifle

illogical, but it’s very convenient). To be specific, the notation uses expressions of the

form XY to mean:

• The union of {X} and {Y}, if X and Y are individual attribute names

• The union of X and Y, if X and Y are sets of attribute names

• The union of {X} and Y, if X is an individual attribute name and Y

denotes a set of such names (or the union of X and {Y}, if the roles of

X and Y are reversed)

It also allows {X} to be abbreviated to just X (e.g., in an FD) if X denotes an individual

attribute. Note: For convenience, I’ll refer to this notation from this point forward as

Heath notation (though I must make it clear that Heath himself didn’t actually use it in

his paper).

146

 Armstrong’s Axioms
We’ve seen that, formally speaking, an FD is just an expression: to be specific, an

expression of the form X → Y, where X and Y are sets (actually sets of attribute names,

but from a formal point of view it really doesn’t matter what the sets consist of). Now,

suppose we’re given some set (F, say) of FDs. Then we can apply certain formal rules of

inference to derive further FDs from the ones in F—FDs that are implied by the ones in

F, meaning that if the ones in F hold in some given relvar, then the derived ones hold

in that relvar too. The rules in question were first stated by Armstrong in 1974 and for

that reason are usually referred to as Armstrong’s inference rules or (more commonly)

as Armstrong’s axioms. They can be stated in a variety of equivalent ways, of which the

following is perhaps the simplest:

 1. Reflexivity: If Y is a subset of X (i.e., Y ⊆ X), then X → Y.

 2. Augmentation: If X → Y, then XZ → YZ.

 3. Transitivity: If X → Y and Y → Z, then X → Z.

Observe that these rules are intuitively reasonable, given the intended interpretation of

FDs. That is, since we know what FDs “mean,” we can easily see that, e.g., if the FDs X → Y

and Y → Z both hold in relvar R, then the FD X → Z must do so too. (The suppliers relvar S

illustrates this particular rule—the FDs {SNO} → {CITY} and {CITY} → {STATUS} both hold

in that relvar, and therefore the FD {SNO} → {STATUS} does so, too.)

So the rules are reasonable. But what’s more important is that they’re both sound

and complete. Soundness and completeness are concepts frequently encountered

in connection with formal systems in general. In the particular formal system under

consideration here, this is what they mean:

• Completeness: If an FD f is implied by the ones in the given set F, then

it can be derived from the ones in F by means of the rules. (To repeat,

to say that some FD f is implied by the FDs in some set F is to say that

if the FDs in F hold, then f holds too.)

Chapter 7 FD axiomatization

147

• Soundness: If an FD f isn’t implied by the ones in the given set F, then

it can’t be derived from the ones in F by means of the rules.1

The rules thus form what’s called an axiomatization for FDs. As a consequence,

they can be used to derive what’s called the closure F+of any given set F of FDs. Here’s a

definition:

Definition (closure of a set of FDs): Let F be a set of FDs. Then

the closure F+ of F is the set of all FDs implied by those in F.

What’s more, the derivation process can be mechanized; that is, Armstrong’s rules

can be incorporated into (e.g.) a design tool that, given a set F of FDs that hold in

some relvar R, will be able to compute the closure F+ of that set F, or in other words the

complete set of all FDs that hold in that relvar. The significance of this state of affairs

should be obvious.

 Additional Rules
Several additional inference rules can be derived from the original three, the following

among them. Such additional rules can be used to simplify the practical task of

computing F+ from F. Here are some examples:

 4. Self determination: X → X.

 5. Union: If X → Y and X → Z, then X → YZ.

 6. Composition: If X → Y and Z → W, then XZ → YW.

 7. Decomposition:2 If X → YZ, then X → Y and X → Z.

1 If you have a background in logic, you might like the following characterization: Soundness
means all theorems are tautologies; completeness means all tautologies are theorems. Or more
intuitively (and with acknowledgments to Hugh Darwen): Soundness means if you can prove it,
it’s true; completeness means if it’s true, you can prove it.

2 Two points: First, don’t confuse this kind of decomposition with nonloss decomposition
as discussed at length elsewhere in this book. Second, observe that composition and
decomposition as here defined aren’t quite inverses of one another; to be specific, the inverse of
decomposition is that special case of composition in which Z is replaced by X and W is replaced
by Z. (In other words, the inverse of decomposition isn’t composition in general but rather
union—union in this context being a special case of composition.)

Chapter 7 FD axiomatization

148

In the next section, I’ll show how these four rules can be derived from the original three.

First, however, let me give a couple of examples to show how the rules (both original and

additional ones) can be used in practice. By way of a first example, suppose we’re given a

relvar R with attributes A, B, C, D, E, F, and we’re told the following FDs hold in that relvar:

A → BC

B → E

CD → EF

I’ll now show the FD AD → F also holds in R (a fact that, I think you’ll agree, isn’t

immediately obvious).3 Here’s the proof:

 1. A → BC (given)

 2. A → C (1, decomposition)

 3. AD → CD (2, augmentation)

 4. CD → EF (given)

 5. AD → EF (3 and 4, transitivity)

 6. AD → F (5, decomposition)

For a second example, recall from Chapter 6 the notion of an irreducible cover. Just to

remind you, (a) a cover for a given set F of FDs is a set C of FDs such that every FD in F is

implied by those in C, and (b) that cover C is irreducible if and only if it possesses all of

the following properties:

 1. Singleton dependant: Every FD in C has just one attribute on the

right side.

 2. Irreducible determinant: No attribute can be discarded from the left

side of any FD in C without losing the property that C is a cover for F.

 3. No redundant FDs: No FD can be discarded from C without losing

the property that C is a cover for F.

3 If you’d prefer a more concrete example, take A as employee number, B as department number,
C as manager’s employee number, D as project number for a project directed by that manager
(unique within manager), E as department name, and F as percentage of time spent by the
specified manager on the specified project. The fact that the given FDs A → BC, B → E, and CD
→ EF all hold is then intuitively reasonable. (But what about the FD AD → F? Myself, I still don’t
think it’s immediately obvious that that one holds as well.)

Chapter 7 FD axiomatization

149

Now, I assumed in the previous chapter (tacitly) that every set F of FDs had an

irreducible cover. In fact, this is easy to see:

• Thanks to the decomposition rule, we can assume without loss of

generality that every FD in F has a singleton right side.

• Next, for each FD in F, examine each attribute A on the left side; if

deleting A from that left side has no effect on the closure F+, delete A

from that left side.

• For each FD remaining in F, if deleting that FD from F has no effect

on the closure F+, delete that FD from F.

The final version of F is irreducible and is a cover for the original version.

Here then is a concrete example to illustrate the process of actually finding an

irreducible cover. Let the given set of FDs (all of which presumably hold in some relvar R

with attributes A, B, C, D) be as follows:

A → BC

B → C

A → B

AB → C

AC → D

Then the following procedure will produce an irreducible cover for this given set:

 1. First, rewrite the FDs such that each has a singleton right side:

A → B

A → C

B → C

A → B

AB → C

AC → D

Observe now that the FD A → B occurs twice, so one occurrence

can be dropped.

 2. Attribute C can be dropped from the left side of the FD AC → D,

because we have A → C, so A → AC by augmentation, and we’re

given AC → D, so A → D by transitivity; so the C on the left side of

AC → D is redundant.

Chapter 7 FD axiomatization

150

 3. The FD AB → C can be dropped, because again we have A → C, so

AB → CB by augmentation, so AB → C by decomposition.

 4. The FD A → C is implied by the FDs A → B and B → C taken

together, so it can be dropped.

We’re left with:

A → B

B → C

A → D

This set is irreducible.

 Proving the Additional Rules
As promised, in this section I show how to derive Rules 4-7 from the original Rules 1-3.

 4. Self determination: X → X.

Proof: Immediate by reflexivity.

 5. Union: If X → Y and X → Z, then X → YZ.

Proof: X → Y (given), hence X → XY by augmentation; also

X → Z (given), hence XY → YZ by augmentation; hence X → YZ

by transitivity.

 6. Composition: If X → Y and Z → W, then XZ → YW.

Proof: X → Y (given), hence XZ → YZ by augmentation; likewise,

Z → W (given), hence YZ → YW by augmentation; hence

XZ → YW by transitivity.

 7. Decomposition: If X → YZ, then X → Y and X → Z.

Proof: X → YZ (given) and YZ → Y by reflexivity; hence X → Y

by transitivity (and likewise for X → Z).

Chapter 7 FD axiomatization

151

 Another Kind of Closure
To recap, the closure F+ of a set F of FDs is the set of all FDs implied by those in F. Now, in

principle we could compute F+ from F by repeatedly applying Armstrong’s rules (and/or

rules derived therefrom) until they stop producing new FDs. In practice, however, there’s

little need to compute F+ per se (which is just as well, perhaps, since the procedure

just outlined is hardly very efficient). But now I want to show how we can compute a

certain important subset of F+: namely, that subset consisting of all FDs having a given

determinant. More precisely, I’ll show how, given a heading H, a subset Z of H, and a

set F of FDs with respect to H, we can compute what’s called the closure Z+ of Z under F.

Here’s the definition:

Definition (closure of a set of attributes): Let H be a heading, let

Z be a subset of H, and let F be a set of FDs with respect to H. Then

the closure Z+ of Z under F is the maximal subset C of H such that

Z → C is implied by the FDs in F.

By the way, note that we now have two kinds of closure (try not to confuse them!):

closure of a set of FDs, and closure of a set of attributes under a set of FDs.4 Note too that

we use the same “superscript plus” notation for both.

Here then is a simple pseudocode algorithm for computing the closure Z+of Z under F:

Z+ := Z ;

do "forever" ;

 for each FD X → Y in F

 do ;

 if X is a subset of Z+

 then replace Z+ by the union of Z+ and Y ;

 end ;

 if Z+ did not change on this iteration

 then quit ; /* computation complete */

end ;

4 Not to mention the kind of closure that applies to the operators of the relational algebra.

Chapter 7 FD axiomatization

152

Let’s do an example. Suppose the given heading is ABCDEG and we want to compute

the closure AB+ of the set of attributes AB under the following set F of FDs:

A → BC

E → CG

B → E

CD → EG

Let’s now step through the algorithm:

 1. First of all, we initialize the result AB+ to the set of attributes AB.

 2. We now go round the inner loop four times, once for each of the

given FDs. On the first iteration (for the FD A → BC), we find that

the determinant A is indeed a subset of AB+ as computed thus

far, so we add attributes (B and) C to the result. AB+ is now the set

ABC.

 3. On the second iteration (for the FD E → CG), we find that the

determinant E is not a subset of the result as computed so far,

which thus remains unchanged.

 4. On the third iteration (for the FD B → E), we add E to AB+, which

thus now has the value ABCE.

 5. On the fourth iteration (for the FD CD → EG), AB+ remains

unchanged.

 6. Now we go round the inner loop four times again. On the first

iteration, the result remains unchanged; on the second, it expands

to ABCEG; on the third and fourth, it remains unchanged.

 7. Now we go round the inner loop four times again. The result

remains unchanged, and so the whole process terminates, with

AB+ = ABCEG.

Well, I hope you can see from this example that computing Z+ given H, F, and Z is

essentially straightforward. And the important thing is this: Given some set F of FDs

(with respect to some heading H), we can easily tell whether some specific FD X → Y

(with respect to that same heading H) is implied by F, because it will be so if and only if

Y is a subset of the closure X+ of X under F. In other words, we now have a simple way of

Chapter 7 FD axiomatization

153

determining whether a given FD X → Y is in the closure F+ of F without actually having to

compute F+.

It also follows from the definition (of closure of a set of attributes) that the superkeys

for a relvar R are precisely those subsets SK of the heading of R such that the closure SK+

of SK—under the pertinent set of FDs—is the entire heading of R.

 Exercises

 7.1 What does it mean to say that Armstrong’s rules are sound? Complete?

 7.2 What’s the closure of a set of FDs? Let F be the set of FDs

containing just the FD {SNO,PNO} → {QTY}, which holds in relvar

SP. Show the closure of that set F.

 7.3 Given the definition of what it means for an FD to be satisfied,

show that the reflexivity, augmentation, and transitivity rules are

reasonable.

 7.4 (Try this exercise without referring back to the body of the chapter.)

Prove that the three rules of the previous exercise imply the self

determination, union, composition, and decomposition rules.

 7.5 The following theorem is due to Hugh Darwen:5

Darwen’s Theorem: If X → Y and Z → W, then XV → YW, where

V = Z – Y.

Prove this theorem. Which rules from the previous two exercises

did you use? Which rules from those exercises can be derived as

special cases of the theorem?

 7.6 Find an irreducible cover for the following set of FDs:

AB → C BE → C

C → A CE → FA

BC → D CF → BD

ACD → B D → EF

5 Hugh Darwen: “The Role of Functional Dependence in Query Decomposition,” in C. J. Date and
Hugh Darwen, Relational Database Writings 1989-1991 (Addison-Wesley, 1992).

Chapter 7 FD axiomatization

154

 7.7 Consider the following set of FDs:

A → B

BC → DE

AEF → G

Is the FD ACF → DG implied by this set?

 7.8 Two sets of FDs are equivalent if and only if each is a cover for the

other. Are the following sets equivalent?

{ A → B , AB → C , D → AC , D → E }

{ A → BC , D → AE }

Note that any given set F of FDs is certainly equivalent to any

set that’s an irreducible cover for F, and further that two sets are

equivalent if and only if they have the same irreducible cover.

 7.9 Relvar R has attributes A, B, C, D, E, F, G, H, I, and J, and is subject

to the following FDs:

ABD → E C → J

AB → G CJ → I

B → F G → H

Is this set reducible? What keys does R have?

 Answers

 7.1 See the body of the chapter.

 7.2 The closure F+ of a set F of FDs is the set of all FDs implied by

those in F. The closure of the set of FDs containing just the FD

{SNO,PNO} → {QTY} is given in the answer to Exercise 4.1 in

Chapter 4.

Chapter 7 FD axiomatization

155

 7.3 The FD X → Y is satisfied if and only if whenever two tuples agree

on X, they also agree on Y (I’m deliberately giving this definition in

a pretty loose form). So:

• If two tuples agree on X, they certainly agree on every subset Y of

X, so the reflexivity rule is reasonable.

• If two tuples agree on XZ, they certainly agree on Z. They also

certainly agree on X and hence, if X → Y is satisfied, on Y as

well; hence they agree on YZ, and so the augmentation rule is

reasonable.

• If two tuples agree on X and X → Y is satisfied, they agree on Y.

If they agree on Y and Y → Z is satisfied, they agree on Z. So the

transitivity rule is reasonable.

 7.4 See the body of the chapter.

 7.5 Let U denote the intersection of Z and Y and let V denote the

difference Z – Y between Z and Y (in that order). Then:

 1. X → Y (given)

 2. Z → W (given)

 3. X → U (1, decomposition)

 4. XV → UV (3, augmentation)

 5. XV → Z (simplifying 4)

 6. XV → W (5, 2, transitivity)

 7. XV → YW (1, 6, composition; this completes the proof)

The rules used in this proof are indicated in the comments. The

following rules are all special cases of Darwen’s Theorem: the

union, transitivity, and augmentation rules. So too is the following

useful rule:

If X → Y and XY → Z, then X → Z.

Chapter 7 FD axiomatization

156

Note: This latter is a special case of what’s sometimes called the

pseudotransitivity rule, which in its general form looks like this:

Pseudotransitivity: If X → Y and YW → Z, then XW → Z.

 7.6 The first step is to rewrite the given set of FDs such that every FD

has a singleton right side:

 1. AB → C

 2. C → A

 3. BC → D

 4. ACD → B

 5. BE → C

 6. CE → A

 7. CE → F

 8. CF → B

 9. CF → D

 10. D → E

 11. D → F

Now:

• 2 implies 6, so we can drop 6.

• 8 implies CF → BC by augmentation, which with 3 implies

CF → D by transitivity, so we can drop 9.

• 8 implies ACF → AB by augmentation, and 11 implies

ACD → ACF by augmentation, and so ACD → AB by transitivity,

and so ACD → B by decomposition, so we can drop 4.

Chapter 7 FD axiomatization

157

No further reductions are possible, and so we’re left with the

following irreducible cover:

AB → C

C → A

BC → D

BE → C

CE → F

CF → B

D → E

D → F

Alternatively:

• 2 implies 6, so we can drop 6 (as before).

• 2 implies CD → AD by augmentation, which implies

CD → ACD by augmentation again, which with 4 implies

CD → B by transitivity, so we can replace 4 by CD → B.

• 2 and 9 imply CF → AD by composition, which implies CF → ADC

by augmentation, which with (the original) 4 implies CF → B by

transitivity, so we can drop 8.

No further reductions are possible, and so we’re left with the

following irreducible cover:

AB → C

C → A

BC → D

CD → B

BE → C

CE → F

CF → D

D → E

D → F

Observe, therefore, that there are (at least) two distinct irreducible

covers for the original set of FDs. Note too that those two covers

have different cardinalities.

Chapter 7 FD axiomatization

158

 7.7 Yes, it is. The easiest way to prove this result is to compute the

closure ACF+ of the set ACF, which turns out to be the entire set

ABCDEFG. Alternatively, we can apply Armstrong’s axioms and

the other rules discussed in the body of the chapter, as follows:

 1. A → B (given)

 2. ACF → BCF (1, augmentation)

 3. BC → E (given)

 4. BCF → EF (3, augmentation)

 5. ACF → EF (2, 4, transitivity)

 6. ACF → AEF (5, augmentation)

 7. AEF → G (given)

 8. ACF → G (6, 7, transitivity)

 9. BC → DE (given)

 10. BC → D (9, decomposition)

 11. BCF → DF (10, augmentation)

 12. BCF → D (11, decomposition)

 13. ACF → D (2, 12, transitivity)

 14. ACF → DG (7, 13, composition)

 7.8 Let’s number the FDs of the first set as follows:

 1. A → B

 2. AB → C

 3. D → AC

 4. D → E

Chapter 7 FD axiomatization

159

Now, 3 can be replaced by:

3. D → A and D → C

Next, 1 and 2 together imply (see the “useful rule” mentioned near

the end of the answer to Exercise 7.5) that 2 can be replaced by:

2. A → C

But now we have D → A and A → C, so D → C is implied by

transitivity and can be dropped, leaving:

3. D → A

The first set of FDs is thus equivalent to the following irreducible

cover:

A → B

A → C

D → A

D → E

The second given set of FDs

A → BC

D → AE

is clearly also equivalent to this same irreducible cover. The two

given sets are thus equivalent.

 7.9 The set is clearly reducible, since C → J and CJ → I together

imply C → I. As for keys: An obvious superkey is ABCDGJ (the

combination of all attributes mentioned on the left sides of the

given FDs). We can drop J from this set because C → J, and we can

drop G because AB → G. Since none of A, B, C, D appears on the

right side of any of the given FDs, it follows that ABCD is a key.

Chapter 7 FD axiomatization

161
© C. J. Date 2019
C. J. Date, Database Design and Relational Theory, https://doi.org/10.1007/978-1-4842-5540-7_8

CHAPTER 8

Denormalization

What’s normal, anyway?

—Anon.: Where Bugs Go

I want to say a few words about denormalization. Now, I haven’t considered, so far

in this book, any level of normalization higher than BCNF (at least, not in detail). But

denormalization, if it means anything at all, can’t apply just to BCNF specifically; I mean,

it can’t refer just to dropping back to some level of normalization that’s lower than BCNF

specifically. Rather, it has to mean dropping back from any given level of normalization

to some lower one.

That said, however, I need to say too that relvars that are in BCNF and not in some

higher normal form are comparatively unusual (though not completely unknown,

I hasten to add). In practice, therefore, denormalization does usually refer quite

specifically to dropping back to some level of normalization below BCNF; hence the

inclusion of this chapter in this part of the book.

 “Denormalize for Performance” (?)
Ever since SQL products first came on the market, the claim that it’s necessary to

“denormalize for performance” has been widely promulgated. The (specious!)

supporting argument goes something like this:

 1. Normalization means lots of relvars.

 2. Lots of relvars means lots of stored files.

 3. Lots of stored files means lots of I/O.

162

In the case of suppliers and parts, for example, a request to get details for suppliers

who supply red parts involves two dyadic joins—suppliers to shipments first, perhaps,

and then the result of that join to parts. And if the three relvars correspond to three

physically separate stored files, then those two joins will require lots of I/O and will

therefore perform badly.

As already noted, this argument is specious, at least in principle. The reason is that

the relational model nowhere stipulates that relvars must map one for one to stored files.

In the case of suppliers and parts, for example, there’s no logical reason why we couldn’t

physically store the join of the three relvars—with the obvious redundancies factored

out, possibly—as one single stored file on the disk,1 which could reduce the amount of

I/O significantly for the query under consideration. The point is irrelevant for present

purposes, however, because:

• First, this area is one in which most DBMS vendors have seriously

let us down; most SQL products do indeed map relvars one for one

to stored files, pretty much.2 Even the exceptions fail to provide us

with as much data independence as we might like, or as much as

relational systems are theoretically capable of. As a practical matter,

therefore, that “specious” argument is, sadly, valid for most SQL

products today.

• Second, even if relvars didn’t map one for one to stored files,

denormalization might still be desirable at the stored file level.

Indeed, a major reason why mappings that aren’t one for one would

be desirable is precisely that they would permit denormalization to

be done at the physical level, where it belongs, without it having to

show through to—and thereby corrupt—the logical level.

So let’s assume for the sake of discussion that denormalization does sometimes have

to be done, at some level or other. But what is denormalization?

1 I’m speaking pretty loosely here, of course. In particular, I’m ignoring the possibility that there
might be some suppliers or some parts with no corresponding shipments.

2 I realize the mapping from relvars to stored files isn’t always exactly one to one as I’m suggesting
here—for example, some products allow several relvars to share the same stored file, and some
allow a single relvar to span several stored files. But such considerations don’t materially affect
the bigger picture, and I ignore them here for simplicity.

Chapter 8 Denormalization

163

 What Does Denormalization Mean?
Curiously, for a practice that’s so widely advocated, there seems to be considerable

confusion over what denormalization actually consists of. (The textbooks aren’t much

help, either, even the ones that specialize in design topics. Most of them don’t even

mention the subject, and those that do rarely offer a definition, and they certainly don’t

discuss the matter in much depth.) For example, some years ago now I had occasion to

read a paper specifically devoted to the question of denormalization in commercial SQL

products.3 I’ll refer to that paper as “the denormalization paper” in what follows. Now,

the author begins by arguing against denormalization. To quote:

I think the normalization principles should be treated as

commandments ... unless you’re faced with performance

problems that money, hardware scalability, current SQL

technology, network optimization, parallelization, or other

performance techniques can’t resolve [slightly reworded, italics

added].

I couldn’t agree more with this position. Indeed, I’m on record as saying very

much the same thing myself: In a paper I wrote in 1990 on the use of SQL systems in

practice,4 I recommended denormalization as a performance tactic “only if all else

fails.” Unfortunately, however, the rest of the denormalization paper tends to suggest

that the author doesn’t really know what denormalization is; after the opening position

statement quoted above, the paper goes on to give some eight examples of “designing for

performance,” all but one of which have absolutely nothing to do with denormalization

at all!

In the author’s defense, however, I say again that it does seem to be difficult to find

a precise definition of denormalization in the literature. Of course, it could be argued

that no such definition is needed, given that (a) denormalization, whatever else it might

be, must surely be the inverse of normalization, and (b) normalization in turn certainly

is precisely defined. For the record, however, I’ll give some idea as to what a precise

definition of denormalization might look like in just a moment. Before I do so, however,

let me make it clear that I have no particular quarrel with the specific design tactics

suggested in the denormalization paper; indeed, I suggested several of those same

3 Sam Hamdan: “Denormalization and SQL-DBMS,” SQL Forum 4, No. 1 (January/February 1995).
4 “SQL Dos and Don’ts,” in Relational Database Writings 1985-1989 (Addison-Wesley, 1990).

Chapter 8 Denormalization

164

tactics in a paper I wrote myself back in 1982.5 My quarrel is only with the fact that the

author refers to them as denormalization tactics specifically.

So here’s my own definition, for what it’s worth (and I apologize if it seems a little

lengthy). I start with the observation that, speaking a little loosely, normalizing some

relvar R means decreasing redundancy. To be more specific, it decreases redundancy by:

 1. Replacing R by a set of projections R1, ..., Rn such that at least one

of R1, ..., Rn is at a higher level of normalization than R, and such

that also

 2. For all possible values r of R, if the corresponding values r1, ..., rn

of R1, ..., Rn (respectively) are joined back together again, then the

result of that join is equal to r.

Hence the following proposed definition:

Definition (denormalization): Denormalizing a set of relvars R1,

..., Rn means increasing redundancy by:

 1. Replacing R1, ..., Rn by their join R such that R is at a lower

level of normalization than at least one of R1, ..., Rn, and such

that also

 2. For all possible values r1, ..., rn of R1, ..., Rn (respectively), the

result of projecting the corresponding value r of R over the

attributes of Ri is equal to ri (i = 1, ..., n).

Points arising from this definition:

• Observe that denormalization is a process that applies to a set of

relvars, not to an individual relvar considered in isolation. For example,

consider relvars SNC and CT, with headings {SNO,SNAME,CITY}

and {CITY,STATUS}, respectively (see Figure 3-2 in Chapter 3 for

some sample values). These two relvars are in BCNF. If we join them

together, we get the suppliers relvar S (which is only in 2NF, not in 3NF,

and therefore not in BCNF either), and so relvar S can be regarded as a

denormalization of relvars SNC and CT. What’s more, of course, relvar

S involves more redundancy than relvars SNC and CT do.

5 “A Practical Approach to Database Design,” in Relational Database: Selected Writings (Addison-
Wesley, 1986).

Chapter 8 Denormalization

165

• If (a) R1, ..., Rn were obtained by taking projections of R in the first

place—in other words, if the denormalization is really undoing an

earlier normalization, so to speak, as in the suppliers example in

the previous bullet item—and if also (b) that earlier normalization

was done purely to decrease redundancy and not to fix a logically

incorrect design (see the remarks in Chapter 3 on the difference

between these two possibilities), then (c) the requirement that for all

possible values r of R, projecting r over the attributes of Ri must yield

ri (i = 1, ..., n) will be met automatically.

The usual argument in favor of denormalization is basically that it makes retrievals

easier to express and makes them perform better.6 To what extent this argument might

be valid I’ll examine in a later section. First, however, I’d like to point out that once

we make the decision to denormalize, we’ve embarked on a very slippery slope. The

question is: Where do we stop? The situation is different with normalization, where there

are clear logical reasons for continuing the process until we reach the highest possible

normal form. Do we then conclude that with denormalization we should proceed until

we reach the lowest possible normal form? Surely not; yet there are no logical criteria

for deciding exactly where the process should stop. In choosing to denormalize, in other

words, we’ve backed off from a position that does at least have some solid science and

logical theory behind it, and replaced it by one that’s purely pragmatic in nature (as well

as being based, typically, on a somewhat narrow perspective on the overall problem, a

point I’ll elaborate on later).

 What Denormalization Isn’t (I)
I’ve said that denormalization means increasing redundancy. But it doesn’t follow

that increasing redundancy means denormalization! This is one of the traps the

denormalization paper falls into; the design tactics it describes do increase redundancy

(usually), but they’re not—with, as noted earlier, one sole exception—applications of

denormalization per se. (In logic, if p implies q is true, it doesn’t follow that q implies p is

true, and to argue otherwise is a well known example of faulty reasoning: so well known,

in fact, that it enjoys a special name, The Fallacy of False Conversion.)

6 It’s also sometimes claimed to make the database easier to understand. Exercise 8.2 addresses
this particular issue.

Chapter 8 Denormalization

166

Let’s examine a few of the examples from the denormalization paper. In one, we’re

given relvars ITEM and SALES that look like this:

ITEM { INO , INAME }

 KEY { INO }

SALES { SNO , INO , QTY }

 KEY { SNO , INO }

 FOREIGN KEY { INO } REFERENCES ITEM

The predicates are Item INO has name INAME and Quantity QTY of item INO were

sold in store SNO, respectively. For performance reasons, the paper suggests adding a

TOTAL_QTY attribute to the ITEM relvar, whose value for any given item is the total sales

of that item taken over all stores. But although it’s true that the resulting design involves

some redundancy, the fact remains that both relvars are still in BCNF (note in particular

that the functional dependency {INO} → {TOTAL_QTY} holds in the revised version of

relvar ITEM). In other words, there’s no denormalization, as such, in this example.

A second example involves what the paper calls “an internal array”:

EMP { ENO , JAN_PAY , FEB_PAY , ..., DEC_PAY }

 KEY { ENO }

The predicate is Employee ENO was paid an amount JAN_PAY in January, FEB_PAY

in February, ..., and an amount DEC_PAY in December. And presumably, though the

paper doesn’t say as much explicitly, this “tuple wise” design is meant to be contrasted

with—and for performance reasons, possibly preferred to—the following “attribute wise”

analog:

EMP { ENO , MONTH , PAY }

 KEY { ENO , MONTH }

But both designs are in BCNF. Again, there’s no denormalization here; in fact, to

get ahead of myself for a moment (see Chapter 17), I would say there’s no increase in

redundancy, either. (On the other hand, the original “tuple wise” design is probably bad,

as you’ll see if you consider the query “Get employees whose salary was less than 5K in at

least one month, together with the months in question.”)

Chapter 8 Denormalization

167

in connection with the foregoing example, a colleague recently drew my attention
to the following excerpt from one of iBm’s reference manuals for its DBmS product
DB2:

First normal form: a relational entity satisfies the requirement of first normal
form if every instance of an entity contains only one value, never multiple
repeating attributes. repeating attributes, often called a repeating group, are
different attributes that are inherently the same. in an entity that satisfies the
requirement of first normal form, each attribute is independent and unique in
its meaning and its name.

Example: assume that an entity contains the following attributes:

emploYee_name
JanUarY_SalarY_amoUnt
FeBrUarY_SalarY_amoUnt
marCh_SalarY_amoUnt

this situation violates the requirement of first normal form, because JanUarY_
SalarY_amoUnt, FeBrUarY_SalarY_amoUnt, and marCh_SalarY_
amoUnt are essentially the same attribute, emploYee_monthlY_SalarY_
amoUnt.

—DB2 for z/OS Administration Guide, iBm Form no. SC27-8844- 2

Well, the writing is dire, of course, but the message it conveys—to the extent it can
even be understood, that is—is arguably still worse. What can i say.

A third example involves splitting a RESELLERS relvar “horizontally” into two

separate relvars, ACTIVE_RESELLERS and INACTIVE_RESELLERS. In other words, the

original relvar is decomposed via restriction (not projection), and is reconstructed from

Chapter 8 Denormalization

168

the two restrictions via union (not join). So we’re clearly not talking about normalization

in the classical sense here at all; a fortiori, therefore, we’re not talking about classical

denormalization either.7

I’ll give one more example from the denormalization paper. This one starts with

STORE and EMP relvars as follows:

STORE { SNO , REGION , STATE , ... }

 KEY { SNO , REGION , STATE }

EMP { ENO , SNO , REGION , STATE , ... }

 KEY { ENO }

 FOREIGN KEY { SNO , REGION , STATE } REFERENCES STORE

The predicates are Store SNO is located in region REGION within state STATE and

Employee ENO is employed at store SNO within region REGION within state STATE. The

redundancies are obvious, and so the paper suggests introducing a surrogate identifier

for stores, SID say, thereby modifying the design as follows:

STORE { SID , SNO , REGION , STATE , ... }

 KEY { SID }

 KEY { SNO , REGION , STATE }

EMP { ENO , SID , ... }

 KEY { ENO }

 FOREIGN KEY { SID } REFERENCES STORE

But this revised design not only involves no denormalization, it actually decreases

redundancy!8—because the association of a given SNO with a given REGION and STATE

now appears just once, instead of once for every employee of the store in question. (To

beat the point to death, there’s obviously no denormalization here because—among

other things—the one thing surely everybody agrees on is that denormalization is

supposed to increase redundancy.)

7 It’s true that it might be possible to define a new kind of normalization, based on restriction
and union instead of projection and join (I’ll have a little more to say about this possibility in
Chapter 15, and a lot more in Chapter 16). And if we did, well, I suppose we’d have a new kind of
denormalization on our hands also. But I’m pretty sure that such considerations aren’t what the
denormalization paper was referring to with its RESELLERS example.

8 Or does it? Again, see Chapter 17, which includes further discussion of the use of surrogates in
particular.

Chapter 8 Denormalization

169

By the way, I’m aware that this example might give the impression that I think

surrogates are a good idea. Well, they can be—but, sadly, they aren’t always a good idea.

The fact is, surrogates, while they might solve some problems, can also introduce further

problems of their own. See Exercise 8.3 at the end of the chapter, also Chapter 17, for

further discussion.

In closing this section, I’d like to make it very clear that the foregoing discussions

are in no way intended as an attack on the denormalization paper or its author. Indeed,

the following quote from that paper makes it clear that the author and I are really on the

same side on the bigger issues:

[We should] stop criticizing the relational model and make a clear

distinction between what’s SQL and what’s relational ... The two

are totally different.

I couldn’t agree more with this position, nor with the implication that the only

reason we have to worry about such matters as denormalizing at the logical level is

because of failures on the part of today’s SQL products. As I’ve written elsewhere, in

fact:9 In an ideal system, we would never have to denormalize at all, at the logical level.

Even in today’s systems, which are typically much less than ideal, I believe we should

denormalize only as a last resort. That is, we should back off from a fully normalized

design only if all other strategies for improving performance have failed, somehow, to

meet requirements. (Of course, I’m going along here with the usual assumption that

normalization has performance implications—as indeed it does, typically, in current

SQL products.)

 What Denormalization Isn’t (II)
So far in this chapter I’ve given what I think is a reasonable definition of what

denormalization is, and I’ve given some examples of what it isn’t. However, perhaps it

was simply a mistake on my part to think the term ought to be used in any kind of precise

or logical sense. Certainly it’s not used very precisely in the industry at large; in fact, it

mostly seems to be used—especially in a data warehouse context—to refer to just about

anything that, as far as I’m concerned, can only be described as bad design practice.

9 E.g., in An Introduction to Database Systems (8th edition, Addison-Wesley, 2004), also in Go
Faster! The TransRelationalTM Approach to DBMS Implementation (Ventus Publishing, 2002,
2011, available as a free download from http://bookboon.com).

Chapter 8 Denormalization

http://bookboon.com

170

Not only that, but such bad practice is often explicitly recommended! Examples of such

“recommended” bad practice include:

• Using repeating groups10

• Permitting duplicate rows

• Using nulls; possibly worse, allowing nulls in keys

• Mixing different kinds of information in the same column (using a

separate “flag” column to specify what kind each individual value is

in the column in question)

• Using a single text column to represent what ought logically to be

distinct columns

I’d like to add a note here on star schemas, since the “star schema” concept and

“denormalization” are often mentioned together.11 The basic idea behind this concept

as follows. Suppose we wish to collect a history of business transactions for analysis

purposes; for example, suppose in the case of suppliers and parts that we wish to record,

for each shipment, the particular time interval in which that shipment occurred. Thus,

we might identify time intervals by a time interval identifier (TINO), and introduce

another relvar TI to relate those identifiers to the corresponding time intervals per se.

The revised shipments relvar SP and the new time intervals relvar TI might then look as

shown in Figure 8-1:12

10 Even if repeating groups are done “respectably” in the form of properly defined RVAs (see
Chapter 4), they’re still usually contraindicated.

11 At least one authority claims it’s misleading to refer to star schemas as denormalized, however:
“[The] use of denormalized when describing a star [schema] implies that the design started out
as normalized. Most designs are not produced in such a manner. Not normalized would be a
better description” (from Star Schema: The Complete Reference, by Chris Adamson, McGraw-
Hill, 2010).

12 For simplicity I ignore here the fact that those time intervals might better be represented, not by
means of FROM-TO pairs as in the figure, but by means of attributes whose values are intervals
per se. Such interval valued attributes are described in a little more detail in Chapter 14. See
the book Time and Relational Theory: Temporal Databases in the Relational Model and SQL, by
C. J. Date, Hugh Darwen, and Nikos A. Lorentzos (Morgan Kaufmann, 2014) for an extended
discussion of such matters.

Chapter 8 Denormalization

171

In star schema terminology, SP in this example is the fact table and TI is a dimension

table. The suppliers relvar S and the parts relvar P are also dimension tables (see

Figure 8-2).13 And the overall structure is referred to as a “star schema” because of a

fancied resemblance of the corresponding entity / relationship diagram to a star, with

the fact table being surrounded by—and connected by “rays,” or “spokes,” to—the

dimension tables, as shown in Figure 8-2. (Those rays or spokes correspond to foreign

key references, of course.)

13 For simplicity I choose to ignore here (just for the sake of the present discussion) the fact that
the FD {CITY} → {STATUS} is supposed to hold in relvar S, and hence that relvar S is less than
fully normalized.

Figure 8-1. Sample fact table (SP) and dimension table (TI)

Figure 8-2. Star schema for suppliers and parts (with time intervals)

Chapter 8 Denormalization

172

Now, you might be wondering what the difference is between a star schema and a

conventional relational design. In fact, a star schema for a simple example like the one

under discussion is likely to be identical to a good relational design. In more complex

situations, however, the dimension tables are often less than fully normalized (the

objective here apparently being to avoid joins).14 What's more, other relational design

recommendations are often violated, too (see the bullet list earlier in this section).

Detailed discussion of star schemas and related matters is beyond the scope of this

book; you can find a slightly more extended discussion in my book An Introduction to

Database Systems (8th edition, Addison-Wesley, 2004).

 Denormalization Considered Harmful (I)
In this section, I’d like to present an argument—a logical argument, that is, and one you

might not have seen before—in support of the position that you should denormalize only

as a last resort. Essentially, the argument is that while (as is well known) denormalization

can be logically bad for update, it can be logically bad for retrieval as well, in the sense

that it can make certain queries harder to formulate. (Alternatively, it can make them

easier to formulate incorrectly, meaning that, if they execute, you’re getting answers

that might be correct in themselves but are answers to the wrong questions.) Let me

illustrate.

Once again consider relvar S, with its FD {CITY} → {STATUS}. As noted earlier (in

the section “What Does Denormalization Mean?”), that relvar can be regarded as the

result of denormalizing relvars SNC (with attributes SNO, SNAME, and CITY) and CT

(with attributes CITY and STATUS). Now consider the query “Get the average supplier

city status value.” Given our usual sample values (see Figure 3-2 in Chapter 3), the

status values for Athens, London, and Paris are 30, 20, and 30, respectively, and so the

average is 80/3, which is 26.667 to three decimal places. Here then are some attempts

at formulating this query in SQL (I’ll assume for simplicity that S is nonempty, so we

14 In this connection, consider this advice from a book on data warehouses: “[Resist]
normalization ... Efforts to normalize any of the tables in a dimensional database solely in order
to save disk space [sic!] are a waste of time ... The dimension tables must not be normalized
... Normalized dimension tables destroy the ability to browse” (from Ralph Kimball, The Data
Warehouse Toolkit, John Wiley & Sons, 1996).

Chapter 8 Denormalization

173

don’t have to worry about what happens in SQL if we try to apply the AVG operator to an

empty set):15

 1. SELECT AVG (STATUS) AS RESULT

FROM S

Result (incorrect): 26. The problem here is that London’s status

and Paris’s status have both been counted twice. Perhaps we need

a DISTINCT inside the AVG invocation? Let’s try that:

 2. SELECT AVG (DISTINCT STATUS) AS RESULT

FROM S

Result (incorrect): 25. No, it’s distinct cities we need to examine,

not distinct status values. We can do that by grouping:

 3. SELECT CITY , AVG (STATUS) AS RESULT

FROM S

GROUP BY CITY

Result (incorrect): (Athens,30), (London,20), (Paris,30). This

formulation gives average status per city, not the overall average.

Ah, so perhaps what we want is the average of the averages?—

 4. SELECT CITY , AVG (AVG (STATUS)) AS RESULT

FROM S

GROUP BY CITY

Result: Syntax error—the SQL standard quite rightly doesn’t allow “set

function” invocations to be nested in this manner.16 One more attempt:

15 I’ll leave it as an exercise to determine the changes that would be needed to the various SQL
expressions I’m about to show if we couldn’t make that assumption.

16 I say “quite rightly” only because we’re in the SQL context specifically; a more orthodox
language such as Tutorial D would certainly let us nest such invocations (or its analog of such
invocations, rather). Let me explain. Consider the SQL expression SELECT SUM (QTY) AS
RESULT FROM SP WHERE QTY > 100 (I deliberately switch to a different example for reasons
of clarity). The argument to the SUM invocation here is really what’s denoted by the expression
QTY FROM SP WHERE QTY > 100, and a more orthodox language would therefore enclose that
whole expression in parentheses, thus: SELECT SUM (QTY FROM SP WHERE QTY > 100) AS
RESULT. But SQL doesn’t do this. As a consequence, an expression of the form AVG(SUM(QTY))
has to be illegal, because SQL can’t figure out which portions of the surrounding expression
have to do with the AVG argument and which with the SUM argument.

Chapter 8 Denormalization

174

 5. SELECT AVG (TEMP.STATUS) AS RESULT

FROM (SELECT DISTINCT S.CITY , S.STATUS

 FROM S) AS TEMP

Result (correct at last): 26.667. But note how complicated this

expression is compared to its analog on the fully normalized

design (relvars SNC and CT):

 6. SELECT AVG (STATUS) AS RESULT

FROM CT

 Denormalization Considered Harmful (II)
I said in the previous section that the argument in favor of denormalization is that

it makes retrievals easier to express and makes them perform better. But does that

argument really stand up to careful analysis? Let’s take a closer look.

First of all, it clearly isn’t true across the board that retrievals are easier to express;

the previous section presented a detailed counterexample, but the point can be made

with much simpler examples. By way of illustration, consider what’s involved in

formulating the query “Get all supplier details” against (a) the normalized design of

Figure 1-1 and (b) a denormalized design in which relvars S, SP, and P are replaced by a

single “joined” relvar called, say, SSPP. Here are Tutorial D formulations:

 a. S

 b. SSPP { SNO , SNAME , STATUS , CITY }

Or if you want SQL solutions:

 a. SELECT *
FROM S

 b. SELECT DISTINCT SNO , SNAME , STATUS , CITY

FROM SSPP

The next point is that many queries are likely to perform worse, too. There are several

reasons for this state of affairs. One is that denormalization leads to redundancy, which

in turn can lead to a need to do duplicate elimination (in this connection, note that

DISTINCT in the second of the foregoing SQL formulations). Another is as follows:

Chapter 8 Denormalization

175

• Suppose again that the join of suppliers, shipments, and parts is

represented as one single stored file. Also, assume for simplicity that

any given stored file consists of a physically contiguous collection of

stored records, one for each tuple currently appearing in the relvar

the stored file represents.

• Let’s suppose too for the sake of the argument that the query “Get

details for suppliers who supply red parts” will perform reasonably

well against this physical structure. OK; but the query “Get all

supplier details” will perform worse than it would against the

structure in which the three relvars map to three physically separate

stored files! Why? Because in the latter design, all supplier stored

records will be physically contiguous, whereas in the former design

they’ll effectively be spread over a wider area, and will therefore

require more I/O. Analogous remarks apply to any query that

accesses suppliers only, or parts only, or shipments only, instead of

performing some kind of join.

• Note too that denormalization, again because it increases

redundancy, will most likely lead to bigger stored records, and this

fact too can lead to more I/O, not less. As a trivial example, a 4K page

can hold two 2K stored records but only one 3K stored record; hence,

a denormalization that increases redundancy by 50% could increase

I/O by 100%. (I’m speaking pretty loosely here, of course.)

My next observation is that even if we accept the claim that denormalization makes

retrievals easier to express and perform better, it certainly makes updates harder to

express and perform worse. Now, this point is (as I said before) widely understood;

however, what’s not so widely understood is that denormalization opens the door to

integrity violations, too. For example, in relvar S (as opposed to the projection relvars

SNC and CT), someone—either the system or the user, and in current practice probably

the latter—is going to have to be responsible for maintaining the FD {CITY} → {STATUS};

and if that maintenance isn’t done, integrity is lost. By contrast, in the normalized two-

relvar design, all that has to be done is to enforce the key constraint on CT—which will

definitely be done by the system, not the user—and the fact that each city has one status

will then be maintained “automatically.”

Chapter 8 Denormalization

176

one reviewer of this chapter pointed out that yet another advantage of doing
a normalized design is that such a design tends to simplify the formulation of
complex queries, in that it enables expressions representing such formulations
to be more modular, through nesting of simple subexpressions. this is true in
principle, but i feel obliged to add that, although such modular formulations can
readily be constructed in a well designed language like Tutorial D (using that
language’s With feature, illustrated in examples elsewhere in this book), they’re
much harder—sometimes impossible—to formulate in SQl. Why? Because SQl’s
With feature is very much less useful than Tutorial D’s, owing to the fact that (a)
the semantics of SQl’s SeleCt clause are sensitive to the presence or absence of
certain other constructs in the overall expression (especially but not only GroUp
BY and haVinG clauses and aggregate operator invocations), and hence owing also
to the consequent fact that (b) there’s nothing like a one to one mapping in SQl
between semantic and syntactic constructs.

My final point is this: Regardless of whether we’re talking about

 a. True denormalization, which is done at the physical level only, or

 b. The kind of denormalization we have to do in most of today’s SQL

products, which affects the logical level as well,

the point isn’t widely appreciated enough that when people say “denormalize for

performance,” they’re really referring to the performance of specific applications. As I

put it earlier (in the section “What Does Denormalization Mean?”), denormalization

is typically based on a somewhat narrow perspective on the overall problem. Any

particular physical design is likely to be good for some applications but bad for others

(in terms of its performance implications, that is).

 Concluding Remarks
In this chapter, I’ve given strong arguments in favor of not denormalizing; in effect,

therefore, I’ve given arguments in favor of normalizing. And it’s certainly true that good

designs are usually fully normalized. But it’s important to understand that the opposite

isn’t necessarily true! That is, a design can be fully normalized and yet still be bad. For

example, the projection ST of relvar S on attributes SNO and STATUS is certainly in

Chapter 8 Denormalization

177

BCNF—in fact, it’s in the highest possible normal form, as we’ll see in Part IV of this

book—but it’s clearly not a good design, as we saw in Chapter 6.

 Exercises

 8.1 It’s sometimes suggested that one advantage of binary relvars

over the general n-ary relvars supported by the relational model

is that binary relvars are always in BCNF (implying among other

things that we don’t need to worry about normalization and

denormalization, perhaps). Either show that binary relvars are

indeed always in BCNF, or show that the claim is incorrect by

producing a counterexample.

 8.2 The following is an excerpt from a published interview with a

certain database consultant.17 It begins with a statement from the

consultant:

Consultant: The problems ... largely result from normalizing data

across multiple [relvars] ... Many queries, however, are much easier to

understand if the data is denormalized ...

Interviewer: Doesn’t denormalization potentially lower data

integrity and reduce flexibility in supporting unanticipated queries?

Consultant: Normalization, and its emphasis on elimination of

redundant storage, is purely a transaction processing issue. When

users view data, they see it in a redundant form. In order to transform

data into a form that is useful to users, it must be denormalized

by means of a join, which is essentially a way of dynamically

denormalizing data for greater ease of use. The problem is that users

can’t tolerate the time and cost of joins. To address the problem,

companies replicate data in an ever increasing number of decision

support databases, which represent denormalized views of the data.

What if anything do you think is wrong with the opinions

expressed?

17 It’s taken from Data Base Newsletter 22, No. 5 (September/October 1994).

Chapter 8 Denormalization

178

 8.3 The possibility of using surrogate identifiers or keys was

mentioned in the body of the chapter. Indeed, many designers

recommend the use of such artifical or surrogate keys in place

of what are sometimes called “natural” keys. For example, we

might add an attribute SPNO, say, to our usual shipments relvar

(making sure it has the uniqueness property, of course) and then

make {SPNO} a surrogate key for that relvar. (Note, however, that

{SNO,PNO} would still be a key; it just wouldn’t be the only one

any longer.) Thus, surrogate keys are keys in the usual relational

sense, but (a) they always consist of exactly one attribute and (b)

their values serve solely as surrogates for the entities they stand

for (i.e., they serve merely to represent the fact that those entities

exist—they carry absolutely no additional meaning or baggage

of any kind). Ideally, those surrogate values would be system

generated, but whether they’re system or user generated has

nothing to do with the basic idea of surrogate keys as such. Two

questions: Are surrogate keys the same thing as tuple IDs? And do

you think they’re a good idea?

 8.4 If two designs are information equivalent, it must be possible to

use operations of the relational algebra to convert them into one

another. Consider, therefore, the following competing designs for

an employees relvar from the body of the chapter:

EMP { ENO , JAN_PAY , FEB_PAY , ..., DEC_PAY }

 KEY { ENO }

EMP { ENO , MONTH , PAY }

 KEY { ENO , MONTH }

Using Tutorial D or SQL (or your own preferred database

language), show how each of these designs can be converted into

the other.

Chapter 8 Denormalization

179

 Answers

 8.1 This exercise is (deliberately) a repeat in different words of

Exercise 4.6 in Chapter 4. The claim is incorrect, as was shown in

the answer to that earlier exercise.

 8.2 It’s truly astonishing how many erroneous statements can be

made in such a tiny amount of text ... Here are some of my own

responses to the views expressed:

• “Many queries are much easier to understand if the data is

denormalized”: I suspect that understand here ought really to be

formulate (for instance, understanding the query “Get all supplier

details” has nothing to do with how the database is designed). If

I’m right, then the claim might be valid. But the opposite claim is

valid too!—many queries are easier to formulate if the data isn’t

denormalized, as I showed in the body of the chapter.

• The interviewer suggests that denormalization can cause integrity

problems and can reduce flexibility in supporting unanticipated

queries. I agree with these suggestions.

• “Normalization, and its emphasis on elimination of redundant

storage, is purely a transaction processing issue”: Normalization

is about reducing redundancy, not reducing redundant storage—

though I suppose the consultant might be forgiven for conflating

the two, given the implementations most widely available today.

But it’s categorically not “a transaction processing issue”! As I put

it in Chapter 1, when we do database design in general, and when

we do normalization in particular, we’re concerned primarily

with what the data is, not with how it’s going to be used.

• “When users view data, they see it in a redundant form”:

Sometimes they do, sometimes they don’t. But even if they do,

that’s not an argument for a denormalized design. For example,

the users could be presented with a denormalized perception

of the data by means of the conventional view mechanism—I’m

not saying they should be, only that they could be—while the

underlying database remains properly normalized.

Chapter 8 Denormalization

180

• “In order to transform data into a form that is useful ...”: This is

simply a tendentious remark.

• “[Join] is essentially a way of dynamically denormalizing data

for greater ease of use”: The user might think of joins being done

dynamically, but there’s no reason in general why they can’t be

done statically (i.e., ahead of time)—and I believe they often

would be, given a well architected DBMS.18 It’s also untrue to

suggest that the result of a join must always be denormalized.

“Greater ease of use” is another tendentious remark.

• “[Users] can’t tolerate the time and cost of joins”: Joins aren’t

necessarily time consuming or expensive. Again, it depends

on the implementation. In any case, “can’t tolerate” is, in my

opinion, far too judgmental.

• “To address the problem, companies replicate data in an ever

increasing number of decision support databases, which

represent denormalized views of the data”: This might be true,

but if it is it’s an indictment of current implementations, not an

argument for denormalization as such.

 8.3 First of all, surrogate keys are not the same thing as tuple IDs.

For one thing (to state the obvious), surrogates identify entities

and tuple IDs identify tuples, and there’s certainly nothing like a

one to one correspondence between entities and tuples. (Think

of derived tuples in particular—for example, tuples in the result

of some query. In fact, it’s not at all clear that derived tuples will

have tuple IDs anyway.) Furthermore, tuple IDs usually have

performance connotations, but surrogates don’t (access to a

tuple via its tuple ID is usually assumed to be fast, but no such

observation applies to surrogates). Also, tuple IDs are often

concealed from the user,19 but surrogates mustn’t be, thanks

18 I have in mind here, primarily, a DBMS implemented using the facilities of The
TransRelationalTM Model (see footnote 9). Note: A similar remark applies to all of my uses of the
phrase “well architected” throughout the present book, in Chapter 6 and elsewhere.

19 In this connection, see the discussion of Requirement 4 in the section “Violating First Normal
Form” in Chapter 4.

Chapter 8 Denormalization

181

to The Information Principle (see Exercise 2.1 in Chapter 2); in

other words, it’s probably (and desirably!) not possible to store

a tuple ID in a database relvar, while it certainly (and desirably)

is possible to store a surrogate in a database relvar. In a nutshell:

Surrogate keys have to do with logical design, tuple IDs have to do

with physical design.

Are surrogate keys a good idea? Well, observe first that the

relational model has nothing to say on this question; like the

business of design in general, in fact, whether or not to use

surrogate keys has to do with how to apply the relational model,

not with the relational model as such. That said, I have to say too

that the question of whether surrogate keys are good or bad is far

from straightforward. There are strong arguments on both sides:

so many such, in fact, that I can’t possibly do justice to them here

(though some of them are summarized in Chapter 17). For further

details, see the paper “Composite Keys,” in my book Relational

Database Writings 1989-1991 (Addison-Wesley, 1992). Note: The

paper in question is called “Composite Keys” because surrogate

keys are perhaps most likely to be useful in practice in situations

in which existing keys, and corresponding foreign keys, are

composite keys specifically.

 8.4 I show solutions in SQL, just for a change. Defining the first in

terms of the second (in outline):

SELECT DISTINCT EX.ENO ,

 (SELECT PAY

 FROM EMP AS EY

 WHERE EY.ENO = EX.ENO

 AND MONTH = 'Jan') AS JAN_PAY ,

 ...

 (SELECT PAY

 FROM EMP AS EY

 WHERE EY.ENO = EX.ENO

 AND MONTH = 'Dec') AS DEC_PAY

FROM EMP AS EX

Chapter 8 Denormalization

182

Defining the second in terms of the first (again in outline):

SELECT ENO , 'Jan' AS MONTH , JAN_PAY AS PAY FROM EMP

UNION

 ...

UNION

SELECT ENO , 'Dec' AS MONTH , DEC_PAY AS PAY FROM EMP

Chapter 8 Denormalization

PART III

Join Dependencies, Fifth
Normal Form, and Related
Matters

This part of the book does for join dependencies and fifth normal form what the previous

part did for functional dependencies and Boyce/Codd normal form. It also ties up a

number of loose ends having to do with normalization as a major component of design

theory in general.

185
© C. J. Date 2019
C. J. Date, Database Design and Relational Theory, https://doi.org/10.1007/978-1-4842-5540-7_9

CHAPTER 9

JDs and 5NF (Informal)

If you can’t beat ’em, join ’em.

—Anon.

Just as Boyce/Codd normal form is defined in terms of functional dependencies, so fifth

normal form (5NF) is defined in terms of join dependencies (JDs);1 as noted in Chapter 4,

in fact, 5NF is the normal form with respect to JDs, just as BCNF is the normal form with

respect to FDs. And the treatment of these ideas in this part of the book therefore parallels

the treatment of BCNF and FDs in Part II. In other words, I plan to treat the material both

formally, in Chapter 10, and informally in the present chapter.

Let me immediately add that although 5NF is indeed “the” normal form with respect

to JDs, this state of affairs shouldn’t necessarily be taken to mean that 5NF is the ultimate

goal of the normalization process. Au contraire, in fact: There are at least two further

normal forms that might have a better claim to that title, as we’ll see in Part IV of this

book. From a pedagogical point of view, however, as well as from a historical one, I think

it’s desirable to discuss 5NF in detail first. (I mention this point simply in order to avoid

giving a false impression; one of my reviewers felt I should have presented the material

in a different sequence, but I don’t agree.)

Now, in previous writings I’ve tended to deal with JDs as if they were just a

generalized kind of FD. I now realize this view of the matter is wrong, or at least

misleading; rather, it’s better to regard JDs as a completely different phenomenon. Of

course, FDs and JDs are both dependencies (i.e., constraints), and they do resemble

each other in certain respects; in particular, the fact that a certain JD holds in relvar R

implies that R can be nonloss decomposed in certain ways, just as the fact that a certain

1 So is 4NF, in a sense, but I’m going to ignore 4NF (for the most part, at any rate) until we get to
Chapter 12.

186

FD holds in relvar R also implies that R can be nonloss decomposed in certain ways. It’s

also true that every FD implies a JD, so that if some FD F holds in relvar R, a certain JD

J holds in R also. But not all JDs are implied by FDs; in fact, to speak very loosely—but I

must emphasize here that what I’m about to say is extremely imprecise—we might say

that 5NF has to do with JDs that aren’t implied by FDs. That is, it’s if some relvar R is in

BCNF, but is subject to some JD that’s not implied by FDs, that the notion of 5NF might

be relevant.

Now, a relvar is in BCNF if and only if all FDs to which it’s subject are implied by

keys. As you’d probably expect, therefore, a relvar is in 5NF if and only if all JDs to which

it’s subject are implied by keys.2 However, this latter notion—i.e., the notion of JDs being

implied by keys—is a bit trickier to pin down than its FD counterpart; in fact, there’s a

very rich theory surrounding these ideas, as you’ll soon see, and some of that theory can

be a little overwhelming (not to say confusing) at first. You need to keep a clear head! As

someone much more knowledgeable in these matters than I am once said to me: JDs are

very mysterious.

So much for the preamble; now let’s get down to specifics.

 Join Dependencies—the Basic Idea
Most of the time in this book so far, I’ve been making a tacit assumption: namely, I’ve

been assuming that when we decompose some relvar, we always do so by replacing that

relvar by exactly two of its projections.3 (Note that Heath’s Theorem, which provides

the formal underpinning for most of what I’ve had to say so far regarding nonloss

decomposition, does address decomposition into exactly two projections specifically.)

What’s more, that assumption was fully warranted, so long as our target was only BCNF;

in other words, it successfully carried us as far as that specific target. So you might be

surprised to learn that there exist relvars that can’t be nonloss decomposed into two

projections but can be nonloss decomposed into three (or maybe more than three).

As an aside, I note that, remarkably enough, Codd gave an example in 1969, in his

very first paper on the relational model (see Appendix D), that showed he was aware

of the foregoing possibility. However, that example was apparently overlooked by most

2 This very informal definition is the only one I’ll be giving for 5NF in the present chapter.
3 Of course, I’m referring here to one individual step in the overall process. Clearly, repeated
steps—i.e., repeated individual decompositions—will, in general, eventually yield a result
consisting of more than two projections, even if each individual step yields just two.

Chapter 9 JDs anD 5nF (InFormal)

187

of the paper’s original readers; certainly it seems to have come as a surprise to the

research community when the possibility was rediscovered several years later (in 1977,

to be precise).

Now, I said earlier, albeit loosely, that 5NF had to do with JDs that aren’t implied by

FDs. I can now add, though again speaking very loosely, that it has to do with relvars that

can’t be nonloss decomposed into two projections but can be nonloss decomposed into

three or more. In other words, it’s when these circumstances arise—i.e., when there are

(a) JDs that aren’t implied by FDs and (b) relvars that can only be nonloss decomposed

into three or more projections—that you do really have to come to grips with JDs and 5NF.

So what exactly do we mean when we say some JD holds in some relvar? Here’s a

definition:

Definition (join dependency): Let X1, ..., Xn be subsets of the

heading H of relvar R; then the join dependency (JD)—sometimes

more specifically the n-ary JD—

☼ { X1 , ... , Xn }

holds in R if and only if R can be nonloss decomposed into its

projections on X1, ..., Xn, or in other words if and only if every

legal value r of R is equal to the join of its projections r1, ..., rn on

X1, ..., Xn, respectively. X1, ..., Xn are said to be the components

of the JD, and the JD overall can be read as “star X1, ..., Xn” (or

sometimes “join X1, ..., Xn”—though I hasten to add that “join”

really isn’t the mot juste here, because the join operator as usually

understood joins relations, and X1, ..., Xn aren’t relations but

headings).

By way of a simple example, consider the suppliers relvar S once again. As we know,

that relvar is subject to the FD {CITY} → {STATUS}, and so Heath’s Theorem tells us it can

be nonloss decomposed into its projections on {SNO,SNAME,CITY} and {CITY,STATUS}.

In other words, the following binary JD holds in that relvar:

☼ { { SNO , SNAME , CITY } , { CITY , STATUS } }

Chapter 9 JDs anD 5nF (InFormal)

188

Points arising:

• Note that it follows from the definition that the union of the

components X1, ..., Xn must be equal to H (i.e., every attribute

of H must appear in at least one of those components), for

otherwise R couldn’t possibly be equal to the join of the projections

corresponding to those components.

• Different writers use different symbols to denote a JD; I use a special

kind of star (“☼”), but the symbol ⋈ (“bow tie”) is more frequently

encountered in the research literature.4

• It might help to point out that to say some JD holds is equivalent to

saying that if we join the corresponding projections together, we’ll

never get any “spurious” tuples (as I called them in Chapter 3, in

Exercise 3.2).

• The following observation might also be helpful. I’ll explain it in

terms of a simple, though slightly abstract, example. Let relvar R

have attributes A, B, C, and D (only), and let the JD ☼{AB,BC,CD}

(“Heath notation” —see Chapter 7) hold in R. Also, let me use the

symbol “∈” to mean “appears in” (as in the answer to Exercise 5.4 in

Chapter 5). Then to say the given JD holds in R is equivalent to saying

the following:

if EXISTS c1 (EXISTS d1 ((a , b , c1 , d1) ∈ R))
AND

 EXISTS a2 (EXISTS d2 ((a2 , b , c , d2) ∈ R))
AND

 EXISTS a3 (EXISTS b3 ((a3 , b3 , c , d) ∈ R))
then (a , b , c , d) ∈ R

Explanation: Let there exist a tuple in R with A = a and B = b

and a tuple in R with B = b and C = c and a tuple in R with C = c

and D = d. Then the tuples (a,b), (b,c), and (c,d) will appear in

4 Personally I find the bow tie symbol slightly inappropriate—it looks like, and in fact originated
as, a symbol for a dyadic operator specifically, whereas (as we know from Chapter 5) the
join operator is actually n-adic, and join dependencies are accordingly n-ary, for arbitrary
nonnegative integer n in both cases.

Chapter 9 JDs anD 5nF (InFormal)

189

the projections of R on AB, BC, and CD, respectively, and so the

tuple (a,b,c,d) will appear when we join these three projections

together.

Moreover, the converse is clearly true as well: If the tuple (a,b,c,d)

appears in R, then the tuples (a,b), (b,c), and (c,d) will certainly

appear in those three projections (and so that if in the foregoing

formal statement could in fact be replaced by if and only if).

As a simple illustration of this last point, to say the following JD holds in relvar S—

☼ { { SNO , SNAME , CITY } , { CITY , STATUS } }

—is to say the tuple (s,n,t,c) appears in S if and only if there exists a tuple in S with SNO = s

and SNAME = n and CITY = c and there exists a tuple in S with CITY = c and STATUS = t.

To continue with this same example for a moment, the fact that the foregoing JD

holds in relvar S is a logical consequence of Heath’s Theorem, as we know. In fact, we

can now restate Heath’s Theorem as follows:

Heath’s Theorem (for relvars, restated in terms of JDs): Let relvar

R have heading H and let X, Y, and Z be subsets of H such that the

union of X, Y, and Z is equal to H. Let XY denote the union of X

and Y, and similarly for XZ. If R is subject to the FD X → Y, then R

is subject to the JD ☼{XY,XZ}.

As stated earlier, therefore, FDs imply JDs—but not all JDs are implied by FDs, as

we’ll see. Before I elaborate on this point, however, let me stress the requirement that

the union of the components of a given JD must be equal to the pertinent heading. No

analogous requirement applies to FDs; with FDs, the left and right sides don’t have to be

such that their union is equal to the pertinent heading, they only have to be subsets of

that heading. This distinction might help to highlight the point (at least intuitively) that

JDs and FDs really are different in kind.

Now, the JD in the foregoing example—

☼ { { SNO , SNAME , CITY } , { CITY , STATUS } }

Chapter 9 JDs anD 5nF (InFormal)

190

—is binary, as I’ve said: It has two components, and it corresponds to a nonloss

decomposition into two projections. Here by contrast is another JD that holds in relvar S:

☼ { { SNO , SNAME } , { SNO , CITY } , { CITY , STATUS } }

This one is ternary, but it’s derived, in effect, by “cascading” two binary ones:

• First, as we already know, the binary JD ☼{{SNO,SNAME,CITY},{CITY,

STATUS}} holds in S.

• But the FD {SNO} → {SNAME} holds in the projection of S on

{SNO,SNAME,CITY} (corresponding to one of the components of

that binary JD),5 and so the binary JD ☼{{SNO,SNAME},{SNO,CITY}}

holds in that projection.

It follows that the given ternary JD holds in the original relvar (and the relvar can be

nonloss decomposed into three projections accordingly, though please understand that

I’m not saying it should be). By contrast, in the section immediately following I’ll give an

example of a ternary JD that’s not derived by cascading binary ones, and hence an example

of a relvar that can be nonloss decomposed into three projections and not into two.

 A Relvar in BCNF and Not 5NF
I’ll start with a revised version—I’ll call it SPJ—of our usual shipments relvar SP. The revisions

consist of (a) dropping attribute QTY and (b) introducing a new attribute JNO (“project

number”). The predicate is Supplier SNO supplies part PNO to project JNO, and a sample

value is shown in Figure 9-1. Note that the relvar is “all key” and thus certainly in BCNF.

5 I’m appealing here to an easily proved theorem (see Exercise 12.5 in Chapter 12): viz., given a
relvar R and a projection of R whose heading includes both X and Y, the FD X → Y holds in that
projection if and only if it holds in R itself.

Figure 9-1. Relvar SPJ—sample value

Chapter 9 JDs anD 5nF (InFormal)

191

Now suppose the following business rule (let’s call it BRX) is in effect:

• If (a) supplier s supplies part p and (b) part p is supplied to project j

and (c) project j is supplied by supplier s, then (d) supplier s supplies

part p to project j.

In slightly more concrete terms, what business rule BRX says is that if (for example)

all three of the following are true propositions—

 a. Smith supplies monkey wrenches to some project

 b. Somebody supplies monkey wrenches to the Manhattan project

 c. Smith supplies something to the Manhattan project

—then the following is a true proposition as well:

 d. Smith supplies monkey wrenches to the Manhattan project.

In other words, if relvar SPJ contains tuples representing propositions a., b., and c.,

it must also contain a tuple representing proposition d.6 Note that this requirement

is met in Figure 9-1 (take S1 to be Smith, P1 to be monkey wrenches, and J1 to be the

Manhattan project).

Now, propositions a., b., and c. would normally not imply proposition d. To

elaborate, if we know only that propositions a., b., and c. are true, then we know that

Smith supplies monkey wrenches to some project j; we know that some supplier s

supplies monkey wrenches to the Manhattan project; and we know that Smith supplies

some part p to the Manhattan project—but we can’t validly infer that s is Smith, we can’t

validly infer that p is monkey wrenches, and we can’t validly infer that j is the Manhattan

project. False inferences such as these are examples of what’s sometimes called the

connection trap. In the case at hand, however, business rule BRX tells us there is no

trap; that is, we can validly infer proposition d. from propositions a., b., and c. in this

particular case.

6 I’m being a little sloppy once again. For example, consider proposition a. (“Smith supplies
monkey wrenches to some project”). If “some project” here means “some unknown project”—
i.e., there exists such a project, but no one knows what it is—then proposition a. isn’t an
instantiation of the predicate for SPJ, and no SPJ tuple can possibly represent it. But an SPJ tuple
certainly can represent the proposition “Smith supplies monkey wrenches to some specific
project” (e.g., the Manhattan project); what’s more, the proposition so represented then implies
the proposition “Smith supplies monkey wrenches to some project” (i.e., “there exists a known
project j such that Smith supplies monkey wrenches to j”). I hope that’s clear!

Chapter 9 JDs anD 5nF (InFormal)

192

Now let’s consider the example more carefully. Let me use SP, PJ, and JS, just for the

moment, to denote the projections of SPJ on {SNO,PNO}, {PNO,JNO}, and {JNO,SNO},

respectively. Then we have the following:

• By the definitions of projection and join,

IF (s , p , j) ∈ JOIN { SP , PJ , JS }
THEN (s , p) ∈ SP
AND (p , j) ∈ PJ
AND (j , s) ∈ JS

and therefore there exist s', p', and j' such that

 (s , p , j') ∈ SPJ
AND (s , p' , j) ∈ SPJ
AND (s' , p , j) ∈ SPJ

• But by business rule BRX,

IF (s , p , j') ∈ SPJ
AND (s , p' , j) ∈ SPJ
AND (s' , p , j) ∈ SPJ

then we necessarily have:

 (s , p , j) ∈ SPJ

• So if (s,p,j) appears in the join of SP, PJ, and JS, it also appears in

SPJ. But the converse is obviously true as well—i.e., if (s,p,j) appears

in SPJ, it certainly appears in the join of SP, PJ, and JS.

Thus (s,p,j) appears in SPJ if and only if it appears in the join of SP, PJ, and JS. It

follows that every legal value of relvar SPJ is equal to the join of its projections on

{SNO,PNO}, {PNO,JNO}, and {JNO,SNO}, and hence that the JD

☼ { { SNO , PNO } , { PNO , JNO } , { JNO , SNO } }

certainly holds in relvar SPJ.

Chapter 9 JDs anD 5nF (InFormal)

193

Observe now that the foregoing JD is ternary—it has three components. What’s more,

it isn’t implied by FDs.7 Hence it certainly isn’t implied by keys (recall from Chapter 5

that a key constraint is just a special case of an FD). As a consequence, relvar SPJ,

although it’s in BCNF (because it’s “all key”), isn’t in 5NF.

In order to understand this state of affairs a little better, it’s helpful to go back to the

sample SPJ value shown in Figure 9-1. Figure 9-2 shows (a) values of the projections

SP, PJ, and JS corresponding to that sample value, (b) the effect of joining the SP and

PJ projections (on {PNO}), and (c) the effect of joining that result and the JS projection

(on {JNO,SNO}). As you can see, joining the first two projections produces a copy of

the original SPJ relation plus one additional (“spurious”) tuple; joining in the other

projection then eliminates that additional tuple, thereby getting us back to the original

SPJ relation. Moreover, the net effect is the same whatever pair of projections we choose

for the first join, though the intermediate result is different in each case. Exercise: Check

this claim.

To repeat, therefore, the JD ☼{SP,PJ,JS}—if now you’ll let me use the names SP, PJ,

and SJ to refer not to the projections as such but to the corresponding headings—holds

in relvar SPJ; in other words, that JD captures the essence, as it were, of business rule

BRX. As a consequence, relvar SPJ can be nonloss decomposed accordingly. What’s more,

7 Proof: The only FDs that hold in relvar SPJ are trivial ones, and it’s certainly not the case
that every relation satisfying those trivial FDs also satisfies the JD. For example, the relation
containing the first three but not the fourth of the tuples as shown in Figure 9-1 doesn’t.

Figure 9-2. SPJ = the join of all three of its binary projections but not of any two

Chapter 9 JDs anD 5nF (InFormal)

194

it probably should be, because it suffers from redundancy; to be specific, in terms of the

sample value of Figure 9-1, the proposition that supplier S1 supplies part P1 to project J1

is represented both explicitly, by means of the tuple (S1,P1,J1), and implicitly, as a logical

consequence of the JD and the propositions represented by the other three tuples.

More terminology: We say a JD like the one that applies in the SPJ example is tuple

forcing, because if certain tuples appear, it forces certain additional tuples to appear as

well. In Figure 9-1, for example, the appearance of the three tuples (S1,P1,J2), (S1,P2,J1),

and (S2,P1,J1) forces the appearance of the tuple (S1,P1,J1). Note carefully that not all

JDs are tuple forcing; for example, the join dependency ☼{{SNO,SNAME,CITY},

{CITY,STATUS}} holds in relvar S, as we know, but there’s no question of it forcing tuples

to appear. Note: To jump ahead of ourselves for a moment, it’ll turn out later that a relvar

that’s subject to a tuple forcing JD can’t be in 5NF (though as the SPJ example shows, it

can be in BCNF).

 Cyclic Rules
Observe now the cyclic nature of business rule BRX (“if s is connected to p and p is

connected to j and j is connected back to s again, then s and p and j must all be directly

connected, in the sense that they must all appear together in the same tuple”). Let’s

agree to describe that rule BRX as “3-way cyclic.” Then we can say more generally that it’s

if an n-way cyclic rule exists for some n > 2 that we might be faced with a relvar that’s (a)

in BCNF and not in 5NF and therefore (b) can be nonloss decomposed into n projections

and not into fewer.8

That said, I have to say too that in my experience such cyclic rules are rare in

practice—which means that, in practice, most relvars, if they’re in at least BCNF, are

probably in 5NF as well. Indeed, it’s quite unusual in practice to find a relvar that’s in

BCNF and not in 5NF. Unusual, but not unknown!—I’ve certainly encountered a few

real world examples myself on occasion. In other words, the fact that such relvars are

unusual doesn’t mean you don’t need to worry about them, or about JDs and 5NF.

8 If business rule BRX had taken the slightly simpler (and noncyclic) form “if s is connected to p
and s is connected to j, then s and p and j must all be directly connected,” then we might have a
relvar that’s in BCNF but not in 4NF (and hence not in 5NF either, a fortiori). See Chapter 12.

Chapter 9 JDs anD 5nF (InFormal)

195

Au contraire, in fact: JDs and 5NF are tools in your designer’s toolkit, as it were, and

(other things being equal) you should probably try to ensure that all of the relvars in your

database are in 5NF.9

 Concluding Remarks
I’ll close this chapter with a few miscellaneous observations. First, note that I’m

assuming throughout this part of the book—as indeed I did throughout the previous

part as well, and will continue to do until further notice—that the only operators we

care about as far as relational decomposition and recomposition are concerned are

projection and join (projection for decomposition and join for recomposition). Under

that assumption, it’s immediate from the definition of join dependency that JDs are, in a

sense, the “ultimate” kind of dependency; that is, there’s no “higher” kind of dependency

such that JDs are just a special case of that higher kind. And it follows further that—

though I haven’t really defined it properly yet!—fifth normal form is the final normal

form10 with respect to projection and join (which accounts for its alternative name,

projection-join normal form or PJ/NF).

Second, I’ve referred several times to relvars that are in BCNF and not 5NF; indeed,

I’ve tacitly assumed that if relvar R is in 5NF, then it’s certainly in BCNF. In fact this

assumption is correct. Let me also state for the record that 5NF is always achievable;

that is, any relvar not in 5NF can always be decomposed into a set of 5NF projections—

though not necessarily without losing dependencies, of course, since we already know

from Chapter 7 that preserving dependencies and decomposition to BCNF (let alone

5NF) can be conflicting objectives.

Third, it follows from the definition of 5NF that a relvar R that’s in 5NF is guaranteed

to be free of redundancies that can be removed by taking projections. In other words, to

say R is in 5NF is to say that further nonloss decomposition of R into projections, while

it might be possible, certainly won’t remove any redundancies. Note very carefully,

however, that to say R is in 5NF is not to say R is free of redundancy. (A belief to the

contrary is another popular misconception. See Exercise 1.11 in Chapter 1.) The fact is,

there are many kinds of redundancy that projection as such is powerless to remove—

which is an illustration of the point I made in Chapter 1, in the section “The Place of

9 Except as noted in Chapters 13 and 14.
10 Well ... except for 6NF (see Chapter 14).

Chapter 9 JDs anD 5nF (InFormal)

196

Design Theory,” to the effect that there are numerous issues that current design theory

simply doesn’t address at all. By way of example, consider Figure 9-3, which shows a

sample value for a relvar, CTXD, that’s in 5NF and yet still suffers from redundancy. The

predicate is Teacher TNO spends DAYS days with textbook XNO on course CNO. The sole

key is {CNO,TNO,XNO}. As you can see, the fact that (e.g.) teacher T1 teaches course C1

appears twice, and so does the fact that course C1 uses textbook X1.11

Let’s analyze this example a little more carefully:

• Since {CNO,TNO,XNO} is a key, the relvar is subject to the following

functional dependency—

{ CNO , TNO , XNO } → { DAYS }

—which is an “arrow out of a key.”

• So DAYS depends on all three of CNO, TNO, and XNO, and therefore

can’t appear in a relvar with anything less than all three.

• Hence there’s no (nontrivial) decomposition of the relvar

into projections that applies at all—the relvar is in 5NF.

Note: A decomposition is trivial if and only if it’s based on

dependencies (FDs or JDs) that are themselves trivial in turn, and

nontrivial if and only if it isn’t trivial. Trivial FDs were discussed in

Chapters 4 and 5; trivial JDs are discussed in the next chapter.

11 One reviewer argued strenuously that those repetitions didn’t really constitute redundancy. I
disagree, but I don’t want to argue the point here; I’ll just remind you that I’ll be examining the
whole issue of exactly what does constitute redundancy in detail in Chapter 17.

Figure 9-3. The 5NF relvar CTXD—sample value

Chapter 9 JDs anD 5nF (InFormal)

197

• Hence there’s certainly no decomposition into projections that can

remove the redundancies, a fortiori.

 Exercises

 9.1 (Repeated from the body of the chapter.) Check that (a) joining

any pair of the binary relations shown in Figure 9-2 yields a

result containing a “spurious” tuple (i.e., a tuple not appearing in

Figure 9-1) and that (b) joining the third binary relation to that

intermediate result then eliminates that spurious tuple.

 9.2 Write a Tutorial D CONSTRAINT statement to express the JD that

holds in relvar SPJ as discussed in the body of the chapter.

 9.3 Design a database for the following. The entities to be represented

are sales representatives, sales areas, and products. Each

representative is responsible for sales in one or more areas;

each area has one or more responsible representatives. Each

representative is responsible for sales of one or more products,

and each product has one or more responsible representatives.

Each product is sold in one or more areas, and each area has

one or more products sold in it. Finally, if representative r is

responsible for area a, and product p is sold in area a, and

representative r sells product p, then r sells p in a.

 9.4 Give an example from your own work environment, if possible, of

a relvar in BCNF but not in 5NF.

 Answers

 9.1 Joining SP and PJ is discussed in the body of the chapter. Joining

PJ and JS yields the spurious tuple (S2,P2,J1), which is then

eliminated because there’s no (S2,P2) tuple in SP. Joining JS and

SP yields the spurious tuple (S1,P2,J2), which is then eliminated

because there’s no (P2,J2) tuple in PJ.

Chapter 9 JDs anD 5nF (InFormal)

198

 9.2 CONSTRAINT ... SPJ = JOIN { SPJ { SNO , PNO } ,

 SPJ { PNO , JNO } ,

 SPJ { JNO , SNO } } ;

Note that this constraint is an equality dependency (i.e., an

EQD—see Chapter 3).

 9.3 First of all, we’ll presumably need three relvars for representatives,

areas, and products, respectively:

R { RNO , ... } KEY { RNO }

A { ANO , ... } KEY { ANO }

P { PNO , ... } KEY { PNO }

Now, if representative r is responsible for area a, and product p is

sold in area a, and representative r sells product p, then r sells p

in a. This is a 3-way cyclic rule. So if we were to have a relvar RAP

looking like this—

RAP { RNO , ANO , PNO } KEY { RNO , ANO , PNO }

(with the obvious predicate)—then the following JD would hold in

that relvar:

☼ { { RNO , ANO } , { ANO , PNO } , { PNO , RNO } }

The relvar would thus be subject to redundancy. So let’s replace it

by its three binary projections:

RA { RNO , ANO } KEY { RNO , ANO }

AP { ANO , PNO } KEY { ANO , PNO }

PR { PNO , RNO } KEY { PNO , RNO }

(Now there are several EQDs that need to be stated and

enforced—e.g., the projections RA{RNO} and PR{RNO} must

always be equal—but the details are straightforward and I omit

them here.)

Next, each representative is responsible for sales in one or more

areas, and each area has one or more responsible representatives.

But this information is already contained in relvar RA, and

Chapter 9 JDs anD 5nF (InFormal)

199

nothing more is necessary. Similarly, relvar AP takes care of

the facts that each area has one or more products sold in it and

each product is sold in one or more areas, and relvar PR takes

care of the facts that each product has one or more responsible

representatives and each representative is responsible for sales

of one or more products. Note, however, that the user does need

to be told that the join of RA, AP, and PR does not involve any

“connection trap” (i.e., that the 3-way cyclic rule holds). Let’s

explore this point. First of all, the predicates for RA, AP, and PR are

as follows:

• RA: Representative RNO is responsible for area ANO.

• AP: Product PNO is sold in area ANO.

• PR: Product PNO is sold by representative RNO.

Observe, incidentally, that a well architected DBMS—sadly,

not one that’s available on the market today, so far as I know!—

would allow the designer to tell it about these predicates.

Note: Telling the DBMS about the predicates would serve to tell

the user too, of course. The difference is that telling the user can

be done informally (in fact, it has to be done informally, in today’s

systems), but telling the DBMS, if it could be done at all, would

have to be done formally.

Back to the 3-way rule. Clearly the designer can’t just tell the

user that the join of relvars RA, AP, and PR is equal to relvar RAP,

because after the decomposition relvar RAP no longer exists.

However, we might define that join as a view (or “virtual relvar”):

VAR RAP VIRTUAL (JOIN { RA , AP , PR })

 KEY { RNO , ANO , PNO } ;

And that same well architected DBMS would then be able to infer

the following as a predicate for view RAP:

Representative RNO is responsible for area ANO and product PNO

is sold in area ANO and product PNO is sold by representative

RNO.

Chapter 9 JDs anD 5nF (InFormal)

200

But this predicate is less than the truth (it doesn’t capture the

3-way cyclic rule). Ideally, therefore, there ought to be a way

for the designer to tell the DBMS (as well as the user) that the

predicate is actually as follows:12

Representative RNO is responsible for area ANO and product PNO

is sold in area ANO and product PNO is sold by representative RNO

and

representative RNO sells product PNO in area ANO.

Note that this latter predicate is stronger than the former, in that

if a certain (RNO,PNO,ANO) triple satisfies the latter, it certainly

satisfies the former, while the converse is (obviously) false.

 9.4 No answer provided.

12 This is thus one of those situations where the user (or in this case the designer) definitely knows
more than the system does. Of course, the designer does need to state, and have the system
enforce, the corresponding constraint. Perhaps the easiest way to state the constraint is simply
as follows: RAP{RNO,ANO} = RA AND RAP{ANO,PNO} = AP AND RAP{PNO,RNO} = PR—i.e.,
three EQDs, in effect.

Chapter 9 JDs anD 5nF (InFormal)

201
© C. J. Date 2019
C. J. Date, Database Design and Relational Theory, https://doi.org/10.1007/978-1-4842-5540-7_10

CHAPTER 10

JDs and 5NF (Formal)

After great pain, a formal feeling comes.

—Emily Dickinson:
Poem No. 341 (c. 1862):

Thomas H. Johnson (ed.):
The Complete Poems of Emily Dickinson (1960)

Just as Chapter 5 consisted of a more formal treatment of material introduced informally

in Chapter 4, so this chapter consists of a more formal treatment of material introduced

informally in Chapter 9. But there’s rather more to cover in this chapter than there was

in Chapter 5, as you’ll soon see. Let me just say up front that, just as Chapter 5 had little

to say about 2NF or 3NF, so this chapter has little to say about 4NF, either; like 2NF and

3NF, in fact, 4NF is—from some points of view, at least—primarily of historical interest.

However, I’ll discuss it in a little more detail in a later chapter (Chapter 12).

 Join Dependencies Revisited
I begin with a precise and accurate definition of what a JD is, followed by some

explanatory text that deliberately parallels the corresponding text in Chapter 5. (Similar

remarks apply to the next section also.)

Definition (join dependency): Let H be a heading; then a join

dependency (JD) with respect to H is an expression of the form

☼{X1,...,Xn}, where X1, ..., Xn (the components of the JD) are

subsets of H whose union is equal to H. Note: The phrase JD with

respect to H can be abbreviated to just JD, if H is understood.

202

Here are some examples:

☼ { { SNO , SNAME , CITY } , { CITY , STATUS } }

☼ { { CITY , SNO } , { CITY , STATUS , SNAME } }

☼ { { SNO , SNAME } , { SNO , STATUS } , { SNAME , CITY } }

☼ { { SNO , CITY } , { CITY , STATUS } }

Note carefully that, like FDs, JDs are defined with respect to some heading, not with

respect to some relation or some relvar. Of the JDs just shown, for example, the first three

are defined with respect to the heading {SNO,SNAME,STATUS,CITY} and the fourth is

defined with respect to the heading {SNO,STATUS,CITY}.

Note too that, again like FDs, from a formal point of view JDs are just expressions,

expressions that when interpreted with respect to some specific relation become

propositions that (by definition) evaluate to either TRUE or FALSE. For example, if the

first two JDs shown above are interpreted with respect to the relation that’s the current

value of relvar S (see Figure 1-1 or Figure 3-1), then the first evaluates to TRUE and the

second to FALSE. Of course, it’s common informally to define ☼{X1,...,Xn} to be a JD,

in some specific context, only if it evaluates to TRUE in that context. However, such

a definition leaves no way of saying a given relation fails to satisfy, or in other words

violates, some given JD—because, by that informal definition, a JD that isn’t satisfied

wouldn’t be a JD in the first place. For example, we wouldn’t be able to say the relation

that’s the current value of relvar S violates the second of the JDs shown above.

Here’s another example of a JD that happens to be satisfied by the current value of

relvar S (and in fact by all legitimate values of that relvar):

☼ { { SNO , SNAME , CITY } , { CITY , STATUS } , { CITY , STATUS } }

This JD corresponds to a nonloss decomposition in which one of the projections isn’t

needed in the reconstruction process. In fact, it’s clearly equivalent to the first of the four

shown previously1—

☼ { { SNO , SNAME , CITY } , { CITY , STATUS } }

1 In general, two JDs are equivalent if and only if every relation that satisfies either one also
satisfies the other. I’ll have more to say on this topic (equivalence of JDs) in the next chapter.

Chapter 10 JDs anD 5nF (Formal)

203

—implying that one of the two identical components can be dropped from the original

JD without significant loss. For such reasons, I’ll feel free to refer to the components of

any given JD as constituting a set,2 even though the commalist of components in the

written form of that JD might contain repetitions (duplicates), which sets per se never do.

(That’s why that commalist is enclosed in braces, of course.)

To continue with the definitions:

Definition (satisfying or violating a JD): Let relation r have

heading H and let ☼{X1,...,Xn} be a JD, J say, with respect to H. If r

is equal to the join of its projections on X1, ..., Xn, then r satisfies J;

otherwise r violates J.

Observe that it’s relations, not relvars, that satisfy or violate some given JD. For

example, given the four JDs shown at the top of the previous page, the relation that’s the

current value of relvar S satisfies the first and the third—

☼ { { SNO , SNAME , CITY } , { CITY , STATUS } }

☼ { { SNO , SNAME } , { SNO , STATUS } , { SNAME , CITY } }

—but violates the second:

☼ { { CITY , SNO } , { CITY , STATUS , SNAME } }

Note that the question of that relation satisfying or violating the fourth of those JDs—

☼ { { SNO , CITY } , { CITY , STATUS } }

—doesn’t arise, because that JD isn’t defined with respect to the heading of that relation.

Definition (JD holding): Let relvar R have heading H and let

☼{X1,...,Xn} be a JD, J say, with respect to H. Then JD J holds in

relvar R (equivalently, relvar R is subject to JD J) if and only if

every relation that can ever be assigned to relvar R satisfies J.

The JDs that hold in relvar R are the JDs of R.

2 And to the cardinality of the JD in question as being the cardinality of that set (i.e., the cardinality
of the set that results after redundant duplicates, if any, have been removed). For example, I’ll say
the JD in the example is binary, not ternary, even though the first of the two written forms of that
JD does involve three components.

Chapter 10 JDs anD 5nF (Formal)

204

Please note the terminological distinction I’m drawing here—JDs are satisfied (or are

violated) by relations, but hold (or don’t hold) in relvars. I’ll adhere to this distinction

throughout what follows. By way of example, the first of the four JDs given at the top of

the previous page holds in relvar S—

☼ { { SNO , SNAME , CITY } , { CITY , STATUS } }

—but the second and third don’t:

☼ { { SNO , SNAME } , { SNO , STATUS } , { SNAME , CITY } }

☼ { { CITY , SNO } , { CITY , STATUS , SNAME } }

(Contrast the examples following the previous definition.) So now, at last, we know

precisely what it means for a given relvar to be subject to a given JD. And it should

be clear—in fact, it’s it’s immediate from the definition—that relvar R can be nonloss

decomposed into its projections on X1, ..., Xn if and only if it’s subject to the JD

☼{X1,...,Xn}.

 Fifth Normal Form
Now, when we were talking about FDs and BCNF, we got into a discussion of trivial FDs,

and FD irreducibility, and FDs implied by keys, and various related matters. As I’m sure

you’d expect by now, analogous concepts arise in connection with JDs and 5NF also,

but the details are a little trickier. Well, the concept of a JD being trivial is actually quite

straightforward:

Definition (trivial JD): Let ☼{X1,...,Xn} be a JD, J say, with respect

to heading H. Then J is trivial if and only if it’s satisfied by every

relation with heading H.

From this definition, it’s easy to prove the following result:

Theorem: Let ☼{X1,...,Xn} be a JD, J say, with respect to heading

H. Then J is trivial if and only if some Xi (1 ≤ i ≤ n) is equal to H

(because every relation with heading H necessarily satisfies every

JD with respect to H that’s of the form ☼{...,H,...}).

Chapter 10 JDs anD 5nF (Formal)

205

We can regard this theorem as an operational (or “syntactic”) definition, inasmuch as

it provides an effective test that can easily be applied in practice. (By contrast, the formal

or “semantic” definition isn’t of much use in the practical problem of determining

whether or not a given JD is trivial.)

I’ll defer discussion of JD irreducibility to the next chapter. Before then, I want to

explain what it means for a JD to be implied by keys:

Definition (JD implied by keys): Let relvar R have heading H and

let ☼{X1,...,Xn} be a JD, J say, with respect to H. Then J is implied

by the keys of R if and only if every relation r that satisfies R’s key

constraints also satisfies J.

This definition requires a certain amount of elaboration. First, to say some relation

satisfies some particular key constraint is to say it satisfies the applicable uniqueness

requirement; and if it satisfies the uniqueness requirement for the attributes that

constitute some key, it certainly satisfies the uniqueness requirement for every superset

of that set of attributes (just so long as that superset is a subset of the pertinent heading,

of course)—in other words, for every corresponding superkey. Thus, the phrase “satisfies

R’s key constraints” in the definition could be replaced by the phrase “satisfies R’s

superkey constraints” without making any significant difference. Likewise, the concept

“implied by keys” could just as well be “implied by superkeys,” again without making any

significant difference.

Second, what happens if the JD J mentioned in the definition is trivial? Well, in that

case, by definition, J is satisfied by every relation r with heading H, and so J is certainly

satisfied by every relation r that satisfies R’s key constraints a fortiori. So trivial JDs are

always “implied by keys,” trivially.

Third, then, consider nontrivial JDs. How do we determine whether some nontrivial

JD J is implied by the keys of some relvar? This question does have a satisfactory answer,

but it’s a little complicated, and for that reason I’ll defer it to the next section. Before

then, I want to give a definition of 5NF and say something about that definition:

Definition (fifth normal form): Relvar R is in fifth normal form

(5NF), also known as projection-join normal form (PJ/NF), if and

only if every JD of R is implied by the keys of R.

Chapter 10 JDs anD 5nF (Formal)

206

Now, it should be clear that if a JD is implied by the keys of R, it certainly holds in R

(i.e., it’s certainly “a JD of R”). But the converse is false: A JD can hold in R without being

implied by the keys of R. In other words, the whole point about the 5NF definition is that

the only JDs that hold in a 5NF relvar are ones we can’t get rid of—which means ones

implied by keys (including trivial ones as a special case).3

I’d like to close this section by pointing out an intuitively attractive parallelism

between the BCNF and 5NF definitions:

• R is in BCNF if and only if every FD that holds in R is implied by the

keys of R.

• R is in 5NF if and only if every JD that holds in R is implied by the

keys of R.

However, there’s a significant difference also. In the BCNF definition, we can simplify

the phrase “implied by the keys” to “implied by a key” (meaning any key considered in

isolation)—because, if relvar R has keys K1, ..., Kn and the FD Ki → Y holds in R for some

key Ki, then the FD Ki → Y holds in R for all keys Ki (1 ≤ i ≤ n), necessarily. By contrast,

no such simplification applies to 5NF—the JDs that hold in a 5NF relvar are JDs that are

implied by the keys taken in combination, not necessarily just by some key considered

in isolation. For example, let’s suppose for the moment that relvar S has two keys, {SNO}

and {SNAME}. Then the following JD (a repeat of one we’ve seen several times already)—

☼ { { SNO , SNAME } , { SNO , STATUS } , { SNAME , CITY } }

—would hold in that relvar. (To spell the point out, every relation that satisfies the two

key constraints would satisfy this JD.) But a relation that doesn’t satisfy both of those two

key constraints won’t necessarily satisfy the JD either, and the JD therefore doesn’t hold

in the relvar, precisely because {SNAME} isn’t in fact a key. Exercise: Invent some sample

data to demonstrate the truth of these claims.

3 As usual, “getting rid of” a dependency (of any kind) really means replacing it by some
multirelvar constraint.

Chapter 10 JDs anD 5nF (Formal)

207

 JDs Implied by Keys
So how do we determine whether a given nontrivial JD is implied by keys? It turns out there’s

an algorithm, the membership algorithm (due to Fagin), that does the job. It works like this.

Let relvar R have heading H, and let ☼{X1,...,Xn} be a JD, J say, with respect to H. Then:

 1. If two distinct components of J both include the same key K of R,

replace them in J by their union.

 2. Repeat the previous step until no further replacements are

possible.

Then the algorithm succeeds, and the original JD is implied by the keys of R, if and only

if J is now trivial—i.e., if and only if the final version of J contains H as a component.4

(Note that trivial JDs in particular cause the algorithm to succeed, trivially.)

Let’s look at a few examples. First of all, consider our usual suppliers relvar S. Here’s

another JD—let’s call it J1—that holds in that relvar:

☼ { { SNO , SNAME } , { SNO , STATUS } , { SNO , CITY } }

We already know by repeated application of Heath’s Theorem that this JD holds in

S. However, observe now that the components {SNO,SNAME} and {SNO,STATUS} both

include the key {SNO}. Applying the membership algorithm, therefore, we can replace

them by their union {SNO,SNAME,STATUS}. J1 now looks like this:

☼ { { SNO , SNAME , STATUS } , { SNO , CITY } }

Note that (a) this revised version of J1 is itself a JD with respect to the heading of

relvar S, and also that (b) relvar S is subject to it—two facts that together should give

some insight as to what’s going on with the algorithm (see further explanation later).

Next, the components {SNO,SNAME,STATUS} and {SNO,CITY} of this latter JD both

include the key {SNO}, and so we can replace them by their union. We obtain:

☼ { { SNO , SNAME , STATUS , CITY } }

4 The following implication is worth pointing out explicitly: The membership algorithm will
succeed on the original JD J of R if and only if J contains a component that includes K1 and K2,
a component that includes K2 and K3, .., and so on, where K1, K2, K3, ..., and so on are all of the
keys of relvar R in some order. Note: In practice, of course, we might not need to go all the way
to the bitter end and compute that final version of J—we can quit as soon as a component is
produced that’s equal to H.

Chapter 10 JDs anD 5nF (Formal)

208

This further revision of J1 is again a JD (a unary JD, in fact) with respect to the

heading of S. However, all it says is that relvar S is equal to the “join” of just its identity

projection (recall from the answer to Exercise 5.1 in Chapter 5 that the join of a single

relation r, JOIN{r}, is identically equal to r). In other words, that further revision of J1

simply says that S can be “nonloss decomposed” into its identity projection. But this

observation is trivially true: Any relvar can be “nonloss decomposed” into its identity

projection, as we saw in Chapter 6. Indeed, the JD is now formally trivial, since it

contains a component that’s equal to the pertinent heading. It follows that JD J1 as

originally stated is implied by the keys of relvar S.

By way of a counterexample, consider now the following JD—let’s call it J2—which

also holds in relvar S:

☼ { { SNO , SNAME , CITY } , { CITY , STATUS } }

Since the sole key, {SNO}, of the relvar is certainly not included in both components of

this (binary) JD, the membership algorithm has no effect on it. Thus, the output from

that algorithm is equal to the input (i.e., it consists of the original JD J2, unchanged); no

component of that output is equal to the entire heading, and so J2 isn’t implied by keys

(and relvar S isn’t in 5NF, therefore).

Finally, let’s consider some more abstract examples. Let relvar R have attributes A, B,

C, D, E, and F (only), and let R have keys {A}, {B}, and {C,D} (only). Further, let AB denote

the set of attributes {A,B}, and similarly for other attribute name combinations (“Heath

notation”—see Chapter 7). Now consider the following JDs:

 1. ☼ { AB , ACDE , BF }

 2. ☼ { ABC , ACD , BEF }

 3. ☼ { AB , AC , ADEF }

 4. ☼ { ABC , CDEF }

 5. ☼ { ABD , ACDE , DF }

Try applying the membership algorithm to these JDs for yourself before reading any

further. If you do, you’ll find that Nos. 1-3 are implied by keys (and R is therefore subject

to them, necessarily), while Nos. 4-5 aren’t. To elaborate briefly:

Chapter 10 JDs anD 5nF (Formal)

209

• Nos. 1 and 2 are both implied by the pair of keys {A} and {B} taken

together, but not by any individual key.

• By contrast, No. 3 is implied by the key {A} considered in isolation.

• No. 4 would be implied by keys—actually by an individual key—if

and only if {C} were a key, but it isn’t; what’s more, that JD can’t

possibly hold in R, because if it did, then {C} would have to be a key

after all (think about it!).

• As for No. 5, it clearly isn’t implied by the keys; it might or might not

hold in R, but if it does, then R can’t be in 5NF.

So what exactly is going on in these examples? Let me try to explain the intuition

behind what I’ve been saying (you might like to try working through what follows in terms

of the suppliers relvar S and the JD ☼{{SNO,SNAME},{SNO,STATUS},{SNAME,CITY}},

under the assumption once again that {SNO} and {SNAME} are both keys for that relvar):

• Let X1, ..., Xn be subsets of the heading H of relvar R, such that the

union of X1, ..., Xn is equal to H.

• Let J be the JD ☼{X1,...,Xn}, and let J be implied by the keys of R.

• Let r be the relation that’s the current value of R.

• Choose, arbitrarily, two distinct elements (components) of the set

{X1,...,Xn}, say X1 and X2.

• Let r1 and r2 be the projections of r on X1 and X2, respectively.

Now, if X1 and X2 both include the same key K of R, then the join r12 of r1 and

r2—whose heading X12 will be the union of X1 and X2—will be a strict one to one join,

and so r1 and r2 can be replaced by r12 without loss of information. (At the same time,

X1 and X2 can be replaced in J by X12.) Since (as stated) the original version of J was

implied by the keys of R, performing such replacements repeatedly will, by definition,

eventually yield a relation (a) that’s equal to the original relation r, and in particular (b)

will therefore have a heading equal to the entire heading H.

Chapter 10 JDs anD 5nF (Formal)

210

Let me now point out that everything I’ve said so far becomes much simpler in the

common special case where the pertinent relvar R has just one key K. In that case, the JD

☼{X1,...,Xn} is implied by keys if and only if the following are both true:

 a. Every attribute of R is included in at least one of X1, ..., Xn. (This

requirement always applies, of course, in the general case as well

as in this special one.)

 b. The sole key K of R is included in each of X1, ..., Xn—in other

words, each of X1, ..., Xn is a superkey.

So if R has just one key K, then R is in 5NF if and only if every component of every JD

that holds in R includes that key K.5 However, please note that—this is important!—I’m

assuming here that the only JDs under consideration are ones that are irreducible with

respect to R. See Chapter 11 for further explanation.

By way of an example of the foregoing point, consider the parts relvar P. The only

irreducible JDs ☼{X1,...,Xn} that hold in that relvar are such that each Xi (i = 1, ..., n)

includes the sole key {PNO}. Those JDs are clearly all implied by that sole key, therefore,

and relvar P is thus in 5NF. Here’s one of the JDs in question:

☼ { { PNO , PNAME , COLOR } , { PNO , WEIGHT , CITY } }

Thus, relvar P can be nonloss decomposed into its projections on the components of

this JD. (Whether we would actually want to perform that decomposition is another

matter, of course. We know we could if we wanted to, that’s all.)

Let me close this section by revisiting the SPJ example from Chapter 9. For

convenience, a sample value of that relvar is shown in Figure 10-1 (a repeat of Figure 9-1).

The predicate is Supplier SNO supplies part PNO to project JNO, and the following

business rule (BRX) is in effect:

• If supplier s supplies part p and part p is supplied to project j and

project j is supplied by supplier s, then supplier s supplies part p to

project j.

5 Note that this isn’t the case with our usual relvar S as defined in Chapters 1 and 2: That relvar is
subject to at least one JD—viz., the JD ☼{{SNO,SNAME,CITY},{CITY,STATUS}}—in which at least
one component fails to include the sole key {SNO}, and the relvar is therefore not in 5NF.

Chapter 10 JDs anD 5nF (Formal)

211

Now, we know from Chapter 9 that (as I put it in that chapter) the following JD

captures the essence of business rule BRX and so holds in relvar SPJ:

☼ { { SNO , PNO } , { PNO , JNO } , { JNO , SNO } }

Now we can see that this JD isn’t implied by the sole key (viz., {SNO,PNO,JNO}) of the

relvar, because the membership algorithm fails, and so SPJ isn’t in 5NF. So it can be

nonloss decomposed into its three binary projections, and probably should be, if we

want to reduce redundancy. Those three projections are all in 5NF (no JDs hold in them

at all apart from trivial ones).

 A Useful Theorem
I said in Chapter 9 that in practice it’s quite unusual to find a relvar that’s in BCNF and

not in 5NF. In fact, there’s a theorem that addresses this issue:

Theorem: Let R be a BCNF relvar and let R have no composite

keys; then R is in 5NF.

(Recall from Chapter 1 that a composite key is a key consisting of two or more attributes.)

This theorem is quite useful. What it says is, if you can get to BCNF (which is easy

enough), and if there aren’t any composite keys in your BCNF relvar (which is often but

not always the case), then you don’t have to worry about the complexities of JDs and

5NF in general—you know without having to think about the matter any further that the

relvar simply is in 5NF. Note: Actually the theorem applies to 3NF, not BCNF; that is, it

really says a 3NF relvar with no composite keys is in 5NF. But every BCNF relvar is in 3NF,

and in any case BCNF is much more important than 3NF, pragmatically speaking (as well

as being conceptually simpler).

Figure 10-1. Relvar SPJ—sample value

Chapter 10 JDs anD 5nF (Formal)

212

I don’t know why, but people often misinterpret the foregoing theorem. to be
specific, given that a BCnF relvar with no composite keys is “automatically”
in 5nF, people often seem to think that simply introducing a surrogate key
(noncomposite by definition) into a BCnF relvar “automatically” means the relvar
is now in 5nF. But it doesn’t mean that at all! If the relvar wasn’t in 5nF before
the surrogate was introduced, it won’t be in 5nF afterward. In particular, if it
had a composite key before the surrogate was introduced, it’ll still have one
afterward.

 FDs Aren’t JDs
Statements to the effect that every FD is a JD, or that (as I put it in Chapter 9) JDs are

a kind of generalized FD, are quite common in the less formal parts of the literature;

indeed, I’ve said such things myself in previous books and other previous writings. But

such talk is strictly incorrect. It would be better to say that every FD implies a JD (which

in fact is something we already know to be the case from Heath’s Theorem). In other

words, if R is subject to a certain FD, F say, then it’s certainly subject to a certain JD, J say.

However, the converse is false—R can be subject to that same JD J without being subject

to that same FD F, as I now show:

• Let relvar R have attributes A, B, and C (only), let F be the FD AB → C,

and let R be subject to F (Heath notation once again).

• By Heath’s Theorem, then, R is subject to the JD ☼{ABC,AB}. (With

reference to the formulation of Heath’s Theorem given in Chapter 9,

take X to be AB, Y to be C, and Z to be the empty set of attributes.) Call

this JD J.

• But this JD J is trivial—it holds in every relvar R that has heading ABC,

regardless of whether that relvar is subject to the FD AB → C.

Chapter 10 JDs anD 5nF (Formal)

213

 Update Anomalies Revisited
In Chapter 3, we took a brief look at certain update anomalies that can be caused by

FDs: specifically, FDs that hold in a relvar that’s not in BCNF. To be frank, however, the

update anomaly concept was never very precisely defined (at least, not in that context);

probably the best that could be said about it is that the update anomaly problem is just

the redundancy problem looked at from another point of view. So what about JDs?—

specifically, JDs that hold in a relvar that’s not in 5NF? Such JDs do cause redundancy,

as we’ve seen, and so we can expect them to give rise to update anomalies as well.

And indeed they do; what’s more, the concept can be (or at any rate, is) more precisely

defined in that context, as we’ll see.

Consider Figure 10-2, which shows two possible values for relvar SPJ; the one on the

left is a repeat of the relation from Figure 10-1, the one on the right is obtained from the

one on the left by removing two tuples.

Figure 10-2. Two possible values for relvar SPJ

Recall now that the following JD holds in relvar SPJ:

☼ { { SNO , PNO } , { PNO , JNO } , { JNO , SNO } }

It follows that:

• If the current value of the relvar is the relation on the left of the figure

(“possible value 1”), there’s a deletion anomaly: We can’t delete just

the tuple (S1,P1,J1), because what results after that deletion violates

the JD and is thus not a legal value for SPJ.

• Likewise, if the current value of the relvar is the relation on the right

of the figure (“possible value 2”), there’s an insertion anomaly: We

can’t insert just the tuple (S2,P1,J1), because what results after that

insertion is—again, and for the same reason—not a legal value for SPJ.

Chapter 10 JDs anD 5nF (Formal)

214

Now, the JD in this example is tuple forcing. (Recall from Chapter 9 that a JD is tuple

forcing if it’s such that, if certain tuples appear, certain additional tuples are forced to

appear as well.) And the notion of tuple forcing JDs—or the intuition behind that notion,

rather—allows us to give definitions of the kinds of update anomalies that can occur in

the presence of such a JD, definitions that are more precise than their FD counterparts

(such as they are).6 To be specific:

Definition (deletion anomaly with JDs): Let the JD J hold in

relvar R. Then R suffers from a deletion anomaly with respect to

J if and only if there exist a relation r and a tuple t, each with the

same heading as R, such that:

 a. r satisfies J, and

 b. The relation r' whose body is obtained from that of r by

removing t violates J.

Definition (insertion anomaly with JDs): Let the JD J hold in

relvar R. Then R suffers from an insertion anomaly with respect to

J if and only if there exist a relation r and a tuple t, each with the

same heading as R, such that:

 a. r satisfies J, and

 b. The relation r' whose body is obtained from that of r by

appending t satisfies R’s key constraints but violates J.

Points arising:

• Note that (a) the foregoing anomalies are specifically defined in

terms of some JD J, and (b) they can certainly both occur in the same

relvar R, as the SPJ example illustrates. In Chapter 13, however, we’ll

see that it’s also possible, if JD J holds in relvar R, for R to suffer from

an insertion anomaly and not a deletion anomaly (with respect to J in

both cases).

6 They might be more precise, but they’re also very slightly suspect, in a sense, inasmuch as they
talk about removing or appending individual tuples and (as explained in SQL and Relational
Theory) DELETE and INSERT really “remove” or “append” entire relations, not individual tuples.
However, the definitions can clearly be refined in such a way as to take care of this minor quibble.

Chapter 10 JDs anD 5nF (Formal)

215

• Although they’re more precisely defined than their FD counterparts,

the foregoing anomalies can still be regarded as the redundancy

problem looked at from another point of view—though here, of course,

we’re referring to redundancy that’s caused by a JD, not by an FD.

• If relvar R is subject to update anomalies and those anomalies are

caused by a JD (tuple forcing or otherwise), then replacing R by a set

of 5NF projections will solve the problem. That is, such anomalies

can’t occur with a 5NF relvar.

Please note carefully, however, that not all update anomalies are caused by FDs or

JDs. In fact, it’s probably true to say that most integrity constraints (perhaps all?) can

give rise to an insertion anomaly, in the sense that there always exists a tuple whose

insertion would cause the constraint in question to be violated. (As a simple example,

suppose there’s a constraint to the effect that supplier status values must lie in the range

1 to 100, inclusive.) By contrast, comparatively few constraints can give rise to a deletion

anomaly. (One that can would be a constraint to the effect that there must always be at

least two distinct suppliers. Another is a foreign key constraint; in the suppliers-and-

parts database, for example, deleting a supplier can’t be done if it causes the foreign key

constraint from SP to S to be violated.7)

 Exercises

 10.1 The following questions are repeated from Chapter 1, but you

should have a better chance of answering them now (assuming

you couldn’t do so before, that is):

 a. (Exercise 1.6.) Is it true that every “all key” relvar is in 5NF?

 b. (Exercise 1.7.) Is it true that every binary relvar is in 5NF?

7 Note, however, that (by definition) the foreign key constraint from SP to S is a multirelvar
constraint. By contrast, JDs are always single-relvar constraints specifically (where a single-relvar
constraint is any constraint that can be tested by examining the pertinent relvar in isolation,
i.e., without having to examine any other relvar in the database). Even the generalized update
anomaly definitions to be discussed in Chapter 15 have to do with single-relvar constraints only
and have nothing to say about multirelvar constraints.

Chapter 10 JDs anD 5nF (Formal)

216

 c. (Exercise 1.8.) Is it true that if a relvar has just one key and just

one other attribute, then it’s in 5NF?

 d. (Exercise 1.9.) Is it true that if a relvar is in BCNF but not 5NF,

then it must be all key?

 e. (Exercise 1.10.) Can you give a precise definition of 5NF?

 f. (Exercise 1.11.) Is it true that 5NF relvars are redundancy free?

 10.2 Give as precise a definition as you can of what it means for a relvar

to be subject to a join dependency.

 10.3 How many JDs hold in the shipments relvar SP?

 10.4 What does it mean to say a JD is implied by superkeys?

 10.5 What’s a trivial JD? Is a trivial FD a special case?

 10.6 Give an example of a JD that’s (a) tuple forcing, (b) not tuple

forcing.

 10.7 Consider (either base relvar or view) RAP as discussed in the

answer to Exercise 9.2 in Chapter 9. Give examples of an insertion

anomaly and a deletion anomaly that can occur with that relvar.

 10.8 The following is a lightly edited quote from a certain database

textbook:

 Fifth normal form concerns dependencies that are rather obscure.

It has to do with relations that can be divided into subrelations ...

but then cannot be reconstructed. The condition under which this

situation arises has no clear, intuitive meaning. We do not know

what the consequences of such dependencies are or even if they

have any practical consequences.

Do you have any comments?

Chapter 10 JDs anD 5nF (Formal)

217

 10.9 The following is a lightly edited quote from my own textbook An

Introduction to Database Systems (8th edition, Addison-Wesley,

2004):

 Relvar R is in 5NF if and only if every nontrivial JD that holds in R

is implied by the keys of R, where:

 a. The JD ☼{A, B, ..., Z} is trivial (with respect to R) if and

only if at least one of A, B, ..., Z is the heading of R.

 b. The JD ☼{A, B, ..., Z} is implied by the keys of R if and only

if each of A, B, ..., Z is a superkey for R.

Do you have any comments?

 Answers

 10.1 No (see the discussion of relvar SPJ in the body of the chapter for

a counterexample). b. No (in fact, as was shown in the answer to

Exercise 4.6 in Chapter 4, a binary relvar isn’t necessarily even

in BCNF, or even 2NF). c. No (see Chapter 13). d. No (again, see

Chapter 13). e. See the body of the chapter. f. No (see relvar CTXD

in Chapter 9 for a counterexample; see also Chapter 17).

 10.2 See the body of the chapter.

 10.3 First, I assume no JD has any repeated components, for otherwise

the number of JDs would literally be infinite (though at least

the number of logically distinct JDs would of course always be

finite). Second, relvar SP is in 5NF, and in fact in 6NF; we haven’t

discussed 6NF yet (see Chapter 14), but I can at least say for

now that if a relvar is in 6NF, then all of the JDs that hold in that

relvar will be trivial ones. So the question becomes: How many

trivial JDs hold in relvar SP? Well, all such JDs take the form

☼{H,X1,...,Xn}, where H denotes the entire heading and {X1,...,Xn}

is a set—possibly empty—of proper subsets of H. Since H is of

degree three, it has eight subsets, of which all but one are proper.

So how many distinct sets are there whose elements are some

subset of a prescribed set of seven elements? Well, there’s one

Chapter 10 JDs anD 5nF (Formal)

218

such set with no elements at all; there are seven such sets with

just one element; and, more generally, there are “7 pick i” such

sets with i elements (i = 0, 1, ..., 7).8 So the total number of sets

of proper subsets of H = (7 pick 0) + (7 pick 1) + (7 pick 2) + ...

+ (7 pick 7) = 1 + 7 + 21 + 35 + 35 + 21 + 7 + 1 = 128. So there are

128 trivial JDs altogether that hold in relvar SP. Note: Of those

128, 64 involve an empty component, which might reasonably

be ignored—for example, the JDs ☼{H,{ }} and ☼{H} are clearly

equivalent9—thereby reducing the total count to 64.

 10.4 See the body of the chapter.

 10.5 For the definition, see the body of the chapter. Since an FD isn’t

a JD but merely implies one, a trivial FD isn’t a special case.

However, the JD implied by a trivial FD is indeed itself trivial in

turn. For example, the trivial FD {CITY,STATUS} → {STATUS}

holds in the suppliers relvar S. Applying Heath’s Theorem,

therefore, we see the trivial JD ☼{AB,AC} holds in S, where A is

{CITY,STATUS}, B is {STATUS}, and C is {SNO,SNAME} (the JD is

trivial because AC is equal to the entire heading).

 10.6 For an example of a tuple forcing JD, see the SPJ example in the

body of the chapter. As for one that’s not tuple forcing, consider,

e.g., the JD ☼{{SNO,SNAME,CITY},{CITY,STATUS}} that holds in

relvar S (which fails to be tuple forcing, observe, precisely because

it has a component that’s a superkey for the pertinent relvar).

 10.7 Examples can be obtained from the examples given in the body of

the chapter in connection with relvar SPJ by systematically replacing

supplier numbers by RNO values, part numbers by ANO values, and

project numbers by PNO values. No further answer provided.

 10.8 Well, obviously I don’t know whether you have any comments, but

I certainly do. However, I don’t think it would be polite to air them

here, so I won’t.

8 In general, the expression “n pick r” denotes the number of ways of picking r elements from a set
of n elements.

9 Proof: For all relations r, JOIN{r{H},r{ }} = JOIN{r{H}} = JOIN{r} = r.

Chapter 10 JDs anD 5nF (Formal)

219

 10.9 The given “definition” is not only embarrassingly sloppy, it’s

wrong! To be more specific:

• “R is in in 5NF if and only if every nontrivial JD that holds in R is

implied by the keys of R” is correct.

However:

• The triviality or otherwise of a given JD should be defined with

respect to a heading, not a relvar.

• For the JD ☼{A, B, ..., Z} to hold in R, it’s necessary, but obviously

not sufficient, that the union of A, B, ..., Z be equal to the entire

heading of R.

• But even if the foregoing condition is satisfied, then the fact that

each of A, B, ..., Z is a superkey for R is not sufficient for the JD in

question to be implied by the keys of R. (On the other hand, it is

sufficient in the simple special case in which R has just one key.)

See Chapter 13 for further discussion.

Chapter 10 JDs anD 5nF (Formal)

221
© C. J. Date 2019
C. J. Date, Database Design and Relational Theory, https://doi.org/10.1007/978-1-4842-5540-7_11

CHAPTER 11

Implicit Dependencies

What are you implying?

—20th century catchphrase

We’ve seen several illustrations in previous chapters of the idea that certain

dependencies imply others. To be specific, we saw in Chapter 7 how some FDs are

implied by other FDs, and we saw in Chapters 9 and 10 how some JDs are implied by

FDs. It’s time to take a closer look at such matters. Note that if we need to tell what

normal form some given relvar is in, we do need to know all of the dependencies,

implicit ones as well as explicit ones, that hold in that relvar. In this chapter, therefore,

I plan to discuss among other things:

• Irrelevant JD components

• Combining JD components

• Irreducible JDs

• Adding JD components

These various discussions will pave the way for an explanation of what’s called the

chase, to be described in the penultimate section of the chapter.

222

 Irrelevant Components
Once again consider relvar S, with its FD {CITY} → {STATUS}. As we know from previous

chapters:

• That relvar can be nonloss decomposed into its projections on

{SNO,SNAME,CITY} and {CITY,STATUS}.

• It can also clearly be nonloss decomposed into those same two

projections together with the projection on (say) {SNAME,CITY}.

• However, that third projection is irrelevant, in the sense that it clearly

isn’t needed in the process of reconstructing the original relvar.

Now let me restate the foregoing example in terms of JDs, as follows: Relvar S is

subject to the JD

☼ { { SNO , SNAME , CITY } , { CITY , STATUS } }

and also to the JD

☼ { { SNO , SNAME , CITY } , { CITY , STATUS } , { SNAME , CITY } }

In this latter JD, however, the {SNAME,CITY} component is irrelevant: It’s a proper

subset of another component, and for that reason the corresponding projection isn’t

needed in the process of reconstructing the original relvar.

With the foregoing example by way of motivation, I can now give a precise definition

of what it means for some component to be irrelevant in some JD:

Definition (irrelevant component): Let ☼{X1,..., Xn} be a JD, J

say; then Xi is irrelevant in J if and only if (a) there exists some Xj

in J such that Xi is a proper subset of Xj (in symbols, Xi ⊂ Xj) or (b)

there exists some Xj in J (j < i) such that Xj = Xi.1

The reason for my choice of the term irrelevant here should be clear: If Xi is irrelevant

in J, then every relation that satisfies J also satisfies J′, where J′ is derived from J by dropping

Xi. What’s more, the converse is true too: Every relation that satisfies J′ also satisfies J. In

other words, the JDs J and J′ are equivalent: Each implies the other, and every relation that

satisfies either necessarily satisfies the other as well. It follows that not only can irrelevant

components always be dropped, they can always be added too, without significant effect.

1 If we can assume the components X1, ..., Xn are all distinct, then we can drop part (b) of this
definition.

Chapter 11 ImplICIt DepenDenCIes

223

 Combining Components
So now we’ve seen that some JDs imply others, just as some FDs imply others. But irrelevant

components are far from being the end of the story. The next point is as follows (I’ve labeled

it a theorem, but it’s very obvious and scarcely merits such a grand designation):

Theorem: Let J be a JD and let J′ be derived from J by replacing

two components by their union. Then J implies J′ (that is, every

relation that satisfies J also satisfies J′).

By way of example, every legal value of relvar S satisfies the following JD (it’s the JD

from the previous section, the one with an irrelevant component)—

☼ { { SNO , SNAME , CITY } , { CITY , STATUS } , { SNAME , CITY } }

—and therefore satisfies this one too:

☼ { { SNO , SNAME , CITY } , { CITY , STATUS , SNAME } }

Exercise: Check the validity of the foregoing claim for yourself—perhaps even try to prove

it, formally—if it isn’t immediately obvious. (Also, how many distinct JDs can be derived

from the given one by combining components in this manner?) Points arising:

• I made use of the foregoing theorem, tacitly, when I explained the

intuition behind the membership algorithm (i.e., the algorithm for

testing whether a JD is implied by keys) in Chapter 10.

• Observe that the theorem involves an implication, not an equivalence:

J implies J′, but the converse isn’t true—J′ doesn’t imply J, in general,

and so J and J′ aren’t equivalent (again, in general).

Note: In fact this point is easy to see: If we keep on replacing

components by their union, we’ll eventually obtain one that’s

equal to the entire heading, and the resulting JD J ′ will be trivial—

and it’s clearly not the case that every JD is equivalent to some

trivial JD.

• Although it’s true that the second of the two JDs shown above (the

binary one) holds in relvar S, nonloss decomposing that relvar on the

basis of that JD would not be a good idea.

Chapter 11 ImplICIt DepenDenCIes

224

Note: Exercise 11.4 asks you to explain this observation further,

but you might like to take a moment now to convince yourself that

it’s true. Also—to get ahead of myself for a moment—I can say the

JD in question, the binary one, is in fact irreducible with respect

to S (see the section immediately following). What the example

shows, therefore, is that although irreducible JDs are important,

they don’t necessarily correspond to good decompositions.

Informally, in other words, we need to distinguish between “good”

and “bad” JDs, where “good” and “bad” refer to the quality of the

corresponding decompositions. For further discussion of such

matters, see Chapter 16.

 Irreducible JDs
So far the notion of one JD implying another has been more or less syntactic in nature—I

haven’t really paid much attention to the question of whether the JDs we’re talking about

actually hold in some given relvar. (Observe that neither the definition of irrelevant

components, nor the theorem about replacing components by their union, made any

mention of a relvar, nor even of a heading.) Now, however, let’s consider JDs that do

actually hold in some relvar. Then we have the following theorem:

Theorem: Let JD J hold in relvar R; then J is equivalent to some

irreducible JD (not necessarily unique) that also holds in R.

I’ll explain exactly what it means for a JD to be irreducible in a moment. Note first,

however, that the concept of equivalence (i.e., of JDs) has to be understood in the context

of some particular relvar; that is, it’s possible for two JDs to be such that both hold in

one relvar while just one holds in another. In such a case, the two JDs might or might

not be equivalent with respect to the first relvar, but they’re certainly not equivalent with

respect to the second.

Now to JD equivalence as such. Let me begin by reminding you of something from

Part II of this book regarding FDs: namely, that every FD that holds in relvar R implies

some irreducible FD that also holds in relvar R. (This is easy to see: Just keep dropping

attributes from the determinant until what remains is an FD that no longer holds.)

Similarly, every JD that holds in relvar R implies—in fact (a stronger statement), is

equivalent to—some irreducible JD that also holds in relvar R.

Chapter 11 ImplICIt DepenDenCIes

225

So what does it mean for a JD to be irreducible? Here’s a definition:

Definition (irreducible JD): Let ☼{X1,...,Xn} be a JD, J say, that

holds in relvar R, and let there be no proper subset {Y1,...,Ym}

of {X1,...,Xn} such that the JD ☼{Y1,...,Ym} also holds in R.

Then J is irreducible with respect to R (or just irreducible, if R is

understood).

Points arising:

• It’s easy to see that every JD that holds in relvar R implies an

irreducible JD that also holds in relvar R: Just keep dropping

components from the given JD until what’s left is a JD that no longer

holds in R, and then the last one that does hold is irreducible.

• It’s also easy to see that the implication goes the other way, too: Start

with the irreducible JD and add the dropped components back in one

by one until the original JD is reached. At each step in this process,

the current version of the JD will be a JD that holds in R.

Note: From this point and the previous point taken together, it

follows that (a) every JD that holds in R is equivalent to some

irreducible JD that holds in R (as previously stated, in fact), and

hence that (b) the irreducible JDs that hold in R in fact imply all of

the JDs that hold in R.

• If some component Xi is irrelevant in J, then J is certainly reducible

with respect to every relvar in which it holds (because Xi can be

dropped without significant loss). However, J can still be reducible

with respect to some relvar even if all components are relevant, as I

now show.

Consider the suppliers relvar S once again. For simplicity, however, let’s agree to

ignore attribute SNAME; what’s more, let’s agree to take the name “S” to refer to this

reduced version of the relvar, until further notice. Now consider the following JD:

☼ { { SNO , CITY } , { CITY , STATUS } , { SNO , STATUS } }

This JD—let’s call it J1—clearly has no irrelevant components. However, I’ll show

that (a) it holds in relvar S but that (b) it’s reducible with respect to that relvar,

because the {CITY,STATUS} component can be dropped and what’s left is still a JD of S.

Chapter 11 ImplICIt DepenDenCIes

226

Note: Actually the reducibility in this example is intuitively obvious, because (to state the

matter precisely) the projection on {CITY,STATUS} of S is clearly equal to the projection

on {CITY,STATUS} of the join of S{SNO,CITY} and S{SNO,STATUS}. As a consequence,

the {CITY,STATUS} component adds nothing, as it were. To repeat, therefore: The

reducibility is “obvious”—but now I want to prove it.

 a. First, then, suppose the following tuples appear in S:

s1 c1 t2

s2 c1 t1

s1 c2 t1

(I’m using an obvious simplified notation for tuples here; s1 and

s2 denote supplier numbers, c1 and c2 denote supplier cities, and

t1 and t2 denote status values. Note how each of the three tuples

corresponds to one component of JD J1.)

Now, because {SNO} is a key, the following FDs hold in S:

{ SNO } → { CITY }

{ SNO } → { STATUS }

We can therefore conclude that c1 = c2 and t1 = t2, and so the tuple

s1 c1 t1

appears in S, necessarily, because in fact it’s identical to the first

(or, equally, the third) in the original list of tuples as shown above.

But to say the original “three” tuples cause this “fourth” tuple to

appear—if you see what I mean—is to say, precisely, that JD J1

holds (I mean, that’s what J1 says). So J1 does hold in S.

 b. Now appealing to either of the FDs {SNO} → {CITY} and {SNO}

→ {STATUS} (both of which hold in S, as we know) and to Heath’s

Theorem, we see that the following JD—let’s call it J2—certainly

holds in relvar S:

☼ { { SNO , CITY } , { SNO , STATUS } }

But the components of J2 form a proper subset of those of J1. It

follows that J1 is reducible with respect to S. To be specific, the

Chapter 11 ImplICIt DepenDenCIes

227

component {CITY,STATUS} can be dropped from J1 without loss,

in the sense that what remains is still a JD of S.

Observe now that the foregoing proof made no use of the fact that the functional

dependency {CITY} → {STATUS} holds in S (indeed, the result would still be valid even if

that FD didn’t hold). But now let’s do another example that does make use of that FD:

• First, we know from the previous example that the following JD (J1

from that example) holds in S:

☼ { { SNO , CITY } , { CITY , STATUS } , { SNO , STATUS } }

• But the FD {CITY} → {STATUS} also holds, and so by Heath’s

Theorem the following JD—let’s call it J3—holds as well:

☼ { { CITY , STATUS } , { CITY , SNO } }

• The components of J3 form a proper subset of those of J1, and so

it follows once again that J1 is reducible with respect to S. To be

specific, the component {SNO,STATUS} can be dropped from J1

without loss, in the sense that what remains is still a JD of S.

Observe, therefore, that the original JD J1 is equivalent, with respect to relvar S, to

two distinct JDs: namely, J2 and J3.

In general, of course, the question is: Given relvar R and a JD J that holds in R, how

can we find an irreducible equivalent (meaning, to be more precise about the matter, a

JD that’s both equivalent to J and irreducible, where equivalent and irreducible are both

understood as being with respect to R)? Well:

• If some component is irrelevant in J, that component can clearly be

dropped.

• If all components are relevant, we can only try dropping one,

and then:

 a. If what’s left is still a JD of R, we drop another component and

repeat the process.

 b. If what’s left isn’t a JD of R, we reinstate the dropped

component and try dropping another one.

Eventually, we’ll arrive at a JD that’s equivalent to the original one and is irreducible.

Chapter 11 ImplICIt DepenDenCIes

228

And how do we tell whether some JD is in fact a JD of R? Well, if it’s one that’s been

explicitly declared as such, there’s clearly no problem; but if not, we can use the chase,

which I’ll be describing in the next section but one.

 Summary So Far
Let me summarize where we are. The general point is that some JDs imply others. As

specific illustrations of this point, we’ve discussed:

• Irrelevant components: Any given JD J is equivalent to every JD J′ that

can be obtained from J by adding or dropping irrelevant components.

• Combining components: Any given JD J implies every JD J′ that can be

obtained from J by replacing two or more components by their union.

• Irreducibility: Any given JD J that holds in relvar R is equivalent to

at least one JD J′—not necessarily distinct from J—that holds in R

and is irreducible (where equivalent and irreducible must both be

understood as being with respect to R). It follows that R’s irreducible

JDs in fact imply all of R′s JDs.

The following observations are also valid (I haven’t discussed them in detail, but

they’re intuitively obvious):

• Adding attributes: If JD J holds in relvar R, then so does every JD J′
that can be obtained from J by adding some attribute of R to some

component of J.

• Adding components: If JD J holds in relvar R, then so does every JD J′
that can be obtained from J by adding any subset of the heading of R

as another component.

In both of these latter cases, however, we’re talking about implication, not

equivalence. For example, in relvar S (but ignoring SNAME once again, for simplicity),

the JD

☼ { { SNO , STATUS } , { SNO , CITY } }

holds, and therefore the following JD, with an added component, holds as well:

☼ { { SNO , STATUS } , { SNO , CITY } , { CITY , STATUS } }

Chapter 11 ImplICIt DepenDenCIes

229

However, the converse is false—if the latter JD holds, it doesn’t follow that the former

one does.2

We can also say the following: If (a) J is a JD that holds in relvar R and J implies another

JD J′ (which therefore also holds in R, by definition), and (b) J′ is obtained from J by

dropping attributes from components of J and/or dropping entire components from J,

then J is certainly a “bad” JD (see the remarks on the topic of good vs. bad JDs at the end of

the section “Combining Components”). However, a JD J can still be “bad” even if it implies

no such JD J′, as we’ll see; that is, not all “bad” JDs conform to the foregoing simple pattern.

Now I’d like to generalize the discussion somewhat. First of all, from this point

forward I’ll take the term dependencies to mean either FDs or JDs or both, as the context

demands.3 Now, throughout this book so far, whenever I’ve considered the question of

dependencies being implied by others, I’ve mostly, albeit tacitly, limited my attention to

ones that are implied by an individual dependency. More generally, however, it turns out

that certain combinations of dependencies can imply others. Let me give an example.

Consider a relvar SPT, with attributes SNO, PNO, and STATUS (only), where the

attributes have their usual meanings. Suppose we’re told, not entirely unreasonably, that

the following dependencies (one FD and one JD) both hold in this relvar:

{ SNO , PNO } → { STATUS }

☼ { { SNO , PNO } , { SNO , STATUS } }

Now, given the semantics of the situation, it’s intuitively obvious that (a) {SNO} isn’t

a key for SPT and yet (b) the FD {SNO} → {STATUS} holds in SPT implicitly (and so SPT

isn’t in 2NF, incidentally). Note that I say implicitly—we haven’t been told explicitly that

the FD holds. The question is: Can we prove (a) and (b), given only that the stated FD

and JD hold? That is, can we show that (a) and (b) are valid formally, without paying any

regard to semantics? (After all, that’s what the system would have to do, if we wanted it

to be able to infer dependencies. The system doesn’t know anything about semantics, as

I’m using that term here.)4

2 Of course, both JDs do hold in our running example, but that’s not because the ternary one
implies the binary one (it doesn’t); rather, it’s because the FD {CITY} → {STATUS} also holds.

3 As we know, other kinds of dependencies do exist, but I’m deliberately excluding them from
consideration at this time.

4 I note in passing that a proof of part (b) follows immediately from what Exercise 11.3, q.v., refers
to as the converse of an extended version of Heath’s theorem.

Chapter 11 ImplICIt DepenDenCIes

230

So let’s give it a try. First of all, suppose the following tuples appear in SPT—

s1 p1 t1

s1 p2 t2

—where p1 ≠ p2. Now what we need to do, in order to show that the FD {SNO} →

{STATUS} holds, is to show that t1 and t2 must be equal. We begin by writing down

the projections of the two tuples corresponding to the components of the given JD

☼{{SNO,PNO},{SNO,STATUS}}:

s1 p1 s1 t1

s1 p2 s1 t2

Joining these projections together, we obtain the original two tuples plus two extra

ones (shown below in bold):

s1 p1 t1

s1 p1 t2

s1 p2 t1

s1 p2 t2

Since the given JD holds, the two extra tuples must in fact appear in the relvar along

with the original two. But the FD {SNO,PNO} → {STATUS} holds also; it follows that

t1 = t2, and hence that the FD {SNO} → {STATUS} holds (every tuple that has SNO s1

also has STATUS t1). This is part (b) of what was to be proved. At the same time, by our

assumption we have p1 ≠ p2—note that nothing in the argument so far invalidates that

assumption—from which it follows that the FD {SNO} → {PNO} doesn’t hold, and so

{SNO} isn’t a key; and this is part (a) of what was to be proved.

So we see that any given relvar is subject to both explicit dependencies (these are

the ones explicitly declared) and implicit dependencies (these are the ones implied by

the explicitly declared ones). For the record, let me bring these points together into an

appropriate definition:

Definition (explicit vs. implicit dependencies): Let R be a relvar.

Associated with R are two sets of explicit dependencies: a set

XFD of explicit FDs that hold in R and a set XJD of explicit JDs

that hold in R. The FDs in XFD together with the JDs in XJD are

the explicit dependencies of R. The FDs and JDs that aren’t in

XFD or XJD but are logical consequences of the ones in XFD and

Chapter 11 ImplICIt DepenDenCIes

231

XJD are the implicit dependencies of R. The explicit and implicit

dependencies of R taken together are the dependencies of R. A

relation r can be assigned to R only if that relation r satisfies all of

the dependencies of R.

 The Chase Algorithm
From everything we’ve seen in this chapter so far, the obvious question presents itself:

Given some set D of dependencies (FDs or JDs or a mixture), what
dependencies d are implied by those in that set?

A partial answer to this question is provided by the chase algorithm, which is,

precisely, an algorithm for testing whether some given dependency d is implied by

some given set of dependencies D.5 More specifically, given such a set D and such a

dependency d, the chase will either:

 a. Show that d is implied by D, or

 b. Show that it isn’t, by providing an explicit counterexample—that

is, a relation that satisfies all of the dependencies in D and yet

violates d.

As a matter of fact we’ve already seen some examples of the chase in action, as it

were. In the previous section, I showed how a given FD and JD together implied a certain

FD and not another (the latter was actually a key constraint, which is a special case

of an FD constraint, of course). And in the section before that, I gave two examples in

which a given FD and JD together implied a certain JD (thereby showing the given JD

was reducible, incidentally). All of these examples were in fact applications of the chase.

But now let’s get more specific. In order to do that, I first need to introduce a little more

terminology:

• Consider FDs. Abstractly (though of course very loosely), an FD takes

the form “If certain tuples t1, ..., tn appear, then certain attributes

within those tuples must have equal values.” For this reason, FDs are

sometimes said to be equality generating dependencies.

5 See David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv: “Testing Implications of Data
Dependencies,” ACM Transactions on Database Systems 4, No. 4 (December 1979).

Chapter 11 ImplICIt DepenDenCIes

232

• Now consider JDs. Abstractly, but again very loosely, a JD takes the

form “If certain tuples t1, ..., tn appear, then a certain tuple t must

appear.” JDs are therefore sometimes said to be tuple generating

dependencies.

Before going any further, I must caution you not to confuse tuple generating and

tuple forcing dependencies.6 A tuple forcing dependency is a JD with the property

that if tuples t1, ..., tn appear, then some tuple t is forced to appear that’s distinct

from each of t1, ..., tn. By contrast, a tuple generating dependency (a) doesn’t require

the “generated” tuple to be distinct from the given tuples and (b) doesn’t in fact

have to be a JD, as such, at all. (However, the only tuple generating dependencies

discussed in this book are indeed JDs specifically. For present purposes, therefore,

you can take “tuple generating dependency” to mean a JD; thus, we can say that

all tuple forcing dependencies are tuple generating, but some tuple generating

dependencies aren’t tuple forcing.)

Equality generating and tuple generating dependencies both involve a set of

premises—viz., the given tuples t1, ..., tn—and a conclusion. For a tuple generating

dependency, the conclusion is the generated tuple t; for an equality generating

dependency, it’s the fact that a certain equality holds.

Now I can explain the chase algorithm as such. Perhaps I should say first that it’s

essentially common sense; in fact, it tends to be easier to illustrate than to describe. In

outline, however, it works like this. We’re trying to determine whether the dependency d

follows from the dependencies in the set D. We proceed as follows:

 1. We write down tuples representing the premises of d.

 2. We apply the dependencies in D to those tuples (possibly

generating additional tuples), and keep repeating this process

until no further change occurs.

This procedure overall will eventually yield either:

 a. A representation of the conclusion of d, in which case d does

follow from D, or

 b. A relation that satisfies D but not d, in which case d doesn’t follow

from D.

6 By the same token, don’t confuse equality generating dependencies and equality dependencies,
which were described in Chapter 3.

Chapter 11 ImplICIt DepenDenCIes

233

Let’s do an example. Let the given set of dependencies be as follows:

{ A → C , B → C , C → D , CE → A , DE → C }

(Actually they’re all FDs, as you can see.) Consider also the following JD (call it J):

☼ { AB , AD , AE , BE , CDE }

I’ll now show that the given FDs do in fact imply J (a state of affairs that, I’ll think you

agree, is far from immediately obvious).

The first step is to write down tuples representing the premises of the JD J. Now, let

me spell out exactly what that JD says:

• If all of the following are the case—

a tuple appears with A = a and B = b

a tuple appears with A = a and D = d

a tuple appears with A = a and E = e

a tuple appears with B = b and E = e

a tuple appears with C = c and D = d and E = e

—then the following must also be the case:

a tuple appears with A = a and B = b and C = c and D = d and E = e.

However, it turns out to be more convenient in what follows to use, not a, b, c, d, and e as

such, but rather suffixed x’s and y’s to denote attribute values. To be specific, I’ll use x1-x5 in

place of a-e, respectively, and I’ll use y’s in all other positions; e.g., I’ll use y23 to denote the

“third” (i.e., C) value in the “second” premise tuple. So the premise tuples look like this:7

 x1 x2 y13 y14 y15

 x1 y22 y23 x4 y25

 x1 y32 y33 y34 x5

y41 x2 y43 y44 x5

y51 y52 x3 x4 x5

7 Strictly speaking, the premise tuples aren’t really tuples at all, because they contain variables instead
of values. Likewise, the premise tuples taken together don’t really constitute a relation, either. I
propose to overlook these points from here on, but I should at least mention that—partly for such
reasons—the research literature typically refers to the initial set of premise “tuples,” and all other such
sets appearing subsequently during the chase process, as constituting not relations but tableaux.

Chapter 11 ImplICIt DepenDenCIes

234

If (and only if) the JD is implied by the five FDs, then, these tuples will “generate” the

following tuple:

 x1 x2 x3 x4 x5

So let’s see if it does; i.e., let’s apply the given dependencies.

• From A → C, we have y13 = y23 = y33; likewise, from B → C, we have

y13 = y43. So we can replace each of y23, y33, and y43 by y13. The

premise tuples become (replacements shown in bold):

 x1 x2 y13 y14 y15

 x1 y22 y13 x4 y25

 x1 y32 y13 y34 x5

y41 x2 y13 y44 x5

y51 y52 x3 x4 x5

• From C → D, we have y14 = y34 = y44 = x4. Make the replacements:

 x1 x2 y13 x4 y15

 x1 y22 y13 x4 y25

 x1 y32 y13 x4 x5

y41 x2 y13 x4 x5

y51 y52 x3 x4 x5

• From CE → A, we have y41 = x1. Make the replacements:

 x1 x2 y13 x4 y15

 x1 y22 y13 x4 y25

 x1 y32 y13 x4 x5

 x1 x2 y13 x4 x5

y51 y52 x3 x4 x5

• From DE → C, we have y13 = x3. Make the replacements:

 x1 x2 x3 x4 y15

 x1 y22 x3 x4 y25

 x1 y32 x3 x4 x5

 x1 x2 x3 x4 x5 Success: all x's !!!

y51 y52 x3 x4 x5

Chapter 11 ImplICIt DepenDenCIes

235

• The “fourth” tuple here is all x’s, and so the JD J does indeed follow

from the given FDs.

Let’s look at another example. Let the given set of dependencies consist of just the

JD {AB,AC}. Does this set imply the FD A → B? Note: We already know the answer is no,

because what we’re talking about here is the converse of Heath’s Theorem, and we know

from Exercise 5.4 that the converse of Heath’s Theorem is false. But let’s see what the

chase tells us:

• Premise tuples:

 x1 y12 y13

 x1 y22 y23

If and only if the FD is implied by the JD, then applying the JD to these tuples will

have to make y12 and y22 equal. Does it do so? Well:

• The given JD “generates” tuples as follows:

 x1 y12 y23

 x1 y22 y13

• The four tuples taken together satisfy the JD but not the FD; in

particular, they don’t require that y12 = y22. So the FD doesn’t follow

from the JD.

 Concluding Remarks
In this chapter, we’ve seen JDs implying JDs; a JD and an FD together implying an FD;

FDs implying a JD; and, in earlier chapters, FDs implying FDs. However, note carefully

that all the chase lets us do is determine whether a specific dependency follows from

given dependencies. What it doesn’t do is let us infer, or generate, new dependencies

from the given set (that’s why I said, near the beginning of the previous section, that

the chase provided only a partial answer to the question). For that, we’d need an

axiomatization for FDs and JDs. And while Armstrong’s rules provide a sound and

Chapter 11 ImplICIt DepenDenCIes

236

complete axiomatization for FDs by themselves, it’s unfortunately a known fact that no

such axiomatization exists for FDs and JDs considered together.8

 Exercises

 11.1 Consider the parts relvar P from the suppliers-and-parts database.

For simplicity, let’s rename attributes PNO, PNAME, COLOR,

WEIGHT, and CITY as A, B, C, D, and E, respectively, and let’s use

Heath notation once again. Then the following JDs are all defined

with respect to the heading of P:

 a. ☼ { AC , ABDE }

 b. ☼ { ACD , ABDE }

 c. ☼ { AE , ABCD }

 d. ☼ { AB , ACD , CE }

 e. ☼ { AB , ACD , AE }

 f. ☼ { AB , BCD , DE }

 g. ☼ { ABC , ACDE , CE }

 h. ☼ { ABCD , BDE , BCE }

 i. ☼ { AB , ABC , BCD , CDE , AD }

 j. ☼ { AB , BC , CD , DE , AD }

 k. ☼ { ABD , CDE , ABC , BE , ABE }

 l. ☼ { A , AB , ABC , ABD , ACE }

Which of these JDs are trivial? Which ones involve irrelevant

components? Which imply which others in the list? Which pairs

are equivalent to one another? Which are satisfied by the sample

value of relvar P shown in Figure 1-1? Which hold in relvar P?

Which are irreducible with respect to P?

8 See for example the book Foundations of Databases, by Serge Abiteboul, Richard Hull, and Victor
Vianu (Addison-Wesley, 1995).

Chapter 11 ImplICIt DepenDenCIes

237

 11.2 The dependencies in this exercise are all defined with respect to a

heading consisting of attributes ABCD.

 a. Does the set of FDs {A → B, A → C} imply the JD ☼{AD,ABC}?

 b. Does the set of FDs {C → D, B → C} imply the JD ☼{AB,BC,CD}?

 c. Does the set of FDs {A → B, B → C} imply the JD ☼{AB,BC,CD}?

 d. Does the the JD ☼{BC,ABD} imply the JD ☼{AB,BC,CD}?

 11.3 We know from Exercise 5.4 in Chapter 5 that the converse of

Heath’s Theorem is false. However, there’s an extended version of

that theorem whose converse is true. Here it is:

Heath’s Theorem (extended version): Let relvar R have heading H

and let X, Y, and Z be subsets of H such that the union of X, Y, and

Z is equal to H. Let XY denote the union of X and Y, and similarly

for XZ. If R is subject to the FD X → Y, then (a) R is subject to the

JD ☼{XY,XZ}, and (b) XZ is a superkey for R.

Prove part (b) of this theorem. Prove also that (a) and (b) together

imply that X → Y holds (the converse of the extended theorem).

 11.4 Consider the following JDs, both of which hold in relvar S:

☼ { { SNO , SNAME , CITY } , { CITY , STATUS } , { SNAME , CITY } }

☼ { { SNO , SNAME , CITY } , { CITY , STATUS , SNAME } }

I pointed out in the body of the chapter (in the section

“Combining Components”) that (a) the first of these JDs implied

the second but that (b) decomposing S on the basis of that

second JD (even though it’s irreducible) wouldn’t be a good idea.

Why not?

 11.5 Can a JD be both trivial and irreducible?

Chapter 11 ImplICIt DepenDenCIes

238

 Answers
 11.1. Which JDs are trivial? None. Which ones involve irrelevant

components? i., k., and l. Which imply others? a. implies b.; d.

implies g. and h.; e. implies g.; f. implies h. and i.; j. implies k.

Which pairs are equivalent? None. Which are satisfied by the

sample value in Figure 1-1? a., b., c., d., e., g., and l. Which hold in

relvar P? a., b., c., e., and l. Which are irreducible? a., b., c., and e.

 11.2.

 a. By Heath’s Theorem, the answer is obviously yes (take X as A, Y

as BC, and Z as D). But let’s see if we can prove this result using

the chase. Premise tuples:

x1 y12 y13 x4

x1 x2 x3 y24

From the FD A → B, we have y12 = x2; from the FD A → C, we

have y13 = x3. Make the replacements:

x1 x2 x3 x4

x1 x2 x3 y24

Now we have a tuple of all x’s, and the desired result follows:

The given JD does follow from the given JDs.

 b. Premise tuples:

 x1 x2 y13 y14

y21 x2 x3 y24

y31 y32 x3 x4

The FDs imply y24 = x4 and y13 = x3. Make the replacements:

 x1 x2 x3 y14

y21 x2 x3 x4

y31 y32 x3 x4

The FD C → D now implies y14 = x4; making the replacement

gives us a tuple of all x’s, and so the result follows: The given JD

does follow from the given FDs. Note that we had to use one

Chapter 11 ImplICIt DepenDenCIes

239

of the FDs twice in the chase in this example. Note too that

we could have obtained the same result by applying Heath’s

Theorem twice: The FD C → D implies the JD ☼{CD,CAB}, which

in turn implies the JD ☼{CD,BC,BA}, thanks to the FD B → C.

 c. I leave it to you to show the answer here is no.

 d. Premise tuples:

 x1 x2 y13 y14

y21 x2 x3 y24

y31 y32 x3 x4

Applying the JD ☼{BC,ABD} to the tuples with a common B

value (viz., x2) generates the following tuples:

 x1 x2 x3 y24

y21 x2 y13 y14

We don’t obtain a tuple of all x’s, and so the “target” JD doesn’t

follow from the given one; in fact, we now have a sample relation

(of five tuples) that satisfies the latter and not the former.

 11.3. Here first is a proof of part (b) of the extended theorem:

 1. X → Y (given)

 2. XZ → YZ (augmentation)

 3. XZ → XZ (self determination)

 4. XZ → XYZ (2 and 3, union)

Hence XZ is a superkey for R.

As for the converse, suppose relvar R contains the following tuples:

x y1 z1

x y2 z2

Thanks to the JD ☼{XY,XZ}, the following tuples must then also appear:

x y1 z2

x y2 z1

But XZ is a superkey and so XZ → Y holds, so y1 = y2; hence X → Y holds.

Chapter 11 ImplICIt DepenDenCIes

240

 11.4. This exercise is discussed further in Chapter 16, but I give

a preliminary discussion here. First of all, suppose such a

decomposition (i.e., on the basis of the second JD) were done.

Let the projections so obtained be labeled SNC and CTN in

the obvious way. Then the projections of SNC and CTN on

{SNAME,CITY} are clearly equal; that is, the following equality

dependency (EQD) holds—

CONSTRAINT ... SNC { SNAME , CITY } = CTN { SNAME , CITY } ;

—and relvars SNC and CTN thus suffer from redundancy.

Observe further that the FD {CITY} → {STATUS} holds in CTN. By

Heath’s Theorem, therefore, we can decompose CTN into its

projections CT and CN on {CITY,STATUS} and {CITY,SNAME},

respectively. It follows that the JD

☼ { { SNO , SNAME , CITY } , { CITY , STATUS , SNAME } }

implies the JD

☼ { { SNO , SNAME , CITY } , { CITY , STATUS } , { CITY , SNAME } }

In this latter JD, however, the {CITY,SNAME} component is clearly

irrelevant, since it’s a proper subset of the {SNO,SNAME,CITY}

component; it can therefore be dropped without significant loss.

(In fact, of course, this latter JD is identical to the first of the two

JDs as given in the original exercise.)

 11.5. Yes! To be specific, every relvar R is subject to the trivial

and irreducible JD {H}, where H is the heading of R. (The

corresponding decomposition is into the pertinent identity

projection.)

Chapter 11 ImplICIt DepenDenCIes

241
© C. J. Date 2019
C. J. Date, Database Design and Relational Theory, https://doi.org/10.1007/978-1-4842-5540-7_12

CHAPTER 12

MVDs and 4NF

Who’s on first, What’s on second, I Don’t Know’s on third.

—Bud Abbott and Lou Costello: The Naughty Nineties (1945)

In Chapter 10, I said that 4NF, like 2NF and 3NF, is mostly of historical interest. However,

that characterization is possibly a little unfair, because:

• First of all, 4NF is the normal form with respect to what are called

multivalued dependencies or MVDs. Now, MVDs are really just a

special kind of JD; so if you know about JDs in general, you know

about MVDs as well, in a sense. Nevertheless, MVDs are still worth

studying in their own right (for one thing, they’re probably more

common in practice than JDs that aren’t MVDs).

• Second, MVDs have a more intuitive real world interpretation

than JDs in general do, and therefore tend to be a little easier to

understand.

• Third, MVDs, unlike JDs in general, do have an axiomatization, as

we’ll see.

So let’s take a closer look.

242

 An Introductory Example
In this section and the next, I’ll examine MVDs from a comparatively informal point of

view; in the section after that I’ll consider them again, but more formally, and use that

more formal understanding to lead up to 4NF. I’ll begin with a definition:

Definition (multivalued dependency as a JD): A multivalued

dependency (MVD) is a join dependency with exactly two

components.

It follows from this definition that a nonloss decomposition on the basis of an MVD

always yields exactly two projections (recall that JDs in general are n-way for some

positive integer n, where n can be greater than two; by contrast, MVDs are always exactly

2-way). It follows further that the following JD (for example) is in fact an MVD:

☼ { { SNO , SNAME , CITY } , { CITY , STATUS } }

Now, we’ve seen this particular JD repeatedly in this book; it holds in relvar S. But

didn’t I say in Chapter 9 that this particular JD was implied by a functional dependency:

viz., the FD {CITY} → {STATUS}? Indeed I did; what the example shows, therefore, is that

some MVDs are implied by FDs. But not all are, and as you’d probably expect it’s the

ones that aren’t that are the interesting ones, in a sense. So let’s take a look at an example

of one of those “interesting ones.” Consider Figure 12-1, which shows a sample value for

a relvar called CTX.1 The predicate is Course CNO can be taught by teacher TNO and uses

textbook XNO.

1 The example is a modified version of the CTXD example from Chapter 9.

Figure 12-1. Relvar CTX─sample value

Chapter 12 MVDs anD 4nF

243

Now, relvar CTX is “all key” and is thus certainly in BCNF. Yet it suffers from

redundancy, as you can see; for example, the fact that teacher T1 can teach course C1

appears twice, and so does the fact that course C1 uses textbook X1. (It therefore suffers

from certain update anomalies also. See Exercise 12.3 at the end of the chapter.) And the

reason for these redundancies is that I’m assuming, perhaps not very realistically, that

teachers and textbooks are quite independent of one another—that is, no matter who

actually teaches any particular offering of some particular course, the same textbooks

are used. I also assume a given teacher or given textbook can be associated with any

number of courses. Thus:

• Each course c has a set T of teachers who can teach it and a set X of

textbooks that it uses.

• And, for each such course c, there’s a tuple in CTX for every possible

combination of a teacher t from T and a textbook x from X. (Loosely

speaking, in other words, each CNO value appears together with

the cartesian product of all of the TNO and XNO values that are

associated with that CNO value.)

To state the matter more precisely, the following constraint holds in relvar CTX

(recall that from Chapter 9 that the symbol “∈” means “appears in”):

IF (c , t1 , x1) ∈ CTX AND
 (c , t2 , x2) ∈ CTX
THEN (c , t1 , x2) ∈ CTX AND
 (c , t2 , x1) ∈ CTX

But to say this constraint holds is equivalent to saying that the following join

dependency holds:

☼ { { CNO , TNO } , { CNO , XNO } }

It follows that CTX is subject to this JD, and it further follows that the relvar can, and

probably should, be decomposed into its projections on {CNO,TNO} and {CNO,XNO}.

Exercise: Show the values of these projections corresponding to the sample value

of relvar CTX in Figure 12-1, and check that the redundancies disappear. (But what

multirelvar constraint now needs to be enforced?)

Chapter 12 MVDs anD 4nF

244

I remark that the constraint shown above could be reduced from four lines to three
without loss, by simply dropping the last line. What I mean is this: If tuples (c,t1,x1)
and (c,t2,x2) both appear, then the tuple (c,t1,x2) must appear (as the third line
says); so, switching the first two tuples around, it follows that if (c,t2,x2) and
(c,t1,x1) appear, then (c,t2,x1) must appear as well (as the fourth line says). But
the four-line version of the constraint is more symmetric and aesthetically more
satisfying, as well as perhaps being easier to understand.

By the way, you might be thinking the redundancies in CTX are unnecessary; more

specifically, you might be thinking the relvar doesn’t need to show all possible TNO / XNO

combinations for a given CNO. For example, two tuples would clearly suffice to represent

the information that course C1 has two teachers and two textbooks. The problem is, which

two tuples? Any specific choice leads to a relvar having a very unobvious interpretation

and very strange update behavior. (Try stating the predicate for such a relvar!—i.e., try

stating the criteria for deciding whether or not some given tuple logically belongs in that

relvar. If you try this exercise, I think you’ll see why the redundancies in CTX are necessary

after all.)

 Multivalued Dependencies (Informal)
The existence of “problem” BCNF relvars like CTX was recognized very early on, and the

way to deal with them was also recognized at that time, at least intuitively (see Exercise

12.8). However, it wasn’t until 1977 that these intuitive ideas were put on a sound

theoretical footing by Fagin’s introduction of the notion of MVDs.2 Let me elaborate.

Relvar CTX is subject to the JD ☼{{CNO,TNO},{CNO,XNO}}. However, we can equally

well say it’s subject to the following pair of MVDs:

{ CNO } →→ { TNO }

{ CNO } →→ { XNO }

Note: The MVD X →→ Y can be read as “X multidetermines Y” or “Y is multidependent

on X,” or more simply just as “X double arrow Y.”

2 Fagin’s work on MVDs predated the widespread adoption of the concept of JDs in general, which
is why MVDs were initially treated as a separate phenomenon in their own right.

Chapter 12 MVDs anD 4nF

245

Taken together, what the foregoing MVDs mean, intuitively, is this: Courses don’t

have just one teacher or just one textbook (i.e., the FDs {CNO} → {TNO} and {CNO} →

{XNO} don’t hold)—but they do have a set of teachers and a set of textbooks (where both

of those sets are nonempty). What’s more, for a given course, the set of teachers and the

set of textbooks are completely independent of one another. (As I put it earlier, it doesn’t

matter who actually teaches some specific offering of some course, the same textbooks

are used. Likewise, it doesn’t matter, with respect to some course, which textbooks are

actually used—the same teachers can teach it.) So we can say the following:

• For a given course c and a given textbook x, the set T of teachers

associated with that (c,x) pair depends on c alone—it makes no

difference which particular x we choose.

• Likewise, for a given course c and a given teacher t, the set X of

textbooks associated with that (c,t) pair also depends on c alone—it

makes no difference which particular t we choose.

Note that the sample value of relvar CTX shown in Figure 12-1 does indeed abide by

these two rules.

To repeat, relvar CTX is subject to a pair of MVDs. In general, in fact, it’s easy to show

(see the next section) that, given relvar R with heading H and subsets X, Y, and Z of H

such that the union of X, Y, and Z is equal to H, the MVD X →→ Y holds in R if and only if

the MVD X →→ Z also holds in R. MVDs always go together in pairs in this way. For that

reason it’s usual to write them as a “one liner,” thus:

X →→ Y | Z

(“X double arrow Y bar Z”). In the case of relvar CTX, for example, we have:

{ CNO } →→ { TNO } | { XNO }

Now, we might say, very loosely, that an MVD is like an FD, except that instead of

“For one of these, there’s one of those,” it’s “For one of these, there’s a set of those” (it’s

this informal characterization that makes MVDs a little easier to understand than JDs

in general). But the point about always going in pairs is important (note that nothing

analogous applies to FDs). Indeed, if the MVD concept is defined too imprecisely—as

I’ve just done, in fact!—one could incorrectly conclude that for every pair of subsets X

and Y of the heading of the pertinent relvar, there’s an MVD from X to Y. For example,

in the shipments relvar SP, there’s certainly a set of quantities for each supplier number,

Chapter 12 MVDs anD 4nF

246

but the MVD {SNO} →→ {QTY} does not hold—it’s not the case that for a given supplier

number s and given part number p, the set Q of quantities associated with that (s,p) pair

depends on s alone.

 Multivalued Dependencies (Formal)
The definitions in this section parallel those given in earlier chapters for FDs and JDs

and are therefore presented with little by way of further commentary.

Definition (multivalued dependency): Let H be a heading;

then a multivalued dependency (MVD) with respect to H is an

expression of the form X →→ Y, where X (the determinant) and

Y (the dependant) are both subsets of H. The phrase MVD with

respect to H can be abbreviated to just MVD, if H is understood.

Note carefully that, like FDs and JDs, MVDs are defined with respect to some

heading, not with respect to some relation or some relvar. Note too that from a formal

point of view (again like FDs and JDs), MVDs are just expressions—expressions that,

when interpreted with respect to some specific relation, become propositions that (by

definition) evaluate to either TRUE or FALSE.

Definition (satisfying or violating an MVD): Let relation r have

heading H; let X →→ Y be an MVD, M say, with respect to H; and

let Z be the attributes of H not contained in either X or Y. (In other

words, (a) Z is the complement with respect to H of the union of

X and Y, and (b) the union of X, Y, and Z is thus equal to H.) If r

satisfies the JD ☼{XY,XZ}, then r satisfies M; otherwise r violates M.

Note that the foregoing definition is symmetric in Y and Z, whence it follows that

r satisfies the MVD X →→ Y if and only if it satisfies the MVD X →→ Z (and we can

therefore write them as a “one liner,” as noted in the previous section).

Definition (MVD holding): The MVD M holds in relvar R

(equivalently, relvar R is subject to the MVD M) if and only if

every relation that can ever be assigned to relvar R satisfies M. The

MVDs that hold in relvar R are the MVDs of R.

Chapter 12 MVDs anD 4nF

247

From this definition and the previous one, it follows that R is subject to the MVD

X →→ Y if and only if it’s subject to the MVD X →→ Z.

Fagin’s Theorem:3 Relvar R can be nonloss decomposed into its

projections on XY and XZ if and only if the MVDs X →→ Y | Z hold

in R.

Fagin’s Theorem is the “stronger form of Heath’s Theorem” that I promised in

Chapter 5. That is, where Heath’s Theorem gives only a sufficient condition for a relvar

to be nonloss decomposable into two projections, Fagin’s Theorem gives both necessary

and sufficient conditions. Of course, Fagin’s Theorem is “obvious,” given what we now

know about JDs in general; with hindsight, there would never have been any formal need

to define MVDs at all if JDs in general had been defined and properly investigated first.

But Fagin’s Theorem was proved before JDs in general had been properly investigated,

and it was a new and important result at the time; what’s more, it still has practical

significance, inasmuch as MVDs do correspond to a fairly common kind of business rule,

whereas the same probably can’t be said for “cyclic” n-way JDs for n > 2 as discussed in

Chapters 9 and 10.

 Fourth Normal Form
You won’t be surprised to hear there’s such a thing as a trivial MVD:

Definition (trivial MVD): Let X →→ Y be an MVD, M say, with

respect to heading H. Then M is trivial if and only if it’s satisfied by

every relation with heading H.

From this definition, it’s easy to prove the following theorem (see Exercise 12.7):

Theorem: Let X →→ Y be an MVD, M say, with respect to heading

H. Then M is trivial if and only if either (a) Y is a subset of X or (b)

the union of X and Y is equal to H.

3 Actually this is just one of literally scores of theoretical results in computing (not just in the field
of database design theory as such) that could all justifiably be called “Fagin’s Theorem.”

Chapter 12 MVDs anD 4nF

248

You probably won’t be surprised by the next definition, either:

Definition (MVD implied by keys): Let relvar R have heading H

and let X →→ Y be an MVD, M say, with respect to H. Then M is

implied by the keys of R if and only if every relation r that satisfies

R’s key constraints also satisfies M.

As with FDs and JDs, “implied by keys” here could just as well be “implied by

superkeys” without making any significant difference. Also, if M is trivial, it’s satisfied by

every relation r with heading H, and so it’s satisfied by every relation r that satisfies R’s

key constraints a fortiori. Thus, trivial MVDs are always “implied by keys,” trivially. So

suppose M is nontrivial. Then it’s easy to prove the following theorem:

Theorem: Let M be a nontrivial MVD that holds in relvar R. Then

M is implied by the keys of R if and only if it reduces to an FD

out of a superkey of R—i.e., the double arrow reduces to a single

arrow, as it were, and the determinant is a superkey.

And now I can define 4NF:

Definition (fourth normal form): Relvar R is in fourth normal

form (4NF) if and only if every MVD of R is implied by the keys

of R.

However, given the various definitions and theorems already discussed in this section,

we can see that the following operational definition (or theorem) is valid too:

Definition (fourth normal form): Relvar R is in fourth normal

form (4NF) if and only for every nontrivial MVD X →→ Y that

holds in R, X is a superkey for R (in other words, every such MVD

reduces to “an FD out of a superkey”).

Of course, if an MVD is implied by the keys of R, it certainly holds in R—i.e., it’s

certainly “an MVD of R.” However, the converse is false: An MVD can hold in R without

being implied by the keys of R (as relvar CTX illustrates). Thus, the whole point about the

4NF definition is that the only MVDs that hold in a 4NF relvar are ones we can’t get rid

of—which means ones implied by keys (including trivial ones as a special case).4

4 As usual, “getting rid of” a dependency here really means replacing it by some multirelvar
constraint.

Chapter 12 MVDs anD 4nF

249

Recall now from Chapter 10 the parallelism between the BCNF and 5NF definitions.

In fact, that parallelism extends to the 4NF definition, too. That is, we have the following:

• R is in BCNF if and only if every FD that holds in R is implied by the

keys of R.

• R is in 4NF if and only if every MVD that holds in R is implied by the

keys of R.

• R is in 5NF if and only if every JD that holds in R is implied by the keys

of R.

Now, in the BCNF and 4NF definitions, we can simplify “implied by the keys” to just

“implied by some key”; as noted in Chapter 10, however, the same is not true for the 5NF

definition. In that sense, 4NF resembles BCNF more than it does 5NF. On the other hand,

4NF also resembles 5NF more than it does BCNF, in the sense that the 4NF and 5NF

definitions both rely on context—by which I mean that the MVDs and JDs that hold in a

4NF or 5NF relvar involve, at least implicitly, all of the attributes of that relvar, whereas

the same is not true for BCNF. (As I said earlier, the point about MVDs always going in

pairs is important. Nothing analogous applies to FDs.)

Recall now from Chapter 6 the concept of FD preservation. Essentially, the idea was

as follows: If the FD X → Y holds in relvar R, then the recommendation is to decompose

R—assuming that decomposition is desired at all, and assuming further that it’s done

on the basis of some FD other than X → Y itself—in such a way that X and Y are kept

together in the same projection. Well, that concept extends to MVDs too—that is,

the recommendation still applies if we replace the FD X → Y by the MVD X →→ Y

throughout.

In closing this section, let me state explicitly that:

 a. If relvar R is in 5NF, it’s certainly in 4NF; likewise, if relvar R is in

4NF, it’s certainly in BCNF.

 b. A relvar can be in 4NF without being in 5NF (see Exercise 12.4 at

the end of the chapter).

 c. 4NF is always achievable. (In fact, of course, we know this already,

because we know that 5NF is always achievable, and now we also

know that 5NF implies 4NF.)

Chapter 12 MVDs anD 4nF

250

 MVD Axiomatization
As I mentioned near the beginning of this chapter, MVDs, unlike JDs in general, do have

an axiomatization, or in other words a sound and complete set of rules for generating

“new” MVDs from given ones. The rules in question are as follows:

 1. Reflexivity: If Y is a subset of X, then X →→ Y.

 2. Augmentation: If X →→ Y and Z is a subset of W, then XW →→ YZ.

 3. Transitivity: If X →→ Y and Y →→ Z, then X →→ Z – Y.

 4. Complementation: If (a) the union of X, Y, and Z is equal to the

pertinent heading H and (b) the intersection of Y and Z is a subset

of X, then (c) X →→ Y | Z.

Now, these four rules aren’t nearly as easy to understand or remember as

Armstrong’s rules are for FDs (or so it seems to me, at any rate). Partly for that reason, I

won’t attempt to justify them here, nor will I show them in action. However, I will at least

say that further rules can be derived from the original four, the following among them:

 5. Pseudotransitivity: If X →→ Y and YZ →→ W, then XZ →→

W – YZ.

 6. Union: If X →→ Y and X →→ Z, then X →→ YZ.

 7. Decomposition: If X →→ YZ and W is the intersection of Y and Z,

then X →→ Y – Z, X →→ Z – Y, and X →→ W.

The following rules involve both MVDs and FDs:

 8. Replication: If X → Y, then X →→ Y.

 9. Coalescence: If (a) X →→ Y, (b) Z → W, (c) W is a subset of Y, and

(d) the intersection of Y and Z is empty, then (e) X → W.

And the following is an additional derived rule:

 10. Mixed pseudotransitivity: If X →→ Y and XY → Z, then X → Z – Y.

Chapter 12 MVDs anD 4nF

251

 Embedded Dependencies
Recall relvar CTXD from Chapter 9, with attributes CNO, TNO, XNO, and DAYS; sole

key {CNO,TNO,XNO}; and predicate Teacher TNO spends DAYS days with textbook XNO

on course CNO.5 (This relvar can be regarded as an extended version of relvar CTX as

discussed earlier in this chapter.) A sample value, repeated from Figure 9-3, is shown in

Figure 12-2:

As we saw in Chapter 9, this relvar suffers from redundancy;6 yet it’s in 5NF, which

means that no JDs (and therefore no MVDs, a fortiori) hold apart from ones implied by

the sole key. In particular, therefore, the MVDs

{ CNO } →→ { TNO } | { XNO }

do not hold.7 However, observe that, by contrast, they do hold in the projection of CTXD

on {CNO,TNO,XNO} (right?). For that reason, those MVDs are said to be embedded

dependencies (embedded, that is, with respect to the original relvar CTXD). In general,

given some relvar R with heading H, an embedded dependency with respect to R is a

dependency that doesn’t hold in R itself but does hold in the projection of R on some

proper subset of H. As the example illustrates, therefore (and as was noted in Chapter 9,

5 This is the predicate I gave in Chapter 9, but a more accurate version might be: Course CNO
can be taught by teacher TNO and uses textbook XNO, and teacher TNO spends DAYS days with
textbook XNO on course CNO (see Chapter 17). And we might want to add DAYS is greater than
zero as well.

6 As also noted in Chapter 9, however, one of my reviewers disputed this claim. Again,
see Chapter 17 for further discussion.

7 I’m being a little sloppy here; by the definitions given earlier in the chapter, the MVDs {CNO}
→→ {TNO} | {XNO} can’t possibly hold in relvar CTXD, since they fail to mention the DAYS
attribute—but I think you see what I mean. For further discussion of such matters, see
Exercise 12.10.

Figure 12-2. The 5NF relvar CTXD—sample value

Chapter 12 MVDs anD 4nF

252

in fact, albeit in different words), embedded dependencies cause redundancy, but that

redundancy can’t be eliminated by taking projections. Such redundancies thus correspond

to constraints that must be separately stated and enforced (see Exercise 12.2).

Observe, incidentally, that the foregoing notion of embedding applies to JDs (and

therefore to MVDs)8 but not to FDs. That is, given some relvar R and a projection of R

whose heading includes both X and Y, the FD X → Y holds in that projection if and only if it

holds in R itself (see Exercise 12.5). For example, the FD {CITY} → {STATUS} holds in relvar

S as such and also in every projection of that relvar that retains both of those attributes.

 Exercises

 12.1 Give (a) an example of a relvar of degree at least three that’s in

BCNF but not 4NF and (b) an example of a binary relvar that’s in

BCNF but not 4NF.

 12.2 Write Tutorial D CONSTRAINT statements to express (a) the

MVDs that hold in relvar CTX and (b) the embedded MVDs

that hold in relvar CTXD, where relvars CTX and CTXD are as

discussed in the body of the chapter.

 12.3 Consider relvar CTX from the body of the chapter. What kinds of

update anomalies can occur with that relvar?

 12.4 Give an example of a relvar that’s in 4NF but not 5NF.

 12.5 Prove that, given some relvar R and a projection of R whose

heading includes both X and Y, the FD X → Y holds in that

projection if and only if it holds in R itself (see the section

“Embedded Dependencies” in the body of the chapter, also

footnote 5 in Chapter 9).

8 For an example of an embedded JD that’s not an embedded MVD, suppose relvar SPJ from
Chapter 9 is extended to include a quantity attribute, QTY, thereby forming a new relvar
SPJQ. Suppose the FD {SNO,PNO,JNO} → {QTY} holds in SPJQ (i.e., {SNO,PNO,JNO} is a key).
Then ☼{{SNO,PNO},{PNO,JNO},{JNO,SNO}} is a JD that holds in the projection of SPJQ on
{SNO,PNO,JNO} but not in SPJQ itself. Note: This example is discussed in more detail near the
end of Chapter 13.

Chapter 12 MVDs anD 4nF

253

 12.6 Show that if relvar R is subject to the FD X → Y, it’s also subject to

the MVD X →→ Y.

 12.7 Let X →→ Y be an MVD, M say, with respect to heading H. Prove

that M is trivial if and only if either (a) Y is a subset of X or (b) the

union of X and Y is equal to H. Incidentally, note that it follows

from this result that, given the pair of MVDs X →→ Y | Z (defined

with respect to heading H, where H is equal to the union of X, Y,

and Z), X →→ Y is trivial if and only if X →→ Z is trivial.

 12.8 The following rule of thumb is often adopted in practice:

Let relvar R have heading H and let the heading H of R be partitioned

into disjoint subsets X, Y, and Z. Further, let X be the sole key and

let Y and Z both be relation valued. Then, using Heath notation

once again, R should be replaced by R1 and R2, where R1 = (R{XY})

UNGROUP (Y) and R2 = (R{XZ}) UNGROUP (Z), respectively.9

How does this informal rule relate to the topics discussed in the

present chapter?

 12.9 (Modified version of Exercise 9.3.) Design a database for the

following. The entities to be represented are sales representatives,

sales areas, and products. Each representative is responsible for

sales in one or more areas; each area has one or more responsible

representatives. Each representative is responsible for sales of one

or more products, and each product has one or more responsible

representatives. Each product is sold in each area; however, no

two representatives sell the same product in the same area. Each

representative sells the same set of products in each area for

which that representative is responsible.

 12.10 The following dependencies are defined with respect to a heading

consisting of attributes ABCD:

B → D

A →→ B | C

9 UNGROUP is an operator of Tutorial D. I used it in the answer to Exercise 4.14 in Chapter 4. It’s
discussed in detail in SQL and Relational Theory and elsewhere.

Chapter 12 MVDs anD 4nF

254

Use the chase to show these dependencies imply the MVDs

A →→ C | D. Note: I’m making use of a certain shorthand notation

here, according to which A →→ B | C and A →→ C | D denote,

respectively, A →→ B | CD and A →→ C | BD. See the answer to

this exercise for further explanation.

 12.11 Let relvar SCP have attributes SNO, PNO, and CITY and predicate

Supplier SNO and part PNO are both located in city CITY. Can SCP

be derived from our usual relvars S, P, and SP? What normal form

is it in? Can you think of any conventional wisdom this example

might fly in the face of?

 Answers

 12.1. (a) Relvar CTX in the body of the chapter is an example, of course,

but it would be better if you could come up with an example from

your own work environment. (b) Let C be a certain club, and let

relvar R{A,B} be such that the tuple (a,b) appears in R if and only

if a and b are both members of C. Then R is equal to the cartesian

product of its projections R{A} and R{B}; thus, it’s subject to the

JD ☼{A,B} and, equivalently, to the following MVDs:

{ } →→ A | B

These MVDs aren’t trivial, since they certainly don’t hold in

all binary relvars, and they’re not implied by a superkey either

(the only key in R is the entire heading). It follows that R isn’t in

4NF. However, it’s certainly in BCNF, because it’s “all key.”

 12.2. Possible formulations (note that these are equality

dependencies, EQDs):

a. CONSTRAINT ... CTX = JOIN { CTX { CNO , TNO } ,

 CTX { CNO , XNO } } ;

b. CONSTRAINT ... CTXD { CNO , TNO , XNO } =

 JOIN { CTXD { CNO , TNO } , CTXD { CNO , XNO } } ;

Chapter 12 MVDs anD 4nF

255

 12.3. (a) Suppose the current value of CTX is as given in Figure 12- 1.

Then none of the four tuples shown can be deleted in isolation: a

deletion anomaly. (b) Suppose the current value of CTX contains

just “the first two” of the tuples shown in Figure. 12-1. Then

neither “the third” nor “the fourth” tuple shown can be inserted in

isolation: an insertion anomaly.

 12.4. Relvar SPJ from Chapter 9 is an example (no MVDs hold in that relvar

at all, apart from trivial ones, and so the relvar is certainly in 4NF).

 12.5. The following proof might be thought to make very heavy weather

of such an obvious point. Let the projection in question be R′. The

FD X → Y holds in R′ if and only if, whenever tuples t1′ and t2′ of R′
have the same X value, they also have the same Y value. Let T1 and

T2 be, respectively, the set of tuples in R from which t1′ is derived

and the set of tuples in R from which t2′ is derived. By the definition

of projection, every tuple t1 in T1 has the same X and Y values as t1′;
likewise, every tuple t2 in T2 has the same X and Y values as t2′. It

follows that whenever such tuples t1 and t2 have the same X value,

they also have the same Y value; thus the FD X → Y holds in R. And

it further follows that X → Y holds in R′ if and only if it holds in R.

 12.6. This result is immediate from Heath’s Theorem: If R is subject to

the FD X → Y, it’s also subject to the JD ☼{XY,XZ}, where Z is “the

other” attributes of R, and therefore it’s subject to the MVDs

X →→ Y | Z.

 12.7. The JD ☼{XY,XZ} is trivial if and only if XY = H or XZ = H. If XY = H,

we have Case (b). If XZ = H, then (noting that Y and Z are disjoint

by definition) it must be the case that Y is a subset of X, and so we

have Case (a).

 12.8. The rule amounts to saying: If we start with a relvar with two or

more independent relation valued attributes (RVAs) and we want

to eliminate them—which we usually but not invariably do want

to do (see the answer to Exercise 4.11 in Chapter 4)—then the first

thing we should do is separate those RVAs. Using the notation of

the exercise, this step will give us relvars with headings XY and XZ,

respectively. The next thing we should do is ungroup the RVA in

Chapter 12 MVDs anD 4nF

256

each of those relvars. Suppose the relations in Y and Z have headings

A and B, respectively; then the relvars that result from those

ungroupings will have headings XA and XB, respectively.10 Now

normalize those relvars in the usual way, replacing them by BCNF

projections. Then those BCNF projections will “automatically” be

in 4NF. In other words, MVDs that cause a relvar not to be in 4NF

shouldn’t arise in practice, if the foregoing procedure is followed.

It’s interesting to note, incidentally, that in his famous 1970

paper on the relational model (see Appendix D), Codd gave an

example in which he actually followed the foregoing procedure.

He touched on it again, briefly, in another paper the following

year (“Normalized Data Base Structure: A Brief Tutorial,” Proc.

1971 ACM SIGFIDET Workshop on Data Description, Access,

and Control, San Diego, Calif., November 11th-12th, 1971; see

Appendix D once again). But I don’t think he ever mentioned it

subsequently, at least not in writing (because it was so intuitively

obvious, perhaps).

Note In case you find the foregoing discussion too abstract, take R

to be a relvar with heading {CNO,T,X}, where T and X are relation

valued and contain relations with headings {TNO} and {XNO},

respectively. Separating the RVAs gives us relvars with headings

{CNO,T} and {CNO,X}, respectively. Ungrouping then gives us

relvars with headings {CNO,TNO} and {CNO,XNO}, respectively—

which is precisely what we want, of course, in the CTX example.

 12.9. First of all, we’ll presumably need three relvars for representatives,

areas, and products, respectively:

R { RNO , ... } KEY { RNO }

A { ANO , ... } KEY { ANO }

P { PNO , ... } KEY { PNO }

10 We might have to do some attribute renaming first, if some attribute in either A or B has the
same name as some attribute in X.

Chapter 12 MVDs anD 4nF

257

Next, we can represent the relationships (a) between sales

representatives and sales areas and (b) between sales

representatives and products by relvars like this:

RA { RNO , ANO } KEY { RNO , ANO }

RP { RNO , PNO } KEY { RNO , PNO }

Every product is sold in every area. So if we introduce a relvar

AP { ANO , PNO } KEY { ANO , PNO }

to represent the relationship between areas and products, then we

have the following constraint (an EQD):

CONSTRAINT C1 AP = JOIN { A { ANO } , P { PNO } } ;

(The join here is actually a cartesian product.) Note that this

constraint implies that AP isn’t in 4NF. In fact, AP doesn’t give

us any information we can’t obtain from the other relvars. To be

precise, the following EQDs hold:

AP { ANO } = A { ANO }

AP { PNO } = P { PNO }

But let’s assume for the moment that relvar AP is included in our

design anyway.

No two representatives sell the same product in the same area.

In other words, given an {ANO,PNO} combination, there’s

exactly one responsible sales representative, RNO, and so we can

introduce a relvar

APR { ANO , PNO , RNO } KEY { ANO , PNO }

in which (to state it explicitly) the following FD holds:

{ ANO , PNO } → { RNO }

(Specification of {ANO,PNO} as a key is sufficient to express this

FD.) However, relvars RA, RP, and AP are now all redundant, since

Chapter 12 MVDs anD 4nF

258

they’re all projections of APR; they can therefore all be dropped. In

place of constraint C1 we now need constraint C2 (another EQD):

CONSTRAINT C2 APR { ANO , PNO } =

JOIN { A { ANO } , P { PNO } } ;

This constraint must be separately and explicitly stated, since it

isn’t “implied by keys.”

Also, since every representative sells all of that representative’s

products in all of that representative’s areas, we have the

additional constraint C3 on relvar APR:

{ RNO } →→ { ANO } | { PNO }

(These MVDs are nontrivial and not implied by keys, and relvar

APR is thus not in 4NF.)11 Again the constraint must be separately

and explicitly stated.

Thus the final design consists of the relvars R, A, P, and APR,

together with the constraints C2 and C3 (both of which are in fact

EQDs once again):

CONSTRAINT C2 APR { ANO , PNO } =

JOIN { A { ANO } , P { PNO } } ;

CONSTRAINT C3 APR = JOIN { APR { RNO , ANO } ,

APR { RNO , PNO } } ;

(There are also some foreign key constraints from APR to the other

three relvars, but the details are straightforward and I omit them

here.)

This exercise illustrates very nicely the point that, in general,

normalization might be adequate to represent some of the

semantic aspects of a given problem (basically, FDs, MVDs, and

JDs that are implied by keys), but explicit statement of additional

11 Note, therefore, that relvar APR gives the lie to another popular misconception: viz., that a relvar
consisting of a single key and a single nonkey attribute is necessarily in 4NF. See also the answer
to Exercise 12.11.

Chapter 12 MVDs anD 4nF

259

constraints will almost certainly be needed for other aspects. It

also illustrates the point that it might not always be desirable to

normalize “all the way” (relvar APR is in BCNF but not in 4NF).

As a subsidiary exercise, you might like to consider whether a

design involving RVAs might be appropriate for the problem

under consideration. Might such a design mean that some of the

comments in the previous paragraph no longer apply?

 12.10. The first point to note here is that the MVDs A →→ B | C and

A →→ C | D make no mention of attributes D and B, respectively.

But didn’t I say that, given the generic pair of MVDs X →→ Y | Z,

the union of X, Y, and Z had to be equal to the heading? Well, yes,

I did—but I must now explain that we allow a certain shorthand

notation to be used as well, one that’s illustrated in this exercise.

For definiteness, let’s focus on the expression A →→ B | C. By definition,

this expression means A →→ B and A →→ C; and A →→ B implies

A →→ CD, and A →→ C implies A →→ BD. Moreover, since A,

B, C, and D are single attributes and hence mutually disjoint, the

decomposition rule for MVDs allows us to infer A →→ D from

either A →→ CD or A →→ BD. Putting this all together, we see

that A →→ B | C is shorthand for either or both of A →→ B | CD

and A →→ BD | C. Given this state of affairs, moreover, we adopt a

shorthand according to which A →→ B | CD and A →→ BD | C can

both be written thus: A →→ B | C | D—and this latter expression

in turn can also be thought of as shorthand for the following three

MVDs in combination: A →→ B, A →→ C, and A →→ D.12

Now let’s try the chase. Here are premise tuples for A →→ C | D,

which as we’ve just seen is equivalent to A →→ BC | D:

x1 x2 x3 y14

x1 y22 y23 x4

12 If you’d like to see a concrete example illustrating the ideas in this paragraph, consider a relvar
CTXS, with attributes CNO, TNO, XNO, and SNO and predicate Student SNO is enrolled on
course CNO, which can be taught be teacher TNO and uses textbook XNO. Taking A, B, C, and D
to be {CNO}, TNO}, {XNO}, and {SNO}, respectively, it would be perfectly reasonable to expect
the MVDs A →→ B | C | D to hold in this relvar.

Chapter 12 MVDs anD 4nF

260

Applying A →→ B | CD generates:

x1 x2 y23 x4

x1 y22 x3 y14

Applying B → D gives y14 = x4. Replacing:

x1 x2 x3 x4

x1 y22 y23 x4

x1 x2 y23 x4

x1 y22 x3 x4

And now we have a tuple of all x’s, so the given dependencies do

imply the target MVDs.

 12.11. SCP can be define as a view (or “virtual relvar”), thus:

VAR SCP VIRTUAL ((JOIN { S , SP , P }) { SNO , PNO , CITY }) ;

The following FD holds in this view:

{ SNO , PNO } → { CITY }

In fact, {SNO,PNO} is a key, and could be declared as such, thus:13

VAR SCP VIRTUAL ((JOIN { S , SP , P }) { SNO , PNO , CITY })

 KEY { SNO , PNO } ;

The following (nontrivial) MVDs also hold:

{ CITY } →→ { SNO } | { PNO }

Because of these MVDs, relvar SCP isn’t in 4NF, though it is in

BCNF. As for “conventional wisdom,” this example gives the lie to

another popular misconception: viz., that a relvar consisting of a

single key and a single nonkey attribute is necessarily in 5NF (see

Exercises 1.8 and 10.1).

13 Unlike SQL, Tutorial D does allow keys (and foreign keys) to be specified for views.

Chapter 12 MVDs anD 4nF

PART IV

Further Normal Forms

Together, Parts II and III of this book have covered all of the normal forms included in

what Chapter 3 called “a first take” on the normal form hierarchy (see Figure 3-3); to be

specific, they’ve discussed, in detail, the classical normal forms 1NF, 2NF, 3NF, BCNF,

4NF, and 5NF, with the emphasis on BCNF and 5NF as the most significant ones. But

those six normal forms aren’t the end of the story!—there are several more, and they

constitute the primary subject matter of this part of the book.

Perhaps I should add that, of the three chapters in this part of the book, Chapter 14

is probably the most important. The other two are included mainly as an attempt on my

part at some kind of completeness.

263
© C. J. Date 2019
C. J. Date, Database Design and Relational Theory, https://doi.org/10.1007/978-1-4842-5540-7_13

CHAPTER 13

ETNF, RFNF, SKNF

The essential thing in form is to be free in whatever form is used.

—Wallace Stevens: A Note on Poetry (1937)

Other things being equal, we generally want our databases to be as free of redundancy

as possible, where by redundancy I mean more specifically—at least as far as the present

chapter is concerned—any redundancy that can be removed by taking projections. And

of course we use the discipline of further normalization, or just normalization for short,

to help us reach that goal. Now, for many years it was believed that a relvar had to be in

fifth normal form (5NF, also known as projection-join normal form or PJ/NF) in order

for it to be free of redundancy in the foregoing sense. Somewhat surprisingly, however,

it turns out that this belief was incorrect—that is, it turns out that several other normal

forms can be defined, all of them both weaker than 5NF and stronger than fourth normal

form (4NF), and all of them just as effective as 5NF at eliminating redundancy. The

normal forms in question are:

• Essential tuple normal form, ETNF

• Redundancy free normal form, RFNF (also known as key complete

normal form, KCNF)

• Superkey normal form, SKNF

What’s more, using the symbol “⇒” to denote logical implication, there’s a theorem

to the effect that 5NF ⇒ SKNF ⇒ RFNF ⇒ ETNF ⇒ 4NF, while none of the reverse

implications holds; that is, a relvar in any one of the normal forms listed here (a) is

necessarily also in the normal form immediately to its right in the sequence, but (b) is

not necessarily also in the normal form immediately to its left. Refer to Figure 13-1

(an extended version of Figure 3-3 from Chapter 3).

264

The remainder of the chapter describes these new normal forms—i.e., ETNF, RFNF

(or KCNF), and SKNF—and various related matters in some depth. Please note, however,

that the chapter is intended to serve at least as much as a reference piece as it is a

tutorial; the details are subtle and quite confusing, and they can be difficult to remember,

and I certainly don’t expect you to absorb them all on just one or two readings. Nor do

I think you need to, for the most part. However, let me at least give you some idea of the

structure of the discussion to come, so that you can have some idea of how the argument

proceeds overall before we start delving into detail.

The chapter contains four main sections. The first, “5NF Is Too Strong,” provides

some motivational material, and the next three then deal with ETNF, RFNF, and SKNF,

respectively. In particular:

• The section on ETNF—easily the longest, by the way—provides

examples of (a) a relvar that’s in ETNF and not in 5NF and (b) a relvar

that’s in 4NF and not in ETNF.

• The section on RFNF provides examples of (a) a relvar that’s in RFNF

and not in 5NF and (b) a relvar that’s in ETNF and not in RFNF.

• The section on SKNF provides examples of (a) a relvar that’s in SKNF

and not in 5NF and (b) a relvar that’s in RFNF and not SKNF.

Taken together, therefore, these examples illustrate among other things the claim—

or theorem, rather—that 5NF ⇒ SKNF ⇒ RFNF ⇒ ETNF ⇒ 4NF, while none of the

reverse implications holds.

Figure 13-1. The normal form hierarchy (II)

Chapter 13 etNF, rFNF, SKNF

265

 5NF Is Too Strong
This section presents two examples. The first serves as a reminder of the redundancy

problem that 5NF is intended to address; the second shows that maybe 5NF isn’t the best

solution to that problem after all.

 The First Example: What 5NF Does
The first example is just a repeat of the SPJ example from Chapters 9 and 10. As I’m sure

you’ll recall, relvar SPJ is all key (and thus certainly in BCNF)—its attributes are SNO,

PNO, and JNO, and the predicate is Supplier SNO supplies part PNO to project JNO. In

addition, the following business rule (BRX) is in effect:

• If supplier s supplies part p and part p is supplied to project j and

project j is supplied by supplier s, then supplier s supplies part p to

project j.

The following join dependency (JD) captures the essence of business rule BRX and

therefore holds in relvar SPJ:

☼ { { SNO , PNO } , { PNO , JNO } , { JNO , SNO } }

In case your memory needs jogging regarding join dependencies, what this JD says

is that, at any given time, the current value of SPJ is equal to the join of its projections

on {SNO,PNO}, {PNO,JNO}, and {JNO,SNO}. Note, however, that this JD isn’t implied by

the sole key of relvar SPJ—see Chapter 10 if you need to be reminded what it means for a

JD to be implied by keys—and the relvar is thus not in 5NF. What’s more, it suffers from

redundancy. To be specific, suppose it contains the following three tuples:

t1 : s1 p1 j2

t2 : s1 p2 j1

t3 : s2 p1 j1

(Here s1 and s2 denote supplier numbers; p1 and p2 denote part numbers; j1 and j2

denote project numbers; and t1, t2, and t3 are just labels for the three tuples, used in

what follows for convenience. Also, I assume until further notice that s1 ≠ s2, p1 ≠ p2,

and j1 ≠ j2.) Thanks to the JD, then, the following tuple must also appear in relvar SPJ:

t4 : s1 p1 j1

Chapter 13 etNF, rFNF, SKNF

266

So we can say that the fact that tuples t1-t3 appear forces tuple t4 to appear as well

(and the JD is thus a tuple forcing JD specifically). In other words, the relvar does indeed

suffer from redundancy as claimed, because the proposition “s1 supplies p1 to j1” is

represented both explicitly (by tuple t4) and implicitly (as a logical consequence of

the JD together with the propositions represented by tuples t1-t3). For that reason, the

principles of normalization would suggest we decompose the relvar into its projections

SP on {SNO, PNO}, PJ on {PNO,JNO}, and JS on {JNO,SNO}. That decomposition is

nonloss (SPJ is equal to the join of SP, PJ, and JS); SP, PJ, and JS are each in 5NF; and the

redundancy disappears.

By the way, the redundancy displayed by relvar SPJ has certain interesting

implications (and these observations should prove helpful later). Let tuples t1-t4 be as

before, and assume again that s1 ≠ s2, p1 ≠ p2, and j1 ≠ j2. Then:

• If the relvar contains all four tuples t1-t4, then an attempt to delete

just tuple t4 must clearly fail, because of the JD. In other words, as

explained in Chapter 10, relvar SPJ suffers from a deletion anomaly

with respect to that JD.

• Alternatively, if the relvar contains just tuples t1 and t2, then an

attempt to insert just tuple t3 must also fail, again because of the

JD. As also explained in Chapter 10, therefore, we can say that relvar

SPJ suffers from an insertion anomaly with respect to that JD.

The decomposition of SPJ into its projections SP, PJ, and JS eliminates these

anomalies.

 The Second Example: Why 5NF Does Too Much
Now I turn to the promised second example. Suppose we have another relvar SPJ′, where

SPJ′ is identical to SPJ except that it’s subject to the following additional business rule (BRY):

• Any given supplier s supplies a given part p to at most one project j.

The following functional dependency (FD) captures the essence of rule BRY and

therefore holds in relvar SPJ′:

{ SNO , PNO } → { JNO }

Chapter 13 etNF, rFNF, SKNF

267

In other words, {SNO,PNO} is a key for SPJ′. What’s more, it can be shown that no other

FDs hold in SPJ′ apart from the one just shown (and trivial ones), and SPJ′ is thus, like

SPJ, in BCNF. However, it’s not in 5NF, because the JD shown previously holds in SPJ′ just

as it did in SPJ, again without being implied by the keys.

the example thus gives the lie to two popular misconceptions—first, that a BCNF
relvar that’s not in 5NF must be all key (see exercise 1.8); second, that a relvar
with just one key and just one nonkey attribute must be in 5NF (see exercise 1.9).

Now suppose as we did with SPJ that relvar SPJ′ contains the following three tuples:

t1 : s1 p1 j2

t2 : s1 p2 j1

t3 : s2 p1 j1

Thanks to the JD, then, the following tuple also has to appear:

t4 : s1 p1 j1

But {SNO,PNO} is a key; it follows that tuples t1 and t4, since they have the same value

for that key, are in fact one and the same (and hence that j1 = j2, so now we have to drop

at least part of our original assumption that s1 ≠ s2, p1 ≠ p2, and j1 ≠ j2). Hence, the

kind of redundancy we observed with SPJ doesn’t occur with SPJ′. (To be specific, tuple

t4 in this case isn’t an “additional” tuple, because it already exists.) In other words, SPJ′,
even though it’s not in 5NF, doesn’t and in fact can’t suffer from the kind of redundancy

that 5NF is intended to address. Thus, it looks as if 5NF might be, in a certain sense, too

strong for the purpose.

Chapter 13 etNF, rFNF, SKNF

268

 Essential Tuple Normal Form
Essential tuple normal form (ETNF) was first described in a 2012 paper—referred to

hereinafter as “the ETNF paper”—by Ron Fagin, Hugh Darwen, and myself.1 I’ll begin

the discussion by giving a brief and somewhat informal summary of the main results

from that paper (please note, however, that the following summary isn’t meant to stand

on its own—it’s provided purely as a convenient overview):

• Loosely, to say that relvar R is free from redundancy is to say that no

tuple t currently appearing in R represents information that can be

derived from other tuples distinct from t but also currently appearing

in R.

• Relvar R is in essential tuple normal form (ETNF) if and only if it’s

free from redundancy in the foregoing sense.

• Relvar R is in ETNF if and only if it’s in BCNF and, for every JD J that

holds in R, at least one component of J is a superkey for R.

• 5NF ⇒ ETNF ⇒ 4NF, while the reverse implications don’t hold (in

other words, ETNF falls strictly between 4NF and 5NF).

• If relvar R is in BCNF and has a noncomposite key, then it’s in ETNF.

 Definitions and Theorems
Now I present a series of definitions and theorems (with supporting discussion) that

together constitute the principal results of the ETNF paper. First let me give—not before

time, you might be thinking—a precise definition of the concept of a tuple forcing JD:

1 Hugh Darwen, C. J. Date, and Ronald Fagin: “A Normal Form for Preventing Redundant Tuples
in Relational Databases,” Proc. 15th International Conference on Database Theory, Berlin,
Germany, March 26th-29th, 2012. Available at www.almaden.ibm. com/cs/people/fagin/icdt12.
pdf. Be aware, however, that this paper uses terminology that differs in several respects from the
terminology used in the present chapter (and, more generally, in this book). To be specific, it
uses terminology that conforms more closely to that found in the bulk of the research literature
in this field; for instance, it nowhere mentions the crucial but nonstandard term relvar.

Chapter 13 etNF, rFNF, SKNF

http://www.almaden.ibm

269

Definition (tuple forcing JD): Let J be a JD with respect to

heading H, and let J hold in relvar R. Then J might or might not

have the consequence that if certain tuples t1, ..., tn appear in R,

a certain additional tuple t is forced to appear in R as well (where

the term additional means that t is distinct from each of t1, ..., tn).

If and only if it does have that consequence, then J is tuple forcing

with respect to R.

Given this definition, it’s easy to see that if J is indeed tuple forcing with respect to R,

it must be (a) nontrivial, (b) not implied by the keys of R, and (c) not implied by any FD

of R.2 (Thanks to (a) and (b) here, it also follows that R can’t possibly be in 5NF.)

Next, it’s convenient to introduce the terms FD redundant and JD redundant:

Definition (FD redundancy): Relvar R is FD redundant if and

only if it’s not in BCNF.

Definition (JD redundancy): Relvar R is JD redundant if and only

if some tuple forcing JD holds in R.

Note that neither of these kinds of redundancy implies the other; that is, a relvar

can be FD redundant without being JD redundant, and JD redundant without being FD

redundant. For example:

• Relvar SPJ from the section “5NF Is Too Strong”—with attributes

SNO, PNO, and JNO; key {SNO,PNO,JNO}; and JD ☼{{SNO,PNO},

{PNO,JNO},{JNO,SNO}}—is in BCNF and hence not FD redundant,

but it’s clearly JD redundant, because that JD is tuple forcing.

• Relvar S from Chapter 1—with attributes SNO, SNAME, STATUS, and

CITY; key {SNO}; and FD {CITY} → {STATUS}—isn’t in BCNF and is

therefore FD redundant. But no tuple forcing JDs hold in that relvar,

and so the relvar isn’t JD redundant.

2 You might think the third of these conditions is a logical consequence of the second, but it’s not.
For example, consider a relvar R with attributes A, B, C, and D and keys A and B. Let no FDs hold
in R except ones implied by those keys. Then it’s easy to see that the JD ☼{AB,AC,BD} holds in R,
because that JD is implied by those keys taken together. However, it isn’t implied by either key
taken individually, and so it isn’t implied by any FD that holds in R. Note: See the discussion of
Heath’s Theorem in Chapter 9 if you need to refresh your memory regarding the notion of a JD
being implied by an FD.

Chapter 13 etNF, rFNF, SKNF

270

To continue with the definitions:

Definition (redundancy free): Relvar R is redundancy free if and

only if it’s neither FD redundant nor JD redundant.3

Note that a 5NF relvar is certainly redundancy free by this definition. As I’ll show,

however, it turns out that a relvar doesn’t have to be in 5NF in order to be redundancy

free; rather, it’s sufficient that it just be in ETNF. In fact, that’s the definition of ETNF:

Definition (essential tuple normal form): Relvar R is in essential

tuple normal form (ETNF) if and only if it’s redundancy free.4

In other words, relvar R is in ETNF if and only if it’s neither FD redundant nor JD

redundant—equivalently, if and only if it’s in BCNF and no tuple forcing JD holds.

Of course, while the foregoing definition is both precise and accurate, it’s of little

practical use, because it doesn’t help much with the question of determining whether a

given relvar is indeed in ETNF. But the following theorem does help in this regard:

Theorem: Relvar R is in ETNF if and only if it’s in BCNF and,

for every explicit JD J that holds in R, some component of J is a

superkey for R.

This theorem provides both necessary and sufficient conditions for a relvar to be in

ETNF. We can therefore take it as a useful, usable test—in effect, as a valid definition of

ETNF. (To put it another way, the original definition is a semantic definition, while the

theorem provides an operational or syntactic definition. See the explanatory remarks on

such matters in Chapter 5.)

By the way, the theorem refers to explicit JDs of R, but in fact we could drop that

“explicit” qualifier and what would be left would still be true (i.e., R is in ETNF if and only

if every JD that holds in R has a superkey component).5 However, including the qualifier

makes the theorem “tighter,” in a sense. In particular, it means there’s no need to check a

relvar’s implicit JDs in order to test whether the relvar in question is in ETNF.

3 But I must repeat and emphasize that I’m using the term redundancy here in a very special sense.
4 For obvious reasons we originally called this new normal form not ETNF but RFNF (redundancy
free normal form). Subsequently, however, we discovered that this name had already been taken,
and so we had to choose another. See (a) the subsection “Our Choice of Name” at the end of the
present section and (b) the next section, “Redundancy Free Normal Form,” for further discussion
and explanation.

5 Just to remind you, explicit JDs are the ones explicitly declared, and implicit JDs are the ones not
explicitly declared but implied by those that are. Similarly for FDs, of course.

Chapter 13 etNF, rFNF, SKNF

271

The next theorem provides another simple and useful test:

Theorem: Relvar R is in ETNF if it’s in BCNF and has at least one

noncomposite key (where a noncomposite key is one that isn’t

composite, and a composite key is one that consists of two or

more attributes).

This theorem provides a sufficient condition, though not a necessary one, for a

relvar to be in ETNF. By the way, it’s worth noting that the condition in question has the

attractive property that it talks in terms of keys only, not JDs and not FDs (at least, not

explicitly).

The next theorem shows that ETNF does indeed fall strictly between 4NF and 5NF:

Theorem: 5NF ⇒ ETNF ⇒ 4NF, while neither of the reverse

implications holds.

Finally, here’s another theorem giving a sufficient condition, though not a necessary

one, for a relvar to be in ETNF:

Theorem: Relvar R is in ETNF if it’s in 3NF and has no composite key.

This result is immediate because the stated conditions in fact imply that relvar R is in

5NF.6 Hence it’s in ETNF a fortiori.

 A Relvar in ETNF and Not 5NF
Relvar SPJ′, the second example from the previous section (“5NF Is Too Strong”),

provides a concrete example of a relvar that’s in ETNF and not in 5NF. Just to remind you,

that relvar has attributes SNO, PNO, and JNO; it has just one key, viz., {SNO,PNO}; it’s in

BCNF; the predicate is Supplier SNO supplies part PNO to project JNO; and the following

JD holds (but no others do, apart from ones that are logical consequences of this JD and/

or the sole key):

☼ { { SNO , PNO } , { PNO , JNO } , { JNO , SNO } }

6 See C. J. Date and Ronald Fagin: “Simple Conditions for Guaranteeing Higher Normal Forms in
Relational Databases,” ACM Transactions on Database Systems 17, No. 3 (September 1992), also
published in C. J. Date and Hugh Darwen, Relational Database Writings 1989-1991 (Addison-
Wesley, 1992).

Chapter 13 etNF, rFNF, SKNF

272

As noted earlier, this relvar isn’t in 5NF, precisely because the foregoing JD isn’t

implied by the sole key. However, it is in ETNF, because the only explicit JD—i.e., the

one just shown—that holds in the relvar has a component that’s a superkey (viz., the

component {SNO,PNO}). In other words, the relvar, even though it’s not in 5NF, is

nevertheless neither FD redundant nor JD redundant, and is thus redundancy free, and

hence in ETNF.

Suppose now that the relvar contains just these two tuples:

t1 : s1 p1 j2

t2 : s1 p2 j1

(where, let’s assume, p1 ≠ p2 and j1 ≠ j2). Suppose we now insert the following tuple:

t3 : s2 p1 j1

(where s2 ≠ s1). The JD then implies that the following tuple must appear as well:

t4 : s1 p1 j1

As we saw earlier, however, tuples t1 and t4 here must in fact be one and the same,

since they have the same key value. It follows that j1 = j2, contradicting one of the

original assumptions. Hence, if tuples t1 and t2 appear, then an attempt to insert tuple

t3 must fail, precisely because it leads to that contradiction. Moreover, since an attempt

to insert tuple t4 directly must also fail (either on a key uniqueness violation or because

it implies j1 = j2, take your pick), it follows that the following somewhat bizarre business

rule must also be in effect:

• If (a) supplier s1 supplies part p1 to project j2 and (b) supplier s1

supplies part p2 to project j1 (p1 ≠ p2, j1 ≠ j2), then (c) no supplier,

not even s1, can supply part p1 to project j1.

As a matter of fact, it turns out that the following equally bizarre rules must be in

effect as well (note the symmetry):7

• If (a) supplier s1 supplies part p1 to project j2 and (b) supplier s2

supplies part p1 to project j1 (s1 ≠ s2, j1 ≠ j2), then (c) no part, not

even p1, can be supplied by supplier s1 to project j1.

7 The symmetry displayed by these three rules is a consequence of the symmetry of the roles
played by SNO, PNO, and JNO in the JD ☼{{SNO,PNO},{PNO,JNO},{JNO,SNO}}.

Chapter 13 etNF, rFNF, SKNF

273

• If (a) supplier s1 supplies part p2 to project j1 and (b) supplier s2

supplies part p1 to project j1 (s1 ≠ s2, p1 ≠ p2), then (c) no project,

not even j1, can be supplied by supplier s1 with part p1.

Actually these three rules can be combined into one, as follows. Let’s agree to say

that each tuple of relvar SPJ′ represents a shipment (by some supplier of some part to

some project). Then there can’t exist three distinct shipments x, y, and z such that x and

y involve the same supplier, y and z involve the same part, and z and x involve the same

project.

There’s another point to make (an important one) in connection with the SPJ′
example. Refer once more to the analysis that led to the three “bizarre” business rules

discussed above (the first of those rules in particular). That analysis showed that tuple

t3 can’t appear in the relvar together with tuples t1 and t2. It follows, therefore, that SPJ′,
although it’s in ETNF, nevertheless does suffer from an insertion anomaly. (By contrast, it

doesn’t suffer from a deletion anomaly—assuming, that is, that the only constraints that

hold are the stated JD and the stated key constraint and logical consequences thereof.)

So one distinction between 5NF and ETNF is as follows:

• Even though both are redundancy free, 5NF guarantees “no insertion

anomalies” while ETNF doesn’t—assuming, again, that FDs and JDs

are the only kinds of constraints under consideration.8

Of course, it’s tempting to conclude from the SPJ′ example that relvars that are in

ETNF and not in 5NF are likely to be rare in practice. Nevertheless, there’s a clear logical

difference between the two, and so—from the point of view of reducing redundancy, at

least—it’s ETNF, not 5NF, that ought to be the target to be aimed for.

As a matter of fact, the SPJ′ example reinforces this latter claim in another way also.

Since the relvar satisfies the ternary JD ☼{{SNO,PNO},{PNO,JNO},{JNO,SNO}}, it can be

nonloss decomposed into its projections on {SNO,PNO}, {PNO,JNO}, and {JNO,SNO},

respectively. Those projections are each all key, and each in fact is in 5NF. However, that

decomposition “loses” the FD {SNO,PNO} → {JNO}! As we saw in Part II of this book,

losing dependencies in such a manner is generally not recommended; hence relvar SPJ′
illustrates the point that not only is 5NF sometimes too strong, but it might sometimes be

positively contraindicated.

8 To put the point another way, 5NF and domain-key normal form, DK/NF (see Chapter 15),
coincide in the case where the only constraints that apply are FDs and JDs specifically.

Chapter 13 etNF, rFNF, SKNF

274

 A Relvar in 4NF and Not ETNF
As we’ve seen, relvar SPJ′ is in ETNF and not in 5NF. It is, however, in 4NF (though not

BCNF), because no nontrivial MVDs hold in that relvar at all. So what about a relvar

that’s in 4NF and not in ETNF? In fact relvar SPJ (not SPJ′) provides an example. Just

to recap, that relvar has attributes SNO, PNO, and JNO; is all key; and is subject to a

certain ternary JD. No nontrivial MVDs—equivalently, no nontrivial binary JDs—hold

in that relvar at all, however, and so it’s certainly in 4NF. But it’s not in ETNF (as we

know), because no component of that ternary JD is a superkey. Nor is it in 5NF, of

course, a fortiori.

 Our Choice of Name
After Fagin, Darwen, and I had completed the bulk of our work on what became ETNF,

our attention was drawn to a paper by Millist Vincent,9 and in particular to the fact that

our original name “redundancy free normal form” (RFNF) had already been used by

Vincent to refer to something else. Since that name had been taken, therefore, we had

to choose a different one, and of course we settled on “essential tuple normal form”

(ETNF). Here’s the rationale for our choice. Let R be a relvar, let r be a value of R, and let t

be a tuple in r. Then we define what it means for t to be either partly or fully redundant in

r, thus:

Definition (partly redundant tuple): Tuple t is partly redundant

in r if and only if an FD X → Y holds in R and there exists a tuple t′
in r (t ≠ t′) such that t{X} = t′{X}.

Definition (fully redundant tuple): Tuple t is fully redundant in

r if and only if there exists a set s of tuples in r (t ∉ s) such that, per

some JD of R, the tuples in s force t to appear in r.

9 Millist W. Vincent: “Redundancy Elimination and a New Normal Form for Relational Database
Design,” in B. Thalheim and L. Libkin (eds.), Semantics in Databases, Vol. 1358 of Lecture Notes in
Computer Science (Springer, 1998).

Chapter 13 etNF, rFNF, SKNF

275

Then we go on to define t to be redundant in r if and only if it’s either partly or fully

redundant in r. Now, it should be immediately obvious that:

 a. Such an r and t exist, and t is partly redundant in r, if and only if R

is FD redundant.

 b. Such an r and t exist, and t is fully redundant in r, if and only if R is

JD redundant.10

Thus, taking essential to be an antonym of redundant, we define (a) t to be essential

in r if and only if it’s not redundant in r, and (b) R to be in ETNF if and only if every

relation r that’s a legitimate value for R is such that every tuple in r is essential in the

foregoing sense.11

 Redundancy Free Normal Form
Now I turn to Vincent’s RFNF. Consider our usual suppliers relvar S, with attributes

SNO, SNAME, STATUS, and CITY; sole key {SNO}; and explicit FD {CITY} → {STATUS}. A

sample value is shown in Figure 13-2 (basically just a repeat of Figure 3-1 from Chapter 3):

10 Note, therefore, that “fully redundant” is not a special case of “partly redundant”; in fact, a tuple
can be partly redundant in r without being fully so or the other way around.

11 Our use of the term essential in this context was influenced by Codd’s notion of essentiality,
introduced by Codd in his paper “Interactive Support for Nonprogrammers: The Relational
and Network Approaches,” Proc. ACM SIGMOD Workshop on Data Description, Access, and
Control, Vol. II, Ann Arbor, Michigan (May 1974). Briefly, to say some data construct is essential
in Codd’s sense is to say its loss would cause a loss of information. As already indicated (in
effect), every tuple in every relation that’s a possible value for an ETNF relvar is clearly essential
in this sense.

Figure 13-2. The suppliers relvar—sample value

Chapter 13 etNF, rFNF, SKNF

276

Now, the tuple for supplier S1 in the figure has city London and status 20. As a

consequence, the tuple for supplier S4, which also has city London, must have status

20, for otherwise the FD {CITY} → {STATUS} would be violated. In a sense, therefore,

the occurrence of that status value 20 in the tuple for supplier S4 is redundant, because

there’s nothing else it could possibly be—it’s a logical consequence of, and is fully

determined by, the values appearing elsewhere in the overall relation.

Examples like the foregoing provide the motivation for the following intuitively

attractive definition (due to Vincent but considerably paraphrased here):

Definition (redundancy per Vincent): Let relation r be a value of

relvar R, let t be a tuple in r, and let v be an attribute value within

t. Then that occurrence of v within t is redundant in r, and R is

subject to redundancy, if and only if replacing that occurrence

of v by an occurrence of v′ (v′ ≠ v), while leaving everything else

unchanged, causes some dependency12 of R to be violated.

In other words, Vincent’s kind of redundancy exists if the attribute value occurrence

in question must be v and nothing else. Note incidentally that a relation that contains

a partly redundant tuple (according to our definition of that term) certainly displays

Vincent’s kind of redundancy.

even though I said the foregoing definition is intuitively attractive (and I think it
is), I should point out that in at least one respect it’s a little strange, too. again
consider the example of Figure 13-2, in which the tuple for supplier S4 has to have
status value 20 because the tuple for supplier S1 has status value 20. Observe
now that the reverse argument holds equally well: the tuple for supplier S1 has
to have status value 20 because the tuple for supplier S4 has status value 20!
Now, it surely makes no sense to say those 20’s are both redundant (does it?)—
but that’s what the definition says if we take it literally. thus, it seems to me that
the definition is slightly weak and could do with a little tightening up. I’ll leave
as an exercise for you to come up with such a tightened up definition, if you’re
interested.

12 Here the term dependency must be understood as referring to dependencies in general, not
necessarily to FDs or JDs as such.

Chapter 13 etNF, rFNF, SKNF

277

Be all that as it may, let’s agree to refer to redundancy as just defined as “redundancy

by Vincent’s definition.” Then we can define a new normal form, as follows:

Definition (redundancy free normal form): Relvar R is in

redundancy free normal form (RFNF) if and only if it’s not subject

to redundancy by Vincent’s definition.13

Now, I hope it’s obvious that a relvar that’s not in 4NF isn’t in RFNF as just defined.14

But what about one that’s in ETNF? Well, consider the example of relvar SPJ′ from the

previous section (on ETNF) once again. As you’ll recall, that relvar suffers from neither

FD redundancy nor JD redundancy and is thus in ETNF (though not in 5NF). Now, we

saw in that earlier section that if the relvar contains the following three tuples—

t1 : s1 p1 j2

t2 : s1 p2 j1

t3 : s2 p1 j1

—then the following tuple has to appear as well:

t4 : s1 p1 j1

But {SNO,PNO} is a key; it follows that (a) tuples t1 and t4, since they have the same key

value, are in fact one and the same, and hence that (b) j1 = j2. Observe now, however,

that the very fact that j2, in tuple t1, must be equal to j1 means the relvar is subject

to redundancy by Vincent’s definition!15 It follows that RFNF and ETNF are logically

distinct; in fact, RFNF is strictly stronger than ETNF, in the sense that a relvar can be in

ETNF—and hence redundancy free, by our definition—without being in RFNF, while the

converse isn’t so. In fact, the ETNF paper proves the following stronger result:

Theorem: 5NF ⇒ RFNF ⇒ ETNF ⇒ 4NF, while none of the reverse

implications hold.

13 Note that (perhaps fortunately) the weakness referred to in the aside has no impact on this
definition.

14 By way of example, consider Fig. 12.1 in Chapter 12, which shows a sample value for the non4NF
relvar CTX. Let X3 ≠ X1. Then replacing the tuple (C1,T1,X1) in that sample value by the tuple
(C1,T1,X3) would certainly cause the MVD {CNO} →→ {XNO} that’s supposed to hold in that
relvar to be violated.

15 You might be thinking the redundancy in question is caused by a JD and the relvar is thus not in
ETNF in the first place, let alone RFNF. But the point is, that JD isn’t a tuple forcing one, and so
the relvar is indeed in ETNF as previously claimed.

Chapter 13 etNF, rFNF, SKNF

278

Note, therefore, that ETNF falls strictly between 4NF and RFNF. Vincent also proves

the following useful result:

Theorem: Relvar R is in RFNF if and only if it’s in BCNF and, for

every JD J that holds in R, the union of those components of J that

are superkeys for R is equal to the heading of R.

What Vincent actually does here is this: he defines relvar R to be in yet another
normal form that he calls key complete normal form (KCNF) if and only if it satisfies
the stated conditions (i.e., if and only if R is in BCNF and, for every JD J that holds in
R, the union of those components of J that are superkeys for R is equal to the heading
of R). then he goes on to prove that KCNF and rFNF are in fact one and the same.
In other words, his original rFNF definition is a semantic definition, while his KCNF
definition—in effect, the foregoing theorem—is an operational or syntactic one.

 A Relvar in RFNF and Not 5NF
We can construct an example of a relvar that’s in RFNF and not in 5NF by taking relvar

SPJ′ with its two dependencies as discussed earlier in this chapter—

{ SNO , PNO } → { JNO }

☼ { { SNO , PNO } , { PNO , JNO } , { JNO , SNO } }

—and adding another:

{ PNO , JNO } → { SNO }

This additional dependency (which implies, of course, that {PNO,JNO} is another key

for the relvar) corresponds to an additional business rule (BRZ):

• Any given part p is supplied to a given project j by at most one

supplier s.

Let me refer to this revised version of SPJ′ as SPJ′′, and to the given ternary JD as

J. Then the {SNO,PNO} and {PNO,JNO} components of J are both superkeys for SPJ′′;
their union is equal to the heading of SPJ′′; and so—since it can be shown that no other

irreducible JDs hold—it follows that SPJ′′ is in RFNF. Yet it’s not in 5NF, because the

membership algorithm fails on that ternary JD J.

Chapter 13 etNF, rFNF, SKNF

279

 A Relvar in ETNF and Not RFNF
Relvar SPJ′—not SPJ′′!—is an example of a relvar that’s in ETNF and not in RFNF, as

already noted. Just to spell the point out, however: Once again, that ternary JD holds.

But since the only component of this JD that’s a superkey is {SNO,PNO}, the union of

all superkey components is certainly not equal to the heading, and the relvar is thus

not in RFNF.

 Superkey Normal Form
While Fagin, Darwen, and I were working on what became ETNF, our attention was

drawn to yet another paper, this one by Ragnar Normann,16 that dealt with issues

related to our work. That paper doesn’t describe anything equivalent to our ETNF,

however, nor to Vincent’s RFNF; rather, its focus is on showing that certain textbook

definitions of 5NF are incorrect.17 It does this by defining what it calls minimal lossless

decompositions (which are basically decompositions that correspond to irreducible

JDs as defined in the present book), and then using that notion as a basis for defining a

new normal form:18

Definition (superkey normal form): Relvar R is in superkey

normal form (SKNF) if and only if, for every irreducible

JD ☼{X1,...,Xn} that holds in R, each of X1, ..., Xn is a superkey for R.

The paper also proves that 5NF ⇒ SKNF ⇒ 4NF and that the reverse implications

don’t hold. It doesn’t show that SKNF is redundancy free (neither as I’ve defined that

term nor in Vincent’s sense), though in fact it is.19

16 Ragnar Normann: “Minimal Lossless Decompositions and Some Normal Forms between 4NF
and PJ/NF,” Information Systems 23, No. 7 (1998).

17 Including, sadly, the one given in various editions of my own Addison-Wesley book An
Introduction to Database Systems. See Exercise 10.9 in Chapter 10. In fact, it was realizing that
I’d made this mistake that served as the initial impetus that led Darwen, Fagin, and myself to
develop the concept of ETNF.

18 Normann’s definition is essentially equivalent to the one that follows (I’ve rephrased it to use
our own terminology) but uses SNF, not SKNF, as the abbreviated form of the name.

19 Despite this state of affairs, SKNF doesn’t really seem to be all that interesting in its own right.

Chapter 13 etNF, rFNF, SKNF

280

To repeat, Normann’s paper proves that 5NF ⇒ SKNF ⇒ 4NF. However, the ETNF

paper actually proves the following stronger result:

Theorem: 5NF ⇒ SKNF ⇒ RFNF ⇒ ETNF ⇒ 4NF, while none of

the reverse implications holds.

Note, therefore, that SKNF falls strictly between RFNF and 5NF.

 A Relvar in SKNF and Not 5NF
Here then is an example of a relvar that’s in SKNF and not in 5NF. Let relvar R have

attributes A, B, and C; using Heath notation, let AB, BC, and CA each be keys of R; and

let the JD ☼{AB,BC,CA}—call it J—hold in R. Then it can be shown that this relvar is in

SKNF;20 yet it’s not in 5NF, because the membership algorithm fails on J. Note: To make

the example a little more concrete, let the predicate be There exists a person whose

favorite color is A, favorite restaurant is B, and favorite composer is C, and let there be

business rules to the effect that (a) no two distinct persons can have more than one

favorite in common and (b) no three distinct persons can be such that, for each favorite,

two of those three persons have it in common.

 A Relvar in RFNF and Not SKNF
The example given in the previous section under the heading “A Relvar in RFNF and

not 5NF” serves here also, since the relvar in question is indeed not in SKNF, though it

is in RFNF.

 Concluding Remarks
To repeat something I warned you about in the introduction, the details of everything

we’ve been covering in this chapter are subtle and confusing and can be difficult to

remember—indeed, I’d be very surprised if you didn’t agree with these remarks by

now!—and I don’t expect you to absorb all of those details on just one or two readings.

20 The details are a little complicated and I omit them here, but you can find them in the ETNF
paper if you’re interested.

Chapter 13 etNF, rFNF, SKNF

281

However, the following brief summary, highlighting the most significant logical

differences between the various new normal forms, might help a little:

• Relvar R is in ETNF if and only if it’s in BCNF and, for every JD J that

holds in R, some component of J is a superkey for R.

• Relvar R is in RFNF if and only if it’s in BCNF and, for every JD J that

holds in R, the union of those components of J that are superkeys for

R is equal to the heading of R.

• Relvar R is in SKNF if and only if it’s in BCNF and, for every JD J that

holds in R, every component of J is a superkey for R.

Let me close the chapter by pointing out that a relvar can be in 5NF—and hence in

any or all of the new normal forms discussed in this chapter—and yet still be subject to

redundancy that, while not exactly identical to redundancy in any of the various senses in

which I’ve used that term in this chapter, is nevertheless very close to it.21 Consider a relvar

SPJQ, with attributes SNO, PNO, JNO, and QTY (only) and predicate Supplier SNO supplies

part PNO to project JNO in quantity QTY. The sole key is {SNO,PNO,JNO}, and the relvar

is in BCNF. Note carefully that the JD ☼{{SNO,PNO},{PNO,JNO},{JNO,SNO}} does not

hold in this relvar. However, it does hold in the projection of the relvar on {SNO,PNO,JNO}

(actually it’s an example of an embedded dependency—see Chapter 12). Now suppose the

relvar contains the following tuples (only):

s1 p1 j2 100

s1 p2 j1 200

s2 p1 j1 300

s1 p1 j3 400

Thanks to the embedded dependency, then, we must have j3 = j1. Thus, relvar

SPJQ is certainly subject to redundancy, of a kind. Nevertheless, the relvar is in ETNF,

RFNF, SKNF, and indeed 5NF. The point is, the kind of redundancy discussed in this

chapter has to do with the FDs and JDs (only) that hold in the relvar in question. Sadly,

that definition has nothing whatsoever to say about any other constraints—embedded

dependencies or any other kinds of constraints—that might also happen to hold.

21 This example was mentioned in passing in Chapter 12, footnote 8.

Chapter 13 etNF, rFNF, SKNF

282

 Exercises

 13.1 Draw the normal form hierarchy (“Version II”) from memory.

Your drawing should include at least nine normal forms.

 13.2 Define (a) FD redundancy; (b) JD redundancy; (c) ETNF.

 13.3 In the body of the chapter, I said among other things that a relvar

could be in SKNF and not in 5NF, and I proposed the following as

an example of such a relvar:

Let relvar R have attributes A, B, and C; using Heath notation, let

AB, BC, and CA each be keys of R; and let the JD ☼{AB,BC,CA}—

call it J—hold in R.

But you might not unreasonably be a little suspicious of this

example. To be more specific, you might be wondering whether

a relvar could even exist that’s subject to exactly the specified key

constraints and the specified JD (despite the fact that I did go on

to give a slightly more concrete version of the example). Show that

the example is reasonable after all by demonstrating that in fact all

possible sets of dependencies (FDs and JDs) are consistent, in the

sense that at least one relation can always be found that satisfies

all of the dependencies in the set.

 13.4 Relvar SPJ′ from the section “5NF Is Too Strong” was subject

to what might be called a “symmetric” JD—viz., the JD

☼{{SNO,PNO},{PNO,JNO},{JNO,SNO}}—and yet displayed some

asymmetry also, in that just one of the three components of

that JD corresponded to a key. Intuitively, you might expect the

other two components to correspond to keys as well. Show that

such isn’t necessarily the case.

 13.5 With regard to relvar SPJ′ from the body of the chapter, show that

the following business rules must be in effect as claimed:

• If supplier s1 supplies part p1 to project j2 and supplier s2

supplies part p1 to project j1 (s1 ≠ s2, j1 ≠ j2), then no part, not

even p1, can be supplied by supplier s1 to project j1.

Chapter 13 etNF, rFNF, SKNF

283

• If supplier s1 supplies part p2 to project j1 and supplier s2

supplies part p1 to project j1 (s1 ≠ s2, p1 ≠ p2), then (c) no

project, not even j1, can be supplied by supplier s1 with part p1.

 13.6 Again with regard to relvar SPJ′ from the body of the chapter,

give a Tutorial D CONSTRAINT statement corresponding to the

following business rule:

• If (a) supplier s1 supplies part p1 to project j2 and (b) supplier

s1 supplies part p2 to project j1 (p1 ≠ p2, j1 ≠ j2), then (c) no

supplier, not even s1, can supply part p1 to project j1.

 Answers

 13.1 See Figure 13-1.

 13.2 See the body of the chapter.

 13.3 Let relation r have heading H. Then r will certainly satisfy all

possible FDs and JDs that can be defined with respect to H if r

has cardinality either one or zero. It follows that all possible sets

of dependencies (FDs and JDs) are consistent, though some such

sets might have the implication that any relation that satisfies

them can have cardinality at most one. (Note, incidentally, that

a relvar of cardinality at most one has the empty set { } as its

sole key—see the answer to Exercise 4.10 in Chapter 4—and is

necessarily in 5NF.)

 13.4 The following is certainly a legitimate value for relvar SPJ′—

s1 p1 j1

s2 p1 j1

(s1 ≠ s2)—so {PNO,JNO} isn’t a key. Likewise, the following is also

a legitimate value for SPJ′—

s1 p1 j1

s1 p2 j1

(p1 ≠ p2)—so {JNO,SNO} isn’t a key either.

Chapter 13 etNF, rFNF, SKNF

284

 13.5 With respect to the first of the rules as stated, suppose relvar SPJ′
contains the following tuples (note that “the third” tuple directly

violates the rule):

s1 p1 j2

s2 p1 j1

s1 px j1

(s1 ≠ s2, j1 ≠ j2). Here then are the corresponding binary

projections:

s1 p1 p1 j2 j2 s1

s2 p1 p1 j1 j1 s2

s1 px px j1 j1 s1

Joining the two leftmost projections gives:

s1 p1 j2

s1 p1 j1

s2 p1 j2

s2 p1 j1

s1 px j1

Joining this result with the third projection gives:

s1 p1 j2

s1 p1 j1

s2 p1 j1

s1 px j1

But {SNO,PNO} is a key, so from “the first two tuples” it follows

that j1 = j2: Contradiction. So the first rule must indeed be in

effect.

Proving that the second rule is in effect as well follows the same

general pattern.

Chapter 13 etNF, rFNF, SKNF

285

 13.6 CONSTRAINT ...

 WITH (T1 := SPJ′ RENAME { PNO AS Y1 , JNO AS Z1) ,
 T2 := SPJ′ RENAME { PNO AS Y2 , JNO AS Z2) ,
 T3 := JOIN { T1 , T2 } ,

 T4 := T3 WHERE Y1 ≠ Y2 AND Z1 ≠ Z2 ,
 T5 := T4 { Y1 , Z2 } ,

 T6 := T5 RENAME { Y1 AS PNO , Z2 AS JNO } ,

 T7 := JOIN { SPJ′ , T6 }) :
 IS_EMPTY (T7) ;

Here for interest is a formulation of the foregoing constraint in

relational calculus (Tutorial D is based on relational algebra, of

course). Let t1, t2, t3 be range variables ranging over relvar SPJ′.
Then we have:

CONSTRAINT ...

 FORALL t1 FORALL t2 FORALL t3

 (IF t1.SNO = t2.SNO AND t1.PNO ≠ t2.PNO AND t1.JNO ≠ t2.JNO
 THEN t3.PNO ≠ t1.PNO OR t3.JNO ≠ t2.JNO) ;

Chapter 13 etNF, rFNF, SKNF

287
© C. J. Date 2019
C. J. Date, Database Design and Relational Theory, https://doi.org/10.1007/978-1-4842-5540-7_14

CHAPTER 14

6NF

Why, sometimes I’ve believed
as many as six impossible things before breakfast.

—Lewis Carroll: Alice’s Adventures in Wonderland (1865)

To paraphrase something I said in Chapter 9, I’ve assumed throughout this book so

far that the only normal forms we care about are ones that involve projection as the

decomposition operator and join as the corresponding recomposition operator. I

also said in that same chapter that, given that assumption, it followed that 5NF was

the final normal form. However, I did also say in a footnote to that chapter that there

was something called sixth normal form or 6NF,1 and that’s what the present chapter

is all about.

So what happens if we depart from those usual assumptions regarding the

decomposition and recomposition operators? Well, in our book Time and Relational

Theory: Temporal Databases in the Relational Model and SQL (Morgan Kaufmann,

2014)—referred to throughout what follows just as “the temporal book”—Hugh Darwen,

Nikos Lorentzos, and I define:

 a. Generalized versions of the relational operators, including

generalized versions of projection and join in particular, and

hence

1 Hardly a very appropriate name, you might think, since there are at least nine normal forms, and
arguably as many as eleven, that are strictly weaker than it! But we called it sixth because it really
does represent the next step along the normalization road after 5NF—i.e., it deserves to be called
sixth exactly as much as 5NF deserves to be called fifth.

288

 b. On the basis of those generalized version of projection and join, a

generalized kind of join dependency, and hence

 c. A new normal form (viz., 6NF).2

As the title of the book in which they’re described suggests, these developments turn

out to be particularly important in connection with temporal data specifically. However,

6NF as such can be defined in such a way as (a) not to rely on those generalized

concepts, and thereby (b) to be applicable—and, dare I say it, important—for ordinary or

“regular” (i.e., nontemporal) data as well. And that’s what the next section is all about.

 Sixth Normal Form for Regular Data
Here then is a definition:

Definition (sixth normal form for regular data): Relvar R is in

sixth normal form (6NF) if and only if the only JDs that hold in R

are trivial ones; in other words, the only JDs that hold in R are of

the form ☼{ ..., H, ... }, where H is the heading of R.

Of course, we can never get rid of trivial dependencies; thus, a relvar in 6NF can’t

be nonloss decomposed at all, other than trivially.3 For that reason, a 6NF relvar is

sometimes said to be irreducible (yet another kind of irreducibility, observe). Our usual

shipments relvar SP is in 6NF, and so is relvar CTXD from Chapter 9; by contrast, our

usual parts relvar P is in 5NF but not in 6NF. (Our usual suppliers relvar S isn’t even in

3NF, of course.)

Now, it follows immediately from the definition that every 6NF relvar is certainly in

5NF—i.e., 6NF implies 5NF. What’s more, 6NF is always achievable. It’s also intuitively

attractive for the following reason:

If relvar R is replaced by its 6NF projections R1, ..., Rn, then the

predicates for R1, ..., Rn are all simple, and the predicate for R

overall is the conjunction of those simple predicates (i.e., it’s a

conjunctive predicate).

2 So we’re not really departing from our usual assumptions regarding dependencies and
decomposition and recomposition operators after all; rather, we’re just generalizing the concepts
on which those assumptions are based.

3 Recall from Chapter 9 that a decomposition is trivial if and only if it’s based on dependencies that
are themselves trivial in turn.

Chapter 14 6NF

289

Let me immediately explain what I mean by these remarks:

Definition (simple vs. compound predicate): A predicate is

simple if and only if it involves no connectives. A predicate is

composite (or compound) if and only if it’s not simple.

Definition (connective): A connective is a logical operator such

as AND, OR, or NOT.

Definition (conjunctive predicate): A conjunctive predicate is

the logical AND of two or more other predicates.4

For example, suppose we replace relvar P by its projections PN, PL, PW, and

PC on attributes {PNO,PNAME}, {PNO,COLOR}, {PNO,WEIGHT}, and {PNO,CITY},

respectively. Then the predicates for these projections are as follows (and note that these

predicates are all simple ones):

• PN: Part PNO is named PNAME.

• PL: Part PNO has color COLOR.

• PW: Part PNO has weight WEIGHT.

• PC: Part PNO is stored in city CITY.

And the predicate for P itself is the logical AND of these four.5 As the example shows,

therefore, relvars in 6NF can be thought of as breaking the meaning of the data down

into pieces that can’t be broken down any further (they represent what are sometimes

called “atomic facts” or, perhaps preferably, “irreducible facts”). Loosely, we might say

the predicate for a 6NF relvar doesn’t involve any ANDs.

4 This definition is a trifle loose, but it’s good enough for present purposes.
5 In fact, of course, every part has exactly one name, color, weight, and city, and it’s precisely this
state of affairs that means we don’t actually need to decompose relvar P into projections PN, PL,
PW, and PC if we don’t want to—the single 5NF relvar P, with its sole key {PNO}, can effectively
serve as shorthand for the combination (in fact, the join) of those four 6NF relvars.

Chapter 14 6NF

290

In this connection, let me briefly remind you of relvars CtX and SpJ from Chapters
12 and 9 respectively. For CtX, the predicate was certainly conjunctive—Course
CNO can be taught by teacher TNO AND course CNO uses textbook XNO—and
decomposing the relvar into its binary (and in fact 6NF) projections on {CNO,tNO}
and {CNO,XNO} effectively eliminated that aND. as for SpJ, the predicate there
was conjunctive too, even though it might not have appeared so in the simplified
form in which I stated it. here’s a more complete version: Supplier SNO supplies
part PNO AND part PNO is supplied to project JNO AND project JNO is supplied
by supplier SNO AND supplier SNO supplies part PNO to project JNO. again,
decomposing the relvar into its three binary (and in fact 6NF) projections effectively
eliminates those aNDs.

Here now is a nice characterization of 6NF (in fact, it’s a theorem):

Theorem: Relvar R is in 6NF if and only if (a) it’s in 5NF, (b) it’s of

degree n, and (c) it has no key of degree less than n – 1.

For example, let PLUS be a relvar with attributes A, B, and C (so the degree is three),

and let the relvar predicate be A + B = C. Then PLUS is in 5NF, and it has three keys (viz.,

AB, BC, and CA, to use Heath notation once again); however, none of those keys is of

degree less than two, and PLUS is thus also in 6NF.

By the way, please don’t misunderstand me here—I’m not saying that relvars

should always be in 6NF, or that normalization should always be carried as far as

6NF. Sometimes some lower normal form (5NF, say) is at least adequate. What’s more,

to repeat something I said in Chapter 8, a design can be fully normalized (meaning the

relvars are all in 5NF, or even 6NF) and yet still be bad. For example, the projections

of the suppliers relvar S on {SNO,SNAME}, {SNO,STATUS}, and {SNO,CITY} are all in

6NF, and yet a design consisting of those three projections is probably not a good one,

because (as we saw in Chapter 6) it loses an FD.

Another point to consider is that replacing a 5NF relvar by 6NF projections will

probably lead to the need to maintain certain equality dependencies (EQDs). Recall

from Chapter 3 that an EQD is a constraint to the effect that certain projections of certain

Chapter 14 6NF

291

relvars must be equal (speaking a trifle loosely). For example, if we decompose relvar P

as discussed above into its projections PN, PL, PW, and PC, then the following EQDs will

probably apply:6

CONSTRAINT ... PL { PNO } = PN { PNO } ;

CONSTRAINT ... PW { PNO } = PN { PNO } ;

CONSTRAINT ... PC { PNO } = PN { PNO } ;

On the other hand, as explained elsewhere,7 decompositions like the one under

discussion can be a good basis for dealing with missing information. Suppose every part

does always have a known name but doesn’t necessarily have a known color, weight,

or city. Then a part with no known color will simply have no tuple in relvar PL (and

similarly for weights and cities and relvars PW and PC, respectively). Of course, the

equality dependencies will then become inclusion dependencies (actually foreign key

constraints), from PL to PN, PW to PN, and PC to PN, respectively.

The net of the foregoing discussion is as follows (I’ll express it in terms of the parts

example, just for definiteness): If there are two or more properties, say name and color,

that every part always has, then separating those two properties into distinct projections

is probably a bad idea; but if some property is “optional”—in other words, if it has the

potential to be “missing” or unknown for some reason—then placing that property in a

relvar of its own is probably a good idea.

 Sixth Normal Form for Temporal Data
Temporal data is a huge subject in its own right, of course, and I can give only a very

superficial introduction to it here; however, I’d like to cover enough to explain, at least

informally, what the generalized version of 6NF is all about. Consider Figure 14-1, which

shows a sample value for a relvar called S_DURING, with predicate as follows:

Supplier SNO was under contract throughout interval DURING.

6 These three EQDS might more succinctly expressed as follows: IDENTICAL{PN{PNO},PL{PNO},
PW{PNO},PC{PNO}}. See Chapter 17 for further explanation.

7 See either SQL and Relational Theory or the book Database Explorations: Essays on The Third
Manifesto and Related Topics, by Hugh Darwen and myself (Trafford, 2010). See also the further
discussion of such matters in Chapter 16 of the present book.

Chapter 14 6NF

292

For example, we see from the figure that (among other things) supplier S1 was under

contract throughout the interval from “day 4” (d04) to “day 7” (d07), inclusive.

as the example suggests, intervals are crucial to temporal data support. however,
the interval notion is actually of much wider applicability, cropping up as it does
in a huge variety of practical situations. For example, tax brackets (e.g., $50,000–
$75,000) can be thought of as intervals, intervals that involve money values
instead of date or time values. Despite the fact that the title of the present section
refers to temporal data as such, therefore, please be aware that all of the concepts
to be discussed—not just the interval concept as such, but all of the various
related concepts—are of much more general applicability and usefulness. (as a
matter of fact I toyed with the idea of naming the section “Sixth Normal Form for
Interval Data,” a title that would really be more appropriate in some ways, though
perhaps less imediately understandable.)

Now, the relation in Figure 14-1 clearly exhibits some redundancy; for example,

it tells us twice that supplier S1 was under contract on day 6. It also exhibits a kind

of circumlocution; for example, it takes three tuples to tell us what it could have told

us with just one, viz., that supplier S1 was under contract throughout the interval

[d04:d10].8 By contrast, the relation shown in Figure 14-2 contains the same information

8 I assume for present purposes that circumlocution, like redundancy, is generally undesirable
and better eliminated if possible. For detailed arguments in support of this position (if you need
them), please refer to the temporal book.

Figure 14-1. Relvar S_DURING—sample value

Chapter 14 6NF

293

as—i.e., is information equivalent to9—the one in Figure 14-1 but exhibits no such

redundancy or circumlocution:

The relation in Figure 14-2 is the packed form of the one in Figure 14-1, and it can be

obtained from that one by means of a new relational operator called PACK, as follows:

PACK S_DURING ON (DURING)

In effect, what this expression does is this: For each supplier represented in the

current value of relvar S_DURING, it combines into a single interval any DURING values

that either overlap or meet. For example, with reference to Figures 14-1 and 14-2:

• In the case of supplier S1, the intervals [d04:d07] and [d05:d10]

overlap, and so they can be combined to form the interval [d04:d10].

• In the case of supplier S2, the intervals [d05:d06] and [d07:d08] meet,

and so they can be combined to form the interval [d05:d08].

Note: The “other” interval for S1, viz., the interval [d09:d09], effectively just gets

absorbed into that combined interval [d04:d10]. By contrast, the “other” interval for

supplier S2, viz., the interval [d03:d03], can’t be combined with any other interval in this

way and thus remains unaffected.

9 I’ll define this notion of information equivalence more precisely later. For now, I’ll just assume it
makes good intuitive sense.

Figure 14-2. Packed form of relation in Figure 14-1

Chapter 14 6NF

294

There’s another new operator as well, UNPACK, which “goes the other way,” as it

were; that is, given a relation such as that shown in Figure 14-1 (or the one shown in

Figure 14-2, come to that) as input, it produces a relation in which the DURING values

are all of the minimum possible size (in other words, they’re unit intervals). For example,

the following expression applied to the relation shown in Figure 14-1—

UNPACK S_DURING ON (DURING)

—produces the result shown in Figure 14-3 below. That result is the unpacked form of

the relation shown in Figure 14-1 (also of the relation shown in Figure 14-2, as I hope

should be obvious).

The relation shown in Figure 14-3 is information equivalent to each of the relations

in Figures 14-1 and 14-2. What’s more, like the one in Figure 14-2, it doesn’t suffer from

redundancy (though like the one in Figure 14-1 it does rather obviously suffer from

circumlocution).

Now, you might be thinking from what I’ve said so far that all we need to do to avoid

those redundancy and circumlocution problems is just to make sure that relvars are

always kept in packed form.10 Unfortunately, however, packed form, though it’s part of

the solution, isn’t sufficient to solve the problems completely, and the following example

shows why. Consider Figure 14-4, which shows a sample value for a relvar called

SCT_DURING, with predicate as follows: Supplier SNO was located in city CITY and had

status STATUS throughout interval DURING.

10 Keeping a relvar in packed form means imposing a constraint on the relvar in question to ensure
that all of the relations that can be assigned to that relvar are themselves in packed form in turn.

Figure 14-3. Unpacked form of relations in Figures 14-1 and Figure 14-2

Chapter 14 6NF

295

Let’s assume now that (in contrast to earlier chapters) the FD {CITY} → {STATUS} no

longer holds. Then relvar SCT_DURING is in BCNF—the sole key is {SNO,DURING}, and

the only FDs that hold are ones implied by that key. (As a matter of fact, though I won’t

attempt to prove it, the relvar is in 5NF also.) Yet the sample value in Figure 14-4 clearly

exhibits both redundancy and circumlocution. So the first lesson of this example is this:

Nonloss decomposition as classically understood—i.e., nonloss decomposition based

on classical projection and classical join—is of no help in avoiding those problems. We

need something else.

What’s more, as I’ve already said, packed form by itself doesn’t solve the problem

either. Figure 14-5 shows the packed form of the relation from Figure 14-4—and as

you can see, that relation, though it doesn’t suffer from redundancy, still does suffer

from circumlocution. (Of course, the relations of Figures 14-4 and 14-5 are certainly

information equivalent, though.)

Figure 14-4. Relvar SCT_DURING—sample value

Figure 14-5. Packed form of relation in Figure 14-4

Chapter 14 6NF

296

So packed form isn’t the solution (at least, not the whole solution); to repeat, we

need something else. In order to see what that something else might be, observe now

that the redundancy and circumlocution in Figure 14-4, and the circumlocution in

Figure 14-5, are all really a consequence of the fact that the DURING value in any given

tuple applies not to the CITY and STATUS values in that tuple individually, but rather

to those CITY and STATUS values taken in combination. But as the example makes

clear, a given supplier’s city and that supplier’s status vary independently over time; so

surely what we need to do is split the original relation into two separate relations, one

for supplier cities and one for supplier status values, each with a DURING attribute

of its own. We can achieve this split as follows—first, unpack the original relation on

DURING; second, take projections of that unpacked form on {SNO,CITY,DURING}

and {SNO,STATUS,DURING}, respectively; finally, pack those two projections on

DURING. Given the sample SCT_DURING value from Figure 14-4, Figure 14-6 shows the

relations that result from this process—and as you can see, these relations exhibit neither

redundancy nor circumlocution:

Moreover, as the caption to the figure suggests, these two relations can be regarded

as sample values of two relvars SC_DURING and ST_DURING, which, I’m suggesting,

might reasonably and desirably be regarded as a replacement for the original relvar

SCT_DURING.

Now, the sequence of steps involved in this example—unpack, project, pack again—

turns out to be needed so frequently in practice that defining an appropriate shorthand

seems like a good idea. Here then is a definition—a considerably simplified definition,

please note!—of an operator (actually a generalized form of classical projection) that, for

reasons that should quickly become clear, we call U_projection:

Figure 14-6. Relvars SC_DURING and ST_DURING—sample values

Chapter 14 6NF

297

Definition (U_projection): Let r be a relation, let attribute A of

r be interval valued, and let X be a subset of the heading of r that

contains A. Then the expression USING (A) : r{X} denotes the

U_projection (with respect to A) of r on X, and it’s defined to be

shorthand for the following:

PACK

 ((UNPACK r ON (A)) { X })

ON (A)

In other words, U_projection works by first unpacking the input relation as

indicated, then doing a regular projection on that unpacked intermediate result, and

then (re)packing the result of that projection to obtain the final packed result. Here are

a couple of examples:

USING (DURING) : SCT_DURING { SNO , CITY , DURING }

USING (DURING) : SCT_DURING { SNO , STATUS , DURING }

Given the sample value for relvar SCT_DURING from Figure 14-4, these two

expressions produce the relations shown in Figure 14-6. Exercise: Check this claim, if you

haven’t done so already.

What I’m suggesting, then, is that the original relvar SCT_DURING be replaced by

the two “U_projection” relvars SC_DURING and ST_DURING. For that replacement to

be valid, though, it obviously needs to be nonloss. Now, if we do a regular join on the two

U_projections shown in Figure 14-6 (the join will be on the basis of attributes SNO and

DURING), we clearly won’t obtain either the relation shown in Figure 14-4 or the one

shown in Figure 14-5. In fact, all we’ll get is the following:

Well, you might be ahead of me here (in fact, I hope you are) ... Clearly, what we

need to do is, first, unpack the two input relations; then do the join on those unpacked

relations; and then pack the result of that join to obtain the final result. If we do all that,

then what we’ll get is the packed relation shown in Figure 14-5. Exercise: Again, check

this claim (see Exercise 14.6d).

Chapter 14 6NF

298

With the foregoing example by way of motivation, therefore, here’s a definition—a

considerably simplified definition again, please note—of a generalized form of join that

we call U_join:

Definition (U_join): Let relations r1 and r2 be joinable,11 and let

them have a common attribute A that’s interval valued. Then the

expression USING (A) : JOIN {r1,r2} denotes the U_join (with respect

to A) of r1 and r2, and it’s defined to be shorthand for the following:

PACK

 (JOIN

 { (UNPACK r1 ON (A)) ,

 (UNPACK r2 ON (A)) }

ON (A)

So, as I’ve more or less said already, U_join works by first unpacking both input

relations, then doing a regular join on those unpacked intermediate results, and then

(re)packing the result of that join to obtain the final result.

I can now also as promised make the notion of information equivalence a little more

precise. To be specific, the relations of Figures 14-4 and 14-5 are information equivalent

because they have the same unpacked form; in fact, they’re U_equal. Here’s a simplified

definition:

Definition (U_equality): Let relations r1 and r2 have the same

heading H, and let them have a common attribute A that’s

interval valued. Then the expression USING (A) : r1 = r2 denotes

a U_equality comparison (with respect to A) between r1 and r2,

and it’s defined to be shorthand for the following:

(UNPACK r1 ON (A)) = (UNPACK r2 ON (A))

To summarize so far, then: The relation of Figure 14-4 is certainly not

equal to the regular join of its regular projections on {SNO,CITY,DURING} and

{SNO,STATUS,DURING}. However, it is U_equal to the U_join of the corresponding

U_projections.

11 Two points here: First, recall from Chapter 5 that joinable just means that attributes with the
same name are of the same type; second, U_join in general is an n-adic operator, but here for
simplicity I’m defining a dyadic version only.

Chapter 14 6NF

299

Now suppose this state of affairs isn’t just a fluke—it isn’t just a matter of the sample

value I happened to choose to show in Figure 14-4—but is, rather, a property that applies

to all possible values of the relvar in question (i.e., relvar SCT_DURING). Then we can

say that the relvar in question is subject to a certain generalized join dependency (a

U_JD, in fact). Here’s a simplified definition:

Definition (U_join dependency): Let H be a heading, and let

attribute A of H be interval valued. Then a U_join dependency

(U_JD for short) with respect to A and H is an expression of the form

USING (A) : ☼{X1,X2,...,Xn}, where X1, X2, ..., Xn (the components

of the U_JD) are subsets of H whose union is equal to H.

Then, of course, we go on to say that:

• A given relation satisfies a given U_JD if and only if it’s U_equal to the

U_join of the pertinent U_projections.

• A given relvar is subject to a given U_JD—equivalently, the given

U_JD holds in the given relvar—if and only if every relation that can

be assigned to that relvar satisfies that U_JD.

In the example, therefore, the following U_JD holds in relvar SCT_DURING:

USING (DURING) :

 ☼ { { SNO , CITY , DURING } , { SNO , STATUS, DURING } }

Moreover, since the original relvar suffers from certain redundancies and

circumlocutions that don’t apply to those U_projections, the recommendation is to

nonloss decompose it accordingly. And we can define a new normal form based on such

considerations, in such a way that relvar SCT_DURING isn’t in that new normal form but

its U_projections are. Before defining that new normal form, however, there are some

further important points to be made—points that I’ve hinted at in the foregoing but

haven’t yet stated explicitly:

• The first is that the generalized form of projection that we call

U_projection truly is a generalization as such. In other words, regular

projection is just a special case of U_projection—or to put it another

way, all projections are U_projections, but some U_projections aren’t

projections (at least, as this latter term is usually understood). The

reason is as follows (simplifying somewhat yet again):

Chapter 14 6NF

300

 a. First, we allow a U_projection of relation r to be taken with

respect to no attributes at all. The definition becomes:

PACK

 ((UNPACK r ON ()) { X })

ON ()

 b. Second, it turns out—see the temporal book if you need

further explanation—that PACK and UNPACK, when

performed with respect to no attributes, both just return their

input, and so the foregoing expression reduces to just r{X}, the

regular projection of r on X.

 c. Third, we allow the USING prefix and its accompanying colon

to be omitted from the concrete syntax for a U_projection

that’s done with respect to no attributes.

It follows from the foregoing that, as claimed, regular projection

is just a special case of U_projection, both syntactically and

semantically.

• Analogously, regular join is a special case of U_join, both

syntactically and semantically.

• Analogously, a regular JD is a special case of a U_JD, both

syntactically and semantically.

It follows that we can drop those U_ prefixes, if we like (except in circumstances

where we might want to retain them for emphasis), and simply understand that

henceforth projection means U_projection, and similarly for join and join dependency

(and similarly for relation equality too, come to that).12 So the “new normal form” we

want to define is just 6NF, except that the concepts that underpin that normal form

(projection, join, etc.) now have an extended interpretation. So here’s the definition (but

of course it’s the same as it always was):

12 And similarly too for all of the other familiar relational operators. Indeed, as I hope you
would expect, we can and do define “U_” versions of all of the relational operators (U_union,
U_restriction, and so on)—but the regular operators are just a special case of their
U_ counterpart in every case. (I mention this point merely for completeness. The details are
beyond the scope of this chapter, and indeed this book.)

Chapter 14 6NF

301

Definition (sixth normal form): Relvar R is in sixth normal form

(6NF) if and only if the only JDs that hold in R are trivial ones; in

other words, the only JDs that hold in R are of the form ☼{ ..., H, ... },

where H is the heading of R.

 Exercises

 14.1 6NF relvars are sometimes said to be irreducible, and I noted in

the body of the chapter that this was yet another of the many kinds

of irreducibility that are relevant to design theory. How many

different kinds can you identify?

 14.2 Suppose relvar P is replaced as discussed in the body of the

chapter by its 6NF projections PN, PL, PW, and PC. Can you think

of any improvements on that design?

 14.3 Consider a relvar R representing marriages, with attributes A, B,

and C and predicate Person A married person B on date C.

Assume no polygamy; assume also that no two persons marry

each other more than once. What keys does R have? Does the

JD ☼{AB,BC,CA} hold? What’s the highest normal form R is in?

 14.4 Design a database for the following. The entities to be represented

are soccer match fixtures for a certain team. For matches that

have already been played, we wish to record “goals for” and “goals

against”; however, these two properties clearly make no sense for

matches that have yet to be played. What normal forms are your

relvars in?

 14.5 In the body of the chapter, I showed informally how reducing a

relvar to 6NF projections corresponded to reducing a conjunctive

predicate to simple predicates. Could there be such a thing as a

disjunctive predicate? How might a relvar correspond to such a

predicate? What would be involved in reducing such a predicate

to simple predicates?

Chapter 14 6NF

302

 14.6 Given the sample value of relvar SCT_DURING in Figure 14-4,

show the result of evaluating each of the following expressions:

 a. USING (DURING) : SCT_DURING { SNO , DURING }

 b. USING (DURING) : SCT_DURING { CITY , DURING }

 c. USING (DURING) : SCT_DURING { STATUS , DURING }

 d. USING (DURING) :

JOIN { SCT_DURING { SNO , CITY , DURING } ,

SCT_DURING { SNO , STATUS , DURING } }

Note: The answer in the last case is, of course, the relation shown

in Figure 14- 5—but don’t just take my word for it, please confirm

that result for yourself (unless you’ve done so already).

 Answers

 14.1 Irreducibility of keys and FDs, and the relevance of FD

irreducibility to 2NF, are all discussed in Chapter 4; FD

irreducibility is discussed further in Chapter 5. Irreducible

covers are discussed in Chapter 6. Irreducible JDs are discussed

in Chapter 11. Irreducible (i.e., 6NF) relvars and the associated

notion of “irreducible facts” are discussed in the present chapter.

 14.2 The main point that occurs to me is that it might be nice to have

some kind of “master” relvar whose primary purpose is just to

record the part numbers for all parts currently represented in the

database. If we call that relvar P, there’ll be EQDs between that

relvar P and the projection on {PNO} of each of the relvars PN, PL,

PW, and PC (instead of EQDs between, arbitrarily, the projection

of PN on {PNO} and the projections on {PNO} of each of PL, PW,

and PC; indeed, one nice thing about having the master relvar is

precisely that it avoids that slight arbitrariness).

Chapter 14 6NF

303

Moreover, suppose every part always has a known name and

weight but doesn’t necessarily have a known color or city.

Then we can combine relvars P, PN, and PW, making that

combination—which I’ll still call P—the master relvar, and replace

those previously required EQDs by foreign key constraints from

PL and PC to that master relvar P. (A part with no known color will

be represented in P but not PL; likewise, a part with no known city

will be represented in P but not PC.)

Incidentally, another argument in favor of including that master

relvar P has to do with the shipments relvar SP—given that master

relvar, we can retain the conventional foreign key constraint from

SP to P; without it, life becomes rather messier (right?).

 14.3 Every pair of attributes is a key. The specified JD doesn’t hold,

because the following is certainly a legitimate value for the relvar:

a1 b1 c2

b1 a1 c2

a2 b1 c1

b1 a2 c1

a1 b2 c1

b2 a1 c1

(a1 ≠ a2, b1 ≠ b2, c1 ≠ c2); that is, the tuples (a1,b1,c2), (a2,b1,c1),

and (a1,b2,c1) most certainly don’t force the tuple (a1,b1,c1) to

appear (!). The relvar is in 6NF. Note, however, that it’s subject to a

certain symmetry constraint; to be specific, the tuple (a,b,c) appears

if and only if the tuple (b,a,c) appears (see the sample value above

for an illustration of this point).13 As a consequence, the relvar

is also subject to certain insertion and deletion anomalies. (In

particular, therefore, it isn’t in DK/NF. See Chapter 15.)

13 Two questions: First, do you think that symmetry constraint is tuple forcing? Second, do you
think the relvar is subject to redundancy? Justify your answers!—especially to the second
question.

Chapter 14 6NF

304

 14.4 The thing to do here is to separate matches that have already been

played from those that haven’t:

PAST_MATCHES { DATE , OPPONENT , GOALS_FOR , GOALS_AGAINST , ... }

 KEY { DATE }

FUTURE_MATCHES { DATE , OPPONENT , ... }

 KEY { DATE }

These relvars are both in 5NF. PAST_MATCHES in particular

probably shouldn’t be replaced by 6NF projections.

Note: Alternatively, we might consider replacing FUTURE_

MATCHES by a relvar FIXTURES, giving DATE and OPPONENT for

all matches past and future. What constraints would apply then?

Come to that, what constraints apply to the design shown above?

 14.5 A disjunctive predicate is the logical OR of two or more other

predicates. If some relvar R had a disjunctive relvar predicate,

then the individual predicates that are OR’d together would

have to have the same parameters (because the tuples that

satisfy them would all have to be of the same type). Reducing

such a relvar to ones with simple predicates would probably

involve decomposition via restriction instead of projection (and

recomposition via union instead of join). See Chapters 15 and 16

for further discussion.

 14.6 a.

 b.

Chapter 14 6NF

305

 c.

 d. Here first are the two U_projections (repeated from

Figure 14-6):

The corresponding unpacked forms are as follows:

Chapter 14 6NF

306

Here’s the join of these two unpacked relations:

Packing this result on DURING yields the relation shown in

Figure 14-5.

Chapter 14 6NF

307
© C. J. Date 2019
C. J. Date, Database Design and Relational Theory, https://doi.org/10.1007/978-1-4842-5540-7_15

CHAPTER 15

The End Is Not Yet
Now, this is not the end. It is not even the beginning of the end.
But it is, perhaps, the end of the beginning.

—Winston Churchill:
Speech at the Lord Mayor’s Day Luncheon, London

(November 10th, 1942)

Eternity’s a terrible thought.
I mean, where’s it all going to end?

—Tom Stoppard:
Rosenkrantz and Guildenstern Are Dead (1967)

What a long strange trip it’s been ... In Part II of this book, we covered 1NF, 2NF, 3NF,

and BCNF (the last at some length); in Part III we covered 4NF and 5NF (the latter at

considerable length); and in the previous two chapters we’ve met four more normal

forms, ETNF, RFNF, SKNF, and 6NF (of which the last is easily the most important).

But even that’s not the end of the story. In this chapter, just for completeness, I briefly

describe or at least mention a few other normal forms that have been defined in the

literature at one time or another.

308

 Domain-Key Normal Form
Domain-key normal form (DK/NF) differs from all of the normal forms discussed in this

book prior to this point in that it’s not defined in terms of FDs, MVDs, and JDs, as such,

at all.1 DK/NF is really a kind of “ideal” normal form: It’s desirable because, by definition,

a relvar in DK/NF is guaranteed to be free of certain update anomalies; sadly, however,

it’s not always achievable, nor has the question “Exactly when can it be achieved?” been

answered. Be that as it may, let’s investigate.

DK/NF is defined in terms of domain constraints and key constraints. Key constraints

are already familiar, of course (they were defined formally in Chapter 5). As for domain

constraints, I remind you that domain is essentially just another word for type (see

the answer to Exercise 2.4 in Chapter 2). It follows that a domain constraint ought

logically to be the same thing as a type constraint; in other words, it ought simply to

be a specification of the set of values that constitute the type in question (see SQL and

Relational Theory for further discussion of this concept). However, the term is being

used in the present context in a slightly special sense. To be specific, a domain constraint,

as that term is used here, is a constraint to the effect that values of a given attribute are

taken not just from some prescribed domain, but rather from some prescribed subset

of that domain. For example, there might be a constraint on the suppliers relvar S to the

effect that STATUS values (which are integers, i.e., values of type INTEGER) must be in

the range one to a hundred, inclusive.

Here then are some definitions:

Definition (domain-key normal form): Relvar R is in domain-

key normal form (DK/NF) if and only if every single-relvar

constraint that holds in R is implied by the domain constraints

and key constraints that hold in R.

1 Well … it’s defined in terms of key constraints, as we’ll see, and key constraints in turn are a
special case of FDs, so this remark is perhaps not quite accurate as stated. PS: Domain-key
normal form is probably the only one of the various normal forms discussed in this chapter,
or indeed anywhere in this part of the book, that you might see mentioned elsewhere in the
computing literature—in the popular computing literature, at any rate.

Chapter 15 the end Is not Yet

309

Definition (single-relvar constraint): Any integrity constraint

that can be tested by examining the pertinent relvar in isolation

(i.e., without having to examine any other relvar in the database).2

Enforcing constraints on a DK/NF relvar is thus conceptually simple, since it’s

sufficient to enforce just the pertinent domain and key constraints, and all constraints—

not just FDs, MVDs, and JDs, but all single-relvar constraints that apply to the relvar in

question—on the relvar will then be enforced automatically.

DK/NF was first defined by Fagin in 1981,3 and it was the DK/NF paper that first gave

precise definitions for the terms insertion anomaly and deletion anomaly. I defined these

notions in Chapter 10 (and referred to them again in Chapter 13), but those previous

definitions and discussions were framed in terms of JDs specifically. Here for the record

are the general definitions (note that they refer to single-relvar constraints in general, not

just ones that happen to be FDs or MVDs or JDs):4

Definition (insertion anomaly): Relvar R suffers from an

insertion anomaly if and only if there exists a legal value r for R

and a tuple t with the same heading as R such that the relation

obtained by appending t to r satisfies R’s key constraints but

violates some other single-relvar constraint on R.

Definition (deletion anomaly): Relvar R suffers from a deletion

anomaly if and only if there exists a legal value r for R and a tuple

t of r such that the relation obtained by removing t from r violates

some single-relvar constraint on R.

The DK/NF paper proves that a relvar in DK/NF can’t suffer from insertion or

deletion anomalies as just defined. (Actually it proves a stronger result: viz., that a relvar

can’t suffer from such anomalies if and only if it’s in DK/NF.)

2 For example, key constraints are always single-relvar constraints, by definition. By contrast,
foreign key constraints are usually not. Note: Single-relvar constraints are usually referred to as
just relvar constraints for brevity. For further discussion, see SQL and Relational Theory.

3 See Ronald Fagin: “A Normal Form for Relational Databases That Is Based on Domains and
Keys,” ACM Transactions on Database Systems 6, No. 3 (September 1981).

4 Footnote 6 in Chapter 10 applies here also. That is, the definitions that follow are very slightly
suspect, in a sense, inasmuch as they talk about appending or removing individual tuples
whereas (as explained in SQL and Relational Theory) INSERT and DELETE really “append” or
“remove” entire relations, not individual tuples. However, the definitions can clearly be refined
in such a way as to take care of this minor quibble.

Chapter 15 the end Is not Yet

310

Finally, we have the following theorem:

Theorem: So long as every pertinent attribute can take on at least

two distinct values, DK/NF implies 5NF.

That is (speaking a trifle loosely), every DK/NF relvar is in 5NF—though it’s not

necessarily in 6NF, of course. As noted in Chapter 13, in fact (in a footnote), DK/NF and

5NF coincide in the—sadly, probably unlikely—special case where the only constraints

that hold are FDs and JDs specifically.

 Elementary Key Normal Form
Elementary key normal form (EKNF) was introduced by Zaniolo in 1982.5 Here’s the

definition:

Definition (elementary key normal form): Relvar R is in

elementary key normal form (EKNF) if and only if, for every

nontrivial FD X → Y that holds in R, either (a) X is a superkey

or (b) Y is a subkey of some elementary key—where key K is

elementary if and only if there exists some attribute A of R such

that the FD K → {A} is nontrivial and irreducible.

It’s immediate from this definition that EKNF falls strictly between 3NF and BCNF;

that is, BCNF implies EKNF, EKNF implies 3NF, and the reverse implications don’t

hold. As for an example: Well, as noted elsewhere in this book, with the normal forms

it’s usually more instructive to show a counterexample rather than an example per se.

Suppose, therefore, that:

 a. Our usual shipments relvar SP has, instead of the usual QTY

attribute, an attribute SNAME, representing the name of the

applicable supplier.

 b. Supplier names are necessarily unique (i.e., no two distinct

suppliers ever have the same name at the same time).

5 See Carlo Zaniolo: “A New Normal Form for the Design of Relational Database Schemata,” ACM
Transactions on Database Systems 7, No. 3 (September 1982).

Chapter 15 the end Is not Yet

311

Then this revised version of SP has two keys, {SNO,PNO} and {SNAME,PNO}.

However, these keys aren’t elementary keys, because the only nontrivial FDs that hold

with one of these keys as determinant are {SNO,PNO} → {SNAME} and {SNAME,PNO}

→ {SNO}, and these FDs are both reducible (in both cases PNO can be dropped from

the determinant without loss). So the relvar is subject to two nontrivial FDs,

{SNO} → {SNAME} and {SNAME} → {SNO}, in which the determinant isn’t a superkey

and the dependant isn’t a subkey of an elementary key. So this version of relvar SP isn’t

in EKNF (though it is in 3NF).

The stated intent of EKNF is “to capture the salient qualities of both 3NF and BCNF”

while avoiding the problems of both (namely, that 3NF is “too forgiving” and BCNF is

“prone to computational complexity”). That said, I should say too that EKNF isn’t much

referenced in the literature.

 Overstrong PJ/NF
Recall that 5NF was originally called PJ/NF, and PJ/NF meant that every JD was implied

by keys (speaking rather loosely). In fact, in the paper in which he introduced PJ/NF,

Fagin also introduced what he called overstrong PJ/NF, which meant (again rather

loosely) that every JD was implied by some specific key considered in isolation. Note that

this latter is what one might intuitively have expected the definition of regular PJ/NF (i.e.,

5NF) to have been—recall the remarks in Chapters 10 and 12 concerning the parallelism

among the definitions of BCNF, 4NF, and 5NF. Be that as it may, here’s the definition:

Definition (overstrong PJ/NF): Relvar R is in overstrong PJ/NF if

and only if every JD of R is implied by some key of R.

Overstrong PJ/NF clearly implies 5NF (i.e., “regular” PJ/NF), but the reverse is false.

A single counterexample suffices to demonstrate this latter fact:6 Consider a relvar R with

attributes A, B, C, and D (only) and keys {A} and {B} only. Let the only dependencies to

hold in R be ones that are implied by these keys (so R is definitely in 5NF). Now consider

the JD ☼{AB,BC,AD}. Applying the membership algorithm, we see that this JD holds in

R; but it’s not a consequence of either of the keys considered in isolation, as can also

be seen by checking the membership algorithm. So R is in 5NF (or PJ/NF) but not in

overstrong PJ/NF.

6 This same example was used in Chapter 13, footnote 2, in connection with the definition of tuple
forcing JDs.

Chapter 15 the end Is not Yet

312

 “Restriction-Union” Normal Form
Consider the parts relvar P from the suppliers-and-parts database. Normalization theory

as I’ve described it up to this point tells us relvar P is in a “good” normal form; indeed,

it’s in 5NF, and it’s therefore guaranteed to be free of anomalies that can be removed

by taking projections. But why keep all parts in a single relvar? What about a design in

which red parts are kept in one relvar (RP, say), blue ones in another (BP, say), and so on?

In other words, what about the possibility of decomposing the original parts relvar via

restriction instead of projection? Would the resulting structure be a good design or a bad

one? (In fact it would almost certainly be bad unless we were very careful, as we’ll see in

Part V of this book; however, the point here is that classical normalization theory as such

has absolutely nothing to say about the matter.)

Another direction for design research therefore consists of examining the

implications of decomposing relvars by some operator other than projection. In the

example, the decomposition operator is, as already mentioned, (disjoint) restriction, and

the corresponding recomposition operator is (disjoint) union. Thus, it might be possible

to construct a “restriction-union” normalization theory, analogous to—but orthogonal

to—the projection-join normalization theory we’ve been considering throughout the

bulk of this book. I don’t want to get much more specific on such matters here; suffice it

to say that some initial ideas along these lines can be found:

 a. In a paper by Smith, which discusses a normal form called

(3,3)NF.7 Smith shows, first, that (3,3)NF implies BCNF; second,

that a (3,3)NF relvar need not be in 4NF, nor need a 4NF relvar be

in (3,3)NF. As suggested above, therefore, reduction to (3,3)NF is

orthogonal to reduction to 4NF (and 5NF).

 b. In Fagin’s PJ/NF paper, which includes as a kind of postscript a

preliminary discussion of a normal form called PJSU/NF

(S for “split” and U for union). Tentative definition: Relvar R is

in PJSU/NF if and only if it’s in PJ/NF (i.e., 5NF) and there’s no

way to split it via restriction into relvars R1 and R2 such that the

dependencies of R1 and R2 are different.

7 J. M. Smith: “A Normal Form for Abstract Syntax,” Proc. 4th International Conference on Very
Large Data Bases, Berlin, Federal German Republic (September 1978).

Chapter 15 the end Is not Yet

313

 Exercises

 15.1 Define DK/NF. Give an example of a relvar in 6NF that’s not in

DK/NF.

 15.2 What’s the difference between SKNF and overstrong PJ/NF? In

fact, is there a difference?

 15.3 Give definitions, as precise as you can make them, of the relational

operators restriction and union.

 15.4 How would you fit the various normal forms mentioned in this

chapter (also 6NF) into the normal form hierarchy of Figure 13-1?

 Answers

 15.1. For the definition, see the body of the chapter. As for an example,

suppose relvar SP is subject to a constraint to the effect that odd

numbered parts can be supplied only by odd numbered suppliers

and even numbered parts only by even numbered suppliers. (This

example is very contrived, of course, but it suffices for the purpose

at hand.) Then this constraint is clearly not implied by the domain

and key constraints that hold in relvar SP, and so the relvar isn’t in

DK/NF; yet it’s certainly in 6NF.

 15.2. There certainly is a difference, since overstrong PJ/NF implies 5NF

and 5NF implies SKNF and the reverse implications don’t hold.

But it’s easy to confuse the two, because the following superficially

similar observations are both true (note the boldface). Let R be a

relvar, and let J = ☼{X1,...,Xn} be an irreducible JD that holds in R.

Then:

• R is in SKNF if and only if, for every such J, each Xi (i = 1, ..., n)

includes some key of R.

• R is in overstrong PJ/NF if and only if, for every such J, each

Xi (i = 1, ..., n) includes the same key of R.

Chapter 15 the end Is not Yet

314

 15.3. Apologies if you think these definitions a little late in coming:

• Definition (restriction): Let r be the relation <H,h> and let bx be

a boolean expression in which every attribute reference identifies

some attribute of r and there aren’t any relvar references. Then

bx denotes a restriction condition, c say, and the restriction of r

according to c, r WHERE c, is the relation <H,x>, where x is the set

of all tuples of r for which c evaluates to TRUE.

• Definition (union): Let relations r1, ..., rn (n ≥ 0) all have the

same heading H. Then the union of r1, ..., rn, UNION {r1,...,rn}, is

a relation with heading H and body the set of all tuples t such that

t appears in at least one of r1, r2, ..., rn. (If n = 0, some syntactic

mechanism, not shown here, is needed to specify the pertinent

heading H, and the result is the unique empty relation having

that heading.) Observe that union as here defined is an n-adic

operator, not a dyadic operator merely.

 15.4. This one isn’t easy to answer! Figure 15-1 is my attempt.

Figure 15-1. The normal form hierarchy (III)

The figure is accurate as far as it goes. But:

• DK/NF needs to be added—probably on a par with 6NF (neither

DK/NF nor 6NF implies the other, but “most” DK/NF relvars are

in 5NF).

• Overstrong PJ/NF needs to be added—again, probably on a par

with 6NF.

Chapter 15 the end Is not Yet

315

• (3,3)NF needs to be added—probably on a par with EKNF but off

to one side, as it were (since (3,3)NF implies BCNF but neither

(3,3)NF nor 4NF implies the other).

• PJSU/NF needs to be added—again, probably on a par with 6NF.

Note, however, that even if we stay in the “direct mainstream” (i.e.,

from 1NF to 6NF, inclusive), there are still eleven logically distinct

normal forms; the others—the ones discussed in the present

chapter—might fairly be described as outliers.

Chapter 15 the end Is not Yet

PART V

Orthogonality

To repeat something I said in Chapter 1, database design is not my favorite subject. The

reason is that so little of design practice is truly scientific; normalization is scientific, of

course, but not much else is. However, the topic of this part of the book, orthogonality,

does represent another tiny piece of science in what’s otherwise still, sadly, a fairly

subjective field.

319
© C. J. Date 2019
C. J. Date, Database Design and Relational Theory, https://doi.org/10.1007/978-1-4842-5540-7_16

CHAPTER 16

The Principle of
Orthogonal Design

Orthogonal At right angles to; independent.

—David Darling:
The Universal Book of Mathematics (2004)

I’ve said repeatedly in earlier parts of this book that normalization is the science (or a

large part of the science, at any rate) underlying database design. Thus, it’s appropriate

to begin this chapter with a quick review of normalization principles and a brief analysis

of how well normalization meets its objectives.

 Two Cheers for Normalization
Here first, then, is a simplified summary of the principles of normalization:

 1. A relvar not in 5NF should be decomposed into a set of 5NF

projections.1

 2. The original relvar should be reconstructable by joining those

projections back together again—i.e., the decomposition should

be nonloss.

 3. Every projection should be needed in the reconstruction process.

 4. The decomposition should preserve dependencies (FDs and JDs),

insofar as it can do so without violating the first principle.

1 You can replace 5NF here by ETNF (twice), if you like, or maybe even 6NF (?).

320

Normalization is far from being a panacea, however, as we can easily see by

considering what its goals are and how well it measures up against them. Here are

those goals:

• To achieve a design that’s a “good” representation of the real world

(i.e., one that’s logically correct and intuitively easy to understand,

and is a good basis for future growth)

• To reduce redundancy

• Thereby to avoid certain update anomalies that might

otherwise occur

• To simplify the statement and enforcement of certain integrity

constraints

I’ll consider each in turn.

• Good representation of the real world: Normalization does well on

this one. I have no criticisms on this score.

• Reduce redundancy: Normalization is a good start on this problem

too, but it’s only a start. For one thing, it’s a process of taking

projections, and we’ve seen that not all redundancies can be removed

by taking projections; indeed, there are many kinds of redundancy

that normalization simply doesn’t address at all. (Chapter 17 takes

up this issue.) For another thing, taking projections, even when the

decomposition is nonloss, can cause dependencies to be lost, as we

saw in Chapter 6 and elsewhere.

• Avoid update anomalies: This point is, at least in part, just the previous

one by another name. It’s well known that designs that aren’t properly

normalized can be subject to certain update anomalies, precisely

because of the redundancies they entail. In relvar STP, for example (see

Figure 1-2 in Chapter 1), supplier S1 might be shown as having status

20 in one tuple and status 25 in another.

Of course, this particular anomaly can arise only if a less than

perfect job is being done on integrity constraint enforcement.

Perhaps a better way to think about the update anomaly issue

is this: The constraints needed to prevent such anomalies will

Chapter 16 the prinCiple of orthogonal Design

321

be easier to state, and might be easier to enforce, if the design is

properly normalized than they would be if it isn’t (see the next

bullet item below). Yet another way to think about it is: More

single-tuple updates2 will be logically acceptable if the design is

properly normalized than would be the case if it isn’t (because

unnormalized designs imply redundancy—i.e., several tuples

saying the same thing—and redundancy in turn implies that

sometimes we have to update several things at the same time).

• Simplify statement and enforcement of constraints: As we know from

earlier chapters, some dependencies imply others. (More generally,

in fact, constraints of any kind can imply others. As a trivial example,

if shipment quantities must be less than or equal to 5000, they must

certainly be less than or equal to 6000.) Now, if constraint A implies

constraint B, then stating and enforcing A will effectively state and

enforce B “automatically” (indeed, B won’t need to be separately

stated at all, except perhaps by way of documentation). And

normalization to (at least) 5NF gives us a very simple way of stating

and enforcing certain important constraints; basically, all we have to

do is define keys and enforce their uniqueness—which we’re going

to do anyway—and then all applicable JDs (and all applicable MVDs

and FDs as well) will effectively be stated and enforced automatically,

because they’ll all be implied by those keys. So normalization does

a pretty good job in this area too. (Of course, I’m ignoring here the

various multirelvar constraints that the normalization process is

likely to give rise to.)

Here on the other hand are several more reasons, over and above those already

given, why normalization is no panacea:

• First, JDs and MVDs and FDs aren’t the only kind of constraint, and

normalization doesn’t help with any others.

• Second, given a particular set of relvars, there’ll often be several

distinct nonloss decompositions into 5NF projections—see Chapter 6

for several examples—and there’s little or no formal guidance

2 Perhaps better, more singleton set updates.

Chapter 16 the prinCiple of orthogonal Design

322

available to tell us which one to choose in such cases. (To be honest,

though, I doubt whether this lack is likely to cause major problems in

practice.)

• Third, there are many design issues that normalization simply

doesn’t address. For example, what is it that tells us there should be

just one suppliers relvar, instead of one for London suppliers, one

for Paris suppliers, and so on? It certainly isn’t normalization as

classically understood.

All of that being said, I must make it clear that I don’t want the foregoing comments

to be seen as any kind of attack. As I said in Chapter 8, I believe anything less than a fully

normalized design is strongly contraindicated. But the fact remains that normalization

(what I referred to as “the scientific part of design”) as such really doesn’t do as much

of the job as we’d like—and so it’s good to be able to say that now there’s a tiny piece of

additional science available to us. That’s what orthogonal design is all about.

Note: The concept of orthogonality has evolved over time. As a result, portions of this

chapter are at odds, somewhat, with previous writings—mostly by myself—on this same

subject. What’s more, I very much doubt whether this chapter is the last word, either. I

do believe the chapter is accurate as far as it goes; however, further refinements to the

material might well be possible, and desirable, in the future. Caveat lector.

 A Motivating Example
For simplicity, let the FD {CITY} → {STATUS} not hold any longer in relvar S (and please

note that I’ll stay with this revised assumption throughout the present chapter). Consider

now the following decomposition of that relvar:

SNC { SNO , SNAME , CITY }

 KEY { SNO }

STC { SNO , STATUS , CITY }

 KEY { SNO }

Chapter 16 the prinCiple of orthogonal Design

323

Sample values are shown in Figure 16-1. As the figure clearly shows, this

decomposition is hardly very sensible (in particular, note that the fact that a given supplier

is located in a given city appears twice), and yet it abides by all of the normalization

principles—both projections are in 5NF; the decomposition is nonloss; both projections

are needed in the reconstruction process; and dependencies are preserved.

Intuitively, the problem with the foregoing design is obvious: The tuple (s,n,c)

appears in SNC if and only if the tuple (s,t,c) appears in STC; equivalently, the tuple

(s,c) appears in the projection of SNC on {SNO,CITY} if and only if that very same tuple

(s,c) appears in the projection of STC on {SNO,CITY}. To state the matter a trifle more

formally, we can say the design is subject to the following equality dependency (EQD)—

CONSTRAINT ... SNC { SNO , CITY } = STC { SNO , CITY } ;

—and this EQD makes the redundancy explicit.

To repeat, however, the foregoing design abides by all of the well established

principles of normalization. It follows that those principles by themselves aren’t

enough—we need something else to tell us what’s wrong with the design (something else

formal, that is; we all know what’s wrong with it informally). To put the matter another

way, the normalization discipline provides a set of formal principles to guide us in our

attempts to reduce redundancy, but that set of principles by itself is inadequate, as the

example plainly shows. We need another principle; in other words, as I keep saying, we

need more science.

Figure 16-1. Relvars SNC and STC─sample values

Chapter 16 the prinCiple of orthogonal Design

324

 A Simpler Example
In order to see what the principle we need might look like, let’s consider another,

simpler (?) example. As you know, normalization as such—in particular, normalization

as used in the SNC / STC example of the previous section—has to do with “vertical”

decomposition of relvars (meaning decomposition via projection). But “horizontal”

decomposition (that is, decomposition via restriction) is clearly possible, too.

Consider the design illustrated in Figure 16-2, in which the parts relvar P has been split

horizontally—in fact, partitioned—into two relvars, one (“light parts,” LP) containing

parts with weight less than 17.0 pounds and the other (“heavy parts,” HP) containing

parts with weight greater than or equal to 17.0 pounds.3

The predicates are as follows:

• LP: Part PNO is named PNAME, has color COLOR and weight

WEIGHT (which is less than 17.0 pounds), and is stored in city CITY.

3 I’m assuming for definiteness here (and will continue to do so throughout this chapter) that
WEIGHT values are presented to the user in terms of pounds avoirdupois. Please note, however,
that I don’t say they’re represented in such terms; weights are weights, and what units they’re
presented to the user in is a separate issue (in fact, one that should be under user control—e.g.,
users might want, and should be allowed, to see the very same weight in pounds in some
circumstances and in grams in others). See Chapter 2 (“Types without Inheritance”) of my book
Type Inheritance and Relational Theory: Subtypes, Supertypes, and Substitutability (O’Reilly,
2016) for further discussion of such matters, as well as a fairly detailed proposal for how such
matters might be handled in practice.

Figure 16-2. Relvars LP and HP─sample values

Chapter 16 the prinCiple of orthogonal Design

325

• HP: Part PNO is named PNAME, has color COLOR and weight

WEIGHT (which is greater than or equal to 17.0 pounds), and is stored

in city CITY.

Note that the original relvar P can be recovered by taking the (disjoint) union of

relvars LP and HP.

Why might we want to perform such a horizontal decomposition? Frankly, I’m not

aware of any good logical reason for doing so, though of course that’s not to say no such

reason exists. Be that as it may, observe that we can, and should, state two constraints

that apply to these relvars:

CONSTRAINT LPC AND (LP , WEIGHT < 17.0) ;

CONSTRAINT HPC AND (HP , WEIGHT ≥ 17.0) ;

(I remind you from Chapter 2 that the Tutorial D expression AND (rx,bx), where rx is

a relational expression and bx is a boolean expression, returns TRUE if and only if the

condition denoted by bx evaluates to TRUE for every tuple in the relation denoted by rx.)

So we have here what is at least arguably a slightly unusual situation. To be specific,

for each of relvars LP and HP, part of the predicate can and should be captured formally

in the shape of an explicit constraint. Indeed, the very fact that such constraints need

to be stated and enforced might be seen as militating against the design. But even if

horizontal decomposition is therefore contraindicated at the logical level, there are still

plenty of pragmatic reasons (having to do with recovery, security, performance, and

other such matters) for such a decomposition at the physical level. Hence, given that the

logical and physical levels tend to be in lockstep, pretty much, in today’s DBMSs—i.e.,

there’s not nearly as much data independence in those DBMSs as there ought to be—it

follows that there are likely to be pragmatic reasons, if not logical ones, for performing

such a decomposition at the logical level as well, at least given the state of the art found

in current implementations.

Now, regardless of what you might think of the foregoing argument, at least there’s

nothing obviously bad about the design of Figure 16-2 (well, let’s agree as much for

the sake of the example, at any rate).4 But suppose we were to define relvar LP just a

little differently; to be specific, suppose we were to define it to contain those parts with

4 Actually there might be something logically bad. Consider, for example, what has to happen if the
weight of part P1 is doubled.

Chapter 16 the prinCiple of orthogonal Design

326

weight less than or equal to 17.0 pounds (adjusting the predicate and constraint LPC

accordingly, of course). Figure 16-3 is a revised version of Figure 16-2, showing what

happens with this revised design.

As you can see, now the design is definitely bad; to be specific, the tuples for parts

P2 and P3 now appear in both relvars in Figure 16-3 (in other words, there’s now some

redundancy). What’s more, those tuples must appear in both relvars! For suppose,

contrariwise, that (say) the tuple for part P2 appeared in HP and not in LP. Then,

noting that LP contains no tuple for part P2, we could legitimately conclude from The

Closed World Assumption—see Chapter 2—that it’s not the case that part P2 weighs

17.0 pounds. But then we see from HP that part P2 in fact does weigh 17.0 pounds, and

the database is thus inconsistent (it contains a contradiction). Note: Inconsistency in

a database is highly undesirable, of course. In fact, I’ll show in Appendix B that you

can never trust the results you get from an inconsistent database; indeed, you can get

absolutely any result whatsoever—even results that effectively imply nonsensical things

like 1 = 0—from such a database!

Now, the problem with the design of Figure 16-3 is easy to see: The predicates for LP

and HP “overlap,” in the sense that the very same tuple t can satisfy both of them. What’s

more, as we’ve seen, if t is such a tuple, and if at some given time tuple t represents

a “true fact,” then, in accordance with The Closed World Assumption, tuple t must

Figure 16-3. Relvars LP (revised) and HP─sample values

Chapter 16 the prinCiple of orthogonal Design

327

necessarily appear in both relvars at the time in question (whence the redundancy, of

course). In fact, we have another EQD on our hands:

CONSTRAINT ... (LP WHERE WEIGHT = 17.0) =

 (HP WHERE WEIGHT = 17.0) ;

To say it again, the problem in the example is that we’ve allowed two relvars to have

overlapping predicates. Clearly, then, the principle we’re looking for is going to say something

along the lines of: Don’t do that! Let’s try and state the matter a little more precisely:

Definition (The Principle of Orthogonal Design, first attempt): If

relvars R1 and R2 are distinct, then there must not exist a tuple with

the property that it appears in R1 if and only if it appears in R2.5

The term orthogonal here derives from the fact that what the principle effectively says is

that relvars should be independent of one another—which they won’t be, if their meanings

overlap in the foregoing sense. Note: In what follows, I’ll often abbreviate The Principle of

Orthogonality to just the orthogonality principle, or sometimes just to orthogonality.

as elsewhere in this book, i might be accused of practicing a tiny deception in the
foregoing. take another look at figure 16-3; in particular, take a look at the tuple
for part p2. that tuple appears in both lp and hp because it represents a true
instantiation of the predicate for lp and a true instantiation of the predicate for hp.
or does it? the instantiations of those predicates for part p2 are actually as follows:

• lp: Part P2 is named Bolt, has color Green and weight 17.0 pounds
(which is less than or equal to 17.0 pounds), and is stored in city
Paris.

• hp: Part P2 is named Bolt, has color Green and weight 17.0 pounds
(which is greater than or equal to 17.0 pounds), and is stored in city
Paris.

5 The “if” part of that “if and only if” is important. Consider a revised version of the suppliers-
and-parts database, in which (a) attribute QTY is dropped from relvar SP and (b) another relvar,
SAP, with heading {SNO,PNO} and predicate Supplier SNO is able to supply part PNO is added.
Then there might well be a constraint to the effect that a given tuple can appear in SP only if it
also appears in SAP, and such a reasonable state of affairs doesn’t (and obviously shouldn’t)
constitute a violation of orthogonality.

Chapter 16 the prinCiple of orthogonal Design

328

these two propositions aren’t the same! of course, they’re certainly equivalent—
but in order to recognize that equivalence, we need to know that “17.0 ≤ 17.0”
and “17.0 ≥ 17.0” are both true, and then we need to apply a little logical
reasoning. (the point is, what’s obvious to us as human beings isn’t necessarily
obvious to a machine, and for completeness i really ought to have spelled out the
missing steps in my argument.).

Now, adherence to the orthogonality principle in the light vs. heavy parts example

would certainly avoid the redundancies illustrated in Figure 16-3. Note, however, that

the principle as stated applies only to relvars like LP and HP that have the very same

heading, because of course it’s impossible for the very same tuple to appear in two

different relvars if the relvars in question have different headings. Thus, you might be

thinking the orthogonality principle isn’t much use, because it’s probably unusual in

practice to have two relvars in the same database with the same heading.6 And if that

were all there was to it, then I would probably agree with you; I mean, in that case

life would be fairly simple and this chapter could stop right here (it might not even

be worth dignifying such a very obvious rule with the rather grand label “principle”).

But, of course, there’s quite a lot more to be said on the matter. In order to explore the

possibilities further, I first need to take a closer look at the relationship between tuples

and propositions.

 Tuples vs. Propositions
As you know, every tuple appearing in some given relvar R at some given time represents

a certain proposition, the proposition in question being an instantiation of the relvar

predicate for that relvar R that (by convention) is understood to be true at the time in

question. For example, here again is the predicate for relvar HP (sample value as in

Figures 16-2 and 16-3):

6 In this chapter, unlike most others in this book, the fact that the heading concept includes the
pertinent attribute types is sometimes going to be important; thus, the term heading must be
(re)interpreted accordingly, where it makes any difference. By way of example, the headings
{PNO CHAR, WEIGHT RATIONAL} and {PNO CHAR, WEIGHT INTEGER}, though they involve
the same attribute names, aren’t the same heading, precisely because the two WEIGHT attributes
are of different types. All of that being said, for simplicity I’ll continue to ignore attribute types as
much as I can throughout the rest of the chapter.

Chapter 16 the prinCiple of orthogonal Design

329

Part PNO is named PNAME, has color COLOR and weight

WEIGHT (which is greater than or equal to 17.0 pounds), and is

stored in city CITY.

This relvar currently contains (among other things) a tuple for part P6, and that tuple

represents the following instantiation of the foregoing predicate:

Part P6 is named Cog, has color Red and weight 19.0 pounds

(which is greater than or equal to 17.0 pounds), and is stored in city

London.

Loosely speaking, then, we can say the database “contains propositions” (or

representations of propositions, at any rate). Now, I’ve said, or at least suggested, several

times at earlier points in this book that the database involves some redundancy if and

only if it says the same thing twice. Now I can make this statement a little more precise:

Definition (redundancy): The database involves redundancy if

and only if it contains two distinct representations of the same

proposition.

Now, given that tuples represent propositions, it’s tempting to understand the

foregoing definition as meaning that the database involves redundancy if and only

if it contains two distinct appearances of the same tuple.7 Unfortunately, however,

this (mis)interpretation of the definition is considerably oversimplified at best. Let’s

examine it more carefully.

First of all, of course, it’s at least true that we don’t want the same tuple to appear

more than once in the same relvar (at the same time, that is), because such a state of

affairs would certainly constitute “saying the same thing twice.” (As I once heard Codd

remark: If something is true, saying it twice doesn’t make it any more true.) Now, the

relational model itself takes care of this particular requirement—by definition, relations

never contain duplicate tuples, and the same is therefore true for relvars, and so we can

ignore this possibility.

7 One reviewer of this book argued rather strongly that this “temptation” wasn’t tempting at all.
Maybe not, but I still think it’s worth discussing.

Chapter 16 the prinCiple of orthogonal Design

330

two points here. first, given the truth of the foregoing, it could be argued that
a desire to avoid redundancy was one of the motivations—albeit a minor one,
perhaps (?)—for choosing sets (which can’t contain duplicate elements, by
definition) instead of “bags” (which can) as the right mathematical abstraction on
which to found a solid database theory. sQl apologists please note!

second, i note that now we have a precise characterization of the notion of
“duplicate tuples.” (people use this phrase all the time, and yet i very much
doubt whether many of them would be able to define it precisely if pressed.)
strictly speaking, of course, two tuples are duplicates if and only if they’re the
very same tuple, just as two integers are duplicates if and only if they’re the very
same integer. thus, the phrase “duplicate tuples” thus doesn’t really make much
sense from a logical point of view (to say two distinct tuples are duplicates is a
contradiction in terms). What people are really talking about when they use that
phrase is duplicate appearances of the same tuple. for that reason, the phrase
“duplicate elimination,” which as we all know is often encountered in database
contexts, would much better be duplication elimination. But i digress … let’s get
back to the main discussion.

Next, then, I observe that we often don’t want the same subtuple to appear more than

once in the same relvar (again, at the same time).8 But classical normalization takes care

of this one; e.g., it was precisely because, in earlier chapters, the FD {CITY} → {STATUS}

held in relvar S—causing the same {CITY,STATUS} pair (or subtuple) to occur repeatedly,

with the same meaning every time it did—that we were recommended to replace that

relvar by its projections on {CITY,STATUS} and {SNO,SNAME,CITY}, respectively.

My next point is that the very same tuple can represent any number of distinct

propositions, as can easily be seen. As a trivial example, let SC and PC be the projection

of relvar S on {CITY} and the projection of relvar P on {CITY}, respectively. Given our

usual sample values, then, a tuple containing just the CITY value London appears in

8 This statement too is hugely, and in fact grotesquely, oversimplified. A slightly better one is: We
don’t want the same subtuple to appear more than once if distinct appearances represent the
same proposition—but this statement isn’t perfect, either. However, to try to make it more precise
still would take us much further afield than I’m prepared to go at this point. See Chapter 17 for
further explanation.

Chapter 16 the prinCiple of orthogonal Design

331

both SC and PC—but those two appearances represent distinct propositions. To be

specific, the appearance in SC represents the proposition There’s at least one supplier in

London, and the appearance in PC represents the proposition There’s at least one part in

London (simplifying slightly in both cases for the sake of the example).

What’s more—and here I have to get a little more formal on you for a moment—the

same proposition can be represented by any number of distinct tuples, too. That’s because,

formally, the pertinent attribute names are part of the tuple (check the definition of tuple

in Chapter 5 if you need confirmation of this point). For example, consider our usual

shipments relvar SP, with attributes SNO, PNO, and QTY, and with predicate:

Supplier SNO supplies part PNO in quantity QTY.

Now suppose we additionally had a relvar PS, with attributes SNR, PNR, and AMT,

and with predicate:

Supplier SNR supplies part PNR in quantity AMT.

Then (using Tutorial D syntax) the following tuples might well appear in relvars SP and

PS, respectively:

TUPLE { SNO 'S1' , PNO 'P1' , QTY 300 }

TUPLE { SNR 'S1' , PNR 'P1' , AMT 300 }

These are clearly different tuples, but they both represent the same proposition, viz.:

Supplier S1 supplies part P1 in quantity 300.

In fact, each of the two relvars SP and PS can be defined in terms of the other, as the

following constraints (actually EQDs once again) both show:

CONSTRAINT ...

 PS = SP RENAME { SNO AS SNR , PNO AS PNR , QTY AS AMT } ;

CONSTRAINT ...

 SP = PS RENAME { SNR AS SNO , PNR AS PNO , AMT AS QTY } ;

Chapter 16 the prinCiple of orthogonal Design

332

A database that contained both relvars would thus clearly involve redundancy.9

The net of the foregoing discussion is this: There’s a many to many relationship between

tuples and propositions—any number of tuples can represent the same proposition, any

number of propositions can be represented by the same tuple. Given this state of affairs,

then, here’s an attempt at stating the orthogonality principle a little more precisely:

Definition (The Principle of Orthogonal Design, second
attempt): Let relvars R and R2 be distinct, and let them have

headings {A1,...,An} and {B1,...,Bn}, respectively. Let relvar R1 be

defined as follows:

R1 = R RENAME { A1 AS B1′ , ... , An AS Bn′ }

where B1′, ..., Bn′ is some permutation of B1, ..., Bn. (Observe

that R1 and R2 thus have the same heading.)10 Then there must

not exist restriction conditions c1 and c2, neither of which is

identically false, such that following equality dependency holds:

(R1 WHERE c1) = (R2 WHERE c2)

Points arising from this second attempt:

• Adherence to this version of the principle solves the problem with the

design of Figure 16-3. To be specific, take R and R2 to be LP and HP,

respectively, and define R1 as follows:

R1 = LP RENAME { PNO AS PNO , ... , CITY AS CITY }

(In other words, take R1 to be identically equal to R.) Now take

both c1 and c2 to be the restriction condition WEIGHT = 17.0.

Then the equality dependency (R1 WHERE c1) = (R2 WHERE c2)

obviously holds, and the design thus violates orthogonality.

9 The example thus suggests an obvious rule of thumb: When you start the design process—which
as far as I’m concerned means when you write down the predicates and other business rules—
always use the same name for the same property; don’t “play games” by using, e.g., both SNO and
SNR to refer to supplier numbers, both QTY and AMT to refer to quantities, and so on. Following
this rule will (among other things) make it much less likely that you’ll wind up with two distinct
tuples that represent the same proposition.

10 Assuming, of course, that each attribute in R1 is of the same type as its counterpart in R2—
but I remind you that I’m trying to ignore attribute types as much as I can in this chapter,
for simplicity. I won’t keep on repeating remarks of this same general nature from this point
forward but will simply let this one footnote do duty for all.

Chapter 16 the prinCiple of orthogonal Design

333

Note: As this example demonstrates, so long as c1 and c2 aren’t

identically false, then certain tuples must exist that, if and when

they represent “true facts,” will necessarily have to appear in

both R1 and R2—and, in essence, that’s the situation we want to

outlaw. (By contrast, if either of c1 and c2 were identically false,

the corresponding restriction—R1 WHERE c1 or R2 WHERE c2, as

applicable—would be empty, and so there wouldn’t and couldn’t

be any orthogonality violation.)

• This second version of the principle subsumes the first, because we

can make R1 identical to R—in effect, by making the renaming a

“no op,” as in the previous bullet item. (As I pointed out earlier, the

previous version of the principle did assume the relvars in question

had the same heading. As the discussions of the present section have

shown, however, we can’t limit our attention to that simple case

alone.) That second version also solves the SP vs. PS problem, of

course—in effect, by taking each of c1 and c2 to be simply TRUE.

• Recall from Chapter 6 that, in logic, something that’s identically

false (e.g., the boolean expression WEIGHT ≥ 17.0 AND WEIGHT

< 17.0) is called a contradiction. Thus, the requirement that c1 and

c2 not be identically false can be stated thus: Neither c1 nor c2 is a

contradiction in the logical sense.

 The First Example Revisited
Now let’s return to our motivating example, in which relvar S was decomposed

vertically into its projections SNC and STC on {SNO,SNAME,CITY} and

{SNO,STATUS,CITY}, respectively.11 (The example of light vs. heavy parts involved

horizontal decomposition, of course.) Observe now that although SNC and STC

are certainly of the same degree, there’s no way any given tuple can appear in

both: Tuples in SNC have an SNAME attribute, while tuples in STC have a STATUS

attribute instead. What’s more, there’s no way we can simply rename (say) the

SNAME attribute in SNC to STATUS and thereby produce a relvar with the same

11 And in which, I remind you, the FD {CITY} → {STATUS} no longer held in relvar S.

Chapter 16 the prinCiple of orthogonal Design

334

heading as STC, because SNAME in SNC is of type CHAR and STATUS in STC is of

type INTEGER. (Renaming attributes changes names, not types.) It follows that our

second attempt at defining the orthogonality principle is still inadequate; in the case

at hand, in fact, it simply doesn’t apply.

Recall now what the problem was with the foregoing design: The tuple (s,c) appears

in the projection of SNC on {SNO,CITY} if and only if that very same tuple (s,c) appears

in the projection of STC on {SNO,CITY}. That is, the following EQD holds:

CONSTRAINT ... SNC { SNO , CITY } = STC { SNO , CITY } ;

Let’s agree to ignore the question of attribute renaming for the moment, since it isn’t

relevant to this example. Then the crucial point about the foregoing EQD is that it holds,

not between distinct database relvars as such, but rather between distinct projections of

the same database relvar: to be specific, projections arising from vertical decomposition

of the database relvar S. But such doesn’t have to be the case, of course—I mean, SNC and

STC might have been defined independently, as two completely distinct relvars, without

there ever having existed (in the designer’s mind, so to speak) a relvar S that’s equal to their

join. They might even be, not distinct relvars in their own right, but projections of two such

distinct relvars. All of which leads to a third attempt at defining the orthogonality principle:

Definition (The Principle of Orthogonal Design, third attempt):

Let relvars R1 and R2 be distinct. Then:

 a. There must not exist a JD ☼{X1,...,Xn} that’s irreducible with

respect to R112 such that

 b. There exists some Xi (1 ≤ i ≤ n) and some possibly empty set

of attribute renamings on the projection, R1X say, of R1 on Xi

that maps R1X into R1Y, say, such that

 c. R1Y has the same heading as some subset Y of the heading of

R2, such that

 d. The following equality dependency holds:

R1Y = R2Y

(where R2Y is the projection of R2 on Y).

12 Note that any JD that’s irreducible with respect to relvar R1 certainly holds in that relvar R1, by
the definition of JD irreducibility (see Chapter 11).

Chapter 16 the prinCiple of orthogonal Design

335

Now, this all looks quite complex, but basically all it says is that no projection in any

nonloss decomposition of R1 can be information equivalent to any projection of R2. Indeed,

as you can probably see, much of the complexity in the definition (what complexity there is)

arises from the need to deal with the renaming issue. The following slightly simpler version

of the definition, which ignores that complication, might help to make the point clearer:

Definition (The Principle of Orthogonal Design, third attempt
but ignoring renaming): Let relvars R1 and R2 be distinct. Then:

 a. There must not exist a JD ☼{X1,...,Xn} that’s irreducible with

respect to R1 such that

 b. There exists some Xi (1 ≤ i ≤ n) that’s identical to some subset

Y of the heading of R2, such that

 c. The following equality dependency holds:

R1Y = R2Y

(where R1Y and R2Y are the projections on Y of R1 and R2,

respectively).

Observe now that adherence to this third version of the principle resolves the

problem with our motivating example, in which relvar S was decomposed into its

projections SNC and STC on {SNO,SNAME,CITY}) and STC {SNO,STATUS,CITY},

respectively. Because suppose that decomposition is done. Then:

 a. The database now contains two distinct relvars, SNC and STC.

 b. Thanks to Heath’s Theorem together with the fact that

the FD {SNO} → {SNAME} holds in relvar SNC, the

JD ☼{{SNO,SNAME},{SNO,CITY}} holds in—in fact, is

irreducible with respect to—that relvar SNC.

 c. Thus, the projection of relvar SNC on {SNO,CITY} is part of a valid

nonloss decomposition of SNC. But an equality dependency holds

between that projection and the projection of STC on those same

attributes. Thus, the design violates the orthogonality principle as

just articulated (the “third attempt”).

Chapter 16 the prinCiple of orthogonal Design

336

I now observe that this third version of the orthogonality principle lets me take care

of a piece of unfinished business from Chapter 11. As you might recall, I pointed out

in that chapter that the following JD held in relvar S, and in fact was irreducible with

respect to that relvar:

☼ { { SNO , SNAME , CITY } , { CITY , STATUS , SNAME } }

But I also said that decomposing relvar S on the basis of this JD wouldn’t be a good

idea (and Exercise 11.4 asked why not). Well, we can see now that if that decomposition

is done:

 a. The database now contains two distinct relvars—I’ll call

them SNC and CTN—with headings {SNO,SNAME,CITY} and

{CITY,STATUS,SNAME}, respectively.

 b. Thanks to Heath’s Theorem together with the fact that

the FD {CITY} → {STATUS} holds in CTN—at least, recall

that it did as far as Chapter 11 was concerned—the

JD ☼{{CITY,STATUS},{CITY,SNAME}} holds in, and in fact is

irreducible with respect to, that relvar CTN.

 c. Thus, the projection of relvar CTN on {CITY,SNAME} is part of a

valid nonloss decomposition of CTN. But an equality dependency

holds between that projection and the projection of SNC on

those same attributes. In other words, the design violates the

orthogonality principle once again.

The net of the example is this: Doing a nonloss decomposition on the basis

of a “bad” JD is contraindicated by virtue of The Principle of Orthogonal Design.

(The JD in the example is “bad” because attribute SNAME could be dropped from

the {CITY,STATUS,SNAME} component without significant loss.) What’s more,

one consequence of abiding by the orthogonality principle is that the third of the

normalization principles as given at the beginning of the chapter—viz., that every

projection should be needed in the reconstruction process—will automatically be

satisfied (and so there’s a logical connection, of a kind, between orthogonality and

normalization after all).

Chapter 16 the prinCiple of orthogonal Design

337

 The Second Example Revisited
Unfortunately, the third version of the orthogonality principle as given in the previous

section is still missing something, and revisiting the light vs. heavy parts example shows

what it is: It’s missing that business about restrictions. (In that example, the equality

dependency wasn’t between database relvars as such, nor between projections of such

relvars, but rather between certain restrictions of such relvars.) In other words, the third

version of the principle failed to subsume the second version. By contrast, the following

formulation takes care of both the restriction issue and the projection issue:

Definition (The Principle of Orthogonal Design, fourth
attempt): Let relvars R1 and R2 be distinct. Then:

 a. There must not exist a JD ☼{X1,...,Xn} that’s irreducible with

respect to R1 such that

 b. There exists some Xi (1 ≤ i ≤ n) and some possibly empty set

of attribute renamings on the projection, R1X say, of R1 on Xi

that maps R1X into R1Y, say, such that

 c. R1Y has the same heading as some subset Y of the heading of

R2, such that

 d. There exist restriction conditions c1 and c2, neither of which

is identically false, such that

 e. The following equality dependency holds:

(R1Y WHERE c1) = (R2Y WHERE c2)

(where R2Y is the projection of R2 on Y).

 The Final Version (?)
Believe it or not, there’s still a problem … Consider a version of the suppliers relvar—

I’ll call it SCC—with attributes SNO, CITYA, and CITYB. Let SCC be subject to the

constraint that for any given supplier, the CITYA and CITYB values are identical. Result:

Redundancy! Of course, this is a crazy design, but it’s a possible one, and it would be nice

Chapter 16 the prinCiple of orthogonal Design

338

to extend the orthogonality principle to take care of (i.e., prohibit) such designs also. And

the following final (?) formulation should do the trick (I’ll leave it as an exercise for you

to figure out exactly how):

Definition (The Principle of Orthogonal Design, “final”
version): Let R1 and R2 be relvars (not necessarily distinct). Then:

 a. There must not exist a JD ☼{X1,...,Xn} that’s irreducible with

respect to R1 such that

 b. There exists some Xi (1 ≤ i ≤ n) and some possibly empty set

of attribute renamings on the projection, R1X say, of R1 on Xi

that maps R1X into R1Y, say, such that

 c. R1Y has the same heading as some subset Y (distinct from Xi, if

R1 and R2 are one and the same) of the heading of R2, such that

 d. There exist restriction conditions c1 and c2, neither of which

is identically false, such that

 e. The following equality dependency holds:

(R1Y WHERE c1) = (R2Y WHERE c2)

(where R2Y is the projection of R2 on Y).

This version of the principle subsumes all previous versions.

 A Clarification
I’m sorry to have to report that there’s quite a lot of confusion in the literature over

orthogonality, even though the basic idea is so simple. I’m even sorrier to have to say

the confusion is probably my fault—some of my previous writings on this topic have

been (not to put too fine a point upon the matter) flat out wrong. So let me take this

opportunity to try and set the record straight. The basic point is this:

Orthogonality says that relvars shouldn’t have overlapping meanings;
it doesn’t say that relvars shouldn’t have the same heading (or, more generally,
headings that “overlap”).

Chapter 16 the prinCiple of orthogonal Design

339

Here’s a simple example, due to Hugh Darwen, that illustrates the difference.

Consider the predicates Employee ENO is on vacation and Employee ENO is awaiting

phone number allocation. The obvious design for this situation involves two relvars of

degree one that look like this (in outline):

ON_VACATION { ENO }

 KEY { ENO }

NEEDS_PHONE { ENO }

 KEY { ENO }

Clearly, the very same tuple can appear in both of these relvars at the same time. But

even if it does, those two appearances represent two different propositions, and there’s

no redundancy involved, and no violation of orthogonality.13

Observe now that there’s a difference in kind between the example just discussed and

the light vs. heavy parts examples (relvars LP and HP) illustrated in Figures 16- 2 and 16-3,

earlier in this chapter. In the latter case, as we saw earlier, we can write a formal constraint,

to the effect that the pertinent WEIGHT value has to lie in a certain range, that a given tuple

has to satisfy in order for it to be accepted for insertion into LP or HP or both. However,

there’s no formal constraint we can write that a given tuple has to satisfy in order for it to

be accepted for insertion into ON_VACATION or NEEDS_PHONE or both. In other words,

if the user asserts that a certain tuple is to be inserted into, say, ON_VACATION, then the

system simply has to trust the user; there’s no check it can perform to ascertain that the

tuple does indeed belong in ON_VACATION instead of (or as well as) NEEDS_PHONE.

Here’s another example, also due to Hugh Darwen, that might also mistakenly be

thought to violate orthogonality but in fact doesn’t. We’re given three relvars that look

like this (in outline):14

EARNS { ENO , SALARY }

 KEY { ENO }

SALARY_UNK { ENO }

 KEY { ENO }

13 But what if relvars ON_VACATION and NEEDS_PHONE each had an additional attribute, say
SALARY? See Exercise 16.5 at the end of the chapter.

14 I note in passing that the example illustrates a recommended approach (discussed in detail in
SQL and Relational Theory) to dealing with “missing information” in relational designs.

Chapter 16 the prinCiple of orthogonal Design

340

UNSALARIED { ENO }

 KEY { ENO }

Sample values are shown in Figure 16-4.

The predicates for these three relvars are as follows:

• EARNS: Employee ENO has salary SALARY.

• SALARY_UNK: Employee ENO has a salary, but we don’t know what

it is.

• UNSALARIED: Employee ENO doesn’t have a salary.

Now, relvars SALARY_UNK and UNSALARIED do have the same heading—but

even if the same tuple could simultaneously appear in both, there wouldn’t be any

redundancy, because the appearances in question would represent two different

propositions. In fact, of course, the semantics of the situation are such that no tuple

should simultaneously appear in both, anyway (in other words, the relvars are disjoint).

The following constraint will take care of this requirement:

CONSTRAINT ... IS_EMPTY (JOIN { SALARY_UNK , UNSALARIED }) ;

(As explained in the answer to Exercise 6.4 in Chapter 6, the Tutorial D expression

IS_EMPTY (rx) returns TRUE if the relation r denoted by the relational expression rx is

empty and FALSE otherwise.)

Note: In fact, of course, no employee should be represented in more than one of the

relvars EARNS, SALARY_UNK, and UNSALARIED, so the foregoing constraint ought to

be extended or revised appropriately. I’ll leave the details as an exercise (part of Exercise

16.3).

Figure 16-4. Relvars EARNS, SALARY_UNK, and UNSALARIED─sample values

Chapter 16 the prinCiple of orthogonal Design

341

 Concluding Remarks
In closing, I want to make a few further (and somewhat miscellaneous) observations on

the concept of orthogonality in general. First of all, the overall objective of orthogonal

design, like that of normalization, is to reduce redundancy and thereby to avoid certain

update anomalies that might otherwise occur. In fact, orthogonality complements

normalization, in the sense that—to speak rather loosely—normalization reduces

redundancy within relvars, while orthogonality reduces it across relvars.

What’s more, orthogonality complements normalization in another way also.

Consider once again the (bad) decomposition of relvar S into its projections SNC

and STC, as illustrated in Figure 16-1. As we saw earlier, that decomposition abided

by all of the usual normalization principles; in other words, it was orthogonality, not

normalization, that told us the design was bad.

My next point is that, like the principles of normalization, The Principle of

Orthogonal Design is basically just common sense—but (again like normalization) it’s

formalized common sense, and the remarks I made in Chapter 1 in connection with

such formalization apply here also. As I said in that chapter:

What design theory does is [formalize] certain commonsense

principles, thereby opening the door to the possibility of

mechanizing those principles (that is, incorporating them into

computerized design tools). Critics of the theory often miss this

point; they claim, quite rightly, that the ideas are mostly just common

sense, but they don’t seem to realize it’s a significant achievement to

state what common sense means in a precise and formal way.

My final point is this: Suppose we start with the usual parts relvar P, but decide for

design purposes to decompose that relvar into a set of restrictions, as in the light vs.

heavy parts example. Then the orthogonality principle tells us that the restrictions in

question should be pairwise disjoint (also, of course, that their union—which will in fact

be a disjoint union—should take us back to the original relvar).

Note: In previous writings, I’ve referred to a decomposition that meets the foregoing

requirement as an orthogonal decomposition. However, I now think it would be

better to generalize this term and use it to mean any decomposition that abides by the

orthogonality principle. This revised definition includes the earlier one as a special case.

Chapter 16 the prinCiple of orthogonal Design

342

 Exercises

 16.1 Try stating the final version of The Principle of Orthogonal Design

without looking back at the body of the chapter.

 16.2 Consider the design of any database you happen to be familiar

with. Does it involve any violations of The Principle of Orthogonal

Design? Are there any constraints—especially “overlapping”

ones—that ought to be stated declaratively but haven’t been?

 16.3 Consider the second example in the section “A Clarification” (the

one involving relvars EARNS, SALARY_UNK, and UNSALARIED).

Do you think the design illustrated in that example is redundancy

free? Also try stating a formal constraint to guarantee that no

employee is represented in more than one of those three relvars.

 16.4 Suppose we replace the suppliers relvar S by a set of relvars LS,

PS, AS, ... (one for each distinct supplier city—the LS relvar, for

example, contains tuples for suppliers in London only). These

relvars all have the same attributes, viz., SNO, SNAME, and

STATUS (there’s no need to keep the CITY attribute, because if we

did its value would be constant throughout each relvar). Does this

design violate orthogonality? Can you think of any other problems

with it?

By the way, if we did keep the CITY attribute in relvars LS, PS,

AS, etc., the design would actually violate the principles of

normalization! Why so, exactly?

 16.5 Suppose attribute CITY in both the suppliers relvar S and

the parts relvar P is replaced by a pair of attributes CITY and

STATE (sample values: Burlington, Vermont vs. Burlington,

Massachusetts). Does this revised design display any

redundancy? Does it violate the principles of normalization?

Does it violate orthogonality?

Chapter 16 the prinCiple of orthogonal Design

343

 Answers

 16.1 See the body of the chapter.

 16.2 No answer provided.

 16.3 No, it isn’t redundancy free (see the further remarks on examples

of this kind in Chapter 17). As for the constraint, the following will

suffice:

CONSTRAINT ... IS_EMPTY (JOIN { SALARY_UNK , UNSALARIED })

 AND IS_EMPTY (JOIN { EARNS , SALARY_UNK })

 AND IS_EMPTY (JOIN { EARNS , UNSALARIED }) ;

Note: In my book View Updating and Relational Theory: Solving

the View Update Problem (O’Reilly, 2013), I propose support for

expressions of the form DISJOINT {r1,...,rn}, which return TRUE

if and only if no two of the argument relations r1, ..., rn have any

tuples in common. Using this DISJOINT operator, the foregoing

constraint could be simplified to just:

CONSTRAINT ...

DISJOINT { EARNS { ENO } , SALARY_UNK , UNSALARIED } ;

 16.4 The design doesn’t violate orthogonality, but there are several

other things wrong with it. For example, how would you express

the query “Get the city for supplier S1”? (There are two cases to

consider: one where you do at least know what supplier cities

exist, and one where you don’t. In the latter case, you might want

to think about this query too: “Is supplier S1 represented in the

database?”) Also, what’s happened to the FD {CITY} → {STATUS}

(assuming such an FD is supposed to hold)? And what about

the {SNO} foreign key in relvar SP? (Again there are two cases to

consider—the same two as before, in fact.)

Chapter 16 the prinCiple of orthogonal Design

344

If we do keep the CITY attribute in relvars LS, PS, etc., then:

 a. If the FD {CITY → {STATUS} held in the original suppliers

relvar S, then it certainly still holds in relvars LS, PS, etc., and so

those relvars aren’t in BCNF.

 b. What’s more, the FD { } → {CITY} also holds in each of those

relvars. Since this FD isn’t “an arrow out of a key,” that’s another

reason why the relvars wouldn’t be in BCNF. (See the answer to

Exercise 4.6 in Chapter 4, where an essentially similar example

is discussed.)

Finally, if the FD {CITY → {STATUS} held in the original suppliers

relvar S, then—regardless of whether we keep the CITY attribute

in relvars LS, PS, etc., or not—the FD { } → {STATUS} also holds

in each of those relvars, and so yet again the relvars wouldn’t be

in BCNF. Note, therefore, that the FD {CITY} → {STATUS}, if it

holds at all (which it can do only if the CITY attribute is retained,

of course), is in fact reducible, under the suggested horizontal

decomposition.

 16.5 If there exist two distinct tuples, both in S or both in P or one in

each, that contain the same CITY / STATE pair (say Burlington,

Vermont), then clearly there’s some kind of redundancy involved.

But there’s no violation of the principles of normalization—both

relvars are still in 5NF. And there’s no violation of orthogonality

either!—more evidence, if evidence is still required, that we need

more science in this area.

Note, incidentally, that {CITY,STATE} in relvars S and P might very

well be foreign keys, referencing a {CITY,STATE} key in some other

relvar. I’ll leave the implications of this possibility as something for

you to think about.

Now recall the example of relvars ON_VACATION and

NEEDS_PHONE from the body of the chapter. Suppose we extend

both of those relvars to include an employee salary attribute

(SALARY). Then (like the {CITY,STATE} example) this revised

design certainly suffers from redundancy, and yet it doesn’t

Chapter 16 the prinCiple of orthogonal Design

345

violate either normalization principles or orthogonality. This

time, however, we can at least write a formal constraint that makes

the redundancy explicit. Let me abbreviate ON_VACATION and

NEEDS_PHONE to OV and NP, respectively. Then we have:

CONSTRAINT ... WITH (X := JOIN { OV { ENO } , NP { ENO } }) :

JOIN { X , OV } = JOIN { X , NP } ;

This constraint requires that if ENO e appears in both relvars, then

e’s salary must be the same in both.

Chapter 16 the prinCiple of orthogonal Design

PART VI

Redundancy

Throughout this book, we’ve been concerned with getting redundancy out of the design.

But what is redundancy?

349
© C. J. Date 2019
C. J. Date, Database Design and Relational Theory, https://doi.org/10.1007/978-1-4842-5540-7_17

CHAPTER 17

We Need More Science

What I tell you three times is true.

—Lewis Carroll:
The Hunting of the Snark (1876)

What does it mean to say something’s redundant? It turns out, rather surprisingly—

or perhaps it’s not so surprising, given all of the difficulties we’ve experienced in

connection with the concept in prior chapters—to be quite difficult to come up with

a precise answer to this question. The best Chambers Twentieth Century Dictionary

(usually so good and pithy in its definitions) is able to come up with is the following:

redundant copious: over-copious: superfluous

However, Chambers Twentieth Century Thesaurus (a companion to the dictionary)

does give the following splendid list of synonyms or near synonyms:

redundant de trop, diffuse, excessive, extra, inessential,

inordinate, padded, periphrastic, pleonastical, prolix, repetitious,

supererogatory, superfluous, supernumerary, surplus,

tautological, unemployed, unnecessary, unneeded, unwanted,

verbose, wordy

It also gives the following nice list of antonyms:

concise, essential, necessary

Be all that as it may, we’ve seen that design theory in general can be regarded among

other things as a set of principles and techniques for reducing redundancy (and thereby

reducing the potential for certain inconsistencies and update anomalies that might

otherwise occur). To repeat, however, what exactly is redundancy? We don’t seem to

350

have a very precise definition of the term—we just have a somewhat vague idea that it

can lead to problems, at least if it isn’t managed properly. This chapter takes a closer

look at such matters.

In order to get a slightly better handle on the question of what constitutes redundancy,

we first need to distinguish clearly between the logical and physical levels of the system.

Obviously the design goals are different at the two levels. At the physical level, redundancy

will almost certainly exist in some shape or form. Here are a couple of reasons why:

• Indexes and other such “fast access path” structures necessarily

entail some redundancy, because certain data values are stored

both in those auxiliary structures and in the structures to which they

provide that “fast access.”

• Derived relvars and/or derived relations that are physically stored in

some way—what are known variously as snapshots or summary tables

or materialized queries or materialized views1—also obviously involve

some redundancy.

The reason for redundancy at the physical level is performance, of course. But

physical redundancy has, or should have, no effect on the logical level—it’s managed

by the DBMS, and it isn’t, or shouldn’t be, seen by the user. I mention it here only to

get it out of the way, as it were. From this point forward, I’ll be concerned only with

redundancy at the logical level.

At the logical level, then, it’s tempting just to say that redundancy is always bad.

But of course this statement is much too simplistic, owing to the availability of the view

mechanism if nothing else. Let me digress for a moment to elaborate on this latter point.

It’s well known, but worth stating explicitly nevertheless, that views (like normalization,

in fact, though for very different reasons) serve two rather different purposes:

 1. The user who actually defines view V is, obviously, aware of the

expression X in terms of which V is defined. That user can use

the name V wherever the expression X is intended, but such uses

are basically just shorthand (much like the use of macros in a

programming language).

1 This last term is strongly deprecated, by the way, because the construct in question isn’t a view.
Views are virtual, not materialized (at least as far as the relational model is concerned), and
materialized view is simply a contradiction in terms. Snapshot is a better term.

Chapter 17 We Need More SCieNCe

351

 2. By contrast, a user who’s merely informed that view V exists and

is available for use is supposed not to be aware of that defining

expression X; to that user, in fact, V is supposed to look and feel

just like a base relvar.2

As an example of Case 1, suppose the user perceives the database as containing two

relvars R1 and R2 and goes on to define their join as a view; clearly, then, that view is

redundant so far as that user is concerned, and it could be dropped without any loss of

information. For definiteness, therefore, I’m going to assume from this point forward

(barring explicit statements to the contrary) that no relvar in the database is defined

in terms of any others, so that at least this particular kind of redundancy isn’t present.

With this possibility ruled out, then, it’s tempting to set a stake in the ground and say

again that redundancy at the logical level is always undesirable. In order to adopt such

a position, however, we need to be able to say what we mean by the term, for otherwise

the position can’t possibly make sense. And even if we manage to come up with a good

definition, is the position (i.e., that redundancy at the logical level is always bad) really

tenable? Is it possible to eliminate all redundancy? Is it even desirable?

These are questions of considerable pragmatic importance, of course. Indeed, I

think it’s noteworthy that Codd called his very first (1969) paper on the relational model

“Derivability, Redundancy, and Consistency of Relations Stored in Large Data Banks”

(my italics). And his second (1970) paper, “A Relational Model of Data for Large Shared

Data Banks”—this is the one that’s usually regarded as the seminal paper in the field,

though that characterization is a little unfair to its 1969 predecessor—was in two parts

of almost equal length, the second of which was called “Redundancy and Consistency”

(the first was called “Relational Model and Normal Form”). Codd thus clearly regarded

his thoughts on redundancy as a major part of the contribution of his relational work:

rightly so, in my opinion, since he did at least provide us with a framework in which we

could begin to address the issue precisely and systematically.

Now, I showed in the previous chapter that one putative definition of redundancy

that doesn’t work is this: The database involves redundancy if and only if it contains two

distinct appearances of the same tuple. But we can validly say the following:3

2 Emphasis on supposed—I’m describing an ideal situation here. Today’s reality is rather messier,
as I’m sure you know.

3 The definition that follows is a deliberately, albeit only slightly, expanded version of one from
Chapter 16.

Chapter 17 We Need More SCieNCe

352

Definition (redundancy in the database, generic version): The

database involves redundancy if and only if it contains, directly or

indirectly, two distinct representations of the same proposition.

The trouble is, although this definition is clearly correct, it doesn’t help much with

the practical problem of reducing redundancy. But it does at least imply the following,

which is a little better:

Definition (redundancy in the database, preliminary detailed
version): Let D be a database design and let p be a proposition.

Then:

 a. If there exists a database value (i.e., a set of values for the

relvars mentioned in D), DB, that conforms to D, such that

 b. There exists within DB some specific appearance of some

tuple or combination of tuples that represents p, either

explicitly or implicitly, and

 c. There exists within DB some distinct appearance of some

tuple or combination of tuples that also represents p, either

explicitly or implicitly, then

 d. DB contains, and D permits, redundancy.

The principles of normalization and The Principle of Orthogonal Design are aimed

precisely at reducing redundancy in the foregoing sense. Observe, however, that all the

definition says is if—not if and only if—certain tuples appear, then there’s redundancy.

In other words, it’s not a complete definition. Indeed, we’ll see examples of designs later

in this chapter that clearly involve redundancy, even though they don’t contain distinct

tuples or tuple combinations that represent the same proposition. What’s more, the

examples in question are fully normalized and fully orthogonal, for the most part. Thus,

the principles of normalization and orthogonality, though necessary and undoubtedly

important, are a long way from being sufficient.

Chapter 17 We Need More SCieNCe

353

 A Little History
Before I get into a discussion of just how and why normalization and orthogonality are

insufficient, I’d like to say a little more about Codd’s attempts in his very first two papers

to address the issue of redundancy. In his 1969 paper, he said this:

A set of relations is strongly redundant if it contains at least one

relation [that] is derivable from the rest of the [relations in the set].

And he tightened up this definition slightly in his 1970 paper:

A set of relations is strongly redundant if it contains at least one

relation that possesses a projection [that] is derivable from other

projections of relations in the set.

I should explain that when Codd says a relation r is derivable from a set S of relations,

he means r is equal to the result of applying some sequence of relational operations

(join, projection, and so forth) to relations from S. I do have a few comments on his

definitions, however:

• First, the term relation should be replaced by the term relvar

throughout. (Of course, this latter term wasn’t introduced until

several years later, and Codd never used it at all.) In fact, I think it’s

fair to say that what Codd meant by the term relation in these quotes

wasn’t just a relvar as such but, more specifically, a base relvar.

• Second, we can ignore the qualifier strongly. Codd was distinguishing

between “strong” redundancy and what he called weak redundancy,

but weak redundancy is irrelevant as far as we’re concerned. The

reason is that weak redundancy has to do merely with equality

dependencies that don’t hold at all times but do happen to be

satisfied at particular times, given the relation values that happen to

exist at the times in question.

Chapter 17 We Need More SCieNCe

354

actually, it seems to me that what was going on here was precisely that Codd
was struggling with the logical difference between relations and relvars!—see
the previous bullet item. “Strong” redundancy applies to relvars (it’s what we
usually mean by redundancy when we talk about database design). “Weak”
redundancy, by contrast, applies to relations, not relvars (it’s just an artifact
of the values the relvars happen to have at some particular time, and it’s not
particularly interesting).

• The 1969 definition is subsumed by the 1970 definition, of course,

because (as we know from Chapter 6) every relvar R is identically

equal to a certain projection of R—namely, the corresponding

identity projection.

• More to the point, the 1970 definition is still deficient as a definition

of redundancy in general for at least the following two reasons:

 a. It includes certain possibilities that we normally wouldn’t

regard as redundancies at all. For example, suppose the

suppliers-and-parts database is subject to the constraint that

every part must be supplied by at least one supplier. Then the

projection of relvar SP on {PNO} will necessarily be equal to

the projection of relvar P on {PNO}, and we’ll have a “strong

redundancy” on our hands.

Note: Perhaps a more realistic example to illustrate the same

point would be a constraint on a personnel database to the

effect that every employee must be in a department and every

department must have at least one employee.

 b. At the same time, it excludes many possibilities that we

certainly would regard as redundancies—see, e.g., the

example of light vs. heavy parts in Chapter 16 (second version,

as illustrated in Figure 16-3). Several further examples are

given in later sections of the present chapter.

Chapter 17 We Need More SCieNCe

355

• Even more to the point, the first reference (at least) to projections in

the 1970 definition should be replaced by references to projections

that correspond to components of irreducible JDs. (The first of the two

objections in the previous bullet item, objection a., would then go

away.)

One last comment on Codd’s definitions: Codd did at least say (in both papers)

that “we shall associate with [the database] a collection of statements [that] define

all of the redundancies” in that database. The “statements” Codd is referring to here

are Tutorial D CONSTRAINT statements (or something logically equivalent to such

statements), of course. In other words, Codd certainly wanted the system to be aware

of the redundancies, and he wanted those redundancies to be managed accordingly.

Unfortunately, however, he then went on to say:

The generation of an inconsistency ... could be logged internally,

so that if it were not remedied within some reasonable time ...

the system could notify the security officer [sic]. Alternatively, the

system could [inform the user] that such and such relations now

need to be changed to restore consistency ... Ideally, [different

remedial actions] should be possible ... for different subcollections

of relations.

Note: “Inconsistencies” (or, as I would prefer to call them, integrity violations)

can certainly be caused by redundancy—more precisely, by redundancy that’s

inadequately managed—but not all integrity violations are caused by redundancy, of

course. More to the point, I believe the database should never be allowed to contain any

inconsistencies, at least as far as the user is concerned; as I said in Chapter 16, you can

never trust the results you get from an inconsistent database. In other words, “remedying

inconsistencies” needs to be done immediately, at the level of individual statements

(not even at the transaction level).4 See the section “Managing Redundancy” later in this

chapter.

4 See Appendix B, also SQL and Relational Theory, for a defense of this possibly rather unorthodox
position. Let me add, with little by the way of elaboration, that the position does imply a
requirement for the system to support multiple assignment, which is a form of assignment that
allows several variables—in particular, several relvars—to be updated “simultaneously” (in other
words, within the confines of a single statement).

Chapter 17 We Need More SCieNCe

356

 Predicates vs. Constraints
Although I’ve had a lot to say about both predicates and constraints in previous chapters,

I haven’t explicitly called out the logical difference between these concepts; so let me

remedy that deficiency now. First, then, the predicate—sometimes referred to more

explicitly as the relvar predicate, for definiteness—for a given relvar R is the intended

interpretation, or meaning, for R. Of course, every user of a given relvar R is supposed (or

assumed!) to understand the corresponding predicate. Note, however, that—at least in

today’s implementations—predicates are stated in natural language and are therefore

somewhat informal in nature, necessarily.

So predicates are informal. By contrast, constraints are formal. In essence, a

constraint is a boolean expression, expressed in some formal language like SQL or

Tutorial D and normally containing references to relvars in the database, that’s required

to evaluate to TRUE at all times. Let R be a relvar. Then it’s convenient to think of

the logical AND of all of the constraints that mention R as the constraint for R. Note,

therefore, that whereas the predicate for R is understood only by the user, the constraint

for R is “understood” by both the user and the system. In fact, the constraint for R might

be regarded as the system’s approximation to the predicate for R. Ideally, of course, we

would like R to be such that it always satisfies its predicate; the best we can hope for,

however, is that it always satisfies its constraint.5

Given now that a database is supposed to be a faithful representation of the

semantics of what might be called “the microworld of interest,” it follows that predicates

and constraints are highly relevant to the business of database design. We could say

that predicates are the informal, and constraints the formal, representation of those

semantics. Overall, therefore, the database design process as I see it goes like this:6

 1. First we pin down the relvar predicates (and other business rules)

as carefully as possible.

 2. Then we map those predicates and rules into relvars and

constraints.

5 As an aside, I remark that The Closed World Assumption applies to predicates, not constraints.
That is, (a) if tuple t appears in relvar R at time T, then t certainly satisfies both the predicate and
the constraint for R at time T; (b) if tuple t could plausibly appear in relvar R but doesn’t, then t
certainly doesn’t satisfy the predicate for R at time T, but it still has to satisfy the constraint for R
(because if it doesn’t, then it couldn’t “plausibly appear” in the first place).

6 See Appendix A for an elaboration of this brief overview.

Chapter 17 We Need More SCieNCe

357

As a consequence of the foregoing, we can see that another way to think about

design theory—normalization and so forth—is as follows: It’s a set of principles

and techniques for helping with the business of pinning down predicates (and hence

constraints). This perspective underpins much of what follows in this chapter.

As an aside, I note that the foregoing goes a long way toward explaining why

I’m not much of a fan of E/R (“entity / relationship”) modeling and similar pictorial

methodologies. (You might have noticed the total absence of E/R diagrams and the like

in previous chapters!) The problem with E/R modeling and suchlike schemes is that

they’re less powerful—much less powerful—than formal logic. In particular, they don’t

include anything like adequate support for the quantifiers (EXISTS and FORALL)7—

which is a serious omission, because the formulation of constraints always at least tacitly

requires such support, or something equivalent to such support.8 As a consequence,

those schemes and those diagrams are completely incapable of representing all but a

few (admittedly important, but limited) constraints. Thus, while it might be acceptable

to use such diagrams to explicate the overall design at a high level of abstraction,

it’s misleading, and in some respects quite dangerous, to think of such diagrams as

actually being the design in its entirety. Au contraire: The design is the relvars, which the

diagrams do show, plus the constraints, which they don’t.9

 Example 1
It’s my claim that design theory as a field of investigation is, in general, still wide open.

To bolster this claim, in this section and the next few I want to give some examples of

designs that (a) are fully normalized and fully orthogonal (at least in most cases) and yet

(b) still suffer from various redundancies (again, in most cases).

7 Since the quantifiers were invented by Frege in 1879, this omission makes E/R diagrams and
the like (as a friend of mine once put it to me) “a pre 1879 kind of logic.” Note: A tutorial on
quantifiers and related matters in the database context can be found in SQL and Relational
Theory and many other places.

8 Tutorial D has no explicit quantifier support either, but anything expressible in terms of the
quantifiers can nevertheless be expressed in Tutorial D; that is, Tutorial D does at least have
something equivalent to quantifier support.

9 Two qualifications here: First, the diagrams do show some constraints (basically key and foreign
key constraints), as already noted. Second, they might not in fact show all of the relvars—some
E/R modeling schemes don’t include in their diagrams relvars (like SP in our running example)
that correspond to many to many relationships.

Chapter 17 We Need More SCieNCe

358

For my first example, consider the following simple relvar, which represents a set of

names and addresses (the predicate is Person NAME resides at address ADDR):

NADDR { NAME , ADDR }

 KEY { NAME }

Suppose attribute ADDR in this relvar is tuple valued, where the tuples in question

have attributes STREET, CITY, STATE, and ZIP. (Yes, tuple valued attributes or TVAs are

legal, just as relation valued attributes or RVAs are legal—see Chapter 4—and for much

the same reasons.) A sample value for this relvar is shown in Figure 17-1.

Figure 17-1. Relvar NADDR (attribute ADDR tuple valued)─sample value

Assume now for the sake of the example, as we did in Exercise 6.2, that whenever two

ADDR values have the same ZIP component, they also have the same CITY and STATE

components. Then the foregoing design clearly involves some redundancy. Yet there’s

no violation of normalization here. In particular, the functional dependency

{ ZIP } → { CITY , STATE }

does not hold. (Why not? Answer: Because FDs are defined to hold among attributes, not

among components of attributes.)

That said, let me now point out that the foregoing FD does hold in the result of

replacing NADDR by the result of the following expression:

NADDR UNWRAP (ADDR)

Chapter 17 We Need More SCieNCe

359

The Tutorial D UNWRAP operator effectively replaces some tuple valued attribute

by a set of attributes, one for each component of that TVA; thus, the foregoing expression

returns a result with attributes NAME, STREET, CITY, STATE, and ZIP. Of course, that

result is still only in 2NF, not even BCNF, and it still suffers from redundancy.

We might be tempted to conclude from this example that unwrapping TVAs is a good

idea. But is it enough of a good idea to be enshrined as a principle of good design, as

opposed to a mere recommendation or rule of thumb?10

 Example 2
Codd would probably have argued against the design of Example 1 on the grounds that

values of attribute ADDR aren’t “atomic” (though I’m not aware that he ever explicitly

addressed the question of tuple valued attributes, as such, in any of his writings). Now, I

don’t agree with this position myself, for reasons explained in detail in Chapter 4 of the

present book and elsewhere—but the point isn’t worth fighting over, because we can

obviously replace that tuple valued attribute by an attribute of type CHAR as shown in

Figure 17-2. And Codd would surely have allowed that revised design, and yet it suffers

from redundancies precisely analogous to those in Example 1.

And if you don’t like this example, consider what could happen if attribute ADDR

were of some user defined type (ADDRESS, say) instead of type CHAR.

Figure 17-2. Revised relvar NADDR (attribute ADDR text valued)—sample value

10 In his book An Introduction to Relational Database Theory (Ventus, 2010), Hugh Darwen
suggests that it might be, and that we might consider a wrap-unwrap normal form in this
connection (WRAP and UNWRAP being the TVA analogs of the RVA operators GROUP and
UNGROUP, respectively--see the answer to Exercise 4.14 in Chapter 4). He also suggests in that
same book that ungrouping RVAs is a good idea, too, and that we might thus also consider a
group-ungroup normal form accordingly.

Chapter 17 We Need More SCieNCe

360

 Example 3
Redundancies similar to those in Example 2 can arise in connection with attributes of

type DATE, if those attributes include—as they frequently do—the day of the week as

well as a calendar date (as in, for example, “Friday, January 18th, 2019”).

 Example 4
My next example is an extremely simple version of the familiar employees-and-

programmers database, in which all programmers are employees but some employees

aren’t programmers (as in Exercise 5.7 in Chapter 5). I note in passing that some people

would say that employees and programmers in this example correspond to an entity

supertype and an entity subtype, respectively.11 Be that as it may, here’s the conventional

design:

EMP { ENO }

 KEY { ENO }

PGMR { ENO , LANG }

 KEY { ENO }

I’m assuming for simplicity that:

 a. Employees in general have no attributes of interest apart from

ENO (because even if they do, it doesn’t materially affect the

situation).

 b. Programmers have just one additional attribute, LANG

(programming language skill—e.g., “Java” or “SQL” or

“Tutorial D”).

11 Please note, however, that if the terms “subtype” and “supertype” are indeed used in this way,
then they’re definitely not being used in the way I use them in the inheritance model described
in my book Type Inheritance and the Relational Model: Subtypes, Supertypes, and Relational
Theory (O’Reilly, 2016). In fact they’re being used in a sense rather close to that of the terms
“subtable” and “supertable,” terms that are used—somewhat deprecatingly—in that book in
connection with SQL in particular.

Chapter 17 We Need More SCieNCe

361

Now we have a choice: Record all employees in EMP, or record just the

nonprogrammers in EMP? Which is better? Well, if we record just the nonprogrammers

in EMP, the processing involved when an employee becomes or ceases to be a

programmer is slightly nontrivial (in both cases we have to delete a tuple from one

relvar and insert a tuple into the other). We also need to state and enforce the following

constraint:

CONSTRAINT ... IS_EMPTY (JOIN { EMP , PGMR }) ;

Note too the implication if we want some other relvar to include a reference to

employees; normally such a reference would be a simple foreign key, but if employees

are split across two relvars as above it can’t be (at least, not with foreign keys as

conventionally understood).12

The net of such considerations is that this particular design is probably not

recommended—instead, we would probably want to record all employees in EMP.13

Either way, however, the example displays no redundancy.14

 Example 5
Now I’d like to modify Example 4 slightly in order to make an additional point. Suppose

relvar EMP does include at least one additional attribute, JOB; suppose further that a

given employee is a programmer, and is represented in relvar PGMR, if and only if the JOB

value in that employee’s tuple in EMP has the value Programmer (perhaps other values of

JOB—Janitor, for example—correspond to other relvars in the same kind of way). This kind

of situation is not at all uncommon in practice, by the way. Now there’s definitely some

redundancy, because the fact that some given employee e is a programmer is represented

12 Though it could be if we allowed foreign keys to reference views, as Tutorial D does, and we
defined the (disjoint) union of EMP{ENO} and PGMR{ENO} as a view.

13 I note in passing that SQL’s “subtable and supertable” support agrees with this position.
14 In the first edition of this book I said I thought the recommended design did involve some

redundancy, but that was a mistake on my part. In fact I’ve changed my mind on several of the
examples discussed in this chapter ... and I hereby apologize to anyone who might have been
misled accordingly by that previous edition. But it seems to me that this very fact—the fact of my
being able to change my mind in this way, I mean—is itself evidence in support of my repeated
claims that redundancy as a concept still isn’t properly understood, and hence that we need
more science in this area.

Chapter 17 We Need More SCieNCe

362

twice—once by the fact that a tuple for e appears in PGMR, and once by the fact that e’s

tuple in EMP has the JOB value Programmer. In fact the design is subject to the following

equality dependency (as well as many similar ones, possibly):

CONSTRAINT ...

 PGMR { ENO } = (EMP WHERE JOB = 'Programmer') { ENO } ;

Note, however, that there’s no violation of orthogonality in this example, even

though, given that all employees (programmers included) are represented in EMP, it’s

certainly the case that the projection of PGMR on {ENO} is equal to a certain subset—

it’s not a restriction as such—of the projection of EMP on {ENO}.15 But neither of those

projections corresponds to a component of any irreducible JD that holds in the pertinent

relvar.16 (Check the final version of The Principle of Orthogonal Design in Chapter 16 if

you need to refresh your memory on this point.) Thus, a database can be fully orthogonal

and yet still exhibit some redundancy.

 Example 6
In his 1979 paper “Extending the Database Relational Model to Capture More Meaning”

(ACM Transactions on Database Systems 4, No. 4, December 1979), Codd proposed a

certain design discipline, which—simplifying slightly—can be described as follows:

• Let E be an “entity type,” and let ID be a data type such that every

entity of type E has exactly one primary identifier (my term, not

Codd’s), of type ID. For example, E and ID might be the entity type

“suppliers” and the data type “character string,” respectively.

• Let P1, ..., Pn be a set of “property types” such that every entity

of type E has at most one property of each of the types P1, ..., Pn.

For example, in the case of suppliers, P1, P2, and P3 might be the

property types “name,” “status,” and “city” (so n = 3 in this example).

15 Why isn’t it a restriction as such? Answer: Because it’s a projection of a restriction, as opposed to
a restriction of a projection, and a projection of a restriction and a restriction of a projection are
different things—the latter is indeed a restriction but the former isn’t, in general.

16 In fact relvars EMP and PGMR are both in 6NF, and the only irreducible JDs that hold are
trivial ones.

Chapter 17 We Need More SCieNCe

363

Note: I’m assuming for the sake of the present discussion (only)

that a given supplier can have any subset of the three properties,

including the empty subset in particular.

• Corresponding to each entity type E, then, the database should

contain:

 a. Exactly one E-relvar, with ID values for those entities of type E

that exist at some time, and

 b. Exactly one P-relvar for each Pi (i = 1, ..., n), with {ID value, Pi

value} pairs for each entity of type E that exists at some time

and has a property of type Pi at that time.

I’ll refer to this discipline as the RM/T discipline, since it’s part of what Codd referred

to, in that 1979 paper, as “the extended relational model RM/T” (T for Tasmania, where

Codd first presented his ideas for that extended model). Applying the discipline to the

case of suppliers specifically, we obtain a design that looks like this (I ignore here for

simplicity the fact that throughout much of this book the FD {CITY} → {STATUS} was

supposed to hold in relvar S):

S { SNO }

 KEY { SNO } ;

SN { SNO , SNAME }

 KEY { SNO }

 FOREIGN KEY { SNO } REFERENCES S ;

ST { SNO , STATUS }

 KEY { SNO }

 FOREIGN KEY { SNO } REFERENCES S ;

SC { SNO , CITY }

 KEY { SNO }

 FOREIGN KEY { SNO } REFERENCES S ;

Chapter 17 We Need More SCieNCe

364

Each of these relvars is in 6NF.17 Figure 17-3 shows a set of sample values. Note: The

values shown aren’t meant to correspond exactly to our usual sample values, though

they’re close. Observe in particular that (a) supplier S3 has no status, (b) supplier S4 has

no status and no city, and (c) supplier S5 has no name, no status, and no city.

As a matter of fact, this kind of design actually has quite a lot to recommend it (at

least, it would do, given a well architected DBMS). For present purposes, however, all I

want to do is call your attention to the following: So long as every entity of type E has at

least one of the n properties, then such a design certainly involves some redundancy—

arguably, in fact, strong redundancy as defined by Codd himself in his 1970 paper—

because, at any given time, the value of the E-relvar will be equal to the union of the

projections of the P-relvars over the identifier attribute. In the case of suppliers, for

example, there would be a constraint (an EQD, of course) that looks like this:

CONSTRAINT ... S { SNO } = UNION { SN { SNO } ,

 ST { SNO } ,

 SC { SNO } } ;

Note: This particular redundancy doesn’t apply to Figure 17-3, though—i.e., the

constraint isn’t satisfied, given the values shown in that figure—because there’s one

supplier (supplier S5) who doesn’t have any of the three properties name, status, and city.

Observe now that the foregoing kind of design becomes “even more redundant,” as it

were, in the (common?) special case in which every entity of type E in fact has all of the n

properties. Figure 17-4 is a revised version of Figure 17-3 that illustrates this situation:

Figure 17-3. An RM/T design for suppliers—sample values

17 In the interest of historical accuracy, I note that P-relvars as described by Codd in his RM/T
paper weren’t necessarily in 6NF, because he didn’t insist that each P-relvar involve just a single
“property.”

Chapter 17 We Need More SCieNCe

365

Observe that now—speaking a trifle loosely—{SNO} is now a foreign key in each

of the relvars that references the sole key {SNO} in each of the others; equivalently, the

projection on {SNO} of any of the relvars is equal to the projection on {SNO} of any of

the others. Well ... to be more precise about the matter, there’s an equality dependency

interrelating every pair of the four relvars:

CONSTRAINT ...

 IDENTICAL { S { SNO } , SN { SNO } , ST { SNO } , SC { SNO } } ;

ideNtiCaL is an operator proposed by hugh darwen and myself, in our book
Database Explorations: Essays on The Third Manifesto and Related Topics (trafford,
2010) and elsewhere, as an addition to Tutorial D. You can think of it as a kind of
n-adic “=” operator. the semantics as follows: the expression

IDENTICAL { rx1 , ... , rxn }

returns trUe if the relations r1, ..., rn represented by the expressions rx1, ..., rxn,
respectively, are all equal; otherwise it returns FaLSe.

Even in the extreme case illustrated in Figure 17-4, however, the design doesn’t

violate orthogonality. What’s more, I say again that this kind of design would have

quite a lot to recommend it, given a well architected DBMS. In particular, the equality

dependencies, and therefore the redundancy, would be “automatically” managed and

maintained in such a system (see the section “Managing Redundancy,” later).

Figure 17-4. A revised version of Figure 17-3

Chapter 17 We Need More SCieNCe

366

 Example 7
Consider a company in which every employee is required to be in exactly one

department and every department is required to have at least one employee. Figure 17-5

shows sample values (in outline) for an RM/T design for this situation:

By the way, do you think relvar EMPDEPT here is a P-relvar for employees, or for

departments, or for both? Justify your answer! (In fact, to pursue the point a moment

longer, an RM/T design might not be the best option in this example, because there’s

necessarily a one to one correspondence between EMP and EMPDEPT, and there seems

little reason not to collapse those two relvars into one.)

Anyway, with reference to the sample values in the figure, we see that there are

exactly five employees and exactly three departments. Since every employee must be in

exactly one department and every department must have at least one employee, why not

define one department—D3, say—to be the “default” one, and adopt a rule that says that

any employee mentioned in EMP and not in EMPDEPT is in that default department?

In terms of Figure 17-4, this rule would allow us to omit the tuples (E4,D3) and (E5,D3)

from EMPDEPT. Note that if we don’t adopt such a rule, then the design clearly involves

some redundancy once again—to be specific, it’s subject to the following equality

dependencies:

CONSTRAINT EVERY_EMP_HAS_A_DEPT EMP { ENO } = EMPDEPT { ENO } ;

CONSTRAINT EVERY_DEPT_HAS_AN_EMP DEPT { DNO } = EMPDEPT { DNO } ;

There seem to me to be at least two factors that militate against adopting such a

“default department” design, however. The first is that the choice of which department to

make the default is likely to be arbitrary. The second is that now we need to be extremely

Figure 17-5. Employees and departments─sample values

Chapter 17 We Need More SCieNCe

367

careful over the meaning of relvar EMPDEPT! The obvious predicate Employee ENO is in

department DNO doesn’t work. Why not? Because, under that predicate (and assuming

department D3 is the default), omitting the tuple (E5,D3), say, would mean—thanks

to The Closed World Assumption—that employee E5 isn’t in department D3! So the

predicate has to be something like this:

Employee ENO is in department DNO (which is not the default

department number D3).

Now, this predicate does work (I think!), but it’s pretty tricky. Suppose the tuple

(E1,D1) appears in the relvar, as shown in Figure 17-5. Then the corresponding

proposition is:

Employee E1 is in department D1 (which is not the default

department number D3).

And of course this proposition evaluates to TRUE. OK so far. However, now suppose

there’s no tuple in the relvar for employee E5. The intended interpretation is, of course,

that employee E5 is in department D3; but what does The Closed World Assumption

actually say? Well, first of all, observe that, e.g., the specific tuple (E5,D1) doesn’t appear.

By The Closed World Assumption, then, the following must be a true proposition:

It’s not the case that employee E5 is in department D1 (which is

not the default department number D3).

Or a little more formally:

NOT (E5 is in D1 AND D1 ≠ D3)

By De Morgan’s laws, this expression is equivalent to:

E5 is not in D1 OR D1 = D3

Since D1 = D3 is false, this expression reduces to just “E5 is not in D1,” which is what

we want (I mean, it’s a true proposition).

A similar analysis shows that we can infer that E5 certainly isn’t in any department

that’s not the default one, D3. But what about that default one? Well, the tuple (E5,D3)

doesn't appear, and so the following must be a true proposition:

NOT (E5 is in D3 AND D3 ≠ D3)

Chapter 17 We Need More SCieNCe

368

Equivalently:

E5 is not in D3 OR D3 = D3

And since D3 = D3 is true, this expression reduces to just TRUE. Note, however, that

the fact that this proposition is true certainly doesn’t tell us is that E5 is in D3! Now,

perhaps we can infer this latter fact, given that E5 does exist and certainly isn’t in any

department not equal to D3 (?). But I seriously doubt whether users would want to have

to deal with such convoluted, logic-chopping arguments in practice.

 Example 8
Consider the design illustrated in Figure 17-6 (a slightly revised, somewhat RM/T-like

version of Figure 16-4 from the previous chapter):

The predicates for these relvars are as follows:

• EMP: Employee ENO is employed by the company.

• EARNS: Employee ENO has salary SALARY.

• SALARY_UNK: Employee ENO has a salary, but we don’t know

what it is.

• UNSALARIED: Employee ENO doesn’t have a salary.

Observe now that either relvar SALARY_UNK or relvar UNSALARIED is redundant—

any employee represented in relvar EMP and not in relvar EARNS must be represented

in exactly one of the other two; so we could drop, say, relvar SALARY_UNK without

Figure 17-6. An RM/T design for employees and salaries─sample values

Chapter 17 We Need More SCieNCe

369

any loss of information.18 Yet there doesn’t seem to be any good reason for choosing

either of SALARY_UNK and UNSALARIED over the other as the one to be dropped, and

considerations of symmetry would argue in favor of retaining both, and living with the

redundancy (?).

Symmetry is usually another good design principle. to quote polya:19 “try to treat
symmetrically what is symmetrical, and do not destroy wantonly any natural
symmetry.” But example 8 and others like it—example 7 too, perhaps—show that
symmetry and nonredundancy can sometimes be conflicting objectives.

 Example 9
This example is due to Hugh Darwen. It’s based on a real life situation that arises in

connection with the Open University in the U.K. We’re given a relvar that looks like this:

SCT { SNO , CNO , TNO }

 KEY { SNO , CNO , TNO }

The predicate is: Student SNO is enrolled on course CNO and is tutored on that course

by tutor TNO (or, more briefly, Tutor TNO tutors student SNO on course CNO). Figure 17- 7

shows a sample value for this relvar. The redundancies are obvious: For example, the fact

that student S1 is enrolled on course C1, the fact that course C1 is tutored by tutor T1, and

the fact that tutor T1 tutors student S1 are all represented more than once in the sample

value shown in the figure.20

18 And we can write a constraint to express that redundancy, too—viz., CONSTRAINT ...
SALARY_UNK = (EMP MINUS EARNS{ENO}) MINUS UNSALARIED. Or perhaps better:
CONSTRAINT ... EMP = D_UNION {EARNS{ENO}, SALARY_UNK, UNSALARIED}. (D_UNION
here stands for disjoint union. See SQL and Relational Theory.)

19 G. Polya: How To Solve It (2nd edition, Princeton University Press, 1971).
20 You might not agree that those repetitions constitute redundancy. If you don’t, however, I ask

you to hold your objections for now—I’ll be taking a much closer look at this example later in
the chapter.

Chapter 17 We Need More SCieNCe

370

Now, one tactic we might consider for reducing redundancy in examples like this

one is to make use of surrogate keys (surrogates for short).21 For example, we might

introduce an attribute XNO, say, whose values serve as surrogates for (SNO,CNO)

pairs, as illustrated in Figure 17-8. (Observe from that figure that I’ve made {XNO}

the primary key for relvar XSC. However, the combination {SNO,CNO} is a key too,

of course.)

One difficulty with this approach is as follows: On what basis do we decide to

use surrogates for {SNO,CNO} combinations and not for {CNO,TNO} combinations

or {TNO,SNO} combinations? Whichever choice we make is asymmetric. Moreover,

surrogates are not without problems of their own. Here are some of them:22

Figure 17-8. Using surrogates for {SNO,CNO} combinations

Figure 17-7. Relvar SCT─sample value

21 As a matter of fact, Codd advocated the use of surrogates in his RM/T discipline in connection
with all entity types. In this recommendation he was following the pioneering work of Patrick
Hall, John Owlett, and Stephen Todd in their paper “Relations and Entities,” in G. M. Nijssen
(ed.), Modelling in Data Base Management Systems (North-Holland/Elsevier Science, 1975).

22 These problems are elaborated in the paper “Composite Keys” in my book Relational Database
Writings 1989-1991 (Addison-Wesley, 1992).

Chapter 17 We Need More SCieNCe

371

• Surrogates can make updating more complicated (in essence, users

have to do their own foreign key checking).

• To add insult to injury, the system’s foreign key checking—which

almost certainly still has to be done—(a) will never fail and (b) will

therefore be pure overhead.

• Queries and updates become longer, more tedious to write, more

error prone, harder to debug, and harder to maintain.

• More integrity constraints become necessary.

For present purposes, however, the real question is this: Does introducing surrogates

really serve to reduce redundancy? I don’t want to try to address this question here; I’ll

come back to it later, in the section “Refining the Definition.”

 Example 10
Another tactic we might consider for reducing redundancy in examples like that of

Figure 17-7 is to introduce some relation valued attributes or RVAs. Figure 17-9 gives an

example.

One obvious problem with this approach—quite apart from all of the usual problems

that always attend the use of RVAs, of course, as described in Chapter 4—is again

asymmetry: On what basis do we decide to use an RVA for tutors and not for students or

courses? And in any case, does this tactic really reduce redundancy? Again I’ll come back

to this question later, in the section “Refining the Definition.”

Figure 17-9. Using an RVA for tutors

Chapter 17 We Need More SCieNCe

372

 Example 11
This one is just a placemarker. In our book Time and Relational Theory: Temporal

Databases in the Relational Model and SQL (Morgan Kaufmann, 2014), Hugh Darwen,

Nikos Lorentzos, and I show that certain “new” kinds of redundancy can arise in

connection with temporal data, and we propose a number of new design principles and

techniques for dealing with them.23

 Example 12
My last example is typical of a common practical situation. It’s loosely based on an

example in Fabian Pascal’s book Practical Issues in Database Management: A Reference

for the Thinking Practitioner (Addison-Wesley, 2000). We’re given two relvars that look

like this (and I assume until further notice that they’re base relvars specifically):

PAYMENTS { CUSTNO , DATE , AMOUNT }

 KEY { CUSTNO , DATE }

TOTALS { CUSTNO , TOTAL }

 KEY { CUSTNO }

Attribute TOTAL in relvar TOTALS is an example of what’s often called derived

data; its value for any given customer is derived by summing all of the payments for the

customer in question. In fact, the following equality dependency holds24 (and note that

for once I’ve given the constraint a name, viz., C12, because I’m going to want to refer to

it later):

CONSTRAINT C12 TOTALS = SUMMARIZE PAYMENTS BY { CUSTNO } :

 { TOTAL := SUM (AMOUNT) } ;

23 That book (“the temporal book,” as I called it in Chapter 14) is, of course, the source of the “new”
normal form 6NF (again see Chapter 14), but there’s a great deal more to database design in the
temporal context than just making sure all relvars are in 6NF—in particular, there’s a great deal
more to reducing redundancy—and I refer you to that book for an exhaustive discussion of the
issues.

24 Actually another EQD also holds in this example—viz., PAYMENTS {CUSTNO} = TOTALS
{CUSTNO}—but we can ignore this one for present purposes.

Chapter 17 We Need More SCieNCe

373

Note: SUMMARIZE is Tutorial D’s analog of SQL’s SELECT with a GROUP BY

(speaking very loosely!).25 However, in case you feel more comfortable with SQL than

Tutorial D, let me also give an SQL version of the foregoing:

CREATE ASSERTION C12 CHECK

 (NOT EXISTS

 (SELECT ∗
 FROM TOTALS

 WHERE NOT EXISTS

 (SELECT ∗
 FROM (SELECT CUSTNO , SUM (AMT) AS TOTAL

 FROM PAYMENTS

 GROUP BY CUSTNO) AS TEMP1

 WHERE TOTALS.CUSTNO = TEMP1.CUSTNO))

 AND

 NOT EXISTS

 (SELECT ∗
 FROM (SELECT CUSTNO , SUM (AMT) AS TOTAL

 FROM PAYMENTS

 GROUP BY CUSTNO) AS TEMP2

 WHERE NOT EXISTS

 (SELECT ∗
 FROM TOTALS

 WHERE TOTALS.CUSTNO = TEMP2.CUSTNO))) ;

Now, derived data is redundant by definition—though once again there are no

violations of either normalization or orthogonality in the example (in particular, relvars

PAYMENTS and TOTALS are both in 6NF). I’ll analyze this example in more detail in the

section immediately following.

25 Actually SUMMARIZE might be dropped from the next version of Tutorial D, because
expressions involving SUMMARIZE can always be formulated more simply, and arguably
more comprehensibly, in terms of the relational EXTEND operator and what are called
image relations. For example, the SUMMARIZE expression in the example could be
replaced by the following: EXTEND PAYMENTS{CUSTNO}: {TOTAL := SUM (IMAGE_IN
(PAYMENTS),AMOUNT). For further information regarding SUMMARIZE and EXTEND and
image relations, I refer you to SQL and Relational Theory.

Chapter 17 We Need More SCieNCe

374

 Managing Redundancy
The fact that the design of Example 12 from the previous section is redundant is clearly

shown by the fact that the specified equality dependency holds (Constraint C12).

And there are, at least in principle, four basic approaches to dealing with the kind of

redundancy illustrated by that example:

 1. Raw design only

 2. Declare the constraint

 3. Use a view

 4. Use a snapshot

Let’s take a closer look.

 1. Raw Design Only
This is perhaps the approach most likely to be encountered in practice, given the limited

functionality provided by most of today’s DBMSs. The idea is simply that:

 a. Relvars PAYMENTS and TOTALS are defined exactly as shown in

the previous section.

 b. Constraint C12 is not declared to the DBMS.

 c. Maintaining the derived data is 100% the user’s responsibility. (Or

some user’s responsibility, at any rate; the maintenance might be

done by means of a triggered procedure, but some user still has to

write the code for that procedure.)26

In effect, this approach trades off (a) the extra work involved on the part of the

user—or some user, at any rate—in executing certain updates (as well as the associated

performance hit) against (b) the improved performance obtained when executing

certain queries. But there are no guarantees; if the user makes a mistake during some

update that (in effect) causes Constraint C12 to be violated, well, tough.

26 Note that relvar TOTALS should never be updated at all, except for the updates that are needed
to keep the two relvars “in synch,” as it were; ideally, therefore, some kind of control needs to
be in place in order to enforce this rule. (An analogous observation applies to the other three
approaches as well.)

Chapter 17 We Need More SCieNCe

375

 2. Declare the Constraint
In this approach Constraint C12 is explicitly declared to the DBMS and the DBMS

takes the responsibility for enforcing it. Maintaining the derived data is still the

user’s responsibility, though, exactly as it was under the previous approach. What’s

more, if the user carries out this task reliably and correctly, the constraint checking

will never fail, and it will thus, in effect, constitute pure overhead on the user’s

updates. But we can’t dispense with the constraint, precisely because we do need

the system to check that the user is carrying out the maintenance task reliably and

correctly.

 3. Use a View
Clearly it would be better if, instead of simply declaring the constraint, we could actually

inform the system of the rule by which the derived data is defined and have the system

perform the derivation process automatically. And we can; that’s exactly what the view

mechanism does. To be specific, we can replace the base relvar TOTALS by a view (or

“virtual relvar”) of the same name, thus:

VAR TOTALS VIRTUAL

 (SUMMARIZE PAYMENTS BY { CUSTNO } :

 { TOTAL := SUM (AMOUNT) }) ;

Now the user no longer has to worry about maintaining the derived data;

moreover, there’s now no way that Constraint C12 can possibly be violated, and there’s

no need even to state it any more, except perhaps informally (as a means of telling the

user the semantics of the view, perhaps). Note, however, that the user does have to

be explicitly told not to try to maintain the totals! This fact doesn’t mean the user has

to be told that relvar TOTALS is a view, though; it just means the user has to be told

that the maintenance task will effectively be performed by the system and the user

shouldn’t interfere.

Chapter 17 We Need More SCieNCe

376

 4. Use a Snapshot
The drawback to the view solution, however, is that the derivation process is performed

every time the view is referenced (even if no updates have been done since the last time

it was referenced). Thus, if the whole object of the exercise is to do the derivation work

at update time in order to improve subsequent query performance, the view solution is

clearly inadequate. In that case, we should use a snapshot instead of a view:

VAR TOTALS SNAPSHOT ... /* hypothetical syntax */

 (SUMMARIZE PAYMENTS BY { CUSTNO } :

 { TOTAL := SUM (AMOUNT) })

 REFRESH ON EVERY UPDATE ;

The snapshot concept has its origins in a paper by Adiba.27 Basically, snapshots,

like views, are derived relvars; unlike views, however, they’re real, not virtual—that is,

they’re represented not just by their definition in terms of other relvars, but also (at least

conceptually) by their own separately materialized copy of the data. In other words,

defining a snapshot is much like executing a query, except that:

 a. The result of the query is kept in the database under the specified

name (TOTALS in the example) as a read-only relvar (read-only,

that is, apart from the periodic refresh—see point b. immediately

following).

 b. Periodically (ON EVERY UPDATE in the example) the snapshot

is refreshed—that is, its current value is discarded, the query is

executed again, and the result of that new execution becomes the

new snapshot value.

The general form of the REFRESH clause is

REFRESH [ON] EVERY <now and then>

where <now and then> might be, for example, MONTH or WEEK

or DAY or HOUR or n MINUTES or MONDAY or WEEKDAY

(and so on). In particular, the specification REFRESH ON EVERY

27 Michel Adiba: “Derived Relations: A Unified Mechanism for Views, Snapshots, and Distributed
Data,” Proc. 1981 International Conference on Very Large Data Bases, Cannes, France
(September 1981).

Chapter 17 We Need More SCieNCe

377

UPDATE means the snapshot is kept permanently in synch with

the relvar(s) from which it is derived—which is presumably just

what we want, in the case of Example 12.

Now, in this section so far I’ve concentrated on Example 12 and the specific kind

of “derived data” illustrated by that example. However, the fact is that all forms of

redundancy can be thought of as derived data—if x is redundant, then by definition

x can be derived from something else in the database. (Limiting use of the term

derived data to the kind of situation illustrated by Example 12 is thus misleading,

and not recommended.) It follows that the foregoing analysis—in particular, the four

different approaches—can be generalized to apply to all kinds of redundancy, at least

in principle. Note in particular that the third and fourth of those approaches, using

views and snapshots respectively, both constitute examples of what’s sometimes called

controlled redundancy. Redundancy is said to be controlled if it does exist (and the user

is aware of it), but the task of “propagating updates” to ensure that it never leads to any

inconsistencies is managed by the system, not the user. Uncontrolled redundancy can be

a problem, but controlled redundancy shouldn’t be. In fact, I want to go further—I want

to say that while it’s probably impossible, and might not even be desirable, to eliminate

redundancy completely, any redundancy that isn’t eliminated ought at least to be

controlled. In particular, we need support for snapshots.28

 Refining the Definition
Note: I’ve deliberately left this somewhat lengthy section to the very end of
the chapter (almost).

Consider the shipments relvar SP, with its predicate Supplier SNO supplies part PNO in

quantity QTY. Consider also the relation shown as the value of that relvar in Figure 1-1 in

Chapter 1. Observe that:

 a. Two of the tuples in that relation are (S1,P5,100) and (S1,P6,100).

 b. Both of those tuples include (S1,100) as a subtuple.

28 Fortunately, many commercial products do now support snapshots, albeit under the strongly
deprecated name materialized views (see footnote 1).

Chapter 17 We Need More SCieNCe

378

What do those two appearances of that subtuple mean? Well, the appearance in

(S1,P5,100) means the following (I’ve numbered this proposition—note that it is indeed

a proposition—for purposes of future reference):

 1. Supplier S1 supplies some part in quantity 100.

And the appearance in (S1,P6,100) means exactly the same thing! So don’t we

have here a situation in which the database contains two distinct appearances of some

(sub)tuple that represent the very same proposition? In other words, in accordance

with the definition I gave in the introduction to this chapter, doesn’t the database

contain some redundancy?

Before I try to answer this question, I want to offer a simpler illustration of the same

point. With reference to Figure 1-1 again, consider the six shipment (SP) tuples shown in

that figure for supplier S1. Clearly, those tuples all contain the subtuple (S1), of degree

one. And those six appearances of that subtuple all mean the same thing:

 2. Supplier S1 supplies some part in some quantity.

We could even take the argument one step further and consider the fact that every

SP tuple—in fact, every possible tuple, no matter what attributes it has—always has the

0-tuple as a subtuple. Thus, there are twelve “appearances” (if you see what I mean!) of

that subtuple in the shipments relation of Figure 1-1, and they all represent the following

proposition:

 3. Some supplier supplies some part in some quantity.

So do we have redundancy on our hands here, or don’t we? Well, notice that

propositions 1-3 all involve some existential quantification. Here then are slightly more

formal versions of those same propositions with that quantification made explicit and

highlighted:

 1. There exists some part PNO such that supplier S1 supplies part

PNO in quantity 100.

 2. There exists some part PNO such that there exists some quantity
QTY such that supplier S1 supplies part PNO in quantity QTY.

 3. There exists some supplier SNO such that there exists some part
PNO such that there exists some quantity QTY such that supplier

SNO supplies part PNO in quantity QTY.

Chapter 17 We Need More SCieNCe

379

In these propositions, SNO in the third, QTY in the second and third, and PNO in all

three aren’t parameters—of course not, since propositions never contain parameters!—but,

rather, what the logicians call bound variables, owing to the fact that they’re all “existentially

quantified” by the phrase There exists some ... such that.29 Note: If you’re unfamiliar with

these notions (viz., bound variables and existential quantification), you can find a tutorial

treatment in SQL and Relational Theory. However, I think the present discussion should be

easy enough to follow even if you don’t have any prior knowledge of such matters.

In contrast to the foregoing, the propositions represented by tuples in the underlying

relvar SP don’t involve any existential quantifiers. That’s because they’re all just

instantiations of the relvar predicate (i.e., they’re all obtained just by substituting

arguments for the parameters of that predicate), and that predicate in turn, which is as

follows, involves no such quantifiers either:

Supplier SNO supplies part PNO in quantity QTY.

To summarize to this point, then, it looks as if the following observations apply:

 a. What might be called the given propositions—the ones

represented by tuples in the given relvars—are quantifier free.

it might not be quite true to say that such “given propositions” are always
quantifier free; consider, e.g., a relvar with attributes WeiGht and heiGht and
predicate Some person has weight WEIGHT and height HEIGHT. however, we
can effectively eliminate the quantifiers in such a situation by a process known
as skolemization (after the logician t. a. Skolem). in the example, that process
involves replacing the original predicate by a predicate of the form Person p has
weight WEIGHT and height HEIGHT (where p denotes some person or persons
unknown). this latter predicate is quantifier free.

29 In the section “Predicates vs. Constraints” earlier, I said there were two quantifiers, EXISTS and
FORALL (known more formally as the existential and the universal quantifier, respectively).
However, EXISTS is the only one that’s relevant for present purposes. Moreover, we can assume
without loss of generality that—as indeed the examples we’ve already seen strongly suggest—
the quantification always appears as the opening part of the proposition in question. In other
words, what I’ll be referring to from this point forward as quantified propositions can always
be assumed to be in what’s called “prenex normal form,” meaning they take the form There
exists ...such that there exists ... such that ... (and so on), followed by p, where p in turn is a
(sub)proposition that’s quantifier free.

Chapter 17 We Need More SCieNCe

380

 b. By contrast, derived propositions—at least, derived propositions

that correspond to tuples obtained by taking projections of tuples

in the given relvars—do involve at least one existential quantifier,

and possibly more than one.

Now, we surely don’t want to think of our usual shipments relvar SP as being

intrinsically redundant. So it looks as if what we might want to say is something along the

lines of the following:

(Warning: Tentative!) If the same proposition is represented twice,

but that proposition is existentially quantified, then that repetition

doesn’t count as redundancy.

But wait a minute—what about the suppliers relvar S, with its FD {CITY} → {STATUS}

(which I now want to assume does hold again)? An argument precisely analogous to the

foregoing would seem to suggest that, e.g., the tuple (London,20), which appears as a

subtuple in two of the supplier tuples depicted in Figure 1-1, represents the proposition:

There exists some supplier SNO such that there exists some
name SNAME such that supplier SNO is named SNAME, has

status 20, and is located in city London.

Clearly this proposition is existentially quantified; yet it’s represented twice, and we

do want that repetition to count as redundancy. (As we know, relvar S, with its FD {CITY}

→ {STATUS}, isn’t in BCNF.) So what’s going on?

As is so often the case, I believe the answer to this question can be found by taking a

closer look at the predicates. First, recall from Chapter 14 that a predicate is simple if and

only if it involves no connectives, and conjunctive if it consists of a set of other predicates

connected by AND (and I’ll assume for present purposes that those other predicates are

all simple ones).30 Now, the predicate for relvar SP, Supplier SNO supplies part PNO in

quantity QTY, is simple in the foregoing sense. By contrast, the predicate for relvar S is

conjunctive—it can be decomposed into a set of simple predicates. I can make this latter

fact more immediately obvious by stating the predicate in the following slightly stilted

but actually more logical form:

30 Since propositions are a special case of predicates in general—see the answer to Exercise 2.14 in
Chapter 2—we can say a proposition too is simple if and only if it involves no connectives (i.e., if
and only if it’s an instantiation of a simple predicate).

Chapter 17 We Need More SCieNCe

381

Supplier SNO is named SNAME AND
Supplier SNO is located in city CITY AND
City CITY has status STATUS.

From this version of the predicate, then, it should be clear that:

 a. Relvar S is subject to the nontrivial, irreducible JD ☼{SN,SC,CT},

where the names SN, SC, and CT denote the headings

{SNO,SNAME}, {SNO,CITY}, and {CITY,STATUS}, respectively. (By

contrast, the only JDs that hold in relvar SP are trivial ones, and SP

is in 6NF. Relvar S, to repeat, isn’t even in BCNF.)

 b. Relvar S can therefore be nonloss decomposed in accordance with

that JD. The predicates for the corresponding projections are as

follows:

SN: Supplier SNO is named SNAME.

SC: Supplier SNO is located in city CITY.

CT: City CITY has status STATUS.

These predicates involve no existential quantification, and so the

corresponding propositions don’t, either.31

 c. Relvar S certainly contains subtuples corresponding to SN, SC,

and CT; however, those corresponding to SN and SC are never

repeated because {SNO} is a key. By contrast, those corresponding

to CT are repeated, at least potentially (as we know from

Figure 1-1), and such repetition does constitute redundancy.

31 In connection with the lack of quantification in the predicate for CT in particular, you might
want to take another look at the section “Normalization Serves Two Purposes” in Chapter 3.

Chapter 17 We Need More SCieNCe

382

With all of the foregoing by way of motivation, then, I offer the following as a putative

“final” definition of what it means for a database to exhibit redundancy:

Definition (redundancy in the database, “final” detailed
version): Let D be a database design and let proposition p be both

simple and unquantified. Then:

 a. If there exists a database value (i.e., a set of values for the

relvars mentioned in D), DB, that conforms to D, such that

 b. There exists within DB some specific appearance of some

tuple or combination of tuples that represents p, either

explicitly or implicitly, and

 c. There exists within DB some distinct appearance of some

tuple or combination of tuples that also represents p, either

explicitly or implicitly, then

 d. DB contains, and D permits, redundancy.

Of course, the foregoing definition can also be expressed more succinctly thus:

Definition (redundancy in the database, “final” succinct
version): Let D be a database design; let DB be a database

value (i.e., a set of values for the relvars mentioned in D) that

conforms to D; and let p be a simple unquantified proposition.

If DB contains two or more distinct representations of p (either

implicitly or implicitly), then DB contains, and D permits,

redundancy.

Observe in particular that a database can still display redundancy by this definition,

even if it fully conforms to The Principle of Orthogonal Design and all normalization

principles. Note, however, that the definition still says that if—not if and only if—a

certain condition holds, then there’s redundancy; I’d like to replace that if by if and only

if, but I don’t quite have the courage of my convictions here. Not yet.

Be that as it may, let’s consider Examples 1-12 from earlier sections of this chapter

and see what the implications of the foregoing definition are for those examples

specifically. Please note carefully: Throughout the following analysis, the unqualified

term proposition should be taken to mean a simple proposition that’s not existentially

quantified, unless the context demands otherwise. (However, I often use the more

explicit term simple unquantified proposition anyway, for emphasis.)

Chapter 17 We Need More SCieNCe

383

 Examples 1 and 2
Both of these examples display redundancy because the simple unquantified

proposition San Francisco, California is the city corresponding to zip code 94100 is

represented twice.

 Example 3
Suppose two distinct tuples both contain the DATE value “Friday, January 18th, 2019”;

then the database clearly displays redundancy because the simple unquantified

proposition January 18th, 2019 is a Friday is represented twice, explicitly. In fact, there’s

redundancy even if that DATE value appears just once! The reason is that even in

that case, the proposition January 18th, 2019 is a Friday is represented both explicitly

and implicitly. The explicit representation is obvious; the implicit representation is a

consequence of the fact that one part of the value, viz., the day of the week (Friday, in

the example), can be computed from the rest of the value (January 18th, 2019, in the

example).32

 Example 4
There’s no redundancy in this example.

 Example 5
Let employee e be represented in relvar EMP and let the JOB value for e be

“Programmer” (so employee e is represented in relvar PGMR as well). As pointed out

earlier, then, the simple unquantified proposition Employee e is a programmer is clearly

represented (explicitly!) in two different ways.

32 If we were to represent the day of the week and the rest of the date as two separate attributes—
DAY and DATE, say—then the FD {DATE} → {DAY} would hold.

Chapter 17 We Need More SCieNCe

384

 Example 6
For a supplier s who doesn’t have all three properties (i.e., name, status, and city), this

example is essentially similar to Example 4, q.v. For a supplier s who has all three, we

could say the E-relvar tuple for s is redundant—if we accept that the predicate for that

E-relvar takes the form SNO is a supplier and the predicates for the P-relvars take the

form SNO is a supplier and ... (etc, etc.), meaning the unquantified propositions that are

represented more than once are S1 is a supplier, S2 is a supplier, and so on. Debatable,

maybe. What do you think?

 Example 7
I said earlier that there seem to be good arguments against adopting the “default

department” design here (and there are). But if we do adopt that design, then we might

say the proposition Employee E4 is in department D3 (for example) is represented

twice: once by an explicit tuple, and once by the lack of a tuple corresponding to the

proposition Employee E4 is in department Dj for any department Dj not equal to D3. But

that’s a pretty tortuous argument! What’s more, the (missing) proposition “Employee E4

is in department Dj for some department Dj not equal to D3” isn’t really unquantified—

it’s an abbreviation for something like this:

There doesn’t exist a department Dj such that employee E4 is in

department Dj and Dj ≠ D3.33

So what do you think?

 Example 8
The proposition Employee E4 is unsalaried is represented both explicitly by a tuple in

UNSALARIED and implicitly by the lack of a tuple for employee E4 in either EARNS or

SALARY_UNK. (This example has points of similarity with both Example 6 and Example 7.)

33 Or equivalently: For all departments Dj employee E4 is not in department Dj or Dj ≠ D3.
Observe that not only is this proposition quantified, it’s—unlike all of the other quantified
propositions discussed thus far—universally quantified.

Chapter 17 We Need More SCieNCe

385

 Examples 9 and 10
Under the earlier discussion of Example 9, I said the following:

The redundancies ... are obvious: For example, the fact that

student S1 is enrolled on course C1, the fact that course C1 is

tutored by tutor T1, and the fact that tutor T1 tutors student S1

are all represented more than once in the sample value shown in

[Figure 17-7].

I also said the predicate was Tutor TNO tutors student SNO on course CNO. But if

the redundancies really are as stated, it can’t be quite that simple—instead, it has to

look like this:

Student SNO is enrolled on course CNO AND
Course CNO is tutored by tutor TNO AND
Tutor TNO tutors student SNO AND
Tutor TNO tutors student SNO on course CNO.

A more complete design would thus involve relvars as follows:

• S {SNO,...}, C {CNO,...}, and T {TNO,...}, representing students,

courses, and teachers, respectively;

• SC {SNO,CNO,...}, CT {CNO,TNO,...}, and TS {TNO,SNO,...}, showing

which students are enrolled on which courses, which courses are

tutored by which tutors, and which tutors tutor which students,

respectively;

• SCT {SNO,CNO,TNO}, as in the original version of the example.

Observe now that:

 1. Relvar SC is equal to some subset of the join (actually the

cartesian product) of S{SNO} and C{CNO}, and similarly for CT

and TS.

 2. More importantly, relvar SC is also equal to the projection of SCT

on {SNO,CNO} (and, again, similarly for CT and TS). At least, SC

is equal to SCT projected on {SNO,CNO} so long as the following

assumption is valid: No student can be enrolled on a course

Chapter 17 We Need More SCieNCe

386

without being assigned a tutor for that course. (I focus on SC for

definiteness, but of course analogous remarks apply to CT and TS

once again.) But:

 a. If that assumption is valid, then SC can be dropped (and

similarly for CT and TS).

 b. Alternatively, if that assumption isn’t valid, then SC mustn’t be

dropped—a design consisting of SCT only is invalid.34 (Once

again a similar remark applies to CT and TS.)

 3. Relvar SCT is also equal to some subset of the join of SC, CT, and

TS, and that join in turn is some subset of the join (actually the

cartesian product) of S{SNO}, C{CNO}, and T{TNO}.

Now, if SC, CT, and TS aren’t dropped, then there’s clearly redundancy. For example,

given the sample values from Figure 17-7, the simple unquantified proposition Student

S1 is enrolled on course C1 is represented (a) by an explicit tuple in relvar SC and also

(b) as one of the conjuncts in the following (also unquantified, though not simple)

proposition, which is represented by an explicit tuple in relvar SCT:

Student S1 is enrolled on course C1 AND
Course C1 is tutored by tutor T1 AND
Tutor T1 tutors student S1 AND
Tutor T1 tutors student S1 on course C1.

Even if SC or CT or TS is dropped, however, there’s still redundancy. For example,

that same proposition Student S1 is enrolled on course C1 is represented as one of the

conjuncts in the foregoing (compound) proposition and as one of the conjuncts in the

following (also compound) proposition:

Student S1 is enrolled on course C1 AND
Course C1 is tutored by tutor T2 AND
Tutor T2 tutors student S1 AND
Tutor T2 tutors student S1 on course C1.

Both of these compound propositions are represented by explicit tuples in

SCT. Thus, although my earlier characterization of the redundancies in this example

might perhaps have been slightly misleading, it seems to me that redundancies of some

34 Again I refer you to the section “Normalization Serves Two Purposes” in Chapter 3.

Chapter 17 We Need More SCieNCe

387

kind do exist. What’s more, if you agree with this position, I think you also have to agree

that the use of either surrogates (see the discussion of Example 9 earlier in the chapter)

or—perhaps more obviously—relation valued attributes (see the discussion of Example

10 earlier in the chapter) makes no essential difference! That is, it’s still the case, with

both surrogates and RVAs, that certain propositions are represented more than once, in

general. In other words, I think the redundancies in this example are intrinsic.

Now, I admit that these claims on my part might be open to debate. However, if you

don’t agree with them, then I think you need to justify your position rather carefully; in

particular, I think you need to come up with a replacement for—in fact, an improvement

on—my proposed “final” definition of redundancy.

as a kind of appendix to all of the above, let me add that i believe a similar analysis
applies to certain other examples from earlier in this book. For example, consider
relvar CtXd from Chapters 9 and 12, with its attributes CNo, tNo, XNo, and daYS.
When i first introduced that example, i said the predicate was Teacher TNO spends
DAYS days with textbook XNO on course CNO. But it would be more accurate to say
it’s as follows:

Course CNO can be taught by teacher TNO AND

Course CNO uses textbook XNO AND

Teacher TNO spends DAYS days with textbook XNO on course CNO.

Similarly, consider relvar SpJ from Chapters 9 and 10, with its attributes SNo, pNo,
and JNo. When i first introduced that example, i said the predicate was Supplier
SNO supplies part PNO to project JNO. as noted in Chapter 14, however, it would
be more accurate to say it’s as follows:

Supplier SNO supplies part PNO AND

Part PNO is supplied to project JNO AND

Project JNO is supplied by supplier SNO AND

Supplier SNO supplies part PNO to project JNO.

Chapter 17 We Need More SCieNCe

388

 Example 11
A few of the issues raised by temporal data were discussed in Chapter 14. Further

discussion of such matters is beyond the scope of this book.

 Example 12
Let c be a customer and let the sum of payments for customer c be (say) $10,000. Then

that very proposition—The sum of payments for customer c is $10,000—is represented

explicitly by the appearance of a tuple for customer c in relvar TOTALS and implicitly by

the appearance of the set of tuples for that same customer in relvar PAYMENTS.

 Concluding Remarks
I’ve claimed that a database certainly involves redundancy if it contains two distinct

representations of the same simple unquantified proposition. In particular, we don’t

want the same tuple to appear in two different places if those two appearances represent

the same proposition. (Obviously we’d like to prohibit duplicate propositions as such;

unfortunately, however, the DBMS doesn’t understand propositions as such.) But it’s all

right for the same tuple to appear in two different places if those two appearances don’t

represent the same proposition—and in any case we can have redundancy without any

tuple appearing twice at all, as we’ve seen.

Normalization and orthogonality seem to be all we have by way of a scientific

attack on the redundancy issue at the present time. Unfortunately, we’ve seen that

normalization and orthogonality don’t go very far toward solve the problem—they can

certainly reduce redundancy, but they can’t eliminate it entirely. To be specific, we’ve

seen several examples of designs that fully conform to the principles of normalization

and orthogonality and yet display some redundancy, and those discussions were

certainly far from exhaustive. We need more science! (Now I’ve told you that at least

three times, and what I tell you three times is true.)

Chapter 17 We Need More SCieNCe

389

Given the foregoing state of affairs, it seems that redundancy will definitely exist in

most databases. If it does, then:

• It should at least be controlled, in the sense that the DBMS

should take responsibility for guaranteeing that it never leads to

inconsistency.

• If it can’t be controlled, then appropriate constraints should at least

be declared, and enforced by the system, to ensure (again) that it

never leads to inconsistency.

• If it can’t be controlled and constraints can’t be enforced by the

system (or perhaps can’t even be formally declared), then you’re on

your own—and woe betide you if you make any mistakes.

Sadly, this last scenario is the one most likely to obtain in practice, given the state of

today’s commercial implementations.

 Exercises

 17.1 I claimed in the body of the chapter that if database DB

contains (either explicitly or implicitly) two or more distinct

representations of some simple unquantified proposition p, then

DB contains some redundancy. Can you think of a database

that doesn’t contain two or more such representations of any

such proposition and yet in your opinion still displays some

redundancy?

 Answers

 17.1 If you have a good answer to this exercise, please communicate it

to me at PO Box 1000, Healdsburg, CA 95448, USA (regular mail

only, please).

Chapter 17 We Need More SCieNCe

PART VII

Appendixes

393
© C. J. Date 2019
C. J. Date, Database Design and Relational Theory, https://doi.org/10.1007/978-1-4842-5540-7_18

APPENDIX A

What Is Database Design,
Anyway?

Official designs are aggressively neuter,
The Puritan work of an eyeless computer

—John Betjeman:
The Newest Bath Guide (1974)

An early version of this appendix appeared as a foreword to the book Oracle
SQL Developer Data Modeler for Database Design Mastery, by Heli
Helskyaho (Oracle Press, 2015), and a revised and considerably expanded
version of that foreword subsequently appeared on the O’Reilly website
(http://www.oreilly.com/data/free/what-is-database-design-
anyway.csp). But it struck me that it would serve very well in the present
book as a kind of broad overview of what database design is all about.
Since it’s much less formal in tone than most of this book, however, I decided
to relegate it to an appendix. My thanks to Heli, Oracle Press, and O’Reilly
for allowing me to republish the material here in its present form.

Note: There’s naturally some overlap between what follows and material in
the body of the book, but I’ve done my best to keep that overlap to a
minimum.

Databases lie at the heart of so much we do in the IT world that it’s surely obvious

that they need to be properly designed. Yet design theory—meaning database design

theory specifically, of course—doesn’t seem to be very well understood in the industry

at large, and the same goes for design best practice also. You only have to look at the

http://www.oreilly.com/data/free/what-is-database-design-anyway.csp
http://www.oreilly.com/data/free/what-is-database-design-anyway.csp

394

Wikipedia entry on database design to see the truth of these claims! In fact, before going

any further, I’d like to offer a few quotes from that Wikipedia piece (with commentary by

myself) as evidence in support of these claims.1 Here’s the first:

• Database design is the process of producing a detailed data model

of a database. This logical data model contains all the needed logical

and physical design choices and physical storage parameters needed

to generate a design ...

Comment: So the “logical data model” contains “physical design choices” and

“physical storage parameters”? Clearly, somebody’s confused here, and I don’t think

it’s me. Note too the circular nature of the foregoing “definition” (doing database

design apparently consists of producing the things needed for doing database design).

The fact that the Wikipedia piece actually opens with the foregoing extract doesn’t

bode well for what’s to come—but I suppose it might at least be argued that we’ve been

given fair warning.

• The term database design can be used to describe many different

parts of the design of an overall database system. Principally, and

most correctly, it can be thought of as the logical design of the base

data structures used to store the data. In the relational model these

are the tables and view [sic “view,” singular].

Comment: I’m going to argue later in this appendix that database design isn’t

“principally and most correctly” about “the logical design of the base data structures”

(at least, not exclusively), so I won’t comment further on that particular issue for the

moment. I’m also going to say something later about the idea that “tables and views” are

“used to store the data,” so I won’t comment further on that issue at this point either. But

I do want to say something here about that phrase “tables and view(s).”

Sadly, the phrase “tables and views,” or one very much like it, appears all over the

place in the database literature.2 In particular, it appears throughout SQL books, SQL

journals, SQL product documentation, and the like (it even appears, albeit only briefly

but still unfortunately, in the SQL standard itself). But, clearly, anyone who talks this

1 I’ve replaced the links in the original Wikipedia entry by italicized words and phrases, as in (e.g.)
data model and database. Otherwise the extracts are quoted verbatim.

2 Since as I’ve said this appendix is deliberately fairly informal, I’ve decided to stay with the SQL
terminology of tables, rows, and columns throughout in place of the relational terminology of
relations, tuples, and attributes.

Appendix A WhAt is dAtAbAse design, AnyWAy?

395

way is under the impression that tables and views are different things, and probably

also that “tables” always means base tables specifically, and probably also that base

tables are physically stored and views aren’t (see my comments on the next quote

below). But the whole point about a view is that it is a table—just as, in mathematics,

the whole point about, say, the union of two sets is that it is a set. Thus, in

mathematics we can perform the same kinds of operations on the union of two sets as

we can on a regular set, because a union is a regular set. And in exactly the same kind

of way, in the relational model we can perform the same kinds of operations on a view

as we can on a regular table, because a view is a “regular table.” So it’s very important

not to fall into the common trap of thinking that the term table always means a base

table specifically. People who fall into that trap aren’t thinking relationally, and they’re

likely to make mistakes as a consequence—mistakes in their database designs, and

mistakes in applications, and even, to some extent, mistakes in the design of the SQL

language itself.

To pursue the point just a moment longer: In fact, it could be argued that the very

names of the SQL operators CREATE TABLE and CREATE VIEW are and always were

at least a psychological mistake, in that they tend to reinforce both (a) the idea that the

term table means a base table specifically and (b) the idea that views and tables are

different things.

• Once the relationships and dependencies amongst the various pieces

of information have been determined, it is possible to arrange the

data into a logical structure which can then be mapped into the

storage objects supported by the database management system. In

the case of relational databases the storage objects are tables which

store data in rows and columns.

Comment: Tables in the relational model—even base tables—are most categorically

not “storage objects”!3 The relational model deliberately has nothing to say regarding

what’s physically stored; in fact, it has nothing to say about physical storage matters

at all. In particular, it does not say that base tables are physically stored and views

aren’t. The only requirement is that there must be some mapping between whatever’s

physically stored and the base tables, so that those base tables can somehow be obtained

3 Given the context, it’s reasonable to assume that (a) by storage, the writer here means physical
storage specifically, and (b) by tables, he or she means base tables specifically. Whether these
terms ought to have these meanings is a very different matter!

Appendix A WhAt is dAtAbAse design, AnyWAy?

396

when they’re needed (conceptually, at any rate). If the base tables can be obtained

from whatever’s physically stored, then so can everything else. For example, we might

physically store the join of the employee and department base tables, instead of storing

them separately; then those base tables could be obtained, conceptually, by taking

appropriate projections of that join.

To repeat, the relational model has nothing to say about physical storage matters,

and of course that omission was deliberate. The idea was to give implementers the

freedom to implement the model in whatever way they chose—in particular, in whatever

way seemed likely to yield good performance—without compromising on physical data

independence. Unfortunately, most SQL product vendors seem not to have understood

this point (or not to have risen to the challenge, at any rate); instead, they do map base

tables fairly directly to physical storage, and their products thus provide far less physical

data independence than relational systems are or should be capable of.4 But this state

of affairs needs to be recognized for what it is: namely, a (major) defect in the products

in question. It’s not, and should not be taken to be, something that’s intrinsic to the

relational model as such.

• Each table may represent an implementation of either a logical

object or a relationship joining one or more instances of one or more

logical objects. Relationships between tables may then be stored as

links connecting child tables with parents. Since complex logical

relationships are themselves tables they will probably have links to

more than one parent.

Comment: I have quite a lot to say about this one! To be specific:

• First of all, the writer is certainly playing pretty fast and loose with the

language. For example, an employee might perhaps be considered

as a “logical object”; but then the employees table will “represent an

implementation,” not of that “logical object” as such, but rather of

the set of all such “logical objects” (“instances”?) currently existing in

4 I say this knowing full well that today’s SQL products do provide a variety of options for hashing,
partitioning, indexing, clustering, and otherwise organizing the data as represented in physical
storage. Despite this state of affairs, I still consider the mapping from base tables to physical
storage in those products to be fairly direct. For that very reason, in fact, elsewhere I’ve labeled
those products “direct image systems.” For further explanation of this term, and much further
discussion of such matters, see my book Go Faster! The TransRelationalTM Approach to DBMS
Implementation (Ventus, 2002, 2011; available as a free download from http://bookboon.com).

Appendix A WhAt is dAtAbAse design, AnyWAy?

http://bookboon.com

397

the enterprise. And the term “joining” as used in the first sentence is

inappropriate, to say the least (“associating” might be better).

• Second, with respect to that phrase “logical object or a relationship”:

Well, it’s one of the very great strengths of the relational model that it

recognizes that what might be seen as a “relationship” by one person

(or one application) is seen as a “logical object” by another, and vice

versa. In other words, “relationships” are “logical objects” in the

relational model, and they’re represented in exactly the same way as

all other “logical objects”—namely, as rows in tables.

• Third, it follows that to talk of “relationships between tables” being

“stored as links” is misleading in the extreme; in fact, it’s totally

wrongheaded. I mean, there’s no such thing as a “link” in the

relational model—there are only tables.

• Fourth, the (unexplained) terminology of “child and parent tables” is

highly deprecated, for more reasons than I care to go into here.

• Fifth, what’s a “complex logical relationship”? More specifically, what

would be an example of a relationship that’s not “complex,” or one

that’s not “logical”? As I’ve had occasion to write elsewhere, it’s truly

distressing in the relational context above all others—where precision

of expression, not to mention precision of thought, was always a key

objective—to find such dreadfully sloppy phrasing.

Note: The foregoing list of criticisms of this particular quote isn’t meant to be

complete. For example, what exactly does it mean to say, as the final sentence does, that

“complex logical relationships are tables”? But I don’t think any further deconstruction

of the text is needed here. I think I’ve made my point.

• The physical design of the database specifies the physical

configuration of the database on the storage media. This includes

detailed specification of ... data types ... and other parameters

Comment: I’m sorry, but data types are most definitely a logical consideration, not

a physical one! Unless—and this thought has only just crossed my mind, because it’s

almost beyond belief that someone could be so deeply muddled—by “data types” here

the writer really means representations? (Well, I suppose I shouldn’t be so surprised. In

fact, I now recall that confusion over types vs. representations wasn’t exactly unknown

Appendix A WhAt is dAtAbAse design, AnyWAy?

398

in certain earlier writings by certain other parties, some very highly respected names

among them ... But that was then and this is now, and I would have hoped that our

understanding of such matters might have improved since then.)

 Logical vs. Physical Design
Enough of Wikipedia; I think I’ve shown that I’m justified in complaining that design

theory and design best practice seem not to be very well understood in the industry at

large. In the rest of this appendix, therefore, what I’d like to do is try to inject some clarity

into the debate; more specifically, I’d like to try to clarify exactly what database design

really is, or at least ought to be. I’ll start with some definitions.

Definition (database design): Either logical database design or

physical database design, as the context demands—though the

unqualified term database design, or sometimes just design, is

usually taken to mean logical database design specifically, unless

the context demands otherwise.

Definition (logical database design, or logical design for short):
The process, or the result of the process, of deciding what tables

some database should contain, what columns those tables should

have, and what integrity constraints those tables and columns

should be subject to.

The goal of the logical design process is to produce a design that’s independent

of all considerations having to do with either physical implementation or specific

applications (this latter objective being desirable for the very good reason that it’s

generally not the case that all uses to which the database will be put are known at

design time). And it follows from the foregoing definition that the process overall can be

summed up as one of:

 1. Pinning down the table predicates and other business rules as

carefully as possible, albeit necessarily somewhat informally, and

then

 2. Mapping those informal predicates and rules to formally defined

tables, columns, and integrity constraints—preferably in such

a way as to ensure that the result of the process involves no

uncontrolled redundancy.

Appendix A WhAt is dAtAbAse design, AnyWAy?

399

I’ll explain later in this appendix what I mean by the terms table predicate, business

rule, and uncontrolled redundancy. Meanwhile, here’s one more definition:

Definition (physical database design, or physical design for
short): The process, or the result of the process, of deciding, given

some logical design, how that design should map to whatever

physical constructs the target DBMS happens to support.

Observe carefully that (as the foregoing definition indicates) the physical design

should be derived from the logical design and not the other way around. Ideally, in fact,

it should be derived automatically, though I realize this might be a bit of a pipedream as

far as most of today’s commercial products are concerned.5

For the remainder of this appendix, I’ll concentrate on logical design specifically

(which from this point forward I’ll usually abbreviate to just design).

 The Role of Theory
The main thing I want to say here is just that there does exist some science, or

theory, that can help with the logical design process. I refer, of course, to such

matters as the principles of further normalization and The Principle of Orthogonal

Design. In other words, if you’re a designer, you owe it to yourself—as well as to your

clients, which is to say the people who are going to have to live with the databases

you design—to be thoroughly familiar with those principles and to know how and

when to apply them. (I note in passing that there’s quite a bit more to the theory

than many people seem to realize. It’s certainly not just a matter of making sure the

tables are all in some particular normal form. However, this isn’t the place to go into

details.6)

The second thing I want to say is that although the science is important, there are,

sadly, numerous aspects of design that the science doesn’t address at all. And that’s

where practical experience comes in. If you do have a lot of personal experience in the

design field, well, good for you—you’ll have learned (possibly the hard way!) what works

and what doesn’t. But if you don’t have much experience of your own to fall back on

5 But see the book mentioned in footnote 4, Go Faster! The TransRelationalTM Approach to DBMS
Implementation, for a description of a system in which that automatic derivation does in fact
occur.

6 Of course, the body of this book is that place!

Appendix A WhAt is dAtAbAse design, AnyWAy?

400

(and maybe even if you do), then you’ll need sound advice you can follow, advice from

someone who does have such experience. A good book on design, by a suitably qualified

professional, can help meet that need. A word of caution, though: Books on database

technology, as opposed to books on design specifically, might not be what you need

here. Such books do often describe theoretical design concepts (e.g., the various normal

forms), but they don’t usually give much guidance on how to apply those concepts to the

practical task of design. Caveat lector.

 Predicates
Let me now elaborate as promised on those terms table predicate, business rule,

and uncontrolled redundancy. I’ll discuss predicates in this section and rules and

redundancy in the next two.

First of all, then, predicates. The table predicate for a given table is simply a

reasonably precise, but informal, statement in natural language of what the table in

question means—in other words, it’s a statement of how that table is supposed to be

understood by users. For example, suppose we have a table called EMP (“employees”),

with columns called ENO, ENAME, DNO, and SALARY. Then the predicate for that table

EMP might look something like this:

The person with employee number ENO is an employee of the company, is
named ENAME, works in the department with department number DNO,
and is paid salary SALARY.

ENO, ENAME, DNO, and SALARY are the parameters to this predicate, and of course

they correspond to the columns of the table with those same names.

Let me take a few moments to explain where this terminology of table predicates

comes from.7 In logic, a predicate is basically just a truth valued function. Like all

functions, it has a set of parameters; it returns a result when it’s invoked; and (because

it’s truth valued) that result is either TRUE or FALSE. Here’s a trivial example:

x > y

For this predicate, the parameters are x and y, and they stand for values of—let’s

agree for the sake of the example—type INTEGER. When we invoke this function, we

7 A more detailed explanation can be found in Chapter 2.

Appendix A WhAt is dAtAbAse design, AnyWAy?

401

substitute arguments of the appropriate types for the parameters. Suppose we substitute

the integers 8 and 5, respectively. We obtain the following statement:

8 > 5

This statement is in fact a proposition, which in logic is something that’s

unequivocally either true or false. In the case at hand, of course, it’s true; but if we

substituted, say, 3 and 7 instead of 8 and 5 as the pertinent arguments, the resulting

proposition would be false.

Now let me get back to the predicate for table EMP. For that predicate the parameters

are, as previously stated, ENO, ENAME, DNO, and SALARY, and they stand for values of

(again let’s agree for the sake of the example) types CHAR, CHAR, CHAR, and MONEY,

respectively. (See the next section for more on the question of data types.) Now suppose

we invoke this function—i.e., suppose we instantiate this predicate, as the logicians say—

and substitute the arguments E4, Evans, D8, and 70K, respectively, for the parameters.

We obtain the following proposition:

The person with employee number E4 is an employee of the company, is
named Evans, works in the department with department number D8, and
is paid salary 70K.

And—here comes the point—the corresponding row (E4, Evans, D8, 70K) will appear

in the EMP table if and only if this particular proposition is true. From a logical point of

view, in fact, that’s exactly what a “table” is: It’s a set of rows, where the rows in question

consist of all and only those rows whose column values form the arguments to a true

instantiation of some specified predicate—and that specified predicate is, precisely, the

“table predicate” for the table in question.

Another way of saying the same thing is this (the following constitutes what’s usually

known as The Closed World Assumption):

• If row r appears in table T, then the proposition corresponding

to r is true.

• If row r could appear in T but doesn’t, then the proposition

corresponding to r is false.

Note: By “the proposition corresponding to r” in the foregoing, I mean, of course, the

instantiation of the table predicate for T that’s obtained by substituting column values

from r for the parameters of that predicate.

Appendix A WhAt is dAtAbAse design, AnyWAy?

402

 Rules
Now I turn to the second of those terms I promised to explain, business rule. Like a table

predicate, a business rule too is a reasonably precise but informal statement in natural

language. However, it differs from a table predicate in its purpose, which is to capture

some aspect of how the data in the database needs to be constrained:8

• To start with, there’ll certainly be rules that specify what type of

information is denoted by the parameters to those table predicates.

In the case of employees, for example, there’ll be a rule to the effect

that the SALARY parameter (“salaries”) denotes money values,

expressed in, let’s say, euros or U.S. dollars.9

• Second, there’ll be rules that constrain the values those parameters

can take for a given employee considered in isolation. For example,

there might a rule that says salaries mustn’t be negative and must be

less than some specified upper limit.

• Third, there’ll be rules that constrain the set of employees taken as

a whole, independent of other “entities” such as departments, that

might be represented in the same database. For example, there might

be a rule to the effect that employee numbers must be unique.

• Finally, there’ll be rules that constrain employees considered in

combination with other entities represented in the database. For

example, there might be a rule to the effect that every employee must

be assigned to some known department, or a rule to the effect that no

employee can have a salary greater than that of the manager of the

department the employee in question is assigned to.

8 I note in passing that some writers regard table predicates as just a special case of business
rules—there’s no consensus on the point. But there’s certainly much more to business rules in
general than just the table predicates as such.

9 Actually I’m not sure that money values in general should be represented (at least as far as the
user is concerned) in any particular currency—rather, I think it should be possible for the user
to deal with such values in whatever currency he or she chooses (see Chapter 16, footnote 3).
On the other hand, given that currency conversion rates can and do fluctuate, the same value in
one currency might correspond to different values in another at different times. More study is
required.

Appendix A WhAt is dAtAbAse design, AnyWAy?

403

I’d like to say a bit more about this issue of business rules, because it’s important—

also because in practice it does tend to get somewhat overlooked. As the foregoing

discussion should be sufficient to suggest, business rules can get quite complicated (as

complicated as you like, in fact). As I’ve said, however, they’re necessarily somewhat

informal. Their formal counterpart—i.e., the thing they map to in the logical design—

is integrity constraints (constraints for short), which thus need to be stated in some

formal language and enforced by the DBMS. In other words, I depart here from certain

other writers in stating categorically that database design isn’t just about choosing data

structures—integrity constraints are crucial as well. (Of course, it’s true that other writers

usually do at least talk about key and foreign key constraints—sometimes cardinality

constraints too—but these particular constraints are really nothing more than important

special cases of a much more general phenomenon.) In this connection, I’d like to draw

your attention to the following remarks (somewhat paraphrased here) from The Business

Rule Book (2nd edition), by Ron Ross (Business Rule Solutions Inc., 1997):

Even though business rules (like the data itself) are “shared” and

universal, traditionally they haven’t been captured in database

design. Instead, they’ve usually been stated vaguely (if at all) in

largely uncoordinated analytical and design documents, and

then buried deep in the logic of application programs. Since

application programs are notoriously unreliable in the consistent

and correct application of such rules, this has been the source of

considerable frustration and error.

I couldn’t agree more. Moreover, note the implicit but strong criticism of DBMS

products that fail to provide adequate support for integrity constraints! (Interestingly, the

support provided in this area by the SQL standard is actually not too bad. Unfortunately,

however, SQL products have been rather slow, to say the least, in implementing this

aspect of the standard.)

 Redundancy
The third term I promised to explain is uncontrolled redundancy. Now, we often say,

loosely, that the database is redundant if and only if “it says the same thing twice.” We

also often say, again loosely, that we don’t want the database to involve any redundancy

in this sense. However, it would be more accurate to say we don’t want it to involve any

Appendix A WhAt is dAtAbAse design, AnyWAy?

404

uncontrolled redundancy. Uncontrolled redundancy can be a problem, but controlled

redundancy shouldn’t be. Let me explain ... First, here are some more definitions:

Definition (controlled redundancy): Redundancy in the

database is controlled if the user is aware of it, but it’s guaranteed

never to lead to any inconsistencies.

Definition (uncontrolled redundancy): Redundancy in

the database is uncontrolled if it has the potential to lead to

inconsistencies.

Definition (inconsistency): The database is inconsistent (at least

from a formal point of view) if and only if there’s some integrity

constraint it’s supposed to conform to but doesn’t.

So if controlled redundancy means no inconsistencies, it must also mean no

constraints are violated—or at least, and more precisely, no constraints having to do

with data redundancy as such. Of course, not all constraints do have to do with data

redundancy as such; for example, a constraint to the effect that salaries mustn’t be

negative doesn’t. Thus, if the database were to show some employee as having a negative

salary it would certainly be inconsistent, but that particular inconsistency wouldn’t be

one that arises from redundancy.10 (It would, however, mean the database was incorrect,

in the sense that it didn’t faithfully reflect the state of affairs in the real world. Inconsistent

implies incorrect, though the converse is false—the database can be incorrect without

being inconsistent. For example, if it showed some employee as earning a salary different

from that employee’s true salary, it would be incorrect, but probably not inconsistent.)

To say it again, then, constraints don’t always have to do with redundancy. But

redundancy does always have to do with constraints.11 For example, suppose—very

unrealistically!—that there’s a constraint to the effect that all employees in the same

department must earn the same salary. Suppose further that the database shows Heli

and Chris as being in the same department. Then if it were also to show Heli and Chris,

separately, as earning the same salary, it would be redundant; by contrast, if it were to

show Heli and Chris as earning different salaries, it would be inconsistent (and incorrect).

10 It would be, rather, an inconsistency—in the normal English sense of that word—between the
data in the database, on the one hand, and the pertinent constraint, on the other.

11 By redundancy here I mean, more specifically, redundancy that’s understood by the system to be
redundancy.

Appendix A WhAt is dAtAbAse design, AnyWAy?

405

So to say the database involves some redundancy is to say some constraint is

supposed to apply. The constraint in question, in the case of the “same salary” example,

might be formulated in SQL as follows:12

CREATE ASSERTION AX1 CHECK

 ((SELECT COUNT (DISTINCT DNO) FROM EMP) =

 (SELECT COUNT (∗) FROM
 (SELECT DISTINCT DNO , SALARY FROM EMP) AS POINTLESS)) ;

Stating this constraint serves to inform the user that the redundancy exists; enforcing

it serves to ensure that it won’t lead to any inconsistencies, thereby guaranteeing that

the redundancy in question is controlled. Note, therefore, that we see once again,

not incidentally, how important it is to be able to state constraints formally and how

important it is for the DBMS to be able to enforce them.

 “Eventual Consistency”
There’s one more topic I want to cover in this appendix. Some readers, I’m sure, will have

found the remarks in the previous section concerning consistency and redundancy a

little puzzling, especially in view of the recent interest in what has come to be known as

eventual consistency (in the context of so called “NoSQL” systems in particular). So let me

try to clarify those remarks.

First of all, to repeat, to say that a database is consistent merely means, formally

speaking, that the database conforms to all stated constraints. Now, it’s crucially

important that the database always be consistent in this formal sense; indeed, a

database that’s not consistent in this sense, at some particular time, is like a logical

system that contains a contradiction. Well, actually, that’s exactly what it is—a logical

system with a contradiction. And in a logical system with a contradiction, you can prove

anything; for example, you can prove that 1 = 0.13 What this means in database terms is

12 As you can see, the constraint in question is defined by means of a CREATE ASSERTION
statement in SQL. For some reason, SQL sometimes (but not always!) calls constraints
assertions. As for that AS POINTLESS specification, it’s pointless, but it’s required by the rules
of the SQL standard. PS: It might help to point out that “all employees in the same department
earn the same salary” means that table EMP is subject to a functional dependency (FD) from
department number to salary.

13 In fact, you can prove that you can prove that 1 = 0! See Appendix B.

Appendix A WhAt is dAtAbAse design, AnyWAy?

406

that if the database is ever inconsistent in the foregoing formal sense, you can never trust

the answers you get to queries—they might be false, they might be true, and you have

no way in general of knowing which they are. In other words, all bets are off. That’s why

consistency in the formal sense is so crucial. It’s also why, contrary to popular opinion,

integrity checking must always be immediate—i.e., it must be done at the end of any

update operation that has the potential to violate the integrity constraint in question. (In

other words, so called “deferred checking,” meaning integrity checking that’s deferred

to the end of the pertinent transaction, is a violation of the principles of the relational

model; in fact, it’s a logical error.)

But consistency in the formal sense isn’t necessarily the same thing as consistency

as conventionally understood, meaning consistency as that term is typically used

outside the world of databases in particular. Suppose items X and Y in the database are

meant to represent quantities x and y in the real world, and suppose further that x and y

are supposed always to be equal. (They might, for example, both be the selling price for

some commodity, represented twice in the database because replication is being used

to improve availability.) If X and Y in fact have different values at some given time, we

might certainly say, informally, that there’s an inconsistency in the data as stored at that

time. But that “inconsistency” is an inconsistency as far as the system is concerned only

if the system has been told that X and Y are supposed to be equal—i.e., only if “X = Y”

has been declared as a formal integrity constraint. If it hasn’t, then (a) the fact that X ≠ Y

at some time doesn’t in itself constitute a consistency violation as far as the system is

concerned, and (b) importantly, the system will never rely on an assumption that X and

Y are equal.

Thus, if all we want is for X and Y to be equal “eventually”—i.e., if we’re content for

that requirement to be handled in the application layer—all we have to do as far as the

database system is concerned is omit any declaration of “X = Y” as a formal constraint.

No problem, and in particular no violation of the relational model.

Appendix A WhAt is dAtAbAse design, AnyWAy?

407
© C. J. Date 2019
C. J. Date, Database Design and Relational Theory, https://doi.org/10.1007/978-1-4842-5540-7_19

APPENDIX B

More on Consistency

You may be consistent or inconsistent,
but you shouldn’t switch all the time between the two.

—Anon., quoted in Edsger W. Dijkstra:
Selected Writings on Computing: A Personal Perspective (1982)

The following is a lightly edited extract from Appendix A:

To say the database is consistent means it conforms to all stated

constraints. Now, it’s crucially important that the database always

be consistent in this formal sense; indeed, a database that’s

not consistent in this sense, at some particular time, is like a

logical system that contains a contradiction. Well, actually, that’s

exactly what it is—a logical system with a contradiction. And in

a logical system with a contradiction, you can prove anything;

for example, you can prove that 1 = 0. (In fact, you can prove that

you can prove that 1 = 0!) What this means in database terms is

that if the database is ever inconsistent in the foregoing formal

sense, you can never trust the answers you get to queries—they

might be false, they might be true, and you have no way in

general of knowing which they are. In other words, all bets are

off. That’s why consistency in the formal sense is so crucial. It’s

also why, contrary to popular opinion, integrity checking must

always be immediate—i.e., it must be done at the end of any

update operation that has the potential to violate the integrity

408

constraint in question. In other words, so called “deferred

checking,” meaning integrity checking that’s deferred to the end

of the pertinent transaction, is a violation of the principles of the

relational model; in fact, it’s a logical error.

Well, it occurred to me on reviewing that previous appendix that the message

contained in the foregoing text could do with some elaboration. I mean, it raises various

questions—rather important questions—that any competent database professional

really ought to be able to answer, and yet don’t seem to have received very much

attention in the literature.1 For that reason, I’d like to address those questions in the

this appendix (which can thus be seen as a kind of postscript to the previous one—an

appendix to an appendix, if you like).

 The Database Is a Logical System
Let D be a database design and let DB be a corresponding database value (i.e., a set of

values for the relvars mentioned in D). As we know, then, the tuples in the relations2

in DB can be regarded as representing certain propositions, propositions that are

assumed by convention to be true ones. By way of example, let’s assume until further

notice that D is our usual design for suppliers and parts and DB accordingly is our

usual sample value (shown again for convenience in Figure B-1). Then all of the

following are “true facts”:

Supplier S1 is named Smith, has status 20, and is located in city

London.

Part P1 is named Nut, has color Red and weight 12.0, and is stored

in city London.

Supplier S1 supplies part P1 in quantity 300.

And so on.

1 I’ve written about most of those questions myself in various books and papers elsewhere, but I
think it’s worth bringing them together in one place and airing them all at least one more time.

2 Throughout this appendix the term relation can be harmlessly taken to mean a base relation
specifically.

Appendix B More on ConsistenCy

409

What I didn’t mention previously, though, is that the integrity constraints that any

given database value is supposed to satisfy can be understood as propositions too (again,

propositions that are assumed to be true ones). For example, consider the following

expression, which might be used to represent the fact that there’s a foreign key constraint

between shipments (SP) and suppliers (S):

SP { SNO } ⊆ S { SNO }

(“the projection of SP on SNO is a subset—not necessarily a proper subset—of the

projection of S on SNO”). The symbols SP and S are relvar names, of course, but in

logical terms they can be understood as designators, where a designator is simply

something that denotes, or designates, some specific object. As far as the database value

DB is concerned, of course, those particular designators denote the current value of

the suppliers relvar and the current value of the shipments relvar, respectively, and the

constraint becomes (paraphrasing):

Every supplier number in the shipments relation also appears in the

suppliers relation.

And this latter statement is indeed a proposition. Thus, DB overall (data plus constraints)

can be regarded (a trifle loosely) as a collection of propositions, propositions that are—to

say it one more time—supposed to be true ones.

Figure B-1. The suppliers-and-parts database—sample value

Appendix B More on ConsistenCy

410

But we can go further. The fact is, a database value like DB, together with the

operators that can be applied to the propositions in that database, can be regarded as

a logical system. That is, it’s a formal system—like euclidean geometry, for example—

that has axioms (“given truths”) and rules of inference by which we can prove theorems

(“derived truths”) from those axioms. Indeed, it was Codd’s very great insight, when

he first invented the relational model back in 1969, that a database isn’t really just

a collection of data (despite the name); rather, it’s a collection of facts, or what the

logicians call true propositions. Those propositions are represented by the tuples in

the relations and the associated constraints, and they constitute the axioms of the

logical system under discussion. And the inference rules are essentially the rules by

which new propositions can be derived from those given ones; in other words, they’re

the rules that tell us how to apply the operators of the relational algebra. So when the

system evaluates some relational expression—in particular, when it responds to some

query—what it’s really doing is deriving new truths from given ones; in effect, it’s

proving a theorem!

Once we recognize the truth of the foregoing, we see that the whole apparatus of

formal logic becomes available for use in attacking “the database problem.” In other

words, questions such as

• What should the data look like to the user?

• What should the constraints look like?

• What should the query language look like?

• How should results be presented to the user?

• How can we best implement queries (or, more generally, evaluate

database expressions)?

• How should we design the database in the first place?

all become, in effect, questions in logic—i.e., questions that are susceptible to logical

treatment and can be given logical answers.

Of course, it goes without saying that the relational model supports the foregoing

perception of what databases are all about very directly—which is why, in my opinion,

the relational model is rock solid, and “right,” and will endure.

Appendix B More on ConsistenCy

411

 Proving that 1 = 0
In the text quoted at the beginning of the appendix, I said this, more or less:

In a logical system with a contradiction, you can prove anything;

for example, you can prove that 1 = 0. In fact, you can prove that

you can prove that 1 = 0!

All right, so here’s the proof:

• Suppose the system in question is such that it states, either

implicitly or explicitly,3 that both p and NOT p are true (there’s the

contradiction), where p is some proposition.

• Let q be an arbitrary proposition.

• From the truth of p, we can infer the truth of p OR q.

• From the truth of p OR q and the truth of NOT p, we can infer the

truth of q.

• But q was arbitrary!—it could, for example, be the proposition 1 = 0.

QED.

It follows more generally that absolutely any proposition whatsoever can be shown to

be “true” in an inconsistent system.

3 As far as databases are concerned, a proposition is stated explicitly if it corresponds either to a
“base tuple” (i.e., a tuple in the current value of some base relvar) or to some stated constraint. A
proposition is stated implicitly if it’s not stated explicitly but is a logical consequence of the ones
that are.

Appendix B More on ConsistenCy

412

 Wrong Answers
The foregoing argument should be sufficient to show the crucial importance of integrity

constraints. To be specific, if the database is in violation of some constraint, then the

logical system that’s the database is inconsistent—and (as we now know) we can get

absolutely any answer at all from an inconsistent system.4

That said, however, the skeptic might still say “Really? I’m not convinced. Come on,

show me a realistic example, not one of your abstract p and q arguments.” So let me see if

I can rise to this challenge.

I’ll start with a really simple example. Suppose the current value of the suppliers-

and- parts database is such that (a) there’s at least one supplier; (b) there’s a constraint

to the effect that there must always be at least one part; but in fact (c) right now there

aren’t any parts at all (there’s the inconsistency). Now consider the relational calculus

expression:5

S WHERE EXISTS P (TRUE)

Or if you prefer SQL:

SELECT ∗
FROM S

WHERE EXISTS

 (SELECT ∗
 FROM P)

Now, if either of these expressions is evaluated directly, the result will be empty,

because the expression in the WHERE clause evaluates to FALSE. Alternatively, if the

system (or the user, come to that) observes that there’s a constraint that says that EXISTS

P (TRUE) must evaluate to TRUE—or, in SQL, that SELECT ∗ FROM P must return

4 Perhaps I should rephrase the first part of this sentence. As should be clear from the text quoted
at the beginning of the appendix, I’m interested here in consistency in its formal sense only. (See
Appendix A for a brief discussion of the difference between formal and informal consistency.)
And a database is inconsistent in that formal sense if and only if it’s in violation of some stated
constraint—and that and only if is important.

5 I’m using a dialect of relational calculus here that allows a relvar name to be used to denote a
range variable that ranges over the tuples of the relation that’s the current value of the relvar with
that name (just as SQL does, in fact).

Appendix B More on ConsistenCy

413

a nonempty result—then that WHERE clause can be replaced by one saying simply

WHERE TRUE, and the result will then be all suppliers.6 At least one of these answers

must be wrong! In a sense, in fact, they’re both wrong; given an inconsistent database,

there simply isn’t—there can’t be—any well defined notion of correctness, and any

answer is as good (or bad) as any other. Indeed, this state of affairs should be self-

evident: If I tell you some proposition p is both true and false, and then I ask you whether

some proposition that relies on p in some way is true, there’s simply no right answer you

can give me.

In case you’re still not convinced, consider the following slightly more realistic

SQL example:

SELECT CASE

 WHEN EXISTS (SELECT ∗ FROM P)
 THEN (x)

 ELSE (y)

 END AS Z

FROM S

Under the same assumptions as before—i.e., at least one supplier but no parts,

despite a constraint saying there should be a part—this expression will return either

x or y (more precisely, it will return a table containing a row containing either x or

y), depending, in effect, on whether or not the EXISTS invocation is replaced by

just TRUE. Now consider that x and y can each be essentially anything at all ... For

example, x might be the SQL expression SELECT SUM (WEIGHT) FROM P while y

might be the literal 0.0—in which case executing the query could easily lead to the

erroneous conclusion that the total part weight is null instead of zero. (The total part

weight should be zero, of course, if there are no parts. What makes the wrong answer

particularly galling in this example is that the user has clearly gone out of his or her way

to formulate the query in such a way as to obtain the logically correct answer, zero, if

indeed there are no parts.)

6 Using an integrity constraint in this way in the evaluation of some expression is known as
semantic transformation. As the text suggests, such transformations can be done—indeed are
done, all the time—by the user or the DBMS or both.

Appendix B More on ConsistenCy

414

 Generalizing the Argument
One reviewer of an early version of this appendix, still not convinced, tried a

different question. He asked, in effect, how we might express the query “Get the

total shipment quantity, taken over all shipments” in such a way as to obtain some

specific incorrect answer, say 5000, from a certain inconsistent database. Well, before

I try to answer that question, let me try to generalize the argument as presented in

the previous section.

First of all, then, we know that a database value is, abstractly, a collection of

propositions. Let DBP be the collection of propositions constituting database value

DB. Let LA be the logical AND—i.e., the conjunction—of all of the propositions in DBP.

Further, let some query against DB return a result R, where R is a relation that’s derived

from the relations in DB by evaluating the relational expression representing the given

query. Of course, R in turn can be understood as another collection of propositions RP;

so we can say that “LA implies RP” is true, or in other words that the propositions in RP

are a logical consequence of those in LA. But if DB is inconsistent (i.e., if DBP involves a

contradiction), LA evaluates to FALSE—and the implication “FALSE implies p” evaluates

to TRUE for all possible propositions p,7 regardless of whether that proposition p is true

or false in itself. If DB is inconsistent, therefore, we have no way (in general) of knowing

whether the individual propositions in RP are true or false.

Now I return to the reviewer’s question: How might we express the query “Get the

total shipment quantity, taken over all shipments” in such a way as to obtain the answer

5000 from a certain inconsistent database? In fact I don’t think the way this question is

stated makes very much sense. In Tutorial D, the obvious way of expressing the query as

such (i.e., ignoring for the moment the requirement that it has to return the value 5000

against a certain inconsistent database) is as follows:

EXTEND TABLE_DEE : { TOTQ := SUM (SP , QTY } }

Or if you prefer SQL:

SELECT SUM (QTY) AS TOTQ

FROM SP

7 Sometimes stated in the form “If you’ll believe a falsehood, you’ll believe anything.”

Appendix B More on ConsistenCy

415

Evaluating either of these expressions yields a result that looks like this:

The corresponding proposition is “The total shipment quantity TOTQ, taken over

all shipments, is x.” Now, it doesn’t matter what the actual value of x is (it might or

might not be 5000); what matters is that if the database is inconsistent, we have no way

of knowing whether the corresponding proposition is true or false (i.e., whether x is

the true total quantity). In other words, it’s not how we write the query that’s the point

at issue—it’s how we interpret the result. More specifically, we can’t assume that the

result we’ve been given is correct. As I said earlier, if the database is inconsistent, then

all bets are off.8

 Why Integrity Checking Must Be Immediate
In the text quoted at the beginning of the appendix, I said this, more or less:

Contrary to popular opinion, integrity checking must always

be immediate—i.e., it must be done “at statement boundaries,”

meaning the end of any update operation that has the potential

to violate the integrity constraint in question. In other words, so

called “deferred checking,” meaning checking that’s deferred to

the end of the pertinent transaction, is a violation of the principles

of the relational model; in fact, it’s a logical error.

8 But in case you’re still not convinced, of course I could write an expression that apparently
represents the query “Get the total shipment quantity, taken over all shipments” but in fact
returns the value 5000 (at least potentially) if the database happens to be inconsistent. I’ll leave
the details as an exercise.

Appendix B More on ConsistenCy

416

Actually there are at least five reasons for insisting that database constraints must be

checked at statement boundaries, but the first and biggest one is simply that (as I’ve tried

to show in previous sections) we can never tolerate any inconsistencies in the database,

not even within the bounds of a single transaction. That is, while it might be true, thanks

to the so called isolation property of transactions, that no more than one transaction

ever sees any particular inconsistency, the fact remains that the particular transaction in

question does see the inconsistency and can thereby produce wrong answers. Note: The

book SQL and Relational Theory contains a detailed discussion of the foregoing issue,

as well as of the other four reasons—the other four reasons, that is, for insisting that

database constraints must always be checked at statement boundaries.

Appendix B More on ConsistenCy

417
© C. J. Date 2019
C. J. Date, Database Design and Relational Theory, https://doi.org/10.1007/978-1-4842-5540-7_20

APPENDIX C

Primary Keys Are Nice
but Not Essential

Life is rather like a tin of sardines—
we’re all of us looking for the key.

—Alan Bennett:
Beyond the Fringe (1960)

Recall this text from Chapter 1:

I said it’s usual to choose a primary key. Indeed it is usual—but

it’s not 100% necessary. If there’s just one candidate key, then

there’s no choice and no problem; but if there are two or more,

then having to choose one and make it primary smacks a little

bit of arbitrariness, at least to me. (Certainly there are situations

where there don’t seem to be any really good reasons for making

such a choice. There might even be good reasons for not doing

so. Appendix C [i.e., the present appendix] elaborates on such

matters.)

Now, the position articulated in this extract clearly flies in the face of conventional

wisdom; indeed, it might even be said to contravene certain widely accepted precepts of

the relational model, or of relational theory in general. To be specific:

• Out of the necessarily nonempty set of keys possessed by a

given relvar, the relational model as originally defined ascribes a

primal role to an arbitrarily chosen member of that set called the

primary key.

418

• Relational design methodologies—though not the relational model

per se—tend to suggest, again a trifle arbitrarily, that a given “entity”

should be identified and referenced throughout the database by the

same (primary) key value everywhere it’s represented.

As indicated, however, these recommendations—some might even call them

prescriptions—both involve a certain degree of arbitrariness. The first in particular has

always been the source of some slight embarrassment to relational advocates (myself

included). One of the strongest arguments in favor of the relational model is and

always has been its claim to a solid logical foundation. However, whereas this claim

is clearly justified for the most part, the distinction between primary and alternate

keys1—i.e., the idea of having to choose one member from a set of equals and make it

somehow “more equal than the others”—has always seemed to rest on grounds that

don’t enjoy the same degree of theoretical respectability. Certainly there doesn’t seem

to be any formal justification for the distinction; it seems to smack more of dogma than

logic, which is why as I said I find the situation embarrassing. This appendix grew out

of my own increasing dissatisfaction with the seeming lack of solid justification for the

orthodox relational position on these matters. (As a friend of mine once said to me,

these are the areas where in live presentations “You talk very quickly and hope no one

will notice.”)

What’s more, not only does there seem to be no formal justification for the primary

vs. alternate key distinction, there doesn’t seem to be any formal way of making the

choice, either. Indeed, Codd himself is on record as saying “The normal basis [for

making the choice] is simplicity, but this aspect is outside the scope of the relational

model” (my italics).2 But why should it be necessary to make the choice in the first

place?—i.e., why, in those cases where a genuine choice does exist, should it be

necessary, or desirable, to introduce such an element of arbitrariness?

Furthermore, the relational model as originally defined goes on to insist that all

references via foreign keys, anywhere in the database, to (tuples in) a given relvar must

always be via that relvar’s primary key specifically, never via some alternate key. Thus we

see that a decision that was essentially arbitrary in the first place—the choice of which

1 The term alternate key was defined in Chapter 1, but I repeat the definition here for convenience:
Let relvar R have two or more keys and let one be chosen as primary; then the others are
alternate keys. (The term isn’t used much in practice, but I do need to use it in this appendix.)

2 The quote is from Codd’s paper “Domains, Keys, and Referential Integrity in Relational
Databases,” InfoDB 3, No. 1 (Spring 1988).

Appendix C primAry Keys Are niCe but not essentiAl

419

key is to be primary—can lead to arbitrary restrictions on subsequent decisions as well;

that is, it might constrain the set of decisions as to what can and can’t be a legal foreign

key, in ways that might not have been foreseen when that first decision (i.e., the primary

key decision) was made.

I claim, then, that the idea that a distinction should be made, in the relational model

as such, between primary and alternate keys—hereinafter referred to as the PK:AK

distinction—introduces an unpleasant note of arbitrariness, artificiality, awkwardness,

and asymmetry into what is otherwise a formally defined system (viz., the relational

model). I claim further that it can also serve to introduce an unpleasant degree of

arbitrariness, artificiality, awkwardness, and asymmetry into the database itself. And

I claim still further that it can also lead to an undesirable and unnecessary distinction

between base and derived relvars, as I’ll show.

All of that being so, can the PK:AK distinction truly be justified? This appendix offers

what I consider to be strong arguments in support of the position that the answer to this

question must be no.

 Arguments in Defense of the PK:AK Distinction
Before I consider consequences of the PK:AK distinction in detail, I should first examine

the arguments in its defense. Since I’m on record as a defender of that distinction

myself,3 perhaps I should begin by summarizing, and with hindsight responding to, my

own arguments! The principal ones were as follows:

 1. Dropping the PK:AK distinction would imply among other things

that “the entity integrity rule” would have to be extended to apply

to all candidate keys (all candidate keys in base relvars, at any

rate). Note: Refer to Chapter 1 if you need to refresh your memory

regarding the term candidate key.

As I expect you know, the entity integrity rule is a rule to the effect that attributes

participating in the primary key of a base relvar don’t allow nulls. Now, I’ve argued for a

long time that this rule should be dropped anyway, partly because it has to do with nulls

(a concept I categorically reject), and partly because it draws a distinction between base

3 In “Why Every Relation [sic] Should Have Exactly One Primary Key,” in Relational Database:
Selected Writings (Addison-Wesley, 1986); “Referential Integrity and Foreign Keys,” in Relational
Database Writings 1985-1989 (Addison-Wesley, 1990); and elsewhere.

Appendix C primAry Keys Are niCe but not essentiAl

420

and other relvars and thereby violates The Principle of Interchangeability (i.e., of base

relvars and views); thus, I now find this first argument in favor of the PK:AK distinction to

be irrelevant.

Note: In case you’re unfamiliar with The Principle of Interchangeability, I should

explain that basically what it says is that there shouldn’t be any unnecessary distinctions

between base relvars and views—views should “look and feel” to the user just like base

relvars.

 2. The discipline of using the same symbol to identify a given entity

everywhere it’s referenced allows the system to recognize the fact

that those references do all refer to the same thing.

This argument is clearly valid as far as it goes, but I now feel the discipline referred

to should be treated as an informal guideline rather than a hard and fast requirement.

See the discussions later in this appendix—in particular, the applicants and employees

example—for examples of situations in which it might be desirable not to follow such a

guideline in practice. In any case, the guideline in question really has to do with design

(in other words, with how to apply the relational model in some specific situation),

not with the relational model as such; in particular, therefore, it has nothing to do with

whether the relational model as such should insist on primary keys. I must have been a

little confused when I advanced this argument originally.

 3. “Metaqueries”—i.e., queries against the catalog—can be more

difficult to formulate if entities are identified in different ways

in different places. For example, consider what’s involved in

formulating the metaquery “Which relvars refer to employees?”

if employees are referred to sometimes by employee number and

sometimes by social security number.

The idea here is basically that the discipline referred to under point 2 above can be

beneficial for the user as well as the system. Again, however, it seems to me that we’re

really talking about informal guidelines, not absolute requirements.

 4. My next point wasn’t exactly an argument for the PK:AK

distinction, but rather a criticism of an argument against it. This

latter argument went as follows: Suppose some user is prevented,

for security reasons, from seeing some primary key; then that user

needs access to the data by some alternate key instead; so why

make the PK:AK distinction in the first place?

Appendix C primAry Keys Are niCe but not essentiAl

421

I still don’t find “this latter argument” very convincing, but of course criticizing an

argument against some position doesn’t prove the contrary position is correct!

 5. My final point was an appeal to Occam’s Razor (“Concepts should

not be multiplied beyond necessity”). In effect, I was arguing

that to treat all candidate keys as equals was to complicate the

relational model’s tuple level addressing scheme unnecessarily.

But it might well be argued (and now I would argue) that Occam’s

Razor actually applies the other way around, and that it’s the

concepts of primary key and alternate key that are unnecessary!—

i.e., all we really need is candidate keys, or in other words just keys

tout court.

In a nutshell, the foregoing arguments no longer seem to me very compelling; the

only one that still appears to have any validity is the one summarized under points 2 and

3 above, which (as I’ve said) isn’t really an argument for making the PK:AK distinction in

the relational model as such, anyway. As I’ve also said, I now feel the position supported

by that particular argument should be seen more as a guideline than as an inviolable

rule (again, see later for examples to justify this position).

I note in passing, though, that I did hedge my bets somewhat when I first discussed

this issue ... Here’s another extract from the pertinent paper (I’ve reworded it just

slightly here):

Note that if we can agree on retaining the PK:AK distinction

for now, there’s always the possibility of eliminating that

distinction if desirable at some future time. And note moreover

that this argument doesn’t apply in the opposite direction:

Once we’re committed to treating all candidate keys equally, a

system that requires a distinguished primary key will forever be

nonstandard.

Although I didn’t say as much at the time, this quote effectively constitutes an

appeal to The Principle of Cautious Design, a principle I do still strongly believe

in.4 Indeed, it seems to me that the very fact that I’m able to shift my position on

4 The Principle of Cautious Design says: Given a design choice between options A and B, where A is
upward compatible with B and the full implications of B aren’t yet known, the cautious decision
is to go with A.

Appendix C primAry Keys Are niCe but not essentiAl

422

the PK:AK distinction now—which is indeed what I’m doing—can be seen as a

vindication of that principle.

Before closing this section, I remark that Codd himself is also on record, in the

same paper where he said there was no formal basis for choosing the primary key, as a

defender of the PK:AK distinction (not surprisingly, since he originated it):

Severe problems would arise ... if any relvar whatsoever were

permitted to have more than one primary key [sic] ... The

consequences of permitting more than one primary key ... for a

single base relvar [would be] disastrous.

(I’ve taken the liberty of replacing Codd’s term relation by the term relvar twice

in this extract.) He goes on to give an example involving employees with “several

distinct responsibilities”—project management, department management, inventory

management, etc.—and then says:

Comparing for equality of identifiers ... is intended to establish

that one and the same employee is involved ... This objective is

dealt a severe blow if the types of identifiers used for employees

can be different depending on which pair of employee-identifying

[attributes] is selected for the comparison.

Well, I think you can see this argument is essentially the same as the one given under

points 2 and 3 above, which (a) as I’ve already indicated, is slightly confused, and (b) as

we’ll see later in this appendix, doesn’t fully stand up under close scrutiny anyway.

 Relvars with Two or More Keys
Now let’s consider some reasonably realistic examples of relvars with two or more

keys. The first concerns a relvar EXAM, with attributes S (student), J (subject), and P

(position), and predicate Student S was examined in subject J and achieved position P in

the class list. For the sake of the example, let’s assume there are no ties (that is, no two

students obtained the same position in the same subject). Then, clearly, given a student

and subject, there’s exactly one corresponding position; equally, given a subject and

position, there’s exactly one corresponding student. So the FDs {S,J} → {P} and {J,P} → {S}

both hold, and {S,J} and {J,P} are both keys (or both candidate keys, if you prefer):

Appendix C primAry Keys Are niCe but not essentiAl

423

EXAM { S , J , P }

 KEY { S , J }

 KEY { J , P }

Exercise: What normal form is this relvar in?

Here’s another example (it’s basically Exercise 14.3 from Chapter 14): We’re given

a relvar representing marriages, with attributes A, B, and C and predicate Person A

married person B on date C. Assuming no polygamy, and assuming also that no two

persons marry each other more than once, every pair of attributes here is a key:

MARRIAGE { A , B , C }

 KEY { A , B }

 KEY { B , C }

 KEY { C , A }

And here’s yet another example, based on a simple airline application (the predicate

is Pilot PILOT takes a flight out from gate GATE at hour HOUR on day DAY):

ROSTER { DAY , HOUR , GATE , PILOT }

 KEY { DAY , HOUR , GATE }

 KEY { DAY , HOUR , PILOT }

How do we choose the primary key in cases like the foregoing? What grounds

are there for choosing one key over another? Codd’s criterion of “simplicity” doesn’t

seem to help. Note too that whichever one we choose, we wind up with an unpleasant

asymmetry; e.g., in the marriage example, we might find ourselves treating one spouse

as “more equal than the other” (and thereby certainly offending someone). Why should

we be forced to introduce such asymmetry? Asymmetry is usually not a good idea. Here

again, repeated from Chapter 17, is that quote from Polya: “Try to treat symmetrically

what is symmetrical, and do not destroy wantonly any natural symmetry.”

Now, in all of the foregoing examples the keys were not only composite, they all

overlapped one another (i.e., they had an attribute in common). Lest it be thought

that it’s only when keys overlap that there might be difficulty in choosing the primary

key, therefore, let me give a counterexample. Suppose we have a relvar ELEMENT

representing the periodic table (i.e., the table of chemical elements).5 Then every

5 Actually, ELEMENT might more realistically be a relation constant, not a relation variable, but
it still has to satisfy certain key constraints. (The same goes for the PLUS example in Chapter 16,
incidentally, q.v.)

Appendix C primAry Keys Are niCe but not essentiAl

424

element has a unique name (e.g., lead), a unique symbol (e.g., the symbol for lead is Pb),

and a unique atomic number (e.g., the atomic number for lead is 82). The relvar thus

clearly has three distinct keys, all of which are simple (i.e., they each involve just one

attribute), and there’s obviously no overlap at all. On what grounds do we choose one of

these three keys as the primary key? It seems to me a good case could be made for any of

them, depending on circumstances.

Here’s another familiar (perhaps all too familiar) example of a relvar with several

keys, all of which are simple:

TAX_BRACKET { LOW , HIGH , RATE }

 KEY { LOW }

 KEY { HIGH }

 KEY { RATE }

Of course, I’m assuming here that no two taxable income ranges (LOW to HIGH)

are subject to the same tax rate. Note: I suggested in Chapter 14 that tax brackets might

better be represented as a single interval valued attribute (RANGE, say) instead of

separate LOW and HIGH attributes. Even if it were, however, there would still be two

nonoverlapping keys, RANGE and RATE.

I could give many more examples, but by now my point is presumably clear: Not

only are there no formal criteria for choosing one key over another, in those cases where

there’s a choice, but sometimes there don’t appear to be any informal criteria either.

Thus, it really doesn’t seem appropriate to insist that such a choice must always be

made, even if it’s appropriate in some cases (perhaps even in most cases).

There’s another important point that needs to be mentioned, a more formal one

than most of those I’ve been making so far. Over the past 50 years a great deal of research

has been carried out on dependency theory and further normalization, view updating,

optimization (including semantic optimization in particular), and many other matters.

And in all of this research it’s candidate keys, not primary keys, that play the crucial role.

(Indeed, it must be, precisely because the research in question is formal. The candidate

key concept is formally defined. The primary key concept isn’t.) Since this is so, it really

doesn’t seem appropriate to insist formally on the PK:AK distinction—though, to repeat,

it might be appropriate to recommend it informally.

Appendix C primAry Keys Are niCe but not essentiAl

425

Yet another point I want to make is that the PK:AK distinction seems to lead to an

undesirable and unnecessary differentiation between base relvars and other relvars (at

least according to Codd). That’s because, according to Codd, the relational model:

• Requires primary keys for base relvars;

• Permits but does not require them for views and snapshots; and

• Considers it “completely unnecessary for primary keys to be declared

or deduced” for any other relvars (italics in the original).

These statements are paraphrased (but only slightly) from the paper in which Codd

said there was no formal basis for choosing the primary key.6 As a matter of fact, that

paper goes so far as to suggest that relvars other than base ones might not even possess

a primary key, a suggestion that if true surely raises serious questions about the concept

in the first place (remember The Principle of Interchangeability). Be that as it may, my

position on these matters is rather different. To be specific, I would say that:

• First, every relvar, base or derived, does have at least one key

(because, of course, no relation, and a fortiori no relvar, ever permits

duplicate tuples).

• Second, every base relvar must have at least one key explicitly

declared. Preferably, of course, all such keys should be explicitly

declared. (In fact, a base relvar key that’s not explicitly declared

simply isn’t a key so far as the system—or the relational model itself,

come to that—is concerned.)

• Often a base relvar will have an explicitly declared primary key

in particular, but I don’t insist on this state of affairs as a hard

requirement.

• For reasons explained in detail in SQL and Relational Theory, I

believe the system should be able to deduce keys for derived relvars.

• The previous point notwithstanding, I believe it should also be

possible to declare keys, explicitly, for derived relvars (for views and

snapshots in particular). Again, see SQL and Relational Theory for

further discussion.

6 I.e., the paper mentioned in footnote 2.

Appendix C primAry Keys Are niCe but not essentiAl

426

 The Invoices and Shipments Example
I now turn my attention to a more elaborate example. The example (which is based on

a real world application) concerns invoices and shipments, and there’s a one to one

relationship between these two entity types: Each shipment has exactly one invoice,

each invoice has exactly one shipment. Here then is the “obvious” database design (for

the sake of the example, I use a hypothetical syntax that explicitly distinguishes between

primary and alternate keys):7

INVOICE { INVNO , SHIPNO , INV_DETAILS }

 PRIMARY KEY { INVNO }

 ALTERNATE KEY { SHIPNO }

 FOREIGN KEY { SHIPNO } REFERENCES SHIPMENT

SHIPMENT { SHIPNO , INVNO , SHIP_DETAILS }

 PRIMARY KEY { SHIPNO }

 ALTERNATE KEY { INVNO }

 FOREIGN KEY { INVNO } REFERENCES INVOICE

So the database structure is as shown in Figure C-1 (note that the arrows in that

figure, in contrast to arrows in figures elsewhere in this book, represent foreign key

references, not functional dependencies):

Now, each relvar in this example actually has two keys, {INVNO} and {SHIPNO}.

However, I assume we can agree for the sake of argument that the “natural” primary key

for INVOICE is {INVNO} and the “natural” primary key for SHIPMENT is {SHIPNO}; then

7 One reviewer asked why a design consisting of three relvars (one each for invoices and
shipments and one for the association between them) wasn’t the “obvious” design. Well, it’s
probably a better design, and it might be the obvious one. But that association relvar still has two
keys (INVNO and SHIPNO), and the major conclusion of the argument that follows—viz., that
those two keys need to be treated as equals—still stands.

Figure C-1. The invoices-and-shipments database

Appendix C primAry Keys Are niCe but not essentiAl

427

{SHIPNO} in INVOICE and {INVNO} in SHIPMENT are alternate keys. Furthermore,

of course, each of those alternate keys is also a foreign key (as Figure C-1 indicates),

referring to the primary key of the other relvar.

One problem with the foregoing design is as follows. Clearly, the database is subject

to the constraint—actually it’s an equality dependency, and I’ll call it Constraint CIS—

that if the INVOICE relvar shows invoice i as corresponding to shipment s, then the

SHIPMENT relvar must show shipment s as corresponding to invoice i (and vice versa):8

CONSTRAINT CIS

 INVOICE { INVNO , SHIPNO } = SHIPMENT { INVNO , SHIPNO } ;

In other words, the tuple (i,s,...) appears in INVOICE if and only if the tuple (s,i,...)

appears in SHIPMENT. But the design illustrated in Figure C-1 doesn’t capture or

enforce this constraint (for example, the configuration of values shown in Figure C-2 is

permitted by that design and yet violates the constraint). The constraint thus needs to be

separately stated (as above) and separately enforced.

it might be thought that if we pretended the primary key for each relvar was
the combination {inVno,sHipno}, and if we further defined each of those
fake “primary keys” to be a foreign key referencing the other, then Constraint
Cis would be taken care of automatically. (in fact, i’ve actually seen such
a subterfuge explicitly recommended, by people who really ought to know
better.) but the relational model requires primary keys—in fact, keys in
general—to be irreducible, meaning they mustn’t contain any attributes that
are irrelevant for unique identification purposes (and there are good reasons
for that requirement, too, as we know from Chapter 4). in other words,
{inVno,sHipno} just isn’t a key (and so it certainly can’t be the primary key)

8 Observe, therefore, that—why, exactly?—the design violates orthogonality (see Chapter 16).

Figure C-2. “Legal” INVOICE and SHIPMENT values that violate constraint CIS

Appendix C primAry Keys Are niCe but not essentiAl

428

for either relvar, and we’d be lying if we told the system otherwise. indeed, if
{inVno,sHipno} were truly a key, then the relationship between invoices and
shipments would be many to many, which it isn’t.

Precisely because Constraint CIS holds, the design of Figure C-1 clearly involves

some redundancy: Every pair of {INVNO,SHIPNO} values appearing in either relvar also

necessarily appears in the other. Now, we could avoid that redundancy by combining the

two relvars into one (“INV_SHIP”), as follows:

INV_SHIP { INVNO , SHIPNO , INV_DETAILS , SHIP_DETAILS }

 PRIMARY KEY { INVNO }

 ALTERNATE KEY { SHIPNO }

By eliminating the redundancy in this way, we’ve also eliminated the need to state

and enforce Constraint CIS. Furthermore, we could now define the original INVOICE

and SHIPMENT relvars as views—specifically, projection views—of INV_SHIP, thus

allowing the user still to regard invoices and shipments as distinct entities.9 This revised

design thus does enjoy certain advantages over the “obvious” version.

On the other hand, there are some disadvantages too. Observe first that we’ve had

to make an asymmetric decision once again, choosing {INVNO} over {SHIPNO}—

arbitrarily—as the primary key for relvar INV_SHIP.10 Second, suppose further that

shipments have certain subsidiary information that invoices don’t; e.g., suppose

shipments are containerized, each shipment involving several containers. Then a new

CONTAINER relvar is needed:

CONTAINER { CONTNO , SHIPNO , ... }

 PRIMARY KEY { CONTNO }

 FOREIGN KEY { SHIPNO } REFERENCES INV_SHIP { SHIPNO }

9 There might be some difficulty over updating those views, of course, given the state of today’s
commercial products—but this is a separate issue, beyond the scope of this appendix (and this
book). See my book View Updating and Relational Theory: Solving the View Update Problem
(O’Reilly, 2013) for further discussion.

10 In fact, which key is chosen as primary might depend on the user’s point of view! That is, users
principally interested in invoices might want {INVNO} to be the primary key, whereas users
principally interested in shipments might want {SHIPNO} to be the primary key.

Appendix C primAry Keys Are niCe but not essentiAl

429

And now we have a foreign key referencing an alternate key!—which the relational

model as originally defined explicitly prohibits, as we know.

Now, can we avoid this apparent violation of the prescriptions of the original model?

Well, of course, the answer is yes. There are various ways in which this might be done:

 1. We could go back to the two-relvar design (thereby reintroducing

the data redundancy and the need for the additional constraint,

however).

 2. We could replace SHIPNO by INVNO in the CONTAINER relvar.

However, this approach seems very artificial (containers have

nothing to do with invoices per se), and moreover introduces an

unpleasant level of indirection into the design (the shipment for

a given container would be accessible only via the corresponding

invoice).

 3. We could leave the CONTAINER relvar as it is, but replace the

foreign key specification by an explicit declaration to the effect

that every SHIPNO value in CONTAINER must also appear in

INV_SHIP (using a language like SQL or Tutorial D that permits

the definition of arbitrarily complex constraints). But it does

seem a pity to have to deal with a constraint that’s so similar to

a “true” foreign key constraint in such a roundabout manner;

indeed, it could be argued that the effect is again to introduce an

undesirable asymmetry, foreign keys that reference primary keys

being treated in one manner and “foreign keys” that reference

alternate keys being treated in quite another.

 4. We could introduce a surrogate primary key ({ISNO}, say) for

INV_SHIP, and use that as the foreign key in the CONTAINER table—

which would still involve a level of indirection, as in paragraph 2

above, but would at least reintroduce the symmetry that was lost

when we arbitrarily chose {INVNO} as the primary key for INV_SHIP.

To summarize: None of these four “workaround” approaches seems totally

satisfactory. The example thus seems to show that—if we wish to avoid redundancy and

arbitrariness and artificiality and asymmetry and indirectness—then we need to be able

to treat primary and alternate keys as equals, and we need to be able to have foreign

keys that reference alternate keys. In other words, we need to ignore the differences

Appendix C primAry Keys Are niCe but not essentiAl

430

between primary and alternate keys, and simply consider them all as just keys. Please

note carefully, however, that I’m not saying the apparent need in this example to violate

certain precepts of the original relational model can’t be avoided; what I’m saying is

I don’t see a good way to avoid it, nor a good reason for adopting a bad way. I would

therefore like to suggest that the precepts in question be treated as strong (?) guidelines

but not as inviolable rules.

 One Primary Key per Entity Type?
I turn now to the second of the two issues mentioned in the introduction to this

appendix: viz., that entities of a given type are supposed to be identified in exactly the

same way everywhere in the database. What this means, loosely speaking, is that there’ll

typically be:

• A single “anchor” relvar for the pertinent entity type, having some

particular primary key, together with

• Zero or more subsidiary relvars giving further information about

entities of that type, each having a foreign key that refers back to the

primary key of that anchor relvar.

(Does this state of affairs remind you of the RM/T design discipline discussed in

Chapter 17?) But several obvious questions arise:

• Might there not be good reasons to have more than one anchor relvar

for a given entity type, perhaps corresponding to different “roles”—

see the discussion of applicants and employees in the next section—

for that entity type?

• If there are several such anchor relvars, might there not be good

reasons to have different primary keys in different anchor relvars—

thus implying that the same entity might be identified in different

ways in different contexts?

• Hence, might there not be good reasons to have different foreign keys

in different relvars that, again, identify the same entity in different

ways in different contexts?

• Finally, might there not even be good reasons to have several distinct

identifiers, all of equal weight, for the same entity in the same relvar?

Appendix C primAry Keys Are niCe but not essentiAl

431

We’ve already seen several examples in this appendix (in the section “Relvars with

More than One Key”) in which the answer to the last of these questions is clearly yes. In

order to examine the other questions, let’s consider another example.

 The Applicants and Employees Example
This example (which, like the invoices and shipments example, is based on a real world

application) concerns applicants for jobs in a certain enterprise. Relvar APPLICANT is

used to keep a record of such applicants:

APPLICANT { ANO , NAME , ADDR , ... }

 PRIMARY KEY { ANO }

The applicant number (ANO) is assigned at the time the applicant applies for the job; it’s

unique to the applicant, and {ANO} thus constitutes the obvious primary key (in fact, it’s

the only key).

Next, several further relvars are used to keep subsidiary applicant information

(previous jobs held, list of references, list of dependants, etc.). I consider just one of these

here, the “previous jobs held” relvar (APPLICANT_JOBS):

APPLICANT_JOBS { ANO , EMPLOYER , JOB , START , END , ... }

 PRIMARY KEY { ANO , START }

 ALTERNATE KEY { ANO , END }

 FOREIGN KEY { ANO } REFERENCES APPLICANT

Observe, incidentally, that once again we seem to be faced with an arbitrary choice of

primary key, but that’s not the point I want to examine here.11

Now, when a job applicant is successful and becomes an employee, he or she

is assigned an employee number (ENO, unique to the employee), and information

regarding the new employee—job title, department number, phone number, etc.—is

recorded in an EMP relvar:

EMP { ENO , JOB , DNO , PHONENO , ... }

 PRIMARY KEY { ENO }

11 Once again, as with the tax bracket example, it might be desirable to use an interval valued
attribute—replacing, in the present case , the pair of attributes START and END—in which case
there’ll be just one key after all and the choice issue goes away. As I’ve said, however, choosing
the primary key isn’t the issue I want to examine here.

Appendix C primAry Keys Are niCe but not essentiAl

432

Now we have two distinct anchor relvars, APPLICANT and EMP, such that the very

same entity (i.e., a successful applicant) is identified by an ANO value in one of the

two and by an ENO value in the other. Of course, it’s true that the two relvars represent

different roles—a tuple in APPLICANT represents a person in an applicant role and the

corresponding tuple in EMP (if there is one) represents the same person in an employee

role—but the fact remains that there’s just a single entity involved.

The foregoing isn’t the end of the story. Clearly, relvar EMP needs to refer back to

relvar APPLICANT somehow (I’m assuming for the sake of the example, though the

assumption might be a little unrealistic, that every employee was once an applicant).

Thus, we need to add an ANO attribute to the EMP relvar and define a foreign key

accordingly:

EMP { ENO , ANO , JOB , DNO , PHONENO , ... }

 PRIMARY KEY { ENO }

 ALTERNATE KEY { ANO }

 FOREIGN KEY { ANO } REFERENCES APPLICANT

Now we have two candidate keys once again!—namely, {ENO} and {ANO}. This point

will be relevant in a few moments; for now, however, I’ll ignore it.

Next, of course, we’ll need additional relvars to carry subsidiary information for

employees (salary history, benefit details, etc.). Here’s the salary history relvar:

SAL_HIST { ENO , DATE , SALARY , ... }

 PRIMARY KEY { ENO , DATE }

 FOREIGN KEY { ENO } REFERENCES EMP

Now we have the very same entity being not only identified, but also referenced, by an

ENO value in one relvar (SAL_HIST) and by an ANO value in others (APPLICANT_JOBS,

EMP). In other words, the database structure is as shown in Figure C-3.

Appendix C primAry Keys Are niCe but not essentiAl

433

Now, we might avoid the apparent need for two different identifiers (ANO and ENO)

for the same entity type by regarding EMP as a subtype of APPLICANT;12 after all, every

employee is or once was an applicant (loosely speaking), while the converse isn’t true. In

this way we could use {ANO} as the primary key for EMP, treating {ENO} as an alternate

key (or even dropping it altogether), and replace ENO by ANO in the SAL_HIST relvar.

The database structure is now as shown in Figure C-4:

However, note the implications of this state of affairs: It’s not just the database

design that’s changed, it’s the way the enterprise has to operate. (For a start, it now has

to identify employees by applicant number instead of employee number.) Why should

the enterprise change its way of doing business, just because of a piece of relational

dogma (“one primary key per entity type”)? To be specific, why shouldn’t it be allowed

to identify applicants by applicant number and employees by employee number—even

though applicants and employees are all persons, and indeed every employee is (or once

was) also an applicant?

12 But see Chapter 17, footnote 11, in this connection.

Figure C-3. The applicants-and-employees database

Figure C-4. Using {ANO} as the primary key for EMP

Appendix C primAry Keys Are niCe but not essentiAl

434

Another possibility would be to introduce a person relvar and then regard both
AppliCAnt and employee as subtypes of person. i leave the details as an
exercise for the reader; i simply remark that this approach basically doesn’t solve
anything, even if we invent a “person number” (pno) and make {pno} the primary
key of person.

To summarize: The foregoing example strongly suggests there might be occasions on

which it’s indeed desirable (a) to have several different anchor relvars for the same entity

type; (b) to have a different primary key in each of those anchor relvars; and (c) to have

different foreign keys referring to those different primary keys in different subsidiary

relvars. Again, please note that I’m not saying the apparent need here to violate the rule

“one primary key per entity type” can’t be avoided; what I’m saying is I don’t see a good

way to avoid it, nor do I see a good reason for adopting a bad way. Again, therefore, I

would like to suggest that the “one primary key for one entity type” precept be treated as

a strong (?) guideline, but not as an inviolable rule.

 Concluding Remarks
In this appendix I’ve presented a number of pragmatic arguments for:

• Relaxing the commonly accepted rule that every base relvar have a

distinguished key called the primary key

• Relaxing the (perhaps less commonly accepted) rule that every

foreign key refer specifically to a primary key instead of to an

alternate key13

• Relaxing the commonly accepted rule that there be exactly one

anchor relvar for each entity type

13 The reason I say less commonly accepted here is because—to its credit—the SQL standard, at
least, does allow foreign keys to reference any candidate key.

Appendix C primAry Keys Are niCe but not essentiAl

435

Of course, I’m well aware that if we do relax these rules, then we open the door to the

possibility of bad designs. That’s why I recommend retaining recommendations such as

“one primary key per entity type” as rules of thumb, or good design guidelines. In other

words, the rules in question should be violated only if there’s some really good reason

for doing so. But what I’ve tried to show in this appendix is that sometimes such good

reasons do exist.

Appendix C primAry Keys Are niCe but not essentiAl

437
© C. J. Date 2019
C. J. Date, Database Design and Relational Theory, https://doi.org/10.1007/978-1-4842-5540-7_21

APPENDIX D

Historical Notes
History is not what you thought.
It is what you can remember.

—W. C. Sellar and R. J. Yeatman:
1066 and All That (1930)

This appendix presents a brief and not unbiased survey of some of the
seminal research publications in the field of design theory. The publications
in question are listed in chronological order, more or less.

The relational model as such has its origins in two landmark papers by Codd:

• E. F. Codd: “Derivability, Redundancy, and Consistency of Relations

Stored in Large Data Banks,” IBM Research Report RJ599 (August

19th, 1969) and elsewhere

• E. F. Codd: “A Relational Model of Data for Large Shared Data Banks,”

Communications of the ACM 13, No. 6 (June 1970) and elsewhere

The first of these papers has nothing to say about design per se. The second,

however, has a section with the title “Normal Form” that includes the following

tantalizing remarks:

Further operations of a normalizing kind are possible. These are

not discussed in this paper.

These remarks appear following an example that shows how to eliminate relation valued

attributes or RVAs (see the answer to Exercise 12.8 in Chapter 12). Note: The “further

operation” in question—there’s really only one of them—is what Tutorial D calls

UNGROUP. See the answer to Exercise 4.14 in Chapter 4.

438

Design theory as such began with Codd’s introduction of FDs, 2NF, and 3NF in:

• E.F. Codd: “Further Normalization of the Data Base Relational

Model,” in Randall J. Rustin, ed., Data Base System: Courant

Computer Science Symposia Series 6 (Prentice Hall, 1972)

Two brief comments here: First, the title of the paper is misleading—further

normalization isn’t something that’s done to the relational model, it’s something

that’s done to relvars, or rather to relvar designs. (To paraphrase something I said

in the answer to Exercise 1.1 in Chapter 1, the relational model as such doesn’t care

what normal form the relvars are in, just so long as those relvars are indeed relvars—

i.e., relation variables—as such and not something else). Second, a preliminary

version of some of the material in this paper can be found in two earlier papers of

Codd’s. The first is:

• E.F. Codd: “The Second and Third Normal Forms for the Relational

Model,” internal IBM memo (October 6th, 1970)

The second is:

• E.F. Codd: “Normalized Data Base Structure: A Brief Tutorial,” Proc.

1971 ACM SIGFIDET Workshop on Data Description, Access, and

Control, San Diego, Calif., (November 11th-12th, 1971)1

Heath’s Theorem was presented (though not under that name) in the same

workshop as this latter paper.2 See:

• I. J. Heath: “Unacceptable File Operations in a Relational Data Base,”

Proc. 1971 ACM SIGFIDET Workshop on Data Description, Access

and Control, San Diego, Calif. (November 11th-12th, 1971)

1 However, this paper isn’t concerned so much with 2NF and 3NF per se as it is with the idea that
relations can represent anything that other data structures—hierarchies, networks, etc.—can. It
does discuss 2NF and 3NF very briefly, but its coverage of those topics is essentially limited to
giving a single fairly informal example in each case.

2 In fact Codd’s contribution to that workshop references Heath’s, while Heath’s in turn references
Codd’s as yet unpublished 1972 paper on 2NF and 3NF. By the way, it’s pertinent to point out that
Heath’s paper certainly appeared before Codd’s 1974 paper that defined what’s now called BCNF
(see Chapter 5 for further elaboration of this point).

Appendix d HistoricAl notes

439

BCNF was defined in the following paper (though it was referred to therein as “an

improved version” of third normal form):

• E. F. Codd: “Recent Investigations into Relational Data Base Systems,”

Proc. IFIP Congress, Stockholm, Sweden (North-Holland, 1974) and

elsewhere

That same IFIP meeting also saw the first presentation of Armstrong’s axioms for FDs:

• W. W. Armstrong: “Dependency Structures of Data Base

Relationships,” Proc. IFIP Congress, Stockholm, Sweden

(North- Holland, 1974)

MVDs and 4NF and what in Chapter 12 I referred to as Fagin’s Theorem were all

defined in:

• Ronald Fagin: “Multivalued Dependencies and a New Normal Form

for Relational Databases,” ACM Transactions on Database Systems 2,

No. 3 (September 1977)

The axiomatization of MVDs was defined in:

• Catriel Beeri, Ronald Fagin, and John H. Howard: “A Complete

Axiomatization for Functional and Multivalued Dependencies,” Proc.

1977 ACM SIGMOD International Conference on Management of

Data, Toronto, Canada (August 1977)

The theory of dependency preservation had its origins in:

• Jorma Rissanen: “Independent Components of Relations,” ACM

Transactions on Database Systems 2, No. 4 (December 1977)

The next paper is generally credited with being the first to point out that relvars can

exist that aren’t equal to the join of any two of their projections but are equal to the join

of three or more (though in fact, as mentioned in Chapter 9, Codd had effectively made

the same observation in his original 1969 paper):

• A. V. Aho, C. Beeri, and J. D. Ullman: “The Theory of Joins in

Relational Databases,” Proc. 19th IEEE Symposium on Foundations of

Computer Science (October 1977); subsequently republished in ACM

Transactions on Database Systems 4, No. 3 (September 1979)

Appendix d HistoricAl notes

440

The foregoing paper is also the source of the chase algorithm—at least for FDs and

MVDs, though not for JDs in general, because JDs in general hadn’t yet been defined.

In fact, they were first defined in:

• Jorma Rissanen: “Theory of Relations for Databases—A Tutorial

Survey,” Proc. 7th Symposium on Mathematical Foundations of

Computer Science, Springer-Verlag Lecture Notes in Computer

Science 64 (Springer-Verlag, 1979)

The next paper introduced the concept of projection-join normal form (PJ/NF),

also called 5NF (it can be regarded as the definitive statement of what might be called

“classical” normalization theory—i.e., the theory of nonloss decomposition based

on projection as the decomposition operator and natural join as the corresponding

recomposition operator, and the normal forms BCNF, 4NF, and 5NF):

• Ronald Fagin: “Normal Forms and Relational Database Operators,”

Proc. 1979 ACM SIGMOD International Conference on Management

of Data, Boston, Mass. (May/June 1979)

The next paper presents a sound and complete set of inference rules—in other

words, an axiomatization—for inclusion dependencies (INDs):3

• Marco A. Casanova, Ronald Fagin, and Christos H. Papadimitriou:

“Inclusion Dependencies and Their Interaction with Functional

Dependencies,” Proc. 1st ACM SIGACT-SIGMOD Symposium on

Principles of Database Systems, Los Angeles, Calif. (March 1982)

The next three papers define ETNF, RFNF, and SKNF, respectively:

• Hugh Darwen, C. J. Date, and Ronald Fagin: “A Normal Form for

Preventing Redundant Tuples in Relational Databases,” Proc. 15th

International Conference on Database Theory, Berlin, Germany

(March 26th-29th, 2012)

3Using “X ⊆ Y” to represent the IND “X is included in Y,” the rules in question can be stated as
 follows:

 1. X ⊆ X.
 2. If XY ⊆ ZW, then X ⊆ Z and Y ⊆ W.
 3. If X ⊆ Y and Y ⊆ Z, then X ⊆ Z.

Note that these rules are obviously valid if “⊆” is replaced by “=” (i.e., if the INDs are in fact
EQDs).

Appendix d HistoricAl notes

441

• Millist W. Vincent: “Redundancy Elimination and a New Normal

Form for Relational Database Design,” in B. Thalheim and L. Libkin

(eds.), Semantics in Databases, Vol. 1358 of Lecture Notes in Computer

Science (Springer, 1998)

• Ragnar Normann: “Minimal Lossless Decompositions and Some

Normal Forms between 4NF and PJ/NF,” Information Systems 23, No.

7 (1998)

6NF was originally defined in:

• C. J. Date, Hugh Darwen, and Nikos A. Lorentzos: Temporal Data and

the Relational Model: A Detailed Investigation into the Application of

Interval and Relation Theory to the Problem of Temporal Database

Management (Morgan Kaufmann, 2003)

However, this book has since been superseded by:

• C. J. Date, Hugh Darwen, and Nikos A. Lorentzos: Time and

Relational Theory: Temporal Databases in the Relational Model and

SQL (Morgan Kaufmann, 2014)

Domain-key normal form was defined in:

• Ronald Fagin: “A Normal Form for Relational Databases That Is Based

on Domains and Keys,” ACM Transactions on Database Systems 6, No.

3 (September 1981)

As for orthogonality, the concept was first discussed, though not by that name, in:

• C. J. Date and David McGoveran: “A New Database Design Principle,”

Database Programming & Design 7, No. 7 (July 1994); republished in

C. J. Date, Relational Database Writings 1991-1994 (Addison-Wesley,

1995)

Note, however, that orthogonality as described in the present book is significantly

different from the version discussed in the foregoing paper. (I accept full responsibility

for this state of affairs; although the concept was originally due to David McGoveran, I

wrote the bulk of the referenced paper, and I realize now that I must have been rather

confused when I did so.)

Appendix d HistoricAl notes

443
© C. J. Date 2019
C. J. Date, Database Design and Relational Theory, https://doi.org/10.1007/978-1-4842-5540-7

Index
For alphabetization purposes, (a) differences in fonts and case are ignored; (b) quotation
marks are ignored; (c) other punctuation symbols—hyphens, underscores, parentheses,
etc.—are treated as blanks; (d) numerals precede letters; (e) blanks precede everything else.

Symbols
→ (FD arrow), 32
→→ (MVD double arrow), 244
☼ (JD star), 188
⋈ (bow tie), 188
∈ (set membership), 111, 188, 243
⇒ (logical implication), 263
⊆ (subset of), 38
⊂ (proper subset of), 38

Numerals
0-tuple, see empty tuple
1NF, see first normal form
2NF, see second normal form
3NF, see third normal form
3NF procedure, 129–133
(3,3)NF, 312
4NF, see fourth normal form
5NF, see fifth normal form
6NF, see sixth normal form

A
Abbey, Edward, 29
Abbott, Bud, 241

Abiteboul, Serge, 236
Adamson, Chris, xix, 170
Adiba, Michel, 376
Aho, A.V., 439
ALL BUT, 48
all key, 75
alternate key, 12, 418
AND (aggregate operator), 34, 89, 325
arity, 27
Armstrong, Louis, 3
Armstrong, W.W., 146, 439
Armstrong’s axioms, 146
“arrow out of,” 73
“atomic fact,” 289
atomicity (data), 94
attribute

attribute-name / type-name pair, 26
relation valued, see relation valued

attribute
tuple valued, see tuple

valued attribute
attribute renaming, see RENAME
axiomatization

FDs, 147
MVDs, 250
not for JDs, 236

https://doi.org/10.1007/978-1-4842-5540-7

444

B
Bacon, Francis, 145
base relvar, 25
BCNF, see Boyce/Codd normal form
BCNF procedure, 133–134
Beeri, Catriel, 439
Bennett, Alan, 417
Betjeman, John, 393
body

relation, 26, 98
relvar, 99

bound variable, 379
Boyce, Raymond F., 81
Boyce/Codd normal form,

68, 79–80, 102–105
explanation of name, 81

Brown, Robert R., 15
business rule, 120, 402–403

C
candidate key, 10, 74
canonical form, 61
cardinality, 27
Carroll, Lewis, 287, 349
Casanova, Marco A., 440
catalog, 71, 91, 420
chase algorithm, 231–235
Churchill, Winston, 307
Closed World

Assumption, 30, 256
closure

relational algebra, 43
set of attributes, 85, 151–153
set of FDs, 147

Codd, E. F., passim
commalist, 10
common sense, 14–15

completeness, 146
component (JD), 187
composite key, 11
compound

predicate, 289
connection trap, 191
connective, 289
consistency (database), 404–416
consistency (dependencies), 282
CONSTRAINT, 33
constraint, 57

checked immediately, 415–416
see also single-relvar constraint;

multirelvar constraint
contain vs. include, 38
contradiction, 136, 326, 333
Costello, Lou, 241
cover (FDs), 130
CWA, see Closed World Assumption
cyclic rules, 194

D
D, 31
D_UNION, 369
da Vinci, Leonardo, 15
Darling, David, 319
Darwen, Hugh, passim
Darwen’s Theorem, 153
data model

first sense, 7–8
second sense, 7–8

database
logical system, 408–410

database professional, 23
Date, C. J., passim
DB2, 167
DBMS, xviii

Index

445

decomposition, see nonloss
decomposition

degree, 27
deletion anomaly

and FDs, 54
and JDs, 214
generic, 309

denormalization, 161ff
considered harmful, 172ff
increasing

redundancy, 164–165
dependency, 32

explicit, see explicit dependency
implicit, see implicit dependency

dependency preservation, 117ff
ETNF vs. 5NF, 273
MVDs, 249

dependant
FD, 72, 100
MVD, 246

derived data, 372, 373, 377
design process, xvii–xviii, 398
designator, 409
determinant

FD, 72, 100
MVD, 246

Dickinson, Emily, 201
Dijkstra, Edsger W., iii, 407
dimension table, 171
DISJOINT, 343
DK/NF, see domain-key normal form
domain, 38
domain constraint (DK/NF), 308
domain-key normal

form, 273, 308–310
double underlining, 11, 80, 83, 92
duplicate tuples, 330

see also tuple equality

E
E-relvar, 363
E/R modeling, xviii, 357
EKNF, see elementary key normal form
elementary key, 310
elementary key normal form, 310–311
Elmasri, Ramez, 84
embedded dependencies, 251–252, 281
empty key, 36, 42
empty restriction, 136
empty sequence, 10
empty set of parameters, 36, 42
empty tuple, 36, 39, 42
entity integrity, 419
entity/relationship modeling,

see E/R modeling
entity supertype/subtype, 433
equality, 40

relation, see relation equality
tuple, see tuple equality

equality dependency, 52, 58–60
equality generating dependency, 231
EQD, see equality dependency
equivalence

information, see information equivalence
JDs, 222
sets of FDs, 154

essential, 275
essential tuple normal form, 268–275

choice of name, 274–275
essentiality, 275
ETNF, see essential

tuple normal form
ETNF vs. RFNF vs. SKNF, 287
“eventual consistency,” 405-406
explicit dependency, 230
EXTEND, 373

Index

446

F
fact table, 171
factorial, 90
Fagin, Ronald, passim
Fagin’s Theorem, 247
Fallacy of False Conversion, 165
FD, 32, 33, 72, 100–102

axiomatization, 147
of a relvar, 101
implied by a superkey, 104
not a JD, 212
trivial, 73, 102

FD graph, 136–137
FD redundant, 269
fifth normal form, 204–206

not necessarily redundancy
free, 195–196

first normal form, 65–68
DB2, 167
relation, 66
relvar, 67
violating, 69–72

foreign key, 12
fourth normal form, 248–249

per Boyce, 81
Frege, Gottlob, 357
fully redundant tuple, 274
function, 33
functional dependency, see FD

see also Boyce/Codd normal form
further normalization, 48

G
Garcia-Molina, Hector, 84
Gehrke, Johannes, 84
“getting rid of”

(constraints), 105

GROUP, 93, 359
group-ungroup normal form, 359

H
Hall, Patrick, 370
Hamdan, Sam, 163
heading, 26, 98
Heath, Ian J., 107–109, 438
Heath notation, 145
Heath’s Theorem, 105–109

extended version, 237
Helskyaho, Heli, 393
Hesiod, iii
hierarchic structure, see relation

valued attribute
hold (in a relvar)

FD, 101
JD, 203
MVD, 246
U_JD, 299

horizontal decomposition,
135, 167–168, 324ff

Howard, John H., 439
Hull, Richard, 236

I
IDENTICAL, 291, 365
identity decomposition, 134–136
identity projection, 134
identity restriction, 135
image relation, 373
implicit dependency, 230
implied by keys

FD, 104
JD, 205, 207–211
MVD, 248

Index

447

implied by superkeys,
see implied by keys

IMS, 68
include vs. contain, 38
inclusion dependency, 59
inconsistency, 326, 355, 404
IND, see inclusion dependency
independent projections, 137–138
information equivalence,

49, 62, 178, 298
Information Principle, 37

SQL violations, 37
insertion anomaly

and FDs, 54
and JDs, 214
generic, 309

instance, see relation schema
instantiation, 29–30, 401
integrity constraint, see constraint
intended interpretation, 28, 356
interval, 291ff
irreducibility

cover, 131
“fact,” 289
FD, 76, 103
JD, 224–229
key, 74
relvar, 288

irrelevant component (JD), 222
IS_EMPTY, 142, 340

J
JD, 186–190, 201–204

generalized, see U_JD
implied by FD, 212
implied by superkeys, 205
of a relvar, 203

trivial, 204
see also fifth normal form; sixth normal

form
JD redundant, 269
join, 99

generalized, see U_join
of no relations, 111
of one relation, 111

join dependency, see JD
joinable, 99

K
KCNF, see key complete normal form
key, 10–12, 103
key attribute, 74
key constraint, 32, 103
key complete normal form, 278
Kimball, Ralph, 172
Korth, Henry F., 84

L
logical vs. physical design, xvii, 12,

398–399
Lorentzos, Nikos A., xiii, 170, 287, 372, 441
losing dependencies, see dependency

preservation
lossless decomposition, see nonloss

decomposition
lossy decomposition, 106
lossy join, 50

M
Maier, David, 231
“materialized view,” 350
McGoveran, David, xviii, 441

Index

448

Melzak, Z.A., 65
membership algorithm, 207
Mendelzon, Alberto O., 231
minimal lossless

decomposition, 279
missing information, 291, 339
modification anomaly, 54
multiple assignment, 355
multirelvar constraint, 58
multivalued dependency, see MVD
MVD, 242–247

implied by superkey, 248
shorthand notation, 254, 259
trivial, 247
see also fourth normal form

N
n pick r, 218
naming recommendation, 332
natural join, see join
Navathe, Shamkant B., 84
Nixon, Richard M., 62
nonkey attribute, 75
nonloss decomposition, 49
nonprime attribute, 75
normal form, 54–56
normal form hierarchy, 54, 264, 314–315
normalization, 48

and constraints, 57–58
conventional procedure, 123
decreasing redundancy, 164
goals, 320
principles, 319
two purposes, 49–53

normalized, 67
Normann, Ragnar, 279, 441
null, 20, 35, 37, 70, 170, 413, 419

O
Occam’s Razor, 421
Open World Assumption, 39–40
Oram, Andy, xviii
orthogonal decomposition, 341
orthogonality, 319ff

connection to normalization, 336
see also Principle of

Orthogonal Design
overstrong PJ/NF, 311
OWA, see Open World Assumption
Owlett, John, 370

P
P-relvar, 363
PACK, 293
packed form, 293
Papadimitriou, Christos H., 440
partly redundant tuple, 274
Pascal, Fabian, 372
physical design,

see logical design
automating, xviii, 399

PJ/NF, see fifth normal form
PJSU/NF, 312
PK:AK distinction, 419
PL/I, 47
plausible tuple, see Closed World

Assumption
Polya, George, 369, 423
predicate, 24, 28–30

composite / compound, 289
conjunctive, 289
disjunctive, 304
empty set of parameters, 42
overlapping, 326
relvar, see relvar predicate

Index

449

simple, 289
vs. constraint, 356–357

preserving dependencies, see dependency
preservation

primary key, 11, 83, 92, 92, 417ff
prime attribute, 75
Principle of Cautious Design, 421
Principle of Interchangeability, 25, 420
Principle of Orthogonal Design

first definition, 327
second definition, 332
third definition, 334–335
fourth definition, 337
“final” definition, 338

principles of normalization,
see normalization

projection, 98
generalized, see U_projection
simplified notation, 59

projection-join normal form, 195, 205,
263, 440

proper subset, see subset
proper superset, see superset
proposition, 24, 28–29, 39, 42, 378–381

quantified, 379

Q
quantified proposition, see proposition
quantifier, 357, 379

R
Ramakrishnan, Raghu, 84
real database, 25
redundancy, 14, 48, 52–53, 56, 263,

268, 329
controlled, 377, 389

“final” definition, 382
managing, 374–377
Vincent’s definition, 276

redundancy free (ETNF), 270
redundancy free normal form, 275–278
refresh, see snapshot
regular column, 70
relation, 98

vs. relvar, 24–26
see also relvar

relation constant, 423
relation equality, 40–41
relation schema, 32
relation value, see relation
relation valued attribute, 66

contraindicated, 67–68
relation variable, see relvar
relational assignment, 93–94
relvar, 9

predicate, see relvar predicate
virtual, see view
vs. relation, 24–26
see also relation

relvar predicate, 24, 29
RENAME, 34, 43
repeating group, 71–72
restriction, 314
restriction condition, 314
“restriction-union” normal form, 312
RFNF, see redundancy free

normal form
Rissanen, Jorma, 137, 439, 440
Rissanen’s Theorem, 138
RM/T, 363
RM/T discipline, 363, 430
Ross, Ron, 403
Russell, Bertrand, 17, 18
RVA, see relation valued attribute

Index

450

S
Sagiv, Yehoshua, 231
satisfy (by a relation)

FD, 101
JD, 203
MVD, 246
U_JD, 299

scalar, 94
second normal form, 76–78

two definitions, 77, 87
Sellar, W.C., 437
semantic transformation, 413
semantic vs. syntactic

definitions, 103
Shakespeare, William, 29, 117
Silberschatz, Abraham, 84
simple key, 11
single-relvar

constraint, 215, 309
sixth normal form

regular data, 288–291
temporal data, 291–301

SKNF, see superkey normal form
Skolem, T.A., 379
skolemization, 379
Smith, J.M., 312
snapshot, 350, 376–377
SNF, 279
soundness, 147
spurious tuple, 63, 112, 188, 193
SQL vs. relational

model, 20, 23, 70
SQL and Relational Theory, xv, xvi, 6
star schema, 170–172
“stated or implied,” 39
Steele, Richard, iii
Stevens, Wallace, 263
Stoppard, Tom, 307

subject to, see hold
subkey, 75

proper, 75
subset, 38

proper, 38
Sudarshan, S., 84
SUMMARIZE, 372–373
superkey, 75

proper, 75
superkey constraint, 103
superkey normal form, 279–280
superset, 38

proper, 38
surrogate, 168–169, 178, 180–181, 212,

370–371
symmetry, 369

T
TABLE_DEE, 39, 40, 42, 111, 135, 414
TABLE_DUM, 39, 40, 135
table predicate, 398, 400–401
tableau, 233
“tables and views,” 394-395
Tasmania, 363
tautology, 136
temporal data, 291–301, 372
Third Manifesto, 31–32
third normal form, 78–79
Todd, Stephen, 370
TransRelationalTM Model, xviii, 169, 180,

396, 399
trivial decomposition, 196
trivial dependency, see FD; JD; MVD
tuple, 98

vs. entity, 180
vs. proposition, 328–332

tuple equality, 40–41

Index

451

tuple forcing dependency, 194, 232
tuple forcing JD, 194, 214, 269
tuple generating

dependency, 232
tuple ID, 180–181
tuple join, 41
tuple projection, 42, 59, 98
tuple union, 41
tuple valued attribute, 358
Tutorial D, 31–32
TVA, see tuple valued attribute
type constraint, 308

U
U_equality, 298
U_JD, 299
U_join, 298
U_projection, 297
Ullman, J.D., 84, 439
UNGROUP, 93, 253, 359
union, 314
uniqueness (key), 74
unit interval, 294
units, 324
UNPACK, 294
unpacked form, 294
UNWRAP, 359
update anomaly, 53, 213–215, 243, 308

see also deletion anomaly; insertion
anomaly; modification anomaly

update propagation, 377
user database, 25

V
vertical decomposition, 135, 324
Vianu, Victor, 236
view, 25, 89, 92, 199, 260, 350–351, 361, 375

“materialized,” see snapshot
Vincent, Millist W., 274–278, 441
violate (by a relation)

FD, 101
JD, 203
MVD, 246
U_JD, 299

virtual relvar, see view

W
“well architected,” 180
Widom, Jennifer, 84
WITH, 34, 176
Wittgenstein, Ludwig, 23
WRAP, 359
wrap-unwrap normal form, 359

X
XML, 38, 68, 83

Y
Yeatman, R.J., 437

Z
Zaniolo, Carlo, 310

Index

	Table of Contents
	About the Author
	Preface to the First Edition
	Preface to the Second Edition
	Part I: Setting the Scene
	Chapter 1: Preliminaries
	Some Quotes from the Literature
	A Note on Terminology
	The Running Example
	Keys
	The Place of Design Theory
	Aims of this Book
	Concluding Remarks
	Exercises
	Answers

	Chapter 2: Prerequisites
	Overview
	Relations and Relvars
	Predicates and Propositions
	More on Suppliers and Parts
	Exercises
	Answers

	Part II: Functional Dependencies, Boyce/Codd Normal Form, and Related Matters
	Chapter 3: Normalization: Some Generalities
	Normalization Serves Two Purposes
	Update Anomalies
	The Normal Form Hierarchy
	Normalization and Constraints
	Equality Dependencies
	Concluding Remarks
	Exercises
	Answers

	Chapter 4: FDs and BCNF (Informal)
	First Normal Form
	Violating First Normal Form
	Functional Dependencies
	Keys Revisited
	Second Normal Form
	Third Normal Form
	Boyce/Codd Normal Form
	Exercises
	Answers

	Chapter 5: FDs and BCNF (Formal)
	Preliminary Definitions
	Functional Dependencies Revisited
	Boyce/Codd Normal Form Revisited
	Heath’s Theorem
	Exercises
	Answers

	Chapter 6: Preserving FDs
	An Unfortunate Conflict
	Another Example
	… And Another
	… And Still Another
	A Procedure that Works
	Identity Decompositions
	More on the Conflict
	Independent Projections
	Exercises
	Answers

	Chapter 7: FD Axiomatization
	Armstrong’s Axioms
	Additional Rules
	Proving the Additional Rules
	Another Kind of Closure
	Exercises
	Answers

	Chapter 8: Denormalization
	“Denormalize for Performance” (?)
	What does Denormalization Mean?
	What Denormalization Isn’t (I)
	What Denormalization Isn’t (II)
	Denormalization Considered Harmful (I)
	Denormalization Considered Harmful (II)
	Concluding Remarks
	Exercises
	Answers

	Part III: Join Dependencies, Fifth Normal Form, and Related Matters
	Chapter 9: JDs and 5NF (Informal)
	Join Dependencies—the Basic Idea
	A Relvar in BCNF and Not 5NF
	Cyclic Rules
	Concluding Remarks
	Exercises
	Answers

	Chapter 10: JDs and 5NF (Formal)
	Join Dependencies Revisited
	Fifth Normal Form
	JDs Implied by Keys
	A Useful Theorem
	FDs Aren’t JDs
	Update Anomalies Revisited
	Exercises
	Answers

	Chapter 11: Implicit Dependencies
	Irrelevant Components
	Combining Components
	Irreducible JDs
	Summary So Far
	The Chase Algorithm
	Concluding Remarks
	Exercises

	Answers

	Chapter 12: MVDs and 4NF
	An Introductory Example
	Multivalued Dependencies (Informal)
	Multivalued Dependencies (Formal)
	Fourth Normal Form
	MVD Axiomatization
	Embedded Dependencies
	Exercises
	Answers

	Part IV: Further Normal Forms
	Chapter 13: ETNF, RFNF, SKNF
	5NF Is Too Strong
	The First Example: What 5NF Does
	The Second Example: Why 5NF Does Too Much

	Essential Tuple Normal Form
	Definitions and Theorems
	A Relvar in ETNF and not 5NF
	A Relvar in 4NF and not ETNF
	Our Choice of Name

	Redundancy Free Normal Form
	A Relvar in RFNF and not 5NF
	A Relvar in ETNF and not RFNF

	Superkey Normal Form
	A Relvar in SKNF and not 5NF
	A Relvar in RFNF and not SKNF

	Concluding Remarks
	Exercises
	Answers

	Chapter 14: 6NF
	Sixth Normal Form for Regular Data
	Sixth Normal Form for Temporal Data
	Exercises
	Answers

	Chapter 15: The End Is Not Yet
	Domain-Key Normal Form
	Elementary Key Normal Form
	Overstrong PJ/NF
	“Restriction-Union” Normal Form
	Exercises
	Answers

	Part V: Orthogonality
	Chapter 16: The Principle of Orthogonal Design
	Two Cheers for Normalization
	A Motivating Example
	A Simpler Example
	Tuples vs. Propositions
	The First Example Revisited
	The Second Example Revisited
	The Final Version (?)
	A Clarification
	Concluding Remarks
	Exercises
	Answers

	Part VI: Redundancy
	Chapter 17: We Need More Science
	A Little History
	Predicates vs. Constraints
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9
	Example 10
	Example 11
	Example 12
	Managing Redundancy
	1. Raw Design Only
	2. Declare the Constraint
	3. Use a View
	4. Use a Snapshot

	Refining the Definition
	Examples 1 and 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Examples 9 and 10
	Example 11
	Example 12

	Concluding Remarks
	Exercises
	Answers

	Part VII: Appendixes
	Appendix A: What Is Database Design, Anyway?
	Logical vs. Physical Design
	The Role of Theory
	Predicates
	Rules
	Redundancy
	“Eventual Consistency”

	Appendix B: More on Consistency
	The Database is a Logical System
	Proving that 1 = 0
	Wrong Answers
	Generalizing the Argument
	Why Integrity Checking Must Be Immediate

	Appendix C: Primary Keys Are Nice but Not Essential
	Arguments in Defense of the PK:AK Distinction
	Relvars with Two or More Keys
	The Invoices and Shipments Example
	One Primary Key per Entity Type?
	The Applicants and Employees Example
	Concluding Remarks

	Appendix D: Historical Notes

	Index

