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Introduction
Venture into any bookstore today and you can find numerous books on internetworking covering a wide
range of topics from protocols to network design techniques. There’s no question that internetworking has
become a popular field with the enormous growth of the Internet and the increasing convergence of voice,
video, and data. Cisco has built a very successful business selling the equipment that forms the network
infrastructure—by some accounts, Cisco has more than 85 percent of the market—and at the same time
has seen its Cisco IOS Software become a de facto industry standard. Yet, although plenty of material is
written about network design and the protocols IOS supports, very little information is available from
sources other than Cisco.
 
This lack of information is understandable—IOS is proprietary, after all—but it nevertheless leaves
network implementers at a disadvantage. During our experience helping design and troubleshoot IOS-
based networks, we’ve seen many cases where limited IOS architectural knowledge either contributed to
a problem or made it more difficult to solve. In addition, we collectively have answered countless
numbers of questions (and dispelled some myths) from bewildered Cisco customers about the workings of
various IOS features.
 
This book is an attempt to bring together, in one place, the wealth of information about the architecture
and the operation of IOS. Some of this information has been made public previously through forums,
Cisco presentations, and the Cisco Technical Assistance Center. Most of the information you cannot find
in the Cisco IOS documentation.
 
Objectives

Inside Cisco IOS Software Architecture is intended to be an IOS “shop manual” for network designers,
implementers, and administrators. The objective of this book is to describe key parts of the architecture
and the operation of the IOS software. This book also covers the architecture of some of Cisco’s
hardware platforms. Because IOS is a specialized embedded operating system tightly coupled to the
underlying hardware, it’s difficult to describe the software without also considering the hardware
architecture. Note, however, that this book is not meant to be an exhaustive manual for Cisco hardware.
The hardware descriptions are provided only to help illustrate unique features in the IOS software. You
might notice that this book does not cover many of the Cisco platforms; in particular, this book does not
cover any of the Catalyst switch products, and it omits many of the access routers. In most cases, the
missing platforms either are similar to ones that are covered or, in the case of the Catalyst switches,
would be best treated in a separate text of their own.
 
 
Organization

The book is divided into three general sections. The first covers the general architecture of IOS, including
its software infrastructure and packet switching architecture. The second section, beginning with Chapter
3, examines the IOS implementations on a few selected Cisco hardware platforms, covering the design
and operation of the platform-specific features. Finally, Chapter 8 describes how IOS implements select
Quality of Service (QoS) mechanisms. The book is organized into the following chapters:



 
• Chapter 1, “Fundamental IOS Software Architecture”—Provides an introduction to operating

system concepts and then covers the IOS software infrastructure, including processes, memory
management, CPU scheduling, packet buffers, and device drivers.

 • Chapter 2, “Packet Switching Architecture”—Gives an overview of the switching architecture
and describes the theory of operation of several platform-independent switching methods, including
process switching, fast switching, optimum switching, and Cisco Express Forwarding.

 • Chapter 3, “Shared Memory Routers”—Shows how the features discussed in Chapter 1 and
Chapter 2 actually are implemented on a platform using the relatively simple shared memory
routers as an example.

 • Chapter 4, “Early Cbus Routers”—Covers platform-specific switching features in the IOS
implementation for the early Cbus routers. Describes the architecture of the AGS+ and Cisco 7000
routers.

 • Chapter 5, “Particle-Based Systems”—Describes the particle-based packet buffering scheme
using the Cisco 7200 router IOS implementation example. Covers the packet switching
implementation on the Cisco 7200.

 • Chapter 6, “Cisco 7500 Routers”—Continues the description of the Cbus architecture focusing on
the Cisco 7500 router IOS implementation. Also examines the IOS distributed switching
implementation on the Versatile Interface Processor (VIP).

 • Chapter 7, “The Cisco Gigabit Switch Router: 12000”—Covers the IOS implementation on the
Cisco 12000 series routers.

 • Chapter 8, “Quality of Service”—Gives an overview of IOS Quality of Service (QoS) and
describes several QoS methods, including priority queuing, custom queuing, weighted fair queuing,
and modified deficit round robin.

 • Appendix A, “NetFlow Switching”—Covers the NetFlow feature in IOS used for traffic
monitoring and billing.

 



Chapter 1. Fundamental IOS Software Architecture
This chapter covers the following key topics:
 • Operating Systems Basics
 • IOS Architecture Overview
 • Memory Organization
 • IOS Processes
 • IOS Kernel
 • Packet Buffer Management
 • Device Drivers
 

If you were naming the most popular and widely used computer operating systems, which ones would you
choose? Most likely, your list would contain names like UNIX, MS-DOS, Microsoft Windows, or even
IBM’s MVS for mainframes. These are all well-known operating systems—you might even be using one
on a computer at home. Now, think for a minute; are there any others? Would your list contain Cisco IOS?
No, it probably wouldn’t, even though IOS is one of the most widely deployed operating systems in use
today.
 
Unlike the general-purpose operating systems just mentioned, many people never encounter IOS directly.
Most who use a computer to access the Internet aren’t even aware IOS is behind the scenes. Even those
who are aware of IOS, people who use it directly, often don’t consider it to be an operating system but
instead just the software that runs Cisco routers.
 
IOS might not run word processors or accounting applications like others on the list but it is still, in fact,
an operating system—albeit, one specialized for switching data packets. As you will see, much of the IOS
architecture is focused on switching packets as quickly and efficiently as possible.
 
Although IOS is constructed of many of the same fundamental components found in general-purpose
operating systems, the components often contain key differences due to the design goals for IOS. This
chapter covers these fundamental operating system components—the software infrastructure of IOS—and
explores the rationale behind their design.
 
This chapter begins by introducing a few basic operating system concepts and terms that are useful in
understanding the IOS architecture. If you already have a thorough understanding of operating systems,
you might want to skip this first section and continue with the section, “IOS Architecture Overview.” The
remainder of this chapter deals with the major elements of the IOS architecture.
 
 
Operating Systems Basics



Modern operating systems provide two primary functions: hardware abstraction and resource
management. Hardware abstraction gives software developers a common interface between their
application programs and the computer’s hardware so each individual programmer doesn’t need to deal
with the hardware’s intricacies. Instead, the hardware-specific programming is developed once, in the
operating system, and everyone shares.
 
The second function that operating systems provide is managing the computer’s resources (CPU cycles,
memory, and disk drive space, for example) so they can be shared efficiently among multiple
applications. Like hardware abstraction, building resource management into the operating system keeps
each application programmer from writing resource management code for every program.
 

CPU Resource Management and Multitasking

Although some operating systems only allow one program to run at a time (most versions of MS-DOS
operate this way, for example), it’s more common to find operating systems managing multiple programs
concurrently. Running multiple programs at once is called multitasking and operating systems that support
it are typically called multitasking operating systems.
 
Computer programs written for multitasking operating systems themselves often contain multiple
independent tasks that run concurrently. These little subprograms are called threads because they form a
single thread of instruction execution within the program. Threads each have their own set of CPU register
values, called a context, but can share the same memory address space with other threads in the same
program. A group of threads that share a common memory space, share a common purpose, and
collectively control a set of operating system resources is called a process. On operating systems and
CPUs that support virtual memory, each process might run in a separate address space that is protected
from other processes.
 
Because a processor can execute instructions for only one program at a time, the operating system must
manage which set of program instructions (which thread) is allowed to run. Deciding which process
should run is called scheduling and is usually performed by a core piece of the operating system called
the kernel. An operating system can use one of several methods to schedule threads, depending on the type
of applications the operating system has been optimized to support. Different types of applications (batch,
interactive, transactional, real-time, and others) have different CPU utilization characteristics, and their
overall performance is affected by the scheduling method used.
 
The simplest scheduling method is to assign each thread to the processor in the order its run request is
received and let each thread run to completion. This method is called FIFO (first-in, first-out) run-to-
completion scheduling. FIFO’s advantages are: It is easy to implement, it has very low overhead, and it’s
“fair”—all threads are treated equally, first come, first served.
 
FIFO with run-to-completion scheduling is good for batch applications and some transactional
applications that perform serial processing and then exit, but it doesn’t work well for interactive or real-
time applications. Interactive applications need relatively fast, short duration access to the CPU so they
can return a quick response to a user or service some external device.
 
One possible solution for these applications is to assign priorities to each thread. Threads with a critical
need for fast access to the CPU, such as real-time threads, can be assigned a higher priority than other less



critical threads, such as batch. The high priority threads can jump to the head of the line and quickly run
on the CPU. If multiple threads are waiting with the same priority, they are processed in the order in
which they’re received (just like basic FIFO). This method is called run-to-completion priority
scheduling.
 
Run-to-completion priority scheduling, though an improvement over FIFO, still has one drawback that
makes it unsuitable for interactive and real-time applications—it’s easy for one thread to monopolize the
processor. High priority threads can get stuck behind a long-running, low-priority thread already running
on the processor. To solve this problem, a method is needed to temporarily suspend or preempt a running
thread so other threads can access the CPU.
 

Thread Preemption

Involuntarily suspending one thread to schedule another is called preemption. Scheduling methods that
utilize preemption instead of run to completion are said to be preemptive, and operating systems that
employ these methods are called preemptive multitasking operating systems. Preemption relies on the
kernel to periodically change the currently running thread via a context switch. The trigger for a context
switch can be either a system timer (each thread is assigned a time slice) or a function call to the kernel
itself. When a context switch is triggered, the kernel selects the next thread to run and the preempted
thread is put back in line to run again at its next opportunity based on the scheduling method being used.
 
 

Note

A context switch occurs when an operating system’s kernel removes one thread from the CPU and places
another thread on the CPU. In other words, context switches occur when the computer changes the task on
which it is currently working. Context switches can be quite expensive in terms of CPU time because all
of the processor’s registers must be saved for the thread being taken off the CPU and restored for the
thread being put on the CPU. The context is essential for the preempted thread to know where it left off,
and for the thread being run to know where it was the last time it ran.
 
 
There are several advantages to preemptive multitasking, including the following:
 

• It’s predictable—A thread can, within limits, know when it will likely run again. For instance,
given the limits of kernel implementations, a thread can be set up to run once a second and the
programmer can be reasonably certain that the thread will be scheduled to run at that interval.

 • It’s difficult to break—No single thread can monopolize the CPU for long periods of time. A
single thread falling into an endless loop cannot stop other threads from running.

 
Of course, there are also disadvantages to preemptive multitasking, such as:
 

• It’s less efficient than run-to-completion methods—In general, preemptive multitasking systems
tend to switch contexts more often, which means the CPU spends more time scheduling threads and
switching between them than it does with run to completion.

 • It adds complexity to application software—A thread running on a preemptive system can be



interrupted anywhere. Programmers must design and write their applications to protect critical data
structures from being changed by other threads when preempted.

 

Memory Resource Management

Operating systems also manage the computer’s memory, typically dividing it into various parts for storing
actual computer instructions (code), data variables, and the heap. The heap is a section of memory from
which processes can allocate and free memory dynamically.
 
Some operating systems provide a means for processes to address more memory than is physically
present as RAM, a concept called virtual memory. With virtual memory, the computer’s memory can be
expanded to include secondary storage, such as a disk drive, in a way that’s transparent to the processes.
Operating systems create virtual memory using a hardware feature, available on some processors, called
a memory map unit (MMU). MMU automatically remaps memory address requests to either physical
memory (RAM) or secondary storage (disk) depending on where the contents actually reside. The MMU
also allows some address ranges to be protected (marked read-only) or to be left totally unmapped.
 
Virtual memory also has another benefit: In operating systems that support it, an MMU can be
programmed to create a separate address space for each process. Each process can have a memory space
all to itself and can be prevented from accessing memory in the address space of other processes.
 
Although it has many benefits, virtual memory does not come for free. There are resource requirements
and performance penalties—some of them significant—associated with its use. For this reason, as you
will see, IOS does not employ a full virtual memory scheme.
 

Interrupts

Operating systems usually provide support for CPU interrupts. Interrupts are a hardware feature that cause
the CPU to temporarily suspend its current instruction sequence and to transfer control to a special
program. The special program, called an interrupt handler, performs operations to respond to the event
that caused the interrupt, and then returns the CPU to the original instruction sequence. Interrupts often are
generated by external hardware, such as a media controller requesting attention, but they also can be
generated by the CPU itself. Operating systems support the interrupts by providing a set of interrupt
handlers for all possible interrupt types.
 
IOS Architecture Overview

IOS was originally designed to be a small, embedded system for early Cisco routers. At that time, routers
themselves were viewed mostly as hardware appliances—little distinction was made between the
hardware and software. In fact, initially IOS wasn’t even called “IOS”; it was just referred to as “the OS”
that ran a Cisco router.
 
As routed networks gained popularity, demand rose for routers to support an increasing number of
protocols and to provide other functionality, such as bridging. Cisco responded to this enormous demand
by adding new features into the router software, resulting in the multi-functional routing and bridging



software IOS is today. Interestingly, although the functionality of IOS has grown considerably, the basic
operating system architecture has remained mostly the same.
 
Compared to other operating systems, IOS has a fairly simple architecture. Like most small, embedded
systems, IOS was designed to be lean and mean to stay within the memory and speed constraints of the
original platforms.
 
Early routers had limited amounts of memory to share between the software and data (such as routing
tables). To limit the size of the executable image, IOS was designed to provide only essential services.
 
Speed was also a major consideration in the design. To maximize the router’s capability to quickly switch
packets, a conscious effort was made to design the operating system with a minimum of operational
overhead and to allow maximum CPU bandwidth for packet switching. Many safeguards, such as inter-
thread memory protection mechanisms, found in other operating systems are missing from IOS because of
the CPU and the memory overhead they introduce. In general, the IOS design emphasizes speed at the
expense of extra fault protection.
 
Figure 1-1 shows a conceptual diagram of the IOS architecture.
 

Figure 1-1. IOS Architecture
 

 
As Figure 1-1 illustrates, IOS has five major elements:
 

• Processes—Individual threads and associated data that perform tasks, such as system maintenance,
switching packets, and implementing routing protocols.

 • Kernel—Provides basic system services to the rest of IOS, such as memory management and
process scheduling. It provides hardware (CPU and memory) resource management to processes.

 • Packet Buffers—Global memory buffers and their associated management functions used to hold
packets being switched.

 • Device Drivers—Functions that control network interface hardware and peripherals (such as a
flash card). Device drivers interface between the IOS processes, the IOS kernel, and the hardware.
They also interface to the fast switching software.

 • Fast Switching Software—Highly optimized packet switching functions.
 
Each of these elements, except fast switching software, is discussed in more detail in the following
sections. The fast switching software is discussed later in Chapter 2, “Packet Switching Architecture.”
Before we investigate these architectural elements, let’s first look at how IOS organizes memory.
 



Memory Organization

IOS maps the entire physical memory into one large flat virtual address space. The CPU’s MMU is used
when available to create the virtual address space even though IOS doesn’t employ a full virtual memory
scheme. To reduce overhead, the kernel does not perform any memory paging or swapping, so virtual
address space is limited to the bounds of the physical memory available.
 
IOS divides this address space into areas of memory called regions, which mostly correspond to the
various types of physical memory. For example, SRAM might be present for storing packets and DRAM
might be present for storing software and data on a given type of router. Classifying memory into regions
allows IOS to group various types of memory so software needn’t know about the specifics of memory on
every platform.
 
Memory regions are classified into one of eight categories, which are listed in Table 1-1.
 

Table 1-1. Memory Region Classes
 

 

Memory regions also can be nested in a parent-child relationship. Although there is no imposed limit on
the depth of nesting, only one level is really used. Regions nested in this manner form subregions of the
parent region. Figure 1-2 shows a typical platform virtual memory layout and the regions and subregions
IOS might create.
 

Figure 1-2. Memory Regions
 



 
The IOS EXEC command show region can be used to display the regions defined on a particular system
as demonstrated in Example 1-1 (taken from a Cisco 7206 router).
 

Example 1-1. show region Command Output
 

router#show region
Region Manager:
      Start         End     Size(b)  Class  Media  Name
 0x01A00000  0x01FFFFFF     6291456  Iomem  R/W    iomem
 0x31A00000  0x31FFFFFF     6291456  Iomem  R/W    iomem:(iomem_cwt)
 0x4B000000  0x4B0FFFFF     1048576  PCI    R/W    pcimem
 0x60000000  0x619FFFFF    27262976  Local  R/W    main
 0x600088F8  0x61073609    17214738  IText  R/O    main:text
 0x61074000  0x611000FF      573696  IData  R/W    main:data
 0x61100100  0x6128153F     1578048  IBss   R/W    main:bss
 0x61281540  0x619FFFFF     7858880  Local  R/W    main:heap
 0x7B000000  0x7B0FFFFF     1048576  PCI    R/W    pcimem:(pcimem_cwt)
 0x80000000  0x819FFFFF    27262976  Local  R/W    main:(main_k0)
 0xA0000000  0xA19FFFFF    27262976  Local  R/W    main:(main_k1)

 
On the left, the Start and End addresses correspond to parts of the platform virtual memory map. On the
right are the regions and subregions. Subregions are denoted by a name with the : separator and no
parentheses.
 
Figure 1-3 illustrates this memory map and its regions.
 

Figure 1-3. Memory Map and Regions
 

 
The gaps between the address ranges—for example, pcimem ends at 0x4B0FFFFF and main begins at



0x60000000—are intentional. These gaps allow for expansion of the regions and provide a measure of
protection against errant threads. If a runaway thread is advancing through memory writing garbage, it is
forced to stop when it hits a gap.
 
From the output in Example 1-1 and Figure 1-3, you see that the entire DRAM area from 0x60000000 to
0x619FFFFF has been classified as a local region and further divided into subregions. These subregions
correspond to the various parts of the IOS image itself (text, BSS, and data) and the heap. The heap fills
all the local memory area left over after the image is loaded.
 
Some regions appear to be duplicates, only with a different address range, such as iomem:(iomem cwt):
       Start         End     Size(b)  Class  Media  Name

 0x01A00000  0x01FFFFFF     6291456  Iomem  R/W    iomem
 0x31A00000  0x31FFFFFF     6291456  Iomem  R/W    iomem:(iomem_cwt)
....

 
These duplicate regions are called aliases. Some Cisco platforms have multiple physical address ranges
that point to the same block of physical memory. These different ranges are used to provide alternate data
access methods or automatic data translation in hardware. For example, one address range might provide
cached access to an area of physical memory while another might provide uncached access to the same
memory.
 
The duplicate ranges are mapped as alternate views during system initialization and IOS creates alias
regions for them. Aliased regions don’t count toward the memory total on a platform (because they aren’t
really separate memory), so they allow IOS to provide a separate region for alternate memory views
without artificially inflating the total memory calculation.
 

Memory Pools

IOS manages available free memory via a series of memory pools, which are essentially heaps in the
generic sense; each pool is a collection of memory blocks that can be allocated and deallocated as
needed. Memory pools are built out of regions and are managed by the kernel. Often, the pools
correspond one-to-one to particular regions, but they are not required to. A memory pool can be built
from memory spanning several regions, allowing memory to be allocated and reclaimed from various
areas for maximum efficiency.
 
You can obtain information on IOS memory pools by using the show memory command as demonstrated
by Example 1-2.
 

Example 1-2. IOS Memory Pool Information in show memory Command Output
 

router#show memory
               Head   Total(b)    Used(b)    Free(b)  Lowest(b) Largest(b)
Processor  61281540    7858880    3314128    4544752    4377808    4485428
      I/O   1A00000    6291456    1326936    4964520    4951276    4964476
      PCI  4B000000    1048576     407320     641256     641256     641212
...

 

Note

The output from show memory can be very long. It should not be issued while console output paging is



disabled (the terminal length set to 0) because there is no way to stop or pause the output until it
completes.
 

 
In Example 1-2, there are three memory pools: Processor, I/O, and PCI. Comparing the Head column in
this output with the Start column from the output of show region in Example 1-3 allows you to see which
regions are contained within each memory pool.
 

Example 1-3. show region Command Output
 

router#show region
Region Manager:
      Start         End     Size(b)  Class  Media  Name
 0x01A00000  0x01FFFFFF     6291456  Iomem  R/W    iomem
 0x31A00000  0x31FFFFFF     6291456  Iomem  R/W    iomem:(iomem_cwt)
 0x4B000000  0x4B0FFFFF     1048576  PCI    R/W    pcimem
 0x60000000  0x619FFFFF    27262976  Local  R/W    main
 0x600088F8  0x61073609    17214738  IText  R/O    main:text
 0x61074000  0x611000FF      573696  IData  R/W    main:data
 0x61100100  0x6128153F     1578048  IBss   R/W    main:bss
 0x61281540  0x619FFFFF     7858880  Local  R/W    main:heap
....

 
From Example 1-3, you can see the Processor memory pool contains memory from the subregion of main,
called heap, which is in class Local. The Processor memory pool is common to all IOS systems and
always resides in local memory. This is the general memory pool from which data is allocated (such as
routing tables).
 
The I/O pool is managing memory from the iomem region and the PCI pool is managing memory from the
pcimem region.
 
The remaining fields in the show memory output in Example 1-2 provide useful statistics about the pools
as documented in the following list. All units are in bytes.
 

• Total—Total size of the pool.
 • Used—Current amount of memory allocated.
 • Free—Current amount of memory available.
 • Lowest—The least amount of memory ever available since the pool was created.
 • Largest—The size of the largest contiguous block of memory currently available.
 
The show memory command can also display the blocks within each memory pool, as you’ll see later in
this chapter.
 
IOS Processes

IOS processes are essentially equivalent to a single thread in other operating systems—IOS processes
have one and only one thread each. Each process has its own stack space, its own CPU context, and can
control such resources as memory and a console device (more about that later). To minimize overhead,
IOS does not employ virtual memory protection between processes. No memory management is
performed during context switches. As a result, although each process receives its own memory
allocation, other processes can freely access that same memory.
 



IOS uses a priority run-to-completion model for executing processes. Initially, it might appear that this
non-preemptive model is a poor choice for an operating system that must process incoming packets
quickly. In some ways, this is an accurate observation; IOS switching needs quickly outgrew the real-time
response limitations of its process model, and in Chapter 2, “Packet Switching Architectures,” you’ll see
how this apparent problem was solved. However, this model still holds some advantages that make it a
good fit for support processes that remain outside the critical switching path. Some of these advantages
are as follows:
 

• Low overhead—Cooperative multitasking generally results in fewer context switches between
threads, reducing the total CPU overhead contributed by scheduling.

 • Less complexity for the programmer—Because the programmer can control where a process is
suspended, it’s easy to limit context switches to places where shared data isn’t being changed,
reducing the possibility for side effects and deadlocks between threads.

 

Process Life Cycle

Processes can be created and terminated at any time while IOS is operating except during an interrupt. A
process can be created or terminated by the kernel (during IOS initialization) or by another running
process.
 
 

Note

The term interrupt used here refers to a hardware interrupt. When the CPU is interrupted, it temporarily
suspends the current thread and begins running an interrupt handler function. New processes cannot be
created while the CPU is running the interrupt handler.
 

 

One component in particular is responsible for creating many of the processes in IOS: the parser. The
parser is a set of functions that interprets IOS configuration and EXEC commands. The parser is invoked
by the kernel during IOS initialization and EXEC processes that are providing a command-line interface
(CLI) to the console and Telnet sessions.
 
Any time a command is entered by a user or a configuration line is read from a file, the parser interprets
the text and takes immediate action. Some configuration commands result in the setting of a value, such as
an IP address, while others turn on complicated functionality, such as routing or event monitoring.
 
Some commands result in the parser starting a new process. For example, when the configuration
command router eigrp is entered via the CLI, the parser starts a new process, called ipigrp (if the ipigrp
process hasn’t already been started), to begin processing EIGRP IP packets. If the configuration command
no router eigrp is entered, the parser terminates the ipigrp process and effectively disables any EIGRP IP
routing functionality.
 
IOS processes actually go through several stages during their existence. Figure 1-4 shows these stages
and their corresponding states.



 
Figure 1-4. Process Life Cycle

 

 

Creation Stage

When a new process is created, it receives its own stack area and enters the new state. The process can
then move to the modification stage. If no modification is necessary, the process moves to the execution
stage.
 

Modification Stage

Unlike most operating systems, IOS doesn’t automatically pass startup parameters or assign a console to a
new process when it is created, because it’s assumed most processes don’t need these resources. If a
process does need either of these resources, the thread that created it can modify it to add them.
 

Execution Stage

After a new process is successfully created and modified, it transitions to the ready state and enters the
execution stage. During this stage, a process can gain access to the CPU and run.
 
During the execution stage, a process can be in one of three states: ready, run, or idle. A process in the
ready state is waiting its turn to access the CPU and to begin executing instructions. A process in the run
state is in control of the CPU and is actively executing instructions. An idle process is asleep, waiting on
external events to occur before it can be eligible to run.
 
A process transitions from the ready state to the run state when it’s scheduled to run. With non-preemptive
multitasking, a scheduled process continues to run on the CPU until it either suspends or terminates. A
process can suspend in one of two ways. It can explicitly suspend itself by telling the kernel it wants to



relinquish the CPU, transition to the ready state, and wait its next turn to run. A process can also suspend
by waiting for an external event to occur. When a process begins waiting on an event, the kernel implicitly
suspends it by transitioning it to the idle state, where it remains until the event occurs. After the event
occurs, the kernel transitions the process back to the ready state to await its next turn to run.
 

Termination Stage

The final stage in the process life cycle is the termination stage. A process enters the termination stage
when it completes its function and shuts down (called self termination) or when another process kills it.
When a process is killed or self terminates, the process transitions to the dead state. A terminated process
remains in the dead state, inactive, until the kernel reclaims all of its resources. The kernel might also
record statistics about the process’ stack when it terminates. After its resources are reclaimed, the
terminated process transitions out of the dead state and is totally removed from the system.
 

IOS Process Priorities

IOS employs a priority scheme to schedule processes on the CPU. At creation time, every process is
assigned one of four priorities based on the process’ purpose. The priorities are static; that is, they’re
assigned when a process is created and never changed. The IOS process priorities are:
 

• Critical—Reserved for essential system processes that resolve resource allocation problems.
 • High—Assigned to processes that provide a quick response time, such as a process that receives

packets directly from a network interface.
 • Medium—The default priority used by most IOS processes.
 • Low—Assigned to processes providing periodic background tasks, such as logging messages.
 
Process priorities provide a mechanism to give some processes preferential access to the CPU based on
their relative importance to the entire system. Remember though, IOS doesn’t employ preemption, so a
higher priority process can’t interrupt a lower priority process. Instead, having a higher priority in IOS
gives a process more opportunities to access the CPU, as you’ll see later when you investigate the
operation of the kernel’s scheduler.
 

Process Examples

You can use the show process command to see a list of all the processes in a system along with some run-
time data about each one, as demonstrated in Example 1-4.
 

Example 1-4. show process Command Output
 

router#show process
CPU utilization for five seconds: 0%/0%; one minute: 0%; five minutes: 0%
 PID QTy        PC Runtime (ms)    Invoked   uSecs    Stacks TTY Process
   1 M*         0          400         55    727210020/12000  0 Exec
   2 Lst 6024E528       201172      33945    5926 5752/6000   0 Check heaps
   3 Cwe 602355E0            0          1       0 5672/6000   0 Pool Manager
   4 Mst 6027E128            0          2       0 5632/6000   0 Timers
   5 Mwe 602F3E60            0          1       0 5656/6000   0 OIR Handler
   6 Msi 602FA560       290744    1013776     286 5628/6000   0 EnvMon



   7 Lwe 60302944           92      17588       5 5140/6000   0 ARP Input
   8 Mwe 6031C188            0          1       0 5680/6000   0 RARP Input
   9 Mwe 60308FEC        15200     112763     13410748/12000  0 IP Input
  10 Mwe 6033ADC4          420     202811       2 5384/6000   0 TCP Timer
  11 Lwe 6033D1E0            0          1       011644/12000  0 TCP Protocols
  12 Mwe 60389D6C        10204     135198      75 5392/6000   0 CDP Protocol
  13 Mwe 6035BF28        66836    1030665      6411200/12000  0 IP Background
  14 Lsi 60373950            0      16902       0 5748/6000   0 IP Cache Ager
  15 Cwe 6023DD60            0          1       0 5692/6000   0 Critical Bkgnd
  16 Mwe 6023DB80            0         13       0 4656/6000   0 Net Background
  17 Lwe 6027456C            0         11       011512/12000  0 Logger
  18 Msp 6026B0CC          100    1013812       0 5488/6000   0 TTY Background
  19 Msp 6023D8F8            8    1013813       0 5768/6000   0 Per-Second Jobs
  20 Msp 6023D854       405700    1013812     400 4680/6000   0 Net Periodic
  21 Hwe 6023D9BC         5016     101411      49 5672/6000   0 Net Input
  22 Msp 6023D934       135232      16902    8000 5640/6000   0 Per-minute Jobs

 
The following list describes each of the show process command output fields found in Example 1-4.
 

• PID—Process identifier. Each process has a unique process identifier number to distinguish it from
other processes.

 • Qty—Process priority and process state. The first character represents the process’ priority as
follows:

 — K—No priority, process has been killed.
 — D—No priority, process has crashed.
 — X—No priority, process is corrupted.
 — C—Critical priority.
 — H—High priority.
 — M—Medium priority.
 — L—Low priority.
 The remaining two characters in this field represent the current state of the process as follows:
 — *—Process is currently running on the CPU.
 — E—Process is waiting for an event (event dismiss).
 — S—Process is suspended.
 — rd—Process is ready to run.
 — we—Process is idle, waiting on an event.
 — sa—Process is idle, waiting until a specific absolute time occurs.
 — si—Process is idle, waiting for a specific time interval to elapse.
 — sp—Process is idle, waiting for a specific time interval to elapse (periodic).
 — st—Process is idle, waiting for a timer to expire.
 — hg—Process is hung.
 — xx—Process is dead.
 • PC—Contents of the CPU program counter register when the process last relinquished the CPU.

This field is a memory address that indicates where the process begins executing the next time it
gets the CPU. A value of zero means the process is currently running.

 • Runtime—Cumulative amount of time (in milliseconds) the process has used the CPU.
 • Invoked—Total number of times the process has run on the CPU since it was created.



 • uSecs—Average amount of CPU time (in microseconds) used each time the process is invoked.
 • Stacks—Stack space usage statistic. The number on the right of the slash (/) shows the total size of

the stack space. The number on the left indicates the low water mark for the amount of free stack
space available.

 • TTY—Console device associated with this process. Zero indicates the process does not own a
console or communicates with the main system console.

 • Process—Name of the process. Process names need not be unique (multiple copies of a process
can be active simultaneously). However, process IDs are always unique.

 
If you issue the show process command on several different IOS systems, you’ll notice some processes
appear on every one. Most of these are processes that perform housekeeping or provide services to other
processes. Table 1-2 describes the most common of these processes and the tasks they perform.
 

Table 1-2. Common System Processes and Their Functions
 

 
All the processes in Table 1-2, except EXEC, are created by the kernel during system initialization and
normally persist until IOS is shut down.
 
IOS Kernel

When used within the context of operating systems, the word kernel usually conjures pictures of an
operating system core that runs in a special protected CPU mode and manages system resources. Although
the IOS kernel does help manage system resources, its architecture differs from those in other operating
systems. The IOS kernel is not a single unit but rather a loose collection of components and functions
linked with the rest of IOS as a peer rather than a supervisor. There’s no special kernel mode. Everything,



including the kernel, runs in user mode on the CPU and has full access to system resources.
 
The kernel schedules processes, manages memory, provides service routines to trap and handle hardware
interrupts, maintains timers, and traps software exceptions. The major functions of the kernel are
described in more detail in the following sections.
 

The Scheduler

The actual task of scheduling processes is performed by the scheduler. The IOS scheduler manages all the
processes in the system using a series of process queues that represent each process state. The queues
hold context information for processes in that state. Processes transition from one state to another as the
scheduler moves their context from one process queue to another. In all, there are six process queues:
 

• Idle queue—Contains processes that are still active but are waiting on an event to occur before
they can run.

 • Dead queue—Contains processes that have terminated but need to have their resources reclaimed
before they can be totally removed from the system.

 • Ready queues—Contain processes that are eligible to run. There are four ready queues, one for
each process priority:

 — Critical
 — High
 — Medium
 — Low
 
When a running process suspends, the scheduler regains control of the CPU and uses an algorithm to
select the next process from one of its four ready queues. The steps for this algorithm are as follows:
 

Step 1. The scheduler first checks for processes waiting in the critical priority ready queue. It runs
each critical process, one by one, until all have had a chance to run.

 Step 2. After all critical processes have had a chance to run, the scheduler checks the high priority
queue. If there are no high priority processes ready, the scheduler skips to Step 3 and checks
the medium priority queue.

 Otherwise, the scheduler removes each high priority process from the queue and allows it to run.
Between each high priority process, the scheduler checks for any critical processes that are ready
and runs all of them before proceeding to the next high priority process. After all high priority
processes have had their chance, the scheduler skips the medium and low process queues and starts
over at Step 1.

 Step 3. After there are no high priority processes waiting to run, the scheduler checks the medium
priority queue. If there are no medium priority processes ready, the scheduler skips to Step 4
and checks the low priority queue. Otherwise, the scheduler removes each medium priority
process from the queue and allows it to run. Between each medium priority process, the
scheduler checks for any high priority processes that are ready and runs all of them
(interleaved with any critical priority processes) before proceeding to the next medium



priority process. After all medium priority processes have had their chance, the scheduler
skips over the low priority queue and starts over at Step 1 again. The scheduler skips the low
priority queue a maximum of 15 times before proceeding to Step 4. This threshold is a failsafe
mechanism to prevent the low priority processes from being starved.

 Step 4. After there are no medium or high priority processes waiting to run (or the low priority
queue has been skipped 15 times) the scheduler checks the low priority queue. The scheduler
removes each low priority process from the queue and allows it to run. Between each low
priority process, the scheduler checks for any ready medium priority processes and runs them
(interleaved with any high and critical priority processes) before proceeding to the next low
priority process.

 Step 5. The scheduler finally returns to Step 1 and starts over.
 
The scheduling algorithm works similar to the operation of a stopwatch. Think of the seconds as
representing the critical processes, the minutes as representing the high priority processes, the hours as
representing medium processes, and the days as representing the low priority processes. Each pass of the
second hand covers all the seconds on the dial. Each pass of the minute hand covers all the minutes on the
dial, including a complete pass of all seconds for each minute passed, and so on.
 
Like a stopwatch, the scheduling algorithm also has a built-in reset feature. The algorithm doesn’t
advance to check the medium priority queue until there are no high priority processes waiting to run. As
long as it finds high priority processes, it starts over from the beginning, checking for critical processes
and then high priority processes like a stopwatch that’s reset to zero when it reaches the first hour.
 

Process CPU Utilization

Although IOS does not provide any statistics on the operation of the scheduler itself, there is a way to see
how the processes are sharing the CPU. In an earlier example, you saw how the show process command
gives general statistics about all active processes. A variant of that command, show process cpu, has
similar output but focuses more on the CPU utilization by each process. Example 1-5 provides some
sample output from the show process cpu command.
 

Example 1-5. show process cpu Command Output
 

router#show process cpu
CPU utilization for five seconds: 90%/82%; one minute: 60%; five minutes: 40%
PID  Runtime(ms)  Invoked  uSecs    5Sec   1Min   5Min TTY Process
   1        1356   2991560      0   0.00%  0.00%  0.00%   0 BGP Router
   2      100804      7374  13670   0.00%  0.02%  0.00%   0 Check heaps
   3           0         1      0   0.00%  0.00%  0.00%   0 Pool Manager
   4           0         2      0   0.00%  0.00%  0.00%   0 Timers
   5        6044         41511000   0.00%  0.00%  0.00%   0 OIR Handler
   6           0         1      0   0.00%  0.00%  0.00%   0 IPC Zone Manager
   7           0         1      0   0.00%  0.00%  0.00%   0 IPC Realm Manager
   8        7700     36331    211   8.00%  0.00%  0.00%   0 IP Input
...

 
The first line of the show process cpu output in Example 1-5 shows the overall CPU utilization for the
machine averaged over three different time intervals: 5 seconds, 1 minute, and 5 minutes. The 5 second
usage statistic is reported as two numbers separated by a slash. The number on the left of the slash
represents the total percentage of available CPU capacity used during the last 5-second interval (total
percent CPU busy). The number on the right of the slash represents the total percentage of available CPU
capacity used while processing interrupts. The 1-minute usage and the 5-minute usage show the total



percent CPU usage as an exponentially decaying average over the last minute and the last 5 minutes,
respectively.
 
Below the general usage statistics, the same three intervals are reported on a per process basis. Note, the
scheduler automatically computes all these usage statistics every 5 seconds and stores them internally in
case someone issues a show process cpu command. So, it’s possible to see the exact same statistics twice
—not updated—if the command is issued twice within a 5 second period.
 
Using the show process cpu output, it’s fairly easy to determine what processes are most active and how
much of the CPU capacity they use. In the example, an average of 90 percent of the CPU capacity was
being used during the 5-second interval right before the command was issued. An average of 82 percent
of capacity was being used by interrupt processing with the other 8 percent being used by scheduled
processes (90% − 82% = 8%). Over the last 60 seconds, an average of 60 percent of the CPU capacity
was being used, and over the last 5 minutes, 40 percent of the CPU capacity was being used, on average.
Looking at the individual scheduled processes, 8 percent of the CPU capacity was being consumed by the
ip_input process during the last 5 seconds. This accounts for all the process usage; so, the other processes
either weren’t scheduled on the CPU during that interval or they used less than 0.01 percent of the CPU.
 
In this example, a relatively large percentage of the CPU capacity is being consumed by interrupt
processing. So what is IOS doing during that 82 percent of the time? Unfortunately, there’s no detailed
account of interrupt processing CPU usage like there is for processes; so, we really can’t pinpoint the
usage to a specific source. However, we can make a good estimate about how this CPU time is being
used. As you’ll see in Chapter 2, when Fast Switching is being used for packets, most of the packet
switching work is performed during an interrupt. IOS does do some other processing during interrupts, but
by far most of the processing time is used for fast packet switching. A high interrupt CPU usage statistic
usually just means IOS is fast switching a large volume of packets.
 
The remaining unused CPU capacity (10 percent in our example) is called idle CPU time. “Idle,” though,
is a somewhat misleading term because a CPU is never really idle while it’s running; it’s always
executing instructions for something. In IOS, that idle time actually represents the time the CPU is
spending running the scheduler itself—a very important task indeed. It’s important for an IOS system to
operate with sufficient idle time. As CPU utilization approaches 100 percent, very little time is left over
for the scheduler, creating a potentially serious situation. Because the scheduler is responsible for running
all the background critical support processes, if it can’t run, neither can the processes and that can lead to
system failure.
 
As you’ll see, IOS has watchdog timers to prevent runaway processes from consuming all the CPU
capacity. Unfortunately, IOS does not always employ this type of limiting mechanism for interrupts.
Although many platforms do support limiting CPU interrupt time through interrupt throttling, it’s not
always enabled by default.
 
In any event, watchdog timers and interrupt throttling are just safety mechanisms. When planning for a
system that might encounter a high rate of packets (many busy high speed network interfaces, for
example), it’s best to select a sufficiently fast CPU and configure IOS with the most efficient switching
methods to avoid CPU starvation problems.
 

Watchdog Timer



To reduce the impact of runaway processes, IOS employs a process watchdog timer to allow the
scheduler to periodically poll the current running process. This feature is not the same as preemption but
is instead a failsafe mechanism to prevent the system from becoming unresponsive or completely locking
up due to a process consuming all of the CPU. If a process appears to be hung (for example, it’s been
running for a long time), the scheduler can force the process to terminate.
 
Each time the scheduler allows a process to run on the CPU, it starts a watchdog timer for that process.
After a preset period, two seconds by default, if the process is still running, the timer expires and the
scheduler regains control. The first time the watchdog expires, the scheduler prints a warning message for
the process similar to the following, and then continues the process on the CPU:
 %SNMP-3-CPUHOG: Processing GetNext of ifEntry.17.6

%SYS-3-CPUHOG: Task ran for 2004 msec (49/46), Process = IP SNMP, PC = 6018EC2C
 -Traceback= 6018EC34 60288548 6017E9C8 6017E9B4

 
If the watchdog expires a second time and the process still hasn’t suspended, the scheduler terminates the
process.
 

The Memory Manager

The kernel’s memory manager is responsible, at a macro level, for managing all the memory available to
IOS, including the memory containing the IOS image itself. The memory manager is actually not one single
component but three separate components, each with its own responsibility:
 

• Region Manager—Defines and maintains the various memory regions on a platform.
 • Pool Manager—Manages the creation of memory pools and the allocation/de-allocation of

memory blocks within the pools.
 • Chunk Manager—Manages the specially allocated memory blocks that contain multiple fixed-

sized sub-blocks.
 

Region Manager

The region manager is responsible for maintaining all the memory regions. It provides services allowing
other parts of IOS to create regions and to set their attributes. It also allows others to query the available
memory regions, for example, to determine the total amount of memory available on a platform.
 

Pool Manager

The memory pool manager is a very important component of the kernel. Just as the scheduler manages
allocating CPU resources to processes, the pool manager manages memory allocation for processes. All
processes must go through the pool manager, directly or indirectly, to allocate memory for their use. The
pool manager is invoked each time a process uses the standard system functions malloc and free to
allocate or return memory.
 
The pool manager operates by maintaining lists of free memory blocks within each pool. Initially, of
course, each pool contains just one large free block equal to the size of the pool. As the pool manager
services requests for memory, the initial free block gets smaller and smaller. At the same time, processes



can release memory back to the pool, creating a number of discontiguous free blocks of varying sizes.
This scenario is called memory fragmentation and is illustrated in Figure 1-5.
 

Figure 1-5. Memory Pool Allocation
 

 
As free blocks are returned to a pool, the pool manager adds their size and starting addresses to one of the
pool’s free lists for blocks of similar size. By default, the pool manager maintains free lists for each of the
following block sizes: 24, 84, 144, 204, 264, 324, 384, 444, 1500, 2000, 3000, 5000, 10,000, 20,000,
32,768, 65,536, 131,072, and 262,144 bytes. Note that these sizes have no relation to the system buffers
discussed later in this chapter.
 
When a process requests memory from a pool, the pool manager first starts with the free list associated
with the size of the request. This method helps make efficient use of memory by matching requests to
recycled blocks that are close in size. If there are no blocks available on the best-fit list, the pool manager
continues with each higher list until a free block is found. If a block is found on one of the higher lists, the
pool manager splits the block and puts the unused portion back on the appropriate list of smaller blocks.
 
The pool manager tries to control fragmentation by coalescing returned blocks that are physically adjacent
to one another. When a block is returned and it’s next to an existing free block, the pool manager combines
the two blocks into one larger block and places the resulting block on the appropriate sized list, as shown
in Figure 1-6.
 

Figure 1-6. Free Block Coalesce
 

 
Earlier, Example 1-2 demonstrated how the EXEC command show memory displays names and statistics



for the available memory pools in its summary. The show memory command also lists detail about the
individual blocks contained in each of the pools. Following the pool summary, the command output lists
all the blocks, in order, under each pool, as demonstrated in the output in Example 1-6.
 

Example 1-6. show memory Command Output with Memory Pool Details
 

router#show memory
               Head   Total(b)    Used(b)    Free(b)  Lowest(b) Largest(b)
Processor  61281540    7858880    3314128    4544752    4377808    4485428
      I/O   1A00000    6291456    1326936    4964520    4951276    4964476
      PCI  4B000000    1048576     407320     641256     641256     641212

Processor memory

 Address  By tes Prev.    Next     Ref  PrevF   NextF   Alloc PC  What
61281540   1460 0        61281B20   1                  6035CCB0  List Elements
61281B20   2960 61281540 612826DC   1                  6035CCDC  List Headers
612826DC   9000 61281B20 61284A30   1                  60367224  Interrupt Stack
61284A30     44 612826DC 61284A88   1                  60C8BEEC  *Init*
61284A88   9000 61284A30 61286DDC   1                  60367224  Interrupt Stack
61286DDC     44 61284A88 61286E34   1                  60C8BEEC  *Init*
61286E34   9000 61286DDC 61289188   1                  60367224  Interrupt Stack
61289188     44 61286E34 612891E0   1                  60C8BEEC  *Init*
612891E0   4016 61289188 6128A1BC   1                  602F82CC  TTY data
6128A1BC   2000 612891E0 6128A9B8   1                  602FB7B4  TTY Input Buf
6128A9B8    512 6128A1BC 6128ABE4   1                  602FB7E8  TTY Output Buf

 
The memory pool detail fields displayed in Example 1-6 are as follows:
 

• Address—Starting address of the block.
 • Bytes—Size of the block.
 • Prev—Address of the preceding block in the pool.
 • Next—Address of the following block in the pool.
 • Ref—Number of owners of this memory block.
 • PrevF—For free blocks only, the address of the preceding block in the free list.
 • NextF—For free blocks only, the address of the next block in the free list.
 • Alloc PC—Value of the CPU’s program counter register when the block was allocated. This value

can be used to determine which process allocated the block.
 • What—Description of how the block is being used.
 
You can use a variation of this command, show memory free, to display the free blocks in each pool, as
demonstrated in Example 1-7. The command output lists each free block in order by free list. Empty free
lists appear with no memory blocks listed under them.
 

Example 1-7. show memory free Command Output
 

router#show memory free
...

Processor memory

 Address  By tes Prev.    Next     Ref  PrevF   NextF   Alloc PC  What
             24    Free list 1
6153E628     52 6153E5F0 6153E688   0  0       615A644 603075D8  Exec
615A6444     44 615A63F8 615A649C   0  6153E62 0       603567F0  (fragment)
             92    Free list 2
            112    Free list 3
            116    Free list 4
            128    Free list 5
61552788    128 6155273C 61552834   0  0       0       603075D8  (coalesced)
            132    Free list 6
            152    Free list 7
            160    Free list 8
            208    Free list 9
            224    Free list 10
            228    Free list 11
6153E460    240 6153E428 6153E57C   0  0       0       6047A960  CDP Protocol
            272    Free list 12
            288    Free list 13
            296    Free list 14



            364    Free list 15
            432    Free list 16
            488    Free list 17
            500    Free list 18
6153E6D4    544 6153E69C 6153E920   0  0       0       60362350  (coalesced)
           1500    Free list 19
           2000    Free list 20
61552B84   2316 61552954 615534BC   0  0       0       603075D8  (coalesced)
           3000    Free list 21
6153EA14   4960 6153E9D4 6153FDA0   0  0       0       603080BC  (coalesced)
           5000    Free list 22
          10000    Free list 23
61572824  15456 6157106C 615764B0   0  0       0       603080BC  (coalesced)
          20000    Free list 24
          32768    Free list 25
6159BA64  35876 61598B6C 615A46B4   0  0       0       60371508  (fragment)
          65536    Free list 26
         131072    Free list 27
         262144    Free list 28

Total: >   59616

 

Chunk Manager

The pool manager provides a very effective way for managing a collection of random-sized blocks of
memory. However, this feature does not come without cost. The pool manager introduces 32 bytes of
memory overhead on every block managed. Although this overhead is insignificant for pools with a few
hundred large blocks, for a pool with thousands of small blocks, the overhead can quickly become
substantial. As an alternative, the kernel provides another memory manager, called the chunk manager,
that can manage large pools of small blocks without the associated overhead.
 
Unlike the pool manager, the chunk manager does not create additional memory pools with free lists of
varying size. Instead, the chunk manager manages a set of fixed-size blocks subdivided within a larger
block that has been allocated from one of the standard memory pools. In some ways, the chunk manager
can almost be considered a submemory pool manager.
 
The strategy most often employed is this: A process requests the allocation of a large memory block from
a particular memory pool. The process then calls on the chunk manager to subdivide the block into a
series of smaller fixed-size chunks and uses the chunk manager to allocate and free the chunks as needed.
The advantage is there are only 32 bytes of overhead (associated with the one large block) and the pool
manager is not burdened with allocating and reclaiming thousands of little fragments. So, the potential for
memory fragmentation in the pool is greatly reduced.
 

Process Memory Utilization

IOS has another variation of the show process CLI command, show process memory, that shows the
memory utilization by each process. This command allows you to quickly determine how available
memory is being allocated by processes in the system. Example 1-8 provides some sample output from a
show process memory command.
 

Example 1-8. show process memory Command Output
 

router#show process memory
Total: 7858880, Used: 3314424, Free: 4544456
 PID TTY  Allocated      Freed    Holding    Getbufs    Retbufs Process
   0   0      86900       1808    2631752          0          0 *Init*
   0   0        448      55928        448          0          0 *Sched*
   0   0    7633024    2815568       6348     182648          0 *Dead*
   1   0        268        268       3796          0          0 Load Meter
   2   0        228          0       7024          0          0 CEF Scanner
   3   0          0          0       6796          0          0 Check heaps
   4   0         96          0       6892          0          0 Pool Manager
   5   0        268        268       6796          0          0 Timers
...
  65   0          0      14492       6796          0      13248 Per-minute Jobs
  66   0     143740       3740     142508          0          0 CEF process
  67   0          0          0       6796          0          0 xcpa-driver



                                  3314184 Total

 
The first line in Example 1-8 shows the total number of bytes in the pool followed by the amount used and
the amount free. The statistics in the first line represent metrics for the Processor memory pool and should
match the output of the show memory command. The summary line is followed by detail lines for each
scheduled process:
 

• PID—Process identifier.
 • TTY—Console assigned to the process.
 • Allocated—The total number of bytes this process has allocated since it was created.
 • Freed—The total number of bytes this process has freed since it was created.
 • Holding—The number of bytes this process currently has allocated. Note that, because a process

can free memory that was allocated by another process, the allocated, freed, and holding numbers
might not always balance. In other words, allocated minus freed does not always equal holding.

 • Getbufs—The total number of bytes for new packet buffers created on behalf of this process.
Packet buffer pools are described later in the “Packet Buffer Management” section.

 • Retbufs—The total number of bytes for packet buffers trimmed on behalf of this process. Packet
buffer trims are described later in the “Packet Buffer Management” section.

 • Process—The name of the process.
 
Notice there are three processes appearing in the show process memory output labeled *Init*, *Sched*,
and *Dead*. These are not real processes at all but are actually summary lines showing memory
allocated by IOS outside the scheduled processes. The following list describes these summary lines:
 

• *Init*—Shows memory allocated for the kernel during system initialization before any processes
are created.

 • *Sched*—Shows memory allocated by the scheduler.
 • *Dead*—Shows memory once allocated by scheduled processes that has now entered the dead

state. Memory allocated to dead processes is eventually reclaimed by the kernel and returned to the
memory pool.

 

Memory Allocation Problems

In all the examples thus far, we’ve assumed that when a process requests an allocation of memory its
request is granted. However, this might not always be the case. Memory resources, like CPU resources,
are limited; there’s always the chance that there might not be enough memory to satisfy a request. What
happens when a process calls on the pool manager for a memory block and the request fails? Depending
on the severity (that is, what the memory is needed for), the process might continue to limp along or it
might throw up its hands and quit. In either case, when the pool manager receives a request that it can’t
satisfy, it prints a warning message to the console similar to the following:
 %SYS-2-MALLOCFAIL: Memory  allocation of 2129940 by tes failed from 0x6024C00C,

  pool I/O, alignment 32
 -Process= "OIR Handler", ipl= 4, pid= 7
 -Traceback= 6024E738 6024FDA0 6024C014 602329C8 60232A40 6025A6C8 60CEA748
  60CDD700 60CDF5F8 60CDF6E8 60CDCB40 60286F1C 602951

 
Basically, there are two reasons why a valid request for memory allocation can fail:



 
• There isn’t enough free memory available.

 • Enough memory is available, but it’s fragmented so that no contiguous block is available of
sufficient size.

 
Failures due to lack of memory usually occur because there is simply not enough memory on the platform
to support all the activities in the system. When this happens, you have two choices: add more memory to
the platform, or reduce configured features, interfaces, and so on until the problem goes away. In some
rare cases, though, these “out of memory” failures can occur because of a defect called a memory leak in
one of the processes. The term memory leak refers to a scenario where a process continually allocates
memory blocks but never frees any of them; eventually it consumes all available memory. Memory leaks
usually are caused by software defects.
 
Allocation failures also can occur when there’s seemingly plenty of memory available. For an example,
look at the following sample show memory output in Example 1-9.
 

Example 1-9. Sample show memory Command Output
 

router#show memory
               Head   Total(b)    Used(b)    Free(b)  Lowest(b) Largest(b)
Processor  61281540    7858880    4898452    2960428      10507       8426
....

 
This particular system has 2,960,428 bytes of memory free. Yet, what happens when a process tries to
allocate just 9000 bytes? The request fails. The clue to why is in the Largest field of the show memory
output. At the time this command was issued, the largest contiguous block of memory available was only
8426 bytes long—not large enough to satisfy a 9000 byte request.
 
This scenario is indicative of severe memory fragmentation. Severe fragmentation occurs when many
small memory blocks are allocated and then returned in such a way that the pool manager can’t coalesce
them into larger blocks. As this trend continues, the large contiguous blocks in the pool are chipped away
until nothing is left but smaller fragments. When all the larger blocks are gone, memory allocation failures
start to occur.
 
The kernel’s pool manager is designed to maintain self-healing memory pools that avoid fragmentation,
and in most cases this design works without a problem. However, some allocation scenarios can break
this design; one example being the pool of many small blocks discussed earlier.
 
Packet Buffer Management

In packet routing, as in any store-and-forward operation, there must be some place within the system to
store the data while it is being routed on its way. The typical strategy is to create memory buffers to hold
incoming packets while the switching operation is taking place. Because the capability to route packets is
central to the IOS architecture, IOS contains a special component dedicated to managing just such buffers.
This component is called the buffer pool manager (not to be confused with the memory pool manager
discussed earlier). IOS uses this component to create and manage a consistent series of packet buffer
pools for switching on every platform. The buffers in these pools are collectively known as the system
buffers.
 
The buffer pool manager provides a convenient way to manage a set (or pool) of buffers of a particular



size. Although it can be used to manage any type of buffer pool, the buffer pool manager is used primarily
to manage pools of packet buffers, so that’s what we’ll focus on here.
 
Packet buffer pools are created using memory allocated from one of the available memory pools: for
example, Processor, I/O, and so on. To create a pool, the packet buffer manager requests a block of
memory from the kernel’s memory pool manager and divides it into buffers. The packet buffer manager
then builds a list of all the free buffers and tracks the allocation and freeing of those buffers.
 
Packet buffer pools can be either static or dynamic. Static pools are created with a fixed number of
buffers—no additional buffers can be added to the pool. Dynamic pools are created with a particular base
minimum number of buffers, called permanent buffers, but additional buffers can be added or removed on
demand. With dynamic buffer pools, if the buffer pool manager receives a request while the pool is empty,
it attempts to expand the pool and satisfy the request immediately. If it’s not possible to expand the pool
within the context of the request, it fails the request and expands the pool later in the pool manager
background process.
 
Packet buffer pools are classified as either public or private. Public pools, as the name implies, are
available for use by any system process, and private pools are created for (and known only to) a specific
subset of processes that use them.
 

System Buffers

Every IOS system has a predefined set of public buffer pools known as the system buffers. These buffer
pools are used for process switching packets through the platform and for creating packets that originate
in the platform (such as interface keepalive packets and routing updates). IOS provides statistics about
these and other buffer pools through the show buffer command. For an example, let’s examine the show
buffer output in Example 1-10.
 

Example 1-10. show buffer Command Output
 

router#>show buffer
Buffer elements:
     500 in free list (500 max allowed)
     747314 hits, 0 misses, 0 created

Public buffer pools:
Small buffers, 104 by tes (total 50, permanent 50):
     46 in free list (20 min, 150 max allowed)
     530303 hits, 6 misses, 18 trims, 18 created
     0 failures (0 no memory )
Middle buffers, 600 by tes (total 25, permanent 25):
     25 in free list (10 min, 150 max allowed)
     132918 hits, 3 misses, 9 trims, 9 created
     0 failures (0 no memory )
Big buffers, 1524 by tes (total 50, permanent 50):
     50 in free list (5 min, 150 max allowed)
     47 hits, 0 misses, 0 trims, 0 created
     0 failures (0 no memory )
VeryBig buffers, 4520 by tes (total 10, permanent 10):
     10 in free list (0 min, 100 max allowed)
     26499 hits, 0 misses, 0 trims, 0 created
     0 failures (0 no memory )
Large buffers, 5024 by tes (total 0, permanent 0):
     0 in free list (0 min, 10 max allowed)
     0 hits, 0 misses, 0 trims, 0 created
     0 failures (0 no memory )
Huge buffers, 18024 by tes (total 0, permanent 0):
     0 in free list (0 min, 4 max allowed)
     0 hits, 0 misses, 0 trims, 0 created
     0 failures (0 no memory )
...

 
Notice the list of Public buffer pools. These are the standard system buffers for IOS. Each one has a
name, such as Small buffers, Middle buffers, and so on, that identifies the particular pool. Following the



pool name is the byte size of the buffers contained in that pool. Each buffer pool contains buffers of one
and only one size. The sizes vary from 104 bytes up to 18,024 bytes in order to accommodate the various
maximum transmission unit (MTU) sizes encountered on different interface media.
 
The remainder of the fields in Example 1-10 are as follows:
 

• total—The total number of buffers in the pool (both allocated and free).
 • permanent—The base number of buffers in the pool. For dynamic pools, the total number of

buffers can fluctuate as the pool grows and shrinks. However, there will never be less than the
permanent number of buffers in the pool.

 • in free list—Indicates the number of free buffers available.
 • min—The minimum number of buffers desired in the free list. If the number of free buffers drops

below min, the buffer pool manager attempts to grow the pool and add more buffers until the
number of free buffers is greater than min.

 • max allowed—The maximum number of buffers desired in the free list. If the number of free
buffers increases beyond max allowed, the buffer pool manager attempts to shrink the pool,
deleting free buffers, until the number of free buffers drops below max allowed. Note that the
buffer pool manager never shrinks the size of the pool below the permanent metric regardless of
the value of max allowed.

 • hits—The number of buffers that have been requested from the pool.
 • misses—The number of times a buffer was requested from the pool when there were fewer than

min buffers in the free list.
 • trims—The number of buffers that have been deleted from the pool during pool shrinkage.
 • created—The number of buffers that have been created and added to the pool during pool growth.
 • failures—The number of times a buffer was requested from the pool but the request could not be

satisfied. Failures can occur for two reasons:
 — A buffer request occurs during an interrupt and there are no free buffers. Pools can’t grow during

an interrupt.
 — A buffer request occurs, there are no free buffers, and there is no more memory left in the memory

pool to grow the buffer pool.
 • no memory—The number of times a failure occurred because there was no available memory in

the memory pool. Note that this counter is no longer used in recent versions of IOS.
 
To get an understanding of just how the buffer pool manager operates with these system buffers, let’s step
through a packet-switching scenario and monitor how the show buffers counters change for a particular
pool. Consider the following example.
 
Let’s start with 16 buffers in the free list, as shown in the following output and illustrated in Figure 1-7.
  Small buffers, 104 by tes (total 16, permanent 16):

      16 in free list (8 min, 16 max allowed)
      0 hits, 0 misses, 0 trims, 0 created
      0 failures (0 no memory )

 
Figure 1-7. Beginning with an Empty Buffer

 



 
Now say IOS receives eight packets that fit nicely into the 104-byte small buffers. The packet receive
software requests and receives eight buffers from the small buffer pool and copies in the packets. The free
list now drops from 16 to 8, resulting in a count of eight free buffers and eight hits, as illustrated in the
following output and in Figure 1-8.
 Small buffers, 104 by tes (total 16, permanent 16):

     8 in free list (8 min, 16 max allowed)
     8 hits, 0 misses, 0 trims, 0 created
     0 failures (0 no memory )

 
Figure 1-8. Eight Packets Received

 

 
Now IOS receives four more packets before processing any of the eight previously received. The packet
receive software requests four more buffers from the small pool and copies in the data packets. Figure 1-
9 illustrates the pool at this point.
 

Figure 1-9. Four More Packets Received
 

 
Looking at the output of show buffers, we see several counters have incremented. Let’s inspect them to
see what happened to the pool:
 Small buffers, 104 by tes (total 16, permanent 16):

     4 in free list (8 min, 16 max allowed)
     12 hits, 4 misses, 0 trims, 0 created
     0 failures (0 no memory )

 
The number in the free list has now dropped to 4 and there are now 12 hits, reflecting the 4 new buffers
requested. Why have the misses incremented to four, though? Because each time a buffer is requested from
a pool where it causes the free list to drop below the minimum free buffers allowed, a miss is counted.
We can see from the output that the minimum free is eight and we now have only four buffers in the free
list; so, IOS counted four misses.



 
Because there are now fewer than min buffers in the free list, the buffer pool manager runs the pool
manager process to grow the pool and to create more free buffers, as demonstrated in the following output
and illustrated in Figure 1-10.
 Small buffers, 104 by tes (total 20, permanent 16):

     8 in free list (8 min, 16 max allowed)
     12 hits, 4 misses, 0 trims, 4 created
     0 failures (0 no memory )

 
Figure 1-10. After Pool Manager Creates New Buffers

 

 
We now see that the pool manager process has created four new buffers to bring the number in the free list
back up to a total of eight, the minimum number of buffers desired to be free at any time in this pool.
 
Now, Figure 1-11 illustrates what happens when IOS tries to request nine more packet buffers from this
pool before returning any free buffers.
 

Figure 1-11. Storing Nine More Packets
 

 
From the following output, we see that the free list has been completely exhausted—0 buffers remaining
—and there have been 20 hits, 13 misses, and 1 failure. The failure accounts for the one request that
overran the buffer pool.
 Small buffers, 104 by tes (total 20, permanent 16):

     0 in free list (8 min, 16 max allowed)
     20 hits, 13 misses, 0 trims, 4 created
     1 failures (0 no memory )

 
Finally, IOS begins processing packets and returning buffers to the pool. IOS processes 17 of the 20
packets and returns the 17 free buffers, as illustrated in Figure 1-12 and the output that follows.
 

Figure 1-12. Returning 17 Buffers to the Pool
 



 Small buffers, 104 by tes (total 20, permanent 16):
     17 in free list (8 min, 16 max allowed)
     20 hits, 13 misses, 0 trims, 4 created
     1 failures (0 no memory )

 
The small pool now has 17 in the free list. However, the desired maximum free buffers is only 16.
Because the number in the free list exceeds the max allowed, the next time the pool manager process runs
it shrinks the buffer pool to adjust the number of free buffers, causing one to be trimmed, as shown in
Figure 1-13 and the output that follows.
 

Figure 1-13. Trimming the Extra Buffer
 

 Small buffers, 104 by tes (total 20, permanent 16):
     17 in free list (8 min, 16 max allowed)
     20 hits, 13 misses, 1 trims, 4 created
     1 failures (0 no memory )

 
Finally, IOS processes all the remaining packets and returns the buffers to the pool. Eventually, the pool
manager process trims all the remaining buffers above the permanent pool size, resulting in the following
counts:
 Small buffers, 104 by tes (total 16, permanent 16):

     16 in free list (8 min, 16 max allowed)
     20 hits, 13 misses, 4 trims, 4 created
     1 failures (0 no memory )

 
Device Drivers

One of the primary functions of an operating system is to provide hardware abstraction between platform
hardware and the programs that run on it. This hardware abstraction typically occurs in device drivers
that are part of the operating system, making those components an integral part of the system. IOS is no
different in that regard. IOS contains device drivers for a range of platform hardware devices, such as
Flash cards and NVRAM, but most notable are its device drivers for network interfaces.
 
IOS network interface device drivers provide the primary intelligence for packet operations in and out of
interfaces. Each driver consists of two main components: a control component and a data component. The



control component is responsible for managing the state and status of the device (for example, shutting
down an interface). The data component is responsible for all data flow operations through the device and
contains logic that assists with the packet switching operations. IOS device drivers are very tightly
coupled with the packet switching functions, as we discuss in Chapter 2.
 
IOS device drivers interface with the rest of the IOS system via a special control structure called the
interface descriptor block (IDB). The IDB contains, among other things, entry points into a device
driver’s functions and data about a device’s state and status. For example, the IP address, the interface
state, and the packet statistics are some of the fields that are present in the IDB. IOS maintains an IDB for
each interface present on a platform and maintains an IDB for each subinterface.
 
 
Summary

Cisco IOS began as a small embedded system and has been expanded over time to become the powerful
network operating system it is today. The basic components for IOS are no different than the ones used to
build other operating systems. However, in IOS those components are optimized to work within the
environment in which IOS is used: limited memory and speed-critical packet switching.
 
IOS is a cooperative multitasking operating system and operates within a single flat address space. All
program code, buffers, routing tables, and other data, reside in the same address space, and all processes
can address each other’s memory. IOS processes are equivalent to threads in other operating systems.
 
IOS has a small kernel that provides CPU scheduling services and memory management services to
processes. Unlike other operating systems, the IOS kernel runs in “user” mode on the CPU (peer-to-
processes) and shares the same address space with the rest of the system.
 
IOS device drivers provide a hardware abstraction layer between the media hardware and the operating
system. The network interface device drivers are tightly coupled to the packet switching software. In
Chapter 2, “Packet Switching Architecture,” we examine this packet switching software in more detail.
 



Chapter 2. Packet Switching Architecture
This chapter covers the following key topics:
 • Process Switching
 • Fast Switching
 • Optimum Switching
 • Cisco Express Forwarding
 

A multiprotocol router’s primary purpose is, of course, to switch packets from one network segment to
another. If the scheduler and memory manager are the router’s software infrastructure, then the IOS
switching architecture is the router’s very foundation. The switching methods and structures used by IOS
essentially dictate how well the router performs its primary task—so, as you can imagine, a great deal of
effort has been put into designing and refining this important part of IOS.
 
In spite of all the fanfare surrounding packet switching, the operation itself is fairly straightforward:
 

Step 1. A packet comes into an interface.
 Step 2. The packet’s destination address is inspected and compared against a list of known

destinations.
 Step 3. If a match is found, the packet is forwarded out the appropriate interface.
 Step 4. If a match is not found, the packet is dropped.
 
Clearly, this isn’t rocket science. Indeed, the problem to be solved isn’t so much how to switch packets,
but how to switch them quickly. Switching packets is a data-intensive operation as opposed to a
computation-intensive one; speeding up the operation isn’t as simple as just using a faster CPU. Other
factors, such as I/O bus performance and data memory speed, can have a big impact on switching
performance. The challenge for IOS developers is to create the highest possible switching performance
given the limits of available CPU, I/O bus, and memory technology.
 
As the size and number of routed networks grow, IOS developers continuously look for better ways to
solve this performance challenge, resulting in a continuous redesign and refinement of IOS switching
methods. When IOS was first developed, there was only one switching method, known today as process
switching. Later releases introduced newer improved methods of switching; some of these methods rely
on hardware-specific optimizations, others use software techniques that work well on many platforms.
Today, IOS can switch several hundred thousand packets per second using routing tables containing
hundreds of thousands of routes.
 
The following list summarizes the switching methods developed as of Cisco IOS Release 12.0:
 

• Process switching
 



• Fast switching
 • Autonomous switching
 • Silicon switching engine (SSE) switching
 • Optimum switching
 • Distributed fast switching
 • Cisco Express Forwarding (CEF)
 • Distributed Cisco Express Forwarding (dCEF)
 
This chapter covers in detail four of these methods—process switching, fast switching, optimum
switching, and Cisco Express Forwarding (CEF). Autonomous and SSE switching are platform-specific
and aren’t commonly used in today’s networks, so they aren’t covered here. Distributed fast switching is
actually an implementation of the optimum switching method on intelligent line cards, and isn’t covered
any further than the coverage provided to optimum switching itself.
 
It’s worth noting that although IP routing examples are used here to illustrate the switching methods, many
of these methods also apply to other network protocols, such as IPX and bridging. Although the structures
used are often independent for each protocol (for example, there is a separate Fast Cache for IP and IPX),
the contents of the switching structures are similar, and switching occurs in essentially the same way for
each protocol.
 
 
Routing 101: Process Switching

Process switching was the first switching method implemented in IOS. Basically, it uses the brute-force
method to switch packets. Although process switching contains the least amount of performance
optimizations and can consume large amounts of CPU time, it does have the advantage of being platform-
independent, making it universally available across all Cisco IOS-based products. Process switching also
provides some traffic load sharing capabilities not found in most of the other switching methods, which
are discussed in detail in the section, “Traffic Load Sharing with Process Switching.”
 
To understand just how process switching works, take a look at the steps required to process switch a
packet. Figure 2-1 illustrates the process-switched path for an IP packet.
 

Figure 2-1. The Process Switched Path
 



 
This example begins with the network interface on the router sensing there is a packet on the wire that
needs to be processed. The interface hardware receives the packet and transfers it into input/output (I/O)
memory—Step 1 in Figure 2-1.
 
The network interface interrupts the main processor, telling it there is a received packet waiting in I/O
memory that needs to be processed; this is called the receive interrupt. The IOS interrupt software
inspects the packet’s header information (encapsulation type, network layer header, and so on),
determines that it is an IP packet, and places the packet on the input queue for the appropriate switching
process—Step 2 in Figure 2-1. For IP packets, the switching process is named ip_input.
 
After at least one packet is in the input queue of the ip_input process, ip_input becomes eligible to run—
Step 3 in Figure 2-1.
 
After the ip_input process is running (Step 4 in Figure 2-1), the actual packet-forwarding operation can
begin. It is here that all the decisions are made about where to direct the received packet. In this example,
ip_input looks in the routing table to see whether a route exists to the destination IP address. If one is
found, it retrieves the address of the next hop (the next router in the path or the final destination) from the
routing table entry. It then looks into the ARP cache to retrieve the information needed to build a new
Media Access Control (MAC) header for the next hop. The ip_input process builds a new MAC header,
writing over the old one in the input packet. Finally, the packet is queued for transmission out the
outbound network interface—Step 5 in Figure 2-1.
 
When the outbound interface hardware senses a packet waiting for output, it dequeues the packet from I/O
memory and transmits it on to the network—Step 6 in Figure 2-1. After the outbound interface hardware
finishes transmitting the packet, it interrupts the main processor to indicate that the packet has been
transmitted. IOS then updates its outbound packet counters and frees the space in I/O memory formerly
occupied by the packet. This is the final step in Figure 2-1, Step 7.
 

Traffic Load Sharing with Process Switching

One of the advantages of process switching is its per-packet load sharing capability. Per-packet load
sharing provides a relatively simple way to route traffic over multiple links when multiple routes (paths)
exist to a destination. When multiple paths exist, process-switched packets are automatically distributed
among the available paths based on the routing metric (referred to as the path cost) assigned to each path.



 
The metric or cost of each path in the routing table is used to calculate a load share counter, which is
actually used to determine which path to take. To better understand how this works, take a look at Figure
2-2.
 

Figure 2-2. Traffic Sharing Across Equal Cost Paths
 

 
Router A has two paths to the 10.1.4.0/24 network (as illustrated in Figure 2-2). From the output in
Example 2-1, you can see these are equal-cost paths.
 

Example 2-1. Routing Table for Router A in Figure 2-2
 

RouterA#show ip route 10.1.4.0 255.255.255.0
Routing entry  for 10.1.4.0/24
 Known via "static", distance 1, metric 0
 Routing Descriptor Blocks:
   10.1.2.1
   Route metric is 0, traffic share count is 1
 * 10.1.3.1
   Route metric is 0, traffic share count is 1

 
Note the asterisk (*) next to one of the two network paths in Example 2-1. This indicates the path that will
be used for the next packet switched toward 10.1.4.0/24. The traffic-share count on both paths is 1,
meaning packets are switched out each path in a round-robin fashion.
 
In this example, the very next packet arriving for this network will be routed to next hop 10.1.3.1. The
second packet arriving will be routed to next hop 10.1.2.1, the third to 10.1.3.1, and so on (as shown by
the packet numbers in Figure 2-2).
 
Some IP routing protocols, in particular Interior Gateway Routing Protocol (IGRP) and Enhanced IGRP
(EIGRP), can install unequal cost paths in the routing table; in cases where path costs differ, the traffic-
sharing algorithm changes slightly. If a link is changed in the setup in Figure 2-2, for example, so one path
has about twice the bandwidth of the other, the resulting network is shown in Figure 2-3.
 

Figure 2-3. Traffic Sharing Across Unequal Cost Paths
 

 
The routing table would look something like Example 2-2.
 

Example 2-2. Routing Table for Router A in Figure 2-3
 



RouterA#show ip route 10.1.4.0 255.255.255.0
Routing entry  for 10.1.4.0/24
 Known via "EIGRP", distance 90, metric 284600
 Routing Descriptor Blocks:
   10.1.2.1
   Route metric is 569200, traffic share count is 1
 * 10.1.3.1
   Route metric is 284600, traffic share count is 2

 
Note the traffic share counts in this show ip route output. The lower-cost path through 10.1.3.1 has a
traffic share count of 2; the higher-cost path through 10.1.2.1 has a traffic share count of 1. Now for every
two packets switched out the higher-cost path, one packet is switched out the lower-cost path, as
indicated by the packet numbers in Figure 2-3.
 

Note

Although per-packet traffic sharing is very good at balancing traffic load across multiple links, it does
have one significant drawback: It can result in packets arriving out of order at the destination. This is
especially true if there is a wide variation in latency among the available routes. Out-of-order packet
processing can significantly degrade end-station performance.
 

 

Disadvantages of Process Switching

As noted before, a key disadvantage of process switching is its speed—or lack thereof. Process switching
requires a routing table lookup for every packet; as the size of the routing table grows, so does the time
required to perform a lookup (and hence the total switching time). Recursive routes require additional
lookups in the routing table (to resolve the recursion), increasing the length of the lookup time.
 
Longer lookup times also increase the main processor utilization, an effect multiplied by the incoming
packet rate. Although this effect might not be noticeable on very small networks with few routes, large
networks can have hundreds or even thousands of routes. For these networks, routing table size can
significantly impact main processor utilization and routing latency (the delay between the time the packet
enters and exits the router).
 
Another major factor affecting process-switching speed is in-memory data transfer time. On some
platforms, process switching requires received packets to be copied from I/O memory to another memory
area before they can be switched. After the routing process finishes, the packets must be copied back to
I/O memory before being transmitted. Memory data copy operations are very CPU intensive, so on these
platforms, process switching can be a very poor performer.
 
It became quite clear to the early IOS developers that a better switching method would be required if IOS
was to be viable in the world of ever-growing routed networks. To understand the solution they devised,
take a look at some of the more obvious areas for improvement in process switching.
 
Looking back at the IP process switching example, the ip_input process needs three key pieces of data to
switch the packet:
 

• Reachability—Is this destination reachable? If so, what is the IP network address of the next hop
toward this destination? This data is in the routing table (also called the forwarding table).



 • Interface—Which interface should this packet be transmitted on to reach its destination? This data
is also stored in the routing table.

 • MAC layer header—What MAC header needs to be placed on the packet to correctly address the
next hop? MAC header data comes from the ARP table for IP or other mapping tables, such as the
Frame Relay map table.

 
Because every incoming packet can be different, ip_input must look up these key pieces of data anew
each time it switches a packet. It has to search through a potentially huge routing table for reachability and
interface data, and then search another potentially large table for a MAC layer header. Wouldn’t it be
useful if the ip_input process could “remember” the results of these lookups for destinations it has
already seen before? If it could keep a smaller table of the reachability/interface/MAC combinations for
the most popular destinations, it could significantly reduce the lookup time for most of the incoming
packets. Furthermore, because looking up the forwarding information is the most intensive part of the
switching process, using a smaller table for these lookups could speed up switching enough so the entire
operation could be performed during the packet receive interrupt. If the packet can be switched during the
receive interrupt, it would also remove the need for in-memory data copying, saving even more time. So
how can IOS keep a smaller lookup table and take advantage of these performance savings? The answer
is the Fast Cache.
 
Fast Switching: Caching to the Rescue

The term cache in the computer industry usually refers to the concept of storing some frequently used
subset of a larger data set in a local storage area with very fast access properties. A computer might keep
a local copy of frequently accessed parts of a file stored on disk in RAM, for example, or a CPU might
prefetch some instructions into a very fast associative memory area to boost performance. The two key
characteristics of such a cache are a relatively small size as compared to the entire data space, and the
capability to provide very fast access to any addressable member of its contents.
 
The IOS developers used these concepts when they created the Fast Cache. The Fast Cache quite simply
is a data structure in IOS used to keep a copy of the reachability/interface/MAC-header combinations
learned while process switching packets.
 
To understand how the Fast Cache can be helpful, consider the example of process switching a packet
discussed earlier in this chapter. Now add a step to the switching operation performed by the ip_input
process. After ip_input looks up the next hop, output interface, and MAC-header data for a packet, add a
step that saves this information in a special data structure that allows very fast access to any cache entry
based on a destination IP address. This structure is the Fast Cache. Over time, the ip_input process builds
a large number of frequently used IP destinations into the cache. Now you’ll learn how to put this cache to
use in switching packets. Figure 2-4 shows the fast-switched path.
 

Figure 2-4. The Fast-Switched Path
 



 
Consider the process switching method again—only this time the newly built Fast Cache is introduced.
Again, the switching process begins with the interface hardware sensing there is a packet on the wire. It
receives the packet and transfers it to I/O memory—Step 1 in Figure 2-4.
 
In Step 2, the interface hardware interrupts the main processor to inform it there is a received packet
waiting in I/O memory. The IOS interrupt software inspects the packet’s header information and
determines it is an IP packet. Now, instead of placing the packet in the input queue for ip_input as before,
the interrupt software consults the Fast Cache directly to determine whether an outbound interface and a
MAC header have been cached for this destination. Assuming there is a cache entry, the interrupt software
reads the MAC header from the entry and writes it into the packet. It also reads a pointer to the
appropriate outbound interface from the cache entry. Step 3 in Figure 2-4 illustrates the cache read and
MAC rewrite.
 
The main processor (still within the same interrupt) then notifies the outbound interface hardware that a
packet in I/O memory is ready to transmit and dismisses the interrupt so other processes can continue—
Step 4 in Figure 2-4.
 
The interface hardware dequeues the packet from I/O memory and transmits it in Step 5, and then
interrupts the main processor to update its counters and release the I/O memory, Step 6.
 
The example just described illustrates how the fast switching method works. Notice the ip_input process
never gets involved in switching this packet; in fact, no scheduled process gets involved when a packet is
fast switched as long as a cache entry exists. With the introduction of the Fast Cache, IOS can now
perform the entire packet switching operation within the very brief period of an interrupt! Caching has
enabled IOS to separate the resource-intensive task of making a routing decision from the relatively easy
task of forwarding a packet. Thus, fast switching introduced the concept of “route once, forward many
times.”
 
An important implication of the fast switching process should be noted. As you’ve seen, Fast Cache
entries are built while packets are process switched. Because the process switching operation builds the
cache entries, the first packet sent to any given destination will always be process switched even when
fast switching is enabled. As long as the cache entry exists, future packets to the destination can be fast
switched.



 
This method of using the process switching operation to populate the Fast Cache works well as long as
certain assumptions are met: The network must be generally stable with few routes changing and traffic
must tend to flow between a particular subset of destinations. These assumptions are true in most cases. In
some network environments, however, particularly the Internet backbone, they are not true. In those
environments, network conditions can cause an increased number of cache misses (an instance where no
cache entry matches a packet) and can result in a high number of packets being process switched. It’s also
possible for a certain set of conditions to cause cache thrashing, where older cache entries are
continually overwritten with newer cache entries because there just isn’t enough room in the cache for all
the entries required. Such environments are discussed later in this chapter.
 

Fast Cache Organization

How does a Fast Cache actually work? How can it provide forwarding data so quickly? For the answer,
look at how a typical Fast Cache is organized.
 
First, to get an idea of exactly what’s in the Fast Cache, take a look at the output of the show ip cache
verbose command in Example 2-3.
 

Example 2-3. Displaying Fast Cache Contents
 

router#show ip cache verbose
IP routing cache 1 entry, 172 by tes
  124 adds, 123 invalidates, 0 refcounts
Minimum invalidation interval 2 seconds, maximum interval 5 seconds,
  quiet interval 3 seconds, threshold 0 requests
Invalidation rate 0 in last second, 0 in last 3 seconds

Prefix/Length    Age    Interface    Next Hop
10.1.1.16/32-24   1w4d   Ethernet0    10.1.1.16
          14 00403337E5350060474FB47B0800

 
From the output in Example 2-3, it’s obvious the router keeps the destination prefix, the length of the
prefix, the outbound interface, the next hop IP address, and a MAC header—just what you’d expect. All
the data necessary to switch a packet to a particular destination is contained in this one entry.
 
Another characteristic of the cache is not evident from show command output. Unlike the master tables
used to build them, which are basically just big lists, caches are implemented using special data
structures, which allow any particular member to be retrieved with a minimal amount of searching. With
the master tables, the searching time increases proportionately with the size of the table. With the cache
data structures, because of the way they are organized, the searching time can be kept small and fairly
constant regardless of the total number of entries.
 

Fast Cache Data Structures: Hash Tables and Radix Trees

The IP Fast Cache was originally implemented as a data structure called a hash table; Figure 2-5
illustrates.
 

Figure 2-5. Fast Cache Organization
 



 
In the hash table, each IP prefix points to a particular place in the table. A particular hash table entry is
found by computing some XOR operations on the upper and lower 16 bits of the 32-bit IP address being
searched. The result of the calculation points to the desired hash table location, called a hash bucket.
Each hash bucket contains a cache entry, including a pre-built MAC header for the next hop.
 
A hash calculation (or just hash) does not always produce a unique hash bucket address for every IP
address. The case where more than one IP address points to the same hash location is called a collision.
When collisions occur, IOS links each of the colliding cache entries together in a list within the bucket up
to a maximum of six entries. This way, no more than six entries in the cache need to be searched to find a
particular match.
 
In Cisco IOS Release 10.2, the hash table was replaced with another data structure called a 2-way radix
tree (a form of a binary tree). The MAC headers are still stored as part of the cache in this
implementation.
 
The radix tree, like the hash table, is another special data structure used to improve retrieval time of the
member data.
 
A radix tree gets its name from the way in which data is stored—by its radix. In practice, this means the
information is stored in a tree structure based on the binary representation of the key (the unique field that
uniquely identifies each set of data). For example, to store the following numbers:
 

• 10, which is 1010 in binary
 • 7, which is 0111 in binary
 • 2, which is 0010 in binary
 you could store them in a radix tree structure, as shown in Figure 2-6.
 

Figure 2-6. A Radix Tree
 



 
The tree branches are based on the binary digits within the number at any given level. To store, or find,
the number 10, for example, you begin at the root with the first bit in 1010, which is 1.
 
This first 1 causes you to choose the right branch, which takes you to a node on the tree. You find this
node doesn’t have any children, so you compare the number in the node to the number you are searching
for to see whether you have a match. In this case, there is a match.
 
To find or store 7, you begin at the root of the tree again. The first bit in the binary representation of the
number 7 is a 0, so you take the left branch. You find yourself at a node with children, so you branch
based on the second digit in the number, which is 1. This causes you to branch right.
 
As another example, let’s work through finding or storing the number 2. The first binary digit in the
number is 0, so you branch left. The second binary digit is 0 as well, so the second branch is to the left as
well. At this point, you find yourself at a node with no children, so you compare the number the node
represents with the number you are searching for, and find a match.
 

Fast Cache Limitations for IP Routing

There is one major limitation on the way the Fast Cache stores IP prefixes: Overlapping cache entries are
not possible. For example, consider building cache entries for the following IP prefixes:
 

• 172.31.46.0/24
 • 172.31.46.128/25
 • 172.31.46.129/32
 
Because the Fast Cache doesn’t use the subnet mask, or prefix length, when looking up routing
information, there isn’t any way to know that the entry for 172.31.46.129 uses a 32-bit prefix, and the
172.31.46.128 entry uses a 25-bit prefix.
 
A simple way to overcome this limitation is to build a cache entry for each destination host. This is
impractical for several reasons, including the processing required to build this many cache entries and the
amount of memory a cache containing all this information would consume.
 
So how does IOS solve this problem? It builds cache entries according to the following set of rules:
 

• If the destination is directly attached, cache with a 32-bit prefix length.
 • If there are multiple equal-cost paths for this destination, cache with a 32-bit prefix length.
 • If it’s a supernet, cache using the prefix length of the supernet.



 • If it’s a major network with no subnets, cache using the prefix length of the major network.
 • If it’s a major network with subnets, cache using the longest length prefix in this major network.
 
Given the snippet of an IP routing table from a Cisco router in Example 2-4, you could determine what
prefix lengths the router would use for various destinations.
 

Example 2-4. Determining Destination Prefix Lengths Used by a Router
 

router#show ip route
....
O    172.31.0.0 [110/11] via 172.25.10.210, 2d01h, Ethernet0
         [110/11] via 172.25.10.215, 2d01h, Ethernet0
    172.16.0.0/16 is variably  subnetted, 2 subnets, 2 masks
D EX  172.16.180.0/25 [170/281600] via 172.25.10.210, 3d20h, Ethernet0
D EX  172.16.180.24/32 [170/281600] via 172.25.10.210, 3d20h, Ethernet0
O    10.0.0.0 [110/11] via 172.25.10.210, 2d01h, Ethernet0
O    192.168.0.0/16 [110/11] via 172.25.10.210, 2d18h, Ethernet0
    172.25.0.0/24 is subnetted, 1 subnet
C    172.25.10.0 [0/0] via connected, Ethernet0

 
The following list explains how the destination prefix lengths that appear in Example 2-4 will be cached:
 

• Every destination in the 172.31.0.0/16 network will be cached with a 32-bit prefix length because
there are two equal-cost paths for this network installed in the routing table.

 • Every destination in the 172.16.0.0/16 network will be cached with a 32-bit prefix length because
there is a host route within this range.

 • Network 10.0.0.0/8 will have one cache entry, because it is a major network route with no subnets,
host routes, equal-cost paths, and so on.

 • 192.168.0.0/16 will have one cache entry because it is a supernet route with no subnets.
 • All destinations within the 172.25.10.0/24 network will be cached using a 32-bit prefix because

this destination is directly connected to the router.
 

Maintaining the Cache

Any time data is cached, it’s important to somehow maintain the cached data so it doesn’t become
outdated or out of sync with the master data used to build the cache in the first place. There are two issues
to address in this area: cache invalidation and cache aging.
 
In the case of fast switching, the issue is how to keep the Fast Cache updated so it contains the same
information as the routing table and the ARP cache (or other tables from which the MAC headers are
built).
 

Cache Invalidation

The problem of keeping the route cache synchronized with the routing table is complicated when
switching IP packets because of recursion or dependencies within the routing table.
 
Because recursion is such an important concept when considering the operation of route caches, it’s
helpful to walk through an example of recursive routing. Figure 2-7 provides an example of what



recursion looks like in a network.
 

Figure 2-7. A Recursive Route
 

 
In Figure 2-7, Router A needs to look up a route for the host 10.1.3.38 and find out what next hop and
MAC header to use. When Router A examines its routing table, it finds this destination is reachable
through 10.1.2.2.
 
This destination isn’t directly attached to Router A, so it needs to look into the routing table again to
determine how to reach the next hop. Router A looks up the route to 10.1.2.2, and discovers it is
reachable through 10.1.1.2, which is directly connected.
 
Router A will send all traffic destined to 10.1.3.38 to 10.1.1.2 for further processing.
 
In fast switching, recursion is resolved when the cache entry is built rather than when the packet is
switched. So, the route cache contains the MAC header and outbound interface of the actual next hop
toward the destination being cached. This disconnects the cache entry from both the routing table entry
and the ARP cache (or other MAC-layer table) entry.
 
Because recursion is resolved when a cache entry is built, there is no direct correlation between the Fast
Cache and the routing table or the ARP cache. So, how can the cache be kept synchronized with the data
in the original tables? The best way to solve this problem is to just invalidate, or remove, cache entries
when any corresponding data changes in the master tables.
 
Cache entries can be removed from the Fast Cache, for example, because:
 

• The ARP cache entry for the next hop changes, is removed, or times out.
 • The routing table entry for the prefix changes or is removed.
 • The routing table entry for the next hop to this destination changes.
 

Cache Aging

IOS also ages entries in the Fast Cache periodically. A small portion of the Fast Cache is invalidated
every minute to make certain the cache doesn’t grow out of bounds, and to resynchronize entries with the
routing and ARP tables periodically. When the amount of available memory is greater than 200 KB, the
cache ager process randomly invalidates 1/20th of the cache entries every minute. If free memory is
lower than 200 KB, the cache ager process starts aging entries more aggressively—1/5th of the cache
entries are invalidated every minute.
 

Traffic Load Sharing Considerations with Fast Switching



Unlike process switching, fast switching does not support load sharing on a per-packet basis. This
restriction can lead to uneven link utilization in some situations where multiple paths exist between two
destinations. The reason for this restriction has to do with the separation of routing and forwarding that
occurs when fast switching. To understand this reason and the possible disadvantages, consider the
example illustrated in Figure 2-8.
 

Figure 2-8. Load Sharing Using the Fast Cache
 

 
In Figure 2-8, several workstations are connected to a network segment attached to Router A. Each
workstation communicates with a single server on another network segment attached to Router B. Router
A has multiple parallel paths to Router B. Assume both parallel paths have the same cost in this example.
You would like the traffic between the client and the server networks to be evenly distributed over those
two paths. Now, check out what happens.
 
Starting with an empty Fast Cache, Router A receives a packet from client 10.1.1.220, destined toward
the server, 10.1.4.42. As you’ve seen, this first packet will be process switched and Router A will build a
Fast Cache entry for the 10.1.4.42 destination. Because there are two equal-cost paths to the 10.1.4.42
destination (via Router B), Router A will have to choose one of these when it builds the cache entry. It
will use the per-packet, load-balancing algorithm described earlier for process switching to make the
decision.
 
Next, Router A receives another client packet destined to server 10.1.4.42. This time the packet is fast
switched because there is already an entry in the Fast Cache. Because the transmit interface pointer is
built in to the cache entry, Router A switches this second packet through the same path as the first. As you
can see, Router A will continue to send all packets destined for the 10.1.4.42 server through this same
path until the cache entry either ages out or is invalidated for some reason. If the cache entry does happen
to get removed, the other path might be chosen—but packets will still only be forwarded out one path for
the 10.1.4.42 server.
 
If there happened to be multiple servers on the 10.1.4.0/24 network, this same process would apply to
each of them. The path cached for each server might vary, but for any given server all packets coming
from the clients would take the same path.
 
Now consider traffic originating from the other direction. Router B will also cache destinations on the
client network in the same manner Router A did. In this case, Router B will build two cache entries along
one path, and the third along the other path. It could turn out Router B will choose to send the traffic for
two clients along the path not chosen by Router A. This would result in a fairly well distributed traffic
load on the parallel paths. It’s just as likely Router B will choose to cache two client entries along the



same path Router A chose for the server traffic, however, resulting in unbalanced utilization of the paths.
 
This lack of a deterministic load-balancing scheme is an area of concern for many network designers. In
response, newer switching methods now support load-balancing schemes that help overcome this
problem. One such method, Cisco Express Forwarding (CEF), is covered later in this chapter.
 
Optimum Switching

Optimum switching is essentially fast switching with some caching optimizations. Like fast switching,
optimum switching accomplishes the entire task of switching a packet during a single interrupt. The
primary difference between optimum and fast switching is in the way the route cache is accessed. The
optimum switching software is also crafted to take advantage of specific processor architectures. The fast
switching code is generic, and is not optimized for any specific processor. Unlike fast switching, optimum
switching is available only for the IP protocol.
 
Earlier in this chapter, you learned the Fast Cache is accessed using a hash table in earlier releases, and
is accessed via a two-way radix tree in later releases. The optimum cache is accessed via a 256-way
multiway tree (mtree). Figure 2-9 provides an illustration of a 256-way mtree.
 

Figure 2-9. The Optimum Cache
 



 
Reachability information is stored as a set of nodes, each with 256 children, and the pre-built MAC
headers are stored in the nodes. Although this provides faster lookups than the Fast Cache’s two-way
radix tree, it still has the same limitations as the Fast Cache.
 
Optimum switching is still similar to fast switching in many ways, including:
 

• Cache entries are built when the first packet is process switched toward a destination.
 • Cache entries are aged and invalidated as the routing table or other cache information changes.
 • Load sharing still occurs based strictly on the destination address.
 • The same rules are still used to decide what cache entry to build for each particular destination.
 
The output of show ip cache optimum, shown in Example 2-5, is very similar to the output of show ip
cache verbose in Example 2-3. The primary differences are in the first few lines of output, which
provide information about the mtree in which the information is stored.
 

Example 2-5. Displaying Optimum Cache Entries
 

router#show ip cache optimum
Optimum Route Cache
 1 prefixes, 1 nodes, 0 leaf refcount, 8K by tes
 0 nodes pending, 0 node alloc failures



 8 prefix updates, 4 prefix invalidations

Prefix/Length    Age    Interface    Next Hop
10.1.1.16/32-24   1w4d   Ethernet0    10.1.1.16

 
The first few lines of information, under the heading Optimum Route Cache, note the number of nodes in
the mtree, the number of leaf nodes that are referred to by other nodes (because of recursive routing), the
memory allocation information, and the number of times the mtree has been updated.
 
The Optimum Cache mtree doesn’t start with all its nodes populated; most of the children under each node
will be NULL (or lead to nowhere). As the cache is built through the process switching of packets, it fills
up, although you would probably never encounter an Optimum Cache mtree with all the nodes filled.
 
Cisco Express Forwarding

Cisco Express Forwarding (CEF) is the newest, and fastest, switching method available in IOS. CEF was
invented to help overcome the major deficiencies of the fast switching method. Reviewing the description
of fast switching for a moment, the major deficiencies noted were:
 

• Lack of support for overlapping cache entries.
 • Any change in the routing table or ARP cache results in the invalidation of large sections of the

route cache, because there is little or no correlation between the route cache and the tables on
which the cache is based.

 • The first packet to any given destination must be process switched to build a route cache entry.
 • Inefficient load balancing in some situations (primarily in cases where many hosts are transacting

with one server).
 
Most of these deficiencies do not pose a problem in the average enterprise network because routes don’t
change often and routing tables aren’t extremely large. However, there is one environment where these
shortcomings do become a problem: the Internet backbone.
 
Internet backbone routers have extremely large routing tables, about 56,000 routes in early 1999 and still
growing. Some Internet backbone routers actually carry more than 100,000 routes. The routing table also
changes constantly, causing cache entries to be invalidated frequently. In fact, entries are invalidated often
enough to cause a significant portion of traffic through some Internet routers to be process switched. CEF
was developed specifically to improve routing performance in these types of environments.
 
CEF was initially tested in the large-scale network environment of the Internet. Internet service providers
were given a series of special IOS software images (nicknamed the ISP Geeks images) with CEF to see
how it operated under extreme conditions. The technology proved itself capable of handling the Internet
backbone workload and was eventually integrated into the Cisco IOS product, becoming the default
switching mode in Cisco IOS Release 12.0. It is now the only switching mode available on some
platforms—in particular, the Cisco 12000 and the Catalyst 8500.
 

How CEF Works

Unlike fast switching, which builds a cached subset of the routing table and MAC address tables, CEF
builds its own structures that mirror the entire routing and MAC address tables. There are two major



structures maintained by CEF. These structures collectively can be considered the CEF “Fast Cache”:
 

• CEF table
 • Adjacency table
 

The CEF Table

The CEF table is a “stripped-down” version of the routing table, implemented as a 256-way mtrie data
structure for optimum retrieval performance. You can display the size of the CEF table (and other general
information about the table) by using the command show ip cef summary, as demonstrated in Example 2-
6.
 

Example 2-6. Displaying CEF Table Information
 

router#show ip cef summary
IP Distributed CEF with switching (Table Version 96)
  33 routes, 0 reresolve, 0 unresolved (0 old, 0 new)
  33 leaves, 31 nodes, 36256 by tes, 96 inserts, 63 invalidations
  1 load sharing elements, 328 by tes, 2 references
  1 CEF resets, 8 revisions of existing leaves
  refcounts: 8226 leaf, 8192 node

The adjacency  table has five adjacencies.

 
In a 256-way mtrie structure, each node in the structure can have up to 256 children. In the CEF table,
each child (or link) is used to represent a different address in one octet of an IP address, as shown in
Figure 2-10.
 

Figure 2-10. CEF mtrie and Adjacency Table
 



 
For example, given the IP address 10.10.10.4, you would locate the data by choosing the tenth child off
the root, the tenth child off that node, the tenth child off that node, and then, finally, the fourth child off the
last node. This final node, or end node, contains a pointer to an entry in another table outside the CEF,
called the adjacency table. The adjacency table actually contains the MAC header and other information
needed to switch the packet.
 

Note

An mtree data structure stores the actual data within the tree structure itself; for example, in the optimum
switching mtree cache, the MAC header data used for forwarding packets is actually stored inside the
mtree. In an mtrie data structure, the tree structure is used to locate the desired data, but the data itself is
stored elsewhere.
 

 
 

Adjacency Table



The adjacency table contains the MAC-layer packet-header data for directly connected next hops. The
adjacency table is populated with data from the ARP table, the Frame Relay map table, and other tables of
this type. The show adjacency command displays the adjacency table, as demonstrated in Example 2-7.
 

Example 2-7. Displaying Adjacency Table Information
 

router#show adjacency
Protocol Interface                 Address
IP       POS0/0/0                  point2point(15)
IP       Serial1/0/0               point2point(5)
IP       FastEthernet6/0/0         17.1.1.2(16)
IP       Ethernet4/0               10.105.1.1(9)
IP       Ethernet4/0               10.105.1.179(5)
Router#

 
There are several types of adjacency entries you might see in the Address column of show adjacency:
 

• Cached adjacency—A prebuilt MAC header for the next hop toward this destination.
 • Punt—Packets destined to this address must be passed up to the next switching path to be

switched.
 • Host-route—This destination is a directly connected host.
 • Drop—Packets destined to this address are dropped.
 • Incomplete—The MAC-layer header for this destination is incomplete; typically, this means the

ARP cache entry for this destination is incomplete or otherwise malformed.
 • Glean—This is a directly attached destination, but there is no pre-built MAC-layer header; an

ARP request needs to be sent so a MAC-layer header can be built.
 

The CEF Method and Its Advantages

Like fast switching, CEF switching utilizes cache entries to perform its switching operation entirely
during a processor interrupt. A major difference between fast switching and CEF switching, however, is
the point at which the cache entries are built. While fast switching requires the first packet to any given
destination be process switched to build a cache entry, CEF does not. Instead, the CEF table is built
directly from the routing table and the adjacency table is built directly from the ARP cache. These CEF
structures are built before any packets are switched.
 
Because CEF pre-builds the cache before any packets are switched, every packet received for a
reachable destination can be forwarded by the IOS during the receive interrupt. It is never necessary to
process switch a packet to get a cache entry built. Pre-building the cache greatly improves the routing
performance on routers with large routing tables. With normal fast switching, IOS can be overwhelmed
with process-level traffic before the route cache entries are created. With CEF, this massive process-
level load is eliminated, preventing the IOS from choking on the process-level switching bottleneck when
network routes are flapping.
 
Splitting the reachability/interface data and the MAC-layer header data into two structures also provides
other advantages: Because the tables used in switching packets are directly related to their information
sources, the cache doesn’t need an aging process anymore.
 
Entries in the CEF structures never age out. Any changes in the routing table or the ARP cache can be



easily reflected in the CEF structures. Also, with CEF there is no longer any need to invalidate a large
number of entries when the routing table or the ARP cache change.
 

Traffic Load Sharing with CEF

Traffic load sharing with CEF switching can be either per source/destination pair (the default) or per
packet. Traffic sharing based on the source/destination pair resolves the problems described in the earlier
fast switching example, where all the traffic destined to the server would take one link because the cache
is built on a per-destination basis. How does it do this? Instead of pointing to an entry in the adjacency
table, an entry in the CEF table can also point to a load share structure, as shown in Figure 2-11.
 

Figure 2-11. The Load Share Table in CEF
 

 
When the CEF switching method finds a load-share entry—rather than an adjacency table entry—as the
result of a CEF table search, it uses the source and destination address to decide which of the entries to
use from the load-share table. Each entry in the load-share table then points to an adjacency table entry
that contains the MAC header and other information needed to forward the packet.
 
 

Order of Operations in the Switching Path



In what order do operations on a packet occur when a packet is being switched? The short list that
follows might not include all the features available in IOS, but it can give you a start:
 

• Compression and decompression
 • Encryption
 • Inbound access list (packet filters)
 • Unicast reverse path checking
 • Input rate limiting
 • Physical broadcast handling, such as helper addresses
 • Decrement the TTL if it has not already been done
 • Inspection subsystem (firewall features)
 • Outside to inside Network Address Translation (NAT)
 • Handle any router alert flags in the IP header
 • Search for outbound interface in the routing table
 • Handle any policy routing that affects this packet
 • Handle Web Cache Redirect
 • Inside to outside NAT
 • Encryption
 • Output access list (packet filters)
 • Inspection subsystem final checks (firewall features)
 • TCP intercept processing
  
Summary

Cisco routers switch packets through one of several paths; the characteristics of the switching path depend
on whether a route cache is used, how the cache is accessed or built, and what context (process or
interrupt) in which the switching actually takes place:
 

• Process switching doesn’t cache any information, and switches packets in the context of a process.
 • Fast switching caches reachability information and the MAC headers needed to forward packets in

a radix tree and switches packets during interrupts.
 • Optimum switching caches reachability and the MAC headers in a multiway tree (mtree), and

switches packets during interrupts.
 • CEF switching caches reachability information in an mtrie, and the MAC headers needed to

forward packets within an adjacency table. CEF switches packets during interrupts.
 
Table 2-1 summarizes characteristics of various switching methods.
 

Table 2-1. Switching Paths in IOS



 

 



Chapter 3. Shared Memory Routers
This chapter covers the following key topics:
 • Hardware Architecture for Shared Memory Routers
 • Packet Buffers for Shared Memory Routers
 • Packet Switching on a Shared Memory Router
 

In the previous two chapters, we covered IOS’ basic architecture and switching methods in the abstract.
To understand how IOS actually works, though, it’s helpful to see how it operates on a real router.
Because IOS is so closely coupled to the hardware on which it runs, each implementation has its own
platform-specific features.
 
This chapter examines a very basic IOS implementation—the one for a group of routers known
collectively as shared memory routers. Shared memory routers consist of several products, including the
Cisco 1600, 2500, 4000, 4500, and 4700 series of routers. Although individually they all have their own
unique features, together they have two major things in common: they all have a bare-bones architecture
(just a CPU, main memory, and interfaces) and they all use the system buffers for packet buffering.
 
Hardware Architecture for Shared Memory Routers

Let’s examine the hardware architecture on these shared memory platforms in some detail. We start with
an overview of the generic shared memory architecture in Figure 3-1, and then mention some of the unique
hardware features of platforms within this group.
 

Figure 3-1. Shared Memory Router Architecture
 



 
You can see the overall architecture is fairly basic, consisting of just three major components: the
processor (CPU), memory (DRAM), and interface controllers, with the processor and the interface
controllers connected to the memory via data busses. Figure 3-1 also shows memory is divided into
logical regions, which we’ll examine later.
 

CPU

The processor in a shared memory router is truly the brains behind the entire show; it runs IOS and
switches packets. The processor is responsible for executing all the switching methods supported on these
platforms; there are no offload processors involved.
 
The type of processor used depends on the platform. For example, the Cisco 1600 and 2500 series use a
Motorola 68000 series CPU while the 4500 and 4700 series use a MIPS RISC CPU. You can determine
the specific type of processor by looking at the output of the show version command. Example 3-1 shows
the show version output from a Cisco 1600 router. Example 3-2 shows the show version output from a
Cisco 4500 router.
 

Example 3-1. show version Output from a Cisco 1600 Router
 

router-1600>show version
Cisco Internetwork Operating System Software
....
cisco 1604 (68360) processor (revision C) with 17920K/512K by tes of memory.
Processor board ID 05385389, with hardware revision 00972006



....

 

Example 3-2. show version Output from a Cisco 4500 Router
 

router-4500#show version
Cisco Internetwork Operating System Software
....
cisco 4500 (R4K) processor (revision B) with 16384K/16384K by tes of memory.
Processor board ID 01657190
R4600 processor, Implementation 32, Revision 2.0
....

 

Memory

Shared memory platforms use dynamic random access memory (DRAM) to hold most of the data in the
router. DRAM contains all the routing tables, the caches, the IOS data, the packet buffers, and, on many
systems, the IOS code itself.
 
IOS divides the available DRAM into two logical memory classes: Local and Iomem (I/O memory). In
most cases, Local memory is placed into the main region and I/O memory is placed into the iomem
region, as illustrated by the show region command output in Example 3-3.
 

Example 3-3. DRAM Memory Regions Revealed in show region Command Output
 

Router-4500#show region
Region Manager:

      Start        End    Size(b) Class Media Name
 0x30000000 0x30FFFFFF   16777216 Flash R/O   flash
 0x38000000 0x383FFFFF    4194304 Flash R/O   bootflash
 0x40000000 0x40FFFFFF   16777216 Iomem R/W   iomem           
 0x60000000 0x61FFFFFF   33554432 Local R/W   main            
 0x600088A0 0x607229BF    7446816 IText R/O   main:text
 0x60726000 0x6096506F    2355312 IData R/W   main:data
 0x60965070 0x609DB1CF     483680 IBss  R/W   main:bss
 0x609DB1D0 0x61FFFFFF   23219760 Local R/W   main:mainheap
 0x80000000 0x81FFFFFF   33554432 Local R/W   main:(main_k0)
 0x88000000 0x88FFFFFF   16777216 Iomem R/W   iomem:(iomem_k0)
 0xA0000000 0xA1FFFFFF   33554432 Local R/W   main:(main_k1)
 0xA8000000 0xA8FFFFFF   16777216 Iomem R/W   iomem:(iomem_k1)

 
The sizes of these two regions also are reflected in the output of show version, as illustrated in Example
3-4.
 

Example 3-4. show version Command Output Also Reveals Memory Region Sizes
 

Cisco Internetwork Operating System Software
IOS (tm) 4500 Software (C4500-J-M), Version 11.1(24), RELEASE SOFTWARE (fc1)
....
cisco 4500 (R4K) processor (revision E) with 32768K/16384K by tes of memory.
Processor board ID 09337282
....

 
The number before the slash is the amount of Local memory present (32,768 Kb), and the number after the
slash is the amount of I/O memory present (16,384 Kb). The total DRAM memory present is the sum of
these two numbers (49,152 Kb). For the system in Example 3-3 and Example 3-4, the 32,768 Kb of Local
memory is assigned to the region named main and the 16,384 Kb of I/O memory is assigned to the region
named iomem.
 
On shared memory platforms, the main region is used for storing routing tables, caches, general IOS data
structures, and often the IOS runtime code—but not for storing packet buffers. Packet buffers are stored in



the iomem region, which often is called shared memory because it’s shared between the processor and
the media interfaces.
 
On many systems, the DRAM used for Local memory is physically separate from the DRAM used for I/O
memory—usually two different banks. On those systems, IOS simply assigns all the available memory in
a bank to the appropriate memory regions, one bank for iomem and one bank for main. For the Cisco
1600 and 2500, however, I/O memory and Local memory are both allocated from the same DRAM bank.
The amount of I/O memory carved from the installed DRAM depends on the total memory installed:
 

• 1MB—512 Kb of memory is used for I/O
 • 2MB—1 MB of memory is used for I/O
 • 4MB and above—2 MB of memory is used for I/O
 

Location of IOS Runtime Code on Shared Memory Systems

Some IOS shared memory platforms—in particular, the 1600 series and the 2500 series routers—can run
IOS directly from Flash memory. If a system is running IOS from Flash, it doesn’t use the main memory
region for the IOS runtime code. Instead, it stores the runtime code in a region named flash, as
demonstrated in Example 3-5.
 

Example 3-5. show region Output for a Run-from-Flash System
 

Router-2500#show region
Region Manager:

      Start         End     Size(b)  Class  Media  Name
 0x00000000  0x007FFFFF     8388608  Local  R/W    main
 0x00001000  0x0001922F       98864  IData  R/W    main:data
 0x00019230  0x000666B3      316548  IBss   R/W    main:bss
 0x000666B4  0x007FEFFF     7965004  Local  R/W    main:heap
 0x007FF000  0x007FFFFF        4096  Local  R/W    main:flhlog
 0x00800000  0x009FFFFF     2097152  Iomem  R/W    iomem
 0x03000000  0x03FFFFFF    16777216  Flash  R/O    flash
 0x0304033C  0x037A7D37     7764476  IText  R/O    flash:text 

 
In Chapter 1, “Fundamental IOS Software Architecture,” you saw that the IText class is where the IOS
runtime code is stored. In Example 3-5, the IText memory is assigned to a subregion of flash called
flash:text, indicating the system is running IOS from Flash.
 
You also can determine whether a router is running IOS from Flash or Local memory by checking the
image’s filename. The last one or two letters of the filename indicate whether the image is relocatable or
run-from-DRAM. The run-from-DRAM images run in Local memory, while the relocatable images run
from Flash memory.
 
The show version output in Example 3-6 is taken from a Cisco 2500, which runs IOS from Flash.
 

Example 3-6. Flash-based IOS Image
 

router-2500>show version
Cisco Internetwork Operating System Software
IOS (tm) 2500 Software (C2500-JS-L), Version 12.0(7.3)T,  MAINTENANCE INTERIM SE
Copyright (c) 1986-1999 by  cisco Systems, Inc.
....

 
The last letter in the image name (L) means this image is relocatable, and therefore is running from Flash.



On the other hand, if the image runs from Local memory (DRAM), the image name ends in either M or
MZ, as you can see in the output of show version in Example 3-7.
 

Example 3-7. DRAM-based IOS Image
 

Router-4500>show version
Cisco Internetwork Operating System Software
IOS (tm) 4500 Software (C4500-P-M), Version 11.2(18)P,  RELEASE SOFTWARE (fc1)
Copy right (c) 1986-1999 by  cisco Sy stems, Inc.
....

 

Memory Pools

IOS creates two memory pools to manage allocation and de-allocation of memory within the DRAM
regions. These two pools are named Processor and I/O, as demonstrated in the show memory output in
Example 3-8.
 

Example 3-8. show memory Output Reveals Memory Pools
 

router-2500#show memory
               Head   Total(b)    Used(b)    Free(b)  Lowest(b) Largest(b)
Processor     3BB08   16528632     878596   15650036   15564280   15630436
      I/O   4000000    2097152     473468    1623684    1603060    1623232

 
The Processor memory pool is created from memory in the main:heap subregion of Local memory and
the I/O pool is created from memory in the iomem region of I/O memory. The size of the I/O pool (the
number in the Total column in Example 3-8) correlates closely to the size of iomem. However, the size of
the Processor pool is always less than the size of the main memory region. The Processor pool gets only
a subset of the memory in the main region because the remainder must be reserved for the IOS data, the
BSS segments, and, on many platforms, the IOS runtime image itself.
 

Note

Have you ever wondered why this collection of routers is called shared memory routers? All routers
discussed in this book have shared memory, so why are these particular routers singled out? What’s
unique about these systems is not that they have shared memory, but that they have only one region of
shared memory (I/O memory) and it’s shared between a single main processor and all the interface
controllers. In addition, that same memory is used for all packet switching—there’s no data copied
between regions to pass a packet from fast to process switching like there is on other platforms.
 

 

Interface Controllers

Interface controllers are responsible for transferring packets to and from the physical media. They have
their own processors, called media controllers, but do not perform any switching or IOS processing
operations. Interface controllers perform media control operations and move packets between I/O
memory and the network media. Depending on the platform, interface controllers can be implemented as



removable port modules or as components on the main system board.
 
Packet Buffers for Shared Memory Routers

You might recall from Chapter 1 that IOS maintains a set of packet buffers called system buffers that are
used primarily for process switching packets. IOS on shared memory routers also uses system buffers, but
in a distinct way—it uses the system buffers for all packet switching, not just process switching.
 
In addition to the standard public buffer pools, IOS on shared memory platforms also creates some
private system buffer pools and special buffer structures for the interface controllers called rings.
 

Private Buffer Pools

Private buffer pools are used for packet switching just like the public pools, but are intended to prevent
interface buffer starvation. All interfaces must compete for buffers from the public pools, increasing the
probability for buffer contention (which degrades performance) and raising the possibility that a single
interface can starve out others needing buffers from a single pool. With the addition of private pools, each
interface is given a number of buffers dedicated for its use, so contention is minimized. Although most
interfaces receive their own private pool of buffers, some lower speed interfaces, such as asynchronous
interfaces, do not.
 
Unlike the dynamic public pools, the private pools are static and are allocated with a fixed number of
buffers at IOS initialization. New buffers cannot be created on demand for these pools. If a buffer is
needed and one is not available in the private pool, IOS falls back to the public buffer pool for the size
that matches the interface’s MTU.
 
The output of the show buffers command in Example 3-9 shows both the public and the private pools.
 

Example 3-9. show buffers Command Output
 

Router#show buffers
Buffer elements:
     500 in free list (500 max allowed)
     57288024 hits, 0 misses, 0 created

Public buffer pools:
Small buffers, 104 by tes (total 50, permanent 50):
     50 in free list (20 min, 150 max allowed)
     11256002 hits, 0 misses, 0 trims, 0 created
     0 failures (0 no memory )
Middle buffers, 600 by tes (total 25, permanent 25):
     24 in free list (10 min, 150 max allowed)
     3660412 hits, 12 misses, 36 trims, 36 created
     0 failures (0 no memory )
Big buffers, 1524 by tes (total 50, permanent 50):
     50 in free list (5 min, 150 max allowed)
     585512 hits, 14 misses, 12 trims, 12 created
     2 failures (0 no memory )
VeryBig buffers, 4520 by tes (total 10, permanent 10):
     10 in free list (0 min, 100 max allowed)
     0 hits, 0 misses, 0 trims, 0 created
     0 failures (0 no memory )
Large buffers, 5024 by tes (total 0, permanent 0):
     0 in free list (0 min, 10 max allowed)
     0 hits, 0 misses, 0 trims, 0 created
     0 failures (0 no memory )
Huge buffers, 18024 by tes (total 0, permanent 0):
     0 in free list (0 min, 4 max allowed)
     0 hits, 0 misses, 0 trims, 0 created
     0 failures (0 no memory )
Interface buffer pools:
Ethernet0 buffers, 1524 by tes (total 32, permanent 32):
     8 in free list (0 min, 32 max allowed)
     3398 hits, 3164 fallbacks
     8 max cache size, 7 in cache
Serial0 buffers, 1524 by tes (total 32, permanent 32):
     7 in free list (0 min, 32 max allowed)
     25 hits, 0 fallbacks
     8 max cache size, 8 in cache
Serial1 buffers, 1524 by tes (total 32, permanent 32):



     7 in free list (0 min, 32 max allowed)
     25 hits, 0 fallbacks
     8 max cache size, 8 in cache

 
Although most of these fields are explained in Chapter 1, some are unique to the interface buffer pools:
 

• fallbacks—The number of times the interface processor had to fall back to the public buffer pools
to find a buffer in which to store a packet.

 • max cache size—Some number of buffers in each private buffer pool are cached for faster access;
this is the maximum number of buffers that can be cached.

 • in cache—The number of cached private buffers.
 
Notice the private pools do not have a creates or a trims field; this is because these pools are static
pools.
 

Receive Rings and Transmit Rings

In addition to public and private buffer pools, IOS also creates special buffer control structures, called
rings, in I/O memory. IOS and interface controllers use these rings to control which buffers are used to
receive and transmit packets to the media. Rings are actually a common control structure used by many
types of media controllers to manage the memory for packets being received or waiting to be transmitted.
The rings themselves consist of media controller–specific elements that point to individual packet buffers
elsewhere in I/O memory. IOS creates these rings on behalf of the media controllers and then manages
them jointly with the controllers.
 
Each interface has a pair of rings: a receive ring for receiving packets and a transmit ring for transmitting
packets. These rings have fixed sizes determined by several factors. The size of the receive ring depends
on the specific interface and is dictated by the media controller specification. The transmit ring size,
however, is dependent on the media controller specification and the type of queuing configured on the
interface.
 
Receive rings have a constant number of packet buffers allocated to them that equals the size of the ring.
The receive ring’s packet buffers initially are allocated from the interface’s private buffer pool. During
operation, they might be replaced with buffers from either the private pool or a public pool.
 
The number of buffers allocated to a transmit ring can vary from zero up to the maximum size of the
transmit ring. Transmit ring packet buffers come from the receive ring of the originating interface for a
switched packet or from a public pool if the packet was originated by IOS. They’re de-allocated from the
transmit ring and returned to their original pool after the payload data is transmitted.
 
The show controller command in Example 3-10 displays the sizes and the locations of the receive and the
transmit rings. Although most interface types produce output similar to what’s shown, the exact content of
the output varies.
 

Example 3-10. show controller Command Output Displays Receive and Transmit Ring Sizes and
Locations

 
isp-4700b#show controller ethernet
AM79970 unit 0 NIM slot 1, NIM ty pe code 14, NIM version 1



Media Ty pe is 10BaseT, Half Duplex, Link State is Down, Squelch is Normal
idb 0x60AE8324, ds 0x60AE9D10, eim_regs = 0x3C110000
IB at 0x40006E64: mode=0x0010, mcfilter 0000/0000/0100/0000
station address 0060.837c.7089  default station address 0060.837c.7089
buffer size 1524
RX ring with 32 entries at 0x400303D0                                    
Rxhead = 0x400303D0 (0), Rxp = 0x60AE9D28 (0)
00 pak=0x60AF2468 ds=0xA80C745E status=0x80 max_size=1524 pak_size=0
01 pak=0x60AF2254 ds=0xA80C6DA2 status=0x80 max_size=1524 pak_size=0
02 pak=0x60AF2040 ds=0xA80C66E6 status=0x80 max_size=1524 pak_size=0
....
TX ring with 32 entries at 0x40059BD0, tx_count = 0                      
tx_head = 0x40059BD0 (0), head_txp = 0x60AE9E3C (0)
tx_tail = 0x40059BD0 (0), tail_txp = 0x60AE9E3C (0)
00 pak=0x000000 ds=0xA8000000 status=0x03 status2=0x0000 pak_size=0
01 pak=0x000000 ds=0xA8000000 status=0x03 status2=0x0000 pak_size=0
02 pak=0x000000 ds=0xA8000000 status=0x03 status2=0x0000 pak_size=0

 
The following list describes some of the more interesting fields in the show controller output from
Example 3-10:
 

• RX ring with 32 entries at 0x400303D0—The size of the receive ring is 32 and it begins at
memory location 0x400303D0 in I/O memory.

 • 00 pak=0x60AF2468 ds=0xA80C745E status=0x80 max_size=1524 pak_size=0—This line is
repeated for each ring entry in the receive ring. Each ring entry, called a descriptor, contains
information about a corresponding packet buffer allocated to the receive ring. All the fields in the
descriptor except for pak are device specific and vary from media controller to media controller.
The pak field points to the memory address of the header for the packet linked to this descriptor.
All IOS packet buffers have a corresponding header containing information about the contents of
the buffer and a pointer to the actual location of the buffer itself. Although packet buffers on shared
memory systems are located in I/O memory, their headers might reside in Local memory, as is the
case here.

 • TX ring with 32 entries at 0x40059BD0, tx_count = 0—Shows the transmit ring size and the
number of packets waiting to be transmitted. In this case, the transmit ring size is 32 and there are
no packets awaiting transmission on this interface.

 • 00 pak=0x000000 ds=0xA8000000 status=0x03 status2=0x0000 pak_size=0—This line is
repeated for each entry in the transmit ring. Like the receive ring, each entry in the transmit ring is a
descriptor containing information about a corresponding packet buffer on the ring. The pak field
points to the header of a corresponding packet buffer waiting to be transmitted. The other fields are
media controller specific. Unlike receive ring descriptors, transmit ring descriptors are linked only
to a packet buffer when there is a packet waiting to transmit. After a packet buffer is transmitted,
the buffer is unlinked from the transmit descriptor, returned to its original free pool, and its
descriptor pak pointer reset to 0x000000.

 
Packet Switching on a Shared Memory Router

Now that we’ve looked at the general hardware architecture of the shared memory routers and how IOS
divides their memory, let’s look at how IOS actually switches packets. IOS on shared memory routers
supports the following:
 

• Process switching
 • CEF switching
 • Fast switching
 
There are three stages in IOS packet switching:
 



1 Receiving the packet
 2 Switching the packet
 3 Transmitting the packet
 

Receiving the Packet

Figure 3-2 illustrates the steps of the packet receive stage.
 

Figure 3-2. Receiving the Packet
 

 
Step 1. The interface media controller detects a packet on the network media and copies it into a

buffer pointed to by the first free element in the receive ring (that is, the next buffer the media
controller owns). Media controllers use the DMA (direct memory access) method to copy
packet data into memory.

 Step 2. The media controller changes ownership of the packet buffer back to the processor and
issues a receive interrupt to the processor. The media controller does not have to wait for a
response from the CPU and continues to receive incoming packets into other buffers linked to
the receive ring.

 

Note

Notice in Step 2 the media controller can continue to receive incoming packets into the receive ring.
Therefore, it’s possible for the media controller to fill the receive ring before the processor processes all
the new buffers in the ring. This condition is called an overrun; when it occurs, all incoming packets are
dropped until the processor catches up.



 

 
Step 3. The CPU responds to the receive interrupt, and then attempts to remove the newly-filled

buffer from the receive ring and replenish the ring from the interface’s private pool. Three
outcomes are possible:

 3.1 A free buffer is available in the interface’s private pool to replenish the receive ring: The free
buffer is linked to the receive ring and packet switching continues with Step 4.

 3.2 A free buffer is not available in the interface’s private pool, so the receive ring is replenished by
falling back to the global pool that matches the interface’s MTU. The fallback counter is
incremented for the private pool.

 3.3 If a free buffer is not available in the public pool as well, the incoming packet is dropped and the
ignore counter is incremented. Further, the interface is throttled, and all incoming traffic is
ignored on this interface for some short period of time.

 

Switching the Packet

Step 4. After the receive ring is replenished, the CPU begins actually switching the packet. This
operation consists of locating information about where to send the packet (next hop) and the
MAC header to rewrite onto the packet.

 IOS attempts to switch the packet using the fastest method configured on the interface. On shared
memory systems, it first tries CEF switching (if configured), then fast switching, and finally falls
back to process switching if none of the others work. Figure 3-3 illustrates the steps of the packet
switching stage and the list that follows describes the steps illustrated in the figure.

 
Figure 3-3. Switching the Packet

 



 
Step 5. While still in the receive interrupt context, IOS attempts to use the CEF table (first) or fast

switching cache (second) to make a switching decision.
 5.1 CEF switching—If CEF switching is enabled on the interface, then CEF switching is attempted.

Four different outcomes are possible:
 5.1.1 If there are valid CEF and adjacency table entries, IOS rewrites the MAC header on the

packet and begins transmitting it in Step 8, the packet transmit stage.
 5.1.2 If the CEF adjacency entry for this destination points to a punt adjacency, IOS proceeds to

try fast switching (see Step 5.2).
 5.1.3 If the CEF table entry for this packet points to a receive adjacency, the packet is queued for

process switching.
 5.1.4 If there is no CEF entry for the destination, the packet is dropped.
 5.2 Fast switching—If CEF is not enabled or the packet cannot be CEF switched, IOS attempts to

fast switch the packet.
 5.2.1 If there is a valid fast cache entry for this destination, IOS rewrites the MAC header

information and begins transmitting the packet (Step 8, packet transmit stage).
 5.2.2 If there is no valid fast cache entry, the packet is queued for process switching (Step 6).
 Step 6. Process switching—If both CEF switching and fast switching fail, IOS falls back to process

switching. The packet is placed in the input queue of the appropriate process (an IP packet is
placed in the queue for the IP Input process, for instance), and the receive interrupt is
dismissed.

 Step 7. Eventually, the packet switching process runs, switching the packet and rewriting the MAC
header as needed. Note the packet still has not moved from the buffer it was originally copied
into. After the packet is switched, IOS continues to the packet transmit stage, for process
switching (Step 9).

 

Transmitting the Packet

Figure 3-4 illustrates the steps of packet transmit stage.
 

Figure 3-4. Transmitting the Packet
 



 
Step 8. If the packet was CEF switched or fast switched, then while still in receive interrupt context

IOS checks to see if there are packets on the output queue of the outbound interface.
 8.1 If there are packets already on the output hold queue for the interface, IOS places the packet on

the output hold queue instead of directly into the transmit ring to reduce the possibility of out-of-
order packets, and then proceeds to Step 8.3.

 8.2 If the output hold queue is empty, IOS places the packet on the transmit ring of the output
interface by linking the packet buffer to a transmit ring descriptor. The receive interrupt is
dismissed and processing continues with Step 11. If there is no room on the transmit ring, the
packet is placed on the output hold queue instead and the receive interrupt is dismissed.

 8.3 If the output hold queue is full, the packet is dropped, the output drop counter is incremented, and
the receive interrupt is dismissed.

 

Note

In Step 8 of the transmit stage, notice that IOS checks the output hold queue first before placing any CEF
or fast switched packets on the transmit ring. This reduces the possibility of transmitting packets out of
order. How can packets get out of order when they’re being switched as they’re received? Consider the
following example.
 Let’s assume the first packet in a given conversation (flow) between two hosts arrives at the router. IOS
attempts to fast switch the packet and finds there is no fast cache entry. So, the packet is handed off to the
IP Input process for process switching.
 So far, everything is fine. In the process of switching the packet, IP Input builds a cache entry for this
flow of packets and places the first packet on the output queue of the outbound interface.
 Now, let’s assume that just at this moment a second packet arrives for the same flow. IOS fast switches
the second packet (because the cache entry has now been built) and gets ready to transmit it. If IOS puts
this second packet directly on the transmit ring, it is transmitted before the first packet, which is still



waiting in the output queue. To prevent this situation from occurring, IOS always makes certain the output
queue of the outbound interface is empty before placing any CEF-switched or fast-switched packets
directly on the transmit ring.
 
 

Step 9.   If the packet was process switched, the packet is placed on the output queue for the output
interface. If the output queue is full, the packet is dropped and the output drop counter is
incremented.

 Step 10. IOS attempts to find a free descriptor in the output interface transmit ring. If a free
descriptor exists, IOS removes the packet from the output hold queue and links the buffer to
the transmit ring. If no free descriptor exists (that is, the ring is full), IOS leaves the packet in
the output hold queue until the media controller transmits a packet from the ring and frees a
descriptor.

 Step 11. The outbound interface media controller polls its transmit ring periodically for packets that
need to be transmitted. As soon as the media controller detects a packet, it copies the packet
onto the network media and raises a transmit interrupt to the processor.

 Step 12. IOS acknowledges the transmit interrupt, unlinks the packet buffer from the transmit ring,
and returns the buffer to the pool of buffers from which it originally came. IOS then checks the
output hold queue for the interface; if there are any packets waiting in the output hold queue,
IOS removes the next one from the queue and links it to the transmit ring. Finally, the transmit
interrupt is dismissed.

 
 
Summary

This chapter covered the IOS implementation on Cisco’s shared memory architecture routers, including
the 2500 series, of which there are more than 1 million in use today. You saw how IOS divides memory
into regions and how it actually switches packets on these platforms.
 



Chapter 4. Early Cbus Routers
This chapter covers the following key topics:
 • AGS+ Hardware Architecture
 • Packet Switching with the Cbus
 • The Cisco 7000 Series Router
 

Chapter 2, “Packet Switching Architecture,” examined how changes in the IOS software implementation
have been used to improve packet switching performance. Cisco also uses special hardware designs to
improve switching performance. The first notable example of this was the introduction of the Cbus with
the AGS+ router and its successor, the Cisco 7000 series router, in the early 1990s. Although these
products are no longer sold or supported in current IOS versions, a large part of their design was adapted
for the Cisco 7500 series routers that are widely deployed today. This chapter covers the AGS+ and 7000
routers because a sizeable part of the 7500-specific switching features actually had their origins in the
IOS design for these early platforms.
 
AGS+ Hardware Architecture

The AGS+ router was an improved version of the original AGS router. The AGS (without the plus) was
based on a Motorola 68000 series CPU (M68k) and used media interface cards interconnected by a
relatively slow 155-Mbps data bus called the Multibus. Due to the speed limitations of this processor and
the Multibus, packet switching performance was limited to the range of 7000 to 14,000 packets per
second (pps) even with fast switching—pretty anemic by today’s standards. In fact, under some conditions
the Cisco 2500 series routers can outperform these switching speeds!
 
The Cisco AGS+ and 7000 routers were designed before the advent of high speed computer buses and
economical RISC-based CPUs. So, when Cisco’s engineers started looking for ways to boost switching
performance, there weren’t many off-the-shelf solutions from which to choose. The engineers decided to
solve the problem by designing their own high-speed data bus and packet switching engine. Thus was
born the Cbus.
 
The original Cbus (short for “Cisco bus”) was a 32-bit bus operating at 16.67 MHz, giving a total
bandwidth of 533 Mbps—a vast improvement over the Multibus. The bus was designed with 32 data
lines, 24 address lines, and 8 command lines.
 
The Cbus switching engine was based on a microcoded 16-bit slice microprocessor with an 80-bit
instruction word that allowed several operations to execute concurrently in a single cycle. Unlike general
purpose processors such as the M68k, the Cbus processor had a small, customized instruction set
designed specifically to support data switching operations. The processor was packaged on a special
interface card containing memory for the processor’s instructions (called control store), fast packet
memory, and interfaces to both the Multibus and the Cbus. This card comprised the switching engine and



was called the Cbus Controller.
 
These two new features, the Cbus and the Cbus Controller, were added to the original AGS architecture
to create the AGS+ router. Figure 4-1 shows a diagram of the AGS+ architecture.
 

Figure 4-1. AGS+ Architecture
 

 
The following list describes each of the major components shown in Figure 4-1:
 

• Processor (CPU)—Runs IOS and performs process switching functions, and performs fast
switching between Multibus interfaces. The processor also performs fast switching for packets that
are received from Cbus interfaces but can’t be autonomously switched.

 • Main Memory—DRAM containing the running IOS image, its data, and system packet buffers.
 • Multibus—Data bus interconnecting the processor with the Multibus interface cards. The Cbus

controller card also has a connection to the Multibus.
 • Cbus Switching Processor—Runs optimized non-IOS microcode to perform fast switching of

packets between Cbus interfaces. This processor is on the Cbus controller card.
 • Fast Packet Memory—High-speed memory on the Cbus controller card that is dual-ported

between the Cbus switching processor and the Cbus interface cards. Used to store packets received
from or transmitted to Cbus interfaces. This memory is referred to by the name MEMD in the Cbus
architecture.



 • Cbus—The Cisco proprietary data bus interconnecting the Cbus controller card with the Cbus
interface cards.

 

Note

The Cbus processor, MEMD, and Cbus bus control circuitry were contained on the same card and
collectively referred to as the CBUS controller or CBUSII card. The Cbus processor itself was often just
referred to as “the processor on the CBUSII card.” Cbus Switching Processor is used here to identify the
processor and should not be confused with the Switch Processor on the C7000 router.
 

 

The AGS+ retained the Motorola 68000 series processor and the Multibus backplane used on the AGS.
The Cbus enhancement was made by converting five of the interface card slots on the backplane to access
the Cbus. This allowed Multibus interface cards to be used in the same chassis with the new Cbus
interface cards.
 
After the hardware enhancements were added to the AGS+, how did IOS actually use them to increase
switching performance? Let’s examine how IOS put these enhancements to work.
 
Packet Switching with the Cbus

Recall the descriptions of fast switching and process switching from Chapter 2, “Packet Switching
Architecture.” In both of these methods, the receiving interface hardware copies the received packet into
I/O memory and interrupts the main processor to begin switching the packet. Whether during the interrupt
or in a background process, the main processor has to do all the work of actually switching the packet; the
interface hardware just receives the packet and transmits it to the media. Also, packet switching is just
one of the many tasks the main processor has to do, so not all of its capacity is available for packet
switching.
 
The Cbus and the Cbus Controller provided another processing alternative on the AGS+. Instead of IOS
performing all the switching on the main processor, much of the switching could be performed by the
Cbus Controller without involving the main processor at all. The Cbus Controller was capable of
performing fast switching autonomously on the switching processor as long as both the receiving and the
transmitting interfaces were on Cbus cards. This capability provided a new method of switching
appropriately called autonomous switching.
 

Autonomous Switching

Autonomous switching worked essentially like fast switching—except on a different processor. It was
triggered by a packet receive interrupt (this time to the switching processor) and used a local cache to
look up forwarding information, just like fast switching. In fact, autonomous switching used the same hash
table structure for its fast cache that IOS used prior to release 10.2. IOS maintained both the main fast
cache and the local switching processor (Cbus) cache during process switching in the same way. Each
time an entry was added or invalidated in the main cache it also was added or invalidated in the Cbus



cache.
 
Autonomous switching did differ from fast switching in a couple ways, though. Autonomous switching
didn’t support as many protocols as fast switching—only IP, IPX, and bridging—and it handled cache
misses differently.
 
Recall that in fast switching, if a packet is received and there is no fast cache entry for it, the packet is
queued for process switching. In autonomous switching, however, if there was no Cbus cache entry for a
packet, the packet was sent to the main processor for possible fast switching. If the packet was destined
to another Cbus interface, the main processor could fast switch the packet while it was still in the Cbus
Controller. However, if the packet was destined to a Multibus interface, the whole packet had to be
copied across the slow Multibus to a system buffer, and then process switched. Although the Cbus
Controller had a Multibus interface, it couldn’t use it to autonomously switch packets.
 

Cbus Fast Packet Memory

The Cbus Controller design introduced a new strategy for IOS packet buffering that is still in use today on
the Cisco 7500 series. On the AGS+, process switching and fast switching used the system buffers for
packets as described in Chapter 1, “Fundamental IOS Software Architecture.” However, these system
buffers held a distinct disadvantage for autonomous switching: They were located in main memory on the
main processor card, which made them inaccessible to Cbus interface cards.
 
To provide packet buffers for the Cbus interfaces, Cisco designed the Cbus Controller with its own local
dedicated packet buffer memory. The memory, referred to as MEMD, was a fixed 512 KB region that
could be addressed by both the switching processor and the Cbus interface cards. Of the total 512 KB
available, the first 8 KB (called page zero) was set aside for control structures, leaving the rest available
to be carved into packet buffers.
 
 

MEMD
You might be wondering where the name MEMD came from. Contrary to popular belief, MEMD is not the
name of a type of memory but is instead the name Cisco assigned to a class of memory used on its Cbus-
based routers. MEMD is really just SRAM, but it’s always used for packet buffering to and from Cbus
interfaces.
 
The name MEMD was derived from the word memory (MEM) plus the alphabetic letter D, indicating it is
the fourth in a series of Cbus memory classes. There were also other Cbus memory classes used on the
AGS+. For example, MEMA referred to memory used to hold the autonomous cache and the global
pointers used by the switching processor.
 

What’s most interesting about MEMD is how it was logically organized. Like the system buffers, MEMD
was divided into buffers of varying sizes to accommodate different sized packets. Unlike the system
buffers, MEMD buffer sizes were determined by the actual MTU sizes of the Cbus interfaces present on
the router—not by a predetermined set of sizes.
 



The buffers were divided into a maximum of four pools, and then they were allocated to the interfaces
from those pools. Within each pool, all buffers were the same size. Due to the limited size of MEMD and
its control structures in page zero, the maximum number of packet buffers that could be defined was
limited to 470 regardless of the number of Cbus interfaces present.
 
The switching processor maintained two queues in MEMD’s page zero for each Cbus interface: a receive
queue and a transmit queue. These queues were similar in function to the input queues and the output
queues maintained by IOS. When a Cbus interface detected an incoming packet, it allocated a MEMD
buffer from the appropriate pool, copied the packet data into the buffer, and placed the buffer on its
receive queue to await switching by the switching processor. If the packet was autonomously switched,
the switching processor switched it and placed the modified packet on the transmit queue of the
destination Cbus interface. If the packet was fast switched, the main processor switched it and directed
the switching processor to place it on the appropriate Cbus transmit queue. For packets that had to be
process switched, the switching processor copied the packet to the main processor memory over the
Multibus and returned the MEMD buffer to its original pool.
 
The switching processor also maintained counters and limit values in MEMD for each of the receive
queues and the transmit queues. Each receive queue had a receive queue limit (RQL) and each transmit
queue had a transmit queue limit (TQL) to prevent a single interface from hoarding all the MEMD
buffers.
 
The RQL value determined the maximum number of packet buffers that could be held on the receive queue
at any time. When a receive queue contained the RQL number of buffers, it was considered full and any
additional packets received were dropped until the number of buffers dropped below the RQL level.
Similarly, the TQL value determined the maximum number of packet buffers that could be held on the
transmit queue at any given time. Any additional packets switched to an interface while its transmit queue
was full were dropped until its transmit queue depth dropped below the TQL value.
 
You can find a more detailed description of the MEMD counters and the buffer carving process in Chapter
6, “Cisco 7500 Routers.”
 
The Cisco 7000 Series Router

The Cisco 7000 series router represented the next step in the evolution of the AGS and the Cbus
architecture. Other than the mechanical structure and outward appearance, the 7000 wasn’t drastically
different from its predecessor, the AGS+. The biggest architectural difference was the elimination of the
Multibus and Multibus interface cards—only Cbus interface cards were supported on the 7000.
 
Some of the changes were mostly superficial. On the 7000, the AGS+ processor card was replaced by the
Route Processor (RP) card and the Cbus Controller was replaced by the 7000’s Switch Processor (SP)
card, but the RP and SP retained the same CPUs as their AGS+ counterparts. Although there was no
Multibus, per se, on the 7000, the switching processor on the SP still connected to the main processor on
the RP via a 155-Mbps Multibus-like interface. These similarities allowed the IOS software and
switching processor microcode to work on the 7000 without requiring a large number of changes.
 
The 7000 did introduce a new hardware feature not present on the AGS+: hot-swappable interface cards.
The 7000 routers allowed Cbus interface cards (called interface processors on the 7000) to be removed
and re-inserted while IOS was operational with minimal operational disruption to other interface



processors. When IOS detected that a card was being removed or inserted, it momentarily stalled
operations on the Cbus while the insertion/removal was underway. When the insertion/removal
completed, IOS resumed operation of the Cbus and continued switching packets where it left off.
 
This new feature necessitated a change in the operation of the switching processor microcode. Whereas
the composition of interfaces was fixed on the AGS+ while IOS was in operation, on the 7000 that
composition could change on the fly. The original switching processor microcode on the AGS+ was
designed to carve a static MEMD buffer allocation at initialization time. On the 7000, however, the
microcode had to be changed to re-carve the buffer allocation each time a card was inserted or removed.
This allowed the SP to keep the most efficient use of packet memory resources even if the interface
composition changed.
 
 
Summary

The architecture of the AGS+ and Cisco 7000 routers formed the foundation from which the later Cbus-
based routers were built. Although Cisco’s router architecture has now shifted toward newer designs, it’s
still useful to examine these early systems because much of the current IOS switching architecture is a
relic of these early designs.
 
Chapter 5 moves on to one of the newer Cisco router architectures—Particle-Based Systems.
 



Chapter 5. Particle-Based Systems
This chapter covers the following key topics:
 • Buffer Management Using Particles
 • The Cisco 7200 Series Routers
 • Packet Switching on the Cisco 7200 Series Routers
 

All the packet buffering schemes discussed so far have one thing in common: they carve up pools of
various-sized buffers, and then allocate one buffer per packet. These types of buffers often are called
contiguous buffers because the entire contents of a packet reside in a single buffer in one contiguous area
of memory. Buffers either are sized to accommodate the largest packet possible on an interface or they’re
sized according to a fixed schedule.
 
Although contiguous buffers are easy to manipulate, they don’t always provide the most efficient use of
memory. Contiguous buffering schemes can waste memory by oversizing buffers or by promoting buffer
usage imbalances. Consider the Cbus MEMD scheme, for example. The MEMD scheme creates interface
buffers to be at least as large as the MTU of the interface—the size of the largest packet that can appear. If
the average packet received is much smaller than the MTU, then much of the packet buffer is wasted. For
example, if an interface’s MTU is 4 KB, but most of its packets (90 percent) are less than 1 KB, 75
percent of the interface’s buffer memory is wasted 90 percent of the time!
 
In IOS Release 11.1CA, Cisco introduced a new buffering scheme called particle buffering designed to
address the inefficiencies of contiguous buffers. Although not universally supported on all platforms,
particle buffering is used on the Cisco 2600 series, the Cisco 3600 series, the Cisco 7500 VIP, the Cisco
7200 series, and the derivatives of the 7200, such as the Cisco 7100 and the Cisco 6400 NRP. This
chapter covers particle buffering and examines how it’s used for packet switching on one of the supported
platforms, the Cisco 7200 series router.
 
 
Buffer Management Using Particles

Particle buffering uses a scatter-gather approach for packet buffer memory management. Instead of
allocating one piece of contiguous memory for a buffer, particle buffering allocates dis-contiguous
(scattered) pieces of memory, called particles, and then links them together (gathers) to form one logical
packet buffer, called a particle buffer. With this scheme, a single packet can be spread across multiple
physical buffers.
 
Particle buffers are built—that is, individual particles are linked together—as each packet is received on
an interface, as you’ll see when you study the Cisco 7200 router example. This method differs from that of
contiguous buffers, which need no assembly before use. As a result, there are no pools of pre-built
particle buffers like there are for contiguous buffers. After all, how would IOS know how many particles
to add to each buffer? Instead, IOS maintains pools of particles and draws from those pools to build



packet buffers as it receives packets. The particles are the basic building blocks and the pools provide the
raw materials to build the packet buffers.
 
Within a given pool, all particles are the same size; so any free particle in the pool can be used to build a
buffer without regard to the particle’s size. This uniformity simplifies the particle management algorithms
and helps contribute to efficient memory use. IOS particle size varies from platform to platform, but
within a platform there is usually one primary size. There are exceptions—platforms can have pools with
secondary particle sizes as you’ll see later in this chapter—but there is usually a primary particle size.
The size is chosen so it’s large enough to contain the average packet while minimizing wasted memory,
typically 512 bytes. This way, most packet buffers can be composed of just one particle.
 
To understand how the particle buffering scatter-gather approach works, consider the example illustrated
in Figure 5-1. In this simple example, there is one particle pool in memory and all packet buffers are built
from that pool.
 

Figure 5-1. Particle Example
 

 
Assume that the pool’s particle size is 512 bytes and three free particles, labeled P1, P2, and P3, exist in
the pool. Now, let’s trace what happens when IOS receives a 1200-byte packet.
 

Step 1. IOS gets the next free particle (P1 in this example) and begins copying the packet data into
the particle. The first 512 bytes of the packet are copied.

 Step 2. When the first particle is filled, IOS moves to the next free particle (P2 in this example),
links it to P1, and continues copying packet data into this second particle. The next 512 bytes
of the packet are copied.

 Step 3. When the second particle is filled, 176 bytes of packet data still are left. So, IOS moves to
the next free particle (P3 in this example), links it to P2, and copies the remaining 176 bytes
into this third particle.

 
Upon completion, IOS has copied the entire 1200 bytes into three dis-contiguous pieces of memory that
are all logically part of a single packet buffer.
 
Particle buffers actually consist of more than just the memory that contains packet data. Some amount of
overhead is required (in the form of additional components) to maintain data about the packet as well as
to link the scattered memory pieces together. Figure 5-2 shows the components of a particle buffer and
how each one is related.



 
Figure 5-2. Particle Buffer Components

 

 
Each particle buffer consists of a packet header linked to one or more particles. A particle consists of a
particle header and an associated particle data block. The following list examines each of these
components in more detail:
 

• Packet header—The packet header is the same as the header for contiguous buffers. It contains
information about the type and the size of the packet in the buffer as well as pointers to specific
fields in the packet. The packet header also contains a link to the first particle.

 • Particle header—The particle header is a control block containing a link to the particle data block
and a link to the next particle in the buffer (if there is one). It also contains other information, such
as the number of data bytes in the data block and the pool that owns the particle.

 • Particle data block—The particle data block is the piece of memory containing the actual particle
data—basically, this is just a buffer.

 

Particle Pools

IOS uses the same pool management strategy for particle pools as it does for contiguous packet buffers on
shared memory systems. IOS creates a private static particle pool for each interface, and then creates a
public dynamic pool, called the normal pool, that all interfaces and processes share. The private particle
pools use the public pool as a fall-back in case they run out of particles.
 
IOS also creates another public particle pool on most systems, called the fast switching pool, containing
small 128-byte particles. These particles are used when IOS needs to prepend data to a packet during fast
switching—for example, to rewrite a larger media header onto a packet. To prepend the data, IOS must
insert a new particle at the beginning of a particle buffer after it already has been linked together. Because
the prepended data is usually small, it uses the particles from this special pool.
 
The partial output from the show buffers command in Example 5-1 shows a sample of the public and
private particle pools IOS creates. The fast switching pool is labeled F/S.
 



Example 5-1. show buffers Command Output Displays Public and Private Particle Pools
 

Router-7200#show buffers
....
Public particle pools:
F/S buffers, 128 by tes (total 512, permanent 512):
     0 in free list (0 min, 512 max allowed)
     512 hits, 0 misses
     512 max cache size, 512 in cache
Normal buffers, 512 by tes (total 1024, permanent 1024):
     1024 in free list (512 min, 2048 max allowed)
     0 hits, 0 misses, 0 trims, 0 created
     0 failures (0 no memory )

Private particle pools:
FastEthernet0/0 buffers, 512 by tes (total 400, permanent 400):
     0 in free list (0 min, 400 max allowed)
     400 hits, 0 fallbacks
     400 max cache size, 271 in cache
Ethernet1/0 buffers, 512 by tes (total 128, permanent 128):
     0 in free list (0 min, 128 max allowed)
     128 hits, 0 fallbacks
     128 max cache size, 64 in cache
Ethernet1/1 buffers, 512 by tes (total 128, permanent 128):
     0 in free list (0 min, 128 max allowed)
     128 hits, 0 fallbacks
     128 max cache size, 64 in cache
...

 

Particle Coalescing

Although particle buffers do improve memory efficiency, they also tend to increase the complexity of the
programs that manipulate their contents. For example, with particles, packet fields can be split arbitrarily
across particle boundaries. Packet switching methods have to accommodate that possibility.
 
All fast switching methods, for most protocols, are equipped to handle particle buffers. However, this is
not the case for process switching. Because process switching adds little benefit, only complexity, Cisco
decided not to equip the process switching method for particle buffers. Process switching still requires a
packet to reside in a contiguous buffer. As a result, particle-buffered packets queued to process switching
must be transferred to a contiguous buffer through a process is called coalescing.
 
Coalescing essentially involves copying the contents of all the particles in a packet buffer, one by one,
into an appropriately sized contiguous buffer. Depending on the platform, this task either can be
performed by the main CPU or by a separate DMA engine. The coalescing process works as follows:
 

Step 1. IOS allocates an appropriately sized contiguous buffer from one of the system buffer pools.
IOS must find a buffer large enough for the entire packet or the coalescing process fails.

 Step 2. IOS copies the data from each packet buffer particle into the new contiguous buffer.
 Step 3. IOS frees all the particles, returning them to their original pool.
 Step 4. Finally, IOS unlinks the packet header from the freed particles and links it to the new

contiguous buffer.
 
When the process is complete, the resulting packet looks the same as the original (same packet header)
except it resides in a physically contiguous block of memory.
 
To understand how particle buffers are used in IOS, it’s helpful to look at an implementation example.
The following sections describe how particle buffers are used on the Cisco 7200 router series, the first
platform to support particles.
 
The Cisco 7200 Series Routers



The 7200 router was the first Cisco router designed to use the now common, industry-standard PCI bus.
The 7200 series has a modular architecture that uses replaceable media interfaces called port adapters
and an interchangeable main processor called the Network Processing Engine (NPE).
 
The 7200 is available in several configurations based upon combinations of chassis models and available
NPEs. The number of slots and the type of midplane installed distinguish the chassis models. At the time
of this writing, two midplane designs are available for the 7200 series chassis:
 

• Original midplane—Contains two PCI buses running at 25 MHz. Each bus connects to half the
slots in a chassis. This midplane supports all NPEs except the NPE-300.

 • VXR midplane—Contains two dual-speed PCI buses capable of running at either 25 or 50 MHz.
Each bus connects to half the slots in a chassis. In addition, the midplane contains a TDM (time
division multiplexing) switch with two dedicated links, called Multiservice Interchange
Connections, to each chassis slot. This midplane primarily is intended for use with the NPE-300,
but it supports all NPEs.

 
The 7200 series chassis is available in two-slot, four-slot, and six-slot versions. The following list
examines the 7200 series chassis configurations:
 

• 7202—A two-slot chassis used in some niche applications. This router has the original 25-MHz
midplane and supports only the NPE-150.

 • 7204—A four-slot chassis with the original midplane.
 • 7206—A six-slot chassis with the original midplane.
 • 7204VXR—A four-slot chassis with the VXR midplane.
 • 7206VXR—A six-slot chassis with the VXR midplane.
 
Several NPEs have been developed for the 7200 series router; all feature a MIPS-compatible CPU. Most
are interchangeable, with a few exceptions. For example, the two-slot 7202 chassis supports only the
NPE-150, and the NPE-300 is supported only in a chassis with the VXR midplane. Each NPE is
distinguished by its CPU speed and the type of memory it contains:
 

• NPE-100—An early 7200 series NPE with a VR4700-100 100-MHz CPU and DRAM memory
only (no SRAM).

 • NPE-150—Contains a VR4700-150 CPU running at 150 MHz. Uses DRAM for main memory and
both DRAM and SRAM for packet buffers.

 • NPE-175—Contains an RM5270-200 CPU running at 200 MHz with a 2 Mb unified cache. Uses
SDRAM for main memory and packet buffers.

 • NPE-200—Contains a VR5000-200 CPU running at 200 MHz. Uses DRAM for main memory and
both DRAM and SRAM for packet buffers.

 • NPE-225—Contains an RM5271-262 CPU running at 262 MHz with a 2 Mb unified cache. Uses
SDRAM for main memory and packet buffers.

 • NPE-300—Contains an RM7000-300 CPU running at 300 MHz and two independent banks of
SDRAM memory. This NPE has two separate PCI/memory bus controllers allowing concurrent
access to SDRAM from two different port adapters, providing improved performance. The NPE-
300 also operates the PCI busses at 50 MHz and requires the VXR midplane.



 

Hardware Architecture

The 7200 series hardware architecture varies from model to model and depends upon the combination of
chassis and NPE, but it generally can be separated into two major designs: routers with the original
midplane and an early NPE (NPE-100, NPE-150, NPE-200), and routers with the VXR midplane and an
NPE-300. Figure 5-3 illustrates the components of a Cisco 7200 series router employing the original
midplane design. This particular example illustrates a 7206 with an NPE-150.
 

Figure 5-3. Cisco 7200 Architecture—Original Midplane
 

 
The following list explains the Cisco 7200 components as illustrated in Figure 5-3.
 

• NPE—Contains the main memory, the CPU, the PCI memory (SRAM, except on the NPE-100
which uses DRAM), and the control circuitry for the PCI busses. As noted previously, several
types of NPEs are available—all are supported with the original midplane except the NPE-300.

 • PCI Bus—There are three PCI data busses in a Cisco 7200: PCI 0, PCI 1, and PCI 2. PCI 1 and
PCI 2 extend from the NPE to the midplane and interconnect the media interfaces (port adapters) to
the CPU and the memory on the NPE. PCI 0 is separate and is used to connect the media interface
and the PCMCIA on the I/O controller to the CPU and the memory on the NPE. Running at 25 MHz,
PCI 0, PCI 1, and PCI 2 provide up to 800 Mbps in bandwidth each.

 • I/O bus—Interconnects the non-PCI components on the I/O Controller (console port, AUX port,
NVRAM, Boot ROM, and Boot FLASH) to the CPU on the NPE.

 • Port Adapters (PAs)—These are modular interface controllers that contain circuitry to transmit
and receive packets on the physical media. These are the same port adapters used on the VIP
processors on a Cisco 7500 series router. Both platforms support most port adapters, but there are
some exceptions.

 • I/O Controller—Provides the console connection, the auxiliary connection, the NVRAM, the Boot
ROM, the Boot FLASH, and a built-in interface controller—either an Ethernet or Fast Ethernet
interface. The I/O Controller also provides access to the Flash memory cards in the PCMCIA card



slot via PCI bus 0.
 
Figure 5-4 illustrates the components of the Cisco 7200VXR hardware architecture. This particular
example illustrates a 7206VXR with an NPE-300.
 

Figure 5-4. Cisco 7200VXR Architectural Components
 

 
The following list explains the Cisco 7200VXR components as illustrated in Figure 5-4:
 

• Network Processing Engine—Contains the main memory, the CPU, the PCI memory, and the PCI
bus control circuitry. The NPE-300 has two PCI bus controllers and two independent banks of
SDRAM used for both main memory and packet memory.

 • PCI Bus—Three PCI data busses exist in a Cisco 7200VXR: PCI 0, PCI 1, and PCI 2. PCI 1 and
PCI 2 extend to the midplane and interconnect the media interfaces (port adapters) to the CPU and
the memory on the NPE. PCI 0 is separate and is used to connect the media interface and the
PCMCIA on the I/O Controller to the CPU and the memory on the NPE. PCI 0 runs at 25 MHz. PCI
1 and PCI 2 run at 50 MHz when a 50 MHz–capable NPE is installed (like the NPE-300 in this
example); otherwise, they run at 25 MHz.

 • TDM switch—The midplane contains a time division multiplexing (TDM) switch with two
dedicated connections to each chassis slot. The TDM switch supports interconnection between port
adapters that have TDM interfaces.

 • I/O bus—Interconnects the non-PCI components on the I/O Controller (console port, AUX port,
NVRAM, Boot ROM, and Boot FLASH) to the CPU on the NPE.

 • Port Adapters (PAs)—These are the same port adapters used on the non-VXR 7200 routers.
However, some PAs that require the TDM switch are supported only on the 7200VXR. The
7200VXR supports both legacy PAs with a 25-MHz internal PCI speed and 50 MHz PAs; any bus
speed mismatch is resolved by the bus isolation between the midplane and the PAs.

 • I/O Controller—Provides the console connection, the auxiliary connection, the NVRAM, the Boot
ROM, the Boot FLASH, and a built-in interface controller—either an Ethernet or Fast Ethernet
interface. The I/O Controller also provides access to the Flash memory cards in the PCMCIA card
slot via PCI bus 0.



 

Memory

The 7200 series routers use DRAM, SDRAM, and SRAM memory on the NPE in various combinations
depending on the NPE model. Three memory pools divide the available memory: the standard processor
pool, the I/O pool, and the PCI pool (I/O-2 on NPE300). Example 5-2 illustrates some show memory
command output showing these three pools. The first is from an NPE-200 and the other is from an NPE-
300.
 

Example 5-2. show memory Command Output Displays Memory Pool Information for 7200 Series
Routers

 
router-NPE-200#show memory
               Head   Total(b)    Used(b)    Free(b)  Lowest(b) Largest(b)
Processor  61BEBC60   96551840    7287388   89264452   88777932   88547216
      I/O   7800000    8388608     901616    7486992    7463324    7480508
      PCI  4B000000    4194304     993276    3201028    2227180    2702716

router-NPE-300#show memory
               Head    Total(b)    Used(b)    Free(b)  Lowest(b) Largest(b)
Processor  612A02A0   106298720    7408336   98890384   98748252   98836460
      I/O  20000000    33554432    3604696   29949736   29925740   29949692
    I/O-2   7800000     8388608      35608    8353000    8353000    8352956

 
Figure 5-5 illustrates the memory pools shown in Example 5-2. Figure 5-5 also shows how the available
memory is allocated to the pools on these two sample NPEs.
 

Figure 5-5. Memory Types
 

 
The following sections examine how IOS distributes available memory between the pools.
 

Processor Memory

The processor memory pool is used for storing the IOS code, general data structures (such as the routing
table), and the system buffers. The entire memory pool is allocated from the DRAM region on the NPE-
100, the NPE-150, and the NPE-200; the SDRAM region on the NPE-175 and the NPE-225; and SDRAM



bank 0 on the NPE-300.
 

I/O Memory

The I/O memory pool is used for particle pools. The interface private particle pools are allocated from
this memory as well as the public particle pool normal.
 
On NPE-100, NPE-150, and NPE-200 platforms, this memory pool is created in DRAM, so it’s used
primarily to allocate private particle pools for slower speed interfaces. The size of I/O memory is
dependent on the total amount of DRAM memory available on the NPE. For example, on an NPE-150, the
following set of conditions determine the I/O memory:
 

• An NPE-150 with 16 MB total DRAM gets 4 MB allocated to I/O memory.
 • An NPE-150 with between 24 MB and 48 MB of DRAM gets 6 MB allocated to I/O memory.
 • An NPE-150 with more than 48 MB of DRAM gets 8 MB allocated to I/O memory.
 
Other NPEs use different formulas for determining how much DRAM should be used for I/O memory, too
many to list here.
 
On the NPE-300, the I/O memory pool is created in SDRAM bank 1 and is fixed at 32 MB. All private
interface particle pools are created in I/O memory on this NPE, regardless of the media speed.
 

PCI Memory

The PCI memory pool is used for interface receive and transmit rings. It also is used to allocate private
interface particle pools for high-speed interfaces in some cases. On NPE-175, NPE-225, and NPE-300
systems, this pool is created in SDRAM. On NPE-150 and NPE-200 systems, it is created entirely in
SRAM.
 
PCI memory is generally a small pool. As you can see from Example 5-2, the NPE-200 has only 4 MB of
PCI memory and the NPE-300 has approximately 8 MB, labeled I/O-2.
 
Packet Switching on the Cisco 7200 Series Routers

The Cisco 7200 supports process switching, fast switching, and Cisco Express Forwarding (CEF), but
doesn’t support any form of distributed switching. The main CPU in the NPE performs all the switching
tasks.
 

Packet Receive Stage

Figure 5-6 illustrates what occurs when a packet is received.
 

Figure 5-6. Receiving a Packet
 



 
Step 1. The packet is copied from the media into a series of particles linked to the interface’s

receive ring. The particles can reside in either I/O memory or PCI memory depending on the
platform and the interface’s media speed.

 Step 2. The interface raises a receive interrupt to the CPU.
 Step 3. The IOS acknowledges the interrupt and begins attempting to allocate particles to replace the

ones filled on the interface’s receive ring. IOS checks the interface’s private pool first, and
then checks the public normal pool if none are in the private pool. If not enough particles exist
to replenish the receive ring, the packet is dropped (the packet’s particles on the receive ring
are flushed) and the no buffer counter is incremented.

 IOS also throttles the interface in this case. When an interface is throttled on the 7200, all received
packets are ignored until the interface is unthrottled. IOS unthrottles the interface after the depleted
particle pool is replenished with free particles.

 Step 4. IOS links the packet’s particles in the receive ring together, and then links them to a particle
buffer header. It then replenishes the receive ring with the newly allocated particles by linking
them to the ring in place of the packet’s particles.

 

Packet Switching Stage

Now that the packet is in particles, IOS switches the packet. Figure 5-7 illustrates the process as
described in the sequential list following the figure.
 

Figure 5-7. Switching a Packet
 



 
Step 5. The switching code first checks the route cache (fast or CEF) to see if it can fast switch the

packet. If the packet can be switched during the interrupt, it skips to Step 6; otherwise, it
continues to prepare the packet for process switching.

 5.1 The packet is coalesced into a contiguous buffer (system buffer). If no free system buffer exists to
accept the packet, it’s dropped and the no buffer counter is incremented, as indicated in the
output of the show interface command:

                  Router#show interface
                 Ethernet2/1 is up, line protocol is up
                 ....
                   Output queue 0/40, 0 drops; input queue 0/75, 0 drops
                   5 minute input rate 5000 bits/sec, 11 packets/sec
                   5 minute output rate 0 bits/sec, 0 packets/sec
                      1903171 packets input, 114715570 by tes, 1 no buffer
                      Received 1901319 broadcasts, 0 runts, 0 giants, 1 throttles
                 ....

 If IOS can’t allocate a system buffer to coalesce a particle buffer, it also throttles the interface and
increments the throttles counter, as indicated in the preceding show interface command output
example. All input traffic is ignored while an interface is throttled. The interface remains throttled
until IOS has free system buffers available for the interface.

 5.2 When the packet is coalesced, it is queued for process switching and the process that handles this
type of packet is scheduled to run. The receive interrupt then is dismissed.

 5.3 Let’s assume this is an IP packet. When the IP Input process runs, it consults the routing table and
discovers the outbound interface. It consults the tables associated with the outbound interface and
locates the MAC header that needs to be placed on the packet (not shown in Figure 5-7).

 5.4 After the packet has been switched successfully, it’s copied into the output queue for the
outbound interface.

 5.5 From here, IOS proceeds to the transmit stage.
 Step 6. The IOS switching code (fast or CEF) rewrites the MAC header in the packet for its

destination (not shown in Figure 5-7). If the new MAC header is larger than the original
header, IOS allocates a new particle from the F/S pool and inserts it at the beginning of the
chain of particles to hold the larger header.

 

Packet Transmit Stage

Now you have a successfully switched packet, with its MAC header rewritten. Figure 5-8 picks up the
story.



 
Figure 5-8. Transmitting the Packet

 

 
The packet transmit stage operates differently depending on whether IOS is fast switching the packet (fast
or CEF) or process switching the packet. The following sections cover the packet transmit stage in the
fast and process switching environments for Cisco 7200 series routers.
 

Packet Transmit Stage: Fast Switching and CEF

The following list describes the packet transmit stage in a fast switching environment:
 

Step 7.   IOS first checks the interface’s output queue. If the output queue is not empty or the
interface’s transmit ring is full, IOS queues the packet on the output queue and dismisses the
receive interrupt. The packet eventually gets transmitted either when another process-
switched packet arrives or when the interface issues a transmit interrupt. If the output queue is
empty and the transmit ring has room, IOS continues to Step 8.

 Step 8.   IOS links each of the packet’s particles to the interface’s transmit ring and dismisses the
receive interrupt.

 Step 9.   The interface media controller polls its transmit ring and detects a new packet to be
transmitted.

 Step 10. The interface media controller copies the packet from its transmit ring to the media and
raises a transmit interrupt to the CPU.

 Step 11. The IOS acknowledges the transmit interrupt and frees all the transmitted packet’s particles
from the transmit ring, returning them to their originating particle pool.

 Step 12. If any packets are waiting on the interface’s output queue (presumably because the transmit
ring was full up until now), IOS removes the packets from the queue and links their particles
or contiguous buffers to the transmit ring for the media controller to see (not shown in Figure
5-8).

 Step 13. IOS dismisses the transmit interrupt.
 

Packet Transmit Stage: Process Switching



The following list describes the packet transmit stage in a process switching environment. Figure 5-8
does not illustrate these steps.
 

Step 14. IOS checks the size of the next packet on the output queue and compares it to the space left
on the interface’s transmit ring. If enough space exists on the transmit ring, IOS removes the
packet from the output queue and links its contiguous buffer (or particles) to the transmit ring.
Note, if multiple packets exist on the output queue, IOS attempts to drain the queue, putting all
the packets on the interface’s transmit ring.

 Step 15. The interface’s media controller polls its transmit ring and detects a new packet to be
transmitted.

 Step 16. The interface media controller copies the packet from its transmit ring to the media and
raises a transmit interrupt to the CPU.

 Step 17. The IOS acknowledges the transmit interrupt and frees the transmitted packet’s contiguous
buffer (or particles) from the transmit ring, returning them to their originating pool.

 
 
Summary

Particle buffering provides an efficient way to buffer packets of varying sizes with minimum memory
waste. Since its introduction in Cisco IOS Release 11.1, particle buffering has become the de-facto Cisco
IOS buffering scheme and now many new Cisco IOS-based platforms are being designed to use it.
 



Chapter 6. Cisco 7500 Routers
This chapter covers the following key topics:
 • Hardware Architecture of the Cisco 7500 Router
 • Packet Switching on Cisco 7500 Router
 • VIP Architecture
 • Troubleshooting Tips for the Cisco 7500 Router
 

The Cisco 7500 router platform was introduced in 1995 to address the ever-increasing demands of high
performance routing driven by the explosion of the Internet and mission-critical enterprise applications.
The 7500’s architecture was derived from the earlier Cisco Advanced Gateway Server+ (AGS+) and
Cisco 7000 architectures, but offers significant performance improvements over them. This chapter
covers the hardware architecture of the 7500 series routers, the implementation-specific details of IOS
switching on the 7500, and the architecture of Versatile Interface Processors (VIPs).
 
Hardware Architecture of the Cisco 7500 Router

Figure 6-1 provides a high-level diagram of the 7500 router architecture. As you can see from this
diagram, there are two components central to understanding the unique features of IOS on the 7500: the
data bus and Route Switch Processor (RSP).
 

Figure 6-1. The 7500 Architecture
 

 

The Data Bus



The data bus in the 7500 router, like that of its predecessors (the AGS+ and 7000), is based on the
proprietary Cbus architecture. The Cbus used in the 7500 is a faster version of the 7000’s Cbus called the
CyBus (the 7000’s Cbus is often called the CxBus). Like the original Cbus, the CyBus is a 32-bit bus with
32 data lines, 8 command lines, 24 address lines, and other lines used for control operations such as bus
access, acknowledging successful transactions, and error reporting.
 
Thirty-two lines of data might seem small in comparison to other modern buses, some of which use 128 or
more data lines, but this number was chosen so older CxBus interface processors would still work when
connected to a CyBus. Newer CyBus-enabled interface processors are capable of performing two
transactions (two 4-byte reads) during each bus clock cycle (60 ns/16.67 MHz), while CxBus interface
processors can perform only one transaction (one 4-byte read) in each clock cycle. As a result, the CyBus
offers 1.066 Gbps (64 bits * 16.67 MHz) of bandwidth, effectively doubling the bandwidth offered by the
533-Mbps CxBus (32 bits * 16.67 MHz).
 

Note

When a combination of CyBus- and CxBus-capable interface processors are present on the CyBus,
CyBus-capable interface processors can use the full 1.066-Gbps bandwidth. The CxBus-capable interface
processors are still restricted to 533 Mbps.
 

 

There are four different router models within the 7500 family, as follows:
 

• 7505—Single CyBus and five slots (one RSP slot)
 • 7507—Dual CyBus and seven slots (two RSP slots)
 • 7513—Dual CyBus and 13 slots (two RSP slots)
 • 7576—Two independent 7500 routers in the same chassis, each with dual CyBusses
 
A 7500’s model number can be determined by executing show environment all on the router’s console.
Example 6-1 illustrates the output from a 7505 and 7507 router.
 

Example 6-1. show environment all Command Output on 7505 and 7507 Routers
 

7505#show environment all
Arbiter type 1, backplane type 7505 (id 1)
....
7507#show environment all
Arbiter type 1, backplane type 7507 (id 4)
....

 

Route Switch Processor

The Route Switch Processor, more commonly called the RSP, performs centralized routing and switching
functions (what a surprise!). The RSP is often considered the heart of a 7500 series router because it
makes switching decisions, runs routing protocols, and performs maintenance tasks.
 



The RSP is essentially equivalent to a combined Route Processor (RP) and Switch Processor (SP) from
the Cisco 7000 router. Combining the RP and SP function on a single board eliminates the relatively slow
Multibus (155 Mbps) needed on the 7000 and AGS+ to connect the RP and SP systems together. This is
one of the reasons why an RSP outperforms an RP/SP so dramatically.
 
Table 6-1 shows the four different RSP types supported by Cisco 7500s.
 

Table 6-1. Cisco 7500 Router RSP Types
 

 
The type of RSP installed in a 7500 can be determined using show version, as demonstrated in Example
6-2.
 

Example 6-2. Determining the RSP Type Used on a 7500 Router
 

router#show version
cisco RSP2 (R4700) processor with 32768K/2072K by tes of memory.
R4700 CPU at 100Mhz, Implementation 33, Rev 1.0
....

 
Figure 6-2 illustrates a high level overview of the RSP.
 

Figure 6-2. A Route Switch Processor
 

 
Three of these components play a major role in how IOS—in particular, how IOS switching—operates on
the 7500 router.



 
• CPU

 • Fast packet memory (designated by MEMD)
 • Main memory (designated by DRAM)
 
The following sections describe these components in more detail.
 

CPU

The RSP’s CPU is the main processor on the 7500 router; it’s responsible for running IOS and switching
packets. Unlike the 7000 and AGS+, there’s no separate packet switching microcode (SP microcode or
Cbus controller microcode); with the exception of distributed switching, all switching decisions on the
7500 are performed in IOS running on the RSP CPU. RSPs use MIPS Reduced Instruction Set Computer
(RISC) processors; the clock rate, the cache size, and the type of cache depend on the model.
 

Fast Packet Memory

RSP1s, RSP2s, and RSP4s have a fixed 2 MB bank of SRAM reserved for packet buffers; the RSP8 has
8MB of SDRAM reserved for packet buffers. This fast packet memory region is named MEMD just like
the similar region in the Cisco 7000 and AGS+. The 7500’s MEMD is connected to both the RSP CPU
and the interface processors (via the CyBus); both have direct access to it as a shared resource.
 
Although MEMD is carved into pools of buffers using an algorithm similar to the one used on the Cisco
7000, some changes in the hardware allowed improvements to be made. For example, the 7500 can carve
up to 3520 buffers, a vast improvement over the 7000’s limit of 470. A complete description of the
algorithm is beyond the scope of this book, but a simplified overview of the process follows:
 

Step 1. Interfaces on the router are classified into various groups based on MTU size. The range of
MTU sizes accepted in each group is initially set to a variance of 256 bytes. If there are more
MTU sizes than can be accommodated by four groups, the variance is doubled to 512 bytes. If
there are still more than four groups, the variance is doubled again to 1024, and so on until at
most four groups are defined.

 Step 2. Each of the buffer pools from Step 1 gets 20 percent (360 KB) of MEMD, the remaining
MEMD is then divided among the pools based on the aggregate bandwidth of all interfaces
within a pool.

 
To illustrate the process, assume there are five interfaces on a router with MTUs of:
 

• 512 bytes
 • 1024 bytes
 • 1500 bytes
 • 4096 bytes
 • 16,000 bytes
 
IOS begins by defining five packet buffer pools:



 
• poolA—512 byte buffers, serves interfaces with MTU in the range 256 < MTU ≤ 512 bytes

 • poolB—1024 byte buffers, serves interfaces with MTU in the range 768 < MTU ≤ 1024 bytes
 • poolC—1500 byte buffers, serves interfaces with MTU in the range 1244 < MTU ≤ 1500 bytes
 • poolD—4096 byte buffers, serves interfaces with MTU in the range 3840 < MTU ≤ 4096 bytes
 • poolE—16,000 byte buffers, serves interfaces with MTU in the range 15,744 < MTU ≤ 16,000

bytes
 
Because there are more than four pools, the algorithm tries again using the 512 byte variance and comes
up with new pool definitions:
 

• poolA—512 byte buffers, serves interfaces with MTU in the range 0 < MTU ≤ 512 bytes
 • poolB—1500 byte buffers, serves interfaces with MTU in the range 988 < MTU ≤ 1500 bytes
 • poolC—4096 byte buffers, serves interfaces with MTU in the range 3584 < MTU ≤ 4096 bytes
 • poolD—16,000 byte buffers, serves interfaces with MTU in the range 15,488 < MTU ≤ 16,000

bytes
 
This time, all five interfaces can fit into four pools. Notice poolB now accommodates interfaces with the
1024- and 1500-byte MTUs.
 
It’s rare there would be more than four MTU sizes on a given router, so this process generally doesn’t
iterate further than the first step. If there are less than four MTU sizes configured across the interfaces,
IOS creates only the number of pools needed.
 
After the pool sizes have been decided, IOS divides MEMD into five parts, each representing 20 percent
of the total memory available. One part is placed in each of the four pools, and the remaining part (20
percent) is divided among the pools based on the types and speeds of interfaces associated with each
pool. There is some overhead associated with MEMD control structures—for example, some MEMD is
reserved for communication between the CPU and the interface processors—so the entire 2 MB of
MEMD is never available solely for packet buffers.
 
In the preceding example, we assumed the MEMD buffer sizes were equal to the MTU in each buffer pool
for simplicity, but in practice, MEMD buffers are created slightly larger than the largest MTU
accommodated by a pool. MEMD buffers must be large enough to hold the largest MTU and still have
room for an encapsulation header to be added on. Beyond this, MEMD buffers must be an even multiple
of 32 bytes so they align properly in the hardware memory cache for optimum performance. As a result,
MEMD buffers receive a memory allocation based on the formula size = mtu + e + n, where mtu equals
the largest MTU, e equals the largest encapsulation that can be added for the associated interface, and n is
the number of filler bytes (0–31) required to make the result an even multiple of 32.
 
 

MEMD Buffer Carving and Unused Interfaces
The MEMD buffer carving algorithm does not take into account the state of an interface (that is, whether it
is up or down) when deciding what size pools to create. Buffers are allocated to unused and
administratively down interfaces just as if they were up and running full traffic. The rationale is those



administratively down interfaces could still be turned on at a later time and require the use of MEMD
resources, so they have to be taken into account. Because the presence of unused interfaces can result in
thinner distribution of MEMD buffers overall, it’s best to remove any unused interface processors, if
possible, to make the maximum amount of MEMD available to the active interfaces.
 
MEMD resources are used most efficiently if all interfaces are configured for a common MTU size
(typically 1500 bytes). That way, the MEMD carving algorithm creates only one buffer pool shared
among all the interfaces.
 

The show controller cbus command output provides a snapshot of MEMD control structures and shows
how it has been carved—invaluable information for troubleshooting. Example 6-3 shows a partial output
from the command followed by descriptions of some interesting fields.
 

Example 6-3. show controller cbus Command Output
 

 router#show controller cbus
  MEMD at 40000000, 2097152 by tes (unused 2976, recarves 4, lost 0)
  RawQ 48000100, ReturnQ 48000108, EventQ 48000110
  BufhdrQ 48000128 (2939 items), LovltrQ 48000140 (11 items, 2016 by tes)
  IpcbufQ 48000150 (16 items, 4096 by tes)
  IpcbufQ_classic 48000148 (8 items, 4096 by tes)
  3570 buffer headers (48002000 - 4800FF10)
  pool0: 9 buffers, 256 by tes, queue 48000130
  pool1: 278 buffers, 1536 by tes, queue 48000138
  pool2: 305 buffers, 4544 by tes, queue 48000158
  pool3: 4 buffers, 4576 by tes, queue 48000160
  slot1: EIP, hw 1.5, sw 20.06, ccb 5800FF30, cmdq 48000088, vps 4096
  software loaded from sy stem
   Ethernet1/0, addr 00e0.8f6d.a820 (bia 00e0.8f6d.a820)
     gfreeq 48000138, lfreeq 48000168 (1536 by tes), throttled 015
     rxlo 4, rxhi 101, rxcurr 0, maxrxcurr 1
     txq 48000170, txacc 48000082 (value 49), txlimit 50

 
• MEMD at 40000000, 2097152 bytes (unused 2976, recarves 4, lost 0)—This line shows

MEMD begins at address 0x40000000 in the CPU’s memory and is 2 MB. The unused field
reports the number of unused bytes—this is usually small (less than the largest MTU) and is nothing
to worry about. The recarves field indicates the number of times the IOS MEMD carving algorithm
has run. Several situations can cause a MEMD recarve, including the insertion or removal of a line
card, changing the MTU on an interface, or a microcode reload. This field is set to 1 when the
initial MEMD carve is run during IOS initialization.

 • RawQ 48000100, ReturnQ 48000108, EventQ 48000110
BufhdrQ 48000128 (2939 items), LovltrQ 48000140 (11 items, 2016 bytes)
IpcbufQ 8000150 (16 items, 4096 bytes)
IpcbufQ_classic 48000148 (8 items, 4096 bytes)—These lines show the memory addresses of
various internal MEMD queue data structures. These data structures represent lists of MEMD
buffers (actually, buffer headers, which are described in the following bullet), some of which are
used in processing packets. Of particular interest is the one called RawQ. The RawQ, as described
later in the section on packet switching, is used to queue all packets received by interface
processors to the CPU on the RSP.

 • 3570 buffer headers (48002000 - 4800FF10)—This line shows the total number of addressable
MEMD buffer headers. A buffer header is a control structure containing data about a MEMD
buffer and a pointer to the actual location of the buffer (see Figure 6-3). Every MEMD buffer has
its own unique buffer header.

 
Figure 6-3. Buffer Headers



 

 
These buffer headers are a lot like labels on a soup can; they provide a quick snapshot of what’s
inside without having to open the can. The headers provide a convenient way for IOS to pass around
descriptive information about MEMD packet buffers without having to send the buffers themselves.
On the RSP there can be a total of 3570 buffer headers.

 • pool0: 9 buffers, 256 bytes, queue 48000130
pool1: 278 buffers, 1536 bytes, queue 48000138
pool2: 305 buffers, 4544 bytes, queue 48000158
pool3: 4 buffers, 4576 bytes, queue 48000160—These lines show how the available 2 MB of
MEMD has been carved. The first buffer pool (pool0) and the last pool (pool3 in this example) are
reserved for interprocess communication between the interface processors and the RSP CPU, while
the other two pools, pool1 and pool2, are carved for packet buffers.

 Packets are stored in MEMD buffers based on the interface they are received on, not the size of the
packet. For example, if a 64-byte packet is received on an interface with a 1500-byte MTU (1536-
byte MEMD buffer size), it still is stored in a 1536-byte buffer—even if another pool exists with
smaller buffers.

 If a packet arrives on an interface and there no available MEMD buffers in the interface’s pool, the
packet is dropped and the interface’s ignored counter is incremented. This situation occurs even if
there are buffers available in other pools. Setting all the interface MTUs to the same size results in
all MEMD buffers being placed in one pool, which reduces the likelihood of a packet being dropped
because the interface pool is empty.

 • slot1: EIP, hw 1.5, sw 20.06, ccb 5800FF30, cmdq 48000088, vps 4096software loaded from
system—This shows data about the interface processor in slot 1; each slot populated with an
interface processor will have similar information displayed. An Ethernet interface processor (EIP)
is in slot 1, its hardware version (hw) is 1.5, and the software version (sw) is 20.06. The ccb and
cmdq are data structures used for communicating with the RSP.

 • Ethernet1/0, addr 00e0.8f6d.a820 (bia 00e0.8f6d.a820)
gfreeq 48000138, lfreeq 48000168 (1536 bytes), throttled 015
rxlo 4, rxhi 101, rxcurr 0, maxrxcurr 1
txq 48000170, txacc 48000082 (value 49), txlimit 50—These lines provide further information
about each interface, including pointers to the locations of their various MEMD data structures:

 — gfreeq is a pointer to the global free queue. The global free queue is a list of all the free MEMD
buffers in a particular pool. All interfaces sharing the same MEMD buffer pool point to the same
global free queue.



 — lfreeq is a pointer to the interface’s private local free queue. In addition to the global list of free
MEMD buffers in each pool, individual interfaces can keep a local “stash” of free buffers
obtained from the global pool. While all free buffers initially come from the global free queue,
once an interface has used a buffer, it can keep the buffer for a short period of time. This helps
prevent ignored packets when there are other busy interfaces competing for buffers in the global
free pool. Unused free buffers on the local free queue are periodically returned to the global free
queue for use by other interfaces.

 — rxhi shows the maximum number of MEMD buffers a particular interface can hold at any time.
This prevents one interface from holding all the free buffers in the global pool and starving other
interfaces.

 — rxcurr represents the number of buffers currently held by this interface (this counter may
constantly be non-zero for a very busy interface).

 — maxrxcurr represents the maximum number of buffers this interface has ever held since the last
time MEMD was recarved—that is, it’s a “high water” mark. This number should never be higher
than the rxhi value.

 — rxlo is always 4. This field indicates the smallest number of buffers this interface will hold in its
local free queue when idle (assuming there was ever traffic on this interface).

 — txq is a pointer to a list of buffers containing packets waiting to be transmitted out this interface.
The list is called the transmit queue and this field is known as the transmit queue pointer.

 — txlimit is the maximum number of buffers allowed on the interface’s transmit queue at any time.
The value in parentheses preceding this field shows the remaining number of buffers allowed on
the transmit queue. In Example 6-3, the value in the parentheses is 49 and the txlimit is 50. This
means that one packet is currently enqueued on the interface’s transmit queue. A value of zero
within the parentheses indicates no more packets can be placed on the transmit queue until some
are removed.

 

Main Memory

Main memory on an RSP consists of up to 128 MB (256 MB on RSP4s and RSP8s) of upgradable
DRAM. In general, RSP main memory contains the IOS code plus all the data structures IOS uses at
runtime. Example 6-4 displays the output from show memory summary on a Cisco 7500 router.
 

Example 6-4. show memory summary Command Output for 7500 Router
 

router#show memory summary
               Head   Total(b)    Used(b)    Free(b)  Lowest(b) Largest(b)
Processor  60AD9EE0   55730464    9405352   46325112   45891060   46251636
     Fast  60AB9EE0     131072      82168      48904      48904      48860
....

 
From this example, you can see IOS divides RSP main memory into two memory pools: processor and
fast. The fast memory pool is used to store interface data structures called interface descriptor blocks,
while the processor pool is used to store instructions, data, control structures, packet forwarding tables,
system packet buffers, and the heap. Although it might appear limited, the small amount of memory in the
fast memory pool is not a constraining factor; if the number of interface descriptor blocks exceeds the



available fast pool, IOS simply begins using memory from the processor memory pool.
 
Processor memory on the 7500 platform also contains the system buffer pools, which are described in
Chapter 1, “Fundamental IOS Software Architecture.”
 
Packet Switching on the Cisco 7500 Router

IOS on the Cisco 7500 provides the most varied range of switching methods of all the platforms,
including:
 

• Process switching
 • Fast switching
 • Optimum switching
 • Cisco Express Forwarding (CEF)
 • Distributed fast switching
 • Distributed CEF (dCEF)
 • NetFlow switching
 
Distributed Fast and Distributed CEF switching are made possible by the VIP interface processor, which
is discussed later in this chapter. NetFlow switching is covered in Appendix A.
 
The following sections describe RSP-based switching. The description is divided into the three stages:
receiving the packet, switching the packet, and transmitting the packet.
 

RSP Switching: Receiving the Packet

Figure 6-4 illustrates the steps of the RSP based packet receive stage; each step is described in the
numbered sequence that follows.
 

Figure 6-4. RSP Switching: Receiving the Packet
 



 
Step 1. An interface media controller detects an incoming packet and begins receiving the packet

data into the interface processor’s internal RAM. Microcode running on the interface
processor (for example, an EIP) assembles the data into a contiguous packet in internal RAM.

 Step 2. The interface processor microcode attempts to find a MEMD packet buffer for the incoming
packet. First, the interface tries to obtain a MEMD buffer from its local free queue (lfreeQ). If
there are no free buffers in the local free queue, the microcode attempts to obtain a MEMD
buffer from the interface’s assigned global free queue (gfreeQ). There are three possible
outcomes:

 2.1 There might be no free MEMD buffers in the global pool, in which case the packet is dropped
and the interface’s ignore counter is incremented.

 2.2 Free buffers are available in the global pool, but the interface can’t obtain any because it’s
already holding the maximum buffers allowed by its rxhi value (that is, rxcurr = rxhi). Again, in
this case, the packet is dropped and the interface’s ignore counter is incremented.

 2.3 The microcode successfully obtains a free buffer from the global free queue.
 Step 3. After a free MEMD packet buffer is obtained, the microcode copies the packet data from its

internal RAM across the CyBus to the MEMD buffer.
 Step 4. The interface processor then enqueues the MEMD buffer header onto the Raw Queue

(RawQ) for processing by the RSP.
 



Step 5. Special CyBus hardware detects a buffer has been placed in the RawQ and raises a network
interrupt to the RSP CPU.

 

RSP Switching: Switching the Packet

Figure 6-5 illustrates packet switching on the RSP. The numbered list following describes each step.
 

Figure 6-5. RSP Switching: Switching the Packet
 

 
Step 6. The RSP CPU acknowledges the network interrupt. IOS begins processing the packet by

removing the MEMD buffer header from the RawQ, locating the MEMD packet buffer, and
inspecting the buffer’s contents. Note the remainder of these steps assume IOS is processing
only one packet during a network interrupt. In practice, IOS continues to process packets
during an interrupt as long as there are buffer headers waiting on the RawQ. IOS now decides
how the packet should be switched.

 6.1 If the contents are an IP packet and the inbound interface is configured for CEF switching, go to
CEF switching.

 6.2 If the contents are an IP packet and the inbound interface is configured for optimum switching (on
by default on most interfaces), then go to optimum switching. If the input interface is not
configured for optimum switching, then go to fast switching.



 6.3 If the contents are an IP packet and the inbound interface is configured for NetFlow switching,
then go to NetFlow switching.

 6.4 If the contents are not an IP packet, then go to fast switching by default.
 Step 7. CEF switching. While still processing the network interrupt, the CPU looks through the CEF

cache for the outbound interface and next hop.
 7.1 There is a valid entry in the CEF table for the destination. The packet is re-encapsulated in the

same MEMD buffer, and processing continues in the transmit stage.
 7.2 The packet is destined to the router itself or is a control packet, such as a routing update. In this

case, the packet is prepared for process switching (see “Process Switching” in Step 10).
 7.3 There is no matching CEF entry. In this case, the packet is dropped, the CEF drop counter is

incremented, the CPU completes its interrupt processing, and the network interrupt is dismissed
(this step is not illustrated in Figure 6-5).

 7.4 The CEF lookup leads to a punt adjacency. The packet is passed to fast switching. This situation
occurs, for example, if the outbound interface encapsulation is not supported by CEF.

 Step 8. Optimum switching. While still processing the network interrupt, the CPU looks through the
optimum cache to determine which interface and next hop information to use in switching the
packet.

 8.1 If the forwarding information is found in the optimum cache, the packet is re-encapsulated in the
same MEMD buffer and processing continues in the transmit stage.

 8.2 If there is no entry in the optimum cache, the packet is passed to fast switching.
 Step 9. Fast switching. While still processing the network interrupt, the CPU does a lookup of the

destination IP address in the fast cache.
 9.1 If the cache lookup is successful, the packet is re-encapsulated in the same MEMD buffer and

processing continues in the transmit stage.
 9.2 If the cache lookup is not successful or the packet is destined for the router itself, the packet is

prepared for process switching (see Step 10).
 Step 10. Process switching.
 10.1 While still processing the network interrupt, the CPU looks for a free system buffer in which to

copy the packet from the MEMD buffer. Process switched method packets must be copied into a
system buffer in main memory because MEMD packet buffers are reserved for interrupt level
packet processing only (to prevent MEMD buffer starvation).

 10.1.1 If IOS fails to get a system buffer, the input drop and the no buffer interface counters are
incremented and the packet is dropped. The CPU finishes processing the interrupt and it’s
dismissed.

 10.1.2 If a system buffer is available but the interface’s input hold queue count is at its maximum,
the interface is throttled, the input drop counter is incremented, and the packet is dropped.
IOS finishes processing the interrupt and dismisses it. By default, interfaces are allowed to
have 75 packets in input hold queues waiting to be processed.

 10.1.3 If the CPU succeeds in obtaining a system buffer, the packet is copied from MEMD to the



system buffer and the MEMD buffer is returned to the local free queue of the interface. The
input hold queue count is incremented.

 10.2 The packet (now contained in a system buffer) is enqueued to a switching process based on its
type. The CPU finishes processing the interrupt and dismisses it.

 10.3 The packet is eventually switched by a background process; see Chapter 2, “Packet Switching
Architecture,” for more details.

 10.4 After the packet has been switched, it’s placed in the outbound interface’s output hold queue. If
the output hold queue is full (the default maximum is 40 packets), the packet is dropped and the
outbound interface’s output drop counter is incremented. If the packet is dropped, the inbound
interface’s input hold queue count will also be decremented at this point.

 10.5 IOS attempts to obtain a MEMD packet buffer so the packet can be transmitted by the interface
processor. IOS attempts to obtain the MEMD buffer from the outbound interface’s global free list.
If there are no available MEMD buffers, or the outbound interface’s transmit queue is full, IOS
leaves the packet on the output hold queue (in a system buffer) and tries again later to output the
packet.

 10.6 IOS copies the packet from the system buffer into the MEMD packet buffer. The system buffer is
removed from the output hold queue, freed, and returned to the system buffer pool. The input hold
queue count for the inbound interface is also decremented at this point. IOS then moves to the
packet transmit stage.

 

RSP Switching: Transmitting the Packet

Figure 6-6 illustrates the steps of the packet transmit stage for packet switching. The numbered sequence
that follows describes each step.
 

Figure 6-6. RSP Switching: Transmitting the Packet
 



 
Step 11. IOS attempts to place the MEMD buffer header onto the transmit queue of the outbound

interface.
 11.1 If the outbound interface’s transmit queue is full and the interface is not configured for backing

store, the packet is dropped and the output drop counter is incremented.
 11.2 If the outbound interface’s transmit queue is full and the interface is configured for backing

store, the packet is copied from the MEMD buffer to a system buffer and the system buffer is
placed on the interface’s output hold queue. The output buffer’s swapped out counter is
incremented. Note that if the outbound interface is configured for any type of fancy queueing (such
as weighted fair queueing), backing store is enabled by default and cannot be disabled.

 11.3 If the outbound interface’s transmit queue is not full, the MEMD buffer header is placed on the
queue and the value of the transmit accumulator (that is, the number of additional buffer headers
that can be added to the queue) is decremented.

 11.4 If IOS is still processing within a network interrupt, the CPU completes the interrupt processing
and it is dismissed.

 Step 12. The microcode on the outbound interface processor detects the buffer header in the transmit
queue and copies the contents of the MEMD packet buffer across the CyBus into its internal
RAM.

 Step 13. The MEMD buffer header and buffer are freed and returned to the inbound interface’s local
free queue (lfreeq).



 Step 14. The outbound interface media controller transmits the packet from the interface processor’s
internal RAM out to the media.

 

Note

Backing store is designed to prevent the router from dropping packets during bursts. Backing store causes
packets that have already been switched to be copied to the outbound interface’s output queue when the
txQ for the interface is full—an extremely expensive operation. This feature should never be enabled on
any interface with a bandwidth greater than 2 MBps because it can cause extreme stress on the router’s
CPU.
 

 
VIP Architecture

Cisco introduced the Versatile Interface Processor (VIP) to provide a scalable distributed architecture
on top of an already proven platform. The VIP is based on a single motherboard and multiple port
adapters that can have mixed media types (hence the name versatile).
 

VIP Components

VIPs are essentially routers mounted on Cisco 7500 interface processor cards. Each VIP has its own
processor, packet memory, and main memory, and each runs its own copy of IOS. Figure 6-7 shows a high
level architecture of the VIP.
 

Figure 6-7. VIP Architecture
 



 

CyBus Interface

The VIP is a fully CyBus-capable interface processor, meaning it can perform two 4-byte reads in each
bus clock cycle and exploit the full 1.066 Gbps bandwidth of the CyBus.
 

CPU

The local processor (a MIPS R4700, R5000, or R7000 CPU) on the VIP runs a special version of the IOS
operating system. It’s capable of performing packet switching, offloading this task from the main CPU on
the RSP. The VIP IOS also supports local, advanced Layer 3 services, such as packet filtering, weighted
fair queuing (WFQ), and weighted random early drop (WRED). This local packet switching and filtering
capability forms the basis of the 7500’s distributed switching architecture.
 

Main Memory

VIPs use upgradable dynamic RAM (DRAM) for their main memory regions. Like the main memory on
the RSP, VIP main memory contains the IOS instructions, program data, switching control structures, and
heap.
 



Packet Memory

VIPs have an upgradable bank of SRAM used for storing packet buffers and certain data structures used
by the interfaces’ media controllers. This bank of memory, called packet memory, is designed to provide
high speed access to packet data, particularly for high speed interfaces.
 
VIP IOS divides the packet memory into pools of packet buffers used by the interfaces. Like IOS on the
Cisco 7200, VIP IOS uses the particle buffer approach to provide packet buffers for interfaces.
 
VIPs have a fixed particle size, typically 256 bytes or 512 bytes, which applies to all interfaces on the
board. The particular particle size used depends on the type of port adapters installed on the VIP.
Executing the IOS command show controller vip slot slot tech-support displays the particle size.
 

Port Adapter

VIPs use the same port adapters as the Cisco 7200. Each VIP can accommodate up to two port adapters
on its board, accepting either two single-wide port adapters or one double-wide port adapter. Note that
VIP IOS does not support insertion or removal of the port adapters while the VIP is operating.
 

PCI Bus

VIPs use the CyBus to connect to the RSP, but within the VIP card PCI buses are used to connect the CPU
to the port adapters, just like the 7200. A VIP has two PCI busses, bridged together, each 32 bits wide and
operating at 25 Mhz, providing a theoretical bandwidth of 800 Mbps (25 MHz * 32 bits/cycle).
 

VIP Models

There are three VIP models available as of this writing: the VIP2-15, the VIP2-40, and the VIP2-50. The
particular VIP model can be determined from the output of the show diag command. The VIP2-40 has an
R4700 MIPS CPU, 2 MB of SRAM, and 32 MB of DRAM. The memory options on a VIP2-40 are static
—they cannot be upgraded. A VIP2-50 has a R5000 MIPS CPU and can have up to 8 MB SRAM and 64
MB of DRAM.
 
Entering the show diag command on a VIP2-40 displays the output that appears in Example 6-5.
 

Example 6-5. show diag Command Output for the VIP2-40 Model
 

Router>show diag
Slot 2:
        Phy sical slot 2, ~physical slot 0xD, logical slot 2, CBus 0
        Microcode Status 0x4
        Master Enable, LED, WCS Loaded
        Board is analyzed
        Pending I/O Status: None
        EEPROM format version 1
        VIP2 controller, HW rev 2.04, board revision D0            
        Serial number: 06745223  Part number: 73-1684-03
        Test history : 0x0E        RMA number: 16-96-31
        Flags: cisco 7000 board; 7500 compatible

        EEPROM contents (hex):
          0x20: 01 15 02 04 00 66 EC 87 49 06 94 03 0E 10 60 1F
          0x30: 68 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00



        Slot database information:
        Flags: 0x4      Insertion time: 0x32B7F4 (3d04h ago)

        Controller Memory  Size: 32 MBy tes DRAM, 2048 KBy tes SRAM   

 
Entering the show diag command on a VIP2-50 displays output similar to Example 6-6.
 

Example 6-6. show diag Command Output for the VIP2-50 Model
 

Router>show diag
Slot 1:
        Phy sical slot 1, ~phy sical slot 0xE, logical slot 1, CBus 0
        Microcode Status 0x4
        Master Enable, LED, WCS Loaded
        Board is analy zed
        Pending I/O Status: None
        EEPROM format version 1
        VIP2 R5K controller, HW rev 2.02, board revision A0
        Serial number: 12345678  Part number: 73-2167-04
        Test history : 0x00        RMA number: 00-00-00
        Flags: cisco 7000 board; 7500 compatible

        EEPROM contents (hex):
          0x20: 01 1E 02 02 00 93 63 AC 49 08 77 04 00 00 00 00
          0x30: 50 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00

        Slot database information:
        Flags: 0x4      Insertion time: 0x14D4 (9w3d ago)

        Controller Memory  Size: 32 MBy tes DRAM, 4096 KBy tes SRAM   

 

VIP Packet Operations: Distributed Switching

At their most basic level, VIPs perform the same functions other, less sophisticated, microcoded interface
processors do; they assemble received packets from interface media for the RSP and transmit packets
from the RSP out media interfaces. However, as mentioned previously, VIPs can also do something their
microcoded predecessors cannot do. Because VIPs run IOS, they have built-in logic that allows them to
make packet switching decisions—a very powerful feature. VIPs also contain hardware allowing them to
use the CyBus to send data to other interface processors without involving the RSP CPU. These two
capabilities make it possible for VIPs to operate like independent packet switching engines in the 7500
chassis and provide a means to distribute the packet switching work to multiple CPU’s in the router. This
concept is the basis of the IOS distributed switching feature.
 
To understand how distributed switching works, the following sections examine the three packet
operation stages within the context of the VIP IOS—receiving the packet, switching the packet, and
transmitting the packet.
 

Distributed Switching: Receiving the Packet

Figure 6-8 illustrates the steps of the packet receive and packet switching stages for distributed switching.
Each step is described in the numbered list that follows.
 

Figure 6-8. Distributed Switching: Receiving the Packet
 



 
Step 1. An interface’s media controller (on a port adapter) detects an incoming packet on the media.

The media controller receives the packet into one or more free particle buffers held within its
local receive area in packet memory (called a receive ring).

 Step 2. The media controller raises a network interrupt to the VIP CPU. The VIP CPU acknowledges
the interrupt and VIP IOS begins interrupt processing by calling on packet receive processing
for the interrupting interface.

 Step 3. Packet receive processing logic attempts to take the packet’s particle buffers from the
receive ring and replace them with empty particle buffers acquired from the global particle
buffer pool (this step is not shown in Figure 6-8).

 3.1 If there aren’t sufficient empty particle buffers in the global pool to replace the ones in the
receive ring, the packet is dropped and the interface’s ignore counter is incremented. The
packet’s particle buffers are left in the receive ring and are marked as free to be reused by a later
packet.

 3.2 If the receive processing logic successfully replenishes the receive ring, it continues by
inspecting the particle buffer’s contents to determine the packet type.

 3.2.1 If the received packet is an IP packet, then go to distributed switching (distributed optimum
or distributed CEF).

 3.2.2 If the packet is not an IP packet, then distributed switching is not supported. The packet is
passed to the RSP in MEMD via the CyBus using the same procedure as the microcoded



interface processors. VIP IOS then finishes the interrupt processing and the VIP CPU
dismisses the network interrupt.

 

Distributed Switching: Switching the Packet

Figure 6-8 also shows the steps in the packet switching stage for distributed switching. All distributed
switching decisions are made by the VIP CPU. The following steps describe the distributed packet
switching stage.
 

Step 4. Distributed Optimum Switching. A full copy of the optimum switching cache from the RSP is
kept in the VIP’s main memory so switching decisions can be made by the VIP CPU. The RSP
cache and the distributed cache are kept in sync by messages between the two CPUs. While
still processing the network interrupt, VIP IOS looks for forwarding information in the local
optimum cache.

 4.1 If the information needed to switch the packet is found in the local optimum cache, the packet is
encapsulated with the new MAC information and the packet is passed to the packet transmit
stage.

 4.2 If the information needed to switch the packet is not found in the local optimum cache, the packet
is passed to the RSP in MEMD via the CyBus using the same procedure as the microcoded
interface processors. VIP IOS then finishes the interrupt processing and the VIP CPU dismisses
the network interrupt.

 Step 5. Distributed CEF switching. A copy of the CEF table and the adjacency table from the RSP
are kept in the VIP’s local main memory so the VIP CPU can CEF switch incoming packets.
Messages passed between the RSP CPU and the VIP CPU keep the master tables on the RSP
and the slave tables on the VIP in sync. While still processing the network interrupt, the VIP
IOS searches the CEF table for the information needed to switch the packet.

 5.1 If the information needed to switch the packet is found in the local CEF table, the packet is re-
encapsulated and is passed to the packet transmit stage.

 5.2 If searching the local CEF table fails to produce the information needed to switch the packet, the
packet is dropped. VIP IOS finishes interrupt processing and the VIP CPU dismisses the network
interrupt.

 5.3 If the results of the CEF search result in a punt or receive adjacency, the packet is passed to the
RSP in MEMD via the CyBus using the same procedure as the microcoded interface processors.
VIP IOS then finishes the interrupt processing and the VIP CPU dismisses the network interrupt.

 

Distributed Switching: Transmitting the Packet

Figure 6-9 illustrates the steps of the packet transmit stage for distributed switching. Each step is
described in the numbered list that follows.
 

Figure 6-9. Distributed Switching: Packet Transmit Stage
 



 
Step 6. If the packet is destined for an interface on the same VIP, it can be transmitted locally and

never needs to cross the CyBus.
 6.1 The software running on the VIP places the packet’s particle buffers in the local transmit area

(called the transmit ring) for the outbound interface. VIP IOS finishes interrupt processing and
the VIP CPU dismisses the network interrupt.

 6.2 The outbound interface’s media controller (on the port adapter) transmits the packet data from its
transmit ring onto the media.

 6.3 When the media controller completes transmitting the packet, it marks the packet’s particle
buffers as empty and notifies the VIP IOS (via another CPU interrupt) that the particles have been
freed and might be returned to the global particle pool.

 Step 7. If the packet is destined for an interface on some other interface processor, the VIP IOS
transfers the packet to the other interface processor via MEMD across the CyBus.

 7.1 VIP IOS attempts to obtain a free MEMD buffer, first from its local free queue and then from the
global free queue.

 7.2 If there are no MEMD buffers available, VIP IOS tries to hold the packet temporarily in packet
memory rather than drop it (see the section, “VIP Receive Side Buffering”). Similarly, if the
outbound interface’s MEMD transmit queue is full, VIP IOS also tries to hold the packet
temporarily in packet memory.



 7.3 If VIP IOS succeeds in obtaining a MEMD buffer, it copies the packet data from the particle
buffers into the MEMD buffer across the CyBus.

 7.4 The MEMD buffer header for the packet is then placed directly on the outbound interface’s
transmit queue. The RSP’s CPU is never interrupted during this process; it continues doing
background processes, handling process switched traffic, maintaining the routing table, and so on.

 7.5 VIP IOS finishes processing the interrupt and the VIP CPU dismisses the network interrupt.
 Step 8. The outbound interface can be on a legacy interface processor or on another VIP. In either

case, the outbound interface processor code detects a packet in the outbound transmit queue
and copies the contents of the MEMD packet buffer across the CyBus into its internal memory.

 Step 9. The outbound interface media controller transmits the packet from the interface processor’s
memory out to the media.

 

VIP Receive Side Buffering

Cisco 7500 interface processors, including the VIP, do not have the capability to directly access each
other’s internal memory. They only have access to their own internal memory and the RSP’s MEMD
memory. Because MEMD is the only common memory resource, every packet that passes from one
interface processor to another over the CyBus must pass through an RSP MEMD packet buffer. MEMD,
however, is a limited resource. So there is no guarantee a MEMD packet buffer will always be available
when a VIP wants to transfer a packet to another interface processor.
 
In cases where the VIP is distributed switching a packet and no MEMD buffer is available, VIP IOS has
the capability to buffer a received packet locally through a process called receive side buffering. Receive
side buffering helps to reduce packet drops on the VIP by utilizing the packet memory on the VIP to
temporarily hold packets that would otherwise be dropped due to lack of MEMD resources or a full
transmit queue. It is particularly useful in situations where bursts of packets are received on a fast VIP
interface and are destined for a slower interface on another interface processor.
 
With receive side buffering, VIP IOS creates an internal queue for every outbound interface requiring
packet buffering. The size of each queue is derived from the configured bandwidth of the associated
interface. At most, one second’s worth of packets can be held on each queue.
 
You can display receive side buffering statistics by the IOS show controller vip accumulator command,
as demonstrated in Example 6-7.
 

Example 6-7. show controller vip accumulator Command Output
 

Router#show controller vip 2 accumulator
Buffered RX packets by  accumulator:
 Forward queue 0 : 573 in, 0 drops (0 paks, 0 bufs)
1 FastEthernet1/0:
2  MEMD txacc 0x0082: 4500 in, 300 drops (0 paks, 0/24414/24414 bufs) 100000kbps
3  No MEMD acc: 4500 in, 300 limit drops, 0 no buffer
4  No MEMD buf: 0 in, 0 limit drops, 0 no buffer
ATM2/0/0:
 local txacc 0x1A02: 0 in, 0 drops (0 paks, 0/37968/37968 bufs) 155520kbps

 

The set of lines numbered 1 through 4 constitutes the set of receive side buffering statistics for a particular



outbound interface. These lines are repeated for each outbound interface.
 
In Example 6-7, line 2 indicates that a total of 4500 packets destined for FastEthernet1/0 were buffered in
packet memory and 300 packets were dropped. There are currently 0 packets in the receive side buffer
queue and a maximum of 24,414 packets will be buffered. This maximum number of buffers is the number
of buffers needed to buffer one second’s worth of traffic destined out the transmit interface. This can be
expressed by the formula:
 

Max buffers = (Transmit interface bandwidth in bps/8) / particle size
 
In this example, bandwidth is 100 MB and the particle size is 512 bytes.
 
Line 3 indicates that all the packets counted as buffered in line 2 (4500 total) were buffered due to a
transmit queue full condition (No MEMD acc). The 300 dropped packets occurred for the same reason.
Note that if you see a non-zero no buffer drops counter on this line, it means there was insufficient packet
memory resources to perform receive side buffering. This could indicate a shortage of packet memory
(SRAM) on the VIP. Line 4 indicates there were no packets buffered due to lack of available MEMD
packet buffers (No MEMD buf).
 
Troubleshooting Tips for the Cisco 7500 Router

This section provides information on how to troubleshoot common problems involving IOS on the Cisco
7500 platform. Some of these common scenarios include high CPU utilization, input drops, ignores, and
output drops.
 

High CPU Utilization

Example 6-8 shows a portion of the output from the IOS show process cpu command on a router that is
experiencing high CPU utilization.
 

Example 6-8. show process cpu Command Output Revealing High CPU Utilization
 

Router#show process cpu
CPU utilization for five seconds: 90%/80%; one minute: 60%; five minutes: 40% PID
Runtime(ms)  Invoked  uSecs    5Sec   1Min   5Min TTY Process
   1        1356   2991560      0   0.00%  0.00%  0.00%   0 BGP Router
   2      100804      7374  13670   0.00%  0.02%  0.00%   0 Check heaps
   3           0         1      0   0.00%  0.00%  0.00%   0 Pool Manager
   4           0         2      0   0.00%  0.00%  0.00%   0 Timers
   5        6044         41511000   0.00%  0.00%  0.00%   0 OIR Handler
   6           0         1      0   0.00%  0.00%  0.00%   0 IPC Zone Manager
   7           0         1      0   0.00%  0.00%  0.00%   0 IPC Realm Manager
   6        7700     36331    211      8%  0.00%  0.00%   0 IP Input

 
Example 6-8 shows that for the last 5 seconds, the average CPU utilization was 90 percent of the total
CPU capacity and 80 percent of the total CPU capacity (88.8 percent of the CPU busy time) was spent
processing interrupts. Furthermore, the rolling averages for 1 minute and 5 minutes are 60 percent
utilization and 40 percent utilization, respectively. Because the largest utilization percentage is
contributed by interrupt processing and the long-term utilization indicators are more moderate, it’s quite
possible that this router is just receiving large bursts of packets to switch.
 
It is also worth noting, however, that on 7500 routers and others that use the MIPS CPU’s, interrupt
processing CPU utilization can also run higher than normal due to an error called an alignment error.



Alignment errors occur when the program running on the CPU attempts to access a memory value at an
address that violates the memory alignment requirements of the CPU. On MIPS CPUs, 16-bit values must
begin at a memory address divisible by 2, 32-bit values must begin at a memory address divisible by 4,
and so on. If IOS attempts to access data at an address that violates these restrictions, the CPU generates
an exception (basically an error) and calls a special IOS function that retrieves the data in segments that
don’t violate the restrictions. This exception function adds many more instructions and more CPU time to
an otherwise simple operation of accessing a data item. For this reason, alignment errors can have a
significant negative impact on performance by consuming extra CPU cycles. All IOS alignment errors are
logged and can be inspected by issuing the IOS show align CLI command.
 
Consistently high CPU utilization by processes should be investigated to find out which process or
processes are consuming the CPU. From the show process cpu output, it’s easy to find out which
processes are the biggest CPU users. Process names are fairly intuitive. For example, the IP Input process
is responsible for processing all IP packets at process-level. If you see high CPU by IP Input, this likely
means many of the IP packets coming into the router are taking the process switched path. A useful
command to determine if the IP packets coming into the router are indeed being process switched is the
show interface stat command, as demonstrated in Example 6-9.
 

Example 6-9. show interface stat Command Output to Determine Packet Switching Path
 

Router#sh int stat
POS8/1/0
          Switching path    Pkts In   Chars In   Pkts Out  Chars Out
               Processor          2       4498      15586   23285531
             Route cache          0          0          0          0
       Distributed cache      60448   57737596      30772    1357152
                   Total      60450   57742094      46358   24642683

 
The following list highlights the columns in the output from Example 6-9 that you should monitor to
determine packet traffic on a given router interface:
 

• Pkts In—The number of packets that came in the interface and the switching path they took.
Example 6-9 shows that a total of 60,450 packets arrived into the interface POS8/1/0, two of those
packets went to process-level, 0 took the fast/optimum/CEF path, and 60,448 packets that came in
were distribute switched.

 • Chars In—The number of bytes that arrived into the interface. Chars In/Pkts In can give an estimate
of the average packet size of the packets that come into the interface.

 • Pkts Out—The number of packets transmitted on this interface and the switching path they took.
The packets transmitted out an interface might have arrived from many interfaces. Example 6-9
shows that a total of 15,586 packets that were transmitted out POS8/1/0 were process-switched
and 30,772 packets took the distribute switched path.

 
The majority of packets received on any interface should be switched by the fastest switching method
supported on the interface. Control packets (for example, routing updates or keepalives) and packets
destined to the router are accounted as process switched inbound. When interpreting the output of the
show interface stat command, remember packets received in an interface typically are transmitted out
another interface and packets transmitted out an interface came in on another interface. Therefore, look at
the show interface stat command for all interfaces to get an estimate of the overall traffic flow.
 
The following are some common reasons for high CPU (this list is by no means comprehensive):
 



• Configuration—Make sure all interfaces are configured for the fastest switching mode available.
 • Broadcast Storm—All broadcast packets are sent to the process level for switching, so a

broadcast storm can strain a router’s CPU. A broadcast storm can occur due to a layer 2 issue (for
example, Spanning Tree) or misconfigured hosts.

 • Denial of Service attack—This is a very broad category. The ping attack is a common one where
a malicious user can send a high stream of ping packets destined to the router. Make sure access
lists are configured to prevent this. Committed access rate (CAR) is a rate-limiting feature that can
also be used. Refer to the Cisco IOS documentation for more information on how to configure
CAR.

 • Routing loop—A routing loop can cause IP packets to terminate on the router because their TTL
expires while looping. A constantly increasing bad hop count counter in the output of show ip
traffic reflects this condition.

 

Input Drops

On the 75xx platform, the input drop counter in the show interface output is only incremented when
packets destined to the process switched path are dropped. Some input drops are to be expected.
However, the ratio of input drops to the total packets input is the important statistic. Although it is difficult
to say when to start worrying about input drops, degrading network performance is usually a sign that it’s
time to begin looking at the number of input drops.
 
The default input hold queue size is 75. However, increasing it to a higher number might not be the
solution. The root cause of why packets are going to process switching must be investigated. Some of the
same reasons listed for high CPU utilization could also be responsible for input drops. If the no buffer
counter in the show interface output is also incrementing along with input drops, it’s an indication of
buffer starvation—not enough buffers are available to accommodate the packets. The IOS show buffers
command can be a useful tool to determine which buffer pool is being exhausted.
 

Ignores

An increasing ignore counter in the show interface output is indicative of a MEMD buffer shortage.
Network traffic bursts can also contribute to ignores. Like input drops, the ratio of ignores to the total
packet input count is the important metric, not the number of ignores alone.
 
Packets received on a high-speed interface and transmitted on a slow interface can also contribute to
ignored packets. With this scenario, MEMD buffers from the input interface’s pool can be tied up for long
periods of time waiting on the transmit queue of the slow interface. This condition deprives other
interfaces of buffers that use the same pool. One possible solution is to configure all the interfaces on the
router for the same MTU size. With a common MTU size, there is one large MEMD buffer pool that all
interfaces can draw upon, potentially providing more buffers. Configuring VIP-based interfaces for
distributed switching, which allows receive side buffering, can also help alleviate ignores.
 



Output Drops

The output drop counter in the show interface output can be incremented for the following reasons:
 

• Process switching—A packet cannot be enqueued on the output hold queue because the hold queue
is full.

 • Fast switching—A packet cannot be enqueued on the interface’s transmit queue because the
transmit queue is full. The instantaneous value of an interface’s transmit queue can be seen in the
output of the show controller cbus command. A consistently low value indicates that the transmit
queue is congested.

 
Increasing the output hold-queue limit won’t help reduce output drops if the majority of packets are being
dropped by fast switching. Like other drop counters, some output drops are to be expected. The absolute
number of drops is not as important as the ratio of output drops to total packets output.
 
 
Summary

This chapter discusses the hardware architecture of the Cisco 7500 series routers. The 7500 router
architecture has a 1-Gbps data bus known as the CyBus. The central CPU on the RSP supports fast,
optimum, and process switching methods. The VIP architecture distributes the packet switching operations
to the VIP CPU scaling the 7500 architecture.
 



Chapter 7. The Cisco Gigabit Switch Router: 12000
This chapter covers the following key topics:
 • Hardware architecture of the Cisco 12000 series routers
 • Packet switching paths on the Cisco 12000 series routers
 

When businesses began seeing the value of the Internet in the early 1990s, an explosion in growth began
that eventually took its toll on the Internet’s backbone routers—mostly Cisco 7500s. The traffic explosion
was paralleled by an increasing demand for reliability, as people began using the World Wide Web and e-
mail as ways of doing business.
 
To meet these traffic and reliability demands, Cisco developed the Gigabit Switch Router (GSR)—the
Cisco 12000 series.
 
Hardware Architecture

The GSR is available in three configurations:
 

• 12008—8-slot chassis with a 40-Gbps switch fabric.
 • 12012—12-slot chassis with a 60-Gbps switch fabric.
 • 12016—16-slot chassis with a 80-Gbps switch fabric that can be upgraded to 320 Gbps.
 
Figure 7-1 shows a high level overview of the Cisco 12000.
 

Figure 7-1. Cisco 1200 Architecture
 

 
The following lists the most important components of the Cisco 12000 architecture:
 

• Switching Fabric
 • Maintenance Bus (MBUS)
 



• Route Processor
 • Line Cards
 

Switching Fabric

All the Cisco router platforms discussed in this book so far are based on a shared bus architecture. The
following items limit bus-based systems:
 

• Arbitration Overhead—Each time a Line Card (LC) wants to transmit onto a shared bus, it must
enter into an arbitration phase that determines when it can transmit.

 • Single Card Transmission—Only one LC can transmit onto the bus at any given time. No matter
how many cards are in the system, only one card can transmit, and only one can receive, at any
time.

 
The speed of a bus can be increased, within practical limits, by increasing the amount of data that can be
transmitted at once (the width of the bus) and by increasing the speed at which the bus operates.
 
Shared memory architectures can be much faster. As you increase the speed of a shared memory system,
you run into two scalability limits:
 

• Excessive overhead required to ensure no two processes write to the same shared memory location
at the same time

 • Physical limitations of memory speed
 
The Cisco 12000 eliminates both problems by using a crossbar switching fabric as its backplane. A
crossbar is essentially 2N busses (where N is the number of LCs connected to the switching fabric),
connected by N*N crosspoints. Figure 7-2 illustrates the basic concept. If one of the crosspoints is on, the
two LCs connected through that crosspoint are connected and can communicate with one another.
 

Figure 7-2. Crossbar Switching Fabric
 

 



Although this crossbar switching fabric allows multiple LCs to transmit and receive data simultaneously,
it’s still possible (in fact, probable) that two cards might want to transmit data to a single outbound card
at the same time. To resolve such conflicts, a scheduler is responsible for selecting which LCs transmit
and which LCs receive during any given fabric cycle.
 

Note

The Cisco 12000 scheduler algorithm is based on a design from Stanford University. You can find a
detailed description of switch fabric architectures in the paper, “Fast Switched Backplane for a Gigabit
Switched Router,” by Nick McKeown of Stanford University. You can find this paper on CCO at
www.cisco.com/warp/public/cc/cisco/mkt/core/12000/tech/fasts_wp.pdf.
 

 
Physically, the Cisco 12000’s switching fabric consists of up to five switch fabric cards. Two types of
switch fabric cards exist in the system: the Clock Scheduler card (CSC) and the Switch Fabric Card
(SFC). The CSC is a superset of the SFC.
 
The CSC and SFC both contain crossbar ASICs, which provide 1.25 Gb/s full duplex bandwidth per slot.
The CSC also contains a scheduler ASIC, which grants Line Cards access to the fabric, and a clock,
which provides a reference clock for all other cards in the system. Each system must have at least one
working CSC; if two are installed, the second CSC provides clock and scheduler redundancy.
 
The output of the command, show controller fia, displays the active CSC, as demonstrated in Example 7-
1.
 

Example 7-1. show controller fia Displays the Active CSC
 

Router#show controller fia
Fabric configuration: Full bandwidth nonredundant

Master Scheduler: Slot 17
....

 
Example 7-1 shows that the active CSC is in slot 17. The following section explains the meaning of fabric
configuration (full bandwidth as shown in Example 7-1). This example also shows that there is only one
CSC in the system because the fabric configuration is nonredundant.
 

Switch Fabric Bandwidth

The GSR switch fabric can run in two modes:
 

• Full bandwidth
 • Quarter bandwidth
 
To figure out the bandwidth provided by the switching fabric in any given configuration, you have to keep
in mind that each switching card provides 1.25-Gbps full-duplex bandwidth per slot. In full bandwidth
mode, there are five fabric cards—two CSCs and three SFCs. Recall that the second CSC is in standby
mode and provides clock and scheduler redundancy; therefore, only four of the switching cards are

http://www.cisco.com/warp/public/cc/cisco/mkt/core/12000/tech/fasts_wp.pdf


actually used to pass data across the fabric, so you would multiply 4 by 1.25 Gbps per switching card,
and then multiply this result by the number of Line Cards installed (the maximum number depends on the
platform).
 
Table 7-1 documents the calculations to determine the total switch fabric bandwidth supported on each
GSR configuration in full bandwidth mode.
 
Table 7-1. Determining Total Switch Fabric Bandwidth by GSR Configuration in Full Bandwidth Mode
 

 
Note that in Figure 7-3, each Line Card connects to each switching card. In this configuration, traffic
originating at a Line Card is segmented into equal size packets (64 bytes), divided into four 16-byte
slices, and transmitted in parallel across the four connections to the switch cards. The fifth, redundant
data path carries a CRC for the four slices to make possible error detection and some error recovery. If
one of the four connections fails, the redundant data path is activated automatically with little or no loss of
data. The unit of transfer across the switching fabric is always equal-size packets, also referred to as
Cisco cells. This is covered in more detail in a later section in this chapter.
 

Figure 7-3. Cisco 12000 Switching Fabric
 

 
A quarter bandwidth configuration supports 1.25-Gbps full-duplex bandwidth per slot. Table 7-2
documents the calculations to determine the total switching fabric bandwidth for each configuration in
quarter bandwidth mode.
 

Table 7-2. Determining Total Switch Fabric Bandwidth by GSR Configuration in Quarter Bandwidth
Mode

 



 
In the quarter bandwidth fabric configuration, traffic originating at a Line Card is segmented into equal-
size cells, and then is sent on the only available connection to the active CSC.
 

Note

It’s strongly recommended that you configure Cisco 12000s in full-bandwidth mode with redundancy. In
fact, if the system has a high speed interface installed, such as a Gigabyte Ethernet, Fast Ethernet, DPT,
OC-48/STM-16, or 4xOC12, full bandwidth mode is mandatory. Also note that the switching fabric
offers bandwidth in only two modes—quarter or full—there is no half or three-quarter fabric bandwidth
mode. Also, Cisco does not sell the quarter bandwidth mode.
 

 
The output of show controller fia (shown earlier in Example 7-1) displays the switch fabric mode in the
system. In this example, the switch fabric is non-redundant, which means there is only one CSC in the
system.
 

Note

The 12016 can be upgraded to an enhanced switch fabric based on a 64 × 64 crossbar that can provide up
to 5-Gbps full-duplex bandwidth per switch fabric card per slot. The enhanced switch fabric in a full
bandwidth mode provides 20 Gbps (5 Gbps * 4) bandwidth per slot, which is needed to support an OC-
192 Line Card. The enhanced switch fabric is not available as of this writing.
 

 

Head of Line Blocking

Head of Line Blocking (HoLB) can severely reduce the throughput of a crossbar switch. Figure 7-4
illustrates HoLB.
 

Figure 7-4. Head of Line Blocking
 

 



Figure 7-4 shows four different Line Cards connected via a crossbar switch; the packets are labeled
according to the LC for which they are destined. The one packet destined to LC 3 cannot be transmitted
until the three packets destined to LC 4 are switched through the crossbar switch. This phenomenon,
where packets or cells can be held up by packets or cells ahead of them that are destined for a different
output, is called Head of Line Blocking.
 
The GSR solves the HoLB problem by using virtual output queues, as shown in Figure 7-5.
 

Figure 7-5. Virtual Output Queues
 

 
Packets or cells destined to each Line Card are placed in a separate queue called the virtual output
queue, which eliminates the HoLB problem. These queues are FIFO by default but Modified Deficit
Round Robin (MDRR) and Weighted Random Early Detection (WRED) both can be used on these queues
to provide quality of service across the Cisco 12000’s switching fabric; these QoS mechanisms are
covered in more detail in Chapter 8, “Quality of Service.”
 

Cisco Cells

The unit of transfer across the crossbar switch fabric is always fixed size packets, also referred to as
Cisco cells, which are easier to schedule than variable size packets. Packets are broken into cells before
being placed on the fabric, and are reassembled by the outbound LC before they are transmitted. Cisco
cells are 64 bytes long, with an 8-byte header, a 48-byte payload, and an 8-byte CRC.
 

Maintenance Bus

The Maintenance Bus (MBUS) is a 1-Mbps serial bus that connects the Route Processor, the Line Cards,
the switch fabric cards, the power supplies, and the fans. The MBUS, as the name suggests, is used for
maintenance of the system. When the router boots, the Route Processor uses the MBUS to discover other
cards in the system; to boot the Line Cards; and to gather revision numbers, environmental information,
and general maintenance information. Data traffic never traverses the MBUS—data traffic always goes
across the switching fabric and the MBUS is purely for managing components within the box.
 

Gigabit Route Processor

The Gigabit Route Processor, more commonly called the GRP, is the brain of the system. The GRP runs
routing protocols, computes the forwarding table, builds the CEF and adjacency tables, and distributes
them to all the Line Cards in the system via the switch fabric. Figure 7-6 shows the important components



on the GRP, as described in the following list:
 

• CPU—The CPU on the GRP is the same R5000 processor used on the Cisco 7500’s RSP4. The
CPU is responsible primarily for running routing protocols and for maintaining a master copy of the
CEF table for download to the Line Cards, which do the packet switching.

 • Main Memory (DRAM)—Up to 256 MB used for storing IOS code and all data structures.
 • CSAR SRAM—512 KB; this memory is used for reassembling cells arriving from the switching

fabric into packets.
 • Ethernet Controller—Designed for out-of-band management; traffic should not be switched

between this port and ports on the LCs.
 

Figure 7-6. Route Processor
 

 

Line Card

Most packet switching occurs on Line Cards (LCs) in a Cisco GSR. The Line Card architecture can be
broken into three sections:
 

• Physical layer interface module (PLIM)—The PLIM is the media-specific hardware module
(ATM, POS, Fast Ethernet) that terminates the physical connection.

 • Switch Fabric Interface—The Switch Fabric Interface prepares packets for transmission across
the switching fabric to the destination LC.

 • Packet forwarding engine—The packet forwarding engine switches packets. As of this writing,
three types of packet forwarding engines exist; namely, engines 0, 1, and 2. Line Cards available as
of this writing are classified by the packet forwarding engine type described in Table 7-3. Engine 0
was the first packet switching engine on the early GSR LCs, engine 1 LCs have some enhancements
to improve packet switching performance, and engine 2 LCs further enhance packet forwarding
performance and enable QoS features in hardware.

 
Table 7-3. Classification of GSR Line Cards by Engine

 



 
The first two sections of the LC architecture are self-explanatory. The packet forwarding engine is the
heart of the LC, and discussed in detail in the following section.
 

Packet Forwarding Engines

Three types of packet forwarding engines are available (engines 0, 1, and 2) as of this writing and a
detailed description of each follows. Figure 7-7 illustrates the key components of the engine 0 and the
engine 1 Line Cards.
 

Figure 7-7. Engine 0 and Engine 1 Packet Forwarding Engine
 



 
Elements common to all engines include main memory and packet memory (receive and transmit), as
described in the following sections.
 
Main Memory

Up to 265 MB of DRAM is used for storing the LCs IOS code and associated data structures, such as the
CEF and Adjacency tables.
 
Packet Memory

Each LC can have up to 256 MB of SRAM (128 MB on engine 0 LCs), equally divided into receive and
transmit packet memory. The output of show diag displays the amount of receive and transmit packet
memory on the LC, as demonstrated in Example 7-2.
 

Example 7-2. show diag Displays the Amount of Receive and Transmit Packet Memory
 

Router#show diag 1
SLOT 1  (RP/LC 1 ): 4 Port Packet Over SONET OC-3c/STM-1 Multi Mode
....
FrFab SDRAM size: 67108864 by tes
ToFab SDRAM size: 67108864 by tes
....

 
The following list describes what Example 7-2 reveals about transmit and receive packet memory:
 

• FrFab SDRAM—Transmit packet memory.
 • ToFab SDRAM—Receive packet memory.
 
Receive Packet Memory

Receive packet memory is carved into pools of packet buffers. To see how the receive memory is carved,
attach to a Line Card and execute show controller tofab queue, as demonstrated in Example 7-3.
 

Example 7-3. show controller tofab queue Displays How Receive Packet Memory Is Carved into
Packet Buffer Pools

 
LC-Slot1#show controller tofab queue
Carve information for ToFab buffers
SDRAM size: 67108864 by tes, address: 30000000, carve base: 30019100
67006208 by tes carve size, 0 SDRAM bank(s), 0 by tes SDRAM pagesize, 3 carve(s)
max buffer data size 4544 by tes, min buffer data size 80 by tes
65534/65534 buffers specified/carved
66789056/66789056 by tes sum buffer sizes specified/carved

        Qnum    Head    Tail            #Qelem  LenThresh
        ----    ----    ----            ------  ---------

4 non-IPC free queues:
26174/26174 (buffers specified/carved), 39.93%, 80 by te data size
1       101     26274           26174   65535
19630/19630 (buffers specified/carved), 29.95%, 608 by te data size
2       26275   45904           19630   65535
13087/13087 (buffers specified/carved), 19.96%, 1568 by te data size
3       45905   58991           13087   65535
6543/6543 (buffers specified/carved), 9.98%, 4544 by te data size
4       58992   65534           6543    65535
IPC Queue:
100/100 (buffers specified/carved), 0.15%, 4112 by te data size
30      7       6               100     65535
Raw Queue:
31      0       0               0       65535
ToFab Queues:
Dest                                                                         
Slot                                                                         
        0       0       0               0       65535                        



        1       0       0               0       65535                        
        2       0       0               0       65535                        
        3       0       0               0       65535                        
        4       0       0               0       65535                        
        5       0       0               0       65535                        
        6       0       0               0       65535                        
        7       0       0               0       65535                        
        8       0       0               0       65535                        
        9       0       0               0       65535                        
        10      0       0               0       65535                        
        11      0       10              0       65535                        
        12      0       0               0       65535                        
        13      0       0               0       65535                        
        14      0       0               0       65535                        
        15      0       0               0       65535                        
 Multicast      0       0               0       65535

 
The following list describes some of the key fields in Example 7-3:
 

• SDRAM size: 67108864 bytes, address: 30000000, carve base: 30019100—The size of receive
packet memory and the address location where it begins.

 • max buffer data size 4544 bytes, min buffer data size 80 bytes—The maximum and minimum
buffer sizes.

 • 65534/65534 buffers specified/carved—Buffers specified by IOS to be carved and the number of
buffers actually carved.

 • 4 non-IPC free queues—The non-IPC buffer pools are the packet buffer pools. Packets arriving
into the Line Card would be allocated a buffer from one of these buffer pools depending on the size
of the packet. The example output shows four packet buffer pools of sizes 80, 608, 1568, and 4544
bytes. For each pool, more detail is given:

 — 26174/26174 (buffers specified/carved), 39.93%, 80 byte data—39.93 percent of the receive
packet memory has been carved into 26,174 80-byte buffers.

 — Qnum—The queue number.
 — #Qelem—Number of buffers in this queue.
 • IPC Queue—Reserved for inter-process communication, such as messages from the RP to the Line

Cards.
 • Raw Queue—When an incoming packet has been assigned a buffer from a non-IPC free queue, it’s

enqueued on the raw queue. The raw queue is a FIFO processed by the LC CPU during interrupts.
 • ToFab Queues—Virtual output queues; one per destination slot plus one for multicast traffic. The

highlighted portion of Example 7-3, taken from a 12012, shows 15 virtual output queues. The
12012 was designed originally as a 15-slot chassis; queues 13 through 15 are not used.

 
After the ingress Line Card CPU makes a packet switching decision, the packet is enqueued on the virtual
output queue corresponding to the slot where the packet is destined. The number in the fourth column is
the number of packets currently enqueued on a virtual output queue.
 
Transmit Packet Memory

Transmit packet memory is carved into pools as well; attaching to an LC and executing show controller
frfab queue displays a snapshot of the transmit packet memory. The only field that is different from the
output in Example 7-3 is the Interface Queues column—the fourth column in the following code.
 0       0       0               0       65535

1       0       0               0       65535
2       0       0               0       65535
3       0       0               0       65535



 
One interface queue exists for each interface on the LC; packets destined out a specific interface are
enqueued onto its interface queue. Now that you have looked at elements common to all engine LCs, take
a look at engine-specific details.
 
Engine 0 Line Card

Each engine 0 LC has two Buffer Manager ASICs (BMAs), represented as Rx and Tx Buffer manager in
Figure 7-7, which manage packet buffers and segment and reassemble packets for transmission across the
switching fabric, as shown in Figure 7-7. The receive BMA is responsible for receiving packets from the
PLIM, segmentation of packets into fixed size cells, and presenting them to the Fabric Interface ASIC
(FIA) for transmission across the switch fabric. The transmit BMA, with help from the FIA, performs the
re-assembly of the cells arriving from the switch fabric into packets, and hands packets to the PLIM for
transmission from the box.
 
The primary responsibility of the CPU on an engine 0 LC is to switch packets.
 
Engine 1 Line Card

Elements common to engine 0 and engine 1 LCs, namely CPU, main memory, and packet memory, have the
same function on the engine 1 LC as on the engine 0 LC. Packet switching performance of engine 1 LC is
improved from an engine 0 LC by a new buffer manager ASIC and an improved switching engine.
 
Engine 2 Line Card

Figure 7-8 illustrates the key components of the engine 2 LC. Main memory and packet memory on this LC
have the same function as the engine 0 and engine 1 LCs.
 

Figure 7-8. Engine 2 Packet Forwarding Engine
 



 
Engine 2 introduces a new packet switching ASIC (PSA) that greatly improves packet switching
performance. A local copy of the global CEF table is stored in the PSA memory (up to 128 MB), which is
used for CEF lookup for packet switching. All packet switching on an engine 2 LC is done in hardware by
the PSA and the CPU on the LC is never interrupted for any packet forwarding decision. The introduction
of new and optimized receive and transmit buffer management ASICs, referred to as Receive Buffer
Manager (RBM) and Transmit Buffer Manager (TBM), also is key for hardware-based support for Class
of Service (CoS) features on this LC.
 
Packet Switching

Now that you’ve looked at the various components that make up a Cisco 12000, take a look at how they
are used to actually switch packets. Most packets switched through a Cisco 12000 are switched by the
Line Cards using dCEF; only control packets, such as those used for routing protocols, are punted to the
GRP for processing. The packet switching path on the GSR depends on the type of forwarding engine on
the LC. Let’s look at the switching path with each of the forwarding engines.
 

Packet Switching: Engine 0 and Engine 1

Figure 7-9 illustrates the steps in the switching packets arriving into an engine 0 or engine 1 LC.
 

Figure 7-9. Engine 0 and Engine 1 Switching Path
 



 
The switching path for engine 0 and engine 1 LCs is essentially the same, although engine 1 LCs have an
enhanced switching engine and buffer manager for increased performance. The switching path is as
follows:
 

Step 1. The interface processor (PLIM) detects a packet on the network media and begins copying it
into a FIFO memory called burst memory on the LC. The amount of burst memory each
interface has depends on the type of LC; typical LCs have 128 KB to 1 MB of burst memory.

 Step 2. The interface processor requests a packet buffer from the receive BMA; the pool from which
the buffer is requested depends on the length of the packet.

 If there aren’t any free buffers in the requested buffer pool, the packet is dropped and the interface’s
ignore counter is incremented. For example, if a 64-byte packet arrives into an interface, the BMA
tries to allocate an 80-byte packet buffer. If no free buffers exist in the 80-byte pool, buffers are not
allocated from the next available pool.

 Step 3. When a free buffer is allocated by the BMA, the packet is copied into the buffer and is
enqueued on the raw queue (RawQ) for processing by the CPU and an interrupt is sent to the
LC CPU.

 Step 4. The LC’s CPU processes each packet in the RawQ as it is received (the RawQ is a FIFO),
consulting the local dCEF table in DRAM to make a switching decision.

 4.1 If this is a unicast IP packet with a valid destination address in the CEF table, the packet header
is rewritten with the new encapsulation information obtained from the CEF adjacency table. The
switched packet is enqueued on the virtual output queue corresponding to the destination slot.



 4.2 If the destination address is not in the CEF table, the packet is dropped.
 4.3 If the packet is a control packet (a routing update, for example), the packet is enqueued on the

virtual output queue of the GRP and processed by the GRP.
 Step 5. The Receive BMA fragments the packet into 64-byte Cisco cells, and hands off these to the

FIA for transmission to the outbound LC.
 
At the end of Step 5, the packet that arrived into an engine 0 LC has been switched and is ready to be
transported across the switch fabric as cells. Go to Step 6 described in the section, “Packet Switching:
Switching Cells across Fabric.”
 

Packet Switching: Engine 2 LC

Figure 7-10 illustrates the packet switching path when the packets arrive into an engine 2 LC, as
described in the following list.
 

Figure 7-10. Engine 2 Packet Switching Path
 

 
Step 1. The interface processor (PLIM) detects a packet on the network media and begins copying it

into a FIFO memory called burst memory on the LC. The amount of burst memory each
interface has depends on the type of LC; typical LCs have 128 KB to 1 MB of burst memory.



 Step 2. The first 64 bytes of the packet, called the header, is passed through the Packet Switching
ASIC (PSA).

 2.1 The PSA switches the packet by consulting the local CEF table in the PSA memory. If the packet
cannot be switched by the PSA, go to Step 4; otherwise, go to Step 3.

 Step 3. The Receive Buffer Manager (RBM) accepts the header from the PSA and copies it into a
free buffer from the packet memory based on the length of the packet in the buffer header. If
the packet is larger than 64 bytes, the tail of the packet also is copied into the same free buffer
in packet memory and is queued on the outgoing LC virtual output queue. Go to Step 5.

 Step 4. The packet arrives at this step if it cannot be switched by the PSA. These packets are placed
on the RawQ and the switching path is essentially the same as engine 1 and engine 0 LC from
this point (Step 4 in the case of engine 0). Note that packets that are switched by the PSA are
never placed in the RawQ and no interrupt is sent to the CPU.

 Step 5. The Fabric Interface Module (FIM) is responsible for segmenting the packets into Cisco
cells and sending the cells to the Fabric Interface ASIC (FIA) for transmission to the outbound
LC.

 

Packet Switching: Switching Cells across Fabric

You arrive at this stage after the packet switching engine switches the packets and the packets are
segmented into Cisco cells and are waiting to be transmitted across the switch fabric. The steps for this
stage are as follows:
 

Step 6. The FIA sends a grant request to the CSC, which schedules each cell’s transfer across the
switch fabric.

 Step 7. When the scheduler grants access to the switch fabric, the cells are transferred to the
destination slot. Note that the cells might not be transmitted all at once—other cells within
other packets might be interleaved.

 

Packet Switching: Transmitting Packets

Figure 7-11 shows the cells containing the packet on the outbound Line Card.
 

Figure 7-11. GSR Packet Switching: Transmit Stage
 



 
Step 8.   The cells switched across the fabric arrive into the destination Line Card via the FIA.

 Step 9.   The transmit Buffer Manager allocates a buffer from the transmit packet memory and
reassembles the packet in this buffer.

 Step 10. When the packet is rebuilt, the transmit BMA enqueues the packet onto the destination
interface’s transmit queue on the LC. If the interface transmit queue is full (the packet cannot
be enqueued), the packet is dropped and the output drop counter is incremented.

 
 

Note

In the transmit direction, the only time packets will be placed in the RAWQ is if the LC CPU needs to do
any processing before transmission. Examples include IP fragmentation, multicast, and output CAR.
 

 
Step 11. The interface processor detects a packet waiting to be transmitted, dequeues the buffer from

the transmit memory, copies it into internal FIFO memory, and transmits the packet on the
media.

 
 
Summary

This chapter examined the most important architectural elements of the 12000, which are radically



different from any of the shared memory or bus-based Cisco architectures. By using a crossbar switching
fabric, the Cisco 12000 provides very large amounts of bandwidth and scalability. Further, the 12000
uses virtual output queues to eliminate Head of Line Blocking within the switching fabric.
 
Most switching on a Cisco 12000 is distributed to the Line Cards; in some cases, a dedicated ASIC
actually switches packets. DCEF is the only switching mode available.
 



Chapter 8. Quality of Service
This chapter covers the following key topics:
 • QoS Overview
 • Priority Queuing
 • Custom Queuing
 • Weighted Fair Queuing
 • Modified Deficit Round Robin
 • Weighted Random Early Detection
 • Selective Packet Discard
 • Other QoS Features
 

The growing availability of data networks has fueled tremendous momentum toward placing all traffic—
voice, video, and data—onto the infrastructure that provides data service alone today. Among the
obstacles network engineers face when trying to combine voice, video, and data onto one network is that
different types of traffic require different levels of service from the network. For example,
 

• Video requires high bandwidth and a consistent transit delay. This delay doesn’t necessarily have
to be small unless the session is interactive, but it does have to be consistent to prevent choppiness
and other visual artifacts.

 • Interactive voice traffic requires much less bandwidth than video traffic, but it requires a very short
transit delay through the network. Excessive delay on a voice session introduces audio artifacts,
such as echo, which are difficult to eliminate.

 • Interactive terminal sessions, such as Telnet, require low delay. Inconsistent delay usually isn’t
noticeable, but consistently long delays can be very noticeable and quite annoying to users.

 • File transfers benefit from high bandwidth, but are the most forgiving of all the types of network
traffic, tolerating moderate to large and inconsistent delays. Delay affects the total transfer time for
a file and becomes more noticeable as the file size increases.

 
How can a single infrastructure provide all of these types of service? The answer is in using various
Quality of Service (QoS) mechanisms to condition traffic streams based on the types of service they
require.
 
Although a complete discussion of QoS methods and protocols is beyond the scope of this book, we
explore how IOS implements key QoS mechanisms.
 
QoS Overview



Consider a basic network of two computers connected by a single link. In a perfect world, these
computers could send and receive as much data as they want without worrying about transit delay; the
only thing bounding the number of file transfers, voice calls, and video sessions between them is the
processing power of the systems themselves. They have a dedicated link with infinite bandwidth!
 
Real networks consist of shared links with limited bandwidth and some (measurable) amount of delay.
Networks able to handle the full output rate of every connected node are rarely economical; instead,
network designers attempt to balance costs with the average and peak rates of traffic they expect. Devices
within the network, such as routers, employ various buffering and queuing mechanisms to handle
temporary bursts above the average.
 
In previous chapters, we looked at the basic packet queuing mechanisms used in IOS, which is first-in,
first-out (FIFO) in most cases. As long as there’s sufficient link bandwidth and switching capacity, FIFO
can meet all the service requirements for all traffic types.
 
To see why FIFO isn’t always enough, though, take a look at the simple network shown in Figure 8-1.
 

Figure 8-1. QoS in a Simple Network
 

 
Let’s assume all the links illustrated are 10 Mbps, and the router can switch at 50 Mbps. If the three hosts
transmit an average of 700 Kb/s with an occasional burst of 5 Mbps, FIFO queuing on the router performs
fine; the router’s interfaces can always keep their transmit queues drained.
 
Increasing the maximum burst from 5 Mbps to 10 Mbps, however, quickly shows FIFO’s weakness
queuing. Switching capacity is not a problem—the router can handle up to five Ethernet interfaces going
full speed. But if two of the hosts, A and B, try to send at 10 Mbps toward C at the same time, the total
data arrival rate at the router (20 Mbps) exceeds the capacity of the output interface (10 Mbps).
 
Some number of the packets toward C need to buffered and queued on the transmit queue of the outbound
interface—and anytime queues begin to grow, it’s probable that packets waiting in those queues must wait
longer than their acceptable delay.
 
The problem becomes even more pronounced if a significant difference in link speeds exists along a path.
For example, if the link to C in Figure 8-1 is replaced with a T1 (1.544 Mbps), it only takes a burst from
one host to overrun the router’s interface to C. In fact, the T1 barely keeps up with the average
transmission rates of A and B.
 
Two common QoS strategies are used to meet the service requirements of the traffic: congestion



management and congestion avoidance. Congestion management assumes packets wait in queues, and
attempts to minimize the effects of queuing by dequeuing packets in an order that satisfies their service
levels. Congestion avoidance attempts to limit queuing itself by signaling traffic sources to slow down
their transmission rates.
 

Congestion Management

Congestion management methods are distinguished by how they classify packets and the order in which
they dequeue packets. Two general classes of congestion management exist in IOS: platform independent
and platform dependant. Platform-independent methods are available on most Cisco routers, and run on
the main processor, such as the RSP in a Cisco 7500. Platform-dependant methods are implemented on
intelligent interface processors, and are only available on selected platforms.
 
Currently, two platform-dependant congestion management methods exist: Distributed Weighted Fair
Queuing (DWFQ) and Modified Deficit Round Robin (MDRR). DWFQ is implemented on Cisco 7500
VIP cards, and MDRR is implemented on Cisco 12000 line cards.
 
Platform-independent congestion management techniques implemented in IOS include:
 

• Priority Queuing (PQ)
 • Custom Queuing (CQ)
 • Weighted Fair Queuing (WFQ)
 — Flow-Based WFQ
 — Class-Based WFQ
 
All these congestion management techniques, with the exception of MDRR, are applied between an
interface’s output hold and transmit queues.
 
 

Note

IOS platform-independent congestion management techniques occur between an interface’s output hold
and transmit queues (or transmit rings). The interface transmit queue is a first-in, first-out (FIFO) queue;
when a packet is placed in the interface transmit queue, it is scheduled for transmission on the physical
wire. Thus, for any type of fancy queuing (congestion management techniques) to take place, packets must
pass through the output queue rather than be placed directly on the interface’s transmit queue.
 How does IOS decide when a packet should be placed on an interface’s output queue rather than
directly on its transmit queue?
 • If a packet has been process switched (or it’s generated by IOS itself), it’s always placed on the

output hold queue rather than on the interface transmit queue.
 • If the interface transmit queue is full, any packets queued to the interface are placed on the output

hold queue.
 • Beyond this, if any packets are on an interface’s transmit queue, all packets destined out that



interface are placed on the output hold queue as well.
 So, if the interface becomes congested, its transmit ring fills up and packets are placed on its output hold
queue instead, triggering congestion management.
 How many packets does it take for an interface’s transmit queue to fill up? It depends on the platform
and the type of interface. When any type of congestion management is configured on an interface, the
transmit queue size is decreased to improve the odds of the congestion management taking effect.
 Throughout this chapter, we assume congested interfaces for all examples given.
 
 

Congestion Avoidance

The objective of congestion avoidance algorithms is to prevent congestion from happening in the first
place. Two general classes of congestion avoidance exist in IOS: platform independent and platform
dependent. Platform-independent methods are implemented on a platform’s main processor, such as the
RSP on the Cisco 7500, whereas platform-dependent methods are implemented on intelligent interface
processors on selected platforms. We discuss the Weighted Random Early Detection (WRED)
implementation in this chapter.
 
Priority Queuing

Priority queuing is a platform-independent congestion management method that, as its name implies,
provides some packets absolute priority over other packets. The simplest analogy is a grocery store with
two checkout lines being serviced by one clerk.
 
Customers holding a special customer club card can enter one line, and the remaining customers can enter
the second line. The clerk cannot check out any customers in the second line until he serves all the
preferred customers (the ones holding the club cards in the first line).
 
This is exactly how routers implement priority queuing. Packets are classified based on a configurable
policy and are placed in a queue. The IOS implementation has a total of four queues: high, medium,
normal, and low.
 
The high queue must be empty before the medium queue can be serviced, the medium queue must be empty
before the normal queue can be serviced, and the normal queue must be empty before the low queue can
be serviced.
 
This method has one drawback—and it’s easy to see if we go back to the grocery store example for a
moment. If you’re forced to enter the non–club card line, you could wait quite some time before the clerk
finally gets around to checking you out. In fact, you might never get checked out if enough people continue
to arrive in the club card line. You could starve standing there!
 
It’s no different with priority queuing. Lower priority queues actually can starve—never being allowed to
send any traffic. Because of this, priority queuing should be implemented with care. A packet
classification policy should be chosen so it doesn’t place packets in the high priority queue at a very high
rate.



 

Configuring and Monitoring Priority Queuing

Example 8-1 demonstrates how to configure priority queuing.
 

Example 8-1. Configuring Priority Queuing
 

access-list 110 permit ip host 10.1.1.1 any
access-list 120 permit ip host 172.16.28.1 any
access-list 130 permit ip any  any
!
priority -list 1 protocol ip high list 110
priority -list 1 protocol ip medium list 120
priority -list 1 protocol ip normal list 130
!
interface Serial0
 priority -group 1

 
For example, say a router has the following packets to transmit on Serial 0:
 

Packet 1—Sourced from 172.18.40.8, destined to 192.168.40.8
 Packet 2—Sourced from 10.1.1.1, destined to 192.168.40.8
 Packet 3—Sourced from 172.18.40.8, destined to 192.168.10.1
 Packet 4—Sourced from 10.1.1.1, destined to 192.168.10.1
 Packet 5—Sourced from 172.16.28.1, destined to 192.168.10.1
 Packet 6—Sourced from 172.18.40.8, destined to 192.168.20.56
 
These packets first are enqueued into the high, medium, and normal queues based on the access lists
referenced in the priority-list commands, with the results as shown in Figure 8-2.
 

Figure 8-2. Packets Enqueued Based on the priority-list Command
 

 
After the packets are placed into the correct queues, IOS services the high queue until no packets remain
—packets 2 and 4 in this case. IOS then transmits the packets in the medium queue—packet 5 here.
Finally, when the high and medium queues are empty, the packets remaining in the normal queue are
transmitted.
 
Of course, while these packets are being transmitted, other packets continue to arrive and are placed into
their appropriate queues. If enough packets enter the high and medium queues that the IOS never actually
transmits anything out of the normal queue, the normal queue starves. Any applications or hosts that use
the normal queue to pass traffic simply fail to function.
 
You can examine the priority queuing configuration using the show queueing priority command, as
demonstrated in Example 8-2.
 



Example 8-2. show queuing priority Displays Priority Queuing Status
 

router#show queueing priority
Current priority  queue configuration:

List   Queue  Args
1      high   protocol ip          list 110
1      medium protocol ip          list 120
1      normal protocol ip          list 130

 
The output of the show queueing priority command summarizes the current priority queuing
configuration. It doesn’t provide any information about the number of packets that were placed into or
dropped from any given queue. To determine the number of packets that were passed through or dropped
from each queue, examine the output of the show interface command as demonstrated in Example 8-3.
 

Example 8-3. show interface Displays Packet Traffic through a Queue
 

router#show interface serial 0
Serial0 is up, line protocol is up
....
  Queueing strategy : priority -list 1
  Output queue (queue priority : size/max/drops):
     high: 0/20/0, medium: 0/40/0, normal: 0/60/0, low: 0/80/0

 
From the output in Example 8-3, you can see the type of queuing enabled (in the Queueing strategy
area), the specific priority group that is assigned to this interface, the number of packets currently in each
of the queues, and the number of packets dropped from each queue.
 
The maximum size of each queue can be configured using the IOS priority-list list-number queue-limit
configuration command.
 
Custom Queuing

Custom queuing is a platform-independent congestion management mechanism very similar to priority
queuing. Custom queuing provides fairness in servicing the queues, unlike priority queuing, which can
potentially starve non–high priority queues. Going back to the grocery store line example, let’s say the
clerk can now service only up to a certain number of customers from the club card line before returning to
the customers in the non–club card line, and vice-versa. The clerk now alternates between the two lines,
checking out the number of people allowed in one line before switching to the other line.
 
Custom queuing allows 16 configurable queues, each with a count specifying how many bytes of data
should be delivered from the queue before IOS moves to the next one. In other words, the 16 queues are
serviced in a round-robin fashion, and a configured number of bytes are serviced from each queue before
moving to the next queue.
 

Note

There are actually 17 queues in IOS custom queuing but the user cannot classify packets into queue 0.
Queue 0 is a special queue reserved for control traffic, such as interface keepalives and routing updates.
 

 
Let’s use the configuration in Example 8-4 and work through a short example.



 
Example 8-4. Custom Queuing Example

 
access-list 110 permit ip host 10.1.1.1 any
access-list 120 permit ip host 172.16.28.1 any
!
queue-list 1 protocol ip 1 list 110
queue-list 1 protocol ip 2 list 120
queue-list 1 default 3
!
queue-list 1 queue 1 by te-count 1000
queue-list 1 queue 2 by te-count 1000
queue-list 1 queue 3 by te-count 2000
!
interface Serial 0
 custom-queue-list 1

 

Assume IOS receives the following packets for switching:
 

Packet 1—Sourced from 172.18.40.8, length 100 bytes
 Packet 2—Sourced from 10.1.1.1, length 500 bytes
 Packet 3—Sourced from 172.18.40.8, length 100 bytes
 Packet 4—Sourced from 10.1.1.1, length 1000 bytes
 Packet 5—Sourced from 172.16.28.1, length 200 bytes
 Packet 6—Sourced from 172.18.40.8, length 100 bytes
 Packet 7—Sourced from 10.1.1.1, length 100 bytes
 
After IOS receives and classifies these seven packets, the queues look like Figure 8-3.
 

Figure 8-3. Initial Packet Distribution for Custom Queuing Example
 

 
IOS begins with queue 1; the first packet on the queue is removed and transmitted. This would be packet
2, which is 500 bytes long. The size of packet 2 is subtracted from the allowed byte count for this queue,
1000, leaving a remainder of 500. Because the remainder is greater than 0, the next packet, packet 4, is
removed from queue 1 and is transmitted.
 
After transmitting packet 4, queue 1 has less than 0 bytes in its allowed byte count. So, IOS moves on to
service queue 2. Figure 8-4 shows the queues after this first stage of processing.
 

Figure 8-4. Packet Distribution after Queue 1 Is Serviced the First Time
 

 
Next, packet 5 is transmitted from queue 2 and its length subtracted from the total bytes allowed for this
queue, 1000, leaving 800 bytes. Another packet could be transmitted from this queue, but no packets



remain to transmit. Figure 8-5 illustrates the queues after this second stage of processing.
 

Figure 8-5. Packet Distribution after Queue 2 Is Serviced
 

 
Finally, we come to the last queue, queue 3. Packet 1 is transmitted and its length, 100 bytes, is subtracted
from the total byte count of 2000 allowed for this queue. The remaining two packets, 3 and 6, also are
transmitted. Finally, the router returns to queue 1 and transmits the final packet.
 
As you can see, custom queuing doesn’t allow any queue to starve; it always services every queue at
some point. If a queue fills up faster than it can be serviced, packets tail drop when the number of packets
in the queue exceeds the maximum depth of the queue. Thus, custom queuing in effect provides a minimum
bandwidth allocation for each configured type of traffic during periods of congestion, but doesn’t
guarantee delivery above that minimum bandwidth. Packets are delivered above that minimum bandwidth
if the other queues are not congested. In this example, Queue 1 is guaranteed to be able to transmit at least
1000 bytes out of every cycle of about 4000 bytes. The end result of this is that Queue 1 is guaranteed to
be able to utilize at least 25 percent of the interface bandwidth during periods of congestion.
 

Note

A queue can completely transmit its last packet of that cycle if there is at least 1 byte left in its byte count.
 

 
The show queueing custom command provides information on which queues are configured and how they
are configured, as demonstrated in Example 8-5.
 

Example 8-5. show queueing custom Displays Information about Which Queues Are Configured and
How They Are Configured

 
router#show queueing custom
Current custom queue configuration:

List   Queue  Args
1      3      default
1      1      protocol ip          list 110
1      2      protocol ip          list 120
1      1      by te-count 1000
1      2      by te-count 1000
1      3      by te-count 2000

 
Again, this output doesn’t provide any information on how many packets are waiting in each queue or how
many packets were dropped from any queue. For this information, you need to look at show interface as
shown in Example 8-6.
 

Example 8-6. show interface Displays Packet Traffic through a Queue
 

router#show interface serial 0
Serial0 is up, line protocol is up
....



Queueing strategy : custom-list 1
  Output queues: (queue #: size/max/drops)
     0: 0/20/0 1: 0/20/0 2: 0/20/0 3: 0/20/0 4: 0/20/0
     5: 0/20/0 6: 0/20/0 7: 0/20/0 8: 0/20/0 9: 0/20/0
     10: 0/20/0 11: 0/20/0 12: 0/20/0 13: 0/20/0 14: 0/20/0
     15: 0/20/0 16: 0/20/0
....

 
From the output in Example 8-6, you can see the type of queuing listed (under Queueing strategy), the
current number of packets in each queue, the maximum number of packets allowed in each queue, and the
number of packets dropped out of each queue.
 
Weighted Fair Queuing

There are two implementations of Weighted Fair Queuing (WFQ) in IOS:
 

• Platform-independent WFQ
 • Distributed Weighted Fair Queuing (DWFQ)
 
All Cisco platforms covered in this book, except Cisco 12000, support platform-independent WFQ.
DWFQ is available only on VIP interfaces on 7500 series routers when dCEF switching is enabled.
 

Platform-Independent WFQ

IOS has two implementations of platform-independent WFQ:
 

• Flow-Based WFQ
 • Class-Based CBWFQ
 

Flow-Based WFQ

Flow-Based WFQ is similar to custom queuing in its effect on traffic streams, but rather than defining a
static policy to sort the packets into the individual queues, the streams are sorted automatically. Flow-
Based WFQ is a legacy congestion management feature in IOS and has been available since IOS version
11.0; we refer to the legacy Flow-Based WFQ in the rest of this chapter as WFQ.
 
In WFQ, IP packets are classified into flows using
 

• ToS bits in the IP header
 • IP protocol type
 • Source IP address
 • Source TCP or UDP socket
 • Destination IP address
 • Destination TCP or UDP socket
 
By default, WFQ classifies the traffic streams into 256 different flows; you can change this default using
the dynamic-queues option of the fair-queue configuration command. If more flows exist than queues
configured, multiple flows are placed in each queue.



 

Note

WFQ is enabled by default on all serial interfaces with bandwidths (clock rates) less than 2 Mbps. On the
Cisco 7500, any special queuing (priority queuing [PQ], custom queuing [CQ], or WFQ) can cause each
packet to be copied from an MEMD buffer to a DRAM buffer for processing. Copying data between
MEMD and DRAM is very expensive in terms of processing cycles. As a result, use of platform-
independent WFQ should be limited to low speed interfaces on the Cisco 7500.
 

 
As packets are sorted into queues, they are given weights that are used, in turn, to calculate a sequence
number. The sequence number determines the order in which packets are dequeued and transmitted.
 
These weights are calculated using the following formula:
 

Weight = 4096 / (IP Precedence + 1)
 
As an example, assume three streams of packets arrive into a WFQ system:
 

• A1, A2—500 bytes each with precedence 0
 • B1, B2—400 bytes each with precedence 0
 • C1—40 bytes with precedence 3
 
When the first packet, A1, arrives, it’s classified and enqueued into subqueue A. WFQ computes a
sequence number for A1 using the following formula:
 

Sequence Number = Current Sequence Number + (weight * length)
 
Where current sequence number is either
 

• The same as the sequence number of the packet last enqueued for transmission, if the subqueue is
empty.

 • The sequence number of the last packet on the subqueue, if the subqueue is not empty.
 
The current sequence number when A1 arrives is 0 because it’s the first packet to arrive into subqueue A.
Its weight is 4096 (based on the ToS setting in the packet header) and its length is 500 bytes. Therefore,
the sequence number of A1 is calculated as follows:
 

0 + (4096 * 500) = 2048000
 
A2 arrives next and WFQ code classifies A2 also into subqueue A. A2 is assigned the sequence number
of 4096000 (A1’s sequence number + 4096 * 500). A1 is scheduled to be transmitted next. Figure 8-6
shows the queues at this point.
 

Figure 8-6. WFQ State after the First Pass
 



 
B1 and B2 arrive next and WFQ classifies them into subqueue B and computes sequence numbers for
them as described in the paragraphs that follow.
 
Subqueue B is empty when B1 arrives into subqueue B, so B1’s sequence number is computed using the
sequence number of the last packet enqueued for transmission (A1):
 

2048000 + (4096 * 400) = 3686400
 
B2’s sequence number is computed similar to A2’s:
 

3686400 + (4096 * 400) = 5324800
 
At this point, A1 finishes transmission. WFQ sorts the subqueues based on the sequence numbers of the
packets at the head of the queues. B1 has the smallest sequence number and is enqueued for transmission.
Note that B1 is enqueued for transmission before A2, even though it arrived later. Figure 8-7 shows the
queues at this point.
 

Figure 8-7. WFQ State
 

 
C1 arrives next and is placed into subqueue C. Because subqueue C is empty, C1’s sequence number is
based on the sequence number of the last packet enqueued for transmission, which was B1.
 

3686400 + (1024 * 40) = 3727360
 
B1 is transmitted at this point and all the queues are resorted again. C1 now has the lowest sequence
number, as shown in Figure 8-8, so it’s enqueued for transmission.
 

Figure 8-8. WFQ State after the Second Pass
 

 



Note that C1 is transmitted before A2 or B2, even though it arrived after these two packets.
 
So what is the purpose behind all this weighting and sorting? The answer is to provide a fair amount of
bandwidth for each flow based on its type of service (ToS). Because packet lengths are taken into account
when assigning sequence numbers, flows with shorter than average packet lengths can send more packets
than flows with longer than average packet lengths. For example, a flow that normally sends 500 byte
packets can transmit three times as many packets than a flow that normally sends 1500 byte packets.
 
The classic example of how this is useful is Telnet traffic and FTP traffic. Telnet traffic uses small
packets and the users are affected (and annoyed) by delays. FTP traffic uses large packets and is more
tolerant of delays. WFQ automatically gives Telnet packets an earlier transmission time than an FTP
packet that arrived slightly before it.
 
If the flows are weighted based on a type of service, flows with a greater type of service setting receive a
greater amount of bandwidth.
 

Configuring and Monitoring WFQ

To enable WFQ on an interface, configure fair-queue at the interface level:
 Router(config-if)# fair-queue [congestive-discard-threshold [dynamic-queues

[reservable-queues]]]

 
The congestive-discard-threshold (the default is 64) is the number of messages or packets allowed in
each queue. When this threshold is reached, any packets that normally are placed into the queue are
dropped.
 
dynamic-queues (the default is 256) are the WFQ subqueues into which packets are classified.
 
If a flow has a reservation through RSVP, its traffic is placed into a reservable-queue. The show
queueing interface-number command can monitor the status of WFQ on an interface, as demonstrated in
Example 8-7.
 

Example 8-7. show queueing Monitors WFQ Status on a Router Interface
 

Router#show queueing serial0
Input queue: 0/75/0 (size/max/drops); Total output drops: 0
Queueing strategy : weighted fair
Output queue: 3/1000/64/0 (size/max total/threshold/drops)
   Conversations  1/3/256 (active/max active/threshold)
   Reserved Conversations 0/1 (allocated/max allocated)

(depth/weight/discards/tail drops/interleaves) 2/4096/0/0/0  
Conversation 1023, linkty pe: ip, length: 1504                
source: 10.1.1.1, destination: 10.1.5.2, id: 0xC4FE, ttl:120,
ToS: 0 prot: 6, source port 1520, destination port 4563      

 
The following list explains the relevant fields from the output of the show queueing serial0. The shaded
portion of Example 8-7 highlights the statistics for a single flow or conversation; a conversation queue is
the same as a subqueue discussed in the example previously.
 

• Output queue: 3/1000/64/0 (size/max total/threshold/drops)
 — size is the instantaneous value of the packets in the queuing system.
 — max total is the per interface limit on the total number of buffers that WFQ can consume.



 — threshold is the congestive discard threshold described earlier. This is the maximum number of
packets allowed in the sub-queue; this is a soft limit—more than threshold number of packets
actually can be placed in a conversation queue. The max total number protects the WFQ system
from consuming lots of memory and dropping packets when the max total is reached.

 — drops is the number of packets dropped by WFQ either for a sub-queue exceeding the threshold
or the total number of packets in the queues exceeding the max total.

 • Conversations 1/3/256 (active/max active/threshold)
 — active indicates the number of flows or conversations active at this instant. The example shows 1

active conversation.
 — max active is the total number of conversations ever.
 — threshold is the maximum number of configured conversation or flow queues. If more

conversations exist than queues configured, multiple conversations are placed in a queue.
 • (depth/weight/discards/tail drops/interleaves) 2/4096/0/0/0
 — depth is the number of packets placed into this conversation queue.
 — weight indicates the weight of each packet in the queue.
 — discards is the number of packets dropped due to congestive discard threshold exceeded.
 — tail drops is the number of packets dropped when the max-total was exceeded.
 — interleaves occur when link layer fragmentation and interleaving is configured. This allows

smaller packets to be interleaved between the fragments of larger packets.
 

Class-Based WFQ

Flow-Based WFQ, as discussed in the previous section, automatically classifies flows—you don’t have
any control over the classification mechanism. Class-Based WFQ (CBWFQ) was developed to provide a
WFQing mechanism that allows flows to be sorted along user-designated policies. CBWFQ, like Flow-
Based WFQ, is a platform-independent feature that is available on all router platforms covered in this
book except the Cisco 12000. Distributed CBWFQ (DCBWFQ) also is available on VIP cards on 7500
series routers. This section deals only with platform-independent CBWFQ; DCBWFQ is covered in the
section, “Distributed Weighted Fair Queuing.”
 

Note

As of this writing, CBWFQ is a relatively new feature; please check the IOS Release Notes for
information specific to CBWFQ.
 

 
CBWFQ allows you to classify traffic into (up to) 64 classes based on such criteria as the protocol, the
access control lists, and the input interface. Each class is allocated a percentage of the bandwidth
available on the outbound link. By default, packets that overflow any of the traffic class queues are tail
dropped, but Weighted Random Early Detection (WRED), a random drop algorithm discussed later in this



chapter, can be configured instead to manage these drops within each queue.
 
A default class also can be configured; if no default class is configured, packets that are not otherwise
classified into a user-defined class are sorted by flow and are given best-effort treatment.
 

Note

CBWFQ allows you to configure the bandwidth allocated per class. If a class called “voice” is allocated
200 kbps of bandwidth but has no traffic, the 200 kbps is distributed among all the other classes in
proportion to the bandwidth configured for the other classes.
 

 

Modular CLI for CBWFQ Configuration

CBWFQ configuration uses a new modular command-line interface (CLI), which is being standardized
across all the IOS QoS features and platforms. The modular CLI provides a clean separation between the
specification of a classification policy and the specification of other policies that act based on the results
of the applied classification. The modular CLI has three constructs:
 

• Class-map—Classifies packets into classes.
 • Policy-map—Describes the policy for each class.
 • Service-policy—Applies the policies defined to an interface.
 
Example 8-8 provides a sample CBWFQ configuration.
 

Example 8-8. Sample CBWFQ Configuration
 

class-map class1
 match access-group 101
!
policy -map policy 1
 class class1
 bandwidth 100
 queue-limit 20
 class class-default
 bandwidth 200
 random-detect
!
interface serial0
 service-policy  output policy 1
!
access-list 101 permit ip any  any  precedence critical

 
class-map defines a user-defined class called class1. Traffic is classified into the class1 queue by
access-list 101.
 
policy-map applies policies to the configured classes. In this example, class1 is allocated 100 kbps of
bandwidth (when the interface is congested). Bandwidth also can be allocated as a percentage using the
percent option in the bandwidth command, as shown in Example 8-9.
 

Example 8-9. Configuring Bandwidth as a Percentage
 

Router#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#policy-map policy1



Router(config-pmap)#class class1
Router#bandwidth percent ?
  <1-100>  Percentage
Router#

 
The queue-limit command determines the maximum number of packets that can be queued on the class
queue (the default and the maximum is 64). A policy-map can apply policy for many classes (up to 64).
Note that each policy-map command in Example 8-9 is associated with a previously defined class, tying a
set of policies to a defined class.
 
The class-default option of the class command defines the policy applied to packets that don’t fall into
any other configured classes. WRED can be configured per class using the random-detect command
under the class.
 
After specifying how the packets should be classified, and actions to take on the packets in each class, use
the service-policy command to apply the policies to the traffic passing through an interface. An additional
keyword (input/output) must be specified to indicate whether the policies apply to packets coming in (or
going out of) the interface. CBWFQ can be applied only on packets outbound or an interface.
 

Monitoring CBWFQ

The show policy policy-map command can be used to display the configuration of all the classes in a
policy map. Example 8-10 shows the output of this command:
 

Example 8-10. CBWFQ: show policy Output
 

ubrI19-2#show policy policy1
 Policy  Map policy1
  class  class1

    Class class1
      Bandwidth 100 (kbps) Max Thresh 20 (packets)
  class  class-default

    Class class-default
      Bandwidth 200 (kbps)
      exponential weight 9
class    min-threshold    max-threshold    mark-probability
      ----------------------------------------------------------

      0        -                -                1/10
      1        -                -                1/10
      2        -                -                1/10
      3        -                -                1/10
      4        -                -                1/10
      5        -                -                1/10
      6        -                -                1/10
      7        -                -                1/10
      rsvp     -                -                1/10

 
The random early detection (RED) parameters under class-default are explained in the section “Weighted
Random Early Detection,” later in this chapter.
 
The output of show policy interface is the key to determining how CBWFQ is functioning on the interface.
Example 8-11 displays the output of this command:
 

Example 8-11. Output of show policy interface to Monitor CBWFQ
 

ubrI19-2#show policy int
 Serial0
  service-policy  output: policy1
    class-map: class1 (match-all)
      0 packets, 0 by tes
      5 minute offered rate 0 bps, drop rate 0 bps
      match: access-group 101
      Output Queue: Conversation 265
        Bandwidth 100 (kbps) Packets Matched 0 Max Threshold 20 (packets)
        (discards/tail drops) 0/0



    class-map: class-default (match-any )
      0 packets, 0 by tes
      5 minute offered rate 0 bps, drop rate 0 bps
      match: any
        0 packets, 0 by tes
        5 minute rate 0 bps
      Output Queue: Conversation 266
        Bandwidth 200 (kbps) Packets Matched 326
      random-detect:
        mean queue depth: 0
        drops: class  random   tail     min-th   max-th   mark-prob
               0      0        0        20       40       1/10
               1      0        0        22       40       1/10

 
The following list explains the relevant output from Example 8-11:
 

• Bandwidth 100 (kbps) Packets Matched 0 Max Threshold 20 (packets)
 — Packets Matched is the number of packets that matched this class policy.
 — Max Threshold is the same as the congestive discard threshold in the WFQ section; it’s a soft

limit on the number of packets that can be placed in the class queue.
 • (discards/tail drops) 0/0
 — discards is the number of packets dropped when Max Threshold is reached.
 — tail drops is the number of packets dropped when max-total is reached; the default of max-total is

1000 and cannot be changed currently.
 — The RED parameters are explained in the section “Weighted Random Early Detection,” later in

the chapter.
 

Low Latency Queuing

The Low Latency Queuing (LLQ) feature combines strict priority queuing with Class-Based Weighted
Fair Queuing (CBWFQ). Strict priority queuing allows delay-sensitive data, such as voice traffic, to be
dequeued and sent first (before packets in other queues are dequeued). This feature can reduce jitter for
voice traffic. To enqueue a class of traffic to the strict priority queue, you configure the priority command
for the class after you specify the named class within a policy map (classes to which the priority
command is applied are considered priority classes).
 
Within a policy map, you can give one or more classes priority status. When multiple classes within a
single policy map are configured as priority classes, all the traffic from these classes is enqueued to the
same, single, strict priority queue. Example 8-12 shows class1 from Example 8-11 now configured as a
priority queue.
 

Example 8-12. Configuring a Priority Queue in CBWFQ for LLQ
 

policy -map policy1
  class class1
    priority  100
  class class-default
   bandwidth 200
   random-detect

 

Distributed Weighted Fair Queuing

Distributed Weighted Fair Queuing (DWFQ) is implemented on the VIP on the Cisco 7500. Platform-



independent queuing mechanisms (PQ, CQ, or WFQ) do not scale to high-speed interfaces (greater than 2
Mbps) on the 7500 platform. The main reason for this performance limitation is that packets copied back
and forth between MEMD and DRAM becomes a CPU-intensive operation when interface congestion
occurs and any fancy queuing mechanism is configured.
 
DWFQ is designed for distributed switching on VIPs and greatly improves WFQ performance.
 

• All packet processing is performed on the VIP’s processor, which frees the RSP’s processor up for
other tasks (such as running routing protocols).

 • Packets aren’t copied to and from various types of memory within the router; all queuing takes
place within SRAM on the VIPs themselves.

 • The algorithm used for DWFQ has been optimized for the VIP processor’s environment and
interface speeds.

 
As a result, DWFQ can be enabled on such high speed interfaces as the OC-3 (155 Mbps) interface on a
VIP2-50. DWFQ is capable of classifying packets in four different ways:
 

• Flow-Based
 • ToS-Based
 • QoS Group–Based
 • CBWFQ
 

Flow-Based DWFQ

Flow-Based DWFQ classifies the traffic destined out an interface based on the following:
 

• ToS bits in the IP header
 • IP protocol type
 • Source IP address
 • Source TCP or UDP socket
 • Destination IP address
 • Destination TCP or UDP socket
 
Traffic is classified into 512 flows; each flow is serviced round-robin from the calendar queue (see the
“DWFQ Implementation” section later in the chapter for more details). Each of the 512 flows shares an
equal amount of bandwidth.
 
With distributed Cisco Express Forwarding (dCEF) enabled on the interface, configuring fair-queue on a
VIP interface enables Flow-Based DWFQ. To configure DWFQ on an interface, use the command fair-
queue on an interface for which dCEF is configured already:
   Router(config-if)#fair-queue

 

ToS-Based DWFQ



ToS-Based DWFQ, also known as Class-Based DWFQ, classifies packets based on the lower two bits of
the precedence field in the IP header, so there are four possible queues. The weight of each queue
determines the amount of bandwidth the traffic placed in this queue receives if the outbound link is fully
congested.
 
The following command enables ToS DWFQ:
   Router(config-if)#fair-queue tos

 
Class 3, 2, 1, and 0 get default weights of 40, 30, 20, and 10, respectively. The default weights can be
changed using
   Router(config-if)#fair-queue tos 0 weight 20

 
The aggregate weight of all classes cannot exceed 100.
 

QoS Group–Based DWFQ

Another variant of ToS-Based (or Class-Based) DWFQ is based on QoS groups instead of the ToS bits in
the IP header. QoS groups are created by local policies applied through Committed Access Rate (CAR)
and can be propagated through Border Gateway Protocol (BGP) Policy Propagation. These concepts are
beyond the scope of this book.
 

Distributed CBWFQ

Distributed ToS-based and QoS group–based WFQ are two forms of CBWFQ. The platform independent
form of CBWFQ using the same modular CLI can also be configured on a VIP interface, including the
Low Latency queuing feature.
 

DWFQ Implementation

DWFQ does not perform list sorting and re-ordering of packets like the platform-independent WFQ
algorithm does. Instead, the DWFQ scheduling algorithm uses calendar queues to achieve similar
behavior with much greater efficiency. This is the primary reason DWFQ can be enabled on an OC-3
(155-Mbps) interface with a VIP2-50.
 
The difference between the platform-independent WFQ and DWFQ is in the details of how the sorted
queue is managed (that is, the difference is in the implementation details, not in the fundamentals of the
algorithm). WFQ maintains a sorted, linked list where newly arriving packets are inserted into the sorted
list based on the timestamp assigned to the packet. In DWFQ, a calendar queue is used to impose the
sorted ordering. The calendar queue is more efficient in terms of CPU utilization.
 

Monitoring DWFQ

The primary command used to monitor the state of DWFQ is show interface fair, as demonstrated in
Example 8-13.
 



Example 8-13. show interface fair Monitors DWFQ State
 

router#show interface fair
 FastEthernet11/1/0 queue size 0
        packets output 44404, wfq drops 1, nobuffer drops 0
 WFQ: aggregate queue limit 6746, individual queue limit 3373
      max available buffers 6746

     Class 0: weight 10 limit 3373 qsize 0 packets output 44404 drops 1
     Class 1: weight 20 limit 3373 qsize 0 packets output 0 drops 0
     Class 2: weight 30 limit 3373 qsize 0 packets output 0 drops 0
     Class 3: weight 40 limit 3373 qsize 0 packets output 0 drops 0

 
The following list explains the relevant fields in the output of the show interface fair:
 

• Packets output—Total number of packets transmitted out this interface.
 • wfq drops—Packets dropped by DWFQ; an aggregate of the drops in each class. The drops could

be due to three reasons:
 — The aggregate queue limit was exceeded.
 — The individual queue limit was exceeded (this is not enforced until two-thirds of the aggregate

queue limit is reached).
 — There were no buffers available.
 • nobuffer drops—Indicates the VIP is running out of SRAM and cannot enqueue packets to the

DWFQ system. The total numbers of buffers available to DWFQ is indicated by max available
buffers.

 • aggregate queue limit—The maximum number of packets that can be enqueued to the DWFQ
system. By default, this is equal to the max available buffers, but it can be tuned.

 • max available buffers—This is the amount of SRAM carved for use by DWFQ. It is computed as
a function of the bandwidth of the interface and the maximum available SRAM.

 — If there is sufficient SRAM available, then the aggregate queue limit assigned to an interface is
equal to the number of buffers needed to hold half a second worth of traffic, assuming each packet
is 250 bytes.

 — If there isn’t enough memory to create a half a second worth of buffers, memory is allocated
based on a complex algorithm.

 • individual queue limit—The number of packets that are allowed in each class queue; half the
aggregate limit by default. This is a soft limit, and is not enforced until two-thirds of the aggregate
queue limit is reached. By default, the sum of the individual queue limits of each class exceeds the
aggregate queue limit; this is intentional oversubscription and can be tuned.

 

Note

If many large packets belonging to a particular class (class1) arrive in a burst followed by a few packets
of a second class (class2), it is possible for all the buffers to be consumed by the class1 packets, causing
the class2 packets to be dropped due to no buffers. Possible workarounds are to add SRAM on the VIP
or to tune down the aggregate limit and the individual limits so buffers are not exhausted. If you want to
fully protect every class, then the sum of the individual limits must be less than the aggregate limit. In
other words, you can’t allow any oversubscription of the buffers if you want to guarantee one class won’t
starve another class.



 

 
• qsize—Instantaneous depth of the class queue.

 
Modified Deficit Round Robin

Unlike other Cisco platforms, the 12000 series of routers doesn’t support priority queuing, custom
queuing, or weighted fair queuing. Instead, they implement Modified Deficit Round Robin (MDRR) for
congestion management. MDRR can be configured on inbound interfaces for packets outbound to the
switching fabric, and outbound interfaces for packets awaiting transmission.
 
MDRR classifies packets into queues based on the precedence bits in the IP header. These queues are
serviced round-robin, with a queue being allowed to transmit a number of bytes each time it’s serviced
(the quantum). A deficit counter tracks how many bytes a queue has transmitted in each round.
 
When the queues first are configured, their deficit counters are set to be equal with their quantum. As
packets are transmitted from a queue, their lengths are subtracted from the deficit counter; when the deficit
counter reaches 0 (or less than 0), the scheduler moves on to the next queue. In each new round, each non-
empty queue’s deficit counter is incremented by its quantum value.
 
Beyond these ToS-based queues, MDRR has a special queue that can be serviced in one of two modes:
 

• Strict priority mode
 • Alternate mode
 
In strict priority mode, the special queue can be serviced whenever it is not empty. Strict priority mode
provides low latency and delay for those packets in the special queue, but if enough packets are queued
into the special queue, the remainder of the queues can starve.
 
In alternate mode, the scheduler alternates between the special queue and the rest of the ToS-based
queues.
 
The quantum associated with each queue is configurable by configuring its weight. The number of bytes a
queue can transmit during each round is:
 

Bytes dequeued = MTU + (configured weight − 1) * 512
 
Let’s work through an example; assume we have three queues:
 

• Queue 0—Has a quantum of 1500 bytes; it’s the low latency queue, configured to operate in
alternate mode.

 • Queue 1—Has a quantum of 3000 bytes.
 • Queue 2—Has a quantum of 1500 bytes.
 
Figure 8-9 illustrates the initial state of the queues along with some packets that have been received and
queued.
 

Figure 8-9. MDRR Initial State
 



 
Queue 0 is serviced first; its quantum is added to its deficit counter. Packet 1, which is 250 bytes, is
transmitted, and its size is subtracted from the deficit counter. Because queue 0’s deficit counter is still
greater than 0 (1500 − 250 = 1250), packet 2 is transmitted as well, and its length subtracted from the
deficit counter. Queue 0’s deficit counter is now −250, so queue 1 is serviced next; Figure 8-10 shows
this state.
 

Figure 8-10. MDRR State
 

 
Queue 1’s deficit counter is set to 3000 (0 + 3000 = 3000), and packets 4 and 5 are transmitted. With each
packet transmitted, subtract the size of the packet from the deficit counter, so queue 1’s deficit counter is
reduced to 0. Figure 8-11 illustrates this state.
 

Figure 8-11. MDRR State
 

 
Because we are in alternate priority mode, we must return and service queue 0. Again, we add the
quantum to the current deficit counter, and set queue 0’s deficit counter to the result (–250 + 1500 =
1250). Packet 3 is now transmitted, because the deficit counter is greater than 0, and queue 0 is now
empty. When a queue is emptied, its deficit counter is set to 0, as shown in Figure 8-12.
 

Figure 8-12. MDRR State
 

 
Queue 2 is serviced next; its deficit counter is set to 1500 (0 + 1500 = 1500). Packets 7 through 10 are
transmitted, leaving the deficit counter at 500 (1500 − (4 * 250) = 500). Because the deficit counter is
still greater than 0, packet 11 is transmitted also.
 



When packet 11 is transmitted, queue 2 is empty, and its deficit counter is set to 0, as shown in Figure 8-
13.
 

Figure 8-13. MDRR State
 

 
Queue 0 is serviced again next (because we are in alternate priority mode). Because it’s empty, we
service queue 1 next, transmitting packet 6.
 

Configuration of MDRR

The command cos-queue-group places you in a subconfiguration mode, allowing you to create a CoS
template, such as one of the following:
 

• precedence—Used to map the IP precedence to DRR queues and to configure the special low
latency queue.

 • queue—Sets the relative weight for each queue.
 • tx-cos—Used to map cos-queue-group parameters on the transmit interface.
 
When using MDRR for inbound congestion management, cos-queue-groups are mapped to destination line
card slots. The slot-table-cos and rx-cos-slot commands map the parameters defined in cos-queue-group
to each of the destination slots.
 
Assume, for instance, that you have an OC-12 card in slot 2 of a 12000, and an OC-3 card in slot 3. You
want to map precedence 7 traffic into the low-latency (special) queue, and service it in strict priority
mode. You could use the configuration in Example 8-14.
 

Example 8-14. MDRR Configuration on GSR
 

Interface pos2/1
Description OC12 Interface
!
Interface 3/1
Description OC-3 Interface
tx-cos frfab
!
rx-cos_slot 2 table-a
!
slot-table-cos table-a
destination-slot 3 tofab
!
cos-queue-group frfab
precedence 7 queue low-latency
queue low-latency  strict-priority  10
!
cos-queue-group tofab
precedence 7 queue low-latency
queue low-latency  strict-priority  10
!
end

 

Weighted Random Early Detection



Random early detection (RED) is a congestion avoidance algorithm that is most useful when a majority of
the traffic is adaptive, such as TCP. TCP uses packet drops as implicit signals of network congestion,
reducing the rate at which traffic is sent (or backing off) when a packet is missed.
 
When a majority of the traffic on a congested link consists of TCP streams from various senders, FIFO
queuing tail drops when the queue fills, causing all the TCP senders to back off at the same time. Over a
period of time (t), the TCP senders ramp up the sending rate, and when the link gets congested again, the
TCP senders all back off at the same time. This oscillating behavior is called global synchronization, as
charted in Figure 8-14.
 

Figure 8-14. Synchronized TCP Streams
 

 
Various congestion management techniques, such as RED, are aimed at preventing this synchronization
from occurring. The idea behind RED is quite simple: packets are randomly dropped before a queue is
full, rather than waiting until it’s actually full. If packet drops are spaced out over time, any TCP sessions
passing traffic through the queue react to packet loss at different times and they don’t synchronize.
 
RED defines a minimum threshold (min), a maximum threshold (max), and an average queue size (avg).
RED computes the average queue size based on the following formula:
 

Avg = (old_avg * (1 − 1/2exponential-weight-constant)) + (current_queue_size * 1/2exponential-weight-

constant)
 
Note that RED computes an average queue size and not an instantaneous queue size—the average queue
size depends on the previous average queue size. Therefore, RED is not biased towards bursty traffic. In
other words, RED allows bursts. It typically is not recommended to change the exponential-weight
constant.
 

Note

You can find a detailed description of RED in the Random Early Detection for Congestion Avoidance
paper by Sally Floyd and Van Jacobson (IEEE/ACM Transaction on Networking, v. 1, n. 4, August
1993).
 

 



RED drops packets based on a probability, which is computed based on the following formulas:
 

If avg < min, no packets are dropped.
 If min < avg < max, packets are dropped with increased probability as avg increases.
 If avg > max, all packets are dropped.
 
Going a step further, Weighted Random Early Detection (WRED) weights the drop probability for each
packet based on the precedence bits in the IP header, which allows for different classes of service. As
with WFQ, there are two WRED implementations available on Cisco routers:
 

• Platform-independent WRED
 • Distributed WRED (dWRED)
 
Platform-independent WRED is available on all platforms except the Cisco 12000 series of routers;
dWRED is available only on Cisco 7500 series routers using VIP processors with dCEF.
 

Configuration and Monitoring of WRED

WRED is configured with a single command on the interface:
    Router(config-if)#random-detect

 
To monitor WRED, use show interface random, as demonstrated in Example 8-15. The example is the
output of dWRED configured on a VIP interface on a 7500.
 

Example 8-15. show interface random Monitors WRED
 

Router#show interface random
 POS8/1/0 queue size 0
        packets output 151051, wred drops 1, nobuffer drops 0
 WRED: queue average 0, weight 1/512, max available buffers 23523

     Precedence 0: 5880 min threshold, 11761 max threshold, 1/10 mark weight
       151043 packets output, drops: 0 random, 0 threshold
     Precedence 1: 6615 min threshold, 11761 max threshold, 1/10 mark weight
        (no traffic)
     Precedence 2: 7350 min threshold, 11761 max threshold, 1/10 mark weight
        (no traffic)
     Precedence 3: 8085 min threshold, 11761 max threshold, 1/10 mark weight
        (no traffic)
     Precedence 4: 8820 min threshold, 11761 max threshold, 1/10 mark weight
        (no traffic)
     Precedence 5: 9555 min threshold, 11761 max threshold, 1/10 mark weight
        (no traffic)
     Precedence 6: 10290 min threshold, 11761 max threshold, 1/10 mark weight
        (no traffic)
     Precedence 7: 11025 min threshold, 11761 max threshold, 1/10 mark weight
        (no traffic)

 
The following list explains the relevant fields from the output of show interface random:
 

• packets output—Total number of packets transmitted on this interface.
 • wred drops—Packets dropped by WRED.
 • no buffer drops—Indicates the number of packets dropped because there was insufficient packet

memory (SRAM) on the VIP.
 • queue average—The average queue length.
 • mark weight—The probability of a packet being dropped when the average queue size is at the

maximum threshold. In Example 8-15, 1/512 means one out of every 512 packets is dropped when



the average queue is at the maximum threshold.
 • max available buffers—Number of buffers allocated in SRAM for storing packets in the outbound

VIP’s SRAM.
 • min threshold—Average queue depth at which RED begins to mark (drop) packets for this

precedence level. Also represents the number of packets in the RED queue.
 • max threshold—Average queue depth beyond which RED marks (drops) all packets. This value

also represents the number of packets in the RED queue.
 

Note

The default values for the min and max threshold are calculated based on the value of the output queue
length for the interface. Remember, this output queue is not the interface output hold queue, but rather the
interface transmit queue on the VIP.
 The min threshold for the precedence queue 0 is set to half the output queue length. The interval
between the min-threshold for precedence 0 and the max-threshold is divided into eight values, and each
value is assigned as the min-threshold for the remaining precedences. Precedence 0 has the lowest min-
threshold and precedence 7 gets the highest min-threshold.
 
 
If a majority of the traffic on a link doesn’t react to packet drops (UDP, for example), then RED cannot
help in any way.
 
Selective Packet Discard

When the input queue of an interface fills up with traffic destined to the router, there’s a good chance that
the next packet dropped will be important to the state of the network itself—a routing protocol update or a
link keepalive, for instance. Selective Packet Discard (SPD) allows IOS to prioritize traffic that is
important to the network’s stability when an interface’s input queue is congested.
 
Essentially, any packet recognized by IOS as being important to the stability of the network is given
preferential treatment during the process of queuing it on the input queue. SPD is available on all Cisco
routers.
 
The command show ip spd shows SPD details, as demonstrated in Example 8-16.
 

Example 8-16. show ip spd Displays SPD Details
 

Router#show ip spd
Current mode: normal.
Queue min/max thresholds: 73/74, Headroom: 100
IP normal queue: 8, priority  queue: 0.
SPD special drop mode: none

 
Lower precedence packets are dropped when the queue size reaches min threshold. The number of
packets allowed to be enqueued over the normal input hold queue is the headroom.
 
Other QoS Features



There are many QoS features in IOS not covered in this chapter—an entire book can be written on just
these features. Some of the other QoS features offered in IOS include the following:
 

• Committed Access Rate (CAR)—A popular rate-limiting feature used for policing the traffic rate
inbound or outbound on an interface. CAR often is thought of as a traffic-shaping feature, but it’s
not, because CAR doesn’t shape traffic.

 • Generic Traffic Shaping (GTS)—A traffic-shaping feature used to smooth out traffic outbound on
a interface.

 • Resource Reservation Protocol (RSVP)—A QoS signaling mechanism used for resource
reservation.

  
Summary

This chapter covered the implementation of various QoS mechanisms within Cisco IOS. There are two
general mechanisms employed to ensure that traffic streams receive the level of service they require
—congestion management and congestion avoidance. Congestion management schemes covered include
priority queuing, custom queuing, various forms of weighted fair queuing, and MDRR. RED is the
congestion avoidance technique discussed.
 



Appendix A. NetFlow Switching
Although many people think of NetFlow as a switching path, it isn’t; instead, it enables several key
applications that customers can use for billing, traffic monitoring, and traffic profiling. Although NetFlow
provides traffic accounting and feature acceleration services, packet switching is still performed by
process switching, fast switching, optimum switching, or CEF. Therefore, NetFlow can be applied with
other switching methods.
 
A flow is defined as a unidirectional sequence of packets between given source and destination endpoints.
A flow in the context of NetFlow is defined as the combination of the following fields:
 

• Source IP address
 • Destination IP address
 • Source TCP/UDP application port number
 • Destination TCP/UDP application port number
 • IP protocol type
 • IP ToS (Type of Service)
 • Input logical interface
 
When NetFlow is configured on an interface, only packets that arrive into the interface are accounted by
NetFlow. NetFlow does not account for packets that are going out an interface. The following steps
illustrate the packet path for an IP packet arriving into a NetFlow-enabled interface:
 

Step 1. A flow lookup is done in the flow cache (the definition of what constitutes a flow is defined
later).

 Step 2. If this is the first packet for this flow, a new flow entry is created. If this is not the first
packet belonging to a flow, the statistics for the flow are updated in the flow cache entry.

 Step 3. If there are any input features (input access lists, for example) and this is the first packet for
a flow, the access list is checked to make sure the packet is permitted or denied. Access list
checking for all subsequent packets for the flow is bypassed.

 Step 4. A lookup of the destination address is done in the CEF, optimum switching, fast switching, or
routing table. If the destination lookup is successful, the packet has the new Layer 2
encapsulation for transmission on the outbound interface.

 Step 5. An output feature check is performed (output access list, for example) for the first packet for
a flow. Access list checking for all subsequent packets for the flow is bypassed.

 Step 6. The packet is transmitted to the outbound interface.
 
The NetFlow feature is turned on by the interface level configuration command ip route-cache flow. The
NetFlow cache is stored in the main memory in non-distributed platforms and on the Line Card main
memory in the 7500 VIP cards and the GSR. As packets of the same flow arrive into the interface, the
traffic statistic counters are incremented for that flow.



 
 
Flow Cache Maintenance

The size and the number of entries in the flow cache are platform dependent. Table A-1 lists the default
values.
 

Table A-1. Flow Cache Entry Default Values
 

 
Each time a new flow is added to the NetFlow cache, the number of available NetFlow cache entries is
checked. If only a few free flows remain, NetFlow attempts to age 30 of the existing flows using an
accelerated timeout. If only one free flow remains, NetFlow automatically ages 30 existing flows
regardless of their age. The intent is to ensure free flow entries always are available.
 
The aging process includes the following:
 

• Flows that have been idle for 15 seconds are expired and removed from the cache.
 • Long-lived flows (more than 30 minutes by default) are expired and removed from the cache. The

flow expiration parameter is user configurable.
 • TCP flows that have reached the end of byte stream (FIN) or that have been reset (RST) are

expired from the cache.
 
Example A-1 demonstrates the output of the show ip cache verbose flow command, which displays
details about the NetFlow cache.
 

Example A-1. show ip cache verbose flow Command Output Displays NetFlow Cache Details
 

router#sh ip cache verbose flow
IP packet size distribution (5693M total packets):
   1-32   64   96  128  160  192  224  256  288  320  352  384  416  448  480
   .000 .135 .166 .100 .066 .051 .039 .033 .028 .024 .021 .019 .017 .015 .013

    512  544  576 1024 1536 2048 2560 3072 3584 4096 4608
   .012 .011 .068 .065 .108 .000 .000 .000 .000 .000 .000

IP Flow Switching Cache, 2228352 by tes
  6005 active, 26763 inactive, 134383926 added
  1347994477 ager polls, 0 flow alloc failures
  last clearing of statistics never
Protocol         Total    Flows   Packets By tes  Packets Active(Sec) Idle(Sec)
--------         Flows     /Sec     /Flow  /Pkt     /Sec     /Flow     /Flow
TCP-Telnet        1248      0.0         3    40      0.0       0.5      16.6
TCP-FTP             10      0.0         6    46      0.0       4.3      11.5
TCP-FTPD             2      0.0      1011    40      0.0      26.8       5.9
TCP-WWW            490      0.0         8   313      0.0       4.5      13.2
TCP-SMTP         14045      0.0        16   363      0.0       0.5      14.8
TCP-other    105635036     29.1        53   363   1560.5      51.8      15.7
UDP-DNS         593992      0.1         1    66      0.1       0.0      16.8
UDP-NTP         286608      0.0         1    76      0.0       0.1      16.7
UDP-other     25237407      6.9         1    83     10.4       0.1      16.8
ICMP           2558041      0.7         1    59      0.8       0.4      16.7
Total:       134326879     37.0        42   361   1572.1      40.7      15.9

SrcIf          SrcIPaddress    DstIf          DstIPaddress    Pr TOS Flgs  Pkts



Port Msk AS                    Port Msk AS    NextHop              B/Pk  Active
Gi1/0/0        63.75.60.227    Gi8/0/0        24.129.29.189   06 00  18       2
06BC /0 0                      062F /0 0      0.0.0.0                48     2.0

 
The first section of the output in Example A-1 displays the packet size distribution percentages by packet
size. Other notable fields include the following:
 

• Pr—The IP Protocol Field (for example, TCP = 6; UDP = 17) byte.
 • TOS—Type of Service byte in the IP header.
 • Flgs—The flags field contains the logical OR of the TCP flags for all packets of a given TCP flow.

This field is undefined for non-TCP flows.
 • AS—In the BGP autonomous system number field, a value of 0 for the AS number can be due to

several reasons:
 — Traffic destined to the router.
 — Flows that are not routable.
 — Traffic local to the AS (in other words, traffic that is only Intra-AS).
 — Asymmetric routing. If a demand-based cache scheme (fast, optimum switching) is used as the

switching method, then the source or the destination IP address cannot be in the route-cache due to
asymmetric routing. CEF is topology driven and not data driven; therefore, CEF fixes this
problem.

 — peer-as or origin-as has not explicitly been configured. ip flow-export version 5 peer-as |
origin-as must be explicitly configured to enable the export and the collection of AS numbers.

 
Flow Export

Flow data is exported in UDP datagrams periodically (once per second) or as soon as a full UDP
datagram of expired flows is available. The size of each flow record depends on the NetFlow version.
Four versions of NetFlow Export currently are supported:
 

• Version 1 (v1)—Version 1 format was the original format supported in the initial Cisco IOS
software releases containing NetFlow functionality.

 • Version 5 (v5)—The Version 5 format added Border Gateway Protocol (BGP) autonomous system
information and flow sequence numbers.

 • Version 7 (v7)—The Version 7 format is an enhancement that adds NetFlow support for Cisco
Catalyst 5000 series switches equipped with a NetFlow feature card (NFFC). Version 7 is
supported only by the Catalyst 5000 NFFC.

 • Version 8 (v8)—Version 8 is the format used to export aggregated NetFlow statistics via the
Router-Based NetFlow Aggregation feature; this version also provides total flow sequence
numbers.

 
Versions 2 through 4 and Version 6 either were not released or are not supported.
 
For a Version 1 datagram, up to 24 flows can be sent in a single UDP datagram of approximately 1200
bytes. For a Version 5 datagram, up to 30 flows can be sent in a single UDP datagram of approximately
1500 bytes. For a Version 7 datagram, up to 28 flows can be sent in a single UDP datagram of



approximately 1500 bytes. Obviously, the flow collector application should support the flow version that
is being exported from the router.
 

Router-Based Flow Aggregation Export (RBA)

Flow export from a busy interface with large numbers of flows can generate a very significant amount of
NetFlow traffic. The RBA scheme (NetFlow Version 8) addresses this issue by aggregating the flows on
the router without exporting the individual flows. As of this writing, IOS supports five NetFlow
aggregation schemes:
 

• Autonomous System aggregation scheme—Provides significant NetFlow export data volume
reduction and generates autonomous system–to–autonomous system traffic flow data. This
aggregation scheme groups data flows with the same source Border Gateway Protocol (BGP)
autonomous system, the destination BGP autonomous system, the input interface, and the output
interface.

 • Destination Prefix aggregation scheme—Generates data so you can examine the destinations of
network traffic passing through a NetFlow-enabled device. This aggregation scheme groups data
flows with the same destination prefix, destination prefix mask, destination BGP autonomous
system, and output interface.

 • Prefix aggregation scheme—Generates data so you can examine the sources and the destinations
of network traffic passing through a NetFlow-enabled device. This aggregation scheme groups data
flows with the same source prefix, destination prefix, source prefix mask, destination prefix mask,
source BGP autonomous system, destination BGP autonomous system, input interface, and output
interface.

 • Protocol Port aggregation scheme—Generates data so you can examine network usage by traffic
type. This aggregation scheme groups data flows with the same IP protocol, source port number,
and destination port number when applicable.

 • Source Prefix aggregation scheme—Generates data so you can examine the sources of network
traffic passing through a NetFlow-enabled device. This aggregation scheme groups data flows with
the same source prefix, source prefix mask, source BGP autonomous system, and input interface.

 
Each aggregation scheme uses its own cache, the size of which is configurable (default 4096 entries).
 
For more information on the NetFlow aggregation schemes, visit CCO (www.cisco.com) and search for
“NetFlow aggregation.”
 

http://www.cisco.com
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 packet switching, 106–111
 7500 series, 113
 data buses, 114
 routing loops, 144
 RSP (Route Switch Processor), 115–123
 12000 series (Gigabit Switch Router), 147
 GRP (Gigabit Route Processor), 154–155
 hardware, 147
 LCs (Line Cards), 155–161
 Maintenance Bus (MBUS), 154
 MDRR (Modified Deficit Round Robin), 191–195
 packet switching, 161–167
 switching fabric, 148–154
 AGS+ router, 87–89
 recursive routing, 54
 shared memory routers, 69
 CPUs (central processing units), 70–71



 DRAM (dynamic random access memory), 71–74
 hardware architecture, 69–70
 interface controllers, 74
 packet buffers, 75–78
 packet switching, 79–85
 show memory routers, 74
 RP (Route Processor) card, 92
 RQL (receive queue limit), 92
 RSP (Route Switch Processor), 115–123
 CPUs (central processing units), 116
 main memory, 123
 MEMD (memory D), 116–122
 receiving packets, 124, 127
 switching packets, 126–129
 transmitting packets, 129, 131
 RSVP (Resource Reservation Protocol), 199
 run state, 16
 runtime code (shared memory routers), 72–73
 Runtime field (show process command), 18
 run-to-completion priority scheduling (threads), 5
 run-to-completion scheduling (threads), 4–5
 rx-cos-slot command, 194
 rxcurr (Cisco 7500 series router), 122
 rxhi (Cisco 7500 series router), 122
 rxlo (Cisco 7500 series router), 122
 
S

S character (show process command), 18
 sa character (show process command), 18
 Sched summary lines (show process memory command), 30
 scheduler, 20–24
 scheduling threads, 4–5
 SDRAM, 104–106
 SDRAM size field (show controller tofab queue command), 159
 Selective Packet Discard (SPD), 198–199
 self termination, 16
 sequence numbers, 180



 service-policy command, 185
 SFC (Switch Fabric Card), 150
 shared memory routers, 69, 74
 CPUs (central processing units), 70–71
 DRAM (dynamic random access memory), 71–74
 hardware architecture, 69–70
 interface controllers, 74
 packet buffers, 75
 private buffer pools, 75–76
 rings, 77–78
 packet switching
 receiving packets, 79–80
 switching packets, 81–82
 transmitting packets, 83–85
 sharing traffic loads
 CEF (Cisco Express Forwarding), 63–64
 Fast Cache packet switching, 55–56
 process switching, 44–45
 show adjacency command, 62
 show align command, 143
 show buffer command, 32–33
 show buffers command, 35–38, 75, 98
 show controller cbus command, 119–122, 145
 show controller command, 77
 show controller fia command, 150
 show controller frfab queue command, 160
 show controller tofab queue command, 158
 show controller vip accumulator command, 141
 show diag command, 134, 157
 show interface command, 144–145
 show interface random command, 197
 show interface stat command, 143–144
 show ip cache optimum command, 58
 show ip cache verbose command, 49–50
 show ip cache verbose flow command, 203–204
 show ip cef summary command, 59
 show ip route command, 45



 show ip spd command, 199
 show ip traffic command, 144
 show memory command, 12–13, 26–27, 31, 74
 show memory free command, 27–28
 show memory summary command, 123
 show policy interface command, 186
 show policy policy-map command, 186
 show process command, 17–19
 show process cpu command, 22–23, 142–143
 show process memory command, 29–30
 show queueing command, 182–183
 show region command, 10, 71
 show version command, 70–72, 115
 si character (show process command), 18
 size field (show queueing command), 183
 slots (7200 series routers), 100
 slot-table-cos command, 194
 Small buffers, 33
 software infrastructure, 3
 Source Prefix aggregation, 205
 SP (Switch Processor) card, 92
 sp character (show process command), 18
 SPD (Selective Packet Discard), 198–199
 speed
 CEF (Cisco Express Forwarding), 58–59
 load sharing, 63–64
 tables, 59, 61–62
 Fast Cache, 47–49
 cache maintenance, 53–55
 hash buckets, 50–51
 hash tables, 50–51
 load sharing, 55–56
 radix trees, 51–52
 storing IP prefixes, 52–53
 optimum switching, 56–58
 process switching, 46–47
 SRAM



 7200 series routers, 104–106
 DWFQ (Distributed Weighted Fair Queuing), 191
 st character (show process command), 18
 Stacks field (show process command), 19
 stages (processes), 15–16
 Start addresses (memory regions), 10
 static packet buffer pools, 32
 strict priority mode, MDRR (Modified Deficit Round Robin), 192
 subregions, memory, 9–12
 summary lines (show process memory command), 30
 swapping memory, 9
 Switch Fabric Card (SFC), 150
 Switch Processor (SP) card, 92
 switches
 7200 series routers, 100
 context switches, 5
 switching fabric (12000 series routers), 148–150
 bandwidth, 151–152
 cells, 154
 HoLB (Head of Line blocking), 152–153
 virtual output queues, 153
 switching packets, 41–42, 65
 7200 series routers, 106–111
 7500 series routers, 123, 126–129
 receiving packets, 124, 127
 switching packets, 126, 128–129
 transmitting packets, 129, 131
 VIP (Versatile Interface Processor), 137–138
 AGS+ router, 87–89
 Cbus, 90
 autonomous switching, 90
 Fast Packet Memory, 91–92
 CEF (Cisco Express Forwarding), 58–59
 load sharing, 63–64
 tables, 59–62
 Fast Cache, 47–49
 cache maintenance, 53–55



 hash buckets, 50–51
 hash tables, 50–51
 load sharing, 55–56
 radix trees, 51–52
 storing IP prefixes, 52–53
 fast switching software, 8
 IOS design influence, 7–8
 optimum switching, 56–58
 paths, 65
 process switching, 42–44
 load sharing, 44–45
 particle buffers, 99
 speed, 46–47
 shared memory routers, 81–82
 synchronization, global, 195–196
 system buffers, 31–38
 
T

tables
 CEF (Cisco Express Forwarding), 59–62
 hash tables (Fast Cache), 50–51
 tail drops field
 show policy interface command, 187
 show queueing command, 183
 TBM (Transmit Buffer Manager), 161
 TDM (time division multiplexing), 100, 104
 terminal sessions (Quality of Service), 169
 termination stage, 16
 thrashing, cache, 49
 threads, 4–5
 processes, 13
 life cycle stages, 14–16
 output, 17–19
 priorities, 16–17
 scheduling, 5
 threshold
 RED (random early detection), 196



 show interface random command, 198
 show queueing command, 183
 throttling, interrupt, 23
 time division multiplexing (TDM), 100, 104
 timers
 preemptive multitasking, 5
 watchdog timers, 23–24
 ToFab Queues field (show controller tofab queue command), 159
 ToFab SDRAM, 158
 TOS field (show ip cache verbose flow command), 203
 ToS-Based DWFQ (Distributed Weighted Fair Queuing), 182, 189
 total field (show buffer command), 33
 Total output (show memory command), 13
 TQL (transmit queue limit), 92
 traffic
 load sharing (process switching), 44–45
 NetFlow, 201–202
 exporting data, 204
 flow cache, 202–204
 RBA (Router-Based Flow Aggregation Export), 205
 Transmit Buffer Manager (TBM), 161
 Transmit Packet Memory, 160
 transmit queue (Cisco 7500 series router), 122
 transmit queue limit (TQL), 92
 transmit queue pointers, 122
 transmit rings
 congestion management, 172
 shared memory routers, 77–78
 transmitting packets
 7200 series routers, 109–111
 7500 series routers, 129, 131, 138–140
 12000 series routers, 165–167
 shared memory routers, 83–85
 trees, radix, 51–52
 trims field (show buffer command), 34
 troubleshooting (Cisco 7500 series routers), 142
 CPUs (central processing units), 142–144



 ignore counters, 145
 input drop counter, 144
 output drop counters, 145
 TTY background (show process command), 19
 TTY field
 show process command, 19
 show process memory command, 29
 txlimit (Cisco 7500 series router), 122
 txq (Cisco 7500 series router), 122
 type of service (ToS), 182, 189
 
U

UDP datagrams, exporting flow data, 204
 unequal cost paths, 45
 unused field (show controller cbus command), 120
 uSecs field (show process command), 19
 Used output (show memory command), 13
 
V

video (Quality of Service), 169
 VIP (Versatile Interface Processor), 131–134
 distributed switching, 135–140
 models, 134–135
 receive side buffering, 141–142
 virtual address space, 9
 virtual memory, 6–7
 virtual output queues, 153
 voice traffic (Quality of Service), 169
 VXR midplanes, 100
 
W–Z

watchdog timers, 23–24
 we character (show process command), 18
 weight field (show queueing command), 183
 WFQ (Weighted Fair Queuing), 178–179
 CBWFQ (Class-Based WRQ), 184–187
 configuring, 182–183



 DWFQ (Distributed WFQ), 188–191
 Flow-Based WFQ, 179–182
 wfq drops field (show interface fair command), 190
 WRED (weighted random early detection), 195–198
 wred drops field (show interface random command), 198
 
X character (show process command), 18
 xx character (show process command), 18
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