

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

OAuth 2 in Action

JUSTIN RICHER
ANTONIO SANSO

MANNING
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road

PO Box 261

Shelter Island, NY 11964

Email: orders@manning.com

©2017 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

/l/l Manning Publications Co. Development editor: Jennifer Stout
20 Baldwin Road Technical development editors: Dennis Sellinger
PO Box 261 David Fombella Pombal
Shelter Island, NY 11964 Copyeditor: Progressive Publishing Services

Technical proofreader: Ivan Kirkpatrick
Composition: Progressive Publishing Services
Cover design: Marija Tudor

ISBN: 9781617293276
Printed in the United States of America
123456789 10-EBM-22 21 20 19 18 17

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

brief contents

Sy Ot B~ Qo

10

What is OAuth 2.0 and why should you care? 3
The OAuth dance 21

Building a simple OAuth client 43

Building a simple OAuth protected resource 59
Building a simple OAuth authorization server 75
OAuth 2.0 in the real world 93

Common client vulnerabilities 121
Common protected resources vulnerabilities 138
Common authorization server vulnerabilities 154

Common OAuth token vulnerabilities 168

iii

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

iv

11
12
13
14
15
16

BRIEF CONTENTS

OAuth tokens 181

Dynamic client registration 208

User authentication with OAuth 2.0 236
Protocols and profiles using OAuth 2.0 262
Beyond bearer tokens 282

Summary and conclusions 298

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

contents

Sforeword xii

preface xiv

acknowledgments — xvii

about this book xx

about the authors — xxiv

about the cover illustration xxvi

What is OAuth 2.0 and why should you care? 3
1.1 Whatis OAuth 2.0? 3

1.2 The bad old days: credential sharing (and credential theft) 7
1.3 Delegating access 11

Beyond HTTP Basic and the password-sharing antipattern 13
Authorization delegation: why it matters and how it’s used 14
User-driven security and user choice 15

1.4 OAuth 2.0: the good, the bad, and the ugly 16
1.5 What OAuth 2.0 isn’t 18
1.6 Summary 20

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

CONTENTS

The OAuth dance 21
2.1 Opverview of the OAuth 2.0 protocol: getting and
using tokens 21
2.2 Following an OAuth 2.0 authorization grant in detail 22

2.3 OAuth’s actors: clients, authorization servers, resource owners,
and protected resources 31

2.4 OAuth’s components: tokens, scopes, and authorization
grants 32
Access tokens 32 = Scopes 32 = Refresh tokens 33 = Authorization
grants 34

2.5 Interactions between OAuth’s actors and components: back
channel, front channel, and endpoints 35
Back-channel communication 35 = Front-channel communication 36

2.6 Summary 39

Building a simple OAuth client 43

3.1 Register an OAuth client with an authorization server 44

3.2 Get a token using the authorization code grant type 46
Sending the authorization request 47 = Processing the authorization
response 49 = Adding cross-site protection with the state parameter 51

3.3 Use the token with a protected resource 51
3.4 Refresh the access token 54
3.5 Summary 58

Building a simple OAuth protected resource 59

4.1 Parsing the OAuth token from the HTTP request 60
4.2 Validating the token against our data store 62

4.3 Serving content based on the token 65
Different scopes for different actions 66 = Different scopes for different data
results 68 = Different users for different data results 70 = Additional access
controls 73

4.4 Summary 74

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

CONTENTS

Building a simple OAuth authorization server 75

5.1
5.2

5.3

5.4

5.5
5.6

Managing OAuth client registrations 76

Authorizing a client 77
The authorization endpoint 78 = Authorizing the client 79

Issuing a token 82
Authenticating the client 83 = Processing the authorization grant
request 84

Adding refresh token support 86
Adding scope support 88
Summary 92

OAuth 2.0 in the real world 93

6.1

6.2

6.3

Authorization grant types 93
Implicit grant type 94 = Client credentials grant type 97 = Resowrce owner
credentials grant type 101 = Assertion grant types 106 = Choosing the
appropriate grant type 108

Client deployments 109
Web applications 109 = Browser applications 110 = Native
applications 112 = Handling secrets 117

Summary 118

Common client vulnerabilities 121

7.1
7.2
7.3
7.4

7.5
7.6
7.7
7.8

General client security 121
CSRF attack against the client 122
Theft of client credentials 125

Registration of the redirect URI 127
Stealing the authorization code through the referrer 128 = Stealing the token
through an open redirector 132

Theft of authorization codes 134
Theft of tokens 134
Native applications best practices 136

Summary 137

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

viii CONTENTS

Common protected resources vulnerabilities 138

8.1 How are protected resources vulnerable? 138

8.2 Design of a protected resource endpoint 139
Houw to protect a resource endpoint 140 = Adding implicit grant
support 148

8.3 Token replays 151
8.4 Summary 153

Common authorization server vulnerabilities 154

9.1 General security 154

9.2 Session hijacking 155

9.3 Redirect URI manipulation 157
9.4 Client impersonation 162

9.5 Open redirector 164

9.6 Summary 167

Common OAuth token vulnerabilities 168
10.1 Whatis a bearer token? 168

10.2 Risks and considerations of using bearer tokens 170

10.3 How to protect bearer tokens 170
At the client 171 = At the authorization server 172 = At the protected
resource 173

10.4 Authorization code 173
Proof Key for Code Exchange (PKCE) 174

10.5 Summary 178

OAuth tokens 181

11.1 What are OAuth tokens? 181

11.2 Structured tokens: JSON Web Token (JWT) 183
The structure of a JWIT' 183 = JWT claims 185 = Implementing J[WT in

our servers 186

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

11.3

11.4

11.5

11.6
11.7

CONTENTS

Cryptographic protection of tokens: JSON Object Signing and
Encryption (JOSE) 188
Symmetric signatures using HS256 189 = Asymmetric signatures using
RS256 191 = Other token protection options 195

Looking up a token’s information online: token
introspection 196

The introspection protocol 196 = Building the introspection endpoint 198
Introspecting a token 200 = Combining introspection and JWT 201

Managing the token lifecycle with token revocation 202
The token revocation protocol 202 = Implementing the revocation
endpoint 203 = Revoking a token 204

The OAuth token lifecycle 207
Summary 207

Dynamic client registration 208

12.1
12.2

12.3

12.4

12.5

How the server knows about the client 209

Registering clients at runtime 210
How the protocol works 210 = Why use dynamic registration? 212
Implementing the registration endpoint 214 = Having a client register
itself 217

Client metadata 219
Table of core client metadata field names 220 = Internationalization of
human-readable client metadata 220 = Software statements 223

Managing dynamically registered clients 225
How the management protocol works 225 = Implementing the dynamic
client registration management APl 228

Summary 235

User authentication with OAuth 2.0 236
13.1 Why OAuth 2.0 is not an authentication protocol 237

13.2
13.3

Authentication vs. authorization: a delicious metaphor 23 7
Mapping OAuth to an authentication protocol 238
How OAuth 2.0 uses authentication 241

ix

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

13.4

13.5

13.6

13.7

CONTENTS

Common pitfalls of using OAuth 2.0 for authentication 242
Access tokens as proof of authentication 242 = Access of a
protected API as proof of authentication 243 = Injection of access
tokens 244 = Lack of audience restriction 244 = Injection of invalid
user information 245 = Different protocols for every potential identity
provider 245

OpenlID Connect: a standard for authentication and identity on
top of OAuth 2.0 246

ID tokens 246 = The Usernfo endpoint 248 = Dynamic server

discovery and client registration 250 = Compatibility with

OAuth 2.0 252 = Advanced capabilities 252

Building a simple OpenlID Connect system 253
Generating the ID token 254 = Creating the UserInfo
endpoint 255 = Parsing the ID token 257 = Fetching the UserInfo 259

Summary 260

Protocols and profiles using OAuth 2.0 262

14.1

14.2

14.3

14.4

User Managed Access (UMA) 263
Why UMA matters 263 = How the UMA protocol works 265

Health Relationship Trust (HEART) 277
Why HEART matters to you 277 = The HEART specifications 278
HEART mechanical profiles 278 = HEART semantic profiles 280

International Government Assurance (iGov) 280
Why iGov matters to you 280 = The future of iGov 281

Summary 281

Beyond bearer tokens 282

15.1
15.2

15.3

15.4
15.5

Why do we need more than bearer tokens? 283

Proof of Possession (PoP) tokens 283
Requesting and issuing a PoP token 284 = Using a PoP token at a protected
resource 287 = Validating a PoP token request 288

Implementing PoP token support 289
Issuing the token and keys 289 = Creating the signed header and sending
it to the resource 291 = Parsing the header, introspecting the token, and
validating the signature 292

TLS token binding 294
Summary 297

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

CONTENTS

Summary and conclusions 298

16.1
16.2
16.3
16.4
16.5
16.6

appendix A An introduction to our code framework 305

The right tool 298
Making key decisions 299
The wider ecosystem 301
The community 302

The future 303

Summary 303

appendix B Extended code listings 311
index 327

xi

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

Joreword

There is nothing more daunting than a blank page. It stares at you. It taunts you.

It’s not like you don’t know what you want to do. You have a clear picture of the
awesome that you want to unleash. You can almost envision the smiles on your boss’s
or customer’s face as they delight in the awesome you will create. But the problem
is there’s a blank page in front of you.

So you reach for your tools. Because you’re reading this, it’s likely you are a
developer or identity management professional. Either way, you know that security
is paramount and you want to protect the awesome that you intend to build.

Enter OAuth. You’ve heard of it. You know it has something to do with protect-
ing resources—most notably APIs. It’s super popular and, apparently, it can do any-
thing. And the problem with things that can do anythingis that they make it hard to
do something. They are yet another blank page.

Enter Justin and Antonio and this book. The easiest way to get over the paralysis
when working with a thing that can do anything is to start and just try to do some-
thing. This book not only explains what OAuth does, it gently guides you through
the process of doing something, at the end of which not only will you have a very
solid understanding of OAuth as a tool, but you’ll no longer have a blank page in
front of you—you’ll be ready to deliver the awesome that’s in your head.

OAuth is a very powerful tool. Its power comes from its flexibility. Flexibility often
means the ability to not only do what you want to do, but also the ability to do things
in an unsafe way. Because OAuth governs access to APIs, which in turn gates access
to your important data, it’s crucial that you do use it in a safe way by avoiding anti-
patterns and using best practices. Stated differently, just because you have the flex-
ibility to do anything and deploy in any way, doesn’t mean that you should.

xii

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

FOREWORD xiii

There’s another thing about OAuth we might as well get on the table—you are
not working with OAuth because you want to work with OAuth. You are working with
OAuth because you want to do something else—most likely orchestrate a bunch of API
calls and then do something awesome with the results. You're thinking about a full
page; you're thinking about the awesome you want to unleash. OAuth is a way to get
there, and to get there more securely.

Thankfully, Justin and Antonio provide pragmatic guidance on what to do and what
not to do. They acknowledge both the “I just want to get this done” and the “I want to
make sure this is secure” mindsets you have.

With the page filled, with the awesome out of your head and in your customers’
hands, you realize the job wasn’t so hard after all.

—IAN GLAZER
SENIOR DIRECTOR, IDENTITY
SALESFORCE

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

preface

My name is Justin Richer, and I’'m not a classically trained security nerd, even though
I pretend to be one for my day job as a consultant. My background is in collabora-
tion technologies and how we can get people doing things together using comput-
ers. Even so, I've been working with OAuth for a long time, having implemented
several early OAuth 1.0 servers and clients to connect the collaboration systems
that I was conducting research with at the time. It was around then that I came to
appreciate that you needed to have a good, implementable, usable security system
if your application architecture was going to survive in the real world. Around this
time, I attended the early Internet Identity Workshop meetings, where people were
talking about a next generation of OAuth, something that would build on the les-
sons learned from using OAuth 1.0 out in the real world. When the development
of OAuth 2.0 started up in the Internet Engineering Task Force (IETF), I joined
the group and dove face first into the debates. Several years later, we came up with
a specification. It wasn’t perfect, but it worked pretty well, people got it, and it
caught fire.

I stayed involved with the OAuth Working Group, and even served as editor for
the Dynamic Registration (RFC 7591 and 7592) and Token Introspection (RFC
7662) extensions to OAuth. Today, I'm the editor or author for parts of the OAuth
Proof of Possession (PoP) suite, as well as the technical editor for several profiles and
extensions of OAuth and its related protocols. I worked on the OpenID Connect
core specification, and my team and I implemented a fairly well-received OAuth
and OpenlID Connect server and client suite, MITREid Connect. I suddenly found
myself talking about OAuth 2.0 to many different audiences and implementing it

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

PREFACE XV

on a wide variety of systems. I’d taught classes, given lectures, and written a handful of
articles about the subject.

So when Antonio Sanso, a well-respected security researcher in his own right,
approached me to write this book together, it made sense for me to jump in. We looked
around at what books were available on OAuth 2.0, and were unimpressed. Most of the
material we found was specific to a service: How to write an OAuth client to talk to Facebook
or Google, for instance. Or How to authorize your native application to GitHub’s API. And if
that’s all you care about, there’s plenty of material out there. But what we didn’t see
was something that would take the reader through the entire OAuth system, explain-
ing why it is designed the way that it is, pointing out its flaws and limitations as well as
its strengths. We decided that there was a need for a more comprehensive approach,
and we decided to make it the best that we could. Consequently, this book doesn’t talk
to any specific real-world OAuth provider, nor does it get into detail on a particular API
or vertical domain. Instead, this book focuses on doing OAuth for its own sake, so that
you can see how all the gears mesh together when you turn the cranks.

We built out a code framework that, we hoped, would allow readers to focus on the
core aspects of OAuth without getting overly caught up in the implementation plat-
form details. After all, we didn’t want a book that was “How to implement OAuth 2.0
on Platform Du Jour,” but rather, “How the nuts and bolts of OAuth 2.0 work so you
can use whatever platform you want.” So we went with a relatively simple Node.js
framework, built on Express.js, and liberally used library code to abstract away the
platform-specific weirdness as much as possible. Still, it’s JavaScript, so some of that
weirdness crept in from time to time, as it would on any platform. Butit’s our hope that
you will be able to apply the methods and themes used here to your chosen language,
platform, and architecture.

Speaking of histories, how did we even get here? The story starts in 2006, when
several web service companies, including Twitter and Ma.Gnolia, had complementary
applications and wanted their users to be able to connect them together. At the time,
this type of connection was typically accomplished by asking the user for their creden-
tials on the remote system and sending those credentials to the API. However, the web-
sites in question used a distributed identity technology, OpenlD, to facilitate login. As
a consequence, there were no usernames or passwords that could be used for the APL

To overcome this, the developers sought to create a protocol that would allow their
users to delegate access to the API. They based their new protocol on several propri-
etary implementations of this same concept, including Google’s AuthSub and Yahoo!’s
BBAuth. In all of these, a client application is authorized by a user and receives a token
that can then be used to access a remote APIL. These tokens were all issued with a public
and private portion, and this protocol used a novel (if in retrospect fragile) crypto-
graphic signing mechanism so that it could be used over non-TLS HTTP connections.
They called their protocol OAuth 1.0 and published it as an open standard on the web.

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

xvi

PREFACE

It quickly gained traction, and free implementations in several languages were made
available alongside the specification itself. It worked so well and developers liked it so
much that even the large internet companies soon deprecated their own proprietary
mechanisms that had inspired OAuth in the first place.

As happens with many new security protocols, a flaw was found early on in OAuth
1.0’s life, leading to the development of OAuth 1.0a to close a session fixation vulner-
ability. This version was later codified in the IETF as RFC 5849. At this point, a commu-
nity was beginning to grow around the OAuth protocol, and new use cases were being
developed and implemented. Some of these pushed OAuth into places that it was
never meant to be used in, but these off-label OAuth uses worked better than any avail-
able alternatives. Still, OAuth 1.0 was a monolithic protocol designed to provide one
mechanism to solve all use cases, and it was venturing into uncomfortable territory.

Soon after the publication of RFC 5849, the Web Resource Access Protocol (WRAP)
was published. This proposed protocol took the core aspects of the OAuth 1.0a pro-
tocol—a client, delegation, and tokens—and expanded them to be used in different
ways. WRAP did away with many of OAuth 1.0’s more confusing and problem-prone
aspects, such as its custom signature calculation mechanism. After much debate in the
community, WRAP was decided on as the basis for the new OAuth 2.0 protocol. Where
OAuth 1.0 was monolithic, OAuth 2.0 was modular. The modularity in OAuth 2.0
allowed it to be a framework that could be deployed and used in all of the ways that
OAuth 1.0 had been in practice, but without twisting core aspects of the protocol.
OAuth 2.0 essentially provided recipes.

In 2012, the core OAuth 2.0 specifications were ratified by the IETF, but the com-
munity was far from done with it. This modularity was further codified by splitting the
specification into two complementary pieces: RFC 6749 details how to get a token,
while RFC 6750 details how to use a particular type of token (the Bearer token) at a
protected resource. Furthermore, the core of RFC6749 details multiple ways to get a
token and provides an extension mechanism. Instead of defining one complex method
to fit different deployment models, OAuth 2.0 defines four different grant types, each
suited to a different application type.

Today, OAuth 2.0 is the premier authorization protocol in use on the web. It’s used
by everything: from large internet companies to small startups, to enterprises, to just
about everything in between and beyond. A whole ecosystem of extensions, profiles,
and entire protocols built on top of OAuth 2.0 has sprung up, with people finding new
and interesting ways to use this foundational technology. It’s our goal that this book
will help you understand not only what OAuth 2.0 is and why it works the way it does,
but how you can best use it to solve your own problems and build your own systems.

JUSTIN RICHER

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

acknowledgments

Creating this book has been quite the journey. Ever since we embarked on the proj-
ect and started putting the outline together, we had a feeling it was going to take a
lot more sweat than we could have ever been prepared for. We were more right than
we realized at the time, and it’s with great pleasure that we are finally able to write
this part, thanking the many people who helped make it happen. We can’t possibly
name you all here, so accept our humble thanks even if your name isn’t listed here
explicitly.

First off, this book would have never happened without the input and encourage-
ment of the OAuth Working Group in the IETF and the larger OAuth and open
standards communities. In particular, John Bradley and Hannes Tschofenig each
provided invaluable input to the text at various points. Ian Glazer, William Dennis,
Brian Campbell, Dick Hardt, Eve Maler, Mike Jones, and many others in the com-
munity encouraged us to create the book and helped provide important informa-
tion to the internet. Aaron Parecki provided us space on oauth.net to not only talk
about the book but also publish topical articles, including an early form of what
became chapter 13. And special thanks to Ian for contributing the foreword and
endorsing our work.

This book would literally not exist without the help and input from the team
from Manning Publications. Our fantastic team of editors and support staff included
Michael Stephens, Erin Twohey, Nicole Butterfield, Candace Gillhoolley, Karen
Miller, Rebecca Rinehart, Ana Romac, and especially our amazing editor Jennifer
Stout. Thanks to Ivan Kirkpatrick, Dennis Sellinger, and David Fombella Pombal
for making sure the technical bits made sense. A big thanks to everyone who took a

xvii

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

xviii

ACKNOWLEDGMENTS

chance and preordered the book as a MEAP; the early feedback we got from you was
vital in making this the best book we could make it.

We would also like to thank our peer reviewers who read the manuscript at various
stages of its development and provided invaluable feedback along the way: Alessandro
Campeis, Darko Bozhinovski, Gianluigi Spagnuolo, Gregor Zurowski, John Guthrie,
Jorge Bo, Richard Meinsen, Thomas O’Rourke, and Travis Nelson.

Justin Richer

Incomparable thanks are due to my coauthor, Antonio Sanso. His security and crypto-
graphic expertise far outstrips anything I could dream of achieving, and it’s been an
honor to work with him. Starting the book was his idea in the first place, and the whole
project has been a collaborative effort.

Thanks to my friends Mark Sherman and Dave Shepherd, both of whom success-
fully published tech books before I first set words to the page. Their existence served
to remind me that there was a light at the end of the tunnel, and their experience
in navigating the publishing world was a great help. Thanks to John Brooks, Tristan
Lewis, and Steve Moore, whom I was able to bounce ideas and phrases off of, even if
they didn’t always realize I was doing it at the time.

Many thanks to my clients over the last year for putting up with me disappearing at
random times to go off and write. Thanks are especially due to Debbie Bucci and Paul
Grassi, as their fantastic work programs have helped give me the direct experience
needed to ground this book in the real world.

I can’t possibly express enough thanks to my friend and colleague, Sarah Squire. She
originally turned me on to the Node.js frameworks used in the exercises throughout
the book, and I believe that, thanks to a trip to an office store, she has the distinction
of owning the first printed version of this book. Overall, her encouragement, support,
critique, and enthusiasm for this project has been without compare, and I doubt that
the book would have really happened without her.

Finally, but perhaps most importantly, a sincere and deep thank you to my entire
family. The patience of my wife, Debbie, and my kids, Lucien, Genevieve, and Xavier,
has been incredible. Between late nights and seemingly endless weekends with me
locked up in my office, just out of reach, I'm sure they started to wonder if I'd ever
come out, but now I'm glad to say there should be a whole lot more time to play Legos.

Antonio Sanso

Working on this book has been quite a ride, and it’s with great delight and satisfaction
that I write this part. In the end, as with everything, it’s the journey and not the destina-
tion that matters. My contribution to this book could not be possible without the help
of many people surrounding me.

I'would like to thank my employer, Adobe Systems, and my managers Michael Marth
and Philipp Suter for giving me the green light to work on this book.

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

ACKNOWLEDGMENTS Xix

OAuth is a widespread protocol written in a collaborative way by many people under
the IETF umbrella. Some of those people are the brightest minds in the security com-
munity. We had the privilege to have some extremely useful comments on the work-in-
progress draft by John Bradley, Hannes Tschofenig and William Denniss.

It is incredible how friendship can have an influence on someone’s life. For this
reason, I’d like to thank, in no particular order: Elia Florio for being a constant source
of inspiration; Damien Antipa for being so patient while explaining the most arcane
part of Javascript and CSS; Francesco Mari, who introduced me to the beautiful world
of Node.js and tirelessly listened my endless complains; Joel Richard for helping me
with the magic of Apache Cordova; Alexis Tessier, the most talented designer I ever
met; and Ian Boston for proofreading.

And last but not least, Justin Richer, who has been the best coauthor I could ever
hope for. You rock, Justin!

But I can’t finish without a special thank you to the people I love.

To my parents. They always encouraged me to pursue studying, without putting
any pressure on me, even if they didn’t study themselves. Their support was unique.
To my brother and sister who also encouraged me, especially in the early stage of my
university time.

And of course, the biggest thank you goes to my fiancée (soon wife) Yolanda, who
supports and continuously encourages me on everything I do. Finally, to Santiago, my
son, who helps me remember every single day how beautiful life is. I love you.

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

about this book

This book is intended to be a comprehensive and thorough treatment of the
OAuth 2.0 protocol and many of its surrounding technologies, including OpenlD
Connect and JOSE/JWT. We want you to come away from this book with a deep
understanding of what OAuth can do, why it works the way that it does, and how to
deploy it properly and securely in an unsafe internet.

The target reader for this book is someone who’s probably used OAuth 2.0, or at
least heard of it, but doesn’t really know how it works or why it works that way. Maybe
you’ve even developed one or more OAuth 2.0 components, such as a client to talk
to a specific API, but you're curious about other kinds of clients, or other parts of
the OAuth 2.0 ecosystem. Perhaps you wonder, “What’s the authorization server
doing when you go ask for that authorization code, anyway?” Or perhaps you're
tasked with protecting an API and you want to know if OAuth 2.0 is really going to
do the job, and if so, how are you supposed to manage that? Maybe in your day job
you’re building a client, but you want to know what the protected resource does
with that token you sent it. Or maybe you’re building and protecting an API, but
you want to know what the authorization server you’re talking to does to get those
tokens into the right place. We want you to understand what the tool, OAuth 2.0, is
really good at and how you can wield it effectively.

We’re going to assume you know the basics of how HTTP works, and at least
understand the utility of encrypting connections using TLS, if not the intimate
details of how it works. Our code is all in JavaScript, but this isn’t a book about
JavaScript, and so we’ve done our best to explain the abstractions and functional-
ity that the code itself represents so that you can apply it to your own platform and
language.

XX

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

ABOUT THIS BOOK xxi

Roadmap

This book has 4 sections consisting of 16 chapters in total. The first section, consisting

of chapters 1 and 2, provides an overview of the OAuth 2.0 protocol and is considered

core reading material. The second section, consisting of chapters 3 to 6, demonstrates
how to build an entire OAuth 2.0 ecosystem. The third section, consisting of chapters
7 to 10, discusses vulnerabilities to different parts of the OAuth 2.0 ecosystem and how
to avoid them. The final section, consisting of chapters 11 to 16, goes beyond the core

OAuth 2.0 protocol and into the wider ecosystem of standards and specifications, as
well as providing a wrap-up to the book.

Chapter 1 provides an overview of the OAuth 2.0 protocol, as well as the motiva-
tion behind its development, including approaches to API security that predates
OAuth.

Chapter 2 goes into depth on the authorization code grant type, the most com-
mon and canonical of OAuth 2.0’s core grant types.

Chapters 3 through 5 demonstrate how to build a simple but fully func-
tional OAuth 2.0 client, protected resource server, and authorization server
(respectively).

Chapter 6 looks at the variations in the OAuth 2.0 protocol, including grant
types other than the authorization code, as well as considerations for native
applications.

Chapters 7 through 9 discuss common vulnerabilities in OAuth 2.0 clients, pro-
tected resources, and authorization servers (respectively) and how to prevent
them.

Chapter 10 discusses vulnerabilities and attacks against OAuth 2.0 bearer tokens
and authorization codes and how to prevent them.

Chapter 11 looks at JSON Web Tokens (JWT) and the JOSE mechanisms used in
encoding them, as well as token introspection and revocation to complete the
token lifecycle.

Chapter 12 looks at dynamic client registration and how that affects the charac-
teristics of an OAuth 2.0 ecosystem.

Chapter 13 looks at how OAuth 2.0 is not an authentication protocol, and then
proceeds to show how to build an authentication protocol on top of it using
OpenlD Connect.

Chapter 14 looks at the User Managed Access (UMA) protocol built on top of
OAuth 2.0 that allows for user-to-user sharing, as well as the HEART and iGov
profiles of OAuth 2.0 and OpenlID Connect and how these protocols are applied
in specific industry verticals.

Chapter 15 moves beyond the common bearer token of OAuth 2.0’s core specifi-
cations and describes how both Proof of Possession (PoP) tokens and TLS token
binding work with OAuth 2.0.

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

xxii

ABOUT THIS BOOK

= Chapter 16 wraps everything up and directs the reader to how to apply this knowl-
edge going forward, including a discussion of libraries and the wider OAuth 2.0
community.

We don’t expect you to read this book in order, though you can do just that and we’ve
tried to organize things to allow that kind of exposition. We do suggest that you read
the first two chapters together, because they’ll give you a very thorough overview of
OAuth 2.0 and provide some deep looks into key concepts and components. But let’s
be honest, you’re probably looking for specific bits of information, so maybe you’ll go
read the chapters on client development and client vulnerabilities, then hop around
to the chapter on user authentication or token management, and then go take a look
at how authorization servers tick. Because of this, we’ve also tried to make sure that
each chapter really stands on its own, and we’ve put in references for other content
throughout the book so that you can find your way to topics.

About the code

All of the code in this book is available as open source under an Apache 2.0 license. We
feel that it’s important to encourage people to use, remix, and contribute to the code,
even if they’re just exercises and examples. The worlds of open standards, like OAuth,
and open source go hand in hand, and we feel it’s important that we help contribute
to that. The source is available from GitHub at https://github.com/oauthinaction/
oauth-in-action-code/ and we encourage you to fork it, clone it, branch it, and even
make pull requests to make it better. Code exercises are available for chapters 3 to 13,
and 15, with an overview of the framework available in appendix A and selected code
listings in appendix B. The code is also available for download from the publisher’s
website at www.manning.com/books/oauth-2-in-action.

All of the code in this book is written in the JavaScript language using Node.js.
Web applications, which comprise most of the examples, use Express.js and a variety
of other libraries to function. We've tried our best to insulate the readers from the
oddities of JavaScript, as the goal of this book is not to learn proficiency in a par-
ticular language or platform. If you’ve ever programmed with a web framework, such
as Java Spring or Ruby on Rails, then you’ll be familiar with most of the concepts
and constructs. Furthermore, we’ve tried to include documented utility functions to
handle some of the ancillary details to the OAuth protocol, such as building a prop-
erly formatted and encoded URL with query parameters or creating an HTTP Basic
authentication string. See appendix A for more details on the code environment used
throughout the book, including a simple exercise designed to show the reader how to
get things up and running.

Selected exercises are also available online at Katacoda (www.katacoda.com), an
interactive, self-guided tutorial website. These exercises use the exact same code as the
book itself, but are presented in a containerized runtime environment available over
the web.

https://github.com/oauthinaction/oauth-in-action-code/
https://github.com/oauthinaction/oauth-in-action-code/
mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

ABOUT THIS BOOK xxiii

Code conventions

This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this wasn’t enough, and listings include line-continuation
markers (*). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

Author Online

The purchase of OAuth 2 in Action includes free access to a private web forum run by
Manning Publications, where you can make comments about the book, ask techni-
cal questions, and receive help from the authors and from other users. To access the
forum and subscribe to it, point your web browser to www.manning.com/books/oauth-
2-in-action. This page provides information on how to get on the forum once you are
registered, what kind of help is available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. Itis not a commitment to any specific amount of participation on the part of the
authors whose contribution to the forum remains voluntary (and unpaid). We suggest
you try asking the authors some challenging questions lest their interest stray!

The Author Online forum and the archives of previous discussions will be accessible
from the publisher’s website as long as the book is in print.

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

about the authors

JusTIN RICHER is a systems architect, soft-
ware engineer, standards editor, and service
designer with over seventeen years of indus-
try experience in a wide variety of domains
including internet security, identity, collabo-
ration, usability, and serious games. As an
active member of the Internet Engineering
Task Force (IETF) and OpenID Foundation
(OIDF) he has directly contributed to a num-
ber of foundational security protocols includ-
ing OAuth 2.0 and OpenID Connect 1.0, as
well as being the editor of several extensions
of OAuth 2.0 including Dynamic Client Reg-

istration (RFC7591 & RFC7592) and Token Introspection (RFC7662). His pio-
neering work with Vectors of Trust and the third edition of NIST’s Digital Identity
Guidelines (Special Publication 800-63) have pushed the conversation of what
a trusted identity means in an unpredictable landscape. He is the founder and

maintainer of the enterprise-focused MITREid Connect open source implementa-
tion of OAuth 2.0 and OpenID Connect and has led production deployment of
the system at a number of organizations including The MITRE Corporation and
the Massachusetts Institute of Technology. An accomplished and confident pre-
senter, he is much sought-after as a plenary and keynote speaker at conferences

around the world to audiences of all technical proficiencies. An ardent proponent

XXiv

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

ABOUT THE AUTHORS XXV

of open standards and open source, he believes in solving hard problems with the
right solution, even if that solution still needs to be invented.

ANTONIO SANSO works as Senior Software Engi-
neer at Adobe Research, Switzerland, where he is
part of the Adobe Experience Manager security
team. Prior to this, he worked as software engi-
neer in the IBM Dublin Software Lab in Ireland.
He found vulnerabilities in popular software,
such as OpenSSL, Google Chrome, and Apple
Safari, and he is included in the Google, Face-
book, Microsoft, Paypal, and Github security hall
of fame. He is an avid open source contributor,
being the Vice President (chair) for Apache Oltu
and a PMC member for Apache Sling. His work-
ing interests range from web application security
to cryptography. Antonio is also the author of more than a dozen computer security
patents and applied cryptography academic papers. He holds an MSc in Computer

Science.

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

about the cover illustration

The figure on the cover of OAuth 2 in Action is captioned “Man from Zagrovic,
Dalmatia, Croatia.” The illustration is taken from a reproduction of a mid-nineteenth
century album of Croatian traditional costumes by Nikola Arsenovic, published by
the Ethnographic Museum in Split, Croatia, in 2003. The illustrations were obtained
from a helpful librarian at the Ethnographic Museum in Split, which is located
within the ruins of Emperor Diocletian’s retirement palace from around AD 304,
in the Roman core of the medieval center of the town. The book includes finely
colored illustrations of figures from different regions of Croatia, accompanied by
descriptions of the costumes and of everyday life.

Zagrovic is a small town in inland Dalmatia, built on the ruins of an old medi-
eval fortress. The figure on the cover is wearing blue woolen trousers and, over a
white linen shirt, a voluminous red woolen jacket, richly trimmed with the colorful
embroidery typical for this region. He is holding a long pipe in one hand and has
a musket slung over his other shoulder. A red cap and leather moccasins complete
the outfit.

Dress codes and lifestyles have changed over the last 200 years, and the diversity
by region, so rich at the time, has faded away. It is now hard to tell apart the inhab-
itants of different continents, let alone of different hamlets or towns separated by
only a few miles. Perhaps we have traded cultural diversity for a more varied per-
sonal life—certainly for a more varied and fast-paced technological life.

Manning celebrates the inventiveness and initiative of the computer business
with book covers based on the rich diversity of regional life of two centuries ago,
brought back to life by illustrations from old books and collections like this one.

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

Part 1

Frst steps

In this section, you’ll get a thorough overview of the OAuth 2.0 protocol, how
it works, and why it works the way that it does. We’ll start with an overview of what
OAuth is and how people used to solve the delegation problem before OAuth
was invented. We’ll also take a look at the boundaries of what OAuth is not and
how it fits into the larger web security ecosystem. We’ll then take a deep look at
the authorization code grant type, the most canonical and complete grant type
available in OAuth 2.0 today. These topics will provide a solid basis for under-
standing the rest of the book.

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

What i1s OAuth 2.0 and why

should you care?

This chapter covers

= What OAuth 2.0 is

s What developers do without OAuth
= How OAuth works

= What OAuth 2.0 is not

1.1

If you’re a software developer on the web today, chances are you’ve heard of OAuth.
It is a security protocol used to protect a large (and growing) number of web APIs all
over the world, from large-scale providers such as Facebook and Google to small one-
off APIs at startups and inside enterprises of all sizes. It’s used to connect websites to
one another and it powers native and mobile applications connecting to cloud ser-
vices. It’s being used as the security layer for a growing number of standard protocols
in a variety of domains, from healthcare to identity, from energy to the social web.
OAuth is far and away the dominant security method on the web today, and its ubig-
uity has leveled the playing field for developers wanting to secure their applications.
But what is it, how does it work, and why do we need it?

What is OAuth 2.0?

OAuth 2.0 is a delegation protocol, a means of letting someone who controls a
resource allow a software application to access that resource on their behalf with-
out impersonating them. The application requests authorization from the owner

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

CHAPTER 1 What is OAuth 2.0 and why should you care?

of the resource and receives tokens that it can use to access the resource. This all
happens without the application needing to impersonate the person who controls
the resource, since the token explicitly represents a delegated right of access. In
many ways, you can think of the OAuth token as a “valet key” for the web. Not all
cars have a valet key, but for those that do, the valet key provides additional security
beyond simply handing over the regular key. The valet key of a car allows the owner
of the car to give limited access to someone, the valet, without handing over full
control in the form of the owner’s key. Simple valet keys limit the valet to accessing
the ignition and doors but not the trunk or glove box. More complex valet keys can
limit the upper speed of the car and even shut the car off if it travels more than a
set distance from its starting point, sending an alert to the owner. In much the same
way, OAuth tokens can limit the client’s access to only the actions that the resource
owner has delegated.

For example, let’s say that you have a cloud photo-storage service and a photo-
printing service, and you want to be able to print the photos that you have stored in
your storage service. Luckily, your cloud-printing service can communicate with your
cloud-storage service using an API. This is great, except that the two services are run
by different companies, which means that your account with the storage service has no
connection to your account with the printing service. We can use OAuth to solve this
problem by letting you delegate access to your photos across the different services, all
without giving your password away to the photo printer.

Although OAuth is largely indifferent to what kind of resource it is protecting,
it does fit nicely with today’s RESTful web services, and it works well for both web
and native client applications. It can be scaled from a small single-user application
up to a multimillion-user internet API. It’s as much at home on the untamed wilds
of the web, where it grew up and is used to protect user-facing APIs of all types, as
it is inside the controlled and monitored boundaries of an enterprise, where it’s
being used to manage access to a new generation of internal business APIs and
systems.

And that’s not all: if you’ve used mobile or web technology in the past five years,
chances are even higher that you’ve used OAuth to delegate your authority to an appli-
cation. In fact, if you’ve ever seen a web page like the one shown in figure 1.1, then
you’ve used OAuth, whether you realize it or not.

In many instances, the use of the OAuth protocol is completely transparent, such
as in Steam’s and Spotify’s desktop applications. Unless an end user is actively looking
for the telltale marks of an OAuth transaction, they would never know it’s being used.'
This is a good thing, since a good security system should be nearly invisible when all is
functioning properly.

! The good news is that by the end of this book, you should be able to pick up on all of these telltale
signs yourself.

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

What is OAuth 2.0? 5

Approve this client?
client_id: cauth-client-1

The client is requesting access to the following:

s Dread
o O write
¢ @ delete

=3
Figure 1.1 An OAuth authorization dialog from the exercise framework for this book

We know that OAuth is a security protocol, but what exactly does it do? Since you’re
holding a book that’s purportedly about OAuth 2.0, that’s a fair question. According
to the specification that defines it:?

The OAuth 2.0 authorization framework enables a third-party application to obtain lim-
ited access to an HTTP service, either on behalf of a resource owner by orchestrating an
approval interaction between the resource owner and the HTTP service, or by allowing the
third-party application to obtain access on its own behalf.

Let’s unpack that a bit: as an authorization framework, OAuth is all about getting the
right of access from one component of a system to another. In particular, in the OAuth
world, a client application wants to gain access to a protected resource on behalf of a
resource owner (usually an end user). These are the components that we have so far:

m The resource owner has access to an API and can delegate access to that API. The
resource owner is usually a person and is generally assumed to have access to a
web browser. Consequently, this book’s diagrams represent this party as a person
sitting with a web browser.

m The protected resourceis the component that the resource owner has access to. This
can take many different forms, but for the most part it’s a web API of some kind.
Even though the name “resource” makes it sound as though this is something
to be downloaded, these APIs can allow read, write, and other operations just as
well. This book’s diagrams show protected resources as a rack of servers with a
lock icon.

m The client is the piece of software that accesses the protected resource on behalf
of the resource owner. If you're a web developer, the name “client” might make
you think this is the web browser, but that’s not how the term is used here. If

2 RFC 6749 https://tools.ietf.org/html/rfc6749

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

CHAPTER 1 What is OAuth 2.0 and why should you care?

you’re a business application developer, you might think of the “client” as the
person who’s paying for your services, but that’s not what we’re talking about,
either. In OAuth, the client is whatever software consumes the API that makes up
the protected resource. Whenever you see “client” in this book, we’re almost cer-
tainly talking about this OAuth-specific definition. This book’s diagrams depict
clients as a computer screen with gears. This is partially in deference to the fact
that there are many different forms of client applications, as we’ll see in chapter
6, so no one icon will universally suffice.

We’ll cover these all in greater depth in chapter 2 when we look at “The OAuth Dance”
in detail. But for now, we need to realize that we’ve got one goal in this whole setup: get-
ting the client to access the protected resource for the resource owner (see figure 1.2).

In the printing example, let’s say you’ve uploaded your vacation photos to the
photo-storage site, and now you want to have them printed. The storage site’s API is
the resource, and the printing service is the client of that API. You, as the resource
owner, need to be able to delegate part of your authority to the printer so that it can
read your photos. You probably don’t want the printer to be able to read all of your
photos, nor do you want the printer to be able to delete photos or upload new ones of
its own. Ultimately, what you're interested in is getting certain photos printed, and if
you’re like most users, you’re not going to be thinking about the security architectures
of the systems you’re using to get that done.

Thankfully, because you’re reading this book, chances are that you’re not like most
users and you do care about security architectures. In the next section, we’ll see how
this problem could be solved imperfectly without OAuth, and then we’ll look at how
OAuth can solve it in a better way.

The Goal:

Resource . .
Owner Give the client access

to the protected
resource on behalf of

the resource owner. f
m
S [__ee/

— m—

Figure 1.2 Connecting the client on behalf of the resource owner

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

1.2

The bad old days: credential sharing (and credential theft) 7

The bad old days: credential sharing (and credential theft)

The problem of wanting to connect multiple disparate services is hardly new, and we
could make a compelling argument that it’s been around from the moment there was
more than one network-connected service in the world.

One approach, popular in the enterprise space, is to copy the user’s credentials and
replay them on another service (see figure 1.3). In this case, the photo printer assumes that
the user is using the same credentials at the printer that they’re using at the storage
site. When the user logs in to the printer, the printer replays the user’s username and
password at the storage site in order to gain access to the user’s account over there,
pretending to be the user.

In this scenario, the user needs to authenticate to the client using some kind of cre-
dential, usually something that’s centrally controlled and agreed on by both the client
and the protected resource. The client then takes that credential, such as a username
and password or a domain session cookie, and replays it to the protected resource,
pretending to be the user. The protected resource acts as if the user had authenticated
directly, which does in fact make the connection between the client and protected
resource, as required previously.

This approach requires that the user have the same credentials at the client applica-
tion and the protected resource, which limits the effectiveness of this credential-theft
technique to a single security domain. For instance, this could occur if a single com-
pany controls the client, authorization server, and protected resources, and all of these
run inside the same policy and network control. If the printing service is offered by the
same company that provided the storage service, this technique might work as the user
would have the same account credentials on both services.

Copy the resource
Resource owner’s credentials

Ouner « and replay them to the
protected resource.

K- . S =

Figure 1.3 Copy the resource owner’s credentials without asking

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

CHAPTER 1 What is OAuth 2.0 and why should you care?

This technique also exposes the user’s password to the client application, though inside
a single security domain using a single set of credentials, this is likely to be happening
anyway. However, the client is impersonating the user, and the protected resource has
no way to tell the difference between the resource owner and the impersonating client
because they’re using the same username and password in the same way.

But what if the two services occupied different security domains, a likely scenario
for our photo-printing example? We can’t copy the password the user gave us to log
into our application any longer, because it won’t work on the remote site. Faced with
this challenge, these would-be credential thieves could employ an age-old method for
stealing something: ask the user (figure 1.4).

If the printing service wants to get the user’s photos, it can prompt the user for their
username and password on the photo-storage site. As it did previously, the printer
replays these credentials on the protected resource and impersonates the user. In this
scenario, the credentials that the user uses to log into the client can be different from
those used at the protected resource. However, the client gets around this by asking
the user to provide a username and password for the protected resource. Many users
will in fact do this, especially when promised a useful service involving the protected
resource. Consequently, this remains one of the most common approaches to mobile
applications accessing a back end service through a user account today: the mobile
application prompts the user for their credentials and then replays those credentials
directly to the back end API over the network. To keep accessing the API, the client
application will store the user’s credentials so that they can be replayed as needed. This
is an extremely dangerous practice, since the compromise of any client in use will lead
to a full compromise of that user’s account across all systems.

Ask for the resource
Resource owner’s credentials

Owner and replay them to the
« protected resource.

e g

T

Client Protected
Resource

Figure 1.4 Ask for the resource owner’s credentials, and replay them

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

The bad old days: credential sharing (and credential theft) 9

This approach still works only in a limited set of circumstances: the client needs to have
access to the user’s credentials directly, and those credentials need to be able to be
replayed against a service outside of the user’s presence. This rules out a large variety
of ways that the user can log in, including nearly all federated, many multifactor, and
most higher-security login systems.

Lightweight Directory Access Protocol (LDAP) authentication

Interestingly, this pattern is exactly how password-vault authentication technolo-
gies such as LDAP function. When using LDAP for authentication, a client applica-
tion collects credentials directly from the user and then replays these credentials
to the LDAP server to see whether they're valid. The client system must have
access to the plaintext password of the user during the transaction; otherwise, it
has no way of verifying it with the LDAP server. In a very real sense, this method
is a form of man-in-the-middle attack on the user, although one that’'s generally
benevolent in nature.

For those situations in which it does work, it exposes the user’s primary credentials to
a potentially untrustworthy application, the client. To continue to act as the user, the
client has to store the user’s password in a replayable fashion (often in plaintext or a
reversible encryption mechanism) for later use at the protected resource. If the client
application is ever compromised, the attacker gains access not only to the client but
also to the protected resource, as well as any other service where the end user may have
used the same password.

Furthermore, in both of these approaches, the client application is impersonating the
resource owner, and the protected resource has no way of distinguishing a call directly
from the resource owner from a call being directed through a client. Why is that unde-
sirable? Let’s return to the printing service example. Many of the approaches will work,
in limited circumstances, but consider that you don’t want the printing service to be
able to upload or delete photos from the storage service. You want the service to read
only those photos you want printed. You also want it to be able to read only while you
want the photos printed, and you’d like the ability to turn that access oft at any time.

If the printing service needs to impersonate you to access your photos, the storage
service has no way to tell whether it’s the printer or you asking to do something. If the
printing service surreptitiously copies your password in the background (even though
it promised not to do so), it can pretend to be you and grab your photos whenever it
wants. The only way to turn off the rogue printing service is to change your password
at the storage service, invalidating its copy of your password in the process. Couple this
with the fact that many users reuse passwords across different systems and you have yet
another place where passwords can be stolen and accounts correlated with each other.
Quite frankly, in solving this connection problem, we made things worse.

By now you’ve seen that replaying user passwords is bad. What if, instead, we gave
the printing service universal access to all photos on the storage service on behalf of

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

10

CHAPTER 1 What is OAuth 2.0 and why should you care?

A universal key that's
good for opening the door
Resource no matter who locked it.

Owner

| oo
> mm Figure 1.5 Use a

universal developer key,

! and identify the user

Client Protected on whose behalf you're
Resource (allegedly) acting

anyone it chose? Another common approach is to use a developer key (figure 1.5)
issued to the client, which uses this to call the protected resource directly.

In this approach, the developer key acts as a kind of universal key that allows the client
to impersonate any user that it chooses, probably through an API parameter. This has
the benefit of not exposing the user’s credentials to the client, but at the cost of the cli-
ent requiring a highly powerful credential. Our printing service could print any photos
that it wanted to at any time, for any user, since the client effectively has free rein over
the data on the protected resource. This can work to an extent, but only in instances in
which the client can be fully known to and trusted by the protected resource. It is vanish-
ingly unlikely that any such relationship would be built across two organizations, such
as those in our photo-printing scenario. Additionally, the damage done to the protected
resource if the client’s credentials are stolen is potentially catastrophic, since all users of
the storage service are affected by the breach whether they ever used the printer or not.

Another possible approach is to give users a special password (figure 1.6) that’s only
for sharing with third-party services. Users don’t use this password to log in themselves,
but paste it into applications that they want to work for them. This is starting to sound
like that limited-use valet key you saw at the beginning of the chapter.

This is starting to get closer to a desirable system, as the user no longer has to share
their real password with the client, nor does the protected resource need to implicitly
trust the client to act properly on behalf of all users at all times. However, the usabil-
ity of such a system is, on its own, not very good. This requires the user to generate,
distribute, and manage these special credentials in addition to the primary passwords
they already must curate. Since it’s the user who must manage these credentials, there
is also, generally speaking, no correlation between the client program and the creden-
tial itself. This makes it difficult to revoke access to a specific application.

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

1.3

Delegating access 11

A special password
Resource (or token) that can be
Owner used to access just this
protected resource.

@ —
> | oo/
l m Figure 1.6 A service-

Client Protected specific password that
Resource limits access

Can’t we do better than this?

What if we were able to have this kind of limited credential, issued separately for
each client and each user combination, to be used at a protected resource? We could
then tie limited rights to each of these limited credentials. What if there were a network-
based protocol that allowed the generation and secure distribution of these limited
credentials across security boundaries in a way that’s both user-friendly and scalable to
the internet as a whole? Now we’re starting to talk about something interesting.

Delegating access

OAuth is a protocol designed to do exactly that: in OAuth, the end user delegates some
part of their authority to access the protected resource to the client application to act
on their behalf. To make that happen, OAuth introduces another component into the
system: the authorization server (figure 1.7).

The authorization server (AS) is trusted by the protected resource to issue special-
purpose security credentials—called OAuth access tokens—to clients. To acquire a
token, the client first sends the resource owner to the authorization server in order to
request that the resource owner authorize this client. The resource owner authenti-
cates to the authorization server and is generally presented with a choice of whether to
authorize the client making the request. The client is able to ask for a subset of func-
tionality, or scopes, which the resource owner may be able to further diminish. Once
the authorization grant has been made, the client can then request an access token
from the authorization server. This access token can be used at the protected resource
to access the API, as granted by the resource owner (see figure 1.8).

Atno time in this process are the resource owner’s credentials exposed to the client:
the resource owner authenticates to the authorization server separately from anything

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

12

CHAPTER 1 What is OAuth 2.0 and why should you care?

cor———
The authorization
Resource server gives us a thorisat
Owner mechanism to bridge P

the gap between
the client and the

m protected resource.

p U

Client Protected
Resource

Figure 1.7 The OAuth authorization server automates the service-specific password process

£

Client

Client requests
authorization

Protected
Resource

Authorization
Server

Resource owner
grants authorization

Client sends
authorization grant

Authorization server
sends access token

Client sends
access token

Protected resource
sends resource

Figure 1.8 The OAuth process, at a high level

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

1.3.1

Delegating access 13

used to communicate with the client. Neither does the client have a high-powered
developer key: the client is unable to access anything on its own and instead must be
authorized by a valid resource owner before it can access any protected resources. This
is true even though most OAuth clients have a means of authenticating themselves to
the authorization server.

The user generally never has to see or deal with the access token directly. Instead of
requiring the user to generate tokens and paste them into clients, the OAuth protocol
facilitates this process and makes it relatively simple for the client to request a token
and the user to authorize the client. Clients can then manage the tokens, and users can
manage the client applications.

This is a general overview of how the OAuth protocol works, but in fact there are
several ways to get an access token using OAuth. We’ll discuss the details of this process
in chapter 2 by looking in more detail at the authorization code grant type of OAuth
2.0. We’ll cover other methods of getting access tokens in chapter 6.

Beyond HTTP Basic and the password-sharing antipattern

Many of the more “traditional” approaches listed in the previous section are examples
of the password antipattern, in which a shared secret (the password) directly rep-
resents the party in question (the user). By sharing this secret password with appli-
cations, the user enables applications to access protected APIs. However, as we’ve
shown, this is fraught with real-world problems. Passwords can be stolen or guessed,
a password from one service is likely to be used verbatim on another service by the
same user, and storage of passwords for future API access makes them even more
susceptible to theft.

How did HTTP APIs become password-protected in the first place? The history
of the HTTP protocol and its security methods is enlightening. The HTTP protocol
defines a mechanism whereby a user in a browser is able to authenticate to a web page
using a username and password over a protocol known as HTTP Basic Auth. There is
also a slightly more secure version of this, known as HI'TP Digest Auth, but for our pur-
poses they are interchangeable as both assume the presence of a user and effectively
require the presentation of a username and password to the HTTP server. Addition-
ally, because HTTP is a stateless protocol, it’s assumed that these credentials will be
presented again on every single transaction.

This all makes sense in light of HTTP’s origins as a document access protocol, but
the web has grown significantly in both scope and breadth of use since those early
days. HTTP as a protocol makes no distinction between transactions with a browser
in which the user is present and transactions with another piece of software without
an intermediary browser. This fundamental flexibility has been key to the unfathom-
able success and adoption of the HTTP protocol. But as a consequence, when HTTP
started to be used for direct-access APIs in addition to user-facing services, its existing
security mechanisms were quickly adopted for this new use case. This simple techno-
logical decision has contributed to the long-running misuse of continuously-presented
passwords for both APIs and user-facing pages. Whereas browsers have cookies and

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

14

1.3.2

CHAPTER 1 What is OAuth 2.0 and why should you care?

other session-management techniques at their disposal, the types of HTTP clients that
generally access a web API do not.

OAuth was designed from the outset as a protocol for use with APIs, wherein the
main interaction is outside of the browser. It usually has an end user in a browser to
start the process, and indeed this is where the flexibility and power in the delegation
model comes from, but the final steps of receiving the token and using it at a protected
resource lie outside the view of the user. In fact, some of the key use cases of OAuth
occur when the user is no longer present at the client, yet the client is still able to act
on the user’s behalf. Using OAuth allows us to move past the notions and assumptions
of the HTTP Basic protocol in a way that’s powerful, secure, and designed to work with
today’s API-based economy.

Authorization delegation: why it matters and how it’s used

Fundamental to the power of OAuth is the notion of delegation. Although OAuth
is often called an authorization protocol (and this is the name given to it in the RFC
which defines it), it is a delegation protocol. Generally, a subset of a user’s authoriza-
tion is delegated, but OAuth itself doesn’t carry or convey the authorizations. Instead,
it provides a means by which a client can request that a user delegate some of their
authority to it. The user can then approve this request, and the client can then act on
it with the results of that approval.

In our printing example, the photo-printing service can ask the user, “Do you have
any of your photos stored on this storage site? If so, we can totally print that.” The user is
then sent to the photo-storage service, which asks, “This printing service is asking to get
some of your photos; do you want that to happen?” The user can then decide whether
they want that to happen, deciding whether to delegate access to the printing service.

The distinction between a delegation and an authorization protocol is important
here because the authorizations being carried by the OAuth token are opaque to most
of the system. Only the protected resource needs to know the authorization, and as
long as it’s able to find out from the token and its presentation context (either by look-
ing at the token directly or by using a service of some type to obtain this information),
it can serve the API as required.

Connecting the online world

Many of the concepts in OAuth are far from novel, and even their execution owes much
to previous generations of security systems. However, OAuth is a protocol designed
for the world of web APIls, accessed by client software. The OAuth 2.0 framework in
particular provides a set of tools for connecting such applications and APIs across
a wide variety of use cases. As we’ll see in later chapters, the same core concepts
and protocols can be used to connect in browser applications, web services, native
and mobile applications, and even (with some extension) small-scale devices in the
internet of things. Throughout all of this, OAuth depends on the presence of an online
and connected world and enables new things to be built on that stratum.

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

Delegating access 15

1.3.3 User-driven security and user choice

Since the OAuth delegation process involves the resource owner, it presents a pos-
sibility not found in many other security models: important security decisions can be
driven by end user choice. Traditionally, security decisions have been the purview of
centralized authorities. These authorities determine who can use a service, with which
client software, and for what purpose. OAuth allows these authorities to push some of
that decision-making power into the hands of the users who will ultimately be using
the software.

OAuth systems often follow the principle of TOFU: Trust On First Use. In a TOFU
model, the first time a security decision needs to be made at runtime, and there is no
existing context or configuration under which the decision can be made, the user
is prompted. This can be as simple as “Connect a new application?” although many
implementations allow for greater control during this step. Whatever the user experi-
ence here, the user with appropriate authority is allowed to make a security decision.
The system offers to remember this decision for later use. In other words, the first time
an authorization context is met, the system can be directed to trust the user’s decision
for later processing: Trust On First Use.

Do | have to eat my TOFU?

The Trust On First Use (TOFU) method of managing security decisions is not required
by OAuth implementations, but it’s especially common to find these two technolo-
gies together. Why is that? The TOFU method strikes a good balance between the
flexibility of asking end users to make security decisions in context and the fatigue
of asking them to make these decisions constantly. Without the “Trust” portion of
TOFU, users would have no say in how these delegations are made. Without the “On
First Use” portion of TOFU, users would quickly become numb to an unending bar-
rage of access requests. This kind of security system fatigue breeds workarounds
that are usually more insecure than the practices that the security system is attempt-
ing to address.

This approach also presents the user’s decision in terms of functionality, not security:
“Do you want this client to do what it’s asking to do?” This is an important distinction
from more traditional security models wherein decision makers are asked ahead of
time to demarcate what isn’t permissible. Such security decisions are often overwhelm-
ing for the average user, and in any event the user cares more about what they’re trying
to accomplish instead of what they’re trying to prevent.

Now this isn’t to say that the TOFU method must be used for all transactions or deci-
sions. In practice, a three-layer listing mechanism offers powerful flexibility for security
architects (figure 1.9).

The whitelist determines known-good and trusted applications, and the blacklist
determines known-bad applications or other negative actors. These are decisions that
can easily be taken out of the hands of end users and decided a priori by system policy.

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

16

1.4

CHAPTER 1 What is OAuth 2.0 and why should you care?

Whitelist * Centralized control

Internal parties ¢ Traditional policy management

Known business partners
Customer organizations
Trust frameworks

Graylist * End user decisions
Ulifarenin @tiicias ® Extensive auditing and logging
Trust On First Use * Rules on when to move to the

white or black lists

Blacklist Centralized control
Traditional policy management

Known bad parties
Attack sites

Figure 1.9 Different levels of trust, working in parallel

In a traditional security model, the discussion would stop here, since everything not on
the whitelist is automatically on the blacklist by default. However, with the addition of
the TOFU method, we can allow a graylist in the middle of these two, an unknown area
in which user-based runtime trust decisions can take precedence. These decisions can be
logged and audited, and the risk of breach minimized by policies. By offering the graylist
capability, a system can greatly expand the ways it can be used without sacrificing security.

OAuth 2.0: the good, the bad, and the ugly

OAuth 2.0 is very good at capturing a user delegation decision and expressing that
across the network. It allows for multiple different parties to be involved in the security
decision process, most notably the end user at runtime. It’s a protocol made up of
many different moving parts, but in many ways it’s far simpler and more secure than
the alternatives.

One key assumption in the design of OAuth 2.0 was that there would always be
several orders of magnitude more clients in the wild than there would be authoriza-
tion servers or protected resource servers (figure 1.10). This makes sense, as a single
authorization server can easily protect multiple resource servers, and there are likely
to be many different kinds of clients wanting to consume any given API. An authoriza-
tion server can even have several different classes of clients that are trusted at differ-
ent levels, but we’ll cover that in more depth in chapter 12. As a consequence of this
architectural decision, wherever possible, complexity is shifted away from clients and
onto servers. This is good for client developers, as the client becomes the simplest

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

p—
N}

OAuth 2.0: the good, the bad, and the ugly

Authorization Protected Trusted Certified Dynamically
Server Resources Clients Clients Registered
Clients

{

{=

{e] 4l el el

{=

Figure 1.10 Notional relative numbers of components in an OAuth ecosystem

piece of software in the system. Client developers no longer have to deal with signa-
ture normalizations or parsing complicated security policy documents, as they would
have in previous security protocols, and they no longer have to worry about handling
sensitive user credentials. OAuth tokens provide a mechanism that’s only slightly
more complex than passwords but significantly more secure when used properly.

The flip side is that authorization servers and protected resources are now respon-
sible for more of the complexity and security. A client needs to manage securing only
its own client credentials and the user’s tokens, and the breach of a single client would
be bad but limited in its damage to the users of that client. Breaching the client also
doesn’t expose the resource owner’s credentials, since the client never sees them in the
first place. An authorization server, on the other hand, needs to manage and secure
the credentials and tokens for all clients and all users on a system. Although this does
make it more of a target for attack, it’s significantly easier to make a single authoriza-
tion server highly secure than it is to make a thousand clients written by independent
developers just as secure.

The extensibility and modularity of OAuth 2.0 form one of its greatest assets, since
it allows the protocol to be used in a wide variety of environments. However, this same
flexibility leads to basic incompatibility problems between implementations. OAuth
leaves many pieces optional, which can confuse developers who are trying to imple-
ment it between two systems.

mkammerer
Sticky Note
None set by mkammerer

mkammerer
Sticky Note
MigrationNone set by mkammerer

mkammerer
Sticky Note
Unmarked set by mkammerer

18

1.5

CHAPTER 1 What is OAuth 2.0 and why should you care?

Even worse, some of the available options in OAuth can be taken in the wrong con-
text or not enforced properly, leading to insecure implementations. These kinds of
vulnerabilities are discussed at length in the OAuth Threat Model Document® and the
vulnerabilities section of this book (chapters 7, 8, 9, and 10). Suffice it to say, the fact
that a system implements OAuth, and even implements it correctly according to the
spec, doesn’t mean that this system is secure in practice.

Ultimately, OAuth 2.0 is a good protocol, but it’s far from perfect. We will see its
replacement at some point in the future, as with all things in technology, but no real
contender has yet emerged as of the writing of this book. It’s just as likely that OAuth
2.0’s replacement will end up being a profile or extension of OAuth 2.0 itself.

What OAuth 2.0 isn’t

OAuth is used for many different kinds of APIs and applications, connecting the online
world in ways never before possible. Even though it’s approaching ubiquity, there are
many things that OAuth is not, and it’s important to understand these boundaries
when understanding the protocol itself.

Since OAuth is defined as a framework, there has historically been some confu-
sion regarding what “counts” as OAuth and what does not. For the purposes of this
discussion, and truly for the purposes of this book, we’re taking OAuth to mean the
protocol defined by the core OAuth specification,* which details several ways of get-
ting an access token. We’re also including the use of bearer tokens as defined in the
attendant specification,” which dictates how to use this particular style of token. These
two actions—how to get a token and how to use a token—are the fundamental parts
of OAuth. As we’ll see in this section, there are a number of other technologies in the
wider OAuth ecosystem that work together with the core of OAuth to provide greater
functionality than what is available from OAuth itself. We contend that this ecosystem
is evidence of a healthy protocol and shouldn’t be conflated with the protocol itself.

OAuth isn’t defined outside of the HT'TP protocol. Since OAuth 2.0 with bearer tokens
provides no message signatures, it is not meant to be used outside of HTTPS (HTTP
over TLS). Sensitive secrets